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1 Introduction

This thesis is devoted to the study of some aspects of the linear Schrödinger equation. This
equation, which was introduced by Schrödinger in 1926, describes the wave function of a
quantum-mechanical system. For an historical introduction in quantum mechanics and the
physical aspects, we refer to Section 4.

In our work, we focus on the search of solutions to the Schrödinger equation of a
particular form: solutions that are, for any fixed time, the so-called “chirp” functions.
This family of functions are very important in Signal Theory (cf. for example [1]) and
are strictly linked to the Schrödinger equation for the free particle. Indeed, the expression
of the fundamental solution to this equation in one dimension involves chirp functions, as
explained in Section 3.1, cf. [6], [17].

We restrict our study to Schrödinger equations in one spatial dimension. The system
describes the wave function for a single material particle that just moves in one dimension,
then. In general, the system for a single particle is governed by the Hamiltonian, a = T+V ,
which is the sum of kinetic energy T and potential energy V . In particular, we deal with
two instances: the first one is the equation for a free particle, which corresponds to the
potential energy V = 0, while the second one is the equation for the quantum harmonic
oscillator, which corresponds to the potential energy V (x) = 1

2
x2.

For each case, we have at first studied the homogeneous Cauchy problem for an initial
datum ū0 that is an absolutely convergent series of “chirp functions” of the form

ū0(x) =
+∞∑

n=−∞

αne
inx2 ,

for αn ∈ C. So, the two problems are{
∂tu(t, x)− i∂xxu(t, x) = 0, (t, x) ∈ R× R
u(0, x) = ū0(x), x ∈ R,

(1.1)

for the free particle and{
∂tu(t, x) + i

2
(−∂xxu(t, x) + x2u(t, x)) = 0, (t, x) ∈ R× R

u(0, x) = ū0(x), x ∈ R,
(1.2)

for the quantum harmonic oscillator. In both cases, we proved the existence of solutions
of the form

u(t, x) :=
+∞∑

n=−∞

αnun(t, x),

where un(t, ·) is a “chirp function”, as well. We proved that this solution is classical in a
set Ã×R, where Ã is a set of times that excludes the singularities of the functions un(·, x).
We have also proved and computed the limits, in the sense of distributions, of the solution
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u(t, ·) as t→ t0, for t0 ∈ R \ Ã. Thanks to this result, the solution u can be extended to a
continuous function u : R→ D′(R). For a detailed statement on these results, we refer to
Theorem 5.1, Theorem 5.9, Corollary 5.2 and Corollary 5.10.

The second problem we studied is the Cauchy problem for the non-homogeneuos equa-
tion with zero initial datum. Precisely, given a function v that is a uniformly convergent
(on compact intervals of time) series of “chirp” functions vn(t, x), see equation (5.17) and
(5.29) in the sequel for the precise form, we considered the problems{

∂tu(t, x)− i∂xxu(t, x) = v(t, x), (t, x) ∈ R× R
u(0, x) = 0, x ∈ R,

(1.3)

for the free particle equation, and{
∂tu(t, x) + i

2
(−∂xxu(t, x) + x2u(t, x)) = v(t, x), (t, x) ∈ R× R

u(0, x) = 0, x ∈ R,
(1.4)

for the quantum harmonic oscillator. In each case, we proved the existence of solutions of
the form

u(t, x) :=
+∞∑

n=−∞

un(t, x),

where un(t, ·) is again a suitable “chirp function” that can be calculated in terms of vn.
Again, we proved that this solution is classical in a set Ã × R, where Ã is a set of times
that excludes the singularities of the functions un(·, x). The results are then similar to the
ones of the homogeneous case. For a precise statement, we refer to Theorem 5.5, Theorem
5.11, Corollary 5.7 and Corollary 5.13.

Finally, for each of the two dealt Problems, we more generally have what follows below.
Taking the sum of the solutions obtained from the Cauchy Problem (1.1) and the Cauchy
Problem (1.3), we found a solution for the more general Free particle Cauchy Problem:{

∂tu(t, x)− i∂xxu(t, x) = v(t, x), (t, x) ∈ R× R
u(0, x) = ū0(x), x ∈ R,

(1.5)

thanks to the linearity property of the Cauchy Problem (1.5) itself.
Again, by taking the sum of the solutions obtained from the Cauchy Problem (1.2) and

the Cauchy Problem (1.4), we found a solution to the more general Quantum harmonic
oscillator Cauchy Problem:{

∂tu(t, x) + i
2
(−∂xxu(t, x) + x2u(t, x)) = v(t, x), (t, x) ∈ R× R

u(0, x) = ū0(x), x ∈ R,
(1.6)

thanks, again, to the linearity of the Cauchy Problem (1.6) itself.
For precise statements on these results, we refer to Theorem 5.8, as regards the Free

particle case, and Theorem 5.14, as it concerns the Quantum harmonic oscillator one.
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All the above illustrated results are proved in Section 6. As it concerns their proofs, we
just made use of techniques from classical differential calculus. Apart from the elementary
theory of distributions, in this thesis we have not used tools from Functional Analysis.
It would be interesting to give a structure of Hilbert space to the sums of chirps in the
preceeding theorems and, in this context, deduce continuity results. This is left to future
investigations.

Moreover, in Section 5.4, we showed how the solution to the free particle problems, given
by Theorems 5.1 and 5.5, can be even attained using the Fourier transform representation
in S′(R). Let us point out this approach cannot be carried out for the quantum harmonic
oscillator problem, where the pure differential methods, that we here made use of, turned
out to be very useful.

Let’s stress that our results, attained via classical differential calculus, match with the
recent ones on the propagation of the Gabor wave front set for the Schrödinger equation,
proved in [5] and [14], achieved using pseudo-differential theory for more general problems
also involving a nonlinear term. See Section 5.3. We hope our results will be applied in
future works to identify phenomena of anomalous propagation of singularities for nonlinear
Schrodinger equations. This depends on the fact that, as observed in [14], powers of chirps
generate new Gabor wave front sets.
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2 Schrödinger equation

The Schrödinger equation is a linear partial differential equation that describes the wave
function or state function of a quantum-mechanical system. It is a key result in quantum
mechanics and its discovery was a significant landmark in the development of the subject.
The equation is named after Erwin Schrödinger, who derived the equation in 1925 and
published it in 1926 [20], laying the basis for the work that ended up with his Nobel Prize
in Physics in 1933.

In the space of positions Rd, d = 1, 2, 3, the Schrödinger equation for the wave function
of a single particle of mass m, subject to a potential V : Rd → R, is

i~
∂

∂t
u(t, x) = − ~2

2m
∆u(t, x) + V (x)u(t, x), (2.1)

where ~ denotes the reduced Planck constant: ~ = h/(2π) and h is the Planck constant
(see Section 4.2). In equation (2.1), ∆ is the Laplacian operator defined by

∆u(t, x) =
d∑

n=1

∂2

∂x2
n

u(t, x).

From the mathematical point of view, the equation (2.1) is widely studied (see [2]).
After a time-rescaling and a redefinition of the potential V , the equation (2.1) can be

studied in the following form

∂

∂t
u(t, x) = −i (−∆u(t, x) + V (x)u(t, x)) . (2.2)

2.1 Solutions by separation of variables

Among the methods used to construct solutions to the Schrödinger equation, we have the
one of separation of variables. This method consists in looking for solutions of the form
u(t, x) = g(t)h(x). The equation (2.2) in R× Rd, d = 1, 2, 3, can be rewritten as

g′(t)h(x) = ig(t) (∆h(x)− V (x)h(x)) . (2.3)

Equation (2.3) has nontrivial solutions if there exist E ∈ R such that the following equation

−∆h(x) + V (x)h(x) = Eh(x) (2.4)

has nontrivial solutions h : Rd → R, and g : R→ C satisfies

g′(t) = −iEg(t). (2.5)

The solutions to the ordinary differential equation (2.5) are of the form

g(t) = Ce−iEt, for C ∈ C. (2.6)
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We introduce the operator H : D(H) ⊂ L2(Rd)→ L2(Rd) defined by

Hh = −∆h+ V h,

where D(H) is the domain of H. This domain should depend on the form of V and it is
a suitable subspace of the Sobolev space H2(Rd). The problem of searching for nontrivial
solutions of (2.4) has thus been reduced into finding the eigenvalues and the eigenfunctions
of the operator H, and (2.4) it can be rewritten as

Hh− Eh = 0.

Then, the general solution of (2.2) can be written as

u(t, x) =
∑

E∈σ(H)

C(E)hE(x)e−iEt, (2.7)

where σ(H) denotes the spectrum of H, hE is an eigenfunction of H related to the eigen-
value E and C(E) are complex constants as in (2.6).

In this thesis, we do not look into this theory that is broadly studied, indeed. We will
just lay out the particular case of the one dimensional quantum harmonic oscillator, right
in the following paragraph.

2.1.1 Eigenvalues and eigenfunctions of the quantum harmonic operator

In this section, we look at the eigenvalues and eigenfunctions of the one dimensional quan-
tum harmonic operator.

As in the previous paragraph, we consider, for d = 1, the operator

H : D(H) ⊂ L2(R)→ L2(R)

defined by
(Hu)(x) = −u′′(x) + x2u(x),

where the domain of the operator H is the space

D(H) = H2
Γ := {u ∈ L2(R) : xu ∈ L2(R), x2u ∈ L2(R), xu′ ∈ L2(R)},

(see, for instance, the book [15] for the definition of these kind of spaces in a general
framework).

In order to compute the eigenvalues and eigenfunctions of H, we introduce the operators
Ψ+ and Ψ− defined by

Ψ+u(x) = −u′(x) + xu(x) and Ψ−u(x) = u′(x) + xu(x).

It is not difficult to show that
Ψ+Ψ−u = Hu− u. (2.8)
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Then, from (2.8), it follows that 1 is an eigenvalue of H with associated eigenfunctions the
solutions of the equation Ψ−u0 = 0, which are the scalar multiples of

ũ0(x) := e−x
2/2.

Reasoning by induction, it can be proved that the numbers

λn := 2n+ 1, n = 0, 1, 2, . . .

are eigenvalues of H with respective eigenfunctions

ũn = Ψn
+ũ0. (2.9)

The L2(R) norm of ũn can be computed. Namely, it holds the following recursive relation

‖ũn‖2
L2(R) = 2n‖ũn−1‖2

L2(R). (2.10)

Since
‖ũ0‖2

L2(R) =
√
π,

it follows that
‖ũn‖2

L2(R) = 2nn!
√
π.

In a similar way, it can be shown that

(ũm, ũn)L2(R) = 0, for m 6= n.

Then the system {ũn : n ∈ N} is orthogonal.
The system {ũn : n ∈ N} can be normalized and we can define the orthonormal system

{un : n ∈ N}, where un = ũn/‖ũn‖L2(R). From the definition of the operator Ψ+ and (2.9),
it follows that the form of un is

un(x) = Pn(x)e−x
2/2,

where Pn are polynomials that are called Hermite polynomials. Besides, it is not difficult
to show that the system {un : n ∈ N} is also complete (see [15] Section 2.2). From the
completeness of the system and the Hilbert space theory, it follows that the full spectrum
of H is constituted just by the numbers λn = 2n+ 1, n = 0, 1, 2, . . ..

According to the formula (2.7), we conclude that all the solutions of the equation

∂

∂t
u(t, x) = −i

(
− ∂2

∂x2
u(t, x) + x2u(t, x)

)
, (2.11)

obtained by separation of variables, are of the form

u(t, x) =
+∞∑
n=0

Cnun(x)e−i(2n+1)t, (2.12)
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where Cn are suitable scalar constants. More precisely Cn, n = 0, 1, 2, . . . , are the Fourier
coefficients with respect to the orthonormal basis {un : n ∈ N} of the initial datum u(0, ·).
In particular, if ū0 ∈ L2(R) is given, denoting by Cn its Fourier coefficients (with respect to
the orthonormal basis {un : n ∈ N}), the formula (2.12) provides a solution of the Cauchy
problem for the equation (2.11), with initial datum ū0.

However, we are interested in studying another type of solutions, namely the ones that
are called “chirp solutions”. The previous theory cannot be applied since chirp functions
do not belong to L2(R) (see next Section 3.1).

2.2 Fundamental solution

2.2.1 Fourier transform

For u ∈ L1(Rd), we define its Fourier transform by

Fu(ξ) = û(ξ) :=

∫
Rd
u(x)e−ix·ξ dx,

where x · ξ denotes the standard scalar product in Rd. Since |û(ξ)| ≤ ‖u‖L1(Rd), it follows
that F : L1(Rd)→ L∞(Rd) is a continuous linear map.

The Fourier transform can be extended to a large class of distributions in Rd. To this
purpose, we introduce the Schwartz space S(Rd).

Let α ∈ Nd by a d-multi-index, the lenght of α is defined by |α| = α1 + · · · + αd. If
u ∈ C∞(Rd), we define Dαu := ∂α1

x1
· · · ∂αdxd and xα = x1

α1 · · ·xdαd .
For k ∈ N and u ∈ C∞(Rd), we define the seminorm

[u]k := sup
|α|≤k, x∈Rd

(1 + |x|)k|Dαu(x)|, and |u|k := sup
|α|≤k, x∈Rd

|Dαu(x)|.

The Schwartz space is defined by

S(Rd) = {u ∈ C∞(Rd) : [u]k < +∞, ∀ k ∈ N},

endowed with the topology induced by the family of seminorms {[·]k : k ∈ N}. Similarly,
we define the space

D(Rd) = {u ∈ C∞(Rd) : |u|k < +∞, ∀ k ∈ N},

endowed with the topology induced by the family of seminorms {| · |k : k ∈ N}.
S(Rd) and D(Rd) are Fréchet space and D(Rd) is dense in S(Rd).
The space D′(Rd) of the continuous linear functionals on D(Rd) is called space of

distributions. The space S′(Rd) of the continuous linear functionals on S(Rd) is called
space of temperated distributions. The space S′(Rd) can be identified with a subspace of
D′(Rd): to be precise, the set of distributions T ∈ D′(Rd) such that

|〈T, φ〉| ≤ C[φ]k, ∀φ ∈ D(Rd),
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for some C > 0 and some k ∈ N.
We define the Dirac delta distribution by 〈δ, φ〉 := φ(0), ∀φ ∈ D(Rd). Clearly δ ∈

S′(Rd).
The following result holds:

Theorem 2.1 The Fourier transform F maps S(Rd) into S(Rd). The map F : S(Rd)→
S(Rd) is linear, continuous, invertible with continuous inverse. Furthermore, the map
F−1 : S(Rd)→ S(Rd) is represented by

F−1φ(x) = (2π)−dFφ(−x) = (2π)−d
∫
Rd
φ(ξ)eiξ·x dξ.

We here recall the notion of transposition of linear operators. If A : S(Rd)→ S(Rd) is
linear and continuous, then the operator tA : S′(Rd)→ S′(Rd), defined by

〈tAu, φ〉 := 〈u,Aφ〉,

is linear and continuous.
The transpose tF of the operator F is still called Fourier transform operator. Since it

is easy to check that tFu = Fu for any u ∈ L1(Rd), in order to denote tFu, we still use
the notation Fu for u ∈ S′(Rd) .

The following properties hold:

(iD)αFu = F (xαu(x)), (iξ)αFu = F (Dαu). (2.13)

In particular, it holds that −ξ2
i Fu(ξ) = F (∂2

xixiu)(ξ), so

−|ξ|2Fu(ξ) = F (∆u)(ξ). (2.14)

Moreover, it is true that

F (u ∗ ψ) = F (u)F (ψ), ∀u ∈ S′(Rd), ∀ψ ∈ S(Rd). (2.15)

Finally, we recall the Fourier transform of the function x 7→ e−z|x|
2

for z ∈ C, such that
Re(z) ≥ 0, where Re(z) denotes the real part of z (notice that this function belongs to
S′(Rd)). We have

F (e−z|x|
2

)(ξ) =
(π
z

)d/2
e−
|ξ|2
4z , (2.16)

where
z−d/2 = |z|−d/2e−iθd/2 if z = |z|eiθ, for θ ∈ [−π/2, π/2]. (2.17)
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2.2.2 Fourier transform, free particle equation and fundamental solution.

In this Subsection, we describe how to obtain the so-called fundamental solution to the
free particle Schrödinger equation in Rd. We consider the Cauchy problem

∂

∂t
u(t, x) = i∆u(t, x), u(0, ·) = u0(·), (2.18)

for a given initial datum u0 ∈ S(Rd). Formally assuming that u(t, ·) ∈ S′(Rd) for any t ∈ R,
and denoting by û(t, ξ) the Fourier transform of u(t, ·), by (2.14) the problem (2.18) can
be rewritten in the following form:

∂

∂t
û(t, ξ) + i|ξ|2û(t, ξ) = 0, û(0, ξ) = û0(ξ). (2.19)

For any fixed ξ ∈ Rd, the problem (2.19) is a Cauchy problem for an ordinary differential
equation, which has the unique solution

û(t, ξ) = e−i|ξ|
2tû0(ξ).

By (2.16) with z = −i
4t

, we have that

e−i|ξ|
2t = k̂(t, ξ), where k(t, x) := (4πit)−d/2ei|x|

2/(4t).

Using the convolution formula for the Fourier transform (2.15), we get that

u(t, x) = k(t, x) ∗ u0(x). (2.20)

The representation formula for the solution still holds for more general initial data: it is
sufficient that the convolution in (2.20) makes sense (for instance if u0 ∈ L1(Rd)). More
generally, for u0 ∈ S′(Rd), we can take by definition u(t, x) = F−1(e−i|ξ|

2tû0(ξ)).
The function k : (R \ {0})×Rd → C is called Fundamental solution of the Schrödinger

equation for the free particle.
We conclude this Section by proving that limt→0 k(t, ·) = δ in S′(Rd) and then in D′(Rd),

as well. To this end, we have to prove that

lim
t→0

∫
Rd
k(t, x)ϕ(x) dx = ϕ(0), ∀ϕ ∈ S(Rd). (2.21)

Using the Fourier transform, we have∫
Rd
k(t, x)ϕ(x) dx = (2π)−d

∫
Rd
k̂(t, ξ)ϕ̂(ξ) dξ = (2π)−d

∫
Rd
e−itξ

2

ϕ̂(ξ) dξ. (2.22)

By dominated convergence, we get

lim
t→0

∫
Rd
e−itξ

2

ϕ̂(ξ) dξ =

∫
Rd
ϕ̂(ξ) dξ. (2.23)

By the inversion formula for the Fourier transform, we have∫
Rd
ϕ̂(ξ) dξ = (2π)dϕ(0)

and we conclude.
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3 Frequency modulated signals: Chirp

3.1 Chirp functions

We call chirp function an application v : R→ C of the form v(x) = αeiβx
2
, for α ∈ C and

β ∈ R. Recalling the Euler’s formula, it holds that v(x) = α cos(βx2) + iα sin(βx2) and
then

v(x) = α cos((βx)x) + iα sin((βx)x). (3.1)

From the representation (3.1), it follows that a chirp function is a wave function of am-
plitude |α|, with frequency that linearly increases as |x| grows up. Precisely, the angular
frequency of v at the position x is |βx|.

We observe that v is not in L1(Rd) but it it can be identified with an element of S′(R).
In Signal Theory, the variable x stands for time and it is denoted by t. The “chirp”

terminology comes from the very Signal Theory and it reminds to a bird’s twitter that is
short and its frequency is increasing with respect to time. Actually, common signals are
bounded in time, whereas we here deal with signals defined for all the times.

Chirp signals are very helpful and used in lasers, radars, sonars and other physical
applications.

As we have seen in Subsection 2.2.2, the fundamental solution to the Schrödinger equa-
tion for the one dimensional free particle is of the form

k(t, x) := (4πit)−1/2e
ix2

4t , t ∈ R \ {0}, x ∈ R. (3.2)

That is, for any fixed t 6= 0, the function x 7→ k(t, x) is a chirp function.
Moreover, for an initial datum u0 ∈ L1(R), the solution to the Cauchy problem of the

Schrödinger equation for the one dimensional free particle is given by

u(t, x) = (k(t, ·) ∗ u0(·))(x), t ∈ R \ {0}, x ∈ R. (3.3)

Since

(k(t, ·) ∗ u0(·))(x) =

∫
R
k(t, x− y)u0(y) dy, (3.4)

the solution x 7→ u(t, x) can be seen as a superposition of chirp functions, as well. Chirp
functions are a good class of functions where the Schrödinger equation can be cast, then.

Since the importance of these Chirp functions, let us just spend few words of interest
as it concerns their usage in applications.

3.2 Basics of signal processing and transmission

From an engineering point of view, the variation of a physical quantity in time x(t) can
be seen as a signal. In this regards, the most common taxonomy (see [12], [11]) for the
signal features is to distinguish two domains for analyzing a signal: the most obvious is
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the time domain, which deals with the features and the changes of the waveform in time,
but one can also analyze the signal in the frequency domain.
The frequency domain is the dual of the time domain and the bridging tool used to pass
from one domain to another one is the Fourier transform (and its dual, the inverse Fourier
transform or anti-transform): the idea that justifies such a dual relation is the fact that
every signal, in time, can be reconstructed as a linear combination of an infinite number
of fixed-frequency harmonics.
In the practice of numerical signal processing, one can only use a finite number of harmonics
to reconstruct the signal and that introduces some spurious effects (e.g. ripples nearby
the zones where an abrupt change of time derivative occurs) known as Gibbs phenomenon.
That happens because of the deep entanglement between the support of the signal-function
in time and its spectral content (e.g. harmonics) in the frequency domain: when limiting
the spectrum of the frequency used for the reconstruction of the signal (namely, limiting
the signal bandwidth), the richness of the reconstructed signal is lowered. Thus, the
inverse Fourier transform is not able to grasp the higher frequencies (for example) that are
responsible for the representation, in the frequency domain, of the abrupt time variation.

When the signal is hence transmitted, beside the distortion introduced by a reconstruc-
tion based on a limited number of harmonics, the propagation channel that is needed for
transmission introduces a further bias in the original signal (together with the perturbation
introduced by the usage of the intermediate blocks of transmitting apparatus) and that
impacts on the quality of the received signal, introducing noise. In general, said x(t) the
transmitted signal, the received one is expressed by:

x(t) + n(t),

where n(t) is the noise introduced (usually by the transmission channel, but not solely by
it) which is usually modeled as a random signal with a given distribution. The most general
assumption (zero-knowledge assumption) for the noise is to be uniformly distributed over
all the frequencies, so that all the frequencies are affected in the same (random) way by the
channel distorsions. In signal processing, such a kind of noise modeling (it is not the only
one) is called AWGN (Additive White Gaussian Noise), which also includes the assumption
on n(t) to be additive with respect to x(t) (see [16]).

The elective way to measure the impact of noise on the original signal is the Signal-
to-Noise Ratio (SNR). So, to evaluate the efficiency of a transmission device/channel, or,
more generally, the prevalence of the noise with respect to the signal, one can evaluate the
ratio of powers between x(t) and n(t):

SNR =
Psignal
Pnoise

=
limT→∞

1
2T

∫ T
−T |x(t)|2 dt

limT→∞
1

2T

∫ T
−T |n(t)|2 dt

,

where T is the span of the time window where the power is measured.

However, outside the ideal framework and except few selected applications, thinking of
just transmitting the signal over a channel with no further processing is pretty naive and
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it generates a number of issues on the effectiveness of the transmission. Above all, the
description of the dispersion operated by the channel is estimated in a statistical manner
and it is subject to a number of real-world parameters tunings, which are often difficult to
measure and out of control (for example, just think of the way rain or humidity can warp
a broadacast signal).
In order to increase the SNR and reduce the impact of the fading effects during the trans-
mission, a way to fortify the signal and make it more resilient to the noise is necessary.

3.2.1 Chirps in signal processing

In order to reduce the impact of the channel noise over the signal and being able to op-
timize the power used in transmission, the modulation of the broadcast signal over the
channel is required. To modulate a signal, one needs a carrier signal that is modified in
shape, according to the information content of the actual signal: in other words, the mod-
ulation changes the shape of the carrier as to encode the information one is interested in
transmitting.
For the sake of simplicity, one can generally think of encoding the information, that needs
to be carried, in the amplitude of the carrier signal, thus obtaining an amplitude modula-
tion (AM). Otherwise, one can deal with the frequency of the carrier waveform, performing
a frequency modulation (FM).

In applications like remote sensing or satellite communication, there is the need to
have a good SNR for broadcasting a signal across very long distances. However, in order
to avoid very costly transmitters with high peak power, the need for a specific frequency
modulation has arisen. The elective modulation used in these applications is the one of
having a sine wave carrier with a linearly increasing frequency. Such a linear frequency
modulation (LFM) requires a carrier which takes the name of chirp, in analogy with the
chirping of birds, that produce a sound which progressively increases in frequency.

3.2.2 Chirps and Fourier optics

One of the applications of Chirp signals shows up in Optic theory (see [7]). For instance,
Chirps are used in optics when calculating the focal lenght in the case of image formation
through a thin lens.

Let t(x) be the illumination field just before the light is conveyed into a thin lens (a
lens is defined to be thin when its thickness, compared to the curvature of the surface, is
negligible). One can take into account the effect of the lens via the factor

e
−iπ
λf

x2 ,

where λ is the wave length and f is the lens focal lenght. We thus obtain the field of the
distribution of the light after the lens as a product function, U(x), where x accounts for
the transverse coordinate with respect to the travelling direction,

U(x) = t(x)β(x)e
−iπ
λf

x2 .
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The function β(x) is a piecewise constant function which controls whether the focus is inside
the lens aperture: if the image is inside the aperture, therefore in good focus, β(x) = 1,
otherwise, as the image does not pass the aperture, β(x) = 0. Here, the Fresnel transform
(see [10]) comes in the calculation of the light distribution (which stands for the ”image
formation” concept) at a given distance z after the lens.
The Fresnel transform of the U(x) distribution is expressed by:

Uf (u) =
1√
iλz

∫ +∞

−∞
U(x)e

iπ
λz

(u−x)2 dx. (3.5)

If one observes (3.5), it can be seen that the Fresnel transform can be expressed as a
convolution, by

Uf (u) =

(
1√
iλz

U(x) ∗ e
iπ
λz
x2
)

(u). (3.6)

As we know from Section 2.2, the Fourier transform of a chirp is still a chirp; plus, as we
can observe from the same Section, there is a strong connection between the convolution
of chirp-like functions and the Fourier transform itself. Bearing this in mind and assuming
an infinite aperture (β(x) = 1 everywhere), a close relation between the Fresnel and the
Fourier transform can be seen, too. From (3.6), one can highlight that the Fourier transform
just differs from a chirp convolution by a phase factor. This last one is not relevant for
many applications, since the intensity of the incident light (in the optics example) is the
only aspect that is really measured.
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4 Introduction to quantum mechanics

4.1 The rise of quanta

A classical way to approach the problem of motion for a system of particles is to make
use of Newton’s laws as to determine the behaviour of the particles in the future: once
the initial conditions are known, one can predict the trajectory of all the particles with an
(ideally) arbitrary accuracy. The idea, which was dominating until the early nineteenth
century, was challenged by a vigorous debate in the scientific community originated from
empirical experiments that provided a set of seemingly contradictory outcomes.

The major breakthrough in the arising atomic theory was the discovery of the atoms
and the electrons, which experimentally supported the Rutherford model (the planet-like
model) for the atom: it was in accordance with the experiences carried out by the physicists.
However, the rotation of a charge around the central nucleus required the emission of
radiation according to Maxwell’s equations, which would lower the electron’s energy and
finally drive it to fall over the positive-charged nucleus.
That would have meant that the matter itself is unstable and it has to quickly collapse on
itself. But that was clearly not happening while Maxwell’s equation and Newtons’s laws
appeared to be still rock solid in their respective realms.

However, the major trouble for the classical mechanics happened when the black body
problem also threatened the long-time established thermodynamic principles.
Let us imagine a closed domain which stands in thermal equilibrium with the external
environment at a temperature T : such an object is known as a black-body since it absorbs
electromagnetic radiation of any frequency. As to preserve the thermal equilibrium, a black
body also emits electromagnetic radiation and the energy of this radiation is experimentally
known to follow the law:

E ∝ T 4. (4.1)

Thinking classically, the Stefan-Boltzmann equation in eq. (4.1) is justified by thinking
of the effect of the field in a close cavity being equivalent to a system made of an infinite
number of independent harmonic oscillators.
The relevant ones among all the modes of the electromagnetic field are called normal modes
and are involved in the calculation of the density of the energy u emitted by a black body,
which is expressed by the Rayleg-Jeans equation:

u(ν, T ) =
8πkBTν

2

c3
, (4.2)

where ν is the frequency of the radiation, kB the Boltzmann constant, T indicates the
temperature of the body and c is the light speed in vacuum.
When the frequencies are low, eq. (4.2) is in good agreement with the experimental results
but when one tries to calculate the average energy E within the range of ultraviolet rays
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and raises the frequencies, the integral of (4.2),

Ē =

∫ ∞
0

u(ν, T )dν =∞, (4.3)

delivers an infinite value for the energy, that is severely nonsensical from the perspective
of the physical interpretation and experimental validation. Clearly, there were clues that
a deep flaw in classical physics existed.
Trying to fix that flaw, the German physicist Max Planck, early in the 20th century, fo-
cused on the so-called catastrophe of the ultraviolet, attacking the issue about an infinite
density of energy for the black body from another perspective. He introduced a fixed fic-
titious amount, the quantum, which he assumed to be the base-block of the exchange of
energies between electromagnetic radiation and matter, at a given frequency ν : ε(ν) = hν.

With such a simple mathematical reformulation, the very heart of the classical physics
was shaken : while the energy of a single oscillator, standing for a mode of the electro-
magnetic field, can continuously vary its value, Planck’s perspective restricts the possible
values just to integer multiples of a finite quantity and its consequences are spreading over
the way the average energy is calculated.
Assuming discrete values, the spectral radiance u turns its form into:

u(ν, T ) =
hν

e
hν
kBT − 1

(4.4)

and the calculation of the average energy for the equivalent harmonic oscillators avoids the
ultraviolet catastrophe, showing:

Ē =
hν

e
hν
kBT − 1

. (4.5)

The curve depicted by eq. (4.4) is not diverging for high frequencies and, by fitting the
formula to experimental results, the value of the Planck constant h was calculated with
extremely high accuracy: h = 6.626× 10−34Js.

4.2 Waves and particles

To Planck’s understanding, the idea of the quanta was aimed at solving the black body
problem, being the quantum mechanism a mere property of the atoms rather than the
radiation. Nevertheless, Einstein, in its work regarding the photoelectric effect, was more
inclined to think of the light emission/absorption as a property of the electromagnetic ra-
diation, proposing the light with a given frequency ω to be exchanged only in ”bundles”
of energy hω, called photons.

A certain idea of duality between radiation and particles began its journey exactly
at that moment: if absorption/emission occurs in a discrete way, also energies of parti-
cles must be quantized, therefore. Since the quantum of energy is characterized by the
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frequency, all the undulatory phenomena associated with an electromagnetic field can be
thought as flows of particles, indeed.
Afterwards, even Niels Bohr tried to use the idea of quantization to solve the issue about
the non self-destruction of atoms (predicted classically). This was aimed at building a
model of the atom which involved fixed energy jumps and allowed quantized circular or-
bits, based on the value ~ = h

2π
.

The hydrogen atoms, the simplest ones, allowed straightforward calculations: the angular
momentum L of an electron of mass m, radius r, rotating around the nucleus with velocity
v, is expressed as L = mvr = ~n, where n is the integer value called (principal) quantum
number.

In order to have a stable atom, the orbiting electron must compensate both the cen-
tripetal acceleration and the coulombian attraction:

e2

r2
=
mv2

r
, (4.6)

where e is the electron charge. Including the quantized orbits, eq. (4.6) leads to the
calculation of the Bohr radius rn, which provided the first estimated measure of the size
of an hydrogen atom, and the energy En associated with the electron on that orbit:

rn =
~2n2

me2
, (4.7)

En = − me4

2~2n2
. (4.8)

Quantization, now, even entered the atomic model, prescribing specific energies and
orbits, that are discrete and dependent on n: by confirming Einstein’s intuition, Bohr
proposed that the atoms emit/absorb a quantum of light, a photon, when jumping down-
wards/upwards between two allowed energy levels.

The quantum framework brought concepts from wave physics as to describe particle-
based phenomena. Hence, it suggested a kind of deep interplay between undulatory and
corpuscular nature of the world. A radical idea, that was not even solidly backed by
experimental clues, was carried out by Louis De Broglie, when he proposed the hypothesis
that every particle with a mass can behave as a wave as well, associating a wave to every
particle, whose wavelength λ was:

λ =
h

mv
. (4.9)

What such a wave would actually represent in the physical reality was pretty obscure,
indeed. Nevertheless, the idea of De Broglie was perfectly compatible with Bohr’s atom:
if the orbiting electron behaves like a wave, the length of the orbit must be an integer
multiple of the wavelength, just in order to avoid interferences that would cancel out the
wave-electron.
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Later on, by accelerating the electrons and measuring their scattering (in angle) over a
metallic surface, the experimental ground was provided (Davisson-Germer experiment) to
demonstrate the validity of the wave-particle dualism introduced by De Broglie.

The matching of waves with particles leads to several interesting consequences, when
one tries to provide more mathematical insight into the world of quantum physics: a
particle with energy E and momentum p = mv is associated to a wave with a frequency f
and wavelength λ. More formally, a simple real-valued single frequency, one-dimensional
wave function can be represented as:

Ψ(x, t) = α sin(kx− ωt), (4.10)

where the angular frequency ω = 2πf and the wavenumber k = 2πλ are used.
Knowing the frequency and the wavelength, the phase velocity vp is the velocity of the
wave crests (or troughs):

vp =
ω

k
(4.11)

and can be thought as the speed of the particle associated to the wave. It is important to
highlight that the phase velocity depends on the value of the wavenumber k. In general ω
is a function of k.

The locating of the associated particle position in the space is a challenging task when
nothing but the harmonic wave function is known: it is a standing wave, repeating itself
periodically over the space, with the same amplitude. There is no distinguishing feature
that can suggest which position can take the particle.
However, one would like to be able to alterate the amplitude of the wave in order to have a
highly localized region in space (ideally a point) where the particle is located, while having
a zero wave elsewhere, as the particle is not supposed to be there. To achieve that, one
must take advantage of the interference phenomena occurring when two or more waves of
different wavelength are being summed up. One thus builds a localized version of the wave
function (the so-called wave packet) by summing and appropriately weighting the contri-
bution of the wave-numbers, just in order to translate the information about the position
into the wave shape.

Referring to the expression adopted for the wave function in eq. (4.10), it would rather
be extended into a sum of (infinite) waves with different wavenumber, as follows:

Ψ(x, t) =

∫ +∞

−∞
A(k) cos(kx− ω(k)t) dk, (4.12)

where all the waves are interfering, constructively and destructively according to the
weights managed by the A(k) kernel, so to have zero amplitude everywhere except a local-
ized region where the particle is located.
Once the wave packet has been localized, one would even try to calculate the speed which
the packet itself will move at (and also spread, within a dispersive media). That is the
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group velocity vg and it stands for the speed of the wave packet envelope.
The relation between the angular frequency ω and the wavenumber k is defined as the dis-
persion relation and its form influences the actual group velocity vg. Assuming the most
general form for the dispersion, ω = ω(k), the centre of the wave packet can be defined as:

〈X(t)〉 =

∫
x|Ψ(x, t)|2 dx∫
|Ψ(x, t)|2 dx

, (4.13)

where the intensity associated with Ψ , I =
∫
|Ψ(x, t)|2 dx, is constant in time t, and there

is no issue in normalizing it to one:
∫
|Ψ(x, t)|2 dx = 1.

The double nature of quantum particles, let us include the De Broglie intuition on the
wavelength associated to an energy content, provides a less general adapted dispersion
relation. From the Planck’s relation, in fact, we can deduce the dispersion relation:

ω(k) =
E

~
=

p2

2m

1

~
=

~2k2

2m

1

~
=

~k2

2m
. (4.14)

4.3 Time evolution: Schrödinger’s equation

The expression in eq. (4.12) was built based on physical considerations about the interfer-
ence of waves and it is indeed one possible form for the solution of the well known wave
equation:

∂2Ψ(x, t)

∂x2
=

1

c2

∂2Ψ(x, t)

∂t2
, (4.15)

for which the plane wave elementary solution has the form:

Ψ(x, t) = Aeikx−iωt, (4.16)

if c = ω/k. In fact, if one comes to derive eq. (4.16) with respect to time,

∂Ψ(x, t)

∂t
= −iωAeikx−iωt = −iωAΨ(x, t), (4.17)

by calculating the second partial derivative with respect to x, one obtains:

∂2Ψ(x, t)

∂x2
= i2k2Ψ(x, t). (4.18)

Substituting eq. (4.17) and eq. (4.18) into the dispersion relation recalled in eq. (4.14),
we obtain

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
, (4.19)

which, assuming a zero external potential V (x), is the (non-relativistic) Schrödinger equa-
tion for the free particle in one dimension.
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As pointed out when interpreting the wave-function as a phenomena of interference of
multiple waves, the localizing of a particle both in space and time is a task which turns
out to be challenging, or better, intrinsically unsolvable in quantum mechanics.
The intrinsic uncertainty at the core of the quantum mechanics is condensed into the
inequality:

〈x2〉〈p2〉 ≥ ~2

4
, (4.20)

where x and p represent the position and the momentum of a particle, respectively.
The result depicted above in the eq. (4.20) is known as the “Heisenberg uncertainty princi-
ple” and it exposes one of the most counterintuitive aspects of the quantum mechanics: it
is not possible to achieve any arbitrary precision when measuring two conjugate variables,
i.e. position and momentum.

Historically, Heisenberg himself proposed its inequality to be interpreted as the effect
of the interaction between the photon used for a measurement and the system itself, so
that the measure would result in investigating the perturbed system.
However, it was later proved that a class of uncertainty relations is always obtainable for
wave-like systems and that such a principle was a necessary implication of the postulates
adopted in quantum mechanics.
The essence of uncertainty in quantum physics is therefore not quite a matter of a lack of
adequate experimental tools but it is rather an intrinsic property of the very fabric of the
physical reality.
Schrödinger’s equation is central not only for historical reasons but also because it is as-
sumed as a given postulate of quantum mechanics.

4.4 Probability and postulates

The idea of bridging the realm of waves and particles triggered the introduction of a
whole mathematical structure governing both the form and the time evolution of the wave-
function associated to a particle. While, in classical mechanics, a motion of a particle was
determined by the equation based on forces and momenta, in quantum mechanics the wave
function associated to a system and its evolution is determined by the Schroedinger’s equa-
tion.
However, historically, there was a lack of understanding on how the wave function (and in
particular it’s amplitude) had to be interpreted from a physical point of view.

As the behaviour of the quantum particles exhibits both corpuscular and undulatory
features (eg. double-slit experiment), it can not be described classically. Therefore, con-
cepts like “trajectories” are not applicable.
Although opposing factions were struggling to catch the physical meaning of such a dual
behaviour, even questioning the concept of “reality” itself, Max Born’s probabilistic inter-
pretation came out as an useful tool enabling physicists to make calculations and predic-

22



tions (see [3]).

Mathematically rooted into the probability theory, Born’s approach allowed to put
aside the discussion on the probabilistic nature of quantum mechanics, by starting from
some postulates.

4.4.1 Quantum states

The state of a system at a given instant t is described by a complex-valued function Ψ(x, t)
and its squared 2-norm |Ψ(x, t)|2defines the probability distribution (pdf) of the values the
state can have. Therefore, the probability P (Σ1) of finding a particle in a given subset Σ1

of the (measurable) phase space Rd, is:

P (Σ1) =

∫
Σ1

|Ψ(x, t)|2|, dx. (4.21)

Being P (Rd) a probability, it must be normalized to 1, all over the states:∫
Rd
|Ψ(x, t)|2 dx = 1, (4.22)

irrespectively of the chosen instant t.
In order to have a meaningful integral in (4.21), a further requirement is for Ψ(x, t) to be
square-integrable over all the phase space Rd . That makes the Hilbert space H = L2(Rd)
the elective space for these functions. Being the probability just dependent on the squared
norm |Ψ(x, t)|2, the phase of the function is not relevant when it comes to the probability
calculation.
The use of this very Hilbert space associated to physical systems is one of the basic pos-
tulates of the quantum mechanics.
In fact, we ourselves, as mathematicians, recall L2(Rd) has so many “beautiful” properties.
First of all, as a Hilbert space, it is a vector space endowed with a scalar product and
it is complete with respect to the norm induced by the scalar product itself. Then, it is
a separable space, which means L2(Rd) has at least an orthonormal countable basis and
this latest property is so very crucial to us. Moreover, this space has so many other useful
properties that directly follow from the Functional Analysis theory, (see, for example, [4]).

4.4.2 Measurements and observables

The introduction of the quantization operated by Planck changed the spectrum of values
the physical quantities could have. In classical mechanics, a quantity f (an observable)
can vary in a continuous range of values, while in the quantum perspective the set of the
admissible values for an observable (eigenvalues) is not necessarily continuous.
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In quantum mechanics, an observable f is a linear, limited operator F on L2(Rd),
namely, F belongs to L (L2(Rd)). Bearing this identification in mind, and even according
to what we explained in Section 2.1, we can always deal with the eigenvalues-eigevectors
problem related to such an operator F .
In particular, as in quantum mechanics we are just interested in having real eigenvalues,
another constraint is for F to be selfadjoint (or, more generally, hermitian).

So, let us turn to the eigenvalues-eigevectors problem related to the operator F :

Fψj = fjψj, (4.23)

where fj are the eigenvalues with their respective eigenfunctions ψj, j = 1, 2, 3, . . ..
In quantum mechanics, the eigenvalues fj are the activating energies of a system and

the corresponding eigenvectors ψj are called “fundamental states”. They describe the
system when is still steady and they have a probabilistic interpretation: they stand for
the probability densities of the position of a particle (or a point), hence accounting for the
concept of area underlying a certain function. It follows that knowing the probability that
a given particle is exactly at a given point is a pure mirage: the area underlying a point
is simply zero. That makes not possible getting deterministic pieces of information from a
measurement.

As explained in the previous paragraph, thanks to the separability property of L2(Rd),
the following “Fundamental Theorem on Spectral Theory” for the quantum mechanics
holds.

Theorem 4.1 The eigenfunctions ψ1, ψ2, ψ3, . . . constitute a complete system, namely,
every function ψ ∈ L2(Rd), d = 1, 2, 3, . . ., can be written as

ψ(x) =
+∞∑
j=1

αjψj(x), x ∈ Rd. (4.24)

This is a very powerful tool in quantum mechanics: it tells that, once we fix a basis
(actually, a basis made of fundamental states), every function in L2(Rd) can be expressed
as a superposition of fundamental states. That is to say we are in some way able to
depict “the whole universe” (namely, L2(Rd), for us). (Of course, the same observable
(operator) can also be described making different choices of a basis; nevertheless, with this
very choice of a basis, we have that the matrix associated to the selfadjoint operator F
takes a particular form: the diagonal one).

The association between observables and operators, together with the intrinsic statis-
tical interpretation of the process of measure, are both assumed as quantum mechanics
postulates.

For example, the momentum operator P reads:

Pψ(x, t) := −i~∇ψ(x, t), (4.25)
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which can be proved to be a symmetric operator and dimensionally coherent with the
observable “momentum”.
Therefore, the total energy of a particle, the Hamiltonian , has its own operator H, too:

Hψ(x, t) :=
P 2ψ(x, t)

2m
. (4.26)

Interesting enough, as a consequence of the equation (4.23), choosing two operators,
F and G, associated to two observable f and g that can be simultaneously measured, it
is true that they have the same set of eigenfunctions ψi and their products, FG and GF ,
lead exactly to the same decomposition:

FGψ = FG
∑
i

aiψi =
∑

figiaiψi, (4.27)

GFψ = GF
∑
i

aiψi =
∑

gifiaiψi. (4.28)

Using the Poisson notation [·], then we can state (see [8]) that F and G are two commuting
operators when:

[F,G] := FG−GF = 0. (4.29)

From a physical perspective, that means that two variables are simultaneously measurable
if and only if their respective operators are commuting.
The position along the x-direction and the momentum along same direction, for example,
are incompatible variables. In fact, by applying the commutation operator to X → x and
Px → −i~ ∂

∂x
, we obtain:

[X,Px] = [x,−i~ ∂
∂x

] = i~ 6= 0 (4.30)

So, the commutativity of the operator is not there. All this again states the Heisenberg’s
uncertainty principle (recall the equation (4.20)), just using the basic assumptions so far
adopted.

Namely, considering two symmetric operators A and B acting on a state ψ, for which
||ψ||2 = 1 with no loss of generality, one can remind the Cauchy-Schwarz inequality and
write:

|(ψ,ABψ)| ≤ ||Aψ||||Bψ|| (4.31)

|(ψ,BAψ)| ≤ ||Aψ||||Bψ||, (4.32)

which directly comes from the symmetry assumptions.
From (4.27) and (4.31), we are allowed to write down the inequality:

||Aψ||2||Bψ||2 ≥ 1

4
|(ψ, [A,B]ψ)|2. (4.33)
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If one builds the operators A and B, such that:

A = X − 〈X〉I (4.34)

B = Px − 〈Px〉I, (4.35)

where I is the identity operator, the commutator [A,B] can be derived as:

[A,B] = [X,Px] = i~, (4.36)

which delivers the result in the equation (4.30).
It is also straightforward to verify that, if one changes the axes along which the mo-

mentum is measured, switching to Pz,

[X,Pz] = [x,−i~ ∂
∂z

] = 0, (4.37)

the variables then happen to be compatible for simultaneous measurements.
Nevertheless, the problem of measurement in quantum mechanics have deep implica-

tions and it is still controversial and far from being generally accepted. Indeed, several
non-orthodox interpretations are struggling over the peculiarity of quantum mechanics, in
its Born interpretation (also known as the ”Copenhagen interpretation”), just to provide
prediction solely based on statistical approaches. The superposition of different states
(mixed states), for example, cannot provide an exact result for a given measure, but just
the outcome probability associated to the admissible eigenvalues for an observable.
That remains true even in ideal experiments and deals with the intrinsic probabilistic
nature of the phenomena at the quantum scale.

4.4.3 Collapsing wave-functions

What happens right after the measurement process has taken place is surely the most de-
bated postulate in the Copenhagen interpretation. In order to grasp the formal framework
behind the measurement process, it is useful to recall the bra-ket notation introduced by
Paul Dirac [19].
The idea behind the bra-ket notation is that of having a more abstract representation of a
vector which is not dependent on the specific orthonormal basis chosen. The ”ket” |v〉 is
defined in analogy with a column vector, while a ”bra” 〈v| is a row vector. Their compo-
sition provides the inner product 〈v||v′〉.
Every element of the Hilbert space (e.g. a wave-funciton) is therefore associated with a
ket vector,

Ψ(x, t) ⇐⇒ |ψ〉, (4.38)

for which the linearity property holds:

|λ1ψ1 + λ2ψ2〉 = λ1|ψ1〉+ λ2|ψ2〉, (4.39)

for every ψ1, ψ2 chosen in the Hilbert space H = L2(Σ).
Additionally, also a co-vector, which is related to a functional operator χ in the Hilbert
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space, is represented by a bra and the action of the functional χ over |ψ〉 is written as
〈χ|ψ〉. Now it is easier to check what happens when a measurement event takes place:
before measuring a given observable, the state of the system in the bracket notation is |ψ〉:

|ψ〉 =
∑
i

|αi〉〈αi|ψ〉, (4.40)

where αi are the eigenvalues (namely the possible measurement outcomes) associated to
the state. This means that, before the measurement, all the eigenvalues are possible
and the state of the system is a superposition of all those possible outcomes. When
the measurement occurs, the state in (4.40) is instantly projected over the eigenvector
associated to the measured eigenvalue αi:

|ψ〉 =⇒ |αi〉. (4.41)

It is important to stress that it would happen even with an ideal measurement.
Therefore, a further postulate states that, if one makes iterated measurements over a sys-
tem, all the measurements after the first would deliver the same result. That is because the
system instantly collapses into an eigenstate right after the first measurement, so that the
system is already influenced by it and keeps trace in the next measurements. What hap-
pens during the collapse of the state into the measured eigenstate is still debated. It does
constitute one of the hottest points on the controversial among the different interpretations
of quantum mechanics. Historically, it had many adversaries as it appeared to challenge
relativity (due to the idea of the instant collapse) and also introduced non-locality, which
led to the rise of a number of issues (e.g. Einstein-Podolski-Rosen paradox).
However, the Copenhagen interpretation prefers not to enter the details of what happens
during the collapse of the wave-function: it just takes it as a postulate and goes further.
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5 Setting of the problem and main results

5.1 Free particle problem

We consider the problem{
∂tu(t, x)− i∂xxu(t, x) = v(t, x), (t, x) ∈ R× R
u(0, x) = ū0(x), x ∈ R.

(5.1)

We would like to solve the problem (5.1) when ū0 is a sum of chirp functions of the form

einx
2
, n ∈ Z, and v is a sum of chirp functions of the form g̃n(t)eif̃n(t)x2 . We are looking for

solutions which are sum of chirp functions of the form gn(t)efn(t)x2 , too.
We start dealing with the homogeneous problem{

∂tu(t, x)− i∂xxu(t, x) = 0, (t, x) ∈ R× R
u(0, x) = ū0(x), x ∈ R.

(5.2)

As it concerns the Cauchy problem (5.2) for the Schrödinger equation,

∂tu(t, x)− i∂xxu(t, x) = 0, (t, x) ∈ R× R, (5.3)

we have the following result.

Theorem 5.1 Let αn ∈ C, n ∈ Z, be a sequence such that

+∞∑
n=−∞

|αn| < +∞ (5.4)

and

ū0(x) =
+∞∑

n=−∞

αne
inx2 . (5.5)

Denoting by k(t, x) = (4πit)−1/2e
ix2

4t the fundamental solution of the equation (5.3), we
define un : An × R→ C, for n 6= 0, by

un(t, x) :=

(
πi

n

)1/2

k(t+
1

4n
, x),

where An := R \ {−1/(4n)}, and u0 : A0 × R→ C, where A0 = R, by u0(t, x) := 1. Then,
the function u : A× R defined by

u(t, x) :=
+∞∑

n=−∞

αnun(t, x), (5.6)

where
A :=

⋂
n∈Z

An = {t ∈ R : t 6= 1/(4n), n ∈ Z \ {0}},

is a solution of the problem (5.2) in the following sense:
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• the series in (5.11) absolutely converges for any (t, x) ∈ A× R, hence u(t, x) is well
defined for (t, x) ∈ A× R;

• defining Ã = A \ {0}, we have u ∈ C∞(Ã× R);

• u is a classical solution in Ã× R of the equation in (5.2);

•
lim
t→0

∫
R
u(t, x)ϕ(x) dx =

∫
R
ū0(x)ϕ(x) dx,

for any ϕ ∈ C∞c (R);

• for any n ∈ Z \ {0}, we have

lim
t→−1/(4n)

∫
R
u(t, x)ϕ(x) dx = αn

(
πi

n

)1/2

ϕ(0) +

∫
R

∑
k∈Z\{n}

αkuk(−1/(4n), x)ϕ(x) dx,

for any ϕ ∈ C∞c (R).

In this thesis, we use the convention (2.17) as regards the 1/2 and −1/2 powers of
complex numbers.

The solution that we constructed in Theorem 5.1 can be extended to a generalized
solution that enjoys the property of continuity, with respect to time, and takes values
in the space of distributions. More precisely, we are going to state this property in the
following Corollary.

Corollary 5.2 Under the assumptions of Theorem 5.1, let u be the solution given by The-
orem 5.1. Let ũ : R → D′(R) be the function of distributions defined in the following
way:

ũ(t) := u(t, ·), for t ∈ A,

u(−1/(4n), ·) := αn

(
πi

n

)1/2

δ +
∑

k∈Z\{n}

αkuk(−1/(4n), ·),

for n ∈ Z \ {0}. Then ũ is continuous.

Proof. The last two points of Theorem 5.1 imply the continuity of ũ at 0 and at the points
1/(4n), for n ∈ Z \ {0}. Moreover, the continuity of u at the other points t0 ∈ Ã easily
follows by the continuity of t ∈ Ã → u(t, x), for any x ∈ R, and the Lebesgue dominated
convergence theorem. �

Remark 5.3 (The class of initial data ū0) We observe that the class of initial data of
Theorem 5.1 coincides with the class of functions of this form: ū0 : R → C such that
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ū0(x) = ū0(−x) for any x ∈ R, hū0 : R → C defined by hū0(y) := ū0(
√
|y|) is 2π-periodic

and the Fourier coefficients αn of hū0 , defined by

αn =
1

2π

∫ 2π

0

hū0(y)e−iny dy, n ∈ Z, (5.7)

satisfy (5.4).
Indeed, if αn ∈ C, n ∈ Z, is given and it satisfies (5.4), then ū0, defined by

ū0(x) =
+∞∑

n=−∞

αne
inx2 , (5.8)

should be even, hū0 should be 2π-periodic and its Fourier coefficients coincide with αn.
Viceversa, if ū0 : R→ C satisfies the above conditions, then hū0 has the Fourier series

representation

hū0(y) =
+∞∑

n=−∞

αne
iny, (5.9)

where αn are defined in (5.7) and then ū0 has the representation (5.8).
We observe that the convergence of the series (5.8) is uniform and consequently ū0 is

continuous.

Remark 5.4 We would like to remark that Problem (5.2) admits infinite other solutions.
Namely, these solutions can be constructed as follows. Given a sequence βn ∈ C such that

+∞∑
n=−∞

|αn||βn| < +∞, (5.10)

we define the sequence ũn : An × R→ C, for n 6= 0, in this way:

ũn(t, x) =

{
βnun(t, x) if t < −1/(4n)

un(t, x) if t > −1/(4n)
for n > 0,

and

ũn(t, x) =

{
un(t, x) if t < −1/(4n)

βnun(t, x) if t > −1/(4n)
for n < 0,

and ũ0 = u0. Then, the function ū : A× R, defined by

ū(t, x) :=
+∞∑

n=−∞

αnũn(t, x), (5.11)

satisfies all the points of Theorem 5.1 except the last one, when βn 6= 1 for almost one
n ∈ Z. In particular, the function ū cannot be extended to a continuous function with
values in D′(R).
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We now take into account the non-homogeneous problem with zero initial datum:{
∂tu(t, x)− i∂xxu(t, x) = v(t, x), (t, x) ∈ R× R
u(0, x) = 0, x ∈ R.

(5.12)

Before stating the problem, we define the piecewise constant function c : R \ {0} → C by

c(t) =

{
i−1/2 if t > 0

(−i)−1/2 if t < 0
=

{
e−iπ/4 if t > 0

eiπ/4 if t < 0.
(5.13)

With this function, the fundamental solution can be written as

k(t, x) = c(t)|4πt|−1/2e
ix2

4t ,

and we point out that the functions un of Theorem 5.1 are multiple of the following trans-
lations

k(t+ 1/(4n), x) = cn(t)
∣∣∣n
π

∣∣∣1/2 |4nt+ 1|−1/2e
inx2

4nt+1 , (5.14)

where
cn(t) := c(4nt+ 1), (5.15)

observing that |cn| = 1.
Willing to find a solution of (5.12) as a sum of chirp functions, we are led to consider

a right hand side, v, as a sum of chirp functions vn of a form comparable to the one
of un. More precisely, similarly to (5.14), we consider vn : An × R → C, where An :=
R \ {−1/(4n)}, defined by

vn(t, x) := g̃n(t)cn(t)e
inx2

4nt+1 ,

for g̃n : R→ C continuous. We remark that the pointwise limit, limt→−1/(4n) vn(t, x), does
not exist for any x ∈ R, whereas limt→−1/(4n) vn(t, ·) = 0 in D′(R).

See the next Theorem 5.5 and the Proposition 6.7.

Theorem 5.5 Let g̃n : R→ C, n ∈ Z, be a sequence of continuous functions such that

+∞∑
n=−∞

sup
t∈[a,b]

|g̃n(t)| < +∞, for any [a, b] ⊂ R. (5.16)

Let vn : An × R→ C, where An := R \ {−1/(4n)}, defined by

vn(t, x) := g̃n(t)cn(t)e
inx2

4nt+1 ,

and v0 : R× R→ C defined by v0(t, x) = g̃0(t). Defining v : A× R→ C by

v(t, x) :=
+∞∑

n=−∞

vn(t, x), (5.17)
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where A :=
⋂
n∈ZAn = {t ∈ R : t 6= 1/(4n), n ∈ Z \ {0}}, and F [g̃n] : An × R→ C by

F [g̃n](t) := |4nt+ 1|−1/2

∫ t

0

|4ns+ 1|1/2g̃n(s) ds,

then the function u : A× R, defined by

u(t, x) :=
+∞∑

n=−∞

F [g̃n](t)cn(t)e
inx2

4nt+1 , (5.18)

is a solution to the problem (5.12) in the following sense:

• the series in (5.18) absolutely converges for any (t, x) ∈ A× R, hence u(t, x) is well
defined for (t, x) ∈ A× R;

• defining Ã = A \ {0}, we have u(·, x) ∈ C1(Ã) for any x ∈ R and u(t, ·) ∈ C∞(R)
for any t ∈ Ã;

• u is a classical solution in Ã× R of the equation in (5.12);

•
lim
t→0

∫
R
u(t, x)ϕ(x) dx = 0,

for any ϕ ∈ C∞c (R).

• for any n ∈ Z \ {0}, we have

lim
t→−1/(4n)

∫
R
u(t, x)ϕ(x) dx = (π)1/2|n|−1/2

∫ −1/(4n)

0

|4ns+ 1|1/2g̃n(s) ds ϕ(0)+

+

∫
R

∑
k∈Z\{n}

F [g̃k](−1/(4n))ck(−1/(4n))e
ikx2

−k/n+1ϕ(x) dx,

for any ϕ ∈ C∞c (R).

We remark that the condition (5.16) guarantees the uniform convergence of the series
(5.17) in ([a, b] ∩ A)× R, for each [a, b] ⊂ R, and then the continuity of v in A× R.

Remark 5.6 (An example of v) A simple example of functions g̃n satisfying (5.16) is
given by constants: g̃n(t) = αn ∈ C, such that (5.4) holds. In this case, the functions F [αn]
can be computed. Since∫ t

0

|4ns+ 1|1/2 ds =
1

6n
(sign(4nt+ 1)|4nt+ 1|3/2 − 1),

then we have

F [αn](t) = αn|4nt+ 1|−1/2 1

6n
(sign(4nt+ 1)|4nt+ 1|3/2 − 1).
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We point out that we used the piecewise constant functions, cn, in the definition of u in
(5.18), just in order to obtain the existence of the limits, for t→ −1/(4n), in the last point
of the Theorem. To this end, see the Proposition 6.6 and the limit (6.23). This choice is
crucial in order to have the continuous extension in D′(R). Indeed, even in this case, it
holds the following Corollary.

Corollary 5.7 Under the assumptions of Theorem 5.5, let u be the solution given by The-
orem 5.5. Let ũ : R → D′(R) be the function of distributions defined in the following
way:

ũ(t) := u(t, ·), for t ∈ A,

u(−1/(4n), ·) : =
(

(π)1/2|n|−1/2

∫ −1/(4n)

0

|4ns+ 1|1/2g̃n(s) ds
)
δ

+
∑

k∈Z\{n}

F [g̃k](−1/(4n))ck(−1/(4n))e
ik(·)2
−k/n+1 ,

for n ∈ Z \ {0}. Then ũ is continuous.

Proof. The last two points of Theorem 5.5 imply the continuity of ũ at 0 and at the points
1/(4n), for n ∈ Z \ {0}. Moreover, the continuity of u at the other points, t0 ∈ Ã, easily
follows by the continuity of t ∈ Ã → u(t, x), for any x ∈ R, and the Lebesgue dominated
convergence theorem. �

Thanks to the linearity of the problem (5.1), by taking the sum of the solutions obtained
in Theorems 5.1 and 5.5, we do obtain a solution to the problem (5.1), with ū0 and v of
the form (5.5) and (5.17).

Theorem 5.8 Let the assumptions of Theorems 5.1 and 5.5 hold. Then, there exists a
solution u of the Cauchy problem (5.1) satisfying all the properties given in Theorem 5.1.
Moreover, u can be extended to a continuous function ũ : R→ D′(R).

5.2 Quantum harmonic oscillator problem

We consider the problem{
∂tu(t, x) + i

2
(−∂xxu(t, x) + x2u(t, x)) = v(t, x), (t, x) ∈ R× R

u(0, x) = ū0(x), x ∈ R.
(5.19)

We again would like to solve the problem (5.19) when ū0 is a sum of chirp functions of

the form einx
2
, n ∈ Z, and v is a sum of chirp functions of the form g̃n(t)eif̃n(t)x2 . We are

looking for solutions which are sum of chirp functions of the form gn(t)efn(t)x2 .
We start looking at the homogeneous problem{

∂tu(t, x) + i
2
(−∂xxu(t, x) + x2u(t, x)) = 0, (t, x) ∈ R× R

u(0, x) = ū0(x), x ∈ R.
(5.20)
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As it concerns the Cauchy problem (5.20) for the Schrödinger equation,

∂tu(t, x) +
i

2
(−∂xxu(t, x) + x2u(t, x)) = 0, (t, x) ∈ R× R, (5.21)

we have the following result.

Theorem 5.9 Let αn ∈ C, n ∈ Z, be a sequence such that

+∞∑
n=−∞

|αn| < +∞ (5.22)

and

ū0(x) =
+∞∑

n=−∞

αne
inx2 . (5.23)

Let u0 : A0 × R→ C be the function defined by

u0(t, x) := q(t)| cos(t)|−1/2e
i
2

tan(−t)x2 , (5.24)

where A0 := {t ∈ R : t 6= π/2 + kπ, k ∈ Z}, and q is the piecewise constant function

q(t) := e−kiπ/2 if t ∈ (π/2 + (k − 1)π, π/2 + kπ), k ∈ Z.

Let us define un : An × R→ C, for n ∈ Z, by

un(t, x) := | cos(arctan(2n))|1/2u0(t− arctan(2n), x),

where An := {t ∈ R : t 6= π/2 + arctan(2n) + kπ, k ∈ Z}.
Then the function u : A× R→ C, where A :=

⋂
n∈ZAn, defined by

u(t, x) :=
+∞∑

n=−∞

αnun(t, x), (5.25)

is a solution of the problem (5.20) in the following sense:

• the series in (5.25) absolutely converges for any (t, x) ∈ A× R, hence u(t, x) is well
defined for (t, x) ∈ A× R;

• defining Ã = A \ {kπ, k ∈ Z}, we have u ∈ C∞(Ã× R);

• u is a classical solution in Ã× R of the equation (5.21);

•
lim
t→0

∫
R
u(t, x)ϕ(x) dx =

∫
R
ū0(x)ϕ(x) dx,

for any ϕ ∈ C∞c (R);
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• for any k ∈ Z, it holds

lim
t→kπ

∫
R
u(t, x)ϕ(x) dx = q(kπ)

∫
R
ū0(x)ϕ(x) dx,

for any ϕ ∈ C∞c (R);

• for any n ∈ Z \ {0} and k ∈ Z, we have

lim
t→π/2+arctan(2n)+kπ

∫
R
u(t, x)ϕ(x) dx = αn(2π)1/2ϕ(0)+

+

∫
R

∑
h∈Z\{n}

αhuh(π/2 + arctan(2n) + kπ, x)ϕ(x) dx,

for any ϕ ∈ C∞c (R).

• Moreover, u is 4π-periodic in time: u(t+ k4π, x) = u(t, x), for any t ∈ Ã and x ∈ R.

As we noticed after the statement of Theorem 5.1 and Theorem 5.5, even in this case,
the solution u(t, ·) defined by (5.25), for t ∈ A, can be extended to a continuous function,
ũ : R → D′(R). This fact is possible thanks to the appropriate choice of the piecewise
constant function q in (6.50) that makes t 7→ u0(t, ·) a function that can be extended to a
continuous function, ũ0 : R→ D′(R).

More precisely, we have the following Corollary.

Corollary 5.10 Under the assumptions of Theorem 5.9, let u be the solution given by
Theorem 5.9. Let ũ : R → D′(R) be the function of distributions defined in the following
way:

ũ(t) := u(t, ·), for t ∈ A,

for n ∈ Z \ {0}, and k ∈ Z,

u(π/2 + arctan(2n) + kπ, ·) := αn(2π)1/2δ +
∑

h∈Z\{n}

αhuh(π/2 + arctan(2n) + kπ, ·).

Then ũ is continuous.

Proof. The forth, fifth and sixth points of Theorem 5.9 imply the continuity of ũ at
points kπ, for k ∈ Z, and at the points π/2 + arctan(2n) + kπ, for n ∈ Z \ {0} and k ∈ Z .
Moreover, the continuity of u at the other points, t0 ∈ Ã, easily follows by the continuity of
t ∈ Ã→ u(t, x), for any x ∈ R, and the Lebesgue dominated convergence theorem. �

We now consider the non-homogeneous problem with zero initial datum:{
∂tu(t, x) + i

2
(−∂xxu(t, x) + x2u(t, x)) = v(t, x), (t, x) ∈ R× R

u(0, x) = 0, x ∈ R.
(5.26)
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We note that the functions un of Theorem 5.9 can be written as

un(t, x) = | cos(arctan(2n))|1/2| cos(t− arctan(2n))|−1/2qn(t)e
i
2

tan(arctan(2n)−t)x2 , (5.27)

where qn is the piecewise constant function

qn(t) := q(t− arctan(2n)).

As we did for the free particle problem, even for the quantum harmonic oscillator one,
we are willing to find a solution of (5.26) as a sum of chirp functions, and thus led to
consider a right hand side, v, as a sum of chirp functions vn of a form resembling the one
of un. More precisely, similarly to (5.27), we consider

vn(t, x) := g̃n(t)qn(t)e
i
2

tan(arctan(2n)−t)x2 ,

for g̃n : R→ C continuous. See the next Theorem 5.11 and the Proposition 6.14.

Theorem 5.11 Let g̃n : R→ C, n ∈ Z, be a sequence of continuous functions such that

+∞∑
n=−∞

|n|1/2 sup
t∈[a,b]

|g̃n(t)| < +∞, for any [a, b] ⊂ R. (5.28)

Let vn : An × R→ C, where An := {t ∈ R : t 6= π/2 + arctan(2n) + kπ, k ∈ Z}, defined by

vn(t, x) := g̃n(t)qn(t)e
i
2

tan(arctan(2n)−t)x2 , n 6= 0,

and v0 : R× R→ C defined by v0(t, x) = g̃0(t). Defining v : A× R→ C by

v(t, x) :=
+∞∑

n=−∞

vn(t, x), (5.29)

where A :=
⋂
n∈ZAn, and F [g̃n] : An × R→ C by

F [g̃n](t) := | cos(t− arctan(2n))|−1/2

∫ t

0

| cos(s− arctan(2n))|1/2g̃n(s) ds,

then the function u : A× R, defined by

u(t, x) :=
+∞∑

n=−∞

F [g̃n](t)qn(t)e
i
2

tan(arctan(2n)−t)x2 , (5.30)

is a solution of the problem (5.26) in the following sense:

• the series in (5.30) absolutely converges for any (t, x) ∈ A× R, hence u(t, x) is well
defined for (t, x) ∈ A× R;
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• defining Ã = A \ {kπ, k ∈ Z}, we have u(·, x) ∈ C1(Ã) for any x ∈ R and u(t, ·) ∈
C∞(R) for any t ∈ Ã;

• u is a classical solution in Ã× R of the equation in (5.26);

• limt→0

∫
R u(t, x)ϕ(x) dx = 0, for any ϕ ∈ C∞c (R);

• for any k ∈ Z, we have

lim
t→kπ

∫
R
u(t, x)ϕ(x) dx =

∫
R
u(kπ, x)ϕ(x) dx,

for any ϕ ∈ C∞c (R);

• for any n ∈ Z \ {0} and k ∈ Z, let tn,k := π/2 + arctan(2n) + kπ. We have

lim
t→tn,k

∫
R
u(t, x)ϕ(x) dx =

(2π)1/2

∫ tn,k

0

| cos(s− arctan(2n))|1/2g̃n(s) ds ϕ(0)+

+

∫
R

∑
h∈Z\{n}

F [g̃h](tn,k)qh(tn,k)e
i
2

tan(arctan(2h)−tn,k)x2ϕ(x) dx,

for any ϕ ∈ C∞c (R).

The condition (5.28) is imposed in order to have the convergence of the series (5.30),
for t = kπ and k ∈ Z, k 6= 0.

Remark 5.12 As observed for the free particle problem, a simple example of functions
g̃n satisfying (5.16) is given by constants: g̃n(t) = αn ∈ C, such that (5.4) holds. In this
case, the functions F [αn] cannot be computed in terms of elementary functions. Indeed,
the function

E(t) :=

∫ t

0

| cos(s)|1/2 ds

can be computed in terms of elliptic integrals of second kind, that cannot be expressed by
elementary functions (see for instance [13]).

Even in this case, the solution u(t, ·) defined by (5.30), for t ∈ A, can be extended to a
continuous function u : R→ D′(R). Indeed, the following Corollary holds.

Corollary 5.13 Under the assumptions of Theorem 5.11, let u be the solution given by
Theorem 5.11. Let ũ : R→ D′(R) be the function of distributions defined in the following
way:

ũ(t) := u(t, ·), for t ∈ A,
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for n ∈ Z \ {0}, k ∈ Z and tn,k = π/2 + arctan(2n) + kπ,

u(tn,k, ·) : =

(
(2π)1/2

∫ tn,k

0

| cos(s− arctan(2n))|1/2g̃n(s) ds

)
δ

+
∑

h∈Z\{n}

F [g̃h](tn,k)qh(tn,k)e
i
2

tan(arctan(2h)−tn,k)(·)2 .

Then ũ is continuous.

Proof. The last three points of Theorem 5.11 imply the continuity of ũ at points kπ, for
k ∈ Z, and at the points π/2 + arctan(2n) + kπ, for n ∈ Z \ {0} and k ∈ Z . Moreover,
the continuity of u at the other points, t0 ∈ Ã, easily follows by the continuity of t ∈ Ã→
u(t, x), for any x ∈ R, and the Lebesgue dominated convergence theorem. �

As we did in the case of the free particle problem, thanks to the linearity of the problem
(5.19), by taking the sum of the solutions obtained in Theorems 5.9 and 5.11, we do obtain
a solution to problem (5.19), with ū0 and v of the form (5.23) and (5.29). We are going to
state the final result.

Theorem 5.14 Let the assumptions of Theorems 5.9 and 5.11 hold. Then, there exists a
solution u of the Cauchy problem (5.19) satisfying all the properties given in Theorem 5.9.
Moreover, u can be extended to a continuous function ũ : R→ D′(R).

5.3 Applications to the Gabor wave front set

Let us show how the results obtained in Theorem 5.1 match with the results on the prop-
agation of the Gabor wave front set for the Schrödinger equation, see [5] and [14].

Let us recall the definition of the Gabor wave front set for a Schwartz distribution
(see [9] and [18]). For z = (x, ξ) ∈ R2 and u ∈ S ′(R), we define

Tu(z) := 2−1/2π−3/4

∫
R
e−iyξe−|x−y|

2/2u(y) dy. (5.31)

The map T is called Bargman transform of u. Notice that, up to a coefficient, for any x ∈ R,
the map ξ 7→ Tu(x, ξ) is the Fourier transform of the distribution y 7→ e−|x−y|

2/2u(y). In
(5.31), the integral denotes a duality when u is not a function. We define the Gabor wave
front set of u ∈ S′(R), denoted by WFG(u), in this way: for z0 ∈ R2\{(0, 0)}, z0 6∈ WFG(u)
if there exists a conic neighborhood

Vz0,ε := {z ∈ R2 \ {(0, 0)} :

∣∣∣∣zz − z0

z0

∣∣∣∣ < ε, |z| > 1/ε}

such that
|z|N |Tu(z)| ≤ CN , ∀ z ∈ Vz0,ε, ∀N ∈ N , (5.32)

38



for some constants CN > 0.
As it concerns our applications, it would be sufficient to examine, from [14], the following

example. For λ ∈ R \ {0}, we consider the so called chirp function u(x) = eiλx
2/2. For this

kind of function, we have

WFG(u) = {(x, ξ) ∈ R2 : x 6= 0, ξ = λx}. (5.33)

We even notice that

WFG(1) = {(x, ξ) ∈ R2 : x 6= 0, ξ = 0}, WFG(δ) = {(x, ξ) ∈ R2 : x = 0, ξ 6= 0}.
(5.34)

Let us recall, from [14], the following basic results on the propagation of singularities
for the Schrödinger equation

−i∂tu+ a(x,−i∂x)u = 0, (5.35)

where a(x, ξ) is a real quadratic form. In our examples, we have the two particular cases:
a(x, ξ) = ξ2 for the free particle equation in (5.2), and a(x, ξ) = 1

2
(x2 +ξ2) for the quantum

harmonic oscillator equation in (5.20).
We take into account the corresponding Hamiltonian system:

ẋ = aξ(x, ξ), ξ̇ = −ax(x, ξ). (5.36)

We denote by χt : R2 \ {0} → R2 \ {0} the flow of system (5.36), namely χt(y, η) =
(x(t), ξ(t)), where (x(t), ξ(t)) is the unique solution of system (5.36) such that (x(0), ξ(0)) =
(y, η).

For solutions of equation (5.35), we have

WFG(u(t, ·)) = χt(WFG(u(0, ·))), ∀ t ∈ R. (5.37)

In this perspective, we revisit our preceding results.

Free particle equation. In this case, we have a(x, ξ) = ξ2 and the system (5.36) is

ẋ = 2ξ, ξ̇ = 0. (5.38)

Integrating the system (5.38), we obtain that

χt(y, η) = (y + 2ηt, η), ∀ (y, η) ∈ R2.

Let n ∈ Z. From (5.33), we have

WFG(einx
2

) = {(x, ξ) ∈ R2 : x 6= 0, ξ = 2nx}. (5.39)

We compute
χt(WFG(einx

2

)) = {(x(1 + 4nt), 2nx) : x 6= 0}.
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So, we have that
χ−1/(4n)(WFG(einx

2

)) = {(0, ξ) : ξ 6= 0},
and

χt(WFG(einx
2

)) = {(x, 2nx/(1 + 4nt)) : x 6= 0}, for t 6= −1/(4n).

This matches with
WFG(un(t, ·)),

where un is the solution in (5.14), as a consequence of (5.33).
Considering the initial datum (5.5), we have

WFG(ū0) =
⋃

n∈Z,αn 6=0

{(x, ξ) ∈ R2 : x 6= 0, ξ = 2nx} (5.40)

and
χt(WFG(ū0)) =

⋃
n∈Z,αn 6=0

{(x(1 + 4nt), 2nx) : x 6= 0}.

Because of the previous observation, we have that

χt(WFG(ū0)) = WFG(ũ(t)), ∀ t ∈ R,

where ũ(t)is the generalized solution given in Corollary 5.2.

Quantum harmonic oscillator equation. In this case, we have a(x, ξ) = 1
2
(x2 + ξ2)

and the system (5.36) is
ẋ = ξ, ξ̇ = −x. (5.41)

Integrating the system (5.41), we get that

χt(y, η) = (y cos t+ η sin t, η cos t− y sin t), ∀ (y, η) ∈ R2.

Let n ∈ Z, by (5.39) and the expression of the flow χt, we get

χt(WFG(einx
2

)) = {(x(cos t+ 2n sin t), x(2n cos t− sin t)) : x 6= 0}.

Then, denoting by tn,k := π/2 + arctan(2n) + kπ, k ∈ Z, we have that

χtn,k(WFG(einx
2

)) = {(0, ξ) : ξ 6= 0}.

For t 6= tn,k,

χt(WFG(einx
2

)) = {(x, x(2n cos t− sin t))

(cos t+ 2n sin t)
: x 6= 0} = {(x, x 2n− tan t

1 + 2n tan t
: x 6= 0}.

Using the addition formula for the tangent, we have

2n− tan t

1 + 2n tan t
= tan(arctan(2n)− t).
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Since, denoting by un the function (5.27), by (5.33),

WFG(un(t, ·)) = {(x, x tan(arctan(2n)− t) : x 6= 0},

we obtain the matching
χt(WFG(einx

2

)) = WFG(un(t, ·)).
Reasoning as in the previous paragraph, we finally have that

χt(WFG(ū0)) = WFG(ũ(t)), ∀ t ∈ R,

where ũ(t)is the generalized solution given in Corollary 5.10.

5.4 Fourier transform and chirp solutions

In this Section, we show that the solution to the free particle problems, given in Theorems
5.1 and 5.5, can be found using the Fourier transform representation in S′(R), as well. Let
us stress that this approach cannot be carried out for the quantum harmonic oscillator
problem.

We assume that ū0 is of the form

ū0(x) =
+∞∑

n=−∞

αne
inx2 , (5.42)

for αn ∈ C, n ∈ Z, such that
+∞∑

n=−∞

|αn| < +∞. (5.43)

First of all, for n ∈ Z \ {0}, using (2.16) with z = −ni, we have that

F (einx
2

)(ξ) =

(
πi

n

)1/2

e
−iξ2
4n . (5.44)

Moreover, it holds that

F (ū0)(ξ) =
+∞∑

n=−∞

αnF (einx
2

)(ξ). (5.45)

Indeed, the sequence sN of the partial sum

sN(x) :=
+N∑

n=−N

αne
inx2 (5.46)

converges to ū0 in S′(R). For the continuity of F as an operator in S′(R), it follows (5.45).
We recall the formulation of the problem (5.2) in Fourier variables:

∂

∂t
û(t, ξ) + iξ2û(t, ξ) = 0, û(0, ξ) = F (ū0)(ξ), (5.47)
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which has solution
û(t, ξ) = e−iξ

2tF (ū0)(ξ).

From the representation (5.45) and (5.44), it follows that

û(t, ξ) = e−iξ
2t

+∞∑
n=−∞

αnF (einx
2

)(ξ)

= α0δ +
∑

n∈Z,n 6=0

αn

(
πi

n

)1/2

e
−i(1+4nt)ξ2

4n .

(5.48)

On the other hand, still using (2.16), it holds that

F (e
inx2

1+4nt )(ξ) =

(
πi(1 + 4nt)

n

)1/2

e
−i(1+4nt)ξ2

4n , (5.49)

for t 6= −1/(4n). Then, we have

û(t, ξ) = α0δ +
∑

n∈Z,n 6=0

αn

(
πi

n

)1/2(
πi(1 + 4nt)

n

)−1/2

F (e
inx2

1+4nt )(ξ), (5.50)

for t 6= −1/(4n). Moreover,

û(−1/(4k), ξ) = α0δ + αk

(
πi

k

)1/2

+

∑
n∈Z,n 6=0,n6=k

αn

(
i(1− n/k)

n

)−1/2

F (e
inx2

1−n/k )(ξ).

(5.51)

From the last two equations, we can define

u(t, x) =
∑
n∈Z

αn

(
πi

n

)1/2(
πi(1 + 4nt)

n

)−1/2

e
inx2

1+4nt , (5.52)

and

u(−1/(4k), x) = αk

(
πi

k

)1/2

δ+

∑
n∈Z,n6=k

αn

(
πi

n

)1/2(
πi(1− n/k)

n

)−1/2

e
inx2

1−n/k .

(5.53)

The last two equations trace out a function, u(t, ·) ∈ S′(R), for any t ∈ R, which coincides
with the continuous extension of the solution given by Theorem 5.1.

With similar computations, even the solution of the non-homogeneous problem (5.12)
can be computed, having v satisfying the same assumptions as the ones of Theorem 5.5.
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Finally, we observe that the quantum harmonic oscillator problem{
∂tu(t, x) + i

2
(−∂xxu(t, x) + x2u(t, x)) = 0, (t, x) ∈ R× R

u(0, x) = ū0(x), x ∈ R,
(5.54)

via Fourier variables, becomes{
∂tû(t, ξ) + i

2
(−∂ξξû(t, ξ) + ξ2û(t, ξ)) = 0, (t, ξ) ∈ R× R

u(0, x) = ū0(x), x ∈ R,
(5.55)

which is still a problem with the same level of complexity as the initial one. So, in this
case, the Fourier transform method doesn’t give any help and the pure differential calculus,
earlier carried out in this thesis, proves to be so very useful to us.
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6 Proofs of main results

6.1 Proof of Theorem 5.1

Lemma 6.1 If u is of the form u(t, x) = g(t)eif(t)x2, for some real differentiable function
f and complex valued function g, such that it solves the equation

∂tu(t, x)− i∂xxu(t, x) = 0, (6.1)

then f and g cannot be defined on all R, but on R \ {−b/4}, for some b ∈ R,

f(t) =
1

4t+ b

and

g(t) =

{
C1|4t+ b|−1/2 if t ∈ (−∞,−b/4)

C2|4t+ b|−1/2 if t ∈ (−b/4,+∞)

for C1, C2 ∈ C. Moreover, limt→−b/4 |u(t, x)| = +∞, for any x ∈ R, when C1 and C2 are
not 0.

Moreover, if C1 = iC2, then

lim
t→−b/4

∫
R
u(t, x)ϕ(x) dx = C2(πi)1/2ϕ(0), (6.2)

for any ϕ ∈ C∞c (R).

Proof. Let u(t, x) = g(t)eif(t)x2 , for some differentiable functions f : D ⊂ R → R and
g : D ⊂ R→ C defined on a open domain D ⊂ R. We compute

∂tu(t, x) = (g′(t) + ig(t)f ′(t)x2)eif(t)x2 (6.3)

and
∂xxu(t, x) = (−4g(t)f 2(t)x2 + i2g(t)f(t))eif(t)x2 . (6.4)

Then,

∂tu(t, x)− i∂xxu(t, x) = (g′(t) + 2g(t)f(t) + i[g(t)f ′(t) + 4g(t)f 2(t)]x2)eif(t)x2 . (6.5)

If (6.1) holds, then

g′(t) + 2g(t)f(t) = 0, (6.6)

g(t)f ′(t) + 4g(t)f 2(t) = 0. (6.7)

Denoting by F a primitive of f , all the solutions of (6.6) are of the form g(t) = Ke−2F (t),
where the constant K ∈ C could be different on every connected component of D. In
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particular, on the connected components where K 6= 0, the equation (6.7) is then equivalent
to

f ′(t) + 4f 2(t) = 0.

All the solutions to this equation are of the form f(t) = 1
4t+b

, for some b ∈ R, with maximal
domain R \ {−b/4}. By a direct computation and the above observation, we obtain that
g(t) = K|4t + b|−1/2, for some constants K on the two components (−∞,−b/4) and
(−b/4,+∞).

Finally, we prove (6.2). It is sufficient to prove the result for b = 0. From the expression
of the fundamental solution for d = 1 in Subsection 2.2.2, we observe that k(t, x) =
(πi)−1/2|4t|−1/2eix

2/(4t), for t > 0 and k(t, x) = (−πi)−1/2|4t|−1/2eix
2/(4t), for t < 0. Applying

(2.21), it follows that

lim
t→0−

∫
R
C1|4t|−1/2eix

2/(4t)ϕ(x) dx = C1e
−iπ/4(π)1/2ϕ(0) (6.8)

and

lim
t→0+

∫
R
C2|4t|−1/2eix

2/(4t)ϕ(x) dx = C2e
iπ/4(π)1/2ϕ(0). (6.9)

Finally, (6.2) follows from (6.8) and (6.9) if C1 = iC2.
For arbitrary b ∈ R, it is sufficient to change t into t + b/4 and take the limit for

t→ −b/4.
�

Proposition 6.2 The function k(t, x) = (4πit)−1/2e
ix2

4t belongs to C∞((R \ {0}) × R),
satisfies

∂tu(t, x)− i∂xxu(t, x) = 0, for (t, x) ∈ (R \ {0})× R, (6.10)

and limt→0

∫
R k(t, x)ϕ(x) dx = ϕ(0), for any ϕ ∈ C∞c (R).

Proof. The proof follows by application of Lemma 6.1 with b = 0. The regularity of k is
obvious. The last limit is (2.21). �

Proposition 6.3 Let β ∈ R, β 6= 0. The function uβ(t, x) = (πi
β

)1/2k(t+1/(4β), x), where

k is given by Proposition 6.2, belongs to C∞((R \ {−1/(4β)})× R), satisfies

∂tu(t, x)− i∂xxu(t, x) = 0, for (t, x) ∈ (R \ {−1/(4β)})× R, (6.11)

and uβ(0, x) = eiβx
2
.

Moreover, limt→−1/(4β)

∫
R uβ(t, x)ϕ(x) dx = (πi

β
)1/2ϕ(0), for any ϕ ∈ C∞c (R).

Proof. The result follows by Proposition 6.2, observing that uβ is obtained from k by a
translation in time and a multiplication by a constant. �
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Proposition 6.4 Let αn ∈ C, n ∈ Z, be a sequence such that
∑+∞

n=−∞ |αn| < +∞. De-
noting by u0(t, x) = 1 and un(t, x), for n 6= 0, the functions given by Proposition 6.3 for
β = n, then the series,

+∞∑
n=−∞

αnun(t, x), (6.12)

absolutely converges for any (t, x) ∈ A× R, where A := {t ∈ R : t 6= 1/(4n), n ∈ Z \ {0}}.
We define

u(t, x) :=
+∞∑

n=−∞

αnun(t, x), (t, x) ∈ A× R, (6.13)

and Ã = A \ {0}. Then u ∈ C∞(Ã × R) and u is a classical solution in Ã × R of the
equation in (5.2).

Proof. First of all, we observe that un(t, x) can be written in the following form

un(t, x) = cn(t)|4nt+ 1|−1/2e
inx2

4nt+1 ,

where cn is defined in (5.15) and |cn| = 1.
Let ε > 0, ε 6= 1/(4n), n ∈ N. We define Cε = R \ (∪|n|>1/(4ε)(1/(4n)− ε, 1/(4n) + ε) ∪

(−ε, ε)).
Since

|αnun(t, x)| ≤ |αn||4nt+ 1|−1/2,

we have that
sup
t∈Cε
|αnun(t, x)| ≤ |αn||4nε|−1/2.

By Weierstrass criterion, the series in (6.13) uniformly converges in Cε×R, for every ε > 0.
In particular, u(t, x) is well defined in Ã× R. Moreover, it follows that u is continuous in
Ã× R.

Since, for k ∈ N,

∂k

∂xk
un(t, x) = cn(t)|4nt+ 1|−1/2(2inx)k(4nt+ 1)−ke

inx2

4nt+1 ,

we have ∣∣∣∣αn ∂k∂xkun(t, x)

∣∣∣∣ ≤ |αn||4nt+ 1|−k−1/2|2nx|k

and

sup
(t,x)∈Cε×[−1/ε,1/ε]

∣∣∣∣αn ∂k∂xkun(t, x)

∣∣∣∣ ≤ |αn||4nε|−k−1/2|2n1/ε|k.

By Weierstrass criterion, the series

+∞∑
n=−∞

αn
∂k

∂xk
un(t, x)
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uniformly converges in Cε × [−1/ε, 1/ε] for every ε > 0.
Since

∂

∂t
un(t, x) = cn(t)(−2n|4nt+ 1|−3/2 sign (4nt+ 1)− 4in2x2(4nt+ 1)−2|4nt+ 1|−1/2)e

inx2

4nt+1 ,

we have that ∣∣∣∣αn ∂∂tun(t, x)

∣∣∣∣ ≤ |αn|(2|n||4nt+ 1|−3/2 + |4nx|2||4nt+ 1|−5/2)

and

sup
(t,x)∈Cε×[−1/ε,1/ε]

∣∣∣∣αn ∂∂tun(t, x)

∣∣∣∣ ≤ |αn|(2|n||4nε|−3/2 + |4n1/ε|2||4nε|−5/2).

By Weierstrass criterion, the series

+∞∑
n=−∞

αn
∂

∂t
un(t, x)

uniformly converges in Cε×[−1/ε, 1/ε] for every ε > 0. One can analogously prove that the
series of the k-derivatives with respect to t of αnun uniformly converges in Cε× [−1/ε, 1/ε],
for every ε > 0.

As a consequence of the uniform convergence of the derivatives, we obtain the regularity
u ∈ C∞(Ã× R).

Moreover, since we can exchange the series with the derivatives, by Proposition 6.3, we
obtain that u is a classical solution of the equation in Ã× R.

�

Proposition 6.5 The function u defined in (6.13) satisifes

lim
t→0

∫
R
u(t, x)ϕ(x) dx =

∫
R
ū0(x)ϕ(x) dx,

for any ϕ ∈ C∞c (R).

Proof. Let ϕ ∈ C∞c (R). First of all, we prove that∫
R
u(t, x)ϕ(x) dx =

+∞∑
n=−∞

∫
R
αnun(t, x)ϕ(x) dx, ∀t ∈ A. (6.14)

Indeed, as proved in Proposition 6.4, the convergence of the series
∑+∞

n=−∞ αnun(t, x)ϕ(x) =
u(t, x)ϕ(x) is uniform on Cε×R, for any ε > 0. The identity (6.14) follows by exchanging
the integral with the series, because of the uniform convergence of the series and the
compactness of the support of ϕ.
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We prove that there exist C independent of n ∈ Z, and t ∈ A such that∣∣∣∣∫
R
αnun(t, x)ϕ(x) dx

∣∣∣∣ ≤ C|αn||n|−1/2. (6.15)

Indeed, by Proposition 6.2, there exists δ > 0 such that∣∣∣∣∫
R
k(t, x)ϕ(x) dx

∣∣∣∣ ≤ |ϕ(0)|+ 1 ∀t ∈ [−δ, 0) ∪ (0, δ], (6.16)

and∣∣∣∣∫
R
k(t, x)ϕ(x) dx

∣∣∣∣ ≤ sup
x∈R
|ϕ(x)|

∫ R

−R
|k(t, x)| dx

≤ sup
x∈R
|ϕ(x)|2R(4π)−1/2|δ|−1/2 ∀t ∈ (−∞,−δ) ∪ (δ,+∞).

(6.17)

By (6.16) and (6.17), there exists C > 0 such that∣∣∣∣∫
R
k(t, x)ϕ(x) dx

∣∣∣∣ ≤ C ∀t ∈ (−∞, 0) ∪ (0,+∞). (6.18)

Since un(t, x) = (πi
n

)1/2k(t+ 1
4n
, x), by (6.18), we obtain (6.15).

By (6.15), it follows that

lim
t→0

+∞∑
n=−∞

∫
R
αnun(t, x)ϕ(x) dx =

+∞∑
n=−∞

lim
t→0

∫
R
αnun(t, x)ϕ(x) dx. (6.19)

Since un(·, x) is continuous at 0, we get

lim
t→0

∫
R
αnun(t, x)ϕ(x) dx =

∫
R
αnun(0, x)ϕ(x) dx,

and by (6.14) we conclude. �

6.2 Proof of Theorem 5.5

Proposition 6.6 Let g̃ : R→ C be a continuous function not identically 0. Let

v(t, x) := g̃(t)eif̃(t)x2 . (6.20)

If f̃ is not of the form f̃(t) = 1
4t+b

for some b ∈ R, then the equation

∂tu(t, x)− i∂xxu(t, x) = v(t, x) (6.21)

has no solution of the form u(t, x) = g(t)eif(t)x2 .
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If f̃(t) = 1
4t+b

for some b ∈ R, for t 6= −b/4, then

u(t, x) := |4t+ b|−1/2

∫ t

0

|4s+ b|1/2g̃(s) ds e
ix2

4t+b (6.22)

is a classical solution of equation (6.21) in (R \ {−b/4}) × R and u(0, x) = 0 for every
x ∈ R.

Moreover, u(·, x) ∈ C1(R \ {−b/4}) for any x ∈ R and u(t, ·) ∈ C∞(R) for any t ∈
R \ {−b/4}.

Finally, if c is the piecewise constant function defined in (5.13), we have

lim
t→−b/4

c(4t+ b)

∫
R
u(t, x)ϕ(x) dx = (π)1/2

∫ −b/4
0

|4s+ b|1/2g̃(s) ds ϕ(0), (6.23)

for any ϕ ∈ C∞c (R).

Proof. Let us assume that u(t, x) = g(t)eif(t)x2 for some real differentiable functions f :
D ⊂ R → R and g : D ⊂ R → C, defined on a open domain D ⊂ R. Using the
computations done in Lemma 6.1, by (6.5), if (6.21) holds for v of the form (6.27), then

g′(t) + 2g(t)f(t) = g̃(t), (6.24)

g(t)f ′(t) + 4g(t)f 2(t) = 0, (6.25)

eif(t)x2 = eif̃(t)x2 (6.26)

The last equality holds if and only if

f(t)x2 = f̃(t)x2 + 2kπ,

for some k ∈ Z and for any x ∈ R. This implies that f(t) = f̃(t) for any t ∈ D.
If f̃(t) is not of the form f̃(t) = 1

4t+b
for some b ∈ R, t 6= −c/4, then equation (6.25)

does not hold on the set where g(t) 6= 0. Then, denoting by F a primitive of f , the
solutions of equation (6.24) are of the form

g(t) = e−2F (t)e2F (0)g(0) + e−2F (t)

∫ t

0

e2F (s)g̃(s) ds.

By a direct computation and by imposing the condition g(0) = 0, we get to the solution
(6.22).

By the continuity of the function t 7→
∫ t

0
|4s + b|1/2g̃(s) ds, and the limits (6.8) and

(6.9), we obtain (6.23).
�

Proposition 6.7 Let g̃n : R→ C, n ∈ Z, be a sequence of continuous functions such that∑+∞
n=−∞ supt∈[a,b] |g̃n(t)| < +∞ for any [a, b] ⊂ R, and

v(t, x) :=
+∞∑

n=−∞

g̃n(t)cn(t)e
inx2

4nt+1 . (6.27)
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Defining F [g̃n](t) := |4nt+ 1|−1/2
∫ t

0
|4ns+ 1|1/2g̃n(s) ds, then the series

+∞∑
n=−∞

F [g̃n](t)cn(t)e
inx2

4nt+1 (6.28)

absolutely converges for any (t, x) ∈ A× R, where A := {t ∈ R : t 6= 1/(4n), n ∈ Z \ {0}}.
We define

u(t, x) :=
+∞∑

n=−∞

F [g̃n](t)cn(t)e
inx2

4nt+1 . (6.29)

We define Ã = A \ {0}. Then u(·, x) ∈ C1(Ã) for any x ∈ R, u(t, ·) ∈ C∞(R) for any
t ∈ Ã, u is a classical solution in Ã × R of the equation (6.21) and u(0, x) = 0 for every
x ∈ R.

Proof. We at first define the functions un(t, x) by

un(t, x) = cn(t)|4nt+ 1|−1/2

∫ t

0

|4ns+ 1|1/2g̃n(s) ds e
inx2

4nt+1 . (6.30)

Let ε > 0, ε 6= 1/(4n), n ∈ N. We define Cε = R\(∪|n|>1/(4ε)(1/(4n)−ε, 1/(4n)+ε)∪(−ε, ε))
and Dε = Cε ∩ [−1/ε, 1/ε].

Since
|un(t, x)| ≤ |4nt+ 1|−1/2|t| sup

s∈[−|t|,|t|]
|4ns+ 1|1/2|g̃n(s)|,

we have that

sup
t∈Dε
|un(t, x)| ≤ |4nε|−1/2|1/ε||4|n|1/ε+ 1|1/2 sup

t∈[−1/ε,1/ε]

|g̃n(t)|.

By Weierstrass criterion, the series in (6.13) uniformly converges in Dε×R for every ε > 0.
Namely, u(t, x) is well defined in Ã×R. Moreover, it follows that u is continuous in Ã×R.

Since, for k ∈ N,

∂k

∂xk
un(t, x) = cn(t)|4nt+ 1|−1/2(2inx)k(4nt+ 1)−k

∫ t

0

|4ns+ 1|1/2g̃n(s) ds e
inx2

4nt+1 ,

we have ∣∣∣∣ ∂k∂xkun(t, x)

∣∣∣∣ ≤ |4nt+ 1|−k−1/2|2nx|k|t| sup
s∈[−|t|,|t|]

|4ns+ 1|1/2|g̃n(s)|

and

sup
(t,x)∈Dε×[−1/ε,1/ε]

∣∣∣∣ ∂k∂xkun(t, x)

∣∣∣∣ ≤ |4nε|−k−1/2|2n1/ε|k|1/ε||4|n|1/ε+ 1|1/2 sup
t∈[−1/ε,1/ε]

|g̃n(t)|.
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By Weierstrass criterion, the series

+∞∑
n=−∞

∂k

∂xk
un(t, x)

uniformly converges in Cε × [−1/ε, 1/ε], for every ε > 0.
Since

∂

∂t
un(t, x) = cn(t)(−2n|4nt+ 1|−3/2 sign (4nt+ 1)

∫ t

0

|4ns+ 1|1/2g̃n(s) ds+ g̃n(t)

− 4in2x2(4nt+ 1)−2|4nt+ 1|−1/2

∫ t

0

|4ns+ 1|1/2g̃n(s) ds)e
inx2

4nt+1 ,

we have that∣∣∣∣ ∂∂tun(t, x)

∣∣∣∣ ≤ (2|n||4nt+1|−3/2 + |4nx|2||4nt+1|−5/2)|t| sup
s∈[−|t|,|t|]

|4ns+1|1/2|g̃n(s)|+ |g̃n(t)|

and

sup
(t,x)∈Dε×[−1/ε,1/ε]

∣∣∣∣ ∂∂tun(t, x)

∣∣∣∣ ≤ (2|n||4nε|−3/2 + |4n1/ε|2||4nε|−5/2)·

· |1/ε||4|n|1/ε+ 1|1/2 sup
t∈[−1/ε,1/ε]

|g̃n(t)|+ sup
t∈[−1/ε,1/ε]

|g̃n(t)|.

By Weierstrass criterion, the series

+∞∑
n=−∞

∂

∂t
un(t, x)

uniformly converges in Dε × [−1/ε, 1/ε] for every ε > 0.
As a consequence of the uniform convergence of the derivatives, we obtain the regularity

u(·, x) ∈ C1(Ã) for any x ∈ R, and u(t, ·) ∈ C∞(R) for any t ∈ Ã.
Besides, since we can exchange the series with the derivatives, by Proposition 6.6, we

obtain that u is a classical solution of the equation in Ã× R. �

Proposition 6.8 The function u defined in (6.29) satisifes

lim
t→0

∫
R
u(t, x)ϕ(x) dx = 0,

for any ϕ ∈ C∞c (R).

Proof. Let ϕ ∈ C∞c (R). In the first place, we prove that, for the sequence un defined in
(6.30), it holds ∫

R
u(t, x)ϕ(x) dx =

+∞∑
n=−∞

∫
R
un(t, x)ϕ(x) dx, ∀t ∈ A. (6.31)
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Indeed, as proved in Proposition 6.7, the convergence of the series
∑+∞

n=−∞ un(t, x)ϕ(x) =
u(t, x)ϕ(x) is uniform on Dε ×R for any ε > 0. The identity (6.31) follows by exchanging
the integral with the series, because of the uniform convergence of the series and the
compactness of the support of ϕ.

We prove that there exist C independent of n ∈ Z such that∣∣∣∣∫
R
un(t, x)ϕ(x) dx

∣∣∣∣ ≤ C sup
s∈[−1,1]

|g̃n(s)| ∀t ∈ [−1,−1/(4n)) ∪ (−1/(4n), 1]. (6.32)

In order to do this, we have to refine

lim
t→−1/(4n)

∫
R
un(t, x)ϕ(x) dx = (π)1/2|n|−1/2

∫ −1/(4n)

0

|4ns+ 1|1/2g̃n(s) ds ϕ(0), (6.33)

already proved in Proposition 6.6, by showing that the limit is uniform with respect to n.
Since ∫ t

0

|4ns+ 1|1/2 ds =
1

6n
(sign(4nt+ 1)|4nt+ 1|3/2 − 1),

we have ∫ −1/(4n)

0

|4ns+ 1|1/2 ds = − 1

6n
.

We prove that there exists δ > 0 independent of n, such that∣∣∣∣∫
R
un(t, x)ϕ(x) dx

∣∣∣∣ ≤ (π)1/2|n|−1/26−1|n|−1 sup
s∈[−1,1]

|g̃n(s)||ϕ(0)|+ 1

∀t ∈ [−1/(4n)− δ,−1/(4n)) ∪ (−1/(4n),−1/(4n) + δ].

(6.34)

∣∣∣∣∣
∫
R
un(t, x)ϕ(x) dx− (π)1/2|n|−1/2

∫ −1/(4n)

0

|4ns+ 1|1/2g̃n(s) ds ϕ(0)

∣∣∣∣∣
≤
∣∣∣∣∫

R
|4nt+ 1|−1/2e

inx2

4nt+1ϕ(x) dx− (π)1/2|n|−1/2ϕ(0)| |
∫ t

0

|4ns+ 1|1/2g̃n(s) ds

∣∣∣∣
+ |(π)1/2|n|−1/2ϕ(0)|

∣∣∣∣∣
∫ t

0

|4ns+ 1|1/2g̃n(s) ds −
∫ −1/(4n)

0

|4ns+ 1|1/2g̃n(s) ds

∣∣∣∣∣
=

∣∣∣∣(πi)1/2

∫
R
ū(t+ 1/(4n), x)ϕ(x) dx− (π)1/2ϕ(0)

∣∣∣∣ |n|−1/2

∣∣∣∣∫ t

0

|4ns+ 1|1/2g̃n(s) ds

∣∣∣∣
+ |(π)1/2ϕ(0)|

∣∣∣∣|n|−1/2

∫ t

−1/(4n)

|4ns+ 1|1/2g̃n(s) ds

∣∣∣∣
(6.35)

Since

|n|−1/2

∣∣∣∣∫ t

0

|4ns+ 1|1/2g̃n(s) ds

∣∣∣∣ ≤ |n|−1/22|4|n|+ 1|1/2 sup
s∈[−1,1]

|g̃n(s)| ≤ 6 sup
s∈[−1,1]

|g̃n(s)|

(6.36)

52



and∣∣∣∣|n|−1/2

∫ t

−1/(4n)

|4ns+ 1|1/2g̃n(s) ds

∣∣∣∣ ≤ sup
s∈[−1,1]

|g̃n(s)||n|−1/26−1|n|−1|4nt+ 1|3/2

≤ sup
s∈[−1,1]

|g̃n(s)|6−1|4t+ 1/n|3/2,
(6.37)

by (5.16), we have that sups∈[−1,1] |g̃n(s)| is bounded with respect to n. Then, by (6.35),
(6.36) and (6.37), there exist δ > 0 independent of n such that∣∣∣∣∣

∫
R
un(t, x)ϕ(x) dx− (π)1/2|n|−1/2

∫ −1/(4n)

0

|4ns+ 1|1/2g̃n(s) ds ϕ(0)

∣∣∣∣∣ < 1

∀t ∈ [−1/(4n)− δ,−1/(4n)) ∪ (−1/(4n),−1/(4n) + δ].

(6.38)

If t ∈ [−1,−1/(4n)− δ) ∪ (−1/(4n) + δ, 1]∣∣∣∣∫
R
un(t, x)ϕ(x) dx

∣∣∣∣ ≤ (4|n|δ)−1/2

∫
R
|ϕ(x)| dx

∫ t

0

|4ns+ 1|1/2|g̃n(s)| ds

≤ (4|n|δ)−1/2

∫
R
|ϕ(x)| dx 6−1|n|−1(|4|n|+ 1|3/2 + 1) sup

s∈[−1,1]

|g̃n(s)|.

(6.39)

By (6.34) and (6.39), there exists C > 0 independent of n such that (6.32) holds.
By (6.15), it follows that

lim
t→0

+∞∑
n=−∞

∫
R
un(t, x)ϕ(x) dx =

+∞∑
n=−∞

lim
t→0

∫
R
un(t, x)ϕ(x) dx. (6.40)

Since un(·, x) is continuous at 0, we have

lim
t→0

∫
R
un(t, x)ϕ(x) dx = 0,

and by (6.31) we conclude.
�

6.3 Proof of Theorem 5.9

Lemma 6.9 If u is of the form u(t, x) = g(t)eif(t)x2, for some real differentiable function
f and complex valued function g, and it solves the equation

∂tu(t, x) +
i

2
(−∂xxu(t, x) + x2u(t, x)) = 0, (6.41)
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then f and g cannot be defined on all R, but on R\{c+π/2+kπ : k ∈ Z}, for some c ∈ R,

f(t) =
1

2
tan(c− t)

and
g(t) = Ck| cos(t− c)|−1/2 if t ∈ (kπ + c− π/2, kπ + c− π/2), k ∈ Z

for Ck ∈ C. Moreover, limt→c+π/2+kπ |u(t, x)| = +∞, for any x ∈ R, when Ck and Ck+1

are not 0.
Besides, if Ck = iCk+1, then

lim
t→c+π/2+kπ

∫
R
u(t, x)ϕ(x) dx = Ck(2π)1/2i1/2ϕ(0), (6.42)

for any ϕ ∈ C∞c (R).

Proof. Let u(t, x) = g(t)eif(t)x2 for some real differentiable function f : D ⊂ R → R and
complex valued function g : D ⊂ R→ C defined on a open domain D ⊂ R. We compute

∂tu(t, x) = (g′(t) + ig(t)f ′(t)x2)eif(t)x2 (6.43)

and
∂xxu(t, x) = (−4g(t)f 2(t)x2 + i2g(t)f(t))eif(t)x2 . (6.44)

Then,

∂tu(t, x)+
i

2
(−∂xxu(t, x)+x2u(t, x)) = (g′(t)+g(t)f(t)+i[g(t)f ′(t)+2g(t)f 2(t)+g(t)/2]x2)eif(t)x2 .

(6.45)
If (6.41) holds, then

g′(t) + g(t)f(t) = 0, (6.46)

g(t)f ′(t) + 2g(t)f 2(t) + g(t)/2 = 0. (6.47)

Denoting by F a primitive of f , all the solutions of (6.46) are of the form g(t) = Ke−F (t),
where the constant K ∈ C could be different on every connected component of D. In
particular, on the connected components where K 6= 0, the equation (6.47) is equivalent
to

f ′(t) + 2f 2(t) + 1/2 = 0.

All the solutions to this equation are of the form f(t) = 1
2

tan(−t+ c) for some c ∈ R, with
maximal domain R \ {c+ π/2 + kπ : k ∈ Z}. By a direct computation, we get that F (t) =
ln | cos(t − c)|1/2 and, by the above observation, we obtain that g(t) = Ck| cos(t − c)|−1/2,
for some constants Kk on the components (kπ + c− π/2, kπ + c− π/2).

We finally prove (6.42). It is sufficient to prove the result for c = 0 and k = 0. By
(6.8), (6.9) and the change of variable

s =
−1

2 tan t
=
− cos t

2 sin t
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we have

lim
t→(π/2)−

∫
R
C0| cos t|−1/2e−i tan tx2/2ϕ(x) dx = lim

s→0−

∫
R
C0|2s|−1/2eix

2/(4s)ϕ(x) dx

= C0e
−iπ/4(2π)1/2ϕ(0)

(6.48)

and

lim
t→(π/2)+

∫
R
C1| cos t|−1/2e−i tan tx2/2ϕ(x) dx = lim

s→0+

∫
R
C1|2s|−1/2eix

2/(4s)ϕ(x) dx

= C1e
iπ/4(2π)1/2ϕ(0).

(6.49)

Then (6.42) follows from (6.48) and (6.49), if C0 = iC1.
�

Proposition 6.10 Let u0 : A0 × R→ C be the function defined by

u0(t, x) := q(t)| cos(t)|−1/2e
i
2

tan(−t)x2 , (6.50)

where A0 := {t ∈ R : t 6= π/2 + kπ, k ∈ Z}, and q is the piecewise constant function

q(t) := e−kiπ/2 if t ∈ (π/2 + (k − 1)π, π/2 + kπ), k ∈ Z.

Then, u0 belongs to C∞(A0 × R) and it is a classical solution of

∂tu(t, x) +
i

2
(−∂xxu(t, x) + x2u(t, x)) = 0, for (t, x) ∈ A0 × R, (6.51)

such that

lim
t→π/2+kπ

∫
R
u0(t, x)ϕ(x) dx = (2π)1/2ϕ(0), (6.52)

for any ϕ ∈ C∞c (R) and any k ∈ Z.

Proof. The proof follows by application of Lemma 6.9 with c = 0. The regularity of u
is obvious. The choice of the function q has been made to obtain (6.52) with the same
constant, (2π)1/2, for any k ∈ Z. �

The functions

un(t, x) := | cos(− arctan(2n))|1/2u0(t− arctan(2n), x), (6.53)

for n ∈ Z, defined in An × R, where An := {t ∈ R : t 6= π/2 + arctan(2n) + kπ, k ∈ Z},
satisfy

∂tu(t, x) +
i

2
(−∂xxu(t, x) + x2u(t, x)) = 0, for (t, x) ∈ An × R, (6.54)

un(0, x) = einx
2
, un ∈ C∞(An × R),

lim
t→π/2+arctan(2n)+kπ

∫
R
un(t, x)ϕ(x) dx = (2π)1/2ϕ(0),

for any ϕ ∈ C∞c (R) and any k ∈ Z.

55



Proposition 6.11 Let αn ∈ C, n ∈ Z, be a sequence such that
∑+∞

n=−∞ |αn| < +∞. Let
un : An → C be the sequence defined by (6.50) and (6.53). Then the series,

+∞∑
n=−∞

αnun(t, x), (6.55)

absolutely converges for any (t, x) ∈ A× R, where A := ∩n∈ZAn . We define

u(t, x) :=
+∞∑

n=−∞

αnun(t, x), (t, x) ∈ A× R, (6.56)

and Ã = A \ {kπ, k ∈ Z}. Then u ∈ C∞(Ã× R) and u is a classical solution in Ã× R of
the equation in (5.2).

Proof. We at first observe that un can be written (see (5.27)) in the following form

un(t, x) = | cos(− arctan(2n))|1/2| cos(t− arctan(2n))|−1/2qn(t)e
i
2

tan(arctan(2n)−t)x2 ,

where qn is the piecewise constant function

qn(t) := q(t− arctan(2n)).

Let us observe that un(·, x) is 4π-periodic. Since q is constant in each interval of the form
(π/2 + (k − 1)π, π/2 + kπ), it is sufficient to prove the result for t ∈ (−π/2, π/2).

Let ε ∈ (0, π/2), ε 6= π/2 − arctan(2|n|), n ∈ Z. Let tn := π/2 + arctan(2n) if n ≤ 0
and tn := −π/2 + arctan(2n) if n > 0. We define

Cε = (−π/2 + ε, π/2− ε) \ (∪|n|<1/2 tan(π/2−ε)(tn − ε, tn + ε) ∪ (−ε, ε)).

Since

|αnun(t, x)| ≤ |αn|| cos(− arctan(2n))|1/2| cos(t− arctan(2n))|−1/2,

we have that

sup
t∈Cε
|αnun(t, x)| ≤ |αn|| cos(− arctan(2n))|1/2| cos(π/2− ε)|−1/2.

By Weierstrass criterion, the series in (6.56) uniformly converges in Cε×R, for every ε > 0.
In particular, u(t, x) is well defined in Ã×R. Furthermore, it follows that u is continuous
in Ã× R.

Since, for k ∈ N,

∂k

∂xk
un(t, x) = qn(t)| cos(− arctan(2n))|1/2| cos(t− arctan(2n))|−1/2·

· (ix tan(arctan(2n)− t))ke
i
2

tan(arctan(2n)−t)x2 ,
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we have ∣∣∣∣αn ∂k∂xkun(t, x)

∣∣∣∣ ≤|αn|| cos(− arctan(2n))|1/2| cos(t− arctan(2n))|−1/2·

· |x|k| tan(arctan(2n)− t)|k,

and

sup
(t,x)∈Cε×[−1/ε,1/ε]

∣∣∣∣αn ∂k∂xkun(t, x)

∣∣∣∣ ≤|αn|| cos(− arctan(2n))|1/2| cos(π/2− ε)|−1/2·

· |ε|−k| tan(π/2− ε)|k.

By Weierstrass criterion, the series

+∞∑
n=−∞

αn
∂k

∂xk
un(t, x)

uniformly converges in Cε × [−1/ε, 1/ε], for every ε > 0.
Since

∂

∂t
un(t, x) = qn(t)| cos(− arctan(2n))|1/2·

·
(

1

2
| cos(t− arctan(2n))|−3/2 sign (cos(t− arctan(2n))) sin(t− arctan(2n))

− i
2
| cos(t− arctan(2n))|−1/2(cos(t− arctan(2n)))−2x2

)
e
i
2

tan(arctan(2n)−t)x2 ,

(6.57)

we have that ∣∣∣∣αn ∂∂tun(t, x)

∣∣∣∣ ≤ |αn|| cos(− arctan(2n))|1/2·

·
(

1

2
| cos(t− arctan(2n))|−3/2 +

1

2
| cos(t− arctan(2n))|−5/2|x|2

) (6.58)

and

sup
(t,x)∈Cε×[−1/ε,1/ε]

∣∣∣∣αn ∂∂tun(t, x)

∣∣∣∣
≤ |αn|| cos(− arctan(2n))|1/2

(
1

2
| cos(π/2− ε)|−3/2 +

1

2
| cos(π/2− ε)|−5/2ε−2

)
.

(6.59)

By Weierstrass criterion, the series

+∞∑
n=−∞

αn
∂

∂t
un(t, x)
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uniformly converges in Cε× [−1/ε, 1/ε], for every ε > 0. Similarly, one can prove that the
series of the k-derivatives with respect to t of αnun uniformly converges in Cε× [−1/ε, 1/ε]
for every ε > 0.

As a consequence of the uniform convergence of the derivatives, we attain the regularity
u ∈ C∞(Ã× R).

Moreover, since we can exchange the series with the derivatives, by Proposition 6.10,
we have that u is a classical solution of the equation in Ã× R.

�

Proposition 6.12 The function u defined in (6.56) satisifes

lim
t→kπ

∫
R
u(t, x)ϕ(x) dx =

∫
R
ū0(x)ϕ(x) dx,

for any ϕ ∈ C∞c (R) and for any k ∈ Z, where ū0(x) =
∑+∞

n=−∞ αne
inx2 .

Proof. Let ϕ ∈ C∞c (R). First of all, we prove that∫
R
u(t, x)ϕ(x) dx =

+∞∑
n=−∞

∫
R
αnun(t, x)ϕ(x) dx, ∀t ∈ A. (6.60)

As already proved in Proposition 6.11, the convergence of the series
∑+∞

n=−∞ αnun(t, x)ϕ(x) =
u(t, x)ϕ(x) is uniform on Cε × R for any ε > 0. The identity (6.60) follows by exchang-
ing the integral with the series, because of the uniform convergence of the series and the
compactness of the support of ϕ.

We prove that there exist C independent of n ∈ Z, and t ∈ A, such that∣∣∣∣∫
R
αnun(t, x)ϕ(x) dx

∣∣∣∣ ≤ C|αn|| cos(− arctan(2n))|1/2. (6.61)

Indeed, by Proposition 6.10, there exists δ > 0 such that∣∣∣∣∫
R
u0(t, x)ϕ(x) dx

∣∣∣∣ ≤ |ϕ(0)|+ 1 ∀t ∈ [π/2− δ, π/2) ∪ (−π/2,−π/2 + δ], (6.62)

and∣∣∣∣∫
R
u0(t, x)ϕ(x) dx

∣∣∣∣ ≤ sup
x∈R
|ϕ(x)|

∫ R

−R
|u0(t, x)| dx

≤ sup
x∈R
|ϕ(x)|2R| cos(π/2− δ)|−1/2 ∀t ∈ (−π/2 + δ, π/2− δ).

(6.63)

By (6.62) and (6.63), there exists C > 0 such that∣∣∣∣∫
R
u0(t, x)ϕ(x) dx

∣∣∣∣ ≤ C ∀t ∈ A0, (6.64)
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Since un(t, x) = | cos(− arctan(2n))|1/2u0(t− arctan(2n), x), by (6.64) we obtain (6.61).
By (6.61), it follows that

lim
t→0

+∞∑
n=−∞

∫
R
αnun(t, x)ϕ(x) dx =

+∞∑
n=−∞

lim
t→0

∫
R
αnun(t, x)ϕ(x) dx. (6.65)

Since un(·, x) is continuous at 0, we have

lim
t→0

∫
R
αnun(t, x)ϕ(x) dx =

∫
R
αnun(0, x)ϕ(x) dx,

and, by (6.60), we conclude. �

6.4 Proof of Theorem 5.11

Proposition 6.13 Let g̃ : R→ C be a continuous function not identically 0. Let

v(t, x) := g̃(t)eif̃(t)x2 . (6.66)

If f̃ is not of the form f̃(t) = f(t) = 1
2

tan(c− t) for some c ∈ R, then the equation

∂tu(t, x) +
i

2
(−∂xxu(t, x) + x2u(t, x)) = v(t, x) (6.67)

has no solution of the form u(t, x) = g(t)eif(t)x2 .
If f̃(t) = f(t) = 1

2
tan(c− t) for some c ∈ R, for t 6= c+ π/2 + kπ, then

u(t, x) := | cos(c− t)|−1/2

∫ t

0

| cos(c− s)|1/2g̃(s) ds e
ix2

2
tan(c−t) (6.68)

is a classical solution of the equation (6.67) in (R \ {c + π/2 + kπ : k ∈ Z}) × R and
u(0, x) = 0, for every x ∈ R.

Moreover, u(·, x) ∈ C1(R \ {c+ π/2 + kπ : k ∈ Z}) for any x ∈ R, u(t, ·) ∈ C∞(R) for
any t ∈ R \ {c+ π/2 + kπ : k ∈ Z}, and

lim
t→c+π/2+kπ

q(t−c)
∫
R
u(t, x)ϕ(x) dx = (2π)1/2

∫ c+π/2+kπ

0

| cos(c−s)|1/2g̃(s) ds ϕ(0), (6.69)

for any ϕ ∈ C∞c (R).

Proof. Let us assume that u(t, x) = g(t)eif(t)x2 for some real differentiable function f :
D ⊂ R → R and complex valued function g : D ⊂ R → C defined on a open domain
D ⊂ R. Using the computations made in Lemma 6.1, by (6.5), if (6.67) holds for v of the
form (6.66), then

g′(t) + g(t)f(t) = g̃(t), (6.70)

g(t)f ′(t) + 2g(t)f 2(t) + g(t)/2 = 0, (6.71)

eif(t)x2 = eif̃(t)x2 (6.72)
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The last equality holds if and only if

f(t)x2 = f̃(t)x2 + 2kπ,

for some k ∈ Z and for any x ∈ R. This implies that f(t) = f̃(t) for any t ∈ D.
If f̃ is not of the form f̃(t) = 1

2
tan(c − t) for some c ∈ R, t 6= π/2 + c + kπ, for any

k ∈ Z, then the equation (6.71) does not hold on the set where g(t) 6= 0. Denoting by F a
primitive of f , the solutions to the equation (6.70) are of the form

g(t) = e−2F (t)e2F (0)g(0) + e−2F (t)

∫ t

0

e2F (s)g̃(s) ds.

By a direct computation and by imposing the condition g(0) = 0, we obtain the solution
(6.68).

By (6.42) and the continuity of the function t 7→
∫ t

0
| cos(c − s)|1/2g̃(s) ds, we get to

(6.69).
�

Proposition 6.14 Let g̃n : R → C, n ∈ Z, be a sequence of continuous functions such
that

∑+∞
n=−∞ supt∈[a,b] |g̃n(t)| < +∞, for any [a, b] ⊂ R and

v(t, x) :=
+∞∑

n=−∞

g̃n(t)qn(t)e
i
2

tan(arctan(2n)−t)x2 . (6.73)

Defining

F [g̃n](t) := | cos(t− arctan(2n))|−1/2

∫ t

0

| cos(s− arctan(2n))|1/2g̃n(s) ds,

then the series
+∞∑

n=−∞

F [g̃n](t)qn(t)e
i
2

tan(arctan(2n)−t)x2 (6.74)

absolutely converges for any (t, x) ∈ A × R, where A := ∩n∈ZAn. For (t, x) ∈ A × R, we
define

u(t, x) :=
+∞∑

n=−∞

F [g̃n](t)qn(t)e
i
2

tan(arctan(2n)−t)x2 . (6.75)

We define Ã = A \ {kπ, k ∈ Z}. Then u(·, x) ∈ C1(Ã) for any x ∈ R, u(t, ·) ∈ C∞(R) for
any t ∈ Ã, u is a classical solution in Ã × R of the equation (6.67) and u(0, x) = 0, for
every x ∈ R.

Proof. We at first define the functions un(t, x) by

un(t, x) = | cos(t−arctan(2n))|−1/2

∫ t

0

| cos(s−arctan(2n))|1/2g̃n(s) ds qn(t)e
i
2

tan(arctan(2n)−t)x2 .
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Let ε ∈ (0, π/2), ε 6= π/2 − arctan(2|n|), n ∈ Z. Let tn := π/2 + arctan(2n) if n ≤ 0 and
tn := −π/2 + arctan(2n) if n > 0. We define

Cε = (−π/2 + ε, π/2− ε) \ (∪|n|<1/2 tan(π/2−ε)(tn − ε, tn + ε) ∪ (−ε, ε)),

and
C̃ε = ∪k∈Z(Cε + kπ).

Finally, for R > 0, we define Dε,R = C̃ε ∩ [R,R].
Since

|un(t, x)| ≤ | cos(t− arctan(2n))|−1/2|t| sup
s∈[−|t|,|t|]

|g̃n(s)|,

we have that
sup
t∈Dε,R

|un(t, x)| ≤ | cos(π/2− ε)|−1/2R sup
t∈[−R,R]

|g̃n(t)|.

By Weierstrass criterion, the series in (6.74) uniformly converges in Dε,R × R for every
ε > 0 and R > 0. In particular, u(t, x) is well defined in Ã × R. Moreover, since un are
continuous in Ã× R, it follows that u is continuous in Ã× R.

Since, for k ∈ N,

∂k

∂xk
un(t, x) = un(t, x)(ix tan(arctan(2n)− t))k,

we have ∣∣∣∣ ∂k∂xkun(t, x)

∣∣∣∣ ≤ |un(t, x)||x|k| tan(arctan(2n)− t)|k

and then

sup
(t,x)∈Dε,R×[−R,R]

∣∣∣∣ ∂k∂xkun(t, x)

∣∣∣∣ ≤ | cos(π/2− ε)|−1/2−kRk+1 sup
t∈[−R,R]

|g̃n(t)|.

By Weierstrass criterion, the series

+∞∑
n=−∞

∂k

∂xk
un(t, x)

uniformly converges in Dε,R × [−R,R] for every ε > 0 and R > 0.
Since

∂

∂t
un(t, x) = qn(t)e

i
2

tan(arctan(2n)−t)x2
∫ t

0

| cos(s− arctan(2n))|1/2g̃n(s) ds·

·
(

1

2
| cos(t− arctan(2n))|−3/2 sign (cos(t− arctan(2n))) sin(t− arctan(2n))

− i
2
| cos(t− arctan(2n))|−1/2(cos(t− arctan(2n)))−2x2

)
+

+ g̃n(t)qn(t)e
i
2

tan(arctan(2n)−t)x2 ,
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we have that∣∣∣∣ ∂∂tun(t, x)

∣∣∣∣ ≤ | cos(− arctan(2n))|1/2 1

2

(
| cos(t− arctan(2n))|−3/2 + | cos(t− arctan(2n))|−5/2|x|2

)
·

· |t| sup
s∈[−|t|,|t|]

g̃n(s)|+ |g̃n(t)|

and

sup
(t,x)∈Dε,R×[−R,R]

∣∣∣∣ ∂∂tun(t, x)

∣∣∣∣ ≤ | cos(− arctan(2n))|1/2·

· 1

2

(
| cos(π/2− ε)|−3/2 + | cos(π/2− ε)|−5/2R2

)
·

·R sup
t∈[R,R]

|g̃n(t)|+ sup
t∈[−R,R]

|g̃n(t)|.

By Weierstrass criterion, the series

+∞∑
n=−∞

∂

∂t
un(t, x)

uniformly converges in Dε,R × [−R,R] for every ε > 0 and R > 0.
As a consequence of the uniform convergence of the derivatives, we achieve the regularity

u(·, x) ∈ C1(Ã) for any x ∈ R, and u(t, ·) ∈ C∞(R), for any t ∈ Ã.
Moreover, since we can exchange the series with the derivatives, by Proposition 6.13,

we obtain that u is a classical solution of the equation (6.67) in Ã× R. �

Proposition 6.15 The function u defined in (6.75) satisifes

lim
t→0

∫
R
u(t, x)ϕ(x) dx = 0,

for any ϕ ∈ C∞c (R).

Proof. Let ϕ ∈ C∞c (R). In the first place, we prove that∫
R
u(t, x)ϕ(x) dx =

+∞∑
n=−∞

∫
R
un(t, x)ϕ(x) dx, ∀t ∈ A. (6.76)

As proved in Proposition 6.14, then, the convergence of the series
∑+∞

n=−∞ un(t, x)ϕ(x) =
u(t, x)ϕ(x) is uniform on Dε,R×R for any ε > 0 and R > 0. The identity (6.76) follows by
the exchanging of the integral with the series, because of the uniform convergence of the
series and the compactness of the support of ϕ.

We prove that there exist C independent of n ∈ Z such that∣∣∣∣∫
R
un(t, x)ϕ(x) dx

∣∣∣∣ ≤ C sup
s∈[−1,1]

|g̃n(s)| ∀t ∈ (−π/2, π/2) \ {tn}, (6.77)
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where tn := π/2 + arctan(2n) if n ≤ 0 and tn := −π/2 + arctan(2n) if n > 0.
In order to do this, we have to refine

lim
t→tn

∫
R
un(t, x)ϕ(x) dx = (2π)1/2

∫ tn

0

| cos(arctan(2n)− s)|1/2g̃n(s) ds ϕ(0), (6.78)

already proved in Proposition 6.13, by showing that the limit is uniform with respect to
n. We prove that there exists δ > 0 independent of n, such that∣∣∣∣∫

R
un(t, x)ϕ(x) dx

∣∣∣∣ ≤ (2π)1/2π/2 sup
s∈[−π/2,π/2]

|g̃n(s)||ϕ(0)|+ 1

∀t ∈ [tn − δ, tn + δ] \ {tn}.
(6.79)

If t ∈ [−π/2, tn − δ) ∪ (tn + δ, π/2]∣∣∣∣∫
R
un(t, x)ϕ(x) dx

∣∣∣∣ ≤ | cos(t− arctan(2n))|−1/2

∫ t

0

| cos(s− arctan(2n))|1/2g̃n(s) ds

∫
R
|ϕ(x)| dx

≤ | cos(π/2 + δ)|−1/2

∫
R
|ϕ(x)| dx π sup

s∈[−1,1]

|g̃n(s)|.

(6.80)

By (6.79) and (6.80), there exists C > 0 independent of n, such that (6.77) holds.
By (6.77), it follows that

lim
t→0

+∞∑
n=−∞

∫
R
un(t, x)ϕ(x) dx =

+∞∑
n=−∞

lim
t→0

∫
R
un(t, x)ϕ(x) dx. (6.81)

Since un(·, x) is continuous at 0, we have

lim
t→0

∫
R
un(t, x)ϕ(x) dx = 0,

and, by (6.31), we conclude.
�

Using the same technique, and using the condition (5.28) that ensures the convergence
of the series (5.30), for t = kπ, k ∈ Z, k 6= 0, we can prove the following

Proposition 6.16 The function u defined in (6.75) satisifes

lim
t→kπ

∫
R
u(t, x)ϕ(x) dx =

∫
R
u(kπ, x)ϕ(x) dx,

for any k ∈ Z and any ϕ ∈ C∞c (R).
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