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Abstract

In this work we tried to identify the most relevant technical skills in the volleyball

world and thanks to them to predict the result of a match. In particular, our dataset

contains 120 male volleyball matches played during the 2018 Nations League by the

best national teams. First of all, we used logistic regression, but it requires that both

the observations and the predictors are independent. For this reason, the algorithm

was initially implemented by extracting independent subsets of variables, but the

maximum model accuracy was 78.13%. In order to improve this percentage, a phase of

pre-processing on the original dataset has been started: Principal Component Analysis

(PCA). Logistic regression is again implemented basing on new generated variables

and the accuracy of the prediction increases to 82.59%. A second technique called

Random Forest allowed us to predict the result of each set with an accuracy very

similar to the previous one without any phase of preparation of data. It provides us

a direct ranking of the considered variables. �e o�ensive variables are underlined

as very signi�cant compared to the defensive ones. Finally, two non-parametric tests

were selected to compare the empirical distribution of data on winners and losers,

the Kolmogorov-Smirnov test between two samples and that of Mann-Whitney. �ey

con�rm the above: the reception phase has both very similar Empirical Cumulative

Distribution Functions (ECDF) and almost overlapped density curves. At the contrary,

for relevant positive variables the winners’ ECDF is under the losers’ one and the

density is visibly shi�ed on the right values. A further study of this type of data could

be the implementation of the PP-plot to make a stochastic order of samples.



Abstract

In questo elaborato si è cercato di individuare i gesti tecnici più rilevanti nel mondo

della pallavolo e, grazie ad essi, predire il risultato di un match. In particolare, il dataset

utilizzato contiene 120 partite di volley maschile giocate durante la Nations League 2018.

Il primo strumento usato è la regressione logistica, che richiede sia osservazioni che

predi�ori tra loro indipendenti. Inizialmente si è implementato l’algoritmo estraendo

so�oinsiemi indipendenti di variabili, ma la massima accuratezza o�enuta è stata del

78.13%. Per migliorare tale percentuale, è stata avviata una fase di pre-processing

sulle variabili: l’Analisi delle Componenti Principali (PCA). La regressione è stata

nuovamente implementata basandosi sulle nuove variabili generate e l’accuratezza

della predizione è salita all’82.59%. Una seconda tecnica denominata Random Forest

ha concesso di predire il risultato di ogni set con un’accuratezza molto simile alla

precedente e senza alcuna fase di preparazione dei dati. Tale algoritmo è in grado di

fornirci un ranking dire�o delle variabili considerate. Le variabili o�ensive sono risul-

tate decisamente signi�cative rispe�o a quelle di difesa. In�ne, sono stati selezionati

due test non parametrici di confronto tra le distribuzioni empiriche dei dati relativi

a vincitori e perdenti, il test di Kolmogorov-Smirnov tra due campioni e quello di

Mann-Whitney. Essi confermano quanto riscontrato in precedenza: la fase di ricezione,

presenta sia Funzioni di Distribuzioni Cumulative Empiriche (ECDF) che curve di

densità molto simili. Al contrario, per variabili psitive rilevanti l’ECDF dei vincitori è

situata so�o quella dei perdenti e la densità è visibilmente spostata verso destra. Un

approfondimento relativo a questa tipologia di dati potrebbe essere l’implementazione

del PP-plot per e�e�uare un ordinamento stocastico dei campioni.



Chapter 1

Introduction

“�e beginning is the most
important part of the work”

Plato, 398 a.C.

A simple equation is the origin of this work, P = R that is Potential=Result. �is is

what every sportsman desires from his performance, but how to reach this goal? In the

last years, to combine sport and statistical analysis is increasingly common. Machine

learning techniques allow to improve game strategies and analyze large quantities of

data from every sport. According to WhaTech channel reports, in 2016 the usage of

analytics in sports like baseball has increased to more than 90%, football more than

50% and basketball more than 75%.

�e focus of the work is on volleyball. Also in this environment statistical analysis is

more and more present and the existence of a dedicated so�ware called DataVolley

demonstrates it. In this team sport six players interact with each other in a 81m2 �eld

to win the opposite team over a net whose top is 2.43m for masculine competitions

and 2.24 for female ones. Volleyball matches are composed by sets of 25 points. �e

�rst team that wins three sets is the winner of the match considering that if they arrive

to the ��h set, they play only to 15 points.

It is appropriate to apply mathematical models to volleyball because six technical

gestures are repeated hundreds of times in every match:
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1. Serve, the skill that begins an action from behind the back-line to the opponent

court.

2. Reception, the skill that is contrary to 1. It tries to prevent the ball from hi�ing

the court.

3. Set, the skill that pushes the ball such that a teammate can hit it into the oppo-

nent’s court.

4. Spike, the a�ack gesture that tries to score a point.

5. Block, the �rst skill that wants to stop or alter an o�ensive spike of the opposite

team.

6. Dig, similarly to the reception prevents the ball from hi�ing the court, but a�er

an a�ack gesture.

�e aim of this work is to understand if it is possible to predict the result of a match

basing on some of these variables and to detect their importance in this prediction. �e

di�culty is to manage percentages about skills that do not have a known distribution

and that, o�en, are not independent. For these reasons, a�er a descriptive analysis of

data, we have selected logistic regression and random forest models.

In particular, Chapter 2 describes the theory behind every implemented technique

while in Chapter 3 is provided a description of the volleyball dataset. Before the

application of logistic regression, we need to select the predictors to be used. For

this reason in Chapter 4 we apply an unsupervised algorithm of machine learning,

the Principal Component Analysis (PCA). �e most interesting part of the work is

probably in Chapter 5, where we really use the previous models to predict the result of

a match and check their operation and accuracy. Finally, in Chapter 6, two tests are

implemented to con�rm the obtained outcome. �e principal di�erence is that the �rst

models consider a single team at a time and use their skills to predict the result. At the

contrary, these last tests take into account the two opposite teams in every match and
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how much their performances di�er. Results and deals to think about are illustrated in

Chapter 7 and the only way to arrive there is to start.
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Chapter 2

Statistical analysis and machine
learning theory

“Luck is not involved.
Our strategy in Australia

was based on statistical data
and the calculation of the probabilities.

And it turned out to be right.”

Sebastian Ve�el, 2018

�e purpose of this chapter is to provide necessary and solid theoretical basis to

our applications and results. �e reader can observe an almost perfect correspondence

with the next chapters in which we are going to apply the explained methods to a

chosen dataset.

2.1 Pearson’s correlation and Bartlett’s test

�e Pearson’s coe�cient, also called Pearson Product-Moment Correlation, is the

ratio between the covariance of two numerical variables and the square root of

their variances. We consider N observations of two variables: {x1, x2, ..., xN} and

{y1, y2, ..., yN} and their sample mean:

x̄ =
1

N

∑
i

xi (2.1)

ȳ =
1

N

∑
i

yi (2.2)
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Now we can calculate their sample variance:

σ2
x =

1

N − 1

∑
i

(xi − x̄)2 (2.3)

σ2
y =

1

N − 1

∑
i

(yi − ȳ)2 (2.4)

and their covariance:

Cxy =
1

N − 1

∑
i

(xi − x̄)(yi − ȳ) (2.5)

to have every necessary element for the Pearson’s coe�cient formula:

r =
Cxy
σxσy

(2.6)

�e coe�cient r is measured on a scale with no units and can take a value from −1 to

1. More the coe�cient absolute value is near to 1, more the correlation between x and

y is strong. �e sign adds some information, in fact if the coe�cient is positive then a

positive correlation would exist indicating that a large number of x is associated to a

large number of y. �e opposite situation occurs when the sign of the correlation is

negative.

An assumption of Pearson’s statistic (2.6) is that the tested relationship is a linear one

that could be easy to detect also thanks to the so-called sca�er plot of the two variables

values [20]. Observing the le� part of the Figure 2.1 we see two very strongly related

variables, at the contrary in the right part two very uncorrelated variables without

any recognizable path. If all the points on the sca�er plot lay on a straight line, then a

perfect correlation exists and the correlation coe�cient is 1 or −1 depending on the

slope of the line. If yi = Axi +B and ȳ = Ax̄+B, the variables x and y are perfectly

linearly related, so we can prove that r is equal to ±1.

Cxy =
1

N − 1

∑
i

(xi− x̄)(yi− ȳ) =
1

N − 1

∑
i

(xi− x̄)(Axi+B−Ax̄−B) = (2.7)

=
A

N − 1

∑
i

(xi − x̄)2
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Figure 2.1: Strong and weak correlation examples

σ2
x =

1

N − 1

∑
i

(xi − x̄)2

σ2
y =

A2

N − 1

∑
i

(xi − x̄)2

And �nally:

r =
Cxy
σxσy

=
A

|A|
= ±1 (2.8)

It is important to remember that r does not evaluate hypothesized relationship

between data, does not test a hypothesis for the origin of the data and does not give

more weight to some data points respect to others [7], moreover the temporal nature

of the data is ignored. A relevant feature related to the statistical signi�cance of r is the

sample size, large samples accept the correlation coe�cient to have a smaller value for

the association to be signi�cant, while two variables concerning a few data collection

need r > 0.5 to be considered linearly correlated.

It is evident that

r =
Cxy
σxσy

=
Cyx
σyσx

(2.9)

so when we have a set of more than two variables and we want to calculate the paired

correlation and to build the so-called correlation matrix, the result is a symmetric

matrix with ones on the principal diagonal because each variable is perfectly correlated

to itself. Clearly, the correlation matrix could be the �rst tool to analyze the correlation
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in a set of variables, but to read properly it could be di�cult when we do not have a

lot of knowledge about data and when the number of variables is very large.

�e Bartle�’s test is one of the several method that can help us in these situations,

with the characteristic of being a parametric test: it works with normal distributions

of variables. �ere is also a formal Pearson’s test but it only acts on pairs of variables,

the null hypothesis is that rxy can be considered a null coe�cient while the alternative

hypothesis states that x and y are correlated to each other. We de�ne α as the level of

signi�cance of the test, normally α = 0.05, and we compare it with the p-value of the

t-test. �e value of the t-statistic is

t =
r√

1− r2
√
N − 2 (2.10)

and the corresponding p-value is determined using the t distribution table for freedom

degrees df = N − 2. If the p-value of the test is less than the signi�cance level α the

correlation between x and y is signi�cant and the null hypothesis is rejected.

Bartle�’s test aim is to measure the similarity between a correlation matrix and an

identity one, any number of variables in play, it tests whether or not the o�-diagonal

coe�cients are signi�cantly di�erent from zero. “Li�le is known of the power of such a

test, but an intuitive judgment would suggest that its power is reasonably high against

normally correlated alternatives” (Kendall, M. G., 1957).

�e statistic of the test is

−ln(det(R))[(N − 1)− (2p+ 5)

6
]

and it is distribuited as chi-square if R is an identity matrix. N is the sample size,

p is the number of involved variables, R is the sample correlation matrix and the

degrees of freedom of χ2 are p(p− 1)

2
. �e null hypothesis is H0 : Rpop = I , the

problem is to detect the probability of rejecting it and the level of signi�cance of the

test (i.e. 0.05). To solve directly the problem is considered too di�cult, so in [11] we

�nd a practical application to a sample set of size N with induced higher and higher

correlation among variables. �e results infer that with N = 20 we reject almost
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certainly the null hypothesis if ten considered variables are inter-correlated through a

population correlation coe�cient of 0.36 or more. �anks to ten replicates, for this

value of induced correlation, the mean of χ2 values is 92.91.

For N = 200 the correlation value that leads us to reject the null hypothesis is 0.09

and the mean of χ2 values is 102.18. �e value of r is smaller because the sample

size is ten times greater than the previous one and in this case also a small esteem

of correlation can result signi�cant. �is evidence suggest that Bartle�’s test of the

signi�cance of a correlation matrix is quite sensitive for both small and large N but

it is also very sensitive to non-normal variables: the p-value of the test will be very

small also in case of no strong correlation when the variables are not good ��ed by

a Gaussian distribution. Its power appears to be quite high to be considered a �rst

fundamental step before factorial analysis by the most part of the modern statisticians.

Unfortunately, not all collinearity problems are visible by the analysis of the correlation

matrix: it is possible that collinearity exists among three or more variables even if

there is not a speci�c pair of variables with a particularly high correlation. In [10] this

situation is called multicollinearity and it is inspected thanks to the computation of

the variance in�ation factor (VIF). It owes its name to the fact that reports how much

the variance of a linear regression model estimated coe�cients increases because of

the collinearity between almost independent variables. Its value represents “how much

of a regressor’s variability is explained by the rest of the regressors in the model due to

correlation among those regressors.” [5]. For n independent variables:

V IFi =
1

1− r2i
for i = 1, ..., n (2.11)

where r2i is the coe�cient of determination obtained by ��ing a regression model for

the ith variable on the other n− 1 variables. It is evident that an environment with a

perfectly orthogonal set of variables will present V IFi = 1 for i=1,…,n. Although there

is not any formal criterion to de�ne when the variance in�ation factor is too large, 5 or

10 are o�en considered cuto� values to determine if the collinearity is strong enough

to require remedial measures.
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2.2 �eory of Principal Component Analysis

In a certain sense, this section also concerns the dependence of the variables, or be�er

to say it is in charge to explain how we can deal with it. �e technique that we are

going to use is the Principal Component Analysis (PCA), an unsupervised learning

algorithm: it is not interested on prediction but it considers a set of features without

any related response.

Usually, this tool is used like a kind of pre-processing before of the use of supervised

techniques, but how does it work? First of all, the PCA is able to summarize a large set of

correlated variables in a smaller number of new variables that are almost representative

as the total and overall that are independent of each other, moreover it serves as a

tool for data visualization. “In particular, we would like to �nd a low-dimensional

representation of the data that captures as much of the information as possible.” [10].

For example, the simplest result would be to have a representation of data in a two-

dimensional space to plot and observe them, but the real di�culty is to keep in this

representation the majority of the information that is provided to us by the data

explanatory features, that are more than two, we say n.

We suppose to have m observations described by n features X1, X2, ..., Xn, PCA looks

for a small number of dimensions that are as interesting as possible. Here the concept of

interesting is measured by the amount that the observations vary along each dimension,

called principal component, so it is important to understand the manner in which these

dimensions are found.

�e �rst principal component of the previous set of features is their normalized linear

combination with the largest variance:

Z1 = φ11X1 + φ21X2 + ...+ φn1Xn (2.12)

φ11, ..., φn1 are the loadings of the �rst principal component, so the �rst principal

component loading vector is φ1 = (φ11φ21...φn1)
T and it solves a sort of optimization

9



problem:

max
φ11,...,φn1

 1

m

m∑
i=1

(
n∑
j=1

φj1xij

)2
 subject to

n∑
j=1

φ2
j1 = 1 (2.13)

�e solution comes from a simple eigen-decomposition but the details are out from

the scope of this work. Now we de�ne the linear combination:
n∑
j=1

φj1xij = zi1 (2.14)

and since we are only interested in the variance of our variables we assume that each

of the variables have mean zero and consequently the average of z11, ..., zm1 will be

zero. Hence the function that we are maximizing in (2.13) is 1

m

∑m
i=1 z

2
i1 and it is just

the sample variance of the m values of zi1.

�e loading vector has a geometric interpretation because with its elements de�nes a

direction in variables space where the data vary the most. If we project the m data

in this direction, the projected values are the principal component scores z11, ..., zm1.

Now, how to compute the second principal component is easy, we want the linear

combination of X1, X2, ..., Xn with the maximal variance and that is uncorrelated

with Z1.

zi2 = φ12xi1 + φ22xi2 + ...+ φn2xin (2.15)

�e geometric interpretation of the no-correlation is to require for φ2 an orthogonal

direction to φ1.

Due to the use of linear combinations PCA provides low-dimensional linear surfaces

that are closest to the observations: with the �rst component it seeks a single dimension

of the data that lies as close as possible to all of the data points, with two of them PCA

spans the closest plan to the m observations and so on. Each loading vector of a PCA

speci�es a direction in a n-directional space to rotate the initial surface, because of

the fact that the sign has no e�ect on the direction, each loading vector is unique, up

to a sign �ip. �e same occurs for the score vectors, in fact the variance of Z is the

same of −Z . But the natural question is how much of the variance is explained by
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each principal component? �e total variance of a dataset with mean equal to zero is:
n∑
j=1

V ar(Xj) =
n∑
j=1

1

m

m∑
i=1

x2ij (2.16)

while the variance explained only thanks to the p-th component is:

1

m

m∑
i=1

z2ip =
1

m

m∑
i=1

(
n∑
j=1

φjpxij

)2

(2.17)

If we want the proportion of variance we just compute:∑m
i=1

(∑n
j=1 φjpxij

)2∑n
j=1

∑m
i=1 x

2
ij

(2.18)

In total there are min(m− 1, n) principal components and if we iteratively sum the

proportion of variance that they explain we obtain one.

Usually we are not interested in all the principal components or rather we are willing

to lose some information if this allows us to work with a less large number of variables,

overall if we are facing with a huge dataset. Unfortunately there is not any formal

computing or method to evince how many components we have to deal with, but a

graphical method can help us. We plot a sort of elbow graph that is called scree plot and

wee look for “a point at which the proportion of variance explained by each subsequent

principal component drops o�” [10]. In general the choice of the number of components

remains a fairly subjective aspect of the analysis.

Figure 2.2: Example of Proportion of Variance Explained and Cumulative Variance
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2.3 �eory about Logistic Regression Model

Machine learning algorithms are split into two categories, in the previous section we

have seen an example of unsupervised technique while the logistic regression is a

supervised algorithm that provides us a method to predict a binomial result Y starting

from some independent variables called predictors X . �e dependent variable, said

outcome, can assume only two values, they are labeled 0 and 1, but they can indicate

every possible qualitative binary response like dead/alive, o�/on and so on.

�e equation for a linear regression model would be:

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk (2.19)

and the obtained Xβ̂ could estimate the Pr(Y = 1|X) instead of the real value of Y ,

but some values lay outside the [0,1] range and it would be di�cult to give them an

interpretation in terms of probability. We can immediately notice one of the most

important di�erence between the two models: “rather than modeling this response Y

directly, logistic regression models the probability that Y belongs to a particular category”

[10].

12



Figure 2.3: Linear vs Logistic Regression

We want to �nd the relationship between X and p(X) = Pr(Y = 1|X) that gives

us as more information as possible about Y . We have already explained that using the

straight line represented in (2.19) to �t a binary response we could wrongly predict

p(X) < 0 or p(X) > 1 depending on X values. In the logistic regression model we

avoid the problem using a function that has its image in [0,1]:

p(X) =
eβ0+β1X1+·+βkXk

1 + eβ0+β1X1+·+βkXk
(2.20)

More than one method exists to estimate the vector of coe�cients β, but we are

going to explain only the maximum likelihood method that is the one used in our

applications in Section 5.1. �e idea behind this technique is very simple and is to

choose β0, β1, · · · , βk that pushed into the model yield a p(X) close to 1 if the initial

response is Y = 1 or, in the opposite case, close to 0. �e function that formalizes this

intuition is the so called, likelihood function that gives the name to the model and that

we want to maximize:

l(β0, β1, · · · , βk) =
∏
i:yi=1

p(xi)
∏

i′:yi′=0

(1− p(xi′)) (2.21)

Every statistical so�ware can solve the problem of optimization of (2.21) without a

high computational e�ort so we do not want to focus on all passages.
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From (2.20) we evince that:

p(X)

1− p(X)
= eβ0+β1X1+·+βkXk (2.22)

�e le� hand-side of the equation is called odds and can take on any value in [0, +∞),

values very close to 0 indicate that the probability of Y = 1 is very low, on the contrary,

if the odds is near to ∞, Y = 1 is an almost certain event. Simply computing the

log − odds we can see that it is linear in X:

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + ·+ βkXk (2.23)

Since the relationship between X and p(X) seen in (2.20) is not linear, β1 is not the

change in p(X) associated to a one-unit increase in X1, but thanks to (2.23) we are sure

that if β1 is positive then increasing X1 will be associated with increasing p(X) and

that the opposite situation occurs if β1 < 0. �e logistic function always produces an

S − shaped curve, so the amount of the change of p(X) due to a one-unit change of X

depends on the current value of X.

Once the coe�cients have been estimated, the computation of 2.20 is easy and takes

us to a value of the p̂(X) = P̂ r(Y = 1|X) that has to be analyzed according to the

requirements of the study. For example, one might predict Y = 1 if p̂(X) > 0.5 or can

be more conservative and predict the success only for values of p̂(X) higher than 0.7

and so on.

To be�er understand some aspects of logistic regression we can observe the Table

2.1 in which an example with �ve predictors has been implemented. First of all, the

values of coe�cients underline that the increasing of all variables contributes to raise

the probability that the result is equal to one except for the second variable that has

the opposite e�ect. It is possible to compute the accuracy of these coe�cients thanks

to the second column of the table, the Standard Errors. �ey are useful to perform

hypothesis test on each coe�cient in which the null hypothesis is:

H0 : β1 = 0

14



Table 2.1: Example of logistic regression model

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.0638 0.8414 -10.77 <0.0001

Variable1 14.4852 2.2963 6.31 <0.0001

Variable2 -7.3471 1.3426 -5.47 <0.0001

Variable3 0.6442 0.9779 0.66 0.5101

Variable4 15.8707 1.4151 11.22 <0.0001

Variable5 8.9546 1.1264 7.95 <0.0001

versus the alternative hypothesis

H1 : β1 6= 0

If the null hypothesis is accepted we state that there is no relationship between the

output and the variable X1. In practice, we construct the z-statistic given by the third

column of the Table 2.1:

z =
β̂1

SE(β̂1)
(2.24)

A large absolute value of (2.24) indicates evidence against the null hypothesis, to

formalize the test it is computed the probability, called p-value, of observing values

equal to |z| or larger assuming β1 = 0. We reject the null hypothesis inferring that

there is an association between the considered predictor and the response if the p-

value is smaller than 1% or 5%, depending on the level of the signi�cance that we

want for the test. It is obvious that small p-values correspond to high absolute values

of z and the interpretation is: “a small p-value indicates that it is unlikely to observe

such a substantial association between the predictor and the response due to chance, in the

absence of any real association between the predictor and the response” [10]. For what

we have explained above we can state that in the example of the Table 2.1 only the

��h variable has not relationship with the outcome, while the others are signi�cant

for the prediction model.
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2.3.1 Goodness-of-�t

�anks to the z and the p-values we can obtain a sort of rank of the signi�cance that

the predicting variables have in the model, but another of the most important aim of

the regression model is to use the estimated coe�cients to predict the desired result,

in the logistic case the dichotomous dependant variable Y . How can we evaluate

the e�ciency of the model and the goodness of �t? Sure we can use more than one

criterion, some of them will be more mathematically correct than others. We know

that the perfect model does not exist, for the de�nition of model itself, but we can try

to do the best with what we have, that is for example comparing the results of the

evaluation criteria to identify among many models the one that works be�er. First of

all, in front of a large dataset it result useful to split it into the training and the test

part. Normally the �rst is the bigger one because we really use these data to train the

model, it means that thanks to the observations in this subset the model estimates the

coe�cient to be used in logistic regression. To improve the e�cacy of the technique

these observations must be independent from each other. A�er this step we use the

trained model on the other part of data to test if these same coe�cients are good to

make the model able to detect the the correct response. Every statistic so�ware, as

R, has the command predict to implement a model, previously performed, on a

selected set of data.

Probably, the most common method to evaluate the exactness of predictive methods is

the confusion matrix, a sort of summary about the results of the analysis. Its layout is

represented here:


Predicted Y=1 Predicted Y=0

Actual Y=1 TP FN

Actual Y=0 FP TN


By summing all values in the matrix we obtain the number of total observation: in the

�rst row we have the actual Y = 1, in the second row we have the real number of

Y = 0, in the �rst column there are the predicted Y = 1 and in the second one the
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predicted Y = 0. �e principal diagonal, with True Positive (TP) and True Negative

(TN) values, tells us how many results are correctly classi�ed, respectively Y = 1 and

Y = 0. Instead the False Negative values (FN) detect how many Y = 1 the model

erroneously classify like Y = 0 and alternatively for the False Positive values (FP).

�e accuracy of the model indicates how o�en is the classi�er correct:

Accuracy =
TP + TN

TP + FN + FP + TN
.

�anks to the confusion matrix it is also possible to compute other rates related to the

model, but we leave this knowledge for the most practical section.

Another estimator of the quality of statistical models is the Akaike information criterion,

its value is de�ned like

AIC = −2 log[L(θ̂)] + 2K (2.25)

where K is the number of estimable parameters and L(θ̂) is the maximum value of

the likelihood function of the parameter vector θ for the model. Log-likelihood is a

measure of model �t, the higher is the value, the be�er the �t, so the AIC takes in

account the goodness of �t but also a sort of penalty that discourages the over��ing

because it increases with the number of parameters.

We have to underline that: “AIC is not a criterion for the estimation of the true order

but the one for the best model” [19], it means that AIC won’t say anything about the

absolute quality of a model, but compares the quality of a set of models to each other.

�anks to this estimator we can rank the selected models from best to worst, but we

have to detect with other techniques if all the candidates �t poorly our dataset.

From (2.25) we immediately understand that models with a small AIC value are prefer-

able. If there is a set of models, for the ith we de�ne the AIC di�erence as:

∆AICi = AICi −minAIC

�e �rst idea is to use this quantity to direct rank, but in [17] it is suggested that

exp

(
−∆AICi

2

)

17



can be interpreted as being proportional to the probability that the ith model minimizes

the estimated information loss and this probability approaches to zero when AICi is

large.

�e last presented criterion to study the exactness of a predictive method in presence

of binary output is the Receiver Operating Characteristic curve, i.e., ROC curve. We

use the AUC (Area Under the Curve) as a measure of a classi�er’s performance, in

practice this is a graphical method strictly related with the confusion matrix.

Suppose that t is the value of a threshold so that an individual is allocated to population

1 if its classi�cation score s exceeds t and otherwise to population 0. �e probability

that an individual from 1 is correctly classi�ed is the true positive rate and we use

tp = p(s > t|1) to represent it. At the contrary, the probability that an individual from 1

is misclassi�ed is fn = p(s ≤ t|1). Equally for the population 0 we use fp = p(s > t|0)

and tn = p(s ≤ t|0) to de�ne the false positive and the true negative rate. �e ROC

curve is obtained on varying t and plo�ing (fp, tp) where the false positive rate is

the value on the horizontal axis and the true positive rate is the value on the vertical

one. Figure 2.4 shows an example of ROC curve. Clearly, for good performance the

requirement is high “true” and low “false”, knowing that tp+ fn = 1 and fp+ tn = 1.

�e worth of a classi�er can be judged by how much the two distribution of its scores

p(s|0) and p(s|1) di�er: the classi�er will be least successful when the two population

are exactly the same. In such a case the probability of allocating an individual to

population 1 is the same whether that individual has come from 1 or 0. In this case,

even if t varies, fp and tp will be always equal and the ROC curve is not a curve

anymore, but a straight line from (0, 0) to (1, 1). �e most desirable result would be

the perfect allocation of each individual, so we would have at least one t in which

tp = 1 and fp = 0. Since the ROC curve focuses only on the probabilities that s > t,

for all smaller values of t, tp will be equal to 1 and fp varies from 0 to 1, while for

all larger values of t, fp will be equal to 0 and tp varies from 1 to 0. �e perfect, but

usually una�ainable, situation would be a straight line from (0, 0) to (0, 1) joined to a

straight line from (0, 1) to (1, 1).

18



Figure 2.4: Example of ROC curve

“In practice, the ROC curve will be a continuous curve lying between these two extremes,

so it will lie in the upper triangle of the graph. �e closer it comes to the top le�-hand

corner of the graph, the closer do we approach a situation of complete separation between

populations, and hence the be�er is the performance of the classi�er” [12].

2.4 �eory about Random Forest technique

�e purpose of this chapter is to understand how the random forest technique works

on data to classify or do regression on them. Random forests are very simple to train,

so the authors in [8] make grand claims about their success: “most accurate”, “most

interpretable”, and so on. �ey are classi�ed as ensemble learning methods because

they build a large collection of trees to average their results. In this case, we need a

brief introduction to the construction of trees. �ey can be applied to both regression

and classi�cation problems, in this last case random forests use their majority vote.
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2.4.1 Decision Trees

Decision trees are divided in regression and classi�cation trees. A classi�cation tree is

very similar to a regression tree but is used for the prediction of a qualitative response

rather than a quantitative one. In particular every observation can be classi�ed in one

of K di�erent classes, with K ≥ 2.

We now discuss how to build a tree dividing the process in two steps:

1. �e predictor space, that is the set of possible values for X1, X2, · · · , Xp is

divided into J distinct and non overlapping regions, R1, R2, · · · , Rj

2. Each observation present in the regionRj is predicted as the mean of the response

values for the training observations in Rj . For classi�cation, the observation

belongs to the most commonly occurring class.

How to implement the Step 1? It would be computationally infeasible to consider

every possible partition of the feature space, so a recursive binary spli�ing approach is

used. It is top-down because it begins with all the observation belonging to a single

region and each successive split into two branches goes further down on the tree. �is

approach is also said greedy because at each step the algorithm does not look ahead

in the future, but just makes the best split at that particular step.

To perform recursive binary spli�ing we select the predictor Xj and the threshold s

such that spli�ing the predictor space into the regions R1(j, s) = {X|Xj < s} and

R2(j, s) = {X|Xj ≥ s} leads to the greatest reduction in the Residual Sum of Squares

(RSS). We seek the values of j and s that minimize:∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2 (2.26)

Once j and s are found the process is repeated spli�ing one of the two previously

identi�ed regions. �e algorithm continues until a stopping criterion, as the minimum

number of observations in a region, is reached. At the end R1, R2, · · · , Rj have been

created to minimize RSS and we can predict the response averaging the training
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observations in the region to which the considered observation belongs.

�e measure to select the best split is di�erent between regression and classi�cation

trees, in particular we have seen that regression trees minimize RSS, while for the

classi�cation ones we expound other three indexes.

• Classi�cation Error Rate:

E = 1−max
k

(p̂mk) (2.27)

is the fraction of the training observations in a region that do not belong to the

most common class. Here p̂mk represents the proportion of training observations

in the mth region that are from the kth class.

• Gini Index:

G =
K∑
k=1

p̂mk(1− p̂mk) (2.28)

a measure of total variance in the K classes.

• Cross-entropy:

D = −
K∑
k=1

p̂mk log p̂mk. (2.29)

�e Formula (2.27) is not sensitive to the tree-growing, while (2.28) and (2.29) are

referred to the node purity, in fact they are as smaller as greater is the number of

observations of a single class in the node. Usually, these last two measures are used

to evaluate the quality of a split because of their sensitivity to node purity, “but the

classi�cation error rate is preferable if prediction accuracy of the �nal pruned tree is the

goal” [10].

In the last quote there is a reference to a pruned tree, the reason is that the above

generated tree could be too complex. A smaller tree with fewer splits might lead to

lower variance and to a be�er interpretation of the results, without over��ing the data.

�e idea is to create a very large T0, stopping when the chosen minimum node size is

reached. �en, using the cost-complexity pruning we minimize a cost function and �nd
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a subtree Tα. We want to detect the best trade-o� between tree size and goodness of

�t to the data because a too small tree might not capture the totality of information

and structure. For the details about the algorithm, that are out of the interest of this

work, see [4] ad [18]. Random forest builds unpruned trees.

2.4.2 Random Forest Implementation

As we have already seen, Random Forest is a technique that builds a commi�ee of

decision trees. In particular, successive trees do not depend on earlier ones, each tree

is independently constructed using a bootstrap sample of the dataset. Hence, each tree

is ��ed to a di�erent dataset of the same size as the original one. Moreover, to avoid

correlation, a subset of predictors is randomly chosen at each node. In fact, if there

was a very strong predictor, this would be used in the top split of every tree and the

predictions would be highly correlated.

More in detail, we will show the algorithm found in [13] for the construction of random

forests:

1. Draw n bootstrap samples from the original data.

2. For each of the bootstrap samples, grow an unpruned classi�cation or regression

trees. At each node, rather than choosing the best split among all predictors,

randomly choose m ≤ p predictors and do the best split among those variables.

3. Predict new data by aggregating the predictions of the n trees (i.e., majority

votes for classi�cation, average for regression).

Clearly, the algorithm is user-friendly having only two parameters: n, the number of

trees in the forest and m, the number of variables in the subset at each node. Usually

the choice is m =
√
p or even 1 can give very good performance for some data,

anyway m can always be adapted to the problem. To select the best number of trees, a

cross-validation function can be implemented, computing the mean squared error for

di�erent values of n. In particular, we stop to increase n when adding further trees
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does not bring improvement to the model.

To evaluate the goodness of random forest �t, we can use the area under ROC curve and

the confusion matrix already explained in Section 2.3.1. Another important aspect of

the random forest is the importance that every variable has in the model. �e simplest

variable importance measure to use in tree-based ensemble methods is to merely

count the number of times each predictor is selected, but more elaborate and reliable

measures are available. An example for classi�cation trees is the Gini importance, also

called Mean Decrease in Impurity because it de�nes the total decrease in node impurity.

�e Gini impurity at node τ in a binary tree is i(τ), an e�cient approximation of the

entropy measuring how well a potential split separates the samples of the two classes

in this particular node.

Knowing that pk =
nk
n

is the fraction of the nk samples from k = {0, 1} on the total n

samples, the impurity of the node τ is:

i(τ) = 1− p21 − p20

Its decrease ∆i that results from spli�ing and sending the samples to two sub-nodes τl
and τr is

∆i(τ) = i(τ)− pli(τl)− pri(τr)

A�er an exhaustive search over all available variables at the considered node, the one

that leads to the maximal ∆i is determined. �is decrease in Gini impurity is recorded

and accumulated for all nodes τ and all trees in the forest individually for all variables

θ. A new quantity, called Gini importance is determined:

IG(θ) =
∑
T

∑
τ

∆iθ(τ, T )

It indicates how o�en a particular feature θ has been selected for a split and how large

its value was discriminating for the classi�cation problem under study [14].

�e correspondent measure for regression random forest is RSS that records the total

decrease in node impurity from spli�ing on the considered variable, averaged over all

trees.
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�e last presented variable importance measure for random forest algorithm in case of

regression is based on the idea that the prediction accuracy before and a�er permuting

a single variable represents the association between this predictor and the response.

When the model builds a tree, some observations from the original dataset are not

chosen in the bootstrapping process, such observations are called out-of-bag sample

(OOB). For each tree, the Mean Squared Error (MSE) of the prediction is computed

on the OOB portion of the data. �en, the same measure is recorded a�er permuting

each predictor variable. More the accuracy of the model decreases using a permuted

variable more the original predictor Xj is associated with the result. For this reason,

Breiman [3] suggests as measure of Xj importance the di�erence in MSE before and

a�er permuting it. �is di�erence is then averaged over all trees of the forest and

sometimes is scaled dividing by the standard deviation of the variation. One of the

advantage of the permutation accuracy importance is to cover the impact of each

predictor variable individually even predictors are correlated each other.
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Chapter 3

Analysis of a volleyball dataset

“Volleyball is a sport where you
are always looking up”

Anime Haikyu, 2014

In this chapter we will be able to observe the application of the previously described

methods in a whole data set from the world of volleyball. By an empirical examination,

we hope to make more understandable the aim of the techniques seen above. To

prevent the data from being sca�ered or incomplete, we chose not to analyze an entire

season of a championship. We collected data from a di�erent league competed in about

two months in which sixteen National male teams played one against each other: the

Volleyball Nations League 2018.

Each team has a reference �gure called scout-man who is in charge of recording the

performances of the athletes, that is the evaluation of every technical gesture. To

realize the size of their work is enough to think that in every action there are on

average six technical gestures and that each match is composed by about 150 actions.

During the Nations League 2018 the scout-men used a very comfortable so�ware called

DataVolley. Its homepage is represented below.
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Figure 3.1: DataVolley Homepage

�e space in the center is �lled by the matches that we want to analyze.

Figure 3.2: DataVolley Homepage

In DataVolley it is possible to record every single gesture and also its upshot thanks

to di�erent symbols, i.e. a scored point corresponds to #, while an error is identi�ed by

=. An example of its operation is in Figure 3.3. Since everything is codi�ed, it would be
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necessary a legend and a detailed explanation overall for statisticians that do not know

this sport. So, to be�er manipulate the data we have moved all them on the so�ware R.

To demonstrate the interest around this topic, in R exists a package that reads the �les

output by DataVolley and in the next lines we write the instructions to use it:

library(devtools)

install github("raymondben/datavolley")

library(datavolley)

Moreover, R has a lot of statistical available packages and thanks to it we can always

apply the most appropriate and necessary algorithm.

�e total number of matches can be obtained from a simple combination:(
16

2

)
= 120

Now, every single technical gesture is assessed into one row of the data set and for

each one several characteristics are annotated into the columns, i.e. the starting and

the arrival zone of the ball. At the end, the full size of the data set is 156.175 rows and

79 columns. In our analysis we are commi�ed to remain faithful to the assertion that

the team that wins corresponds to the one that scores more points, for this reason we

decided to split the data set into the 446 sets that compose it. We know that if we are

considering an entire match it could happen that the total number of points done by

the loser team is greater than the winner team number of points, i.e. a match that ends

1-3 with this kind of partial results 25-15, 23-25, 23-25, 23-25.
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Figure 3.3: DataVolley Record

Once all the data has been recorded we have to de�ne which variables are relevant

to the development of our work. We relied on the experts’ opinion and previously pub-

lished articles about volleyball as [9], [21]. �erefore, for each set, we have calculated:

1. Percentage of Serve Errors: # of serve Errors / # of Total serves

2. Percentage of Serve Aces: # of Serve Direct Points / # of Total Serves
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3. Percentage of Reception Errors: # of Reception Errors / # of Total Receptions

4. Percentage of Positive Receptions: # of Positive Receptions / # of Total Re-

ceptions

5. Percentage of Perfect Receptions: # of Perfect Receptions / # of Total Recep-

tions

6. Percentage of Attack Errors: # of A�ack Errors / # of Total A�acks

7. Percentage of Blocked Attacks: # of Blocked A�acks / # of Total A�acks

8. Percentage of Winning Attacks: # of Winning A�acks / # of Total A�acks

9. Percentage of Winning Blocks: # of Winning Blocks / # of Total Blocks

3.1 Descriptive Analysis

Before we start to perform any analysis, to make a plot, one for each of the nine

variables, it can help us to detect the presence of real outliers or any possible error

recording the data. For example, the percentage of serve errors for each of the 446

sets is represented in 3.4, and this shows that the values are evenly distributed in an

area in which happens very rarely that they are close to zero or bigger than 30%. �e

same occurs with the other eight variables even if within a di�erent range of values,

Figure 3.5. Because of no presence of values out of range, we do not need to remove

any outlier.

To have a full and a more general vision about the distribution and the range of

de�nition of each of the nine variables we can use the function boxplot in R and

observe its result in 3.6. A boxplot is very useful to graphically display a batch of

data distribution when we need some information about its variability and dispersion.

It represents a rectangular box in which the vertical axis has the scale of collected

data. �e rectangle is divided by an horizontal line: the median. Its top and bo�om
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Figure 3.4: Values of the percentage for the 1st variable

Figure 3.5: Values of the percentage for the 8th variable
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correspond to the upper and lower quartiles of the batch, for this reason the extreme

lines of the box de�ne the Interquartile Range (IQR). Usually, so�wares de�ne a step

equal to 1.5 times the interquartile range and a vertical line is extended from the top

of the box to the largest observation within a step from the top. A similarly de�ned

line extends from the bo�om of the box to the smallest observation within a step

from the bo�om [2]. �e circles in the �gure represent the observations more distant

from the boxes than the described lines, and they take the name of outliers. Using

the boxplot we have a summary about location, spread and symmetry of the batch

data. Concerning the location of data, it is evident that the percentage of a�ack points

(variable (8)) is characterized by higher values respect to all other variables. Moreover,

the shape of the rectangle gives us instructions about the spread, and consequently

about the variance of the data as the distance between the end of the whiskers and the

range does. For example, the variables (2), (6) and (7), should have a very low variance,

meaning that the distribution of the 446 data in these variables is less sparse. Finally,

we know that under and over the median there is the same number of data, in fact

in a Gaussian distribution it is perfectly centered in the box: so the median and its

centering are an important information related to the symmetry of the data. We can

notice it also comparing the length of the upper whisker with the length of the lower

one, and the number of individual observations displayed on each side. �is could be a

�rst informal and visual step to observe if our variables can be considered normally

distributed, since we use their normality in a next test we will prove it in a more formal

and mathematical way using the Kolmogorov-Smirnov’s test in the next section.

Until now we have just observed the variables, but we can also give an exact value

to mean and variance we have talked about, using default R functions. �ey con�rm

everything that we have already noticed into the boxplot, and we can see the values in

the �gure 3.7. Moreover we can plot the frequency histogram for the variables and

observe its shape.

If we compare two histograms related to consecutive gestures of an action, we probably

expect the values to be divided into two similar ranges. �is occurs with the percentage
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Figure 3.6: Nine variables boxplot

Figure 3.7: Mean and Standard Deviation for the nine variables
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of serve aces and reception errors one, Figure 3.8, giving us some clues about their

correlation. At the contrary, the a�ack points percentage lives in a very di�erent

range compared to the positive receptions one, indicating that it is very likely, in this

competition, to score a�ack points even if the previous passing is not precise, Figure

3.9. From these two comparisons we have a second important clue about the normality

of the variables, observing that the variables (4) and (8) are much more like a Gaussian

distribution than the variables (2) and (3).

Figure 3.8: Histograms with similar range of values

Figure 3.9: Histograms with no similar range of values
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3.2 Correlation

In this section we will apply some methods to deepen the correlation subject that we

have previously mentioned. First of all, as described in Section 2.1, we have applied

Pearson’s correlation formula that is useful to identify the dependence level between

all the variable pairs. Obviously, the resulting matrix is symmetric as we can see in

Table 3.1.

Table 3.1: Correlation matrix

ServeE ServeA RecE RecPs RecPf A�E A�B A�P BloP

ServeE 1.00 -0.03 0.07 -0.03 -0.03 -0.02 0.02 -0.02 0.01

ServeA -0.03 1.00 0.99 -0.16 -0.28 -0.05 0.11 -0.03 0.13

RecE 0.07 0.99 1.00 -0.17 -0.28 -0.05 0.11 -0.04 0.13

RecPs -0.03 -0.16 -0.17 1.00 -0.34 0.02 -0.00 0.02 0.04

RecPf -0.03 -0.28 -0.28 -0.34 1.00 0.03 -0.08 0.07 -0.10

A�E -0.02 -0.05 -0.05 0.02 0.03 1.00 -0.12 -0.29 0.03

A�B 0.02 0.11 0.11 -0.00 -0.08 -0.12 1.00 -0.24 0.92

A�P -0.02 -0.03 -0.04 0.02 0.07 -0.29 -0.24 1.00 -0.22

BloP 0.01 0.13 0.13 0.04 -0.10 0.03 0.92 -0.22 1.00

�e values con�rm our intuition whereby the serve direct points and the errors

during the reception phase have a high correlation. In fact, their Pearson’s correlation

index is ρ = 0.99, that is the highest one excluding the principal diagonal of 1. Two

other almost perfectly correlates variables are percA�Blo and percBloPti, in this case

ρ is slightly lower because of the fact that for every blocked a�ack a block point is

registered, but is not certain that every block point corresponds to a blocked a�ack:
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some “con�ict” balls near to the net are categorized like block points if a team succeeds

in scoring thanks to them, even if no a�ack is made.

As predictable, the variable (1) is not strongly correlated to any other one in fact,

there is nothing that precedes it because the serve is the gesture that starts every

action of a match and there is nothing that follows it because it corresponds to a direct

error. It is also interesting to notice the negative relationship between the variable (2)

and the variables (4) and (5): when serve direct points increase, sure the number of

positive/perfect receptions decreases.

It might also seem that the percentage of aces increasing is correlated to a percentage

of a�ack errors decreasing, but this is a sort of “imaginary” dependence. It does not

exist any direct link between a serve point and an a�ack error, because a�er a scored

point the action ends. So, what does it happen? It is clear that a higher number of direct

aces means less possibility for the opposite team to build a countera�ack game action

and then also to do an error. �e same principle regulates also the value ρ = −0.05

referring to (3) and (6).

Finally, it is not surprising that percBloPti is positively correlated to percServeAce and

consequently to percRecError. In the �rst case we observe ρ = 0.13, that could appear

not very relevant but, overall in a large size data set, is su�cient to understand that

when the serve level and di�culty are high, to stop the opposite team’s actions thanks

to the block is easier.

We lead this part of the analysis not only to have a more global and full vision of our

data set, but also because predictive methods like regression need the use of almost

completely independent variables, so it is important to have a clear idea about how to

detect and manage some kind of dependence among data. To con�rm the intensity and

the sign that the matrix 3.1 shows, and to add information concerning the correlation

typology we can use another important tool: the sca�er-plot.

Like the correlation matrix, also the sca�er-plot is related to pairs of variables and

observing the image 3.10 we can immediately guess its function, already explained in

Section 2.1. Even if it was clear the presence of a strong dependence between serve
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Figure 3.10: Sca�er Plot
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points and reception errors, as between blocked a�ack and block points, it could be a

logarithmic or quadratic correlation and so on. �anks to the sca�er-plot and to red

line that remarks the shape that the dots form, we are sure to fall in the linear case.

�is relation is o�en called collinearity and its presence can rise problems when the

two concerned variables are used together in some predictive model since it can be

di�cult to separate their individual e�ects. In other word, since the serve aces and the

reception errors tend to move together, like blocked a�acks and block points do, it can

be more complex to determine how each one individually is linked with the response

[10]. As predictable from correlation matrix, into the scanner-plot we can observe

also some negative trends: the most evident appears between the variable (5) and the

variables (2) and (3). Surely, to increase the number of perfect reception indicates a

good capability to contain the opposite serve and, consequently, a small percentage of

aces.

Table 3.2: Bartle�’s test for sphericity

Results

chisq 3461.75

p.value 0.00

df 36.00

�e last presented technique to detect correlation is the Bartle�’s test for sphericity.

It is very di�erent from the previous methods because it is not used on a pair of

variables but when we just want to discover if the correlation among more than two

variables is signi�cant. Using this instrument we do not detect the sign and the value of

the correlation but it is very useful to understand if a large set of variables is exploitable

in a prediction context.

We have already seen in Section 2.1 that it measures how much the correlation matrix
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di�ers from the identity one, in fact if the nine variables were completely independent

we would observe a correlation matrix with nine 1s on the principal diagonal while

each other space would be �lled by 0s. Clearly, it does not occur with our data, as it is

evident in the table 3.2. �e Chi-square test is performed on 36 degrees of freedom and

the Chi-Square value 3461.75 depends on the determinant of the correlation matrix

and on the number of observations and variables. We cannot accept the null hypothesis

of independence among our variables, or be�er, at least two variable are so strongly

correlated that the p-value is considered null. A great deal must be considered about the

sensitivity of the Bartle�’s test concerning the non normality of data, so it is possible

that the rejecting of the null hypothesis is more probable when our variables are not

normally distributed. As promised in Section 3.1, now we provide the results of the

Kolmogorov-Smirnov’s test for each variable in 3.3.

Table 3.3: Kolmogorov-Smirnov’s test for normality

Variable p-value

percServeError 0.722

percServeAce 1.823e-05

percRecError 0.0011

percRecPos 0.1765

percRecPrf 0.525

percA�Error 0.2619

percA�Blo 0.2799

percA�Pti 0.1149

percBloPti 0.4547

38



�e percentage of aces and the one of reception errors do not satisfy the null

hypothesis of the test and cannot be considered like gaussian distribution variables.

�ey could a�ect the Bartle�’s test but it su�ces to generate a subset that contains only

the seven normally distributed variables. Moreover, the two removed variables have

a Pearson’s coe�cient ρ = 0.99221786 so we are already sure about the presence of

correlation between them. Now we apply again the test and we can keep on rejecting

the independence, because the p-value is 3.92e−208. �e new result in Tab 3.4 assures

us that, even if the �rst test could prove a li�le pessimistic vision, it was working good.

Choosing signi�cant and possibly unrelated subsets of variables will be relevant in the

next part of the work.

Table 3.4: Bartle�’s test for a subset of variables

Results

chisq 1046.235

p.value 3.91978e-208

df 21

3.3 �e dataset used for predictive analysis

To approach the next part, we need a di�erent data set obtained from the previous

one. In particular, since the aim of this work is to predict the probability of winning or

losing every singular set basing on the performance in technical gestures, we split into

two part the total percentage of each variable. We had the total values of variables

during each set that do not take in account the result, but now we need for each
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variable a value that is the percentage of the winning team and a second one with the

percentage of the loser team. Moreover, we add another binary variable, the response

of our future analysis and regressions, that is 1 if the line is referred to the winners’

team percentages, 0 if we are considering the loser team. Clearly, the number of rows

in this new data set is 446× 2 = 892, because in two di�erent lines we are referring

to the same set. A be�er view of the considered dataset is in the Table 3.5.

Table 3.5: Dataset

Set Ris ServE ServA RecE RecPs RecPf A�E A�B A�P BloP code result score

1 1 winner 0.20 0.12 0.05 0.05 0.32 0.00 0.00 0.56 0.17 1.00 25

2 1 loser 0.17 0.04 0.15 0.35 0.15 0.03 0.10 0.55 0.00 0.00 23

3 2 winner 0.21 0.08 0.00 0.35 0.06 0.05 0.00 0.70 0.43 1.00 25

4 2 loser 0.19 0.00 0.11 0.26 0.42 0.05 0.16 0.74 0.00 0.00 20

5 3 winner 0.16 0.00 0.00 0.29 0.24 0.05 0.00 0.64 0.07 1.00 25

6 3 loser 0.23 0.00 0.00 0.24 0.19 0.17 0.03 0.55 0.00 0.00 22

7 4 winner 0.24 0.16 0.05 0.33 0.10 0.10 0.03 0.42 0.27 1.00 25

8 4 loser 0.09 0.04 0.21 0.11 0.11 0.00 0.17 0.46 0.08 0.00 23

9 5 winner 0.25 0.04 0.06 0.12 0.44 0.05 0.00 0.70 0.42 1.00 25

10 5 loser 0.11 0.06 0.06 0.11 0.06 0.12 0.21 0.38 0.00 0.00 17

11 6 winner 0.31 0.00 0.00 0.24 0.19 0.11 0.07 0.68 0.23 1.00 29

12 6 loser 0.22 0.00 0.00 0.30 0.15 0.05 0.14 0.59 0.17 0.00 27

13 … … … … … … … … … … … … …

14 … … … … … … … … … … … … …

891 446 winner 0.20 0.00 0.00 0.22 0.22 0.05 0.00 0.40 0.11 1.00 15

892 446 loser 0.10 0.00 0.00 0.25 0.08 0.18 0.06 0.35 0.00 0.00 10

�ere is a signi�cant di�erence between the two datasets: in the �rst one we are

analyzing a whole portion of a match, joining the values of the losing team and the

winning one. Now, it is as if in every line there is a di�erent team, that is not completely

true because for example we �nd the Italian team minimum three times for ��een

matches, but we consider it like di�erent teams: the “First Italy” is Italy in the �rst

set against Argentina, the second is in the second set and then we have another Italy

against Brazil and so on. �is is the reason why if we repeat all the steps previously

performed we will get di�erent results.

First of all we consider the correlation and we notice immediately how the percentage
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of serve aces and the one of passing errors are no longer related. �is is obvious because

we are spli�ing the performances of the two teams involved in a set, and the same team

registers be�er or worse values to the serve than the reception ones independently

from each other. What actually happens is that a percentage represented in a row

in�uences another one of the row below, this also is an aspect that we will consider in

the future chapters, but the Pearson’s correlation that is calculated in Table 3.6 works

only on values of the same line.

Table 3.6: New correlation matrix

x2.ServeE x2.ServeA x2.RecE x2.RecPs x2.RecPf x2.A�E x2.A�B x2.A�P x2.BloP

x2.ServeE 1.00 -0.08 0.05 -0.01 -0.00 0.03 0.07 -0.05 -0.07

x2.ServeA -0.08 1.00 -0.03 0.02 -0.05 -0.04 -0.02 0.04 0.10

x2.RecE 0.05 -0.03 1.00 -0.19 -0.22 -0.01 0.11 -0.10 0.00

x2.RecPs -0.01 0.02 -0.19 1.00 -0.30 0.02 -0.02 0.06 0.02

x2.RecPf -0.00 -0.05 -0.22 -0.30 1.00 -0.00 -0.09 0.12 -0.02

x2.A�E 0.03 -0.04 -0.01 0.02 -0.00 1.00 -0.06 -0.28 -0.02

x2.A�B 0.07 -0.02 0.11 -0.02 -0.09 -0.06 1.00 -0.34 -0.19

x2.A�P -0.05 0.04 -0.10 0.06 0.12 -0.28 -0.34 1.00 0.08

x2.BloP -0.07 0.10 0.00 0.02 -0.02 -0.02 -0.19 0.08 1.00

Other values of the matrix however have grown by highlighting what are the factors

that feed each other when we consider a single team. Now, a perfect pass is more incisor

to score a point in the a�ack phase, ρ = 0.12, and to perform blocked a�acks negatively

a�ects the possibility to be e�ective, in fact the correlation coe�cient between the

variables (7) and (8) is ρ = −0.34. �ere is also a strong negative correlation between

perfect and positive passing and among them and the pass errors. A team that on

the total of receptions has a higher number of perfect passes will have for sure fewer

positive or wrong receptions. �e sca�er plot in Figure 3.11 shows that we lost the

previous almost perfect collinearity as explained above, but also the normal distribution

41



Figure 3.11: New sca�er Plot

42



of the variables. In the main diagonal in fact we see the frequency histograms for each

variable and none of these has the Gaussian shape, as con�rmed by the KS-test. For

this reason the Bartle�’s test cannot be implemented and we will rely on the Pearson’s

correlation test, by matching the variables, to choose a subset of variables that we can

use as predictors.

43



Chapter 4

Features selection for logistic
regression

“It is our choices, Harry,
that show what we truly are,
far more than our abilities.”

J.K.Rowling , 1998 d.C.

�e title of this chapter may be ambiguous as it is o�en the regression the instrument

used to implement a feature selection. In this case the purpose is to �nd a subset or

a linear combination of variables that makes the regression model as accurate and

explanatory as possible. “Unlike discriminant function analysis logistic regression does

not assume that predictor variables are distributed as a multivariate normal distribution

with equal covariance matrix” [16] and this is appropriate for us since our data do

not present any normal distribution. Instead, this model assumes that the binomial

distribution describes the distribution of the errors that equal the actual result minus

the predicted one. �e binomial distribution is also the assumed distribution for the

conditional mean of the outcome. �e binomial assumption may be taken for granted

as long as the sample is random, that means independent observations from each other.

To assure this aspect we created a random mechanism that chooses just one line of

the sets: a random number generator emits 446 uniforms between zero and one, if the

generated number is higher than 0.5 is automatically selected the line related to the

winning team, at the contrary, for every number smaller than 0.5 the losers’ line is
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chosen. �anks to this method we are sure that each dichotomous result 1 or 0 is not

in�uenced by another one. It is as if we were stating: “�anks to these performance

percentages you win or lose the set regardless of the percentage of the opposing team”.

4.1 Independent predictors

Once we have solved the problem of the related observations we will deal the same

aspect for the predictors of the model. As we have already said, the predictors of a

regression model should not be highly correlated to each other. In this case in fact,

it would be di�cult to separate the individual e�ects of variables on the outcome.

Looking at the data we have already ruled out the problem of collinearity which would

signi�cantly reduce the accuracy of the estimates of the regression coe�cients. For

this reason in this section we are projected to select the allowed subset of variables

avoiding the correlated ones, that are the variables that do not pass the Pearson’s

correlation test. We have collected in a table the p-values obtained from the application

of the test, remembering that even a value that in Table 3.6 may not seem very high

can be relevant given the size of the dataset. As already explained in Section 2.1 a

p-value > 0.05 allows us to accept the null hypothesis that is to consider equal to zero

the coe�cient of correlation between the two variables in question.

We can observe the Tab 4.1 and immediately note that the variable that indicates the

passing errors percentage can not be used like predictor joined to the other variables

related to the reception phase. Moreover it is be�er to avoid the combined use of this

variable with the one related to the points in a�ack and to the blocked a�acks.

45



Table 4.1: P-values of Pearson’s correlation test

percServE percServA percRecE percRecPs percRecPf

percServeE <2.2e-16 0.01641 0.1361 0.7296 0.984

percServA 0.01641 <2.2e-16 0.3748 0.4948 0.1489

percRecE 0.1361 0.3748 <2.2e-16 1.581e-08 5.227e-11

percRecPs 0.7296 0.4948 1.581e-08 <2.2e-16 <2.2e-16

PercRecPf 0.984 0.1489 5.227e-11 <2.2e-16 <2.2e-16

PercA�E 0.3681 0.1818 0.8244 0.6291 0.9464

percA�B 0.0439 0.5641 0.001189 0.5843 0.005727

percA�P 0.1137 0.1999 0.004162 0.06719 0.00033

percBloP 0.05092 0.003785 0.8924 0.5684 0.5185

percA�E percA�B percA�P percBloP

percServeE 0.3681 0.0439 0.1137 0.05092

percServA 0.1818 0.5641 0.1999 0.003785

percRecE 0.8244 0.001189 0.004162 0.8924

percRecPs 0.6291 0.5843 0.06719 0.5684

PercRecPf 0.9464 0.005727 0.00033 0.5185

PercA�E <2.2e-16 0.05498 <2.2e-16 0.5753

percA�B 0.05498 <2.2e-16 <2.2e-16 1.268e-08

percA�P <2.2e-16 <2.2e-16 <2.2e-16 0.01242

percBloP 0.5753 1.268e-08 0.01242 <2.2e-16

A �rst subset that we can consider within our linear regression model is percServE,

percRecE, percA�E, percBloP, in fact thanks to the table we con�rm that all the pairs

that can be formed have a p-value higher than 0.05.

To fully analyze the o�ensive phase of a team now we want to insert in the model

the variable percA�P, but it is strongly related with many other variables, so the only

“correct” subset that we can form is percServA, percRecPs, percA�P, possibly alternating

the two variables concerning the serve phase that between them are correlated but, as
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predictable, they are not with any other. To consider at least once each of our nine

variables we will now exhibit two other possible subsets and we will then analyze

their actual usefulness in the next chapter: percServA, percRecPs, percA�E, percA�B

and percServE, percRecPf, percA�E, percBloP.

�ere is a last check, as we have already explained, to be carried out on the variables to

ensure that the multicollinearity is excluded, and it is the VIF value. Since the values

in the Table 4.2 are broadly lower than 5 it is not necessary to worry further about this

aspect. Each of the above subsets of variables will be used and analysed in Section 5.1.

Table 4.2: VIF

Variables VIF

1 x2.percServE 1.02

2 x2.percServA 1.02

3 x2.percRecE 1.15

4 x2.percRecPs 1.20

5 x2.percRecPf 1.23

6 x2.percA�E 1.13

7 x2.percA�B 1.21

8 x2.percA�P 1.29

9 x2.percBloP 1.05

4.2 Application of Principal Component Analysis

What we have seen in the previous section could be avoided or supported by a tech-

nique called Principal Component Analysis (PCA). As explained in Section 2.2 it is an

unsupervised learning algorithm because it is not focused on predict some results but

on linearly combining our variables to obtain less and completely uncorrelated ones

that explain the most part of their variance.
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Table 4.3: Summary of PCA

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Prop. of Variance 0.2445 0.2031 0.1691 0.1266 0.0987 0.0482 0.0442 0.0359 0.0296

Cumulative Prop. 0.2445 0.4477 0.6168 0.7434 0.8421 0.8903 0.9345 0.9704 1.0000

We have 892 observation of our 9 variables, so we will obtain nine principal com-

ponents, the �rst information that they give us is the proportion of variance that each

of them explains and consequently the cumulative variance that we get using more

than one component. In the Table 4.3 we observe that the �rst component, as normal,

has the most explanatory power and that from the sixth they add only a 4% of the

total information. �is drop is directly related with the cumulative variance, in fact we

get almost the 90% of the total knowledge thanks to the �rst six components.

�e same concept we are explaining joined with the table it is shown in the Figure

4.1 and 4.2. �e �rst plot is the useful one to help us in choosing the best number of

variables to use in the next supervised learning techniques. We are carrying out our

analysis without considering a huge number of variables, for this reason we could also

keep on using all the nine variables, so we do not lose any amount of information, but

knowing and appreciating that the new ones are completely independent thanks to

PCA application. If instead, by computational necessity or desire, we want to reduce

the number of variables to be used in our work, it is quite evident that the elbow of

the function in 4.1 is at the sixth component.

Actually, with the application of this pre-processing analysis we obtain the coe�cients

of every component, each of tese vectors is called loading in Section 2.2. �ey give us

the important information about the rotation that is applied on every component but

they must be linearly combined to really obtain the new variables. First of all we can

start observing and interpreting the loadings because they are the correlation between

a component and a variable. �anks to their sign and value we can estimate the knowl-

edge that every component shares. To have a visual idea of it, we can construct the

circle of correlations, that is a unit circle (because of the fact that the sum of the squared
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Figure 4.1: Scree Plot, Explained Proportion Value

Figure 4.2: Explained Cumulative Variance
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loadings for a variable is equal to one) with the variables inside. �e coordinates of

each variables are the loadings on the principal components, if a variable is perfectly

explained by only two components it lays on the circle. In our case all the variables

are inside the circle because we need nine components to represent them. “�e closer a

variable is to the circle of correlations, the be�er we can reconstruct this variable from the

�rst two components.” [1]. As we can see in Figure 4.3, the positive and the perfect re-

ceptions have the highest coe�cients in the �rst component in comparison to the other

variables, the a�ack and the block points in the second one. �e closer to the center a

variable is, the less important it is for the �rst two components. Even if we cannot plot

a nine-dimensional plan with the same function that the circle has, we can take note

of every coe�cients in a Table (4.4). In this way we notice how each variable impact

in each component: for instance, the third component explains a relevant quantity

of variance for the last variable, in fact its coe�cient is −0.71, while the ��h compo-

nent is almost completely represented by the �rst variable, the errors in the serve phase.

Table 4.4: Loadings of PCA

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

ServeErrors -0.00 -0.12 0.02 -0.02 0.99 -0.07 0.04 -0.06 0.02

ServeAce 0.02 0.05 -0.03 0.02 -0.06 -0.04 0.24 -0.96 -0.05

RecError 0.03 -0.10 -0.16 0.27 0.06 0.72 -0.58 -0.17 0.06

RecPos 0.67 0.23 0.39 -0.55 0.03 0.19 -0.11 -0.03 0.03

RecPrf -0.73 0.13 0.22 -0.58 0.01 0.22 -0.09 -0.06 0.02

A�Err 0.02 -0.09 -0.07 -0.13 -0.00 -0.33 -0.50 -0.08 -0.78

A�Blo 0.04 -0.22 -0.05 -0.05 0.01 0.52 0.58 0.15 -0.57

A�Pti -0.12 0.64 0.51 0.49 0.09 0.06 0.02 0.04 -0.25

BloPti 0.05 0.66 -0.71 -0.17 0.10 0.06 0.06 0.06 -0.05

Now that we have all the loadings we can create the new variables, it is a simple
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Figure 4.3: Visual representation of PCA
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matrix product between the observations matrix (892x9) and the loadings matrix (9x9).

We obtain 892 observations of nine variables, before using them we can perform some

test to study their distribution and to con�rm their total uncorrelation. In particular,

only the 8th variable does not satisfy the Kolmogorov-Smirnov test of normality, so

we can use the Bartle�’s Correlation Test and get the result below:

chisq -0.00

p.value 1.00

df 36.00

�is is just a con�rmation of the good operation of the Principal Component

Analysis that provides us a set of independent variables that obviously excludes also

the presence of multi-collinearity. �e VIF computing is shown in Table 4.5 and it

presents the smallest possible value 1 for each variable.

Table 4.5: Variance In�ation Function for the new variables

Variables VIF

1 PC1 1.00

2 PC2 1.00

3 PC3 1.00

4 PC4 1.00

5 PC5 1.00

6 PC6 1.00

7 PC7 1.00

8 PC8 1.00

9 PC9 1.00
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Chapter 5

Predictive methods

“In God we trust, all others
bring data.”

W. Edwards Deming, 1964

Predictive analysis is the use of historical data to provide a best assessment of what

will happen in the future or identify future outcomes. �ere are a lot of statistical

algorithm and machine learning techniques to approach this problem, more or less

suitable depending on initial data. As we have explained above, the purpose of this

work is to predict a dichotomous result, winner or loser, starting from a set of variables.

Because of the fact that they can be considered continuous variables but not normally

distributed the two most appropriate methods that we have implemented are the

Logistic Regression and the Random Forest technique. We have already introduced

their theoretical aspects in Sections 2.3 and 2.4, in the next part we will show the

results of their application and we will comment the most interesting ones.

5.1 Logistic regression

To focus on our dataset we can see again the Table 3.5, there is a perfect correspondence

between the second column, in which the result is expressed like a qualitative variable,

and the twel�h column that represents the same result but with a codi�ed binary
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variable. �is numeric column is the predicted one in the logistic regression in which

we assume that if the probability p(code result = 1) > 0.5 the model identi�es this

line like a winner one.

We split the dataset containing all the 446 sets in two parts: the 75% of the volley sets

forms the training dataset, the remaining ones are the so called test dataset. To be�er

generalize this process and to not obtain outcomes only related to this speci�c partition

of data, we have run the model on 100 di�erent partitions. Essentially, the training and

test dataset will always contain di�erent lines from the previous experiment. �en,

to show the general outcome, we will average the coe�cient of the model and its

accuracy.

A�er this step, every time we have 334 volleyball sets useful to train the model and

112 to validate it. We have to consider that for each set there are two correspondent

lines, one referred to winners and the other one referred to losers. In the test dataset

this is not a problem because we only want to predict the �nal result using the found

coe�cients. Instead, to train the model it is not appropriate to consider both lines

related to a single set of a match because they a�ect each other. As we have already

explained in Section 4, a mechanism is created to randomise the sample, basing on

a random variable U(0, 1). If it generates a number u ≥ 0.5 we take in account the

winner line, at the contrary, we add the loser line in the training dataset if u < 0.5. At

the end of this second step we exactly have 334 lines to train the model, one for each

selected set, and 224 lines to validate it, two for each remained set.

�e �rst subset of variables that we use to implement logistic regression is described

in Section 4.1 and includes:

• Percentage of Serve Errors

• Percentage of Reception Errors

• Percentage of A�ack Errors

• Percentage of Block Points
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A�er the training of this �rst model and averaging the 100 obtained coe�cients, we

obtain the Table 5.1. It tells us that all the four variables are signi�cant for the model,

the p-values are always smaller than 0.05 and it is important to notice the sign of

every coe�cient. �e minus related to variables concerning errors implies that they

negatively in�uence the probability of winning while it grows up with the increasing

of the block points. More in detail, each estimated coe�cient is the expected change

in the log-odds of winning for a unit increase in the corresponding predictor variable

holding the other predictors constant at certain value.

Table 5.1: Logistic Regression - Model 1

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5410 0.4649 3.31 0.00278

ServeErrors -5.2623 1.5965 -3.30 0.00076

RecError -11.1503 2.3584 -4.73 2.27e-06

A�Err -14.3047 2.7936 -5.12 1.63e-06

BloPti 7.4018 1.3823 5.35 1.13e-09

�anks to the model we can compute the probability of winning, then the model

itself will use this value to predict if one team will be winner or loser with a certain

accuracy. If we suppose that exists a team with 20% of Serve Errors, 10% of Reception

and A�ack Errors and �nally the 17% of Block Points we obtain:

p(win) =
exp (1.54− 5.26× 0.2− 11.15× 0.1− 14.30× 0.1 + 7.40× 0.17)

1 + exp (1.54− 5.26× 0.2− 11.15× 0.1− 14.30× 0.1 + 7.40× 0.17)

and so

p(win) = 0.31

Since we do not have any reason to choose a threshold di�erent from 0.5, the model

should allocate this team as a loser one. Clearly, this probability does not take into

account the skill of the opposite team or the delta between the two teams in the match.

�is aspect will be discussed in the next chapter. Anyway we are able to reach our
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goal: detect which variable has the major relevance for the victory.

It could happen that quite small percentages of errors or large percentages of points

lead to an erroneous classi�cation, how many times it occurs? We can average the

results and summarize the situation in the table called confusion matrix below:

Table 5.2: Confusion matrix - Model 1

FALSE TRUE

0 81 31

1 31 81

�e accuracy of the model is

Accuracy =
81 + 81

81 + 31 + 31 + 81
= 0.7232

To have more information about our �rst �t, we also compute the area under the 100

ROC curves (Figure 5.1) as explained in Section 2.3.1, then we average them and obtain

AUC = 0.7897. While these two indexes are objective and provide us an immediate

measure of the model exactness, the AIC = 368.5283 is just useful to compare models

with the same size and the same number of predictors, so now it does not add anything

to our knowledge.

We can summarize other models in which the predictors are independent. �e second

one is represented by:

• Percentage of Serve Points

• Percentage of Positive Receptions

• Percentage of A�ack Errors

• Percentage of Blocked A�acks

In this case the AIC is higher than the previous one: 382.4704, so the �rst model is

preferred. Observing the Table 5.3 we can give it an explanation. One of the predictors
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Figure 5.1: ROC curve - Model 1

is irrelevant in the study of the model, in fact the p-value of the positive receptions is

17.18%. In the Figure 5.2 and in the Table 5.4 it is con�rmed that the second model �ts

Table 5.3: Logistic Regression - Model 2

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.4257 0.4449 3.20 0.00301

ServeAce 14.2199 2.8745 4.95 5.43e-06

PositiveRec 1.6026 1.1955 1.34 0.17182

A�Err -15.0853 2.6892 -5.61 1.98e-07

BloA� -18.0434 2.7692 -6.52 7.73e-10

our data in a worse way respect to the �rst one. �e ROC curve is visually lower, in

fact the underlying area is 0.7638 and the accuracy of the model is 0.6830 < 0.7232.

Now the process is known, so we consecutively present other two subsets of

variables that we use in a logistic regression model to predict the probability of winning.
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Figure 5.2: ROC curve - Model 2

Table 5.4: Confusion Matrix - Model 2

FALSE TRUE

0 78 34

1 37 75

As exposed in Section 4 one subset is:

• Percentage of Serve Points

• Percentage of Positive Receptions

• Percentage of A�ack Points

Because of the fact that there are only three predictors theAIC index is not comparable

with the previous values. Anyway, we have selected this subset to underline the

importance of the points scored in the a�ack phase. In fact, in the Table 5.5 the third

variable assumes the highest value of the z-statistic. �anks to the p-value we observe
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that, as in the second model, the percentage of positive receptions is not correlated

with the result.

Table 5.5: Logistic Regression - Model 3

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.7055 0.9018 -7.44 1.04e-13

ServeAces 15.1095 2.8453 5.31 1.65e-06

PositiveRec 1.0759 1.1949 0.90 0.897

A�Pti 12.9084 1.6087 8.02 5.24e-14

�is third model is mainly described by the percentage of a�ack points and gets the

highest accuracy, con�rming the relevance of this variable in the analysis. �e mean

of the area under the curves in the Figure 5.3 is 0.8153, clearly this model represents

curves that most approach the top-le� corner of the graph. We can observe also the

next confusion matrix and the goodness of �t of the model equal to:

Accuracy =
87 + 88

87 + 25 + 24 + 88
= 0.7813

Table 5.6: Confusion Matrix - Model 3

FALSE TRUE

0 87 24

1 25 88

�is matrix is almost symmetric, the results equal to 1 classi�ed as losers are de�ned

False Negatives (FN), while the real losers that the model allocates as winners are the

False Positive (FP).

�e last model of this part is composed by:

• Percentage of Serve Error
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Figure 5.3: ROC curve - Model 3
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• Percentage of Perfect Receptions

• Percentage of A�ack Errors

• Percentage of Block Points

and the results are below.

Table 5.7: Logistic Regression - Model 4

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1194 0.4523 0.26 0.9253

ServErr -5.5380 1.5389 -3.60 0.0001

RecPrf 3.3671 1.1478 2.93 0.0066

A�Err -13.3379 2.7091 -4.92 7.45e-06

BloPti 7.1772 1.2216 5.88 7.97e-08

Table 5.8: Confusion Matrix - Model 4

FALSE TRUE

0 78 34

1 34 78

�e average of the accuracy is 0.6964, while under the ROC curve in Figure 5.4 the

area is 0.7679.

We never have obtained an accuracy higher than 80% so we would like to merge

the information obtained by the four implemented models, but joining the variables

could a�ect the model because of the loss of independence. �e Principal Component

Analysis (PCA) implemented in Section 4.2 is the technique that can help us in this

situation. PCA is a pre-processing analysis so we will use it before of the logistic

regression, we will �nd new independent variables and we will use them as predictors

in our model. At the end of this section we will try to give an explanation to our new
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Figure 5.4: ROC curve - Model 4
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variables born as linear combination of every original features.

�e computation of the new variables is not di�cult. �ey are the matrix product

between PCA coe�cients, already presented in Table 4.4, and the values of the original

nine variables. �e result is a sort of new dataset in the Table 5.10.

We have already observed the elbow graph related to PCA analysis. Really, using six or

nine variables as predictors does not change the computational e�ort. We can choose

to not lose any percentage of variance using all the new created variables and observe

which of them is more useful in the model.

Implementing this last model of logistic regression we greatly improve the accuracy of

the prediction that becomes higher than 80%. Moreover we can do a sort of rank for

the signi�cance of the old variables even if they are not so explicit and understandable.

Table 5.9: Logistic Regression - Model 5

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.5073 1.4216 -3.87 0.0001

PC1 -0.7237 1.3069 -0.55 0.5797

PC2 21.5987 2.4996 8.64 <2e-16

PC3 4.1323 1.5606 2.65 0.0081

PC4 5.5712 1.7791 3.13 0.0017

PC5 -5.7028 1.9559 -2.92 0.0035

PC6 -10.5802 2.9863 -3.54 0.0004

PC7 12.1855 3.0857 3.95 7.9e-05

PC8 -17.4333 3.5993 -4.84 1.3e-06

PC9 12.9400 3.7821 3.42 0.0006

Once that the logistic regression has been applied 100 times to the training dataset

(75% of the total), the values in Table 5.7 have been detected. We notice that to include

the last components has been a correct idea. Observing the p-values, the seventh,

the eighth and the ninth variable are signi�cant. How can it happens that the �rst
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component is the less relevant if it explains the 24% of the model variance while the

ninth one only the 3% ?

�e answer is to be found in the Table 4.4. First of all, PC2 is the only component

with a perfect correspondence: positive gesture or points - plus, negative gesture or

error - minus. Moreover in this column we observe the highest coe�cients referred to

a�ack points and block points that suggests us the relevance of these variables in the

masculine volleyball. �is thesis is con�rmed by the fact that the �rst component is

an-useful in our predictive model. Here, the two above mentioned variables have a

low coe�cient in absolute value and they reduce the e�ect each other because of the

opposite sign. Moreover, the �rst component should include the most part of the model

variance, but it gives high weights to the reception phase and this is not a winning

aspect. Finally, the serve phase is almost completely explained by the PC5 and PC8, we

can observe that in logistic model both these components present a negative coe�cient.

�is is coherent with the fact that serve errors have a positive in�uence in the ��h

component while aces are represented as negative in the eighth one.

What is the accuracy of this model that, in some way, includes all the nine variables?

�e Aikake Information Criterion 255.3084, not comparable with the previous values

because of the nine predictors, but it is strictly lower. �e ROC curve (Figure 5.5)

is visibly closer to the top-le� corner of the graph and underlines an area of 0.9088,

almost 10% more than the third model and the biggest observed until now.
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Figure 5.5: ROC curve - Model 5
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Table 5.10: New Variables

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

1 -0.25 0.50 0.25 0.05 0.26 0.14 -0.01 -0.13 -0.14

2 0.07 0.39 0.42 0.02 0.24 0.27 -0.07 -0.07 -0.19

3 0.13 0.79 0.20 0.04 0.31 0.11 -0.00 -0.06 -0.22

4 -0.21 0.51 0.55 -0.01 0.27 0.31 -0.04 -0.02 -0.29

5 -0.05 0.53 0.44 -0.00 0.23 0.12 -0.05 -0.01 -0.18

6 -0.04 0.38 0.41 0.00 0.28 0.07 -0.09 -0.02 -0.28

7 0.12 0.49 0.16 -0.08 0.30 0.12 -0.03 -0.17 -0.20

8 -0.04 0.32 0.20 0.14 0.15 0.31 -0.02 -0.05 -0.20

9 -0.30 0.77 0.19 -0.04 0.36 0.19 -0.06 -0.05 -0.22

10 0.00 0.20 0.22 0.08 0.15 0.15 0.04 -0.04 -0.30

11 -0.05 0.60 0.31 0.03 0.40 0.12 -0.02 0.00 -0.29

12 0.03 0.52 0.33 -0.00 0.30 0.18 0.04 0.02 -0.25

13 -0.06 0.49 0.26 -0.19 0.15 0.16 -0.05 -0.00 -0.21

14 -0.09 0.39 0.27 -0.12 0.15 0.11 -0.07 -0.01 -0.31

15 0.04 0.52 0.21 0.06 0.33 0.15 -0.07 -0.01 -0.16

16 -0.02 0.32 0.36 -0.09 0.17 0.14 -0.01 -0.09 -0.26

17 -0.14 0.43 0.35 -0.02 0.10 0.18 -0.05 -0.01 -0.20

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

888 -0.04 0.43 0.39 -0.11 0.22 0.22 -0.03 -0.02 -0.14

889 -0.07 0.60 0.25 -0.10 0.23 0.15 0.01 -0.11 -0.19

890 0.04 0.40 0.32 0.10 0.21 0.25 -0.05 -0.01 -0.26

891 -0.06 0.38 0.26 -0.08 0.25 0.09 -0.05 -0.02 -0.13

892 0.07 0.25 0.28 -0.04 0.14 0.05 -0.08 -0.01 -0.25
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�e last results must be computed on the confusion matrix in the Table 5.11.

Table 5.11: Confusion Matrix - Model 5

FALSE TRUE

FALSE 93 19

TRUE 20 92

Accuracy =
93 + 92

93 + 92 + 19 + 20
= 0.8259

Sensitivity =
92

92 + 20
= 0.8214

Specificity =
93

93 + 19
= 0.8304

NegativePredictedV alue =
93

93 + 20
= 0.8230

PositivePredictedV alue =
92

92 + 19
= 0.8288

All the indexes are larger than 80%, so we can consider the logistic regression as a

good model to predict a volleyball set result. �e rank of principal components is PC2,

PC8, PC7, PC6, PC9, PC4, PC5, PC3, PC1. From them and combining previous models,

we can derive the indirect relevance of variables even if not in a detailed way. �e

a�ack phase is the most important one, followed by the serve and the blocking phase,

while the reception inhabits the last place. Substantially, o�ensive gestures drown out

the defensive ones.
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5.2 Random Forest

�e second algorithm is implemented by the package randomforest in R. First

of all, it does not make any assumption about independence among variables, so the

initial set will be used in the model. Random forest does not require any pre-processing

analysis on the variables.

Figure 5.6: Decision tree

We know that the algorithm ensembles di�erent decision trees, an example of a

portion of forest is represented in Figure 5.6.

As explained in Section 2.4.2, we just need two parameters to set: the number of trees

in the forest and how many variables to use in each split. For the second one we base

on the suggestion m =
√
p and we will use three of our nine variables. Instead, the

number of trees can be tuned using a cross-validation mechanism.

Speci�cally, the cross-validation function found in [6] computes the mean squared
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error between the codi�ed result {0, 1} and the predicted value by the regression

random forest algorithm. It has been executed for random forests built with di�erent

number of trees. We obtain the plot in Figure 5.7 in which the error depends on the

number of trees. In a qualitative way, we discover that 200 is a good choice for the

number of trees. In fact, adding more trees does not improve the model, while using

less trees would not be optimal.

Figure 5.7: Mean Squared Error - Number of trees

We have already observed that two versions of random forest exist and can be

implemented to predict the result in our case. Substantially, in the classi�cation random

forest, the observations are classi�ed in di�erent qualitative sets, in this speci�c case

winner or loser, thanks to the vote of each tree. Instead, using the regression algorithm,

a numerical value is computed as result. We have selected this second version because:
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• �e numerical result, detected averaging the result of each tree, shows how much

we are near to the winning result (1) or to the loser one (0). It is not limited in

classifying the team in one class or in the other one.

• In the predictive phase, if the result is greater than 0.5 the team is considered as

winner. �is is exactly the same that we have done in the logistic models and so

they are comparable.

• �e regression random forest is more accurate than the classi�cation version.

Anyway, a�er the prediction each result larger than 0.5 is classi�ed as winner, on the

contrary losers have lower values. Similarly to the application of logistic regression,

we do not want to �x the training and the test dataset. For 100 times, we rotate the

75% of the dataset to train the model and the remaining part is used to test the model

and its results.

Table 5.12: Confusion Matrix - Model 6

FALSE TRUE

FALSE 93 19

TRUE 21 91

In the Table 5.12, we observe the confusion matrix in which the number of pre-

dictions in each of the four classes has been averaged. Two di�erent goodness of �t

measures are computed, the mean of the accuracy that is 0.8214 and the mean of the

area under the ROC curves: 0.9067.

�e choice of the “split-variables” is of key importance in order to assure accurate

outcomes. Based on what the Section 2.4.2 explains, the algorithm generates a real

rank of variables according to their role in achieving the result.

�e le� part of the Figure 5.9 represents how much the accuracy of the model increases,

permuting the considered variable and computing the di�erence of MSE. �e right

part analyzes the purity of each node through the RSS. We can observe that it gives
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Figure 5.8: ROC curve - Model 6

Figure 5.9: Variable importance measures
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%IncMSE IncNodePurity

percA�P 32.85 37.03

percBloP 17.43 19.80

percServA 16.62 17.42

percA�E 13.39 15.77

percServE 12.07 15.53

percA�B 12.06 17.21

percRecE 11.76 13.82

percRecPf 8.46 10.59

percRecPs 2.10 8.68

more importance to blocked a�acks respect to the erroneous ones.

�e variables concerning the o�ensive phase are the most relevant, in particular a�ack

and block points. �is aspect underlines that is more important to score a point respect

to try not to do an error, both in a�ack gestures and in serve ones.

In the conclusions we will compare the di�erent implemented models to underline

which is preferable and which leads to best results.
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Chapter 6

Insights

“Essentially, all models are wrong,
but some are useful.”

George Box,1987

In this short chapter the aim is to con�rm or deny the thesis which previous models

lead to. We used separately the losers and winners’ skills to predict both results, now

we want to compare them. Considering one skill at a time, more the data distribution

for winners is similar to the losers one, less the variable is relevant.

�is is a sort of new and less common criterion to reveal features importance. Substan-

tially, if losers do some gesture be�er than winners but they still lose, this gesture is

not so signi�cant.

In particular, in front of non-normal distributions of data, we have used:

i. Mann-Whitney test (or Wilcoxon-Mann-Whitney) [15]: given two independent

samples, it tests whether one tends to have values higher than the other. It is

commonly regarded as a test of population medians, but this is not strictly true.

In fact, Mann-Whitney is a test of both location and shape. De�ning X the �rst

population and Y the second one, the null hypothesis is P (X > Y ) = 0.5. We

can choose the alternative hypothesis: concerning “positive” skills we wonder if

P (X > Y ) > 0.5, meaning that winners do it be�er than losers, the opposite

73



situation for variables related to errors. For the implementation of the test a rank

is given to all observations belonging to the two samples. �e statistic is:

W = R1 −
n1(n1 + 1)

2
(6.1)

where, considering only the �rst sample, R1 is the sum of rank of observations

and n1 the number of observations. In our case, high values of R1 underline that

the percentages of winners are in general greater respect to the losers ones.

ii. Kolmogorov-Smirnov [22] is a non-parametric test that compares a sample with

a known probability distribution or, as in our case, two di�erent samples are

compared. K-S is sensitive to di�erences in both location and shape of the

Empirical Cumulative Distribution Functions (ECDF) of the two samples. We

can implement di�erent versions of the test remembering that if P (X > z) ≤

P (Y > z) then FX(z) ≥ FY (z), with X referred to winners and Y to losers. In

general, the null hypothesis for positive variables is that FX ≥ FY that means X

stochastically smaller than Y . �e opposite hypothesis is formulated for errors

or negative variables. �e statistic of the test is:

Dn,m = max
z
|FX,n(z)− FY,m(z)| (6.2)

in our case n = m = 446. �e maximum value ofD is 1 and is clearly impossible

to reach. Higher is D, larger is the di�erence between losers and winners teams

ECDF.

Substantially, accepting the null hypothesis would correspond to detect some “anoma-

lies”. �is situation does not occur and in the Table 6.1 we can observe very small

p-values that suggest us to reject the null hypothesis. Moreover, we use them to con�rm

the rank of variables importance already found in the previous chapter. Smaller is the

p-value related to a variable, stronger is the power of the alternative hypothesis in

which we state that winners are be�er than losers in this speci�c skill.

�e Figure 6.1 is very representative. For less important variables like Positive Re-

ceptions the shape of densities is very similar and the ECDFs are almost overlapped.
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At the contrary, the graph related to A�ack Points, Blocked A�acks and Block Points

underlines the di�erences between winners and losers performance.

Figure 6.1: Comparing winners and losers performance
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Table 6.1: P-values, MW and Two samples KS test

Variables MW p-values MW Statistic KS p-values KS Statistic

A�ack Points < 2.2e-16 155910 < 2.2e-16 0.4574

Block Points < 2.2e-16 135150 < 2.2e-16 0.2848

Blocked A�acks < 2.2e-16 61228 < 2.2e-16 0.2937

A�ack Errors 3.3e-14 70658 1.6e-09 0.2130

Serve Aces 4.5e-12 125180 2.8e-14 0.2646

Reception Errors 1.3e-12 73080 4.4e-12 0.2422

Serve Errors 1.1e-09 76462 1.1e-11 0.2377

Perfect Receptions 0.0002 113020 0.0009 0.1256

Positive Receptions 0.0079 108750 0.0037 0.1121
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Chapter 7

Conclusions

“Life is the art of drawing su�cient
conclusions from insu�cient premises.”

Samuel Butler , 1912 d.C.

We have already explained that the aim of this thesis was to identify variables impor-

tance and, thanks to them, predict the result of a volleyball match. Moreover, we wish

to deliver results also to sportsmen or, more in general, to non-statisticians.

First of all, it is evident that a pre-processing phase is fundamental if we need inde-

pendent variables. In fact, spli�ing the set of features has not lead to signi�cant result

neither in models in which each predictor was relevant. �e accuracy in models with

three or four predictors is always between 68% and 78%. A�er the application of PCA

the accuracy of the logistic regression model is higher (82.59%) and it is almost equal

to the random forest exactness (82.14%). Since random forest models do not need

any algorithm to generate independence among predictors, it is preferable and less

computational heavy.

We used the performance of every single team as predictor both in logistic regression

and in random forest. �is aspect allows to have a larger dataset but it does not take

into account the delta between the two opposite teams, be�er said they never relate to

each other.

Anyway, it is possible to understand and underline which technical gesture is more
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important in male volleyball and more relevant for our problem. Logistic regression

helps us, but because of the sub-division of features and their linear combination in

PCA is not so clear. For example, thanks to the �rst model, we classify in order of

importance Block Points, A�ack Error, Pass Error and Serve Error. From the second

model we understand that Blocked A�acks have the major relevance followed by A�ack

Errors and Serve Points. Finally, thanks to the third model we understand that A�ack

Points dominates all other variables while the reception is the less signi�cant one.

Substantially, the rank is the same as the one obtained thanks to random forest indexes,

both the di�erence in MSE and the node purity, but less detailed. �is is another reason

to prefer the second algorithm.

In Chapter 6, we have compared winners and losers performance using two non para-

metric tests. Both Mann-Whitney and Kolmogorov-Smirnov show that the winners do

less errors and more points than losers, or in general they have higher percentages in

positive skills and lower percentages in negative ones. We noticed that an evident gap

in the graphical representation of variables corresponds to very relevant features. At

the contrary, when winners and losers ECDF and density function are almost over-

lapped, the considered skill is less signi�cant for the result.

We can certainly state that the o�ensive gestures are the most important and that, in

this phase, the risk must be considered. In fact, to score a direct a�ack or serve point

is much more in�uential on the result than an error. An interesting aspect is also that

if a player could choose the typology of a�ack error, according to logistic regression,

it would be preferable a direct error rather than to be blocked by the opposite team.

Blocked a�acks have a strong negative impact in the second model on the chance of

winning a match, even more considering that the quantity of points in the blocking

phase is positively evaluated and occupies the second place in the rank.

Clearly the study is not �nished, it is possible to add also less technical variables, as for

example the “home-factor”, that is not suitable in a World League. Moreover, it would

be curious to implement exactly the same models for the same competition regarding

the female volleyball and to highlight the di�erences. It is very likely that the reception
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phase is not so disconnected from the �nal result and from the a�ack e�cacy. If the

computation in female analysis con�rms this theory, we can think that males are able

to replace some weakness in reception thanks to their physical power. In fact, the

most signi�cant variable in our study is the one in which the physical strength is more

visible: the spike, and its relevance is not near or comparable with the e�ect of other

predictors.

Another further, but more di�cult development of the study is to create a marriage

with less mathematical subject. In volleyball, as in many other sporting disciplines,

the human aspect is very relevant. For this reason, it could be interesting to combine

statistical and psychological studies and observe how the results are a�ected.
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