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Abstract

The wisdom of crowds is a sociological theory claiming that a mass of relatively

inexperienced individuals may express a wiser behavior than a single one. In

this thesis, we consider this issue in the context of the DeGroot learning model,

assuming that the various agents are heterogeneous in their capability to access

the true information. We study the e�ect of the network and of the self-con�dence

in the consensus value reached by the community. Particular focus is reserved to

the case when the population is split into two classes, the regular people and the

expert ones: we analyze to which extent the self-con�dence of the experts can be

bene�cial to the entire community.



Introduction

The wisdom of crowds is a sociological theory claiming that a mass of relatively

inexperienced individuals may express a wiser behavior than a single one. The

spirit of the wisdom of crowds inspires many sites and projects on Internet, such

as Wikipedia and Yahoo! Answers. It �nds application even in the Sciences,

as said Trisha Gura, "Citizen science can help researchers to address previously

insoluble problems" [13].

The term crowd refers to a group of individuals not necessarily cohesive, who may

not know each other or share the same ideas. According to James Surowiecki [16],

there are four criteria that must be respected for the theory to work:

• Diversity of opinion, each person must have a di�erent opinion;

• Independence, people's opinions should not be in�uenced by those of oth-

ers;

• Decentralization, nobody must be able to control them;

• Aggregation, opinions must be able to be aggregated in order to obtain a

�nal result.

According to Aristotle, who is considered to be the �rst one to mention the wisdom

of the crowds, "it is possible that the many, though not individually good men, yet

when they come together may be better, not individually but collectively, than those

who are so, just as public dinners to which many contribute are better than those

supplied at one man's cost" [1].

1



Since the beginning of the last century, several scientists have treated the

theme of collective intelligence and the �rst one who talked about it was the

statistician Francis Galton [11]. In 1906, at a cattle fair in Plymouth, people were

asked about the weight of the exposed ox and writing it on a piece of paper. The

most accurate in the prediction would have won the ox. About 800 individuals

participated in the estimation competition. Each attendee had to buy stamped

and numbered cards at a price of 6 pence each, on which they had to write

their name, address and estimate. The six-penny fee discouraged jokes, while

the hope of a prize and the joy of the competition drove each competitor to do

their best. Competitors included very experienced people in judging the weight

of livestock, such as butchers, farmers, and common citizens. Galton collected all

the individual answers and found that the average of the estimates provided was

more precise than the estimate provided by the individual experts.

Over time, the idea of the wisdom of crowds has been integrated in the learning

models. An important model of network in�uence has been created thanks to

Morris H. DeGroot. "In the model that has been presented here, it is assumed that

there is no possibility of learning whether the opinion of one individual is closer to

the truth than that of another. In other words, it is assumed that no outside data,

observations, or information about the value of truth is available. It is assumed

that at the beginning, each individual i chooses the weights pij that he is going to

use and he then continues to use these weights throughout the process." [6].

In this work, we study the conditions in which DeGroot learning model holds

the e�ect of wisdom of the crowds. These conditions concern the way the self-

con�dence connects to centrality. Accordingly, since groups are heterogeneous,

we might exploit the presence of expert individuals. In fact, the use of social

information is advantageous when individuals copy good performers. We focus on

giving the right self-con�dence to individuals so that learning leads to make a good

decision. Initially, we make analitical studies, next, we �nd a way to determine

agents' self-con�dence, after they came to know the beliefs of neighbors.
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The outline of the thesis is the following. In Chapter 1, we shortly present

the graph theory needed in this thesis. Chapter 2 is mainly devoted to a formal

description of the learning model and to a discussion of how to increase wisdom

asymptotically. We present the details of the e�ect of adding self-weights, that

represent the self-con�dence of individuals. In Chapter 3, we analyze the e�ect of

self-con�dence on a social network where agents are split into two parts, expert

and regular ones. Chapter 4 contains a set of examples on known networks where

there are just some nodes with self-con�dence, these examples verify what has

been analytically addressed. In Chapter 5, we report some numerical simulations

based on di�erent graph architectures: Complete and Erd®s-Rényi. Since nodes

are human beings and not electronic devices, we try to simulate realistic scenarios.

To this aim, we consider a social network where nobody knows its variability and,

therefore, we estimate it based on the neighbors' responses. Finally, the last

Chapter concludes the work, summarizing achieved results.
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Chapter 1

Basic Concepts

In this chapter, we review all basic mathematical concepts needed in the for-

malization of our model. More precisely, we overview some basic concepts from

topological and algebraic graph theory.

1.1 Graphs

Graphs are mathematical structures used to describe networks. A graph is made

up of a non-empty set of nodes and a set of edges. There are three key aspects in

modeling a network that are captured by the concept of graph:

1. The set of nodes V represents the units participating in the network, (e.g.

people, biological entities, economic individuals, computers, sensors).

2. The set of edges E describes how nodes are linked. These connections are

represented by a choice of ordered pairs sets (i, j), where i, j ∈ V . In our

case, the presence of a speci�c link (i, j) means that i can communicate with

j.

3. In order to express in a quantitative way the activity level of a certain link

(i, j) it is possible to associate a value Wij, also called weight.
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De�nition 1.1. A directed graph G = (V , E) consists in a pair of sets (always

�nite in this thesis) where the elements of V,

V = {v1, ..., vn},

are called vertices (or nodes) of G, while the elements of E,

E = {e1, ..., em},

are called edges (or arcs) of G. Each edge is a set of two ordered vertices e = (v, w),

e ∈ E and v, w ∈ V.

We call it undirected graph, if the existence of the link (i, j) implies the ex-

istence of the link with reversed direction (j, i). For undirected graphs, one can

consider undirected links described as unordered pairs {i, j}, each of which corre-

sponds to the pair of directed links (i, j) and (j, i). Note that, by doing so, every

undirected link corresponds to two directed links. In this work we use undirected

graphs.

In general, in the graph G = (V , E), the set V is non-empty, whereas E might be

empty. Of course, if V = ∅, then also E = ∅ and G = (∅, ∅) is the trivial graph

with no vertices and no edges.

De�nition 1.2. Let G = (V , E) be an undirected graph. Two vertices v, w ∈ V

are called adjacent if (v, w) ∈ E, that is, if they are connected by an edge.

De�nition 1.3. Let G = (V , E) be an undirected graph. For a vertex v ∈ V, its

degree is the number of edges attached to v. Namely, deg(v).

The degree of each vertex represents the number of individuals with whom it is

in communication.
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1.1.1 Some graphs with special structures

Regular graph

De�nition 1.4. A regular graph is a graph where each vertex has the same number

of neighbors, i.e., every vertex has the same degree.

De�nition 1.5. A regular graph with vertices of degree r is called a r − regular

graph.

It is well known that the necessary and su�cient conditions for a r − regular

graph of order n to exist are that n ≥ r+1 and that nr is even. In Figure 1.1 it is

possible to understand the creation of regular graphs by increasing their number of

nodes and their degree. In particular, for any number of nodes a 0−regular graph

is the empty graph, i.e., it consists of isolated nodes with no edges. A 1− regular

graph consists of disconnected edges, and a 2− regular graph consists of one or

more (disconnected) cycles.

Figure 1.1: Regular graphs with n nodes (1 ≤ n ≤ 5) and with degree r (0 ≤ r ≤

4).
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Complete graph

De�nition 1.6. For every n ≥ 1, we denote by Kn the complete graph with n

vertices, that is, the graph with set of vertices {1, ..., n} and all possible edges.

Figure 1.2: Complete graphs without self-loops with n vertices, 1 ≤ n ≤ 12, and

their respective number of edges.

Proposition 1.7. Let Kn = (V , E) be the complete graph with n vertices. Then

deg(v) = n− 1 ∀v ∈ V , |E| =
(
n

2

)
=
n(n− 1)

2
.

Here, we are considering a complete graph without self-loops, therefore the com-

plete graph Kn is a regular graph of degree n− 1. On the other hand, a complete

graph Kn with self-loops is a regular graph of degree n. In Figure 1.2, it is possible

to observe some examples of complete graphs without self-loops.
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Star graph

A star graph is a graph in which a node, called root, is adjacent to all the others,

called leaves, and the latter are adjacent only to the center. A star with n nodes

is normally referred to as Sn. In a star graph Sn, the root, labeled with index 1,

has degree (n− 1), while the leaves {2, . . . , n} have degree 1.

Erd®s-Rényi graph

An Erd®s-Rényi graph (ER Graph), G = (n, p), is a random graph with n nodes in

which each arc has probability p to exist. Therefore, the average number of edges

is given by n(n−1)
2

p. It is possible to observe that n and p cannot be univocally

deduced by the graph which is the result of a random process [8]. Consequently,

many di�erent outputs may be obtained given the same values of n and p. The

degree of connection in these types of graphs depends on the parameter p.

(a) p = 0.1 (b) p = 0.2
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Firstly, let us consider the borderline cases:

• p = 0, every node has degree equal to 0, thus all nodes are isolated,

• p = 1, every node has degree equal to n− 1, thus the network is a complete

graph.

Secondly, in [8], it has been proven that in order to not have isolated nodes, p

must be

p >
(1 + ε) lnn

n
.

Thus lnn
n

is a sharp threshold for the connection of G = (n, p).

1.1.2 The adjacency matrix

De�nition 1.8. Let G = (V , E) be a graph with V = {1, ..., n}, where n = |V|.

The n× n matrix A = (aij) where

aij =

 1 if (i, j) ∈ E

0 if (i, j) /∈ E

is called the adjacency matrix of G.

The element aii on the diagonal can be aii = 0 if node i does not have a self-loop,

otherwise aii = 1 if it has a self-loop. Since we consider undirected graphs, it is

immediate to check that:

1. the adjacency matrix A is symmetric;

2. the structure of the graph G is completely determined by A (because, from

A, one can reconstruct the edges of G).

If a graph G = (V , E) has n vertices but its vertices are not labelled as the integers

{1, ..., n} (as in our case which are individuals), it is always possible to relabel

them in this way, and still consider the adjacency matrix. Of course, the resulting

adjacency matrix depends on how we have labelled the vertices. Consequently,
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the matrices that we obtained are similar and it is possible to get one from the

other by applying a permutation.

Example 1.1. The adjacency matrix of the complete graph Kn, without self-loops,

is given by 

0 1 . . . . . . . . . 1

1 0 1 . . . . . . 1
... 1

. . . . . .
...

...
...

. . . . . . . . .
...

...
...

. . . . . . 1

1 1 . . . . . . 1 0


It is a n × n matrix with 1 everywhere except along the main diagonal where all

entries are zero.

Example 1.2. The adjacency matrix of the star graph Sn, where the root is labeled

by 1, is given by 

0 1 1 . . . . . . 1

1 0 0 . . . . . . 0

1 0
. . . . . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . 0

1 0 . . . . . . 0 0


It is a n × n matrix with all 1 in the �rst row and in the �rst column except the

term (1, 1) and all the others entries are zero.

1.1.3 Weighted graphs

A weighted graph is de�ned as a triple (V , E ,W ), where V is the set of nodes,

E is the set of links and W ∈ RV×V+ is the weigth matrix. In many applications,

each edge may have an associated numerical value, called weight. Therefore, the
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weight matrix W is a generalization of the adjacency matrix A described above.

Consequently, the weight matrix is then a non-negative square matrix whose en-

tries satisfy Wij > 0 if (i, j) ∈ E and Wij = 0 if (i, j) /∈ E . In many situations,

it is convenient to identify V = {1, ..., n} so that W ∈ Rn×n
+ . Let G = (V , E ,W )

be a graph, as said before, we focus on undirected graphs in which W ′ = W , i.e.,

each link and the one with reverse direction have the same weight Wij = Wji.

If Wij ∈ {0, 1} for all nodes i, j ∈ V , the graph G is called unweighted. In this

case the graph is often described by the pair G = (V , E). The matrix W , which

can be univocally deduced from the set E , it is simply the adjacency matrix A of G.

Besides the weight/adjacency matrix, other matrices are associated to a graph

G = (V , E ,W ), for instance the normalized weight matrix P , also called transition

matrix. The normalized weight matrix is obtained as follows

P = D−1W, (1.1)

where D = diag(w) and w = W1. All entries of P are non-negative, thus P is

a non-negative matrix. Since P1 = 1, P is a stochastic matrix1. Any stochastic

matrix P over a set V , can be thought as the normalized weight matrix of a graph.

It is su�cient to consider GP = (V , E , P ) where E = {(i, j)|Pij > 0}. We call GP
the graph associated with P . Sometimes we use the following terminology: P is

called irreducible if GP is strongly connected, and it is called aperiodic if GP is

such.

Theorem 1.9. Let W be a non-negative matrix. There exists an eigenvalue λW

of W real and positive and two non-negative vectors x 6= 0 and y 6= 0 such that

1. Wx = λWx, W
′y = λWy;

2. every eigenvalue µ of W is such that |µ| ≤ λW .

1A matrix is said to be stochastic whether it is a square matrix where all entries are non-

negative and the sum of entries in each row is 1.
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The eigenvalue λW is called the dominant eigenvalue of W . Important properties

of stochastic matrices are shown below.

Proposition 1.10. Let G = (V , E ,W ) be a graph and let P = D−1W be its

normalized weight matrix. Then

1. λP = 1;

2. there exists a non-negative vector π such that π′1 = 1 and P ′π = π.

Proof. See Lecture notes on Dynamics over Networks, [9].

The probability distribution π = (π1, . . . , πn) is the invariant measure of P , besides

it denotes its centrality.

1.2 Social network

A social network consists of any group of individuals connected by di�erent social

ties. For humans, ties range from casual knowledge, to working relationships,

family ties and so on. The analysis of social networks, i.e., the mapping and

measurement of social networks, can be conducted with a mathematical formalism

by graph theory. In fact, a social network is a graph where the nodes represent

people and the edges represent social connections between them. In the following

of this thesis the term social network will be used to denote the graph of social

interactions through which agents communicate. A social network, de�ned as a

graph, is characterized by its density. The density of a network can give an idea

of how e�cient is the relational interchange between the various elements of the

network. If all the elements of the network establish links between them, then

the network densities would be equal to one (complete graph). Otherwise, if the

network elements did not communicate with each other, the network density would

be zero (null graph). The analysis of social networks has shown how structure and

12



density contribute to determining its potential utility for individuals. Small and

dense networks may sometimes prove to be less useful than larger networks and

with weak links. In fact, the latter would lend themselves more to the exchange

of new ideas and opportunities, thus favoring the processes of innovation. To

simulate how a social network forms, mathematicians use random graphs that

model how people make connections as they enter the network. In fact, in some

of our simulation we use the simplest type of random graph, the Erd®s-Rényi

graph.

13



Chapter 2

The DeGroot Model

Opinion dynamics study the way opinions of individuals modify through pairwise

or group interactions. A celebrity model considered in opinion dynamics is the

DeGroot model. Assume a community of people V = {1, . . . , n} to be connected to

a graph G = (V , E ,W ), whereW is the interaction matrix. As seen in section 1.1.3,

the corresponding stochastic matrix P is obtained by the formula P = D−1W .

Furthermore, assume that the community has to estimate a parameter. Each

individual can state its own estimation xi(0) of the parameter, where i denotes

the individual and the value in brackets represents the time of estimation/revision

(in this case t = 0). The update process is based on the weighted average of the

neighbors' beliefs at the previous time. The updating rule of the DeGroot Model

is the following

X(t+ 1) = PX(t), (2.1)

where X(t) ∈ Rn is the beliefs vector at time t and P is the interaction matrix.

The matrix P is a n×n non-negative matrix and it is stochastic, so that the sum

of its entries in each row is equal to one. In particular, pij is the trust that agent

i places on agent j. In the learning process, each member's revision is a linear

combination that takes into account the latest changes in the opinion of oneself
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and others. By iterating the process (2.1) we get

X(t) = PX(t− 1) = P tX(0). (2.2)

It is assumed that individuals continue to make these revisions inde�nitely or until

X(t+ 1) = X(t) for some value t, i.e., further revisions no longer lead to changes.

The initial opinion,

xi(0) = µ+Ni, ∀i ∈ V , (2.3)

is de�ned as the sum of the truth µ and a noisy term Ni, which we assume is nor-

mally distributed with mean 0 and variance σ2
i ≥ 0. Noisy terms are independent

one from the other.

We start to de�ne the average group belief because it is a fundamental element

in the comparison between the wisdom of the crowds and the learning model; at

the time t it is given by

m(t) =
1

n

n∑
i=1

xi(t),

and at time t = 0, we have

m(0) =
1

n

n∑
i=1

xi(0) = µ+
1

n

n∑
i=1

Ni. (2.4)

We notice that 1
n

∑n
i=1Ni is normally distributed with mean 0 and variance

σ2
ave =

1

n2

n∑
i=1

V ar(Ni) =
1

n2

n∑
i=1

σ2
i .

2.1 The asymptotic behavior

In a society, a consensus is reached if and only if the value of all n members

converges to the same limit as t→∞.

De�nition 2.1. Let X(t) ∈ Rn be the opinions vector. The estimations of the n

individuals converge to each other if and only if there is a value x∗ such that

lim
t→∞

xi(t) = x∗, ∀i = 1, ..., n. (2.5)
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It follows from (2.2) that a consensus is reached if and only if there exists an

invariant vector π = (π1, ..., πn) such that, for i = 1, ..., n and j = 1, ..., n

lim
t→∞

p
(t)
ij = πj, (2.6)

where p
(t)
ij denotes the element in row i and column j of the matrix P t. When

(2.6) is satis�ed for every value of i and j, then π1, ..., πn are non-negative and

such that
∑n

i=1 πi = 1.

Assume P to be irreducible and aperiodic and let us consider the invariant

probability vector π related to the stochastic matrix P

π′P = π′

where
∑n

i=1 πi = 1 and π denotes the centrality of P , see Proposition 1.10. Then,

if X(t) is the solution of the DeGroot Model (2.1), we have that

lim
t→+∞

X(t) = 1(π′X(0)),

this means that the beliefs vector X(t) converges to 1(π′X(0)) = 1X̄∞ when

t→∞. More speci�cally we get

X̄∞ = π′X(0) = µ+
n∑
i=1

πiNi.

We want to analyze the di�erence between the average group belief at time

t = 0 and at time t =∞:

m(0) = µ+
1

n

n∑
i=1

Ni,

m(∞) = µ+
n∑
i=1

πiNi.

We compare the wisdom of crowds with the asymptotic behavior. In addition, we

notice that E(m(0)) = E(m(∞)) = µ. We evaluate the distance with respect to
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the truth value µ by using the variance1:

E|µ−m(0)|2 =
1

n2

n∑
i=1

σ2
i ,

E|µ−m(∞)|2 = V ar

( n∑
i=1

πiNi

)
=

n∑
i=1

π2
i σ

2
i .

To sum up, the �rst value represents the variance of the initial error and the

second one represents the variance of the asymptotic error.

2.2 Wisdom of crowds and wise societies

When we talk about wisdom of crowds, we refer to a collective intelligence. Many

social scientists describe the wisdom of crowds as the phenomenon for which "large

groups of people are smarter than an elite few" [16]. It does not matter how clever

people are or how much they know about the speci�c topic, because the group,

rather than the individual, is always better at solving problems, making wise

decisions or predicting the future. As reported by Golub and Jackson, "A society

is wise if and only if the in�uence of the most in�uential agent is vanishing as

the society grows" [12]. Let us consider a society as a sequence of graphs with

increasing dimension n and assume that the true state µ is kept constant.

De�nition 2.2. (Wisdom notion). Given a sequence of stochastic matrices of

increasing dimensions {P [n] ∈ Rn×n}n∈N, de�ne a sequence of opinion dynam-

ics problems with initial state {X [n](0) ∈ Rn}n∈N satisfying (2.3). The sequence

{P [n] ∈ Rn×n}n∈N, is wise if

plim
n→+∞

π′
[n]
X [n](0) = µ. (2.7)

In this work plim is meant as probability limit.

Assume 0 <
¯
σ2 ≤ σ2

i ≤ σ̄2 < +∞, ∀i ∈ V . De�nition 2.2 is equivalent to say that

1By de�nition V ar(X) = E
[
(X − E[X])2

]
.
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the limiting belief of all agents converges to the truth as n → +∞ if and only if

the in�uence of the most in�uential agent vanishes.

Proposition 2.3. Consider a sequence of stochastic matrices of increasing di-

mensions {P [n] ∈ Rn×n}n∈N. The sequence is wise if and only if

plim
n→+∞

max
i
π
[n]
i = 0.

Proof. By De�nition 2.2, plimn→+∞ π
′[n]X [n](0) = µ, where π′[n]X [n](0) = µ +

π′[n]N [n]. Therefore, we have to prove that

plim
n→+∞

π′[n]N [n] = 0. (2.8)

Let π′[n]N [n] =
∑n

i=1 π
[n]
i N

[n]
i . Then V ar

(∑n
i=1 π

[n]
i N

[n]
i

)
=
∑n

i=1 π
2[n]
i σ2

i .

First, suppose maxi π
[n]
i → 0.

V ar

( n∑
i=1

π
[n]
i N

[n]
i

)
=

n∑
i=1

π
2[n]
i σ2

i

≤
n∑
i=1

(max
i
π
[n]
i )πiσ

2
i

≤ (max
i
π
[n]
i )σ̄2

n∑
i=1

πi︸ ︷︷ ︸
=1

= (max
i
π
[n]
i )σ̄2 → 0, ∀n ∈ N

By Chebychev's inequality, �xing any ε > 0, it is proven (2.8).

For the converse, suppose maxi π
[n]
i 6→ 0.

V ar

( n∑
i=1

π
[n]
i N

[n]
i

)
≥ (max

i
π
[n]
i )2σ2

i ≥ (max
i
π
[n]
i )2

¯
σ2 6→ 0,

which means that the
∑n

i=1 π
[n]
i N

[n]
i can not converge to 0 in probability.
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When noisy terms are equally distributed, σ2
i = σ2, the variance of the asymp-

totic error is thus

V ar

( n∑
i=1

πiNi

)
= σ2

n∑
i=1

π2
i .

It is well known that if there exists an invariant vector π, then πi > 0 for all i and

thus
∑n

i=1 π
2
i <

∑n
i=1 πi = 1. Using this consideration as a starting point, it may

be observed

V ar

( n∑
i=1

πiNi

)
< σ2,

namely, the crowd is wiser than a single.

The wisdom we have de�ned above refers to the asymptotic behavior of a

crowd. It is possible to talk about wisdom even in the �nite time.

2.3 Increasing wisdom

Given the variances σ2
i we are interested in analyzing for which π it holds that

n∑
i=1

π2
i σ

2
i <

1

n2

n∑
i=1

σ2
i , (2.9)

so that the learning process improves the collective estimation of the truth value

µ.

We start by analyzing the following minimum problem:

arg min
π:πi≥0∑n
i=1

πi=1

n∑
i=1

π2
i σ

2
i . (2.10)

In order to solve this problem we use the method of Lagrange multipliers. Ac-

cordingly, the Lagrange function is de�ned by

Λ(σ2
1, ..., σ

2
n, λ) = π2

1σ
2
1 + ...+ π2

nσ
2
n + λ(π1 + ...+ πn − 1),

and, the partial derivatives are
∂Λ

∂πi
= 2πiσ

2
i + λ, ∀i i = 1, ..., n

∂Λ

∂λ
= π1 + ...+ πn − 1
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By setting the gradient to zero we obtain the following system:
∂Λ

∂πi
= 0 ∀i, i = 1, ..., n ⇔ πi = − λ

2σ2
i

∀i, i = 1, ..., n

∂Λ

∂λ
= 0

which amounts to solving n + 1 equations in n + 1 unknowns. By replacing

πi = − λ
2σ2
i
in the original constraint we �nd λ( n∑

i=1

− λ

2σ2
i

)
− 1 = 0 ⇔ 1

λ
= −

n∑
i=1

1

2σ2
i

.

To minimize
∑n

i=1 π
2
i σ

2
i , each probability πi must be inversely proportional to its

variance:

πi =
1

σ2
i

(
1∑n
j=1

1
σ2
j

)
, ∀i, i = 1, ..., n. (2.11)

This is the π achieving the minimum variance.

We now analyze in more detail the improvement of the wisdom of crowds

starting from the simple case n = 2. In this case, the inequality (2.9) corresponds

to

π2
1σ

2
1 + π2

2σ
2
2 <

1

4
(σ2

1 + σ2
2), (2.12)

where π1 + π2 = 1.

Assuming that σ2
1 > σ2

2 and π1 < π2, let us take π1 = (1
2
− x) and π2 = (1

2
+ x).

Therefore, (2.12) is as follows

(
1

2
− x)2σ2

1 + (
1

2
+ x)2σ2

2 <
1

4
(σ2

1 + σ2
2)

x2(σ2
1 + σ2

2)− x(σ2
1 − σ2

2) < 0.

It is a convex parabola, which is null in x = 0 and x =
σ2
1−σ2

2

σ2
1+σ

2
2
. It is thus clear that

(2.12) holds true if 0 < x <
σ2
1−σ2

2

σ2
1+σ

2
2
.

For the general case, we have the following partial result.
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Proposition 2.4. Let σ2
i be ordered as σ2

1 ≥ · · · ≥ σ2
n. Then, ∀π probability such

that

πi ≤ πi+1 (2.13)

πiσ
2
i ≥ πi+1σ

2
i+1, (2.14)

it holds,
n∑
i=1

π2
i σ

2
i ≤

1

n2

n∑
i=1

σ2
i . (2.15)

Proof. Let us consider the following functional

F (π) =
1

n2

n∑
i=1

σ2
i −

n∑
i=1

π2
i σ

2
i .

We need to show that for any probability π satisfying (2.13) and (2.14) we have

that F (π) ≥ 0. This derives from the following considerations. Given i > j we

have that
∂F (π)

∂πi
− ∂F (π)

∂πj
= 2
[
πjσ

2
j − πiσ2

i

]
.

We �x π satisfying (2.13) and (2.14). Starting from π0 = (1/n, 1/n, . . . , 1/n) we

can imagine to move towards the direction of π by movements of type x(ei − ej)

where i > j and x > 0. The partial derivative condition insures that as long

as conditions (2.14) are not violated, the functional F will increase along these

movements. This yields the result.

2.4 The e�ect of adding Self-Weights

We now modify the model introducing a new parameter α ∈ [0, 1]n. The parameter

αi is called self-weight and it represents the weight that the individual i places on

its own belief. Using self-weights, the original transition matrix P becomes the

following

Pα = diag(α) + (I − diag(α))P. (2.16)
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The new centrality vector π′α = π′αPα can be computed as follows:

π′α = π′αdiag(α) + π′α(I − diag(α))P,

π′α(I − diag(α))︸ ︷︷ ︸
π′

= π′α(I − diag(α))︸ ︷︷ ︸
π′

P.

Therefore,

π′α(I − diag(α)) = π′λ,

for some positive scalar λ. By carrying out calculations with respect to a single

component i:

(παi )(1− αi) = πiλ,

παi =
πi

1− αi
λ.

By summing on both sides we can calculate λ as follows:

1 =

( n∑
i=1

πi
1− αi

)
λ,

λ =
1∑n

i=1
πi

1−αi
.

The value of the new centrality vector is thus given by

παi =

πi
1− αi
n∑
j=1

πj
1− αj

. (2.17)

We notice that any new possible centrality vector π̃ can be achieved as follows.

To obtain that παi = π̃i for every i, it is su�cient to put

αi = 1− πi/π̃i
maxj πj/π̃j

.

In particular, setting

αi = 1− πiσ
2
i

maxj πjσ2
j

, (2.18)

we obtain the optimal choice (2.11).
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Chapter 3

Social network with experts. The

e�ect of self-con�dence

De Marzo, Vayanos, and Zweibel [7] note that a rational actor should place more

weight on those estimates which it considers to be more reliable. Thus, if agents

have information about the accuracy of their own estimates, therefore the self-

weight is correlated with accuracy. For this reason, we want to analyze the e�ect

of self-con�dence on the wisdom.

We now assume the population to be split into two parts N = R∪E where E are

the expert nodes, while R are the regular ones. We assume that σ2
i = σ2

R for every

i ∈ R, while σ2
i = σ2

E < σ2
R for every i ∈ E. We also assume that there are n1

expert nodes and n2 regular ones, where n1 + n2 = n. In this case the minimum

problem (2.10) becomes

arg min
π:πi≥0∑n
i=1

πi=1

n∑
i=1

π2
i σ

2
i

= arg min
π:πi≥0∑n
i=1

πi=1

n1∑
i=1

π2
i σ

2
E +

n∑
i=n1+1

π2
i σ

2
R,
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and the solution takes the form of

πi =
σ2
R

n1σ2
R + n2σ2

E

, ∀i ∈ E,

πi =
σ2
E

n1σ2
R + n2σ2

E

, ∀i ∈ R.
(3.1)

Proposition 2.4 in this context takes the following special form.

Proposition 3.1. Assume that σ2
i = σ2

E, ∀i ∈ E, and σ2
i = σ2

R, ∀i ∈ R, where

σ2
E < σ2

R. ∀π probability such that πi = πE, ∀i ∈ E, πi = πR, ∀i ∈ R and

πE ≥ πR,

πEσ
2
E ≤ πRσ

2
R.

It is veri�ed that
n∑
i=1

π2
i σ

2
i ≤

1

n2

n∑
i=1

σ2
i .

Notice how the above result requires the centrality vector π to be constant

over the expert nodes and the regular ones, respectively.

3.1 The e�ect of self-con�dence

We now assume the social network to possess a general centrality vector π. In order

to achieve the optimal centrality (3.1), it is necessary for the agents to implement

self-weights according to (2.18). However, the implementation of (2.18) is rather

complicated because of the information that requires to agents, in fact, they must

have full knowledge of the network.

Anyway, a natural feature is the following: to be expert is related to self-

con�dence, as pointed out in [2], [14]. For this reason, below, we investigate what

happens when expert nodes introduce a self-weight α (the same for all of them)

while the regular nodes do not change their updating rule. We want to see if such

modi�cation is always bene�cial for the system in the sense that improves the
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asymptotic wisdom.

From (2.17) we obtain that the new centrality vector is given by

παi =

 1
µ
πi if i ∈ R
1

µ(1−α)πi if i ∈ E
(3.2)

The normalization constant µ is thus

µ =
π(E)

1− α
+ π(R) =

1− απ(R)

1− α
,

where we are denoting

π(E) =
∑
i∈E

πi, π(R) =
∑
i∈R

πi.

The variance of the asymptotic error as a function of the parameter α is thus

given by

S(α) =
∑
i

(παi )2σ2
i =

1

µ2

[
σ2
E

(1− α)2

∑
i∈E

π2
i + σ2

R

∑
i∈R

π2
i

]
. (3.3)

It is convenient to introduce the symbols:

π(2)(E) =
∑
i∈E

π2
i , π(2)(R) =

∑
i∈R

π2
i .

Therefore, we can rewrite the form of S(α) as follows

S(α) =
σ2
Eπ

(2)(E) + (1− α)2σ2
Rπ

(2)(R)

(1− απ(R))2
. (3.4)

Of course, in α = 0 we have the variance of the asymptotic error of the original

DeGroot model. We want to understand if S(α) is less than S(0) for some α. This

would show that some self-con�dence would be helpful in the learning process. To

this aim, we need to understand the monotonicity of S(α) near 0. Accordingly,

we study the derivative in zero:

S ′(0) = 2
[
π(R)σ2

Eπ
(2)(E)− π(E)σ2

Rπ
(2)(R)

]
.
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The only way to improve the asymptotic error of the original DeGroot model is

that S(α) is decreasing in zero. Therefore, we have that S ′(0) < 0 if and only if

σ2
E

π(2)(E)

π(E)
< σ2

R

π(2)(R)

π(R)
. (3.5)

The terms

ωE =
π(2)(E)

π(E)
, ωR =

π(2)(R)

π(R)
, (3.6)

measure how much the centrality is di�used among the expert and regular nodes,

respectively. We thus proved the following Theorem.

Theorem 3.2. There exists α > 0 such that S(α) < S(0) if and only if

σ2
E

σ2
R

ωE
ωR

< 1. (3.7)

This is the condition under which, the addition of a small self-weight to all expert

nodes is bene�cial in terms of the asymptotic wisdom. Notice the combination of

two ratios: the one of variances and the one of the di�usion rate of the centrality

of experts and regulars.

3.1.1 Centrality di�usion rates

We now analyze in better detail the terms entering in the condition (3.7). It is

necessary that the ratio between experts' centrality di�usion rate and regulars'

centrality di�usion rate

(
ωE
ωR

)
does not explode, otherwise it is not possible to

reduce the asymptotic error of the original DeGroot model. The ratio depends

not only on how much the experts are central, but also on how much they are

concentrated, roughly.

We recall that
∑

i∈V π
2
i ≥ (πmax)

2, and, in addition,
∑

i∈V π
2
i ≤ πmax

∑
i∈V πi.

Using these estimates it is possible to determine a lower and upper bound for the

ratio between experts' centrality di�usion rate and the regulars' one.
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Lemma 3.3. If W is a subset of V the following holds true:

ωW ≥
(maxi∈W πi)

2

π(W )
,

ωW ≤ max
i∈W

πi.

Proof. Since π(W ) =
∑
i∈W

πi, π
(2)(W ) =

∑
i∈W

π2
i and ωW =

π(2)(W )

π(W )
, we have

π(2)(W ) ≥ (max
i∈W

πi)
2,

π(2)(W ) ≤ (max
i∈W

πi)π(W ).

This yields the result.

Proposition 3.4. Given any subset W of V, V = {E,R}, the ratio between the

centrality di�usion rates is bounded as follows:

‖πE‖2∞
π(E)‖πR‖∞

≤ ωE
ωR
≤ ‖πE‖∞π(R)

‖πR‖2∞
. (3.8)

Proof. Proof follows from Lemma 3.3, taking W = E and W = R.

Suppose now that we let the size of network going to in�nity, n → +∞.

Let us show when the lower bound of (3.8) breaks out and, consequently, it is

impossible to decrease the asymptotic error of the original DeGroot model with

the introduction of self-weight. In addition, we show when the upper bound of

(3.8) is bounded and, consequently, it could be possible to decrease the asymptotic

error of the original DeGroot model with the introduction of self-weight.

Remark 3.1. Assume that

π(E) = en,

accordingly, π(R) = 1 − en. We focus on cases when en does not go to zero and

to one, that means 0 < δ ≤ en ≤ 1 − δ < 11. In addition, we assume that the

1This condition represents a situation in which the experts are not negligible fraction of the

population, but not even the whole fraction of population.
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invariant measures of the most relevant agents among experts and regulars are

respectively:

‖πE‖∞ = bn,

‖πR‖∞ = an.

In view of this, we observe that the lower bound of (3.8) tends to +∞ if and only

if the following condition holds true

an = o
(
b2n
)
.

Moreover, the upper bound of (3.8) is bounded if and only if the following condition

holds true

bn = O
(
a2n
)
.

Summarizing the results, we obtain

• if an = o
(
b2n
)
, then

(
ωE
ωR

)
→ +∞,

• if bn = O
(
a2n
)
, then

(
ωE
ωR

)
< k, k ∈ R+.

This is a situation in which neither of them, at the centrality level, would take

the upper hand, consequently it depends on the dispersion level. Therefore,

• if the expert agents are too concentrated compared to the regular ones, then

the ratio between the centrality di�usion rates bursts,

• if expert agents are su�ciently widespread compared to the regular ones,

then the ratio between the centrality di�usion rates is bounded.

3.1.2 The best self-weight

Of course, we are also interested in understanding which extent we can introduce

self-con�dence without implement the overall behavior. To this aim, we complete
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the analysis of our function S(α) below. We recall that

S(α) =
σ2
Eπ

(2)(E) + (1− α)2σ2
Rπ

(2)(R)

(1− απ(R))2
.

Firstly, we determine the function zeros, under the condition α 6= 1
π(R)

σ2
Eπ

(2)(E) + (1− α)2σ2
Rπ

(2)(R) = 0.

Since ∆ = −σ2
Rσ

2
Eπ

(2)(R)π(2)(E) < 0, the function S(α) is always positive and in

zero its value is equal to

S(0) = σ2
Eπ

(2)(E) + σ2
Rπ

(2)(R) > 0.

To de�ne the stationary points, we examine the �rst derivative

S ′(α) =

2
(
1− απ(R)

)[
−(1− α)π(E)σ2

Rπ
(2)(R) + π(R)σ2

Eπ
(2)(E)

]
(
1− απ(R)

)4 . (3.9)

The study reveals that there is only one stationary point which is

α = 1− σ2
E

σ2
R

ωE
ωR

,

and it is the absolute minimum of the function S(α).
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
)

Figure 3.1: Plot of S(α) of a star network with 10 individuals (two expert leaves

and the other nodes are regular), between 0 and 1, since α can only represent

these values.
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When the condition (3.7) occurs, the addition of self-weight confers bene�ts if

α ∈
(

0, 1 − σ2
E

σ2
R

ωE
ωR

]
. Accordingly, α = 1 − σ2

E

σ2
R

ωE
ωR

is the maximum self-weight

for which there is a bene�t, precisely the maximum bene�t. The optimum alpha,

denoted α∗, is thus

α∗ = 1− σ2
E

σ2
R

ωE
ωR

.

In order to evaluate the extent of the improvement over the variance of the asymp-

totic error of the original DeGroot model, i.e., S(0), we �rst calculate the value

that S(α) takes in α∗

S(α∗) =
σ2
Eσ

2
Rπ

(2)(E)π(2)(R)

σ2
R(π(E))2π(2)(R) + σ2

E(π(R))2π(2)(E)
. (3.10)

S(α∗) represents the smallest asymptotic variance value that can be obtained.

Consequently, the maximum pro�t that we get from the introduction of alpha is

given by

S(0)− S(α∗) =

[
σ2
Rπ(E)π(2)(R)− σ2

Eπ(R)π(2)(E)
]2

σ2
R(π(E))2π(2)(R) + σ2

E(π(R))2π(2)(E)
. (3.11)

Namely it represents the greater asymptotic improvement with respect to the

original DeGroot model when the condition (3.7) holds true.

3.1.3 Comparison with initial variance

Up to this point, we evaluated the performance of the self-weight adjustment

compared to the case without self-loops. Now, we want to compare the variance

of the asymptotic error by self-weight adjustment to the initial variance.

By assuming that there are n1 experts, the initial variance is well-known and it is

de�ned as follows:

V =
1

n2

n∑
i=1

σ2
i =

1

n2

[
n1σ

2
E + (n− n1)σ

2
R

]
.

We want to understand under which conditions there is an improvement over

time. Since the study is relative to alpha, the initial variance is a constant. We
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Figure 3.2: Comparison between the variance of the asymptotic error (red) and

the initial variance (blue).

can obtain three di�erent situations, depicted in Figure 3.2.

Figure 3.2(a) shows a case where the initial variance is always greater than the

variance of the asymptotic error, therefore any alpha we insert it always lead to an

improvement. Precisely, α = 0 is enough for a better result. Figure 3.2(b) shows a

case where the initial variance intersects the variance of the asymptotic error. This

means that if we take α appropriately we can obtain an improvement. Finally,

Figure 3.2(c) shows a case where the initial variance is always lower than the

variance of the asymptotic error, therefore for any α introduced there is nothing

that can be done, we can never break down the initial value.
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Chapter 4

Examples with some self-con�dent

nodes

In this Chapter, we analyze in detail the consequences of the theoretical results

of previous section for speci�c examples of experts' distributions and, afterwards,

speci�c networks. In each example, we use Theorem 3.2 in order to restate the

improvement condition (3.7). In addition, we evaluate the optimum alpha α∗ and

the minimum variance of the asymptotic error S(α∗). Finally, we examine the

comparison with the asymptotic error variance of the original DeGroot model.

4.1 Particular cases

In this section, we assume that no particular information is available regarding

the network, but for the centrality vector.

Case 1. Only one expert

In this example, we assume there is only one expert. This yields

π(E) = πE, π(2)(E) = π2
E, and ωE = πE.
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The variance of the asymptotic error is given by

S(α) =
σ2
Eπ

2
E + (1− α)2σ2

Rπ
(2)(R)

(1− απ(R))2
,

and, by Theorem 3.2, S(α) < S(0) if and only if

σ2
E

σ2
R

πE
ωR

< 1. (4.1)

If this condition occurs, then the optimum alpha is thus

α∗ = 1− σ2
E

σ2
R

πE
ωR

,

and, by using this value, we obtain the minimum variance of the asymptotic error

S(α∗) =
σ2
E

1 +
σ2
E

σ2
R

(π(R))2

π(2)(R)

.

Accordingly, the maximum pro�t is equal to

S(0)− S(α∗) =

[
σ2
Rπ

(2)(R)− σ2
Eπ(R)πE

]2
σ2
Rπ

(2)(R)− σ2
E(π(R))2

This means the asymptotic error variance of the original DeGroot model is larger

than S(α∗), which represents the smallest asymptotic value that can be obtained

with the introduction of a self-weight. In addition, we obtain an improvement

over the initial variance if and only if the following inequality is veri�ed[
1 +

σ2
E

σ2
R

(π(R))2

π(2)(R)

][
1

n2
+
σ2
R

σ2
E

(n− 1)

n2

]
> 1.

Case 2. n1 experts and πi = πE, ∀i ∈ E, and πi = πR, ∀i ∈ R

In this instance, the number of experts is more than one and we have further

information on the invariant probabilities. In fact, the centrality vector is made

up of only two values, one for experts πE and one for regulars πR. This yields

π(E) = n1πE, π(2)(E) = n1π
2
E, and ωE = πE,

π(R) = (n− n1)πR, π(2)(R) = (n− n1)π
2
R, and ωR = πR.
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The variance of the asympotic error is given by

S(α) =
n1σ

2
Eπ

2
E + (n− n1)(1− α)2σ2

Rπ
2
R

(1− (n− n1)απR)2
,

and, by Theorem 3.2, S(α) < S(0) if and only if

σ2
E

σ2
R

πE
πR

< 1. (4.2)

It is noticeable that this decreasing condition remains unchanged even when the

number of experts is one (n1 = 1). This means that, if πi = πE, ∀i ∈ E, and

πi = πR, ∀i ∈ R, no matter how many experts there are, the improvement depends

only on the variances and the invariant probabilities. If the condition (4.2) occurs,

then the optimum alpha is thus

α∗ = 1− σ2
E

σ2
R

πE
πR
,

and we get

S(α∗) =
σ2
Eσ

2
R

n1σ2
R + (n− n1)σ2

E

.

Accordingly, the maximum pro�t is equal to

S(0)− S(α∗) =
n1(n− n1)

[
σ2
RπR − σ2

EπE
]2

n1σ2
R + (n− n1)σ2

E

.

The introduction of alpha leads to an improvement over the initial variance if and

only if the following inequality is veri�ed[
n1σ

2
R + (n− n1)σ

2
E

n2σ2
Eσ

2
R

][
n1σ

2
E + (n− n1)σ

2
R

]
> 1.

By imposing n1 = 1, we obtain the results for the more speci�c case.

Case 3. Uniform π, π = 1
n
1

In this case, all invariant probabilities are equal, therefore, assuming n1 experts,

the di�usion rates of centrality are given by

π(E) = n1
1

n
π(2)(E) = n1

1

n2
and ωE =

1

n
,

π(R) = (n− n1)
1

n
π(2)(R) = (n− n1)

1

n2
and ωR =

1

n
.
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The variance of the asympotic error is given by

S(α) =
n1σ

2
E + (n− n1)(1− α)2σ2

R

[n− (n− n1)α]2
,

and, by Theorem 3.2, S(α) < S(0) if and only if

σ2
E

σ2
R

< 1. (4.3)

Since by de�nition σ2
E < σ2

R, we can conclude that the addition of self-weight is

always suitable. The optimum alpha is thus

α∗ = 1− σ2
E

σ2
R

,

and we get

S(α∗) =
σ2
Eσ

2
R

n1σ2
R + (n− n1)σ2

E

.

Accordingly, the maximum pro�t is equal to

S(0)− S(α∗) =
n1(n− n1)

[
σ2
R − σ2

E

]2
n2
[
n1σ2

R + (n− n1)σ2
E

] .
By introducing alpha, there is an improvement over the initial variance if and only

if the following inequality is veri�ed[
n1σ

2
R + (n− n1)σ

2
E

n2σ2
Eσ

2
R

][
n1σ

2
E + (n− n1)σ

2
R

]
> 1.

As can be seen, S(α∗) and the condition that determines if it is possible to break

down the initial variance are equal to the above case. In fact, we can consider the

Case 3 as a particular case of the more generic Case 2.

Let n1 be a fraction of the total number of agents, i.e., n1 = θn, for θ ∈ [0, 1].

In this scenario, the variance of the asymptotic error can be written as

S(α) =
θσ2

E + (1− θ)(1− α)2σ2
R

n[1− (1− θ)α]2
.

For large scales, i.e., n→∞, S(α) vanishes. This means that the variance of the

asymptotic error in the limit vanishes. Consequently, we get

S(α∗) =
σ2
Eσ

2
R

n
(
θσ2

R + (1− θ)σ2
E

) ,
and

S(0)− S(α∗) =
θ(1− θ)

[
σ2
E − σ2

R

]2
n
[
θσ2

R + (1− θ)σ2
E

] .
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4.2 Known networks cases

In this section, we know the real structure of the network, consequently we have

information about the form of the centrality vector.

4.2.1 Regular Graph

A regular graph is a graph where each vertex has the same number of neighbors,

that is to say every vertex has the same degree, see Section 1.1.1. In general, in

a r-regular graph, every vertex has degree r, so there are rn
2
edges. The general

centrality vector π is proportional to the degree. Speci�cally, it is given by

π =

(
r

rn
, ...,

r

rn

)
,

which is the degree divided by the total number of links.

A complete graph Kn is a regular graph of degree n − 1, i.e., a simple undi-

rected graph with n nodes in which every pair of distinct vertices is connected by

a unique edge. Consequently, the general centrality vector π is given by

π =

(
n− 1

n(n− 1)
, ...,

n− 1

n(n− 1)

)
.

It is evident that the invariant vector in both cases is

π =
1

n
1, (4.4)

which is the uniform invariant probability.

Since the invariant probability is uniform, if we assume there are n1 experts and

(n − n1) regular agents, then we can see the detailed analysis in the Case 3 of

section 4.1.

Petersen Graph

Let us consider a Petersen graph with 10 nodes, where each of them has degree

three.
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We assume there are 3 experts, identi�ed by the red color, and σ2
i = σ2

E, ∀i ∈ E,

σ2
i = σ2

R, ∀i ∈ R. In addition, based on the above explanation, the centrality

vector is π = 1
10
1. We set σ2

E = 1 and σ2
R = 2, accordingly we get that the

optimum self-weight is α∗ = 1
2
. The variance improvement (over time) is given by

S(0)− S(α∗) =
17

100
− 2

13
≈ 1.6%.

Complete Graph

Let us consider a complete graph with 12 nodes, where each of them has degree

r = 11.

We assume there is just one expert, identi�ed by the red color, with variance σ2
E,

and σ2
i = σ2

R, ∀i ∈ R. In addition, the general centrality vector is π = 1
12
1. We set

σ2
E = 1 and σ2

R = 2, accordingly we get that the optimum self-weight is α∗ = 1
2
.

The variance improvement (over time) is given by

S(0)− S(α∗) =
23

144
− 2

13
< 1%.
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In order to compare this example with the previous one, let us assume there are

three experts and the variances remain unchanged:

S(0)− S(α∗) =
21

144
− 2

15
≈ 1.3%.

We can conclude by saying that, in regular graphs, setting the variances (σ2
E and

σ2
R) and the number of experts, the extent of the improvement decreases when

the number of the individuals increases.

4.2.1.1 Applications of the modi�ed DeGroot model

We apply the DeGroot Model to concretely observe the improvement, assuming

that the true state is 0. In Figure 4.1, the learning model is applied to the example

described above. It is possible to notice that the consensus, in the model with

self-weights, is better than the original DeGroot model because it is closer to the

truth, µ = 0. The original dynamic would have led to a consensus X̄∞ = −0.2905,

which is improved with the introduction of self-weight, X̄α
∞ = −0.1346.

0 10 20 30 40 50 60
t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

X(
t)

Modified DeGroot Model
Original DeGroot Model

Figure 4.1: Comparison between the modi�ed DeGroot model and the original

DeGroot one on Complete Graph without self-loops, n = 12, n1 = 1, σ2
E = 1,

σ2
R = 2.
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This improvement is visible even on large networks. Therefore, we report two

applications of DeGroot model on networks with 10000 agents. In the �rst case,

illustrated in Figure 4.2, there are 2000 expert individuals. Expert individuals

and regular ones have very di�erent variances: σ2
E = 1 and σ2

R = 11, respectively.

The consensus achieved by the original DeGroot model is X̄∞ = 0.1111, but

the addition of self-weight to experts leads to a remarkable improvement, i.e.,

X̄α
∞ = 0.0471. In the second case, illustrated in Figure 4.3, two aspects change:

the percentage of experts increases to 8000, and self-loops are added to the original

graph. Also in this example there is an improvement: X̄α
∞ = −0.0085 compared to

X̄∞ = −0.0656. In this case, it is worth noting that the DeGroot model converges

to consensus in 1 step. Hence, the plot is a line.

Figure 4.2: Comparison between the modi�ed DeGroot model and the original

DeGroot one on Complete Graph without self-loops, n = 10000, n1 = 2000,

σ2
E = 1, σ2

R = 11.
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Figure 4.3: Comparison between the modi�ed DeGroot model and the original

DeGroot one on Complete Graph with self-loops, n = 10000, n1 = 8000, σ2
E = 1,

σ2
R = 11.

4.2.2 Star Graph

The star graph, see Section 1.1.1, has a centralized topology. The centrality vector

π is given by

πi =

 1
2

if i root

1
2(n−1) if i leaf

We focus on the introduction of self-weights in a network where individuals are

split in experts and regulars. We make use of system (3.2) to determine the new

centrality vector and we analyze three particular cases.

Case 1. One expert: the root

The invariant vector in�uenced by α is

παi =

 1
2µ(1−α) if i root

1
2µ(n−1) if i leaf
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As before, this yields

π(E) =
1

2
, π(2)(E) =

1

4
, and ωE =

1

2
,

π(R) =
1

2
, π(2)(R) =

1

4(n− 1)
, and ωR =

1

2(n− 1)
.

The variance of the asymptotic error is given by

S(α) =
(n− 1)σ2

E + (1− α)2σ2
R

(n− 1)(2− α)2
,

and, by Theorem 3.2, S(α) < S(0) if and only if

σ2
E

σ2
R

(n− 1) < 1. (4.5)

This condition, for large n, is never veri�ed, therefore, for n→∞, there is never

the possibility of an improvement. This is due to the fact that the expert is too

concentrated. If the condition (4.5) occurs, then the optimum alpha is given by

α∗ =
σ2
R − (n− 1)σ2

E

σ2
R

,

and, by using this self-con�dence, we obtain

S(α∗) =
σ2
Eσ

2
R

σR + (n− 1)σ2
E

.

In addition, the maximum pro�t is given by

S(0)− S(α∗) =
(n− 1)σ2

E + σ2
R

4(n− 1)
− σ2

Eσ
2
R

σR + (n− 1)σ2
E

=

[
σ2
R − (n− 1)σ2

E

]2
4(n− 1)σ2

R + 4(n− 1)2σ2
E

.

Case 2. n1 experts, only leaves

The invariant vector in�uenced by α is

παi =


1

2µ(n−1)(1−α) if i expert leaf

1
2µ(n−1) if i regular leaf

1
2µ

if i root
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Of course, if n1 = 1, there is only one expert that is a leaf. As before, we make

our considerations starting by the di�usion rates of centrality.

π(E) =
n1

2(n− 1)
, π(2)(E) =

n1

4(n− 1)2
, and ωE =

1

2(n− 1)
,

π(R) =
2n− n1 − 2

2(n− 1)
, π(2)(R) =

n2 − n− n1

4(n− 1)2
, and ωR =

n2 − n− n1

2(n− 1)(2n− n1 − 2)
.

The variance of the asymptotic error is given by

S(α) =
n1σ

2
E + (n2 − n− n1)(1− α)2σ2

R[
2(n− 1)− (2n− n1 − 2)α

]2 ,

and, by Theorem 3.2, S(α) < S(0) if and only if

σ2
E

σ2
R

2n− n1 − 2

n2 − n− n1

< 1. (4.6)

We observe that, in the limit case n1 = 1, the condition simpli�es to

σ2
E

σ2
R

2n− 3

n2 − n− 1
< 1.

It is interesting to note that, for large n, such condition is always veri�ed, therefore

the introduction of alpha always decreases the asymptotic error of the original

DeGroot model. If the condition (4.6) occurs, then the optimum alpha is thus

α∗ =
(n2 − n− n1)σ

2
R − (2n− n1 − 2)σ2

E

(n2 − n− n1)σ2
R

,

and we obtain

S(α∗) =
σ2
Eσ

2
R(n2 − n− n1)

n1(n2 − n− n1)σ2
R + (2n− n1 − 2)2σ2

E

,

In addition, we can conclude that the maximum pro�t is given by

S(0)− S(α∗) =
n1σ

2
E + (n2 − n− n1)σ

2
R

4(n− 1)2
− S(α∗)

=
n1

[
(n2 − n− n1)σ

2
R − (2n− n1 − 2)σ2

E

]2
4(n− 1)2

[
n1(n2 − n− n1)σ2

R + (2n− n1 − 2)2σ2
E

] .
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Case 3. n1 experts: root and (n1 − 1) leaves

The invariant vector in�uenced by α is

παi =


1

2µ(1−α) if i root

1
2µ(n−1)(1−α) if i expert leaf

1
2µ(n−1) if i regular leaf

As before, we make our considerations starting by the di�usion rates of centrality.

π(E) =
n+ n1 − 2

2(n− 1)
, π(2)(E) =

n2 − 2n+ n1

4(n− 1)2
, and ωE =

n2 − 2n+ n1

2(n− 1)(n+ n1 − 2)
,

π(R) =
n− n1

2(n− 1)
, π(2)(R) =

n− n1

4(n− 1)2
, and ωR =

1

2(n− 1)
.

The variance of the asymptotic error is given by

S(α) =
(n2 − 2n+ n1)σ

2
E + (n− n1)(1− α)2σ2

R[
2(n− 1)− (n− n1)α

]2 ,

and, by Theorem 3.2, S(α) < S(0) if and only if

σ2
E

σ2
R

n2 − 2n+ n1

n+ n1 − 2
< 1. (4.7)

It is possible to observe that, for large n, such condition is never veri�ed, therefore,

for n → ∞, there is never the possibility of an improvement. Anyway, in cases

where the condition (4.7) occurs, the optimum alpha is

α∗ =
(n+ n1 − 2)σ2

R − (n2 − 2n+ n1)σ
2
E

(n+ n1 − 2)σ2
R

,

and the asymptotic variance by using this self-con�dence is the following

S(α∗) =
σ2
Eσ

2
R(n2 − 2n+ n1)(n− n1)

(n− n1)(n+ n1 − 2)2σ2
R + (n− n1)2(n2 − 2n+ n1)σ2

E

.

Accordingly, the maximum pro�t is given by

S(0)− S(α∗) =
(n2 − 2n+ n1)σ

2
E + (n− n1)σ

2
R

4(n− 1)2
− S(α∗)

=
(n− n1)

[
(n− n1 − 2)σ2

R − (n2 − 2n+ n1)σ
2
E

]2
4(n− 1)2

[
(n+ n1 − 2)2σ2

R + (n− n1)(n2 − 2n+ n1)2σ2
E

] .
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4.2.2.1 Speci�c numerical example

Let us suppose to have a star network with 10 individuals and just two of them

are experts. Moreover, the experts are two leaves, so they can only get in touch

with the central agent (Case 2). In the graph below, experts are identi�ed by the

red color.

We also assume that σ2
E = 1 and σ2

R = 2. We can easily calculate the centrality

di�usion rates

ωE =
1

18
ωR =

11

36

Since the condition (4.6) is respected, there is an improvement with the intro-

duction of α. The value of the asymptotic variance, using the optimum alpha

α∗ = 10
11
, is S(α∗) = 11

38
. By applying α∗, the error decreases by 26% compared to

the case without self-weights.
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Chapter 5

Learning our expertise

We now want to study a di�erent and more interesting situation that is when

agents are not aware to which class (regular or expert) they belong. In this

case they are not able to implement the self-weight adjustment as introduced in

the previous sections. In this Chapter, we propose a simple learning method to

overcome this di�culty and we show that, under certain assumptions, it produces

a positive e�ect on the estimation of the truth µ. For the purpose of the simulation,

we assume that the truth value µ is equal to 0.

We consider, as before, N = R ∪ E and that the initial individual variance is

σ2
i = σ2

R, ∀i ∈ R, and σ2
i = σ2

E, ∀i ∈ E. For each agent i, we consider the

dispersion of its measure with respect to those of its neighbors:

σ̃2
i =

(
xi(0)− 1

|Ni|
∑
j∈Ni

xj(0)
)2
.

This means that only one measurement of the empirical variance of each agent is

made and this is based on the initial opinions of its neighbors. In addition, we

consider the following model for the assigment of the self-weight:

α =
0.9

1 + kσ̃2
, (5.1)

where k ≥ 0 is a non-negative coe�cient. We observe that, since k is non-negative,

α is a decreasing function. For this reason, we can express the following concept:
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"The closer I get to the truth value, the more I will be self-con�dent in future

decisions."

In order to �nd the best alpha values, we modify the coe�cient k of the bell

curve, see Figure 5.1. In the subsequent simulations the angular coe�cient k

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k = 0.001
k = 0.005
k = 0.01
k = 0.02
k = 0.035
k = 0.07
k = 0.2
k = 0.5

Figure 5.1: Several functions used to determine the self-weights.

assume values ranging between 0.002 and 2.5.

An analogous version of this problem is considered in [10] in the context of sensor

networks. There, agents are sensors that can be faulty (regular nodes) or non-

faulty (expert nodes). The proposed solution was a distributed implementation of

the maximum-a-posteriori estimator. This type of solution is however not feasible

in our social context for its complexity. Here we have preferred to consider and

study a much simpler learning model.
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5.1 Simulations

We implement these simulations on two di�erent networks. First, we work on

a Complete graph. Then, we consider an Erd®s-Rényi random graph. In both

cases, the number of agents and experts is known. We apply the Monte Carlo

simulation to have a general idea of the goodness of the estimate. The number

of runs r in each simulation is set to r = 1000. Hence, we get r initial conditions

by generating a random number from the normal distribution, each independent

of the others, and we save them in the rows of a matrix. In this way we can

always use the same initial conditions when the self-weights assignment function

varies and the comparison of the results is not a�ected by noise. The di�erent

initial conditions are studied at di�erent times. Then, for each agent, we calculate

the mean of the initial values of its neighbors which it will be used to estimate

its variance. In fact, the variance of each individual is de�ned as the squared

di�erence between the average of initial values of its neighbors and its own initial

condition. Next, we de�ne αi according to the bell function (5.1). As said above,

we change the coe�cient k of the function to identify the one that produces

the most improvement. As seen in Section 2.4, the use of self-weights modi�es

the invariant measures. In order to identify the new centrality vector, we have

to compute the normalization constant. Finally, we can calculate the consensus

point.

Performances are studied through the analysis of the following indices: X̄, the

mean of the initial condition averages in absolute value; X̄∞, the mean of the con-

sensus points in absolute value; X̄α
∞, the mean of the consensus points in absolute

value when we use the self-con�dence; and M , the magnitude of improvement

between the two consensus value. We report these performance indices in each

simulation. First of all, we remember from the theory that for the generic initial
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condition x ∈ Rn, we get the following values:

x̄ =
1

n

n∑
i=1

xi(0), x̄∞ =
n∑
i=1

πixi(0), x̄α∞ =
n∑
i=1

παi xi(0).

The �rst one, i.e., x̄, is the initial conditions mean, the other two cases concern

the consensus points. The former is the consensus reached without self-weights,

while the latter is the consensus reached by introducing the self-con�dence. Now

we can introduce the indices mentioned above, they are given by

X̄ =
1

r

r∑
j=1

|x̄j|, X̄∞ =
1

r

r∑
j=1

|(x̄∞)j|, X̄α
∞ =

1

r

r∑
j=1

|(x̄α∞)j|

and the magnitude of improvement is thus

M =
X̄∞ − X̄α

∞
X̄∞

.

The X̄ measures the average of the initial opinions without social in�uence. On

the contrary instead, X̄∞ and X̄α
∞ imply the presence of social in�uence. We are

interested in positive values of M because they represent an improvement on the

consensus point. In more detail, this means that the consensus obtained through

the self-weight adjustment is better than the original consensus, i.e., X̄α
∞ < X̄∞.

The greater M is, the bigger is the improvement got with respect to the original

consensus. That is to say the greater M is, the better is the consensus obtained

by the introduction of α. Therefore, we are looking for the biggest values of M .

The idea is to determine r random initial conditions and to apply the various

bell functions to identify the parameter α. We analyze di�erent situations by

changing the variances assigned to experts and regulars, used to determine the

initial conditions. In Table visible on each simulation, the improvement compared

to the case without self-weight is shown in correspondence with the number of

experts n1 and the coe�cient k used. Regarding the graphs, on the horizontal

axis there is the value of the coe�cient k and on the vertical one there is the

corresponding value of M .
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5.1.1 Complete Graph

In a complete graph with n individuals, each agent communicates with all the

others. Here, we consider the complete graph with self-loops. For this reason,

we estimate the variance as the squared di�erence between the individual opinion

and the overall average of the initial opinions:

σ̃2
i =

(
xi(0)− x̄

)2
, ∀i = 1, ..., n,

where xi(0) is the initial opinion of the agent i and x̄ = 1
n

∑n
i=1 xi(0). Since in the

complete graph the centrality vector is π = 1
n
1, see (4.4), then x̄ also represents

the consensus in the absence of self-weights, i.e., x̄∞. For that reason X̄ = X̄∞.

Figure 5.2: DeGroot Model on Complete Graph, n = 400, n1 = 40, σ2
E = 1,

σ2
R = 11 and x̄α

∗
∞ = 0.1091, x̄α̃∞ = 0.1752, x̄ = 0.2207.

Figure 5.2 illustrates the comparison between the study case in Chapter 3 and

the one of the following simulations, which we now analyze in detail. We consider

a society where the number of individuals is 400, while the number of experts

varies. We use the following values: 40, 120, and 250.
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Simulation 1. The variances used to determine the random initial condi-

tions of experts and regulars are considerably di�erent, i.e., σ2
E = 0.2 and σ2

R = 11,

respectively. As expected, X̄∞ is monotonically decreasing with respect to the

number of experts. It is possible to observe this phenomenon from the �rst row

of Table 5.1: when the number of experts increases, then X̄∞ decreases.

n1 = 40 n1 = 120 n1 = 250

X̄∞ 0.4003 0.3672 0.2777

X̄α
∞ M X̄α

∞ M X̄α
∞ M

k=0.002 0.3687 0.0789 0.2617 0.2873 0.1361 0.5098

k=0.005 0.3493 0.1273 0.2291 0.3761 0.1069 0.6149

k=0.01 0.3335 0.1668 0.2075 0.4348 0.0906 0.6737

k=0.03 0.3131 0.2177 0.1844 0.4979 0.0762 0.7255

k=0.04 0.3097 0.2261 0.1814 0.5060 0.0750 0.7299

k=0.05 0.3079 0.2306 0.1801 0.5094 0.0748 0.7306

k=0.07 0.3066 0.2339 0.1801 0.5095 0.0758 0.7270

k=0.1 0.3072 0.2324 0.1827 0.5025 0.0787 0.7166

k=0.2 0.3141 0.2153 0.1953 0.4681 0.0897 0.6769

k=0.3 0.3211 0.1977 0.2072 0.4358 0.0995 0.6415

k=0.4 0.3271 0.1828 0.2173 0.4082 0.1080 0.6111

k=0.6 0.3364 0.1596 0.2333 0.3646 0.1217 0.5617

k=0.9 0.3461 0.1354 0.2506 0.3174 0.1372 0.5058

Table 5.1: Simulations on Complete Graph where σ2
E = 0.2 and σ2

R = 11.

Compared to the classic DeGroot model, we get remarkable improvements at the

asymptotic level. In the best three cases of n1 = 40, n1 = 120 and n1 = 250, we

improve the consensus respectively of 23.39%, 50.95% and 73.06%.

As we can observe from Figure 5.3, it is clearly visible a maximum value, which
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is obtained by using k of the order of magnitude of 10−1 in all three cases.
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Figure 5.3: Simulations on Complete Graph with n = 400. Comparison between

the values that M assumes in the three di�erent situations (n1 = 40, n1 = 120,

n1 = 250), when the coe�cient k varies. (σ2
E = 0.2 and σ2

R = 11).

Simulation 2. Here, for the experts, we use the same variance of the previ-

ous simulation, i.e., σ2
E = 0.2. The variance used to determine the initial random

conditions of regular agents is clearly lower than the previous case, σ2
R = 4. This

has a remarkable e�ect on the average of the initial conditions. In fact, the values

of X̄∞ are much lower than in Simulation 1. By comparing Figures 5.3 and 5.4,

we observe a similar behavior. Furthermore, even in this case there is a maximum

value, which, as before, is obtained for k of the order of magnitude of 10−1 in all

three cases. However, we notice that these values of k are a little bit larger than

in the previous simulation.
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n1 = 40 n1 = 120 n1 = 250

X̄∞ 0.1481 0.1311 0.0983

X̄α
∞ M X̄α

∞ M X̄α
∞ M

k=0.002 0.1448 0.0225 0.1168 0.1092 0.0757 0.2300

k=0.01 0.1386 0.0643 0.0997 0.2397 0.0547 0.4436

k=0.03 0.1314 0.1126 0.0865 0.3402 0.0425 0.5680

k=0.05 0.1279 0.1364 0.0813 0.3802 0.0386 0.6077

k=0.07 0.1257 0.1510 0.0784 0.4018 0.0368 0.6257

k=0.1 0.1237 0.1647 0.0761 0.4195 0.0357 0.6367

k=0.2 0.1212 0.1816 0.0742 0.4342 0.0361 0.6332

k=0.3 0.1208 0.1846 0.0748 0.4296 0.0378 0.6159

k=0.4 0.1210 0.1832 0.0760 0.4202 0.0397 0.5968

k=0.7 0.1226 0.1725 0.0802 0.3884 0.0447 0.5456

k=1.2 0.1254 0.1534 0.0860 0.3443 0.0508 0.4830

k=1.8 0.1281 0.1353 0.0911 0.3055 0.0560 0.4307

k=2.2 0.1295 0.1257 0.0937 0.2853 0.0586 0.4039

Table 5.2: Simulations on Complete Graph where σ2
E = 0.2 and σ2

R = 4.

Compared to the classic DeGroot model we get improvements at the asymptotic

level. In the best three cases of n1 = 40, n1 = 120 and n1 = 250, we improve the

consensus respectively of 18.46%, 43.42% and 63.67%. Here, the original DeGroot

model works better than in Simulation 1 because the regulars' variance decreased

considerably. For this reasons, the improvements are lower than in the previous

case.
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Figure 5.4: Simulations on Complete Graph with n = 400. Comparison between

the values that M assumes in the three di�erent situations (n1 = 40, n1 = 120,

n1 = 250), when the coe�cient k varies. (σ2
E = 0.2 and σ2

R = 4).

Simulation 3. Now let us try to increase the variance used to determine

the initial random conditions of expert agents compared to the previous case, by

setting σ2
E = 1.5, while for regular ones it remains the same, σ2

R = 4.

This worsening of experts variance, σ2
E = 1.5 compared to σ2

E = 0.2, has two main

consequences. First, as we can observe from Table 5.3, the consensus obtained by

the original DeGroot model, i.e., X̄∞, is slightly worse than the one obtained in

Simulation 2. Second, the improvements are less signi�cant. This last aspect is

probably due to the fact that the di�erence between the two variabilities (experts

and regulars) is reduced.
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n1 = 40 n1 = 120 n1 = 250

X̄∞ 0.1545 0.1371 0.1093

X̄α
∞ M X̄α

∞ M X̄α
∞ M

k=0.002 0.1522 0.0152 0.1290 0.0589 0.0993 0.0915

k=0.01 0.1510 0.0226 0.1249 0.0893 0.0946 0.1346

k=0.015 0.1510 0.0230 0.1245 0.0917 0.0944 0.1364

k=0.02 0.1510 0.0226 0.1245 0.0919 0.0945 0.1351

k=0.03 0.1512 0.0212 0.1248 0.0899 0.0951 0.1298

k=0.05 0.1517 0.0180 0.1256 0.0841 0.0963 0.1190

k=0.07 0.1521 0.0154 0.1263 0.0787 0.0973 0.1100

k=0.1 0.1526 0.0124 0.1272 0.0719 0.0985 0.0992

k=0.2 0.1534 0.0073 0.1291 0.0581 0.1008 0.0775

k=0.4 0.1539 0.0042 0.1311 0.0439 0.1030 0.0577

Table 5.3: Simulations on Complete Graph where σ2
E = 1.5 and σ2

R = 4.

The best improvement is obtain by using k of the order of magnitude of 10−2 in all

three cases. Compared to the classic DeGroot model we get slight improvements

at the asymptotic level. In the best three cases of n1 = 40, n1 = 120 and n1 = 250,

we improve the consensus respectively of 2.3%, 9.19% and 13.64%.

Simulation 4. Here, the variances used to determine the initial random

conditions are similar to Simulation 1, but the experts one has got worse. Thus

we have σ2
E = 1.5, while for regular agents there are no changes, σ2

R = 11. The

fact that this is the worst situation that we have studied so far can be seen from

the values of X̄∞, worse than all the other cases, and from the value X̄α
∞ that is

much higher than the previous cases.
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n1 = 40 n1 = 120 n1 = 250

X̄∞ 0.4156 0.3672 0.2819

X̄α
∞ M X̄α

∞ M X̄α
∞ M

k=0.002 0.3829 0.0785 0.2834 0.2284 0.1630 0.4220

k=0.005 0.3734 0.1016 0.2677 0.2711 0.1524 0.4594

k=0.01 0.3698 0.1103 0.2649 0.2788 0.1552 0.4493

k=0.015 0.3697 0.1104 0.2677 0.2711 0.1610 0.4288

k=0.02 0.3706 0.1082 0.2713 0.2611 0.1667 0.4086

k=0.03 0.3732 0.1021 0.2785 0.2415 0.1765 0.3740

k=0.05 0.3780 0.0905 0.2901 0.2101 0.1906 0.3237

k=0.07 0.3818 0.0814 0.2985 0.1873 0.2005 0.2889

k=0.1 0.3860 0.0712 0.3074 0.1628 0.2108 0.2523

Table 5.4: Simulations on Complete Graph where σ2
E = 1.5 and σ2

R = 11.

The best improvement is obtained by using k of the order of magnitude of 10−2 in

all three cases. Compared to the classic DeGroot model we get improvements at

the asymptotic level. In the best three cases of n1 = 40, n1 = 120 and n1 = 250,

we improve the consensus respectively of 11.04%, 27.88% and 45.94%.

Comment.

The highest improvement rates, compared to the classical DeGroot, are when the

variability of the experts is very small.

Furthermore, in each simulation the order of magnitude of the best k is the same:

it does not depend on the number of experts, but on the their variance. When

σ2
E = 0.2, k is of the order of 10−1, while, when σ2

E = 1.5, it is of the order of

10−2.
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5.1.2 Erd®s-Rényi Graph

In this section, we perform our simulations on Erd®s-Rényi graphs, which have

been presented in Section 1.1.1.

In contrast to the complete graph, in Erd®s-Rényi graph, individuals are not in

communication with all the others. Furthermore, not all agents have the same

number of neighbors. For this reason, we estimate the variance as the squared dif-

ference of the individual opinion with respect to the average response of neighbors

as

σ̃2
i =

(
xi(0)− 1

|Ni|
∑
j∈Ni
j 6=i

xj(0)
)2

The idea of establishing each individual's self-con�dence based on the opinions of

its neighbors has proved to be a success, in spite of reducing the comparison to

just a little part of the group. In order to assign the values of the parameter α we

use the decreasing function (5.1). The experiment has been carried out similarly

to the one that we have analyzed for the complete case. In the implementation,

the di�erences are mainly two:

• the network structure,

• the centrality vector π.

Regarding the structure of the network, we consider an Erd®s-Rényi graph, so

the structure is not de�ned. The centrality vector is not known a priori as in the

case of the complete graph, since degrees are random variables. In this case it is

possible to determine it once the network is �xed:

πi =
di

2|E|
, ∀i ∈ V ,

where di is the degree of the individual i and |E| is the number of connections

in the network. Once determined π, we can calculate the consensus in the case

without self-weights as seen above x̄∞ =
∑n

i=1 πixi(0).
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Firstly, we apply the standard DeGroot Model to observe that consensus is

reached when agents are connected through an Erd®s-Rényi graph. Secondly,

we note that the Erd®s-Rényi graph is wise because the limiting beliefs converge

jointly to the true state µ = 0. In Figure 5.5 we examine the learning model in

a group of 400 individuals, with 40 experts. The variances used to obtain the

random initial condition are σ2
E = 0.2 for expert individuals and σ2

R = 11 for

regular ones.
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Figure 5.5: DeGroot Model on Erd®s-Rényi Graph, n = 400, n1 = 40, σ2
E = 0.2,

σ2
R = 11.

The consensus reached by the original DeGroot Model is X̄∞ = −0.2367, while the

one reached with the self-weight adjustment is X̄α
∞ = −0.1469. The self-weight

adjustment loses in convergence time, but gains on the quality of the consensus

point as estimation of the truth.

In the next simulations, we see in detail the e�ects of the self-con�dence intro-

duction on networks with n = 400 agents.
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Simulation 1. In this scenario, the variances used to determine the random

initial conditions di�er greatly from experts (σ2
E = 0.2) to regular agents (σ2

R =

11), and the probability for each link to be present is equal to p = 0.1. Here,

we generate a random network and on it we apply the di�erent initial conditions.

In Table 5.5, it is possible to observe the trend of the improvements when k

varies. The improvement grows until it reaches a maximum and then it begins to

decrease.

n1 = 40 n1 = 120 n1 = 250

X̄ 0.4161 0.3697 0.2806

X̄∞ 0.4186 0.3736 0.2823

X̄α
∞ M X̄α

∞ M X̄α
∞ M

k=0.002 0.3850 0.0804 0.2727 0.2700 0.1441 0.4893

k=0.01 0.3567 0.148 0.2255 0.3963 0.0997 0.6467

k=0.02 0.3482 0.1684 0.2136 0.4283 0.0899 0.6814

k=0.03 0.3452 0.1754 0.2096 0.4390 0.0868 0.6925

k=0.04 0.3442 0.1779 0.2082 0.4428 0.0857 0.6964

k=0.05 0.3439 0.1786 0.2078 0.4437 0.0854 0.6973

k=0.07 0.3442 0.1777 0.2086 0.4415 0.0860 0.6954

k=0.09 0.3452 0.1755 0.2102 0.4373 0.0870 0.6916

k=0.1 0.3457 0.1742 0.2111 0.4349 0.0877 0.6894

k=0.2 0.3512 0.1611 0.2203 0.4103 0.0941 0.6665

k=0.4 0.3589 0.1427 0.2343 0.3729 0.1044 0.6301

Table 5.5: Simulations on Erd®s-Rényi Graph where σ2
E = 0.2 and σ2

R = 11.

Of course, we could generate a new random network for each initial condition.

The trend would remain largely the same, but the X̄∞ value for each k would be

a�ected by noise.
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From Table 5.5, we see that the social in�uence in the classical DeGroot model

leads to a slight worsening compared to the average of the initial opinions, see X̄∞

and X̄. In all cases, the best improvement is obtained by using k = 0.05, i.e., k of

the order of magnitude of 10−1. Compared to the classic DeGroot model we get

good improvements at the asymptotic level. In the best three cases of n1 = 40,

n1 = 120 and n1 = 250, we improve the consensus by 17.86%, 44.37% and 69.73%,

respectively. It is interesting to note that the improvement rates are lower than

the ones in the Simulation 1 of the complete graph. This is due to the fact that,

here, we have just local information, therefore we have a limited knowledge.

If we had a comparison with the average opinions of all the agents (we denote

this Method as Method 2), the improvements would be more signi�cant. In Figure

5.6, we considered a network with n1 = 40 experts, on the left we estimated σ̃2

based on the average response of the neighbors, while on the right based on the

average response of all individuals in the network. Between the �rst maximum

and the second one there is an increment of 16.66%.
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Figure 5.6: Simulations on Erd®s-Rényi Graph. Two di�erent ways of evaluating

σ̃2, �xed n1 = 40 and p = 0.1.

As the density of the graph decreases, the di�erence between the two methods

increases.

Of course, Method 2 requires more information than Method 1. In a network
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where agents are not connected with everyone, the global mean of the initial con-

ditions must be given by an external system and/or individual.

Simulation 2. Now let us compare the two methods for calculating empirical

variance from another point of view. Given the parameters, we wonder how many

experts are needed to obtain the same consensus point. Assume that the variances

used to get the initial conditions of the experts and the regulars are respectively

σ2
E = 0.2 and σ2

R = 4. The number of individuals is n = 400, and the probability

for each link to be present is equal to p = 0.1.

n1 = 40 n1 = 34

X̄ 0.1528 0.1531

X̄∞ 0.1560 0.1542

X̄α
∞ M X̄α

∞ M

k=0.05 0.1343 0.1387 0.1360 0.1181

k=0.07 0.1325 0.1508 0.1338 0.1321

k=0.1 0.1308 0.1612 0.1317 0.1454

k=0.2 0.1289 0.1739 0.1290 0.1634

k=0.5 0.1288 0.1743 0.1288 0.1642

k=0.7 0.1294 0.1703 0.1299 0.1576

k=1.1 0.1307 0.1621 0.1320 0.1440

k=1.8 0.1326 0.1502 0.1349 0.1247

k=2.1 0.1332 0.1460 0.1359 0.1182

k=2.5 0.1340 0.1412 0.1371 0.1107

Table 5.6: Simulations on Erd®s-Rényi Graph by using two di�erent ways of

evaluating σ̃2, where σ2
E = 0.2 and σ2

R = 4.
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When k varies, the two methods respond similarly. We dwell on the situation

where they achieve the same consensus result, that is shown in the box. These

two values are really close, but the number of experts di�ers. By using Method

1 (comparison with neighbors) we have 40 experts, but the number of experts

needed to attain that result using Method 2 is lower: n1 = 34 experts are su�-

cient. There was a signi�cant decrease, approximately 15% less.

Simulation 3. We report the case where there is a margin of error for expert

agents. Therefore, we consider their variability equal to σ2
E = 2.5. In a society of

n = 400 individuals, we focus on three particular cases: the �rst, where the 10%

of the society is expert, the second, the 25%, and the last, the 40%. On average,

each agent has 40 neighbors, this means that p = 0.1.

n1 = 40 n1 = 100 n1 = 160

X̄ 0.4350 0.3873 0.3540

X̄∞ 0.4415 0.3935 0.3570

X̄α
∞ M X̄α

∞ M X̄α
∞ M

k=0.002 0.4180 0.0531 0.3300 0.1614 0.2774 0.2230

k=0.005 0.4122 0.0663 0.3242 0.1761 0.2708 0.2413

k=0.01 0.4101 0.0710 0.3255 0.1728 0.2734 0.2341

k=0.015 0.4099 0.0716 0.3284 0.1654 0.2774 0.2231

k=0.02 0.4103 0.0707 0.3312 0.1583 0.2809 0.2131

k=0.04 0.4126 0.0654 0.3394 0.1375 0.2910 0.1847

k=0.07 0.4154 0.0590 0.3467 0.1191 0.2998 0.1603

k=0.1 0.4175 0.0542 0.3513 0.1072 0.3052 0.1450

Table 5.7: Simulations on Erd®s-Rényi Graph where σ2
E = 2.5 and σ2

R = 11.
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In the case of a limited group of experts, the asymptotic consensus decreases, but

not in a signi�cant way. Nevertheless, it is possible to obtain an improvement not

only with respect to the original DeGroot, but also with respect to the average of

the initial beliefs.

Simulation 4. In this section, we focus on the analysis of society with very

limited number of experts. We work on a group of n = 400 individuals.

σ2
E = 0.2, σ2

R = 11, p = 0.1

k X̄ X̄∞ X̄α
∞ M

n1 = 2 0.1 0.4377 0.4452 0.4407 0.0102

n1 = 1 102 0.4491 0.4572 0.4562 0.0022

σ2
E = 0.2, σ2

R = 11, p = 0.2

k X̄ X̄∞ X̄α
∞ M

n1 = 2 0.2 0.4419 0.4450 0.4417 0.0074

n1 = 1 0.7 0.4475 0.4496 0.4491 0.0012

Normally, we keep getting slight improvements even when experts represent a

very small part of the group. Of course, a coe�cient k = 102 does not make

much sense. This is because it assigns signi�cant self-weights only if the empirical

variance is extremely small.
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Simulation 5. The self-weight adjustment does not always lead to an im-

provement. There could be cases in which particular values of k worsen the

consensus point with respect to the standard DeGroot model. In Table 5.8 it is

possible to observe an example in which this phenomenon occurs. In this simula-

tion there are 400 agents: 40 of them are experts and the probability for each link

to be present is equal to p = 0.1. The variances used to determine the random

initial conditions are the following: σ2
E = 1.5 and σ2

R = 4. The mean of the initial

opinion averages in absolute value is X̄ = 0.1592 and the mean of the consensus

points in absolute value is X̄∞ = 0.1622.

n1 = 40

X̄α
∞ M

k=0.02 0.1613 0.0059

k=0.03 0.1609 0.0080

k=0.04 0.1607 0.0094

k=0.05 0.1605 0.0104

k=0.07 0.1604 0.0112

k=0.1 0.1604 0.0111

k=0.2 0.1607 0.0095

k=0.5 0.1613 0.0057

k=0.7 0.1616 0.0040

k=1.1 0.1619 0.0017

k=1.8 0.1622 -0.0001

k=2.1 0.1623 -0.0005

k=2.5 0.1624 -0.0008

Table 5.8: Simulation on Erd®s-Rényi Graph where we observe some deteriora-

tions compared to the original DeGroot model. (σ2
E = 1.5 and σ2

R = 4).
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Simulation 6. In this simulation we test a learning model in which the up-

date takes place at each step. The idea is to update the empirical variance and,

consequently, the self-weight at every turn. Of course, this requires that also the

transition matrix is updated every time step by using the new α weight.

Now we go into details. We generate an Erd®s-Rényi graph and one thousand

initial conditions each one independent of the others, whose behaviors are then

mediated. In this way, we might get a general idea of the trend. We set, at the

beginning, the maximum number of revisions, in this case 12. For the group of

initial conditions, we analyze the behavior when the number of revisions varies.

In particular, on these values we test, �rst, just one revision, then two and so on,

up to testing twelve revisions.

We considered a society of n = 400 individuals of which n1 = 40 are experts and

the probability of inclusion of an edge is p = 0.1. We assumed that the variances

used to get the initial condition of experts and regulars are respectively σ2
E = 0.2

and σ2
R = 11. For the assignment of self-weights we used the following function:

α =
0.9

1 + 0.05σ̃2
.

Table 5.9 shows the value of the consensus reached by the self-weight adjustment,

X̄α
∞, and the degree of improvement with respect to the consensus without self-

con�dence, M , when the number of revisions varies.

The mean of the initial opinion averages in absolute value is X̄ = 0.4096 and the

mean of the consensus points in absolute value is X̄∞ = 0.4144.
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Number of

revisions X̄α
∞ M

1 0.3406 0.1780

2 0.3187 0.2310

3 0.3155 0.2386

4 0.3179 0.2329

5 0.3221 0.2228

6 0.3268 0.2114

7 0.3315 0.2001

8 0.3360 0.1893

9 0.3401 0.1793

10 0.3439 0.1702

11 0.3473 0.1619

12 0.3474 0.1617

Table 5.9: Continuous update on Erd®s-Rényi Graph.

As can be seen from Table 5.9, in all cases we get an improvement on the consensus

point of the classical DeGroot model. Consider that, doing more revisions is

computationally more complex than just one at the beginning. For that reason

it is useful to determine if the improvements are greater than the single initial

revision. Under these conditions, from revision 2 to revision 9, we are able to

obtain better results than with the only one initial revision. Nevertheless, the

greatest approach to the truth is reached with 3 continuous updates. In this case,

we improve the single one revision at the �rst step of 7.37%.
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Conclusions

In this thesis we have considered the DeGroot learning model in situation where

agents are heterogeneous with di�erent capabilities to estimate the "truth". We

have analyzed how modi�cations of the self-con�dence parameter can improve the

�nal consensus result.

At the beginning we analyzed an unknown network and our aim was to �nd

the ideal combination between πi and σ2
i in order to have an asymptotical im-

provement in the learning model. We obtained that the optimum πi is inversely

proportional to the variance of each individual σ2
i . In addition, given σ2

i , we found

a right combination of πi that allows to break down the error of the wisdom of the

crowd. The largest part of the work was about the introduction of self-con�dence

in a society split in expert agents and regular ones. In particular, we dealt with

introducing a certain self-weight α only to experts. We determined the optimal

form of α with a view to minimize the error with respect to the truth value. We

have seen that the possibility of improving the consensus point of the original De-

Groot model depends on how the centrality is di�used among expert agents and

regular ones. In fact, in order to obtain improvements by self-weight introduction,

the ratio between experts centrality di�usion rate and the one of regulars must

not explode. The idea of self-con�dence introduction has been shown even in

simulations that attempt to simulate a realistic scenario, in which nobody knows

its own error with respect the truth, but tries to minimize it through the comuni-

cation with neighbors. Based on self-weights adjustments, we decided to modify
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the DeGroot learning model by attributing weights to each individual. This mod-

i�cation was made to the �rst iteration, in which each agent estimates its own

empirical variance based on neighbors' responses. We found a function able to

assign self-weights in relation to empirical variance of individuals:

α =
0.9

1 + kσ̃2

Thanks to the simulations we found the k that lead to the best consensus point.

The order of magnitude of k depends on the variances used for the initial condi-

tions, but not on the number of experts. In particular, if the variability of experts

is really small, the order of magnitude of k is 10−1, instead, if it grants a range

of errors to expert agents, the order of magnitude of k is 10−2. We managed to

reduce the error of the consensus point of the original DeGroot model and we got

also improvements on the wisdom of crowds obtained by the mean of the initial

conditions. Of course, under the same setting conditions, in the Complete graph

we got better improvements rather than the Erd®s-Rényi one. This because, in

Erd®s-Rényi graph, we have local informations.

Clearly the study is not �nished, it is possible to deepen the update at each step,

i.e., updating weights at each step. Furthermore, it would be interesting to design

experiments to understand how people really act in a similar dynamic and which

form takes alpha in reality. We worked on DeGroot model, but it is possible to

think about similar applications on other opinion dynamics model, such as the

discrete-time Alta�ni model. Moreover, it would be interesting compare these

results with statistical methods or analyze time-varying networks.
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