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Abstract 
During the last 40 years, the number of artificial objects in orbit increased quite steadily, leading 
to a big problem to be dealt at present and in near future. Most of these objects correspond to 
space debris in LEO which represent a latent threat to all the missions performed in such a region. 
Current studies suggest that to mitigate this problem as effective as possible, active debris removal 
(ADR) must be carried out in the following years. In this line, this strategy of debris removal 
needs to be done in the most efficient way, needing deep analysis of each mission. This thesis 
analyses the validity and versatility of an algorithm capable of finding optimal solutions for the 
manoeuvres involved in the active debris removal missions. Due to the great number of 
possibilities that the mission could have, the algorithm has been developed as a genetic algorithm. 
The work analyses how an ADR mission could remove target debris which correspond to some 
stages of the Russian rockets from the family Cosmos. With this approach, the algorithm was able 
to demonstrate its ability to find different possible sequences of debris to be deleted, not being far 
away from the best solution reached. The best solutions where the vehicle must remove several 
objects from orbit can be considered in terms of fuel consumption, in terms of mission time or 
taking these two parameters into consideration. In addition, it also probed its good behaviour 
when changing the number of space debris to be deleted, together with variations in the problem 
parameters. In fact, the algorithm versatility enables this tool to be used with other target debris, 
and hence, to be implemented in different active removal debris missions. 
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Sommario 
Durante gli ultimi 40 anni, il numero di oggetti artificiali in orbita è aumentato abbastanza 
costantemente, portando ad un grosso problema da affrontare al momento e nel prossimo futuro. 
La maggior parte di questi oggetti corrisponde a detriti spaziali in LEO che rappresentano una 
minaccia latente per tutte le missioni eseguite in tale regione. Gli studi attuali suggeriscono che 
per mitigare questo problema nel modo più efficace possibile, la rimozione attiva dei detriti 
(ADR) deve essere effettuata nei prossimi anni. Secondo questa linea, la strategia di rimozione 
dei detriti deve essere eseguita nel modo più efficiente possibile, facendo un'analisi approfondita 
di ciascuna missione. Questa tesi analizza la validità e la versatilità di un algoritmo in grado di 
trovare soluzioni ottimali per le manovre coinvolte nelle missioni di rimozione di detriti attivi. A 
causa del gran numero di possibilità che la missione potrebbe avere, l'algoritmo è stato sviluppato 
come un algoritmo genetico. Il lavoro analizza come una missione ADR potrebbe rimuovere 
detriti bersaglio che corrispondono ad alcune fasi dei razzi russi dalla famiglia Cosmos. Con 
questo approccio, l'algoritmo è stato in grado di dimostrare la sua capacità di trovare diverse 
possibili sequenze di detriti da eliminare, non essendo lontano dalla migliore soluzione raggiunta. 
Le migliori soluzioni in cui il veicolo deve rimuovere diversi oggetti dall'orbita possono essere 
considerate in termini di consumo di carburante, in termini di tempo della missione o tenendo 
conto di entrambi questi due parametri. Inoltre, ha anche testato il suo corretto funzionamento al 
cambiare del numero di detriti spaziali da eliminare, insieme alle variazioni dei parametri del 
problema. In effetti, la versatilità dell'algoritmo consente a questo strumento di essere utilizzato 
con altri detriti bersaglio e, quindi, di essere implementato in diverse missioni di rimozione attiva 
dei detriti.  
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CHAPTER 1 
Introduction 

1.1 Aims and scope 
The problem of space debris surrounding Earth is a problem that is being dealt at present by the 
international space community. Considering that such space debris could result in collisions with 
future missions, these must be deleted from the Earth’s orbit. One of the countermeasures that is 
being under study consists on the removal of some objects sending a space vehicle to do so, these 
are called active debris removal missions. 

The objective of the present thesis is to develop an algorithm capable of finding solutions to the 
complex problem of which space debris to be removed. In particular, it focuses on the sequences 
of objects that have to be removed in active removal missions. This means, that an algorithm is 
developed which is able to find the best order of removal of space debris that must be carried out 
by the vehicle. Due to the great number of possibilities that a space vehicle can perform when 
removing several objects out of a large population, it is not possible to try all the existing 
sequences in order to achieve the best one. 

In the present work only a population of debris which corresponds to the stages of the rockets 
within the Cosmos family is analysed. However, the software must be able to adapt to other debris 
not taking into consideration how the debris are deleted. This is, the thesis intention is not 
providing solutions on how the space debris are removed, but only which is the combination of 
debris that should be removed. Furthermore, the algorithm developed must prove to be feasible 
and efficient when performing its functions. In addition to this, the limitations of the algorithm 
and the best configuration of the code are some other main objectives, as well as to optimise the 
code strategies in order to reach valid solutions. 

All this is tested by numerous probes performed with the developed algorithm and comparing the 
obtained results between them. What is more, the necessary changes are also introduced in order 
to cover all the main objectives of the work. While doing so, the computational time is also 
measured, as it is the aspect that determines the feasibility, being in fact, the main reason why this 
thesis has been done. 

Finally, it must be said that the concerning thesis does not intend to provide a single solution for 
each case studied. Instead, it tries to give a wide range of valid solutions so that the user can make 
his choice, according to other aspects of the missions which are not treated in the present work. 
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1.2 Historic context 
In 1957, the Soviet Union performed a mission consisting on an object of 58.5 centimetres that 
emitted radio pulses, its name, the Sputnik. One part of the rocket, the superior stage of the 
launcher Thor-Ablester, that had carried the Sputnik was the first body of the space debris in 
history. However, the accumulation of space debris the world is facing does not start with this 
event as it was burnt when the re-entry into the atmosphere. One year later, mission Explorer 1 of 
the United States add a new body to the space debris too. 

Through years, space activity has experimented an exponential growth, with the direct 
consequence of generation of new space debris. It was not until August of 1964 that the first 
geostationary satellite was deployed, called Syncom-3. However, it was not until 1979 that the 
first explosion in GEO occurred. The following year, Lubos Perek presented some 
recommendations in order to mitigate this problem. These recommendations included the re-
orbiting of satellites when reaching their end of life into a disposal orbit. 

By the same time, LEO was the place where new technologies were tested and were most of the 
spatial debris were placed. Figure 1.2 shows the distribution of space debris through history, 
according to the orbit in which are placed. In addition, due to the dimensions of the space, it was 
in LEO where the problem started to worry the international community. In 1965 the Cosmos-50 
satellite was exploded intentionally after a mission of critical failure. In 1968 Cosmos-249 was 
the first anti-satellite weapon, destroying another satellite during a rendezvous operation. In these 
years it was found that the main contributor to the increase of debris was the explosions of nine 
Delta second stages. The problem was rapidly solved, so, this could be denominated as the first 
implementation of space debris mitigation measures. 

In July 1996, the first accidental collision between two catalogued objects was recorded, 
corresponding to the collision between the Cerise satellite and a fragment of the Ariane orbital 
stage exploded in 1986. Since 2001 the ISS has been permanently manned, with space debris 
having played important roles in the design of the different modules of the station. They are 
protected by debris and meteoroid protection shielded, being able to stand after impacts with 
bodies of 1 cm. After an accident that took place in 1986, a flight rule was established for Space 
Shuttle operations, indeed, it was a procedure for collision avoidance of trackable space objects. 
In fact, at present, the ISS performs one avoidance manoeuvre per year. 

Of the entire population of tracked space debris, the 66% have decayed, being burned due to re-
entry. Nevertheless, in 1964, after a launcher failure, the Transit 5BN-3 satellite re-entered above 
the Indian Ocean, being the first risk object re-entry. Due to the possibility of these type of events, 
the preparation of the “UN Principles Relevant to the Use of Nuclear Power Sources in Space” 

was carried out. There were also some other objects that represented danger due to the dimensions 
of these ones. Figure 1.1 represents the number of objects that have being re-entering in Earth’s 

atmosphere, most of them being burned. 
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Figure 1.1 – Debris distribution through history, classified by types 

All this said, the concern about this real problem has grown, and therefore, the number of 
accidents and of generation of debris is much lower than before. Nonetheless, all the debris 
generated through history are still in orbit, generating much more debris. That is the reason why 
not only countermeasures of preventions but of active debris removal are being under study. Thus, 
the last ten fragmentation events (2018) can be seen in table 1.1. This number is low in comparison 
to the number of events in previous years when space debris was not considered to be such a big 
deal. Moreover, the number of fragments created is not very big, thanks to the new technologies 
and techniques used for this reason. 

Name Int. Designator Break up 
epoch 

Number of 
fragments 

Centaur-5 SEC (Atlas V 401) 2014-055B 30 Aug 2018 0 

Proton-K/DM-2 ullage motor (SOZ) 2005-050F 24 Aug 2018 0 

L-14B-res (YF40B-res) 2013-065B 17 Aug 2018 4 

Proton-M/DM-2 ullage motor (SOZ) 2010-007H 22 May 2018 3 

Titan Transtage 1969-013B 28 Feb 2018 18 

Fregat SBB 2017-086C 12 Feb 2018 0 

Proton-M/DM-2 ullage motor (SOZ) 2010-041G 03 Sep 2017 9 

Telkom 1 1999-042A 25 Aug 2017 0 

AMC 9 (GE 12) 2003-024A 01 Jul 2017 0 

AMC 9 (GE 12) 2003-024A 17 Jun 2017 0 

Table 1.1 – Latest fragmentation events [21] 
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Figure 1.2 – Debris distribution through history, classified in orbit regimes 

The above figure shows how the most critical orbits are LEO orbits, where most of the satellites 
are launched. Furthermore, there are two important events that can be appreciated in the graph. 
One, creating 3443 fragments in the year 2007, when an old Chinese meteorological spacecraft 
called Fengyuun-1C, was hit and destroyed by a ground-to-space missile during an anti-satellite 
test. While the accident of the Cosmos-2251 in 2009 created 1667 fragments. This satellite 
collided with the U.S. commercial communications satellite Iridium. Except for these ones, it can 
be appreciated that debris, at least in LEO, increase slowly nowadays. 

1.3 Spatial debris at present 
At present, January of 2019, there are more than 84000 tonnes of mass of all space objects in 
Earth orbit. This number correspond to estimations by statistical models which suggest: 34000 
objects greater than 10 cm, 900000 objects of 1 cm to 10 cm and 128 million objects from 1 mm 
to 1 cm. From all these objects only 22300 number of debris objects are regularly tracked by 
Space Surveillance Networks and maintained in their catalogue. What is more, according to 
ESA’s estimation the number of break-ups, explosions, collisions, or anomalous events resulting 
in fragmentation if greater than 500. 

Since the start of the spatial activities, 5450 rocket launches have been performed, placing into 
Earth orbit 8950 satellites. From these satellites, 5000 satellites are still in space while only 1950 
are still functioning, being these a source of debris. These big bodies are tracked in order to avoid 
them in future missions due to the high danger that a possible collision represents. The previous 
given numbers are referred to Jan 2019, while figure 1.3 represents rocket bodies and inactive 
satellites in July 2012. That is the reason why the numbers could not match. 
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Figure 1.3 – Distribution of inactive satellites and rocket bodies residing in 
LEO as a function of semi-major axis and inclination (19 July 2012) 

As it can be seen, there are some inclinations in which there is a concentration of spatial debris of 
this type. This happens due to two different reasons: For the satellites (represented in blue) there 
are orbits that are more used than other for certain missions, therefore when they become 
inoperative, they are still in these inclinations of interest. The same happens with the altitude of 
the orbits, where there is also concentration at the altitudes of interest. These reasons also apply 
to the rocket bodies, where the injection is strongly related to the orbit wanted for the satellite. In 
fact, it can be seen a concentration of debris at the inclination of 82 degrees most of whom 
correspond to the Cosmos family, debris involved in this work. 

Now, the most important events of creation of spatial debris are ranked. It must be outlined that 
the ranking’s criteria are the number of fragments created, not the dimensions or danger of these 
ones. Furthermore, this ranking is referred to the date: 20-Dec-2018 14:47 UTC. 

Rank Name Int. Designator Breakup 
epoch 

Fragments 

1 Fengyun 1C 1999-025ª 11 Jan 2007 3443 

2 Cosmos-2251 1993-036ª 10 Feb 2009 1667 

3 HAPS 1994-029B 03 Jun 1996 753 

4 Iridium 33 1997-051C 10 Feb 2009 627 

5 Cosmos-2421 2006-026ª 14 Mar 2008 509 

6 H8 1986-019C 13 Nov 1986 497 

7 Cosmos-1275 1981-053ª 24 Jul 1981 478 

8 NOAA 16 2000-055ª 25 Nov 2015 458 

9 Agena D 1970-025C 17 Oct 1970 375 

10 PSLV-CA fourth stage 2001-049D 19 Dec 2001 371 
Table 1.2 – Top10 fragmentation numbers by number of fragments [21] 
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On the other hand, table 1.3 shows the most important events in terms of number of space debris 
which are in orbit the 20th of December of 2018. 

Rank Name Int. 
Designator 

Breakup 
epoch 

Fragments 

1 Fengyun 1C 1999-025A 11 Jan 2007 2830 

2 Cosmos-2251 1993-036A 10 Feb 2009 1075 
3 NOAA 16 2000-055A 25 Nov 2015 457 

4 Cosmos-1275 1981-053A 24 Jul 1981 419 

5 Iridium 33 1997-051C 10 Feb 2009 329 
6 Agena D 1970-025C 17 Oct 1970 234 

7 DMSP Block 5D-2 F13 1995-015A 03 Feb 2015 218 
8 DELTA P 1975-052B 01 May 1991 197 

9 DSV-3H-4 1973-086B 28 Dec 1973 197 
10 Zenit-2 second stage 1992-093B 26 Dec 1992 196 

Table 1.3 – Top10 fragmentation numbers by number objects in orbit [21] 

1.3.1 Collision probability 

The probability of collision with a spatial object depends on the dimensions and velocity of the 
debris. Oftenly, space vehicles and satellites are impacted with debris up to a millimetre as these 
ones are impossible to be tracked and consequently avoided. However, the dimensions of these 
debris are not enough to cause significant damage on the vehicles. 

While for debris which are not trackable but could cause a significant dame on the satellites, some 
countermeasures are taken. One of these consists on orientating the satellite in an appropriate 
way, so the damage caused by the debris is not so harmful as could be. Another one is to shield 
the vehicle correctly, with different materials and layers. 

For the calculation of the probability of collision between an operative satellite and a debris, NASA 
uses various approach, from which one is presented hereafter.  

𝑃𝐶 =
1

√(2𝜋)2|𝐶∗|
∬ 𝑒𝑥𝑝 (−

1

2
𝑟𝑇𝐶∗−1𝑟) 𝑑𝑋𝑑𝑍 (1.1) 

Where C* is the projected covariance, and PC is the probability of collision which is also defined 
as the portion of density that falls in the control volume of the satellite. Furthermore, it must be 
said that this results only provides a nominal estimation. 

The US Space Surveillance Network can track individually objects whose dimensions are superior 
to 10 centimetres. Hence, the DOD informs the agencies if there is a vehicle that is in danger of 
collision with trackable objects. A collision is termed catastrophic if it results in the complete 
fragmentation of impactor and target. NASA estimates this with the following empirical 
condition: 

0.5 ∗
𝑀𝑖𝑚𝑝𝑉𝑖𝑚𝑝

2

𝑀𝑡𝑎𝑟𝑔
> 40 𝐽/𝑔 

(1.2) 

1.3.2 Expected future 

At present, there is a common concern about this growing issue, however, efforts to solve such a 
big deal are just beginning. In figure 1.4 three different possible futures are presented, all of them 
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if this problem is not faced. As it can be seen, even in the best case where there are no more 
launches, the cumulative number of collisions grows, as there would still be numerous debris 
from previous missions that evolve in other debris and provoke other collisions. Apart from that, 
if space industry continues with the usual activity, it is predicted to be an exponential growth of 
collisions and space debris. This could lead to a future where no more launches could be 
performed due to the lack of free-danger space available. 

 

Figure 1.4 – Projected collisions among catalogued numbers [23] 

However, as it will be later explained in this chapter, agencies and companies from all over the 
world are starting to purpose some initiatives in order to reduce all this said. Despite at present 
being in early stages, these projects objective is to reduce the population of space debris, so the 
graph previously presented could be changed. 

1.4 Classifications 
Space debris can be classified according to very different criteria, not always being clear the 
differentiation between the categories. In this section some categories are stablished, and lastly 
the format TLE is introduced, that, despite not being a classification, is a way of denominating 
the space debris and objects around Earth. 

1.4.1 Origin of the debris 

Space debris is defined as all man-made objects including fragments and elements thereof, in 
Earth orbit or re-entering the atmosphere, that are non-functional (IADC definition). 

Three countries in particular are responsible for roughly 95% of the fragmentation debris currently 
in Earth’s orbit: China (42%), the United States (27.5%), and Russia (25.5%). The sources of the 
human made debris are: Inoperative satellites, tools and objects from missions and fragmentation. 
The space debris can be classified into different groups according to what is the cause that had 
created them.  

The event causes of the debris formation, are the following: 
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• Collision: Collision between catalogued objects, until now only 4 events. 
• Small impact: Small fragments of debris or micro-meteoroid that impact to a catalogued 

object. 
• Propulsion: Stored energy for non-passivated propulsion-related subsystems might lead 

to an explosion. 
• Electrical: Stored energy for non-passivated batteries might lead to an explosion. 
• Aerodynamics: The reason of the break up is the interaction with the atmosphere. 
• Accidental: Subsystems which showed design flaws ultimately leading to breakups in 

some cases. 
• Deliberate: Satellites that were deliberately destroyed for several reasons. 
• Anomalous: Normally happens at low velocities, not expected separation of one or 

various detectable objects from a satellite that remains essentially intact. 
• Unknown: As the name indicates, the causes are unknown, this is, evidence is lacking to 

support any of the other categories. 

 

Figure 1.5 – Event causes and their relative share for all past 
fragmentation events [21] 

It must be mentioned, that the data that appears in this subsection comes from ESA's DISCOS and 
represents a snapshot from: 20-Dec-2018 14:47 UTC. More information can be found in [21]. 

1.4.2 Taxonomic acronym 

The taxonomy described in this section consists of two different parts, one for the debris class and 
the other one for the debris hazard. Thanks to this acronym (see figure 1.6), it is easy seen at first 
glance the main characteristics of the debris, and hence, easier to choose which is the ADR 
mission that suit most to deorbit them. 

The first part of the acronym is defined as the debris class, where the most prominent physical 
and dynamical properties of the objects are presented. Each letter refers to a specific 
characteristic: 



Missions for Removal of Orbital Debris | Chapter 1: Introduction 

 20 

• Orbital state: Capability of an object to control its orbital position. C for controlled and 
U for uncontrolled. 

• Attitude state: Capability of an object to control its attitude. S for actively stabilized, R 
for regular rotating and T for tumbling. 

• External shape: Description of the shape of the body. X for convex shapes, P for regular 
polyhedral and I for irregular shape. 

• Overall size: Mean size of an object. S for small objects (< 10cm), M for medium (< 1m) 
and L for large objects (> 1m) 

• Area-to-mass ration (AMR): Used as provides more information than the mass 
parameter. lo for low (< 0.8m2/kg), me for medium (< 2m2/kg) and hi for high (> 2m2/kg). 

Only analysing this part of the acronym it is possible to draw some conclusions about the type of 
ADR missions that adapt best with the needs. However, some other characteristics are needed, 
that is why the second part of the acronym gives more information. Nevertheless, it is enough for 
a more programmatic classification of space debris and can be used to filter classes that are non-
economically viable or practical for ADR. 

The second stage is named as debris hazard. It consists just in two different aspects, the break-up 
risk index and the level of non-cooperativeness. Both are complex indexes which are briefly 
described in the present work, however, if a deeper knowledge is wanted more detailed 
information can be found in [24]. 

• Break-up risk index: Defined by calculating its criticality number (CN) as a product 
between severity number (SN) and probability number (PN). The two numbers 
definitions can be found in the ESA’s standard [25]. It must be highlighted that methods 
such as robotic/tether-based are suitable for CN<4 while for CN>4 ne/contactless 
methods are the most appropriate. 

• Level of non-cooperativeness: Difficulty that a capture manoeuvre is likely to face due 
to the angular rate, berthing feature existence, material properties and mechanical 
clearance of a capturing interface of a target. Therefore, 14 levels are considered in table 
1.3. The levels are expressed as a combination of an Arabic numeral (from 1 to 7, with 1 
being the least non-cooperative and 7 the most non-cooperative level) and a letter 
indicating the dimensions of the mechanical clearance of the capturing interface (large 
(L) or small (S)) 

 
Levels 

 Capture interface & ADR association 
Rate Berth Material ADR 

Low Med High Y N Iso An L S 
1 X   X  X  Manipulator 
2 X    X X  Clamp w sync. /Tether Tether 
3 X    X  X Clamp w sync. /Net Net 
4  X  X  X  Manipulator w sync. 
5  X   X X  Clamp w sync. /Tether Tether 
6  X   X  X Clamp w sync. /Net Net 
7   X     Contactless 

Table 1.4 – Levels of non-cooperativeness of a target 

Two other higher-levels characteristics are also used. Firstly, it is distinguished whether the object 
is man-made or natural, the object type. The second one is the orbit type, this is the altitude of the 
orbit. They are classified into: 
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• LEO: 80-2000 km. 
• MEO: 2000-35786 km. 
• GEO: 35786 km 
• HEO: beyond 35786 km 

Now, as an example, a Cosmos 3M vector is presented following the explained taxonomic 
acronym. This debris is closely related to the present work, as it is part of the Cosmos family. 

 

Figure 1.6 – Example of the taxonomy application to the 1967-045B 
Cosmos-3M 2nd stage 

Debris class Debris hazard 
U Uncontrolled 9 Risk of breakup 
R Regular rotation 1L Difficulty of approach 
X Regular convex   
L Large   
lo Low are-to-mass ration   

Table 1.5 – Cosmos 3M 2nd stage taxonomic acronym 

To conclude the discussion on the methods of classification of space debris it must be outlined 
that what has been said is only an overview of the techniques of possible analysis. The choice of 
the most suitable mission profile and the system of capturing a debris is essential to increase the 
probability of success of a hypothetical ADR mission. In the case examined in this thesis, where 
it is necessary to remove four, five or eight different objects with a single aircraft chaser, making 
the most correct choices could allow you to extend the capabilities of the spacecraft and maximize 
the results. 

1.4.3 Two Line Elements (TLE) Format 

This is a data format into a list, which contains the main characteristics of the given object. It is 
used only for Earth-orbiting object for a given point in time, the epoch. Therefore, if the evolution 
of the object needs to be obtained, a propagation model must be used. Any algorithm using a TLE 
as a data source must implement one of the SGP models to correctly compute the state at a time 
of interest. Another variant of this format is the Three Line Elements, which is exactly the same 
but adding another line for the name of the mission. A catalog of all the known objects orbiting 
Earth can be found in [19], and in fact, is what has been used in this thesis as inputs for the 
concerning debris. 

 

Figure 1.7 – Two-line element set example 
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 Column Description Example 
 
 
 
 
 

Line 1 
 
 
 
 
 

1 Line Number 1 
3-7 Catalog Number 25544 
8 Elset Classification U 

10-17 International Designator 98067A 
19-32 Epoch (UTC) 04236.56031392 
34-43 1st derivative of Mean Motion with respect to Time 0.00020137 
45-52 2nd derivative of Mean Motion with respect to Time 00000-0 
54-61 B* Drag Term 16538-3 

63 Element Set Type 0 
65-68 Element Number 999 

69 Checksum 3 
 
 
 
 

Line 2 
 
 
 
 
 

1 Line Number 2 
3-7 Catalog Number 25544 
9-16 Orbit Inclination (deg) 51.6335 

18-25 Right Ascension of Ascending Node (deg) 344.7760 
27-33 Eccentricity 0007976 
35-42 Argument of Perigee (deg) 126.2523 
44-51 Mean Anomaly (deg) 325.9359 
53-63 Mean Motion (rev/day) 15.70406856 
64-68 Revolution Number at Epoch 32890 

69 Checksum 6 
Table 1.6 – Two Line Element description 

1.5 Technology under study 
According to various experts, the different technologies to deorbit debris are shown in the graph 
of figure 1.8. Furthermore, some characteristics are also presented, nevertheless, most of them are 
a mere estimation as they have not been implemented yet. In this section some of the most 
importants are presented with a brief description. 

 

Figure 1.8 – Technologies for removal of space debris 
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1.5.1 Mechanic capture 

The main idea of this active strategy of removal of debris is to capture somehow an object with a 
chaser, and afterwards carrying it to an orbit that will lead in a re-entry. Furthermore, another 
variation is the use of a vehicle capable of achieving various space debris to which attach devices 
for de-orbiting. This mission architecture is suitable and feasible for objects between 600 and 
2000 kilometres of altitude. It must be said that this technique has not been used yet, having been 
performed several simulations by different entities. 

Firstly, for the capture phase, different devices are under study. A robotic arm could be used to 
grab the debris. A net has also been considered to do so, as the impact of the debris on it would 
have as consequence less structural problems. A simpler alternative to nets is to shoot at close 
range on the target some kind of resin or sticky foam. Once attacked, it would expand generating 
more friction. The usefulness of this method would be confined only to satellites in low and small 
orbit. For larger, heavier and larger objects at high altitude it is not effective. Moreover, one could 
also use a system capable of launching a harpoon to capture the target. This would allow a distance 
to be maintained superior between chaser and debris and avoid collisions. More than just a single 
harpoon can be used in order to increase the number of debris deleted in each mission and time. 

While for the phase of deorbiting, different strategies could be used. In fact, most of the bellow 
presented devices could be used in combination with this technique. Apart from them, for dead 
or non-functioning satellites, the chaser could provide the necessary resources to make them 
function, such as: batteries, communication systems… 

1.5.2 Drag enhancement devices 

Being part of the passive devices, these are at first glance the most economic ones. The objective 
of them is to increase the aerodynamic drag in order to reduce the height, or the perigee, of the 
orbit. With this, the object will end in a re-entry. So, if this strategy is used on large objects, the 
pertinent calculations must be done in order to achieve a controlled re-entry. Due to the 
importance of the presence of atmosphere, this technique is particularly efficient for low orbits, 
less than 800 km of altitude. Another important point to be highlighted is that as the device must 
be installed on the debris, they must be reached somehow.  

1.5.3 Solar sails 

Just as the drag enhancement devices, is a passive strategy. Using the solar radiation pressure, a 
thrust is achieved in a determined direction. So, with this thrust the orbit of the object can be 
changed, leading to a lower perigee or altitude.  Solar photons transfer their momentum to the sail 
by impinging on its surface and the efficiency of the momentum exchange process increases with 
the reflectivity of the material. Nevertheless, if the correct calculations are not done, the decay 
effect within an orbit can be null. Although an orientable solar sail might seem the solution, it 
must be outlined that the cost of it could increase greatly. Furthermore, solar sails do not function 
well below 600-800 km because of the oxygen erosion and residual air drag. Hence, these ones 
can be used to obtain a lower orbit and afterwards implement other methods such as drag 
enhancement devices. 

1.5.4 Electro-dynamic or momentum exchange tethers 

Electrodynamic tethers (EDTs) belong to the passive group of devices. These are deployed from 
the defunct satellite along the local vertical at the end of its life. Electrons from the ionospheric 
plasma are collected thanks to an anodic device, Therefore, the operative range of this device is 
up to 1000 km of altitude. The mentioned collected electrons are returned back to the ionosphere 
by plasma contactor (cathode), thus an electric current is made flow inside the tether. This in turn 
interacts with the Earth magnetic field and, according to Lorentz law, produces a drag force that 
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make the entire object deorbit. The principal advantage of electrodynamic tethers is that, once 
deployed, it is completely passive and can deorbit objects from whatever inclination and altitudes 
up to 1000 km, and more, in relatively short time. However, this method needs to be installed on 
the object to be deorbited, hence, is most suitable for end life deorbit.  

1.5.5 Magnetic tugs 

This complex system consists on a chaser/tug satellite, equipped with thrusters and a powerful 
steerable magnetic dipole. This one, creates a magnetic field that attracts the dipole carried by the 
target object. So, the aim is to change the orbit thanks to such magnetic force. Indeed, when 
referring to Low Earth Orbits, the magnetic field of the Earth must be considered, as it interacts 
with the magnetic system. One of the main issues of this method is the position of the magnetic 
torque rod of the target which may be not located at its centre of mass. Furthermore, this strategy 
is useful only in dead satellites or debris with suitable magnetic properties. Nonetheless, the 
advantage of this method is that can be used to remove several objects in a single mission. 

1.5.6 Lasers 

There are drawbacks of a ground-based laser system in cleaning space debris. Therefore, the 
placement of a laser system in space is under current investigation. The main advantage of this 
strategy is that there is no necessity of a rendezvous with the debris. Two different techniques can 
be distinguished: direct ablation mode and ablation jet mode. The first one consists on deleting 
directly the debris by burning them. Due to the high energy required to do so, this mode is aimed 
to be used for tiny debris particles. On the other hand, the jet mode consists on use the laser to 
create a propulsive force in the debris which decreases the altitude of the orbit until reentry. There 
is no need of burning down the entire object, hece, it can be used in greater objects. The process 
to do such a thing is the following: 

1. High laser intensity at the debris surface induces ablation 
2. Ablated material is vaporized and ionized (plasma) 
3. The plasma expands in a velocity much higher than that of sound when the temperature 

rises to the vaporization point  
4. The reaction force modifies the trajectory 

An example of a laser system is presented in table 1.6. 

Assumption Laser parameters 
Orbital heigh of laser 420 km Type Solid state 
Orbital heigh of space station 400 km Pulse energy 1 kJ 
Operating distance 100 km Repetition frequency 100 Hz 
Debris size 1-10 cm Mirror diameter 2.44 m 
Debris mass < 70 g Power density 1.39x109W/cm2 

Table 1.7 – Laser system for removal of debris 

1.6 Initiatives 
Since the seminal work leaded by Donald Kessler in the 1970s on the artificial debris exponential 
growth, the publication of the position paper of the American Institute of Aeronautics and 
Astronautics (AIAA) in 1981, the release of the report of the European Space Agency Space 
Debris Working Group in 1988 , the publication of the report of the Scientific and Technical 
Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space 
(UNCOPUOS) in 1999 , and the issuing of the position paper of the Space Debris Subcommittee 
of the International Academy of Astronautics (IAA) in 20015 , the international space community 
became progressively aware of the increasing relevance of the orbital debris problem, in order to 
keep the Earth surrounding available for future missions. 
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Orbital debris is not addressed explicitly in current international law. International agreements 
that directly address orbital debris, however, may eventually be needed to deal with several 
debris-related issues. Indeed, there are some debris space laws not having reached an international 
agreement yet. However, as the problem is a real fact, there are several initiatives by most of the 
agencies of the world in order to deal with such a delicate problem. 

1.6.1 ESA’s Clean Space 

This program is born with the idea of achieving a space without debris and with a lower risk of 
collision with them. Since 2012, ESA’s Clean Space initiative has been always considering the 
entire life-cycle of space activities, from the early stages of the design until the removal of space 
debris. To do so, the program has three branches that some of them will be later explained deeper. 
These are: EcoDesign, CleanSat and eDeorbit. 

1.6.2 CleanSat 

This project, part of the Clean Space program, was presented in March of the year 2015 and is 
still under study and being developed, for the mitigation, and not removal, of spatial debris. This 
one is a project with the objective of developing the necessary technologies to support the 
compliance of future satellites with Space Debris Mitigation requirements. So, the aim is to reduce 
the number of satellites being abandoned, decrease the risk of orbital collisions from increasing 
debris as well as reduce the threat of re-entering satellites. Indeed, it is focused in the evolution 
of LEO objects. This international program can be resumed in 4 different points: 

• Pursues the development of technologies for Space Debris Mitigation. 
• The project involves several manufacturers, including ESA which is the coordinator. 
• Focused in 3 different points: Deorbiting systems, design for demise and passivation. 
• Estimated budget required is of 31.5 M€. 

According to this program, within 25 years from the end of life of a satellite, this one has to be 
out of LEO or GEO protected regions. Moreover, equipment from the small satellites shall be 
redesigned in order to be burnt in an uncontrolled re-entry so not a single piece reach the Earth’s 

surface. Lastly, the passivation of systems such as propulsion and power system must be carried 
out, so that explosions are prevented. 

It must be reminded, that this project is a debris mitigation project, this is, it does not have as an 
objective the removal of the current space debris but the avoidance of creating new debris. 

1.6.3 eDeorbit 

This one, also part of the Clean Space program, is a project for active removal of space debris. 
The development of this project began in 2013, although the studies for it date from 2009, having 
as target the Envisat Earth-observing satellite, which failed in 2012. The final mission approval 
took place in 2016, planning to be launched in 2023 on board a Vega launch vehicle. 

At present, the idea of the removal is that a spacecraft will be launched into a polar orbit with an 
altitude of 800 to 1000 km. After being in orbit, this one will rendezvous with the target satellite. 
Once this done, the capture of the satellite will be done in one of two different ways under study: 
with a mechanical tentacle or a net.  The first option includes a robotic arm that will hold the 
satellite from a point, and afterwards, the other robotic arms will proceed to clamp it. While the 
second option will envelop the target derelict before the spacecraft will begin to change its orbit. 
Finally, the spacecraft will perform an atmospheric re-entry carrying the target with it without 
causing any hazard to other space missions or populations on Earth. One of the greatest challenges 
of this project is that on operative satellites tend to start tumbling, which must be modelled and 
studied in order to perform the correct capture. 
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Figure 1.9 – Concept of eDeorbit with net capture 

1.6.4 RemoveDebris 

This aim of this project is to demonstrate various space debris removal technologies in LEO. Such 
an experiment is carried out by the company Surrey Satellite Technology using a rocket Falcon 9 
FT for his launch the 2 of April of 2018 in Cape Canaveral. 

Two different technologies are tested: capture with a net and capture with a harpoon. In both cases 
the principal satellite (RemoveDebris) releases target satellites (DebrisSat 1 and DebrisSat 2), and 
afterwards the corresponding technology of capture is tested. While doing so, the tests are 
recorded through video camera, intending to understand how these capture mechanic systems 
work without gravity, as it is very difficult to simulate such a thing on Earth. Once the target 
debris are captured, a large sail is deployed in order to make the objects re-entry due to the 
presence of gases of the atmosphere in LEO. 

The 16 of September of 2018, the net test was performed. Whilst on the 8th of February of 2019, 
the harpoon experiment was performed. These events made this mission to be the first time that 
ADR technologies are tested in space. 

1.6.5 SpaDe 

This project, still in phase 1, consists on the demonstration of space debris removal technology. 
This one, due to its early stage, cannot give all the details of the project yet. The project is being 
under study by Raytheon BBN Technologies in collaboration with NASA. 

SpaDe will use pulses of atmospheric gases to accelerate the rate of decay on debris by creating 
a temporary drag that causes the re-entry into the atmosphere sooner than would naturally occur. 
These pulses do not affect LEO satellites, soon falling back into the atmosphere and being burned. 
In this case, the dimensions of the target debris are small, centimetres. In contrast to other 
proposed methods, a big advantage is that if an accident occur, SpaDe does not create new space 
debris. SpaDE should provide a lower cost alternative to remove a orbiting system of numerous 
space debris. 

1.6.6 NASA’s Robotic Refuelling Mission (RRM) 

Is an external International Space Station investigation designed to demonstrate and test the tools, 
technologies and techniques needed to robotically refuel and repair satellites in space, especially 
satellites that were not designed to be serviced. Is a project of NASA in collaboration with the 
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Canadian Space Agency. The beginning of the development dates of 2009 with the development 
of the RRM module at the ISS. 

The aim of this project is to fix in orbit all the problems of inoperative satellites, so that they can 
still be useful, or at least they are able to re-entre in an appropriate way. This project involves 
tasks such as gas fitting, refuelling, thermal blanket manipulation, screw/unscrew or removal of 
electrical caps. Furthermore, as the experiments are performed at the ISS, the mission cost is low 
in comparison with other already described projects
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CHAPTER 2 
 The Mission 

2.1 Description of the mission 
The mission consists on the removal of a certain quantity of spatial debris. This is, a chaser that 
can reach several debris in order to install a deorbit tool so they entry in the atmosphere and are 
eliminated. In particular, the debris which are under study, are some debris from cosmos missions. 
Kosmos-3M (Cosmos) is a Russian space launch vehicle, member of the Kosmos family. This 
launcher was able of putting in orbit 1500 kg in LEO, which is the type of orbit that concerns this 
work. This launcher has been used in numerous launches, from which some space debris are 
orbiting around Earth at present. 

As consequence, two different clusters of debris can be distinguished, one of 120 objects with an 
inclination of 74 degrees, and another one of 155 objects with inclination of 82 degrees. The 
objects orbit at different altitudes from each other, fact that is crucial as will be explained in 
further sections. 

The orbital elements of each debris were found in the NO-RAD catalogue, which can be consulted 
in [18]. These data are provided in two-line element set (TLE), which was explained in chapter 
1, and in a version of this one, three-line element set (3LE). Once known all the orbital elements 
of the debris, they are propagated using a SGP4 model, which is a simplified model. Therefore, 
introduces an error around 1-3 km each day. So, the results vary depending on the date that the 
mission is performed. 

 

Figure 2.1 – Dispersion of Cosmos3M rocket bodies in LEO (19 July 2012) 
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The cluster that will be studied is the one of 155 objects. As previously already mentioned, the 
mission will consist on a chaser that installs a deorbit tool in a few objects, so they are deleted. 
The number of objects under study are 4, 5 and 8, each of whom will have different time bounds. 

2.2 Astrodynamics concepts 
This section will provide a brief explanation about different concepts of astrodynamics. Such 
concepts are considered necessary to be known in order to understand the rest of the work, at least 
with a global vision of them. Basic concepts such as Newton laws, gravity force, geometry basis… 

are supposed to be known. 

2.2.1 Orbital elements 

These parameters, also called the Keplerian elements, describe the main characteristics of the 
orbit. This one is the most common way of describing an orbit. 

The primary body is the one in which the reference is fixed, while for the body that moves around 
it is called the secondary body, normally a satellite or planet. Depending on the choice of which 
body is the primary, the orbital elements are different, nevertheless, is commonly assumed that 
the body with greater mass is the primary. 

So, according to Keplerian laws, the orbits are contained in flat conical trajectories, will be 
explained for an ellipse, despite being also applicable to a parabola or hyperbola. 

The six orbital elements, which are shown in figure 2.2, are the following: 

• Semimajor axis (a): Sum of periapsis and apoapsis distances divided by two. Defines the 
size of the ellipse. 

• Eccentricity (e): Elongation in comparison with a circle. Defines the shape of the ellipse. 
• Inclination (i): Angle between the ecliptic plane and the plane of the orbit. Defines the 

orientation of the plane of the orbit. 
• Longitude of the ascending node (Ω): The position in the orbit where the path of the 

secondary body passes through the ecliptic plane. Angle from the vernal equinox. 
• Argument of periapsis (ω): Angle between the ascending node and the perigee of the 

orbit. Defines the orientation of the ellipse. 
• True anomaly (f): Position of the secondary body in the ellipse that performs its trajectory. 

 

Figure 2.2 – Orbital elements 
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2.2.2 Manoeuvers 

2.2.2.1 Coplanar manoeuvers 

Supposed a body that performs a circular orbit, r2, around a primary body and subjected to its 
gravity field. Just to keep the example simple, that body, the satellite, must be transferred to 
another circular orbit of radius r2. Therefore, the velocity of the satellite must change, introducing 
a number of impulses depending on the strategy used for the transfer. Those changes of velocities 
will be supposed to happen in a very short time in order to consider it instantaneous. The last 
impulse is responsible of the recircularization of the orbit. 

The simplest example is the one showed in figure 2.3. In this example only two impulses are 
performed, obtaining a transfer ellipse, where the impulses are applied at the perigee and apogee. 
It must be noticed that if the transfer ellipse is tangential to the final circular orbit, is called a 
Hohman transfer. For small differences between orbit radius, this type of transfer is the most 
efficient in terms of fuel consumption. Nevertheless, if the objective is to save time, greater 
impulses must be applied with the consequent change of shape of the transfer ellipse. 

 

Figure 2.3 – Hohman transfer 

The equation of the energy must be fulfilled: 
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With this equation, introducing the correspondent values the following expressions for the 
necessary impulses can be reached: 
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So, the total impulse is the sum of the two, negative impulses mean the direction of the impulse. 
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Apart from the Hohman manoeuvers, some other can be found that are of great interest. Some of 
the most important are the biparabolic or bielliptic where three impulses are applied, the second 
impulse at the infinite in the biparabolics. In the next figure the fuel consumption can be seen 
according to the transfer strategy and the ratio between final radius and initial radius of the orbits. 

 

Figure 2.4 – Necessary impulse according to the strategy used 

2.2.2.2 Non-coplanar manoeuvers 

Until now, the presented type of manoeuvers were for coplanar orbits. However, if the orbit planes 
are different additional impulses must be applied. Of course, if a manoeuvre must change of radius 
and orbital plane, the fuel consumption will be greater. 

When the orbit planes differ only in the inclination, the instantaneous impulse must be applied at 
the equator to minimise the fuel consumption. This is due to the following relation: 

sin 𝑖 𝑑𝑖 = cos 𝛿 sin 𝜑 𝑑𝜑 (2.5) 
Where i is the inclination, 𝛿 is the latitude and 𝜑 the angle between the velocity and the tangent 
of the trajectory. Taking this into consideration the fuel consumption for a plane change is closely 
related to the orbital velocity as follows: 

∆𝑉 = 2𝑉 sin
∆𝑖

2
 (2.6) 

On the other hand, if the longitude of the ascending node is needed to be change, it cannot be 
done without a change in inclination, unless for polar manoeuvers. The impulse needed for such 
a change in a circular orbit follows equation 2.8. 

cos ∆𝐴 = cos 𝑖1 cos 𝑖2 + sin 𝑖2 sin 𝑖1 cos ∆Ω (2.7) 

∆𝑉 = 2𝑉 sin
∆𝐴

2
 (2.8) 



Missions for Removal of Orbital Debris | Chapter 2: The Mission 

 32 

Once this presented, all these strategies can be mixed so that the optimal transfer for each case is 
used. In fact, the present work concerns targets at low altitudes and therefore, as can be seen in 
equation 2.6, the change of plane’s cost is considerably high. To avoid such a consumption, the 
strategy to perform the manoeuvre is to wait until the debris are aligned due to the change of Ω 
caused by the J2 perturbation. 

2.3 Perturbations 
In all the spatial missions there are several perturbative phenomena that sometimes can be not 
considered due to the small effects on the missions. These perturbations affect the six orbital 
elements, which were presented in the subsection 2.2 of the present chapter, changing their 
expected values from the non-perturbated two body problem. 

2.3.1 Classifications 

The perturbations that affect any body, in this case the objects to be deleted and the satellite to 
remove them, can be divided into three big groups: 

• Secular variations: linear variation in the element. This type of variations has as 
consequence long-term effects on the orbit. 

• Short-period variations: periodic in the element with a period less than or equal to the 
orbital period. Important in case of precise orbit determination. 

• Long period variations: periodic in the element with a period greater than or equal to 
the orbital period. Important in case of precise orbit determination. 

 

Figure 2.5 - Perturbations 

Once this said, the most important perturbation causes are presented below. Firstly, in table 2.1 
the effects they cause according to the mission type, and afterwards, a brief description of them. 
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Cause LEO GEO Interplanetary 
Non-sphericity of 

Earth 
Variance of the nodes, 
perigee argument and 

mean anomaly 

Important. Decreases 
rapidly with altitude 

J2 important in orbits 
of planets with high 

rotation 
Third body Rotation of 0.007 

deg/day 
Relevant Important 

Atmospheric drag Not considered Not considered If close to planets 
with atmosphere 

Solar radiation Slight increase of 
eccentricity 

Slight increase of 
eccentricity 

Almost never 
considered 

Relative effects Not considered Not considered Generally, not 
considered 

Table 2.1 – Perturbation causes 

2.3.1.1 Non-sphericity of Earth 

The Earth is assumed as a perfect sphere, nevertheless, in reality this is not true. In fact, the mass 
distribution is not symmetric, being like a slight pear shape, and flattering at the poles. If the body 
presents axial symmetry, the gravitational potential can be expressed as: 

𝑉(𝑟, 𝐿) =
𝜇

𝑟
(1 − ∑ 𝐽𝑛 (

𝑅𝐸

𝑟
)

𝑛

𝑃𝑛 cos 𝐿

∞

𝑛=2

) 
(2.9) 

Where 𝜇 is Earth’s gravitational constant, RE is Earth’s equatorial radius, Pn are Legendre 
polynomials, L is geocentric latitude, and Jn are dimensionless geopotential coefficients of which 
the first three are: 

𝐽2 = 0.00108263 

𝐽3 = −0.00000254 

𝐽4 = −0.00000161 

So, it depends on the latitude, with the previous coefficients being named as zonal coefficients. 
There are also some other expressions of the geopotential which are longitudinally dependant, 
with the sectoral terms. Lastly, the terms that depend on the longitude and latitude are called 
tesseral terms. 

Although it causes variation in all the orbital elements, the dominant effects are secular variations 
in right ascension of the ascending node and argument of perigee because of Earth’s oblateness, 

represented by J2. 

Ω̇ [
𝑑𝑒𝑔

𝑑𝑎𝑦
] = −1.5𝑛 · 𝐽2 (

𝑅𝐸

𝑎
)

2 𝑐𝑜𝑠𝑖

(1 − 𝑒2)2
 

(2.10) 

�̇� [
𝑑𝑒𝑔

𝑑𝑎𝑦
] = 0.75𝑛 · 𝐽2 (

𝑅𝐸

𝑎
)

2 (4 − 5𝑠𝑖𝑛2𝑖)

(1 − 𝑒2)2
 

(2.11) 

Where 𝑛 is mean motion in deg/day, RE is Earth’s equatorial radius, a is semimajor axis in km, e 
is eccentricity, and i is inclination. As it was anticipated in table 2.1, the variation in the orbital 
parameters decreases rapidly with the altitude. 

2.3.1.2 Third body 

Every object has mass, with the consequence of a gravitational field that affect to the other bodies. 
However, these fields are not considered due to the long distances between celestial bodies. The 
only bodies considered are the sun and the moon, which cause a periodic variation in all the orbital 
elements. Nevertheless, just the ascension of the ascending node, argument of perigee, and mean 



Missions for Removal of Orbital Debris | Chapter 2: The Mission 

 34 

anomaly experience secular variations. While the secular variation of the mean anomaly is small, 
the other two orbital parameters must be considered, especially for high-altitude orbits. 

 Moon Sun 
�̇� [deg/𝑑𝑎𝑦] 0.00169(4 − 5𝑠𝑖𝑛2𝑖)/𝑛 0.00077(4 − 5𝑠𝑖𝑛2𝑖)/𝑛 
Ω̇ [𝑑𝑒𝑔/𝑑𝑎𝑦] −0.00338(cos 𝑖)/𝑛 −0.00154(cos 𝑖)/𝑛 

Table 2.2 – Variation of orbital elements due to third body perturbation 

2.3.1.3 Atmospheric drag 

When there is an atmosphere, which is the case of Earth, the drag due to friction of the atmosphere 
acts in the opposite direction of the velocity vector, removing energy from the orbit. With this 
energy reduction, the orbit becomes smaller, consequently, an increase in drag force. This could 
lead eventually to a re-entrance into the atmosphere. The acceleration for this effect is: 

𝑎𝐷  [
𝑚

𝑠2] = −(
1

2
)𝜌

𝐶𝐷𝐴

𝑚
𝑉2 (2.12) 

Where 𝜌 is the air density, A the satellite’s cross-sectional area, a is its mass, V is the satellite’s 

velocity with respect to the atmosphere, and CD is the drag coefficient equal to 2.2. Furthermore, 
for near circular orbits, we can approximate the changes in semimajor axis, period, velocity and 
eccentricity for each revolution as follows: 

∆𝑎𝑟𝑒𝑣  = −(
1

2
)𝜌

𝐶𝐷𝐴

𝑚
𝑉2 (2.13) 

∆𝑃𝑟𝑒𝑣  = −6𝜋2𝜌
𝐶𝐷𝐴

𝑚

𝑎2

𝑉
 

(2.14) 

∆𝑉𝑟𝑒𝑣 = 𝜌𝑎𝜋𝑉
𝐶𝐷𝐴

𝑚
 (2.15) 

∆𝑒𝑟𝑒𝑣 = 0 (2.16) 
Where P is the orbital period and V is the satellite velocity. 

It must be noticed that the expressions are strongly dependant on the air density, which varies a 
lot between the different layers of Earth. Therefore, some complex models such as Jacchia are 
used in order to estimate the air density in some layers. 

2.3.1.4 Solar radiation 

Solar radiation causes periodic variations in all the orbital elements, however, is only considered 
for satellites with low ballistic coefficients. The acceleration can be expressed as follows: 

𝑎𝑅  [
𝑚

𝑠2] = −4.5 𝑥 10−6(1 + 𝑟)
𝐴

𝑚
 (2.17) 

where A is the satellite cross-sectional area exposed to the Sun in m2 , m is the satellite mass in 
kg, and r is a reflection factor. (r = 0 for absorption; r = 1 for specular 

2.3.2 Mathematical models 

To predict the changes made in the orbital elements, different techniques are used, generally 
divided into two different groups: 

• Special perturbations: these employ direct numerical integration of the equations of 
motion. The most common among all of them is Cowell’s method, in which the 
accelerations are integrated directly to obtain the velocity and integrated again in order to 
obtain the position. 

• General perturbations: analytically solve some aspects of the motion of a satellite 
subjected to perturbing forces. Nevertheless, most perturbating forces cannot be solved 



Missions for Removal of Orbital Debris | Chapter 2: The Mission 

 35 

by a direct analytical solution, but by series expansions and approximations. As the orbital 
elements are nearly constant, general perturbation methods usually solve directly for the 
orbital elements rather the position and velocity. Solutions are reached much faster than 
with special perturbations. 

The problem scenario is explained now, and later two different set of equations are presented, 
with a brief explication for them. The mathematical deduction can be easily found in any book of 
orbital perturbations. 

A particle M of mass m moves respect an inertial reference system Ox1y1z1 called solid body. O 
is the mass centre of the solid body, in this case the Earth. M is subjected to a gravitational force 
and a perturbation force �⃗�𝑃, which include all the other forces previously explained. So, the 
movement of the particle is governed by equation: 

𝑚
𝑑2�⃗�

𝑑𝑡2
 = −

𝑚𝜇

|�⃗�|3
�⃗� + �⃗�𝑃 

(2.18) 

Where �⃗� is the position vector of the particle in the inertial reference. If the perturbation force is 
omitted, the orbit will follow a Keplerian orbit, this is, a conic contained in the orbital plane. 
However, when it is considered the orbit will follow a warped curve in the most general way. 
Equation 2.18 is a differential equation of sixth order that can be integrated to obtain the position 
vector and the velocity vector. 

2.3.2.1 Gauss equations 

Until now, the orbit was referred in terms of cartesian components, 3 for position and 3for 
velocity. However, it may be more comfortable to express the orbit in terms of the Keplerian 
elements previously seen. After a mathematical process which is omitted for the present work, 
the equations of Gauss are obtained.  

𝑑𝑎

𝑑𝑡
= √

𝑎

𝜇

2𝑎

√1 − 𝑒2
(𝑒 sin 𝑓 𝑝𝑈 + (1 + 𝑒 cos 𝑓)𝑝𝑉) 

(2.19) 

𝑑𝑒

𝑑𝑡
= √

𝑎

𝜇
√1 − 𝑒2 (sin 𝑓 𝑝𝑈 +

𝑒 + 2 cos 𝑓 + 𝑐𝑜𝑠2𝑓

1 + 𝑒𝑐𝑜𝑠𝑓
𝑝𝑉) 

(2.20) 

𝑑𝑖

𝑑𝑡
= √

𝑎

𝜇

√1 − 𝑒2

1 + 𝑒 cos 𝑓
cos(𝜔 + 𝑓) 𝑝𝑊 

(2.21) 

𝑑Ω

𝑑𝑡
= √

𝑎

𝜇

√1 − 𝑒2

1 + 𝑒 cos 𝑓

sin(𝜔 + 𝑓)

sin 𝑖
𝑝𝑊 

(2.22) 

𝑑𝜔

𝑑𝑡
= √

𝑎

𝜇

√1 − 𝑒2

𝑒
(cos 𝑓𝑝𝑉 +  

2 + 𝑒 cos 𝑓

1 + 𝑒𝑐𝑜𝑠𝑓
sin 𝑓𝑝𝑉) − cos 𝑖

𝑑Ω

𝑑𝑡
 

(2.23) 

𝑑𝑀

𝑑𝑡
= √

𝑎

𝜇

1 − 𝑒2

𝑛𝑎𝑒
[(cos 𝑓 − 

2𝑒

1 + 𝑒𝑐𝑜𝑠𝑓
) 𝑝𝑉 −

2 + 𝑒𝑐𝑜𝑠𝑓

1 + 𝑒𝑐𝑜𝑠𝑓
sin 𝑓 𝑝𝑉] 

(2.24) 

These equations must be integrated numerically or analytically, form the known initial conditions. 
Apart from that, in the equations the term 𝜇 appears which can be replaced by the following 
expression: 

𝜇 = 𝑛2𝑎3 
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This group of equations is particularly adapted for the integration of the non-gravitational 
perturbations, these are, the solar radiation and the atmospheric drag. 

2.3.2.2 Lagrange equations 

When the acceleration of the perturbation derives from a potential: 

𝑎𝑝⃗⃗ ⃗⃗⃗ = −∇𝑅𝑝 (2.25) 

The temporal evolution of the orbital elements is described in the planetary Lagrange equations: 

𝑑𝑎

𝑑𝑡
= −

2

𝑛𝑎

𝜕𝑅𝑝

𝜕𝑀
 

(2.26) 

𝑑𝑒

𝑑𝑡
=

√1 − 𝑒2

𝑒𝑛𝑎2 (
𝜕𝑅𝑝

𝜕𝜔
− √1 − 𝑒2

𝜕𝑅𝑝

𝜕𝑀
) 

(2.27) 

𝑑𝑖

𝑑𝑡
=

1

𝑛𝑎2 sin 𝑖 √1 − 𝑒2
(

𝜕𝑅𝑝

𝜕Ω
− cos 𝑖

𝜕𝑅𝑝

𝜕𝜔
) 

(2.28) 

𝑑Ω

𝑑𝑡
=

1

𝑛𝑎2 sin 𝑖 √1 − 𝑒2

𝜕𝑅𝑝

𝜕𝑖
 

(2.29) 

𝑑𝜔

𝑑𝑡
=

√1 − 𝑒2

𝑒𝑛𝑎2 (
𝑒 cot 𝑖

(1 − 𝑒2)

𝜕𝑅𝑝

𝜕𝑖
−

𝜕𝑅𝑝

𝜕𝑒
) 

(2.30) 

𝑑𝑀

𝑑𝑡
= 𝑛 +

2

𝑛𝑎

𝜕𝑅𝑝

𝜕𝑎
+

1 − 𝑒2

𝑒𝑛𝑎2

𝜕𝑅𝑝

𝜕𝑒
 

(2.31) 

It must be noticed that the singularities appear when e=0 and/or i=0. The derivates of the angles 
(Ω, 𝜔, i) tend to infinite when i→0. The same thing occurs when e→0 with the derivates of the 
angles (𝜔, 𝑒, 𝑀). In order to delete these singularities, the classic orbital elements must be 
replaced by others, such as the equinoctial orbital elements. 

This group of equations is particularly adapted for the integration of the gravitational 
perturbations, these are, the perturbations of the non-spheritic of Earth and for the third body 
perturbations. 

2.3.3 Simplifications 

When a spectral analysis is applied to the different perturbations, some conclusions can be drawn, 
such as the dominant perturbations and the effects in each orbital element: 

• Semimajor axis, a: Short period variations due to the non-spherite of the Earth (J2), with 
a period of T/2 and amplitude of ±9km. Long period variations due to the presence of the 
sun, presence of the moon and solar radiation. The aerodynamic resistance has as 
consequence a secular decrease of the axis value. 

• Eccentricity, e: Short period variations (T and T/3) due to J2 and long period variations 
due to the harmonics J2n+1. 

• Inclination, i: Short period variations (T/2) due to J2 and long period variations due to 
the harmonics J2n+1. 

• Longitude of the ascending node, Ω: Short period variations (T/2) due to J2 and long 
period variations due to the harmonics J2n+1. Apart from those, secular variations of 10 
degrees each day due to the harmonics J2n. 

• Argument of periapsis, ω: Short period oscillations (T and T/3) due to J2. Long period 
oscillations due to the harmonics J2n+1. Apart from those, secular variations of 20 degrees 
each day due to the harmonics J2n. 
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• Mean anomaly, M: Subjected to the same perturbations as the inclination, plus a secular 
variation of 5900 degrees each day. 

Taking all this into account, the equation’s system presented before can be obtain in term of 

approximation of first order. As we are considering the trajectory in LEO, the dominant 
perturbations are the aerodynamic force and the non-sphericity of the Earth. Apart from that, it 
must be mentioned that in the problem that occupies this thesis all the orbits are approximated as 
quasi circular. 

𝑑𝑎

𝑑𝑡
≈ −𝐶𝐷

A

𝑚
𝜌𝑝𝑒𝑟2

𝑛

2𝜋
 

(2.32) 

𝑑𝑒

𝑑𝑡
≈ 0 

(2.33) 

𝑑𝑖

𝑑𝑡
≈ 0 

(2.34) 

𝑑Ω

𝑑𝑡
≈ −

3

2
𝑛𝐽2 (

𝑟𝑒

𝑝
)

2

cos 𝑖 
(2.35) 

𝑑𝜔

𝑑𝑡
≈

3

4
𝑛𝐽2 (

𝑟

𝑝
)

2

(4 − 5𝑠𝑖𝑛2𝑖) 
(2.36) 

𝑑𝑀

𝑑𝑡
≈ 𝑛 +

3

4
𝑛𝐽2 (

𝑟𝑒

𝑝
)

2

√1 − 𝑒2(2 − 3𝑠𝑖𝑛2𝑖) 
(2.37) 

2.4 Mathematical model for the problem 
The mathematical model used for the debris of the Kosmos considers only the non-sphericity of 
Earth as the only perturbation in the orbit of them. Therefore, the major semiaxis, eccentricity and 
inclination remain constant over the time. So, the variations of the true anomaly, argument of 
periapsis and longitude of the ascending node are shown in equations 2.35, 2.36 & 2.37 of the 
previous section. 

In such equations, n represents the mean mode, defined as: 

𝑛 = √
𝜇

𝑟3
 

(2.38) 

With 𝜇 as Earth’s gravitational parameter, and r the radius of the quasi-circular orbit. Furthermore, 
p is defined as: 

𝑝 = 𝑟(1 − 𝑒2) (2.39) 

All these approximations that are done may introduce big errors. Hence, it is compared to a 
propagation of the orbit performed by the method SGP4, obtaining similar results concerning the 
shape of the orbit. However, the error in the mean anomaly and the argument of periapsis is 
considerable. Moreover, the effect of the argument of the periapsis is small due to the almost null 
eccentricity. 

2.4.1 Transfers 

It is assumed that the moment when the transfer will be carried out is the optimal, this is, when 
the difference between the two orbital planes is null. The variation of the longitude of the 
ascending node allows the orbital planes to become closer. This happens because this variation, 
as can be seen in equation 2.35, depends on the altitude and the eccentricity. Hence, each object 
will suffer a different variation of the longitude of the ascending node. Again, the altitude of each 
object remains constant and does not depend on time. With all this, the objects periodically will 
be aligned, unless there is a pair that have the same altitude and eccentricity. If the manoeuvre is 
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performed when objects are not aligned, the transfer cost would be much greater or even 
unfeasible. 

So, the moments when the alignment takes place can be obtained as: 

𝑡𝑗𝑘 =
Ω𝑗(𝑡0) − Ω𝑘(𝑡0) + 2𝐾𝜋

Ω̇𝑘 − Ω̇𝑗

 
(2.40) 

As it can be seen, the time in which two objects are aligned depends on both objects, and does 
not depend of the order of these two, So, it is the same going from object k to j or from j to k. 

While for the transfer itself, it would be considered that all the transfers are coplanar and follow 
a Hohman transfer. This type of transfer is the best option when wanting to save fuel but is not 
the most efficient in terms of time. However, the transfer time is so small in comparison to the 
time to be waited for the alignment of the debris that is not considered. 

For Hohman transfers, there is an empirical expression that relates the semi major axis and the 
eccentricity in a very simple way: 

∆𝑉

𝑉
= 0.5√(

∆𝑎

𝑎
)

2

+ ∆𝑒2 
(2.41) 

The semimajor axis introduces is the minor between the two objects considered, so the circular 
velocity is also referred to this one. It must be said that due to the characteristic of equation 2.41, 
it does not matter the order of the orbits. This is, the important value is the difference between 
both orbits, not affecting if is negative or positive as they are squared. 

So, calculating all the necessary impulses that are needed in each leg, the total impulse to be 
applied is obtained. As will be explained in section 2.4.2, once the impulse, the initial mass and 
the propellant used are known, the fuel mass consumed is easily obtained.  

On the other hand, the time when the manoeuvre is performed does not follow the same process 
as the impulse. While for the total impulse applied the impulses of all the legs were summed, for 
the total time of the mission just the time of the last leg is considered. Furthermore, the time when 
the manoeuvers between the last two debris is done, must be greater than all the previous times 
of each leg, considering the service time too. 

The estimations of DV and time for each leg are verified with an evolutionary algorithm. With 
four impulses at: 

𝜏1 < 𝜏2 < 𝜏3 < 𝜏4 = 𝜏𝑖+1 (2.42) 

Being 𝜏𝑖+1 the time of the next leg. To calculate each leg in an exact and optimised way the terms 
p1, p2 … p8 are introduced, which correspond to the parameters of the previously mentioned 
evolutionary algorithm. 

𝑝1 = 𝜏4 − 𝜏1 (2.43) 

𝑝2 =
𝜏2 − 𝜏1

𝜏4 − 𝜏2
 (2.44) 

𝑝3 =
𝜏3 − 𝜏2

𝜏4 − 𝜏2
 (2.45) 

 

where p1 varies in a range of ten days with the centre on the value suggested by global search 
while p2 and p3 vary between zero and one. 
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There are six other variables that define the components of the velocities after the first and second 
impulses. The notation used for them is 1+ and 2+ for after the impulses and 1- e 2- for before the 
impulses are performed. These variables plus the flight path angle are shown in equations from 
2.46 to 2.49. The flight path angle is the angle measured from the local horizontal (perpendicular 
to r.) to the velocity direction. 

𝑢1+ = 𝑢1− + 𝑝4 sin(𝑝5) (2.46) 

𝑢2+ = 𝑢2− + 𝑝7 sin(𝑝8) (2.47) 

𝑣1+ = 𝑣1− + 𝑝4 cos(𝑝5) cos(𝜑 + 𝑝6) (2.48) 

𝑣2+ = 𝑣2− + 𝑝7 cos(𝑝8) cos(𝜑 + 𝑝9) (2.49) 

𝑤1+ = 𝑤 + 𝑝4 cos(𝑝5) cos(𝜑 + 𝑝6) (2.50) 

𝑤2+ = 𝑤2− + 𝑝7 cos(𝑝8) cos(𝜑 + 𝑝9) (2.51) 

𝜑 = tan−1 (
𝑢−

𝑣−
) (2.52) 

Where p4 and p7 are the variations of velocity that are spaced between 0 and 800 m/s. The angles 
p5 and p8 vary between +180 and -180 degrees.  While angles p5 and p8 vary between +60 and -
60 degrees. Lastly, the obtention of the last variable p10 is related to the las part of the leg, the 
rendezvous. Hence, this one requires of a different approach, as the final position is fixed and 
therefore necessary to solve a Lambert problem. 

Due to the different possible orbits to be chosen, the problem presents two solutions. Thus, p9 is 
used in order to decide if take the leftwards solution (p10 < 0.5) or rightwards solution (p10 > 0.5). 
Once all the ten variables are obtained, the impulse for each manoeuvers can be evaluated. In fact, 
the initial time, position and velocity are known. After the first impulse velocity is calculated, the 
Kepler problem is resolved, considering the effect of J2. The same process is done until the last 
arch of the trajectory, where the Lambert non-perturbed problem must be solved in order to 
achieve the velocity components. After this, the results are corrected through an iterative Newton 
method-based process that consider the non-sphericity of Earth. 

So, the impulse for the leg follows this expression: 

∆𝑉 = ∑ √(𝑢𝑗+ − 𝑢𝑗−)
2

+ (𝑣𝑗+ − 𝑣𝑗−)
2

+ (𝑤𝑗+ − 𝑤𝑗−)
2

4

𝑗=1

 
 

(2.53) 

2.4.2 Mass budget 

For each object to be deleted, the vehicle must provide a kit for the phase of deorbit, in order to 
introduce the necessary impulse for the removal of the object. In this mission, such a process is 
performed with chemical propulsion, reducing the perigee of the orbit. The reason for this is to 
obtain a re-entry of the debris. Two different re-entries can be distinguished: 

• Controlled re-entry: is the ability to force the entry over a pre-determined area, region, 
within which the debris is to fall. To do so, the new trajectory of the object must touch 
the Earth’s radius. 
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• Uncontrolled re-entry: there is less knowledge about the trajectory of the object. Instead 
of a specific region, one can ensure the fall of the debris within a few orbital revolutions. 
To do so, the perigee of the object’s orbit must be at 125 km of altitude. 

For the present work, the recommendation is to choose the uncontrolled atmospheric entry, as it 
is the most usual when talking about space debris. 

The transfer performed will be a Hohman transfer. Thus, the change of velocity the removal kit 
must provide at the apogee of the orbit is: 

∆𝑉 = √
𝜇

𝑟𝑎
(1 − √2√1 −

𝑟𝑎

𝑟𝑎 + 𝑟𝑝
∗) 

(2.54) 

Being the perigee, 𝑟𝑝
∗, equal to the 𝑅𝐸 for controlled entries and equal to 1.02𝑅𝐸 for uncontrolled. 

Consequently, uncontrolled entries need less propellant to be performed. 

To obtain the mass of the chaser, firstly, the rocket equation must be considered. This one relates 
the fuel consumption in a transfer to the necessary impulse to be performed. So, if the propellant 
is known, after obtaining the changes in velocity as was explained in the previous section, the 
mass loss is obtained. 

∆𝑉𝑖 = 𝑐𝑐 ln
(𝑚𝑓)

𝑖

(𝑚0)𝑖
 

(2.55) 

The index i indicates the leg of the mission. Where mf and m0 are the mass at the end and at the 
beginning of the leg respectively. 

Apart from that, it must be considered that for every object deleted a deorbit kit is installed, so 
that mass is also removed from the chaser. Calling the deorbit kit mass mdk and supposing that all 
the debris use the same deorbit kit: 

𝑚𝑖 = (𝑚0)𝑖 + (𝑚𝑑𝑘)𝑖 (2.56) 

Where mi is the mass of the chaser before getting rid of the deorbit tool. It must be noticed the 
link between the different legs which is: 

(𝑚𝑓)𝑖−1 = 𝑚𝑖 (2.57) 

With these three equations the initial mass can be obtained, starting by fixing the final mass of 
the mission as the chaser mass, which is known, without the deorbit kits and the propellant. 
Furthermore, the propellant consumption for each leg is easily obtained as follows: 

(𝑚𝑝)𝑖 = (𝑚𝑓)
𝑖

− (𝑚0)𝑖 (2.58) 

To conclude with this section, it must be outlined that the chaser, deorbit kit and propellant have 
not been chosen yet, hence, they are the reason why this problem cannot be solved yet.
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CHAPTER 3 
Optimisation Algorithm 

3.1 Introduction to evolutive algorithms 
The evolutive algorithms are solutions search and optimisation methods based in the biological 
evolution theory. In them a group of different entities is maintained which represent the possible 
solutions. These ones are mixed, compete between each other, so the best ones are able to survive 
over the time and if possible, evolving into better options. Normally, these types of algorithms 
are used in problems with a wide range of possibilities and these being non-linear. In these type 
of spaces, other techniques are unable to reach a solution.  

There are several subclasses more specialized than evolutionary algorithms, each of which 
interprets in a different way the philosophy at the base. Among these, the genetic algorithm is the 
one that clearly shows the natural selection process in its operating mechanism. In figure 3.1 are 
shown the different subclasses of evolutionary algorithms. 

On the right of figure 3.1, some of the most relevant heuristics can be seen. The objective of a 
heuristic is to produce a solution in a reasonable time. This solution does not have to be the best 
one but be a good solution. Nevertheless, it is still valuable because finding it does not require 
too much time. Although heuristics may produce results by themselves, they are normally used 
in conjunction with optimization algorithms to improve their efficiency. 

 

Figure 3.1 – Classification of EA methods 

The present work will involve only one type among all these, a genetic algorithm, that will be 
deeply described in the following sections. 
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3.2 Genetic Algorithms 
The genetic algorithms (GA) are adaptative methods that can be used to solve search and 
optimisation problems. As said before, they are based in the biological reproduction, with 
generations, genes, populations that evolve following the natural selection principles stated by 
Darwing (1859). The basic principles of these algorithms were stablished by Holland in his book 
Adaptation in Natural and Artificial Systems and can be seen described in detail in texts such as 
Goldberg (1989) and Reeves (1993). 

The original motivation for the genetic algorithm approach was a biological analogy. In the 
selective breeding of plants or animals, for example, offspring are sought that have certain 
desirable characteristics, characteristics that are determined at the genetic level by the way the 
parents’ chromosomes combine. In the case of GAs, a population of strings is used, and these 
strings are often referred to in the GA literature as chromosomes. The recombination of strings is 
carried out using simple analogies of genetic crossover and mutation, and the search is guided by 
the results of evaluating the objective function f for each string in the population. Based on this 
evaluation, strings that have higher fitness can be identified, and these are given more opportunity 
to breed. 

The basics of a genetic algorithm are shown in figure 3.2. Firstly, the population is initialised, 
then, there is an evaluation of all the members in order to obtain which are the best ones. After 
that, the population goes through crossover and mutation, so the evolution takes place. Once this 
done, there is a selection process and again the loop is performed. The process is looped until a 
criterion is reached, normally concerning a number of iterations. Finally, when the loop is over, 
the best solution is obtained. 

 

Figure 3.2 – Genetic Algorithm process 

It must be highlighted that this type of algorithm does not assure reaching the best solution. 
Therefore, they are normally run several times providing different results each time. Not even 
after numerous simulations the best solution can be assured as normally not all the possibilities 
are explored. 
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3.3 Initialisation 
The process of initialisation is crucial in the correct functioning of a genetic algorithm as it defines 
the evolution of this one. The initial population should have at least two characteristics:  

• A diverse population in order to avoid premature convergence 
• A correct number of individuals, not too high because could slow down the algorithm and 

not too low because could lead to a lack of exploration of the possible solutions 

Apart from that, the dimensions of the initial population in the present problem is also defined by 
the number of objects to be removed. This, one of the main objectives is to determine the optimal 
dimensions of the population, study that will be done in the following chapter. 

The initialisation of a genetic algorithm can be divided in two: 

• Random initialisation: When there is no knowledge of the solutions that the algorithm 
will find the population is populated randomly. 

• Heuristic initialisation: When there is some knowledge about the possible solutions the 
population is populated using a known heuristic for the problem. 

It must be outlined that with the Heuristic initialisation there is less diversity, so it is not 
recommendable to use this initialisation in the entire population, or at least not every time. 
However, as it will be seen in further chapters, it could be a better option for the exploration of 
the vicinity of a solution previously found. A balanced initialisation could be the best option, 
initialising just a couple of individuals heuristically while the rest of them randomly. 

Another important aspect, for the problem that concerns this thesis, is that an initial population 
with bad fitness values could lead to difficulties in converging. Thus, it may be useful to 
reinitialise the population until a better population is set. Such a study will be described deeper 
and presented in chapter 4. 

3.4 Selection 
After the initialisation of the genetic algorithm, the second step to be performed is the selection. 
This means, how to choose the individuals in the population that will create offspring for the next 
generation, and how many to choose. The objective of this process is to select the best individuals 
in terms of fitness value, so that the future generation could lead to even better solutions. 
Nevertheless, the selection shall be balanced as a correct exploration of the possibilities is worthy 
to be done. If the selection is too strong the diversity of the population could be significantly 
reduced, and therefore, homogenised. Thus, if the selection technique chooses almost every 
individual, the evolution in the population could be too slow. This is why several techniques have 
been implemented over the years, some of them described in the present work. 

3.4.1 Tournament selection 

This type of selection is one of the most popular due to the facility to be implemented and its 
efficiency. In this method a random number of individuals is chosen, which compete between 
each other. The best of these ones is selected and then proceeded to the next steps of the algorithm. 
The number of random individuals chosen can vary, but normally is equal to 2. So, this method 
allows the next generation to have a wide variety in their individuals, as does not prioritise those 
with better fitness values. Furthermore, the computational cost is small as there is no need to sort 
the fitness values and the diversity of the new population is almost assured. It must be noticed 
that the selection of random individuals can repeat individuals and is repeated the necessary times. 
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Figure 3.3 – Tournament selection 

3.4.2 Roulette wheel selection 

Also called fitness proportionate selection, the fitness function assigns a fitness to possible 
solutions or chromosomes. In this selection method, an individual of the population corresponds 
to a little part of a wheel of chance. The size of such a part is proportional to the calculated value 
of the fitness. So, the wheel is then tossed as many times as parents are needed to create the new 
population and each individual that wins is copied into the new population. Therefore, a single 
individual can occur multiple times in the parent population. In this selection method the 
Darwinist principle of the survival of the fitness takes place, where the less fit individuals are 
eliminated. This means, the less probable individuals to be selected are those with the less fit 
value. 

 

Figure 3.4 – Roulette wheel selection 

The probability of each individual to be selected is the following: 
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𝑃𝑖 =  
𝑓𝑖

∑ 𝑓𝑗
𝑛
𝑗=1

 
(3.1) 

As it will be seen in later, this way of distribution of the probability may cause problems for the 
individuals whose fitness value is very low. In this line, this method can cause blocking as the 
population will get homogenised, hence, is not able to explore new and different solutions from 
the best ones. 

3.4.3 Ranked selection 

When among the population the fitness value differs a lot, or there is one that is much better than 
the other ones, the wheel selection may have problems, since the portion for each individual is 
proportional to their fitness value. This selection method takes care of this fact by sorting the 
different individuals from best to worst. Later, a probability is assigned to each of them according 
to their position. This is the key issue in this method, the probability is assigned according to the 
position and not to the fitness value. The method functions jus as the wheel selection but with this 
different detail. In comparison with the wheel selection, this method requires of an extra step, and 
therefore, the computational time is greater. 

In figure 3.5 an example can be seen of a population of 4 individuals. It has to be noticed that the 
probability to be selected is not proportional to the fitness value but follows a linear law according 
to the position of the individual. The probability of choice can follow different laws such as 
exponential, lineal… however, in this case it corresponds to an easy law in order to clarify the 

concept. 

𝑃𝑖 = 50 − 𝑃𝑜𝑠 · 10 (3.2) 
Where Pi is the probability of each individual to be selected, and Pos is the position in the sorted 
ranking. 

 

Figure 3.5 – Ranked selection 

3.4.4 Truncation selection 

The truncation selection is a very simple technique that firstly, orders the sample of individuals 
taken from the population according to their fitness values. Then, only a certain percentage of the 
fittest individuals is selected. The number of individuals that is selected from the sample is called 
selection pressure. In practise it is less used than other methods, except for very large population. 
This selection method is often used by breeders and in genetic population. This method can be 
considered a branch of the best only selection, where only the best individuals from the population 
are selected. 
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3.4.5 Reward-based selection 

This technique is probably the most different and innovative among the ones presented. In this 
case the probability of being selected of each member of the population is proportional to a 
cumulative reward. This cumulative reward of each individual is obtained as the reward of itself 
plus the reward obtained from his parents. With this, this selection method also considers the 
parents of an individual so it could be useful for recombination. However, as the cumulative 
reward has to be obtained, and the parents cannot be deleted, the computational cost of this method 
is significantly greater than the predecessors. 

3.5 Crossover 
The crossover consists on taking two solutions as if they were parents and combining their genes 
to create a new child. However, crossover could also be done with a different number of parents, 
although being two the most common due to the analogue to sexual reproduction in biology. 
Furthermore. The solutions can be generated by cloning an existing solution, analogue to asexual 
reproduction. For a good efficiency, the crossover must allow to conserve the genetic material 
from the parents and mix their genes in order to obtain better solutions. The crossover is a 
recombination operator that proceeds in two basic steps: 

1. The reproduction operator selects a pair of individual strings and takes them as parents. 
2. Recombination is done according to a specific strategy. 

As also happens with the mutation, the basic parameter is the crossover probability. If it is set up 
in 100%, all offspring are made by crossover, while if it is 0% there is no crossover at all. 
Crossover function is to obtain a new population with good parts of the eldest population, 
nevertheless, it is often recommendable to leave some part of old population survive to the next 
generation. 

In the present section some crossover strategies are described, in particular, those ones that are 
more used in the Travelling Salesman Problem. 

3.5.1 Single point crossover 

It is the simplest of all the presented in this work. A crossover point is picked corresponding to a 
position in the strings. Until the crossover point the genes are those of the father, after this point, 
the genes are those of the mother. On the other hand, the same thing is done but permutating the 
order of the parents, so two children are obtained from a couple of parents. 

 

Figure 3.6 – Single point crossover 

3.5.2 Double point crossover, k-point crossover 

The two points crossover is the same as the previous one, but instead of one single crossover point 
this time there are two. So, the genes transferred are father-mother-father and mother-father-
mother. When there are more than 2 crossover points, it is denominated k-point crossover where 
k is the number of crossovers. 
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3.5.3 City Centred crossover 

This type of crossover is about picking a gen, not a position. Until this particular gen, the previous 
ones remain with the same order and are transmitted to the child. After the chosen gen, the child 
is completed with the genes of the other parent in the same order that they are in it. If a gen is 
already in the child, is omitted and repeat the process with the next one. As can be deduced, two 
children are obtained changing the roles of the parents. As an example, if gen 3 is the chosen gen 
in the following individuals: 

 

Figure 3.7 – City centred crossover 

3.5.4 Ordered crossover 

Firstly, some positions are selected from both parents. The genes between these positions are 
transmitted to the child in the same order. Then, from the other parent the rest of the genes are 
picked starting from the position just at right of the transmitted string. If the gen is already in the 
child, the gen is omitted and the next one is picked going from left to right. Then it is done 
permutating each parent’s function, so two children are obtained. It is graphically explained in 
the example of figure 3.8, when selecting positions 3 and 5. 

 

Figure 3.8 – Ordered crossover 

This type of crossover is useful when wanting to transmit a sequence of genes to the next 
generation, due to the good result it provides.  

3.5.5 Alternating-position crossover (AP) 

In this case the child is obtained from a combination of the parents’ genes, where they are selected 

alternatively between both parents. If the gen from the father or mother is already present in the 
output child, the gen is omitted. 

 

Figure 3.9 – Alternating position crossover 
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3.5.6 Partially-mapped crossover (PMX) 

This crossover carries the most complex process among all the described this far. Notwithstanding 
having a much bigger time of execution, the results of this crossover are better than the ones 
above. Due to the complexity of the process, it will be explained with a written and graphical 
example. 

Firstly, a string between two positions must be chosen from both father and mother. Keeping the 
same order, the strings are exchanged. 

 

Figure 3.10 – PMX crossover (1) 

Secondly, the relation, or map, between the previous genes is done. A gen from the father 
corresponds to a gen of the mother if they are in the same position. With this, the map obtained 
for this case is: 

3 – 1 

4 – 5 – 6 

Now, the rest of the genes are changed according to the relations above, without repeating any 
gen in the same child. It must be highlighted that if the gen does not appear in the map there is no 
change in that gen. 

 

Figure 3.11 – PMX crossover (2) 

The fact that increases the computational cost is the high number of steps that must be followed 
for the mixing of the parent’s genes, where some relations must be considered. 

3.6 Mutation 

The mutation stage is the one that allows the algorithm to maintain genetic diversity from one 
generation of a population to the next one. This means, is in charge of changing the previous 
population in order to find better solutions if possible. The big difference with the process of 
crossover is that the mutation does not tend to get stacked in a homogenised population. With 
this, the mutation provides a much wider range of solutions after several iterations. For this 
reason, the mutation can provide fitness values very high or very low even though it is in advanced 
phases, so these solutions could dominate over the non-mutated ones. 

However, it must be mentioned the fact that the efficiency of the genetic algorithm is strongly 
dependant of the mutation stage. If the mutation of the population is too high, the result would be 
a random search of solution, being useless the mutation strategy. In order to explore different 
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solutions correctly, diverse techniques are used, as the possibilities are numerous, just some of 
them are mentioned in this section. 

3.6.1 Displacement mutation (DM) 

In this first case, a gen from the father string is selected, and a position to me moved is also 
chosen. So, this mutation requires of two different numbers. The gen that is selected is moved to 
the indicated position, displacing all the string one position as follows: 

 

Figure 3.12 – Displacement mutation 

3.6.2 Exchange mutation (EM) 

Also referred as swap mutation, selects to different indexes and exchange their genes. The rest of 
the string remains without any change. 

 

Figure 3.13 – Exchange mutation 

3.6.3 Simple inversion mutation (SIM) 

Two cut points in the string are selected, and the substring between these two cut points is 
reversed. As an example, if indexes 1 and 4 are chosen as cut points: 

 

Figure 3.14 – Simple inversion mutation 

3.6.4 Scramble mutation (SM) 

Two indexes are chosen and scrambles the genes in them. Therefore, the genes which are 
contained in the interval of these positions are scrambled. For example, consider that the subtour 
chosen is (5 6 7 8): 

 

Figure 3.15 – Scramble mutation 
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3.6.5 Swap blocks (SB) 

The genes are divided into different blocks, so different sections are done. For example, if the 
chromosome is divided in three different blocks the first and last block are swapped. The second 
block remains in the same position as it was before. Thanks to this type of mutation some groups 
of genes, which correspond to a good fitness value, are maintained. This fact allows the code to 
build better elements in the following iterations. 

 

Figure 3.16 – Swap blocks mutation 

3.7 The Code 
The code used for the performance of this thesis has been written in MATLAB language. It 
consists on a genetic algorithm in order to obtain the most suitable solutions to the problems that 
were presented in chapter 2. The code has been developed with the intention of being as much 
versatile as possible. Therefore, it can be adapted to the different cases under study by introducing 
the required inputs for each case. 

Even though the code is presented in appendix A, in this section it will be explained to understand 
how it works and to focus in the most important aspects of it. However, the lines of the script will 
not be commented one by one, but in a general and conceptual way.  

3.7.1 Mission data loading 

First of all, these data are loaded into the code. Considering that all the information about the 
debris is contained in a text file called kosmos.txt, the only thing to be done to obtain the data 
from the mission is load the txt. This text file contains all the necessary information about the 
diverse stages of Kosmos 3M. The imported data is stored in diverse vectors in order to keep a 
simple coding language. Below a list of the data imported from each column is presented. 

• 1st column: Departure ID (Not used in this code). 

• 2nd column: Arrival ID (Not used in this code). 

• 3rd column: Difference in velocity necessary to go to one object to another. 

• 4th column: Time when the transfer can be done 

• 5th column: Difference in RAAN 

Considering that there are 155 objects to be removed, as explained in chapter 2, the number of 
possible combinations is of 24025. Therefore, all these data are imported into vectors with 
dimension of 155. However, if another text file is imported with a different number of objects, 
the code can function correctly. This is because the number of debris to be removed can be 
changed in the following lines, set for this thesis in 155. 

Apart from that, in this section the number of debris to be removed is introduced by the user, 
having been changed in the present work between 4, 5 and 8 debris. Furthermore, depending of 
the case which is being studied, the service time and the maximum mission time are modified in 
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this part of the script. The service time is the time that the chaser needs to complete the installation 
of the deorbit tool on the debris. The maximum mission time is the bound which differ from 
acceptable solutions and unacceptable. It must be noticed that while the maximum mission time 
has only been dependant of the number of debris to be deleted, the service time could change for 
a fixed number of objects to delete too. 

3.7.2 Constants & Adimensionalize variables 

This part of the code is in charge of two very different things that must be done at the beginning 
of the code: setting the value of the constants involved in the problem and the adimensionalizing 
some of the variables previously introduced. However, these two are closely related as the 
adimensionalisation is made with these magnitudes. 

The two constants are the radius of the planet and the gravitational parameter, corresponding both 
to the ones of Earth. As said, with these constants the reference values of the velocity, service 
time and maximum time are obtained. It has to be remembered that the data imported from the txt 
file is all without dimensions, therefore, this step is crucial for the correct functioning of the 
algorithm. 

3.7.3 Algorithm configuration 

The next step in the code is to insert some algorithm inputs. In the lines corresponding to this 
section, the population size is introduced. As it will be seen in the following chapter, this 
population has been changed several times, to study its effects on the GA efficiency. In addition, 
the number of iterations is set, which in fact, are changed in the present work in order to study its 
effect. 

Moreover, another input that the user set is the number of times the genetic algorithm is run. 
Increasing this number has as consequence an increase in the computational time, and the 
obtaining of more independent solutions between each other. 

Lastly, the number of initializations for each individual is also introduced. The role of this 
parameter will be explained deeper in the following sections. For this option it must be outlined 
that as the number of initializations rises the computational time does the same, while being a 
random reinitialization of the population. 

3.7.4 Sanity checks & Creation of matrixes 

After the algorithm’s configuration is set, some sanity checks are carried out in order to a complete 

assurance of the correct functioning of the code. Some redundancy in the code is introduced, as 
is in the cases of the population size and the number of iterations. With it, the population is always 
multiple of 4, while the number of iterations is always an integer positive, even though the user 
made a mistake introducing wrong inputs. 

Besides, some flags have been introduced into the structure defaultConfig, which control the 
correct introduction of the necessary inputs and that the population is compatible with the number 
of iterations. 

Apart from that, the data which were stored into the different vectors is transferred to matrixes. 
So, now in these matrixes the number of column and line correspond to a pair out of 24045 
possible pairs. Finally, before starting with the principal code, the dimensions of some other 
matrixes are defined, and filled of zeros. These are some very important matrixes whose names 
and characteristics are: 

• newPop: Matrix used as a tool in order to obtain new individuals, and later transcript it 

to the final population. 
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• totalDist: Vector that contains the fuel consumption of every individual for each iteration. 

• totalTime: Vector that contains the mission time of every individual for each iteration. 

• distHistory: Matrix that contains in each line the fuel consumption of the solutions for 

each iteration. The number of lines is the number of times the code has been looped. 

• timeHistory: Matrix that contains in each line the mission time solutions for each 

iteration. The number of lines is the number of times the code has been looped. 

• Result_History: Matrix that contains the individuals that fulfilled the maximum mission 

time requirement. If there is no solution, this matrix is filled of zeros. 

• resultMatrix: Matrix that contains, for each loop, the best result, its time, its individual 

and the iteration where the best solution was found. All the matrix is adimensionalized. 

With all this, the principal code is executed, code which is explained briefly in the next subsection. 

3.7.5 Principal code 

Firstly, the code is inside a loop so that it is run several times in order to achieve different results 
without having to run again the code. 

Once this said, as was explained in previous sections, the genetic algorithm starts with the 
initialisation of the population. The population is fill up with random permutations of numbers 
for each individual. Nevertheless, if the number of initialisations, previously explained input, is 
set greater than zero an additional process must be considered. This is, each member of the initial 
population is evaluated, and if it does not fulfil the maximum mission time limitation, is 
reinitialized again the number of times before introduced. When it does fulfil the time limitation, 
that individual is fixed as initial population. While performing such a process the initialization 
keeps always the individual with the lowest mission time. So, unless the number of initialisations 
is reached, the new initial population starts with acceptable solutions for the problem. Even 
though in this reinitialization process a sequence of debris that fulfils the time requisite is not 
found, the new initial population has a lower mission time, so improves the initialization of the 
algorithm. However, this process needs computational time, fact that will be studied in the 
following chapter. 

After the initialization, there is another new loop that lasts until the end of the genetic algorithm. 
This is the iterations loop, which englobe all the following steps, as all the following functions 
will be done for each iteration. 

Firstly, the current population is evaluated with a subroutine of evaluation that will be detailed. 
Afterwards, the obtained results are stored in a matrix, which contains the best result for each 
probe. This matrix is rewritten for each iteration with new or the same values. Such a matrix 
contains the following values in its structure: 

• 1st column: Propellant consumption. 

• 2nd column: Time to perform the sequence. 

• 3rd column: Best iteration. 

• 4th column: Index of the best individual. 

• 5th - … columns: Debris sequence to be deleted. 
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The next step is to change the initial and evaluated population into a new one in order to obtain 
improvements in the result, in the most efficient way. Therefore, several techniques are applied 
which will be explained later. These strategies take part of the new population as follows: 

Strategy Percentage of new population 
PMX crossover 30 % 
Bubble sorting 20 % 

Mutation of best ones 10 % 
Single point crossover 10 % 
Double point crossover 10 % 

Inversion 10 % 
Random insertion 10 % 

Table 3.1 – Percentage of strategies in the code 

As said before, this new population changed to be the population and begin again the same process 
just described. However, before looping another prevention is taken, due to the possibility of the 
algorithm to get homogenised. The algorithm eliminates some part of the population when half 
and three quarter of the total number of iterations are reached. 

Now out of the iterations loop, the outputs are returned and printed as a graph. It must be reminded 
that this is done for each probe, so after this, the loop of the probes ends. Hereunder, the 
description of the different subroutines that were mentioned and also those not mentioned are 
explained deeper. 

In order to change the population, we can distinguish 6 different functions, each one 
corresponding to a strategy showed in table 3.1. Firstly, the PMX crossover function is responsible 
of changing the population just as explained in the previous sections. Two other crossovers 
subroutines are encoded, which were explained too in other subsections, the 
SinglePointCrossover and the DoublePointCrossover. Apart from them, there is a subroutine for 
a simple inversion of two elements called InvertParent. Furthermore, the function Mutation 
consists on the mutation of the first two genes for half of the population considered, and mutation 
of the last two genes for the other half. The changes in these positions is done randomly, with the 
possibility of repeating two genes in the same individual. In addition, the function called 
BubbleSorting consists on the evaluation of different combinations of the population, so they are 
sorted, and the best ones have greater probability of been selected. 

Besides, the most important function of the algorithm is the one that evaluates the population each 
time and provides the fitness function value. This one is called EvaluatePath, and the same 
function but just for the initial population is referred as EvaluatePath_Initial. Such a function gets 
a population and evaluates each individual’s fitness value, giving as outputs a vector with these 
values, of dimension equal to the dimension of the population. This evaluation considers that in 
the sequence of removal, the last object must have the greater time to be removed. If this is not 
fulfilled, the RAAN parameter is added until this happen, normally providing very high mission 
times. Furthermore, if the mission time of the sequence is greater than the maximum time allowed, 
a penalisation is introduced to the fitness function, adding the mission time to the fitness function. 
Therefore, the solutions with less mission time are better if the mission lasts more than the 
maximum mission time. However, if is less, the fitness is not affected, so the best solutions are 
those with less consumption of fuel. 

This explained evaluation is the normal mode of the algorithm. Nevertheless, for the studies that 
will be presented, the algorithm was changed. When wanting to prioritise the mission time over 
the fuel consumption, the fitness function only involved the sequence time. Everything else is the 
same as said in the previous paragraph, although some other changes can be implemented as 
limiting the fuel consumption. 
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All this said, there is only one more function that is introduced all through the code, named 
ChromosomeHealing. This one takes an individual and check that all the chromosomes in it are 
different from each other, because there is no sense in deleting two times the same object. If a 
chromosome is repeated, it is changed randomly and checked that the new one is not repeated. 
This chromosome healing can be considered as a sanity function in order to the correct functioning 
of the code.
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CHAPTER 4 
 Results 

The present chapter will analyse the results provided by the algorithm previously explained in 
chapter 3. Moreover, the problem that is being solved is described in chapter 2, and will be focused 
in 3 different cases, which are: Removing 4 debris, 5 debris and 8 debris. As the number of debris 
varies, some other parameters will be changed, which will be mentioned in the following 
subsections. 

Apart from that, the versatility and feasibility of the genetic algorithm will be studied for some of 
the cases, in order to achieve the best configuration of the algorithm so the problem is solved as 
fast and efficiently as possible. Must be noticed that the reason why this algorithm is being used 
is to avoid the inspection of all the possible combinations for each problem, which follow the next 
expression: 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 =  
𝑚!

(𝑚 − 𝑛)!
 (4.1) 

where m is the number of total debris that can be removed, and n is the number of debris that will 
be deleted that depends on the different cases. 

4.1 Case 1: 4 Debris 
Firstly, the objective is to remove 4 debris out of 155 possible debris to be removed. So, applying 
equation 4.1, the possibilities are: 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 =  
155!

(155 − 4)!
= 5.55 · 108 

(4.2) 

The parameters previously stablished of the problem are fixed, with independence of the case 
being studied, while for the following parameters the values are: 

𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 20 𝑑𝑎𝑦𝑠  (4.3) 
𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑚𝑎𝑥 = 180 𝑑𝑎𝑦𝑠 (4.4) 

4.1.1 Efficiency of the algorithm 

The first thing to be done is to study the efficiency of the algorithm in order to determine which 
is the best combination of the parameters that provides relevant results in an assumable execution 
time. This tuning process leads to an optimal number of iterations as well as dimension of 
population to be explore in each probe. Furthermore, another configuration is also considered, 
which consists on reinitialising the initial population so that the initial population comprises 
individuals with a sufficient quality. 

Must be said that the important thing is that there is convergence. This means, running the 
algorithm provides a result that fulfils the temporary limit. To be highlighted the fact that this 
does not mean that the best solution is reached, but a good sequence is found. 

In this line, it is proceeded to the study of the number of iterations for each probe. The population 
dimension, which is fixed, is 2000. As the population is fixed the dimension of it is supposed to 
not affect the comparison of iterations. Moreover, results have also been compared with the same 
configuration but with the reinitialization of the population 100 times. As previously explained, 
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the population is reinitialised until the population fulfil the condition that the debris are removed 
in less time than the maximum mission time. 

 

Figure 4.1 – Iterations study, 4 debris 

As it can be seen above, there is a little improvement while increasing the number of iterations. 
However, the improvement of the percentage of convergence is not so great to be considered 
feasible, due to the increase of the execution time. With this, a better solution could be running 
more times the program with a lower number of iterations. Despite decreasing the number of 
iterations seems to be the best option, when the number of iterations is too small the algorithm 
does not function correctly, and therefore, the configuration chosen is of 200 iterations. 

On the other hand, the improvement of the results when applying a reinitialization of the initial 
population seems to be of great importance. Indeed, the execution time also rises up, but not so 
high as it happens when increasing iterations. Thus, the reinitialization of the initial population 
can be considered as a way to improving the algorithm. 

The next step is to study the influence of the dimension of the population. For doing so, the 
iterations are fixed in 200 iterations and a variable population dimension is introduced. 
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Figure 4.2 – Population study, 4 debris 

Notwithstanding the increase in the execution time of the algorithm, the results are clearly 
improved in terms of convergence percentage, so increasing the population appears to be a good 
option. Apart from that, again, the reinitialization of the population improves the algorithm 
efficiency, reaching a hundred per cent of convergence for 4000 individuals. All this said, the 
configuration of 4000 individuals with reinitialization looks like the best option. 

In figure 4.3 and figure 4.4 the influence of the number of times that the initial population is again 
initialised is analysed. For such a study the parameters of the algorithm are a population of 2000 
and 400 iterations, which remain fixed in order to isolate the effects of the reinitialization. Must 
be reminded that except for this time, the other studies od the reinitialization are performed with 
a fixed number, 100 times. 

As it can be easily seen, there is a small improvement in the results when individuals are initialized 
100 times. From then on, there is a marked improvement, reaching an efficiency of 100% when 
redoing 10000 times. However, in figure 4.4 can be appreciated that the computational cost 
increases enormously. This is the reason why until 1000 times, the reinitialization is feasible while 
it is not worthy to increase this number too much. 
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Figure 4.3 – Reinitialization of initial population study, 4 debris 

 

Figure 4.4 – Reinitialization of initial population time, 4 debris 

A table with the results of the different combinations tried is presented above, in which 16 
different configurations are studied. 
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Population Iterations Pop Reinitialized Execution Time Convergence % 

1000 200 No 18 54 
1000 200 100 times 20 (+11%) 76 
1000 400 No 33 60 
1000 400 100 times 36 (+9%) 75 
1000 800 No 66 62 
1000 800 100 times 70 (+6%) 86 
2000 200 No 47 67 
2000 200 100 times 61 (+30%) 74 
2000 400 No 96 77 
2000 400 100 times 117 (+22%) 79 
2000 800 No 190 81 
2000 800 100 times 223 (+17%) 95 
4000 200 No 166 86 
4000 200 100 times 185 (+11%) 100 
8000 200 No 568 96 
8000 200 100 times 581 (+2%) 100 

Table 4.1 – Algorithm efficiency, 4 debris 

Some conclusions can be drawn from the results presented for the case of removing 4 spatial 
objects. At first glance, it can be said that the population reinitialization is absolutely worthy, as 
the convergence increases quite a lot and the execution time is just a little bit higher. In addition, 
the increase of iterations does not give much better solutions while the execution times increases 
rapidly. Therefore, if all the previously said is taken into account, the configuration of 200 
iterations and 4000 individuals provides a marked improvement in the algorithm studied. 

4.1.2 Possible Sequences 

With the limitation in time of 180 days, all the possibilities found are shown in figure 4.5. Each 
point represents a possible sequence of debris elimination. 

 

Figure 4.5 – Possible sequences, 4 debris 
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Also, it is important to say that some points could be overlapped because although they 
correspond to different sequences, both parameters that are represented are close to be the same. 
It depends on the criteria used for the selection of the best options that the best sequences could 
be on the left of the chart or at the bottom of it. Furthermore, it cannot be stated that these are all 
the possible solutions to the problem of removing 4 spatial debris, as all the spectral space is not 
explored. 
 
Whereas for the results of this case, it can be noticed that there are no sequences that can perform 
a mission of removal of 4 debris in less than 100 days. Furthermore, the ∆V needed is always 
lower than 1.1 km/s, and almost everyone needs a ∆V lower than 1 km/s. Moreover, there is a 
marked difference between what seems to be the best point in terms of ∆V and the other ones. 
Due to the difficulty of exploring the spectral space, as it has been explained in previous chapters, 
some probes have been done initialization from the best solution to check that it was indeed the 
best one. 
 
Last but not least, it must be highlighted that the number of sequences found are 100, and of those 
94 are done with a ∆V lower than 1 km/s. Furthermore, just 44 of those sequences are able to 
remove the mentioned debris in less than 150 days, which means that most of the solutions are 
very near to the time limitation. The influence of this time limitation can be clearly seen when it 
is deleted. Without this condition there are several results from which the best one is performed 
with a ∆V of 0.0025 km/s in 170 years. Despite being unfeasible due to the durability of the 
mission this result shows the big influence of the time limitation. 
 

4.1.3 Best Results 

In this section tables the top 10 sequences are shown, according to two different criteria, 
minimisation of the time and minimisation of the fuel consumption. 

∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 

0.2158 174.6206 60 4 133 84 
0.2158 174.6211 109 37 130 146 
0.4522 163.7354 4 60 151 93 
0.4537 131.7702 7 151 60 3 
0.4862 172.8901 60 4 133 1 
0.4996 171.0915 4 60 151 3 
0.5059 163.7354 103 2 151 93 
0.5100 163.7354 7 2 151 93 
0.5114 142.3484 7 151 2 93 
0.5534 171.0915 103 2 151 3 

Table 4.2 – Best sequences minimising ∆V, 4 debris 

As it can be seen in order to minimise the fuel consumption the time of the mission is risen. To 
be noticed that almost every sequence of the top 10 implies a mission duration in the 
neighbourhood of the time limitation, 180 days. However, the forth best sequence in terms of 
propellant consumption, seems to be a great answer as it also a good sequence in terms of time of 
the mission just lasting 131 days. Thus, consuming 50% more of propellant the mission could be 
shortened by more than one month. As the time of the mission is shortened, saving money for the 
control operations is highly probable. It must be considered that all the possible best sequences 
involve almost the same debris, permutating them and introducing a couple of new ones. In this 
line, it could depend if there is a specific object as an objective that the best solution could change 
a lot. 



Missions for Removal of Orbital Debris | Chapter 4: Results 

 61 

The next table displays the best results referred to the mission time. To be reminded that the 
problem is the same, but in this case, there are several changes in the algorithm, so the objective 
function priority is the time of the mission. 

∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 

0.8395 103.8730 7 133 60 151 
0.7312 105.1597 60 4 133 26 
0.6134 106.3745 151 7 2 60 
0.8830 106.3745 133 7 2 60 
0.8830 106.3745 151 133 60 2 
0.9944 106.3745 7 133 60 2 
0.7810 110.0075 133 7 2 151 
0.7177 123.3291 60 4 133 50 
0.8158 123.3291 26 1 50 133 
0.7328 129.5228 60 4 133 84 

Table 4.3 – Best sequences minimising ∆T, 4 debris 

At first glance it can be said that the sequences have nothing to do with the best ones of propellant 
consumption. Just as before, the results are not very different between each other talking about 
their sequences, but they are a permutation between 6 objects except for a couple of them. 
Furthermore, some of them end with the same object but are not performed in the same time. This 
can occur due to the reasons which were explained in previous chapters. Besides, as happened 
before, the third best option saves 20% of the propellant and only lasts 3 days more, being the 
best one in the relation fuel/time. 

With all this said, the best sequence depends of the requirements of the mission. This is, if the 
most important thing is to save fuel, the first option of table 4.2 would be the best choice. On the 
other hand, if the objective is to perform it as fast as possible the first option of table 4.3 would 
be the one that fits more the interests. Not to be overlooked that if there is a specific object that 
must be deleted, the sequences change. However, some good choices that at first glance could not 
seem the best ones are the third of table 4.3 and the fourth of table 4.4. 

4.2 Case 2: 5 Debris 
In the second case the objective is to remove 5 debris out of 155 possible debris to be removed. 
Again, applying equation 4.1, the possibilities are: 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 =  
155!

(155 − 5)!
= 8.38 · 1010 

(4.5) 

The parameters are the same without any change, except for the maximum time of the mission, 
which changes from the previous problem of 4 objects. 

𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑚𝑎𝑥 = 300 𝑑𝑎𝑦𝑠 (4.6) 
 

4.2.1 Efficiency of the algorithm 

As done before, the efficiency of the algorithm but in this case with 5 objects is studied in order 
to determine which is the best combination of the parameters that provides relevant results in an 
assumable execution time. So, the number of iterations, dimension of the population and if it is 
better to reinitialise the population are determined again. It can be predicted that the behaviour of 
each characteristic will be similar to the 4-object case, although for sure the numerical results will 
vary largely. 
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It must be remembered that the important thing is the percentage of convergence. This means, 
how many times the algorithm can find at least a result within the temporary limit of 300 days. 
However, the percentage could be high, and the best result could not have been reached, as this 
algorithm does not provide evidence of achieving the best possible sequence. 

In this sense, it is proceeded to the study of the number of iterations for each probe. The population 
dimension, which is fixed, is 2000. As the population is fixed the dimension of it is supposed not 
to be affecting the behaviour of the variance in the iterations. In addition, results have also been 
compared with the same configuration but with the reinitialization of the population 100 times. 
As previously explained, the population is reinitialised until the population fulfil the condition 
that the debris are removed in less time than the mission time max. If in 100 times this condition 
is not fulfilled, the algorithm will continue executing with the population that provides a lower 
mission time. 

 

Figure 4.6 – Iterations study, 5 debris 

In figure 4.6 it can be appreciated a very little improvement while increasing the number of 
iterations. However, the improvement of the percentage of convergence is not so great to be 
considered feasible, due to the increase of the execution time and because seems insignificant. 
Therefore, more solutions could be reached by running more times the algorithm with lower 
numbers of iterations, as the execution time would remain almost the same. Again, 
notwithstanding decreasing the number of iterations seems to be the best option, when the number 
of iterations is too small the algorithm does not function correctly, hence, the recommended 
configuration is of 200 iterations. 

On the other hand, there is a marked improvement of the convergence percentage when applying 
a reinitialization to the population for the case of 800 iteration. This leads to an increase in the 
execution time, however, is not very high. Thus, the reinitialization of the initial population can 
be considered as a way to improving the algorithm. 
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Now the influence of the number of individuals is analysed. To do so, the iterations are fixed in 
200 iterations and a variable population dimension is introduced. 

 

Figure 4.7 – Iterations study, 5 debris 

At first glance, in figure 4.7 a more significant improvement can be observed when varying the 
number of individuals, in fact, the percentage reaches 40%. Thus, the behaviour of the 
convergence seems to be great with the increase of population. Besides, again, the reinitialization 
of the population improves the algorithm efficiency, reaching a 70 per cent of convergence for 
8000 individuals. Nevertheless, as later in table 4.4 will be shown, the increase of execution time 
makes this configuration not to be as good as the one of 4000 individuals with reinitialization.  

Figures 4.8 and 4.9 show the influence of the number of times that the initial population is 
reinitialised. To be highlighted that until now, the redo of the initial population was done just 100 
times. For such a study the parameters of the algorithm are a population of 2000 and 400 
iterations, which remain fixed in order to isolate the effects of the reinitialization. 

Observable is the insignificant improvement of the percentage of convergence until 100 times 
that the population is redone. From then on, there is a marked improvement, reaching an 
efficiency of nearly 100% when redoing 10000 times. However, in figure 4.4 can be appreciated 
that due to the computational cost this option is not feasible. This is the reason why until 1000 
times, the reinitialization is feasible while it is not worthy to increase this number too much. 
Another important point is that redoing 100 times the initial population do has a very positive 
effect when applying in bigger populations. 
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Figure 4.8 – Reinitialization of initial population study, 5 debris 

 

Figure 4.9 – Reinitialization of initial population time, 5 debris 

So, table 4.4 presents all the different combinations tried, in which as done with the first case, 16 
different configurations are studied. 
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Population Iterations Pop Reinitialized Execution Time Convergence % 

1000 200 No 21 10 
1000 200 100 times 27 (+29%) 20 
1000 400 No 42 11 
1000 400 100 times 47 (+12%) 17 
1000 800 No 86 9 
1000 800 100 times 90 (+5%) 19 
2000 200 No 62 15 
2000 200 100 times 73 (+18%) 17 
2000 400 No 117 16 
2000 400 100 times 132 (+13%) 19 
2000 800 No 236 21 
2000 800 100 times 260 (+10%) 41 
4000 200 No 175 23 
4000 200 100 times 220 (+26%) 41 
8000 200 No 607 40 
8000 200 100 times 621 (+2%) 74 

Table 4.4 – Algorithm efficiency, 5 debris 

The first conclusion that can be drawn is that in this case is more difficult for the code to find a 
sequence that fits the requirements. At first glance, it can be said that the population 
reinitialization is worthy when is applied in larger number of individuals, as the convergence 
increases quite a lot and the execution time is just a little bit higher. Moreover, whilst the number 
of iterations increases the execution time increases much more. Besides, despite of seeming a 
population of 8000 to be the best option, it is the configuration of 4000 individuals the one that 
presents the best ratio between convergence/execution time. All considered, the best choice is the 
one of a population of 4000, 200 iterations and reinitialization of the initial population. 

4.2.2 Possible Sequences 

In this case the time limitation is of a maximum mission time of 300 days. All the different 
sequences that the algorithm was able to find are printed in figure 4.10. In the graph each red 
point represents a sequence of objects that is removed, printing two parameters which are the fuel 
consumption, ∆V, and the time that lasts to do so. 

It must be mentioned that there is great difficulty when trying to distinguish between some 
sequences that have very similar or identical parameters. Depending on the criteria used for the 
selection of the best options that the best sequences could be on the left of the chart or at the 
bottom of it. Besides, the algorithm does not assure that all the possible sequences are founded, 
however, it provides a wide group of good sequences to perform the mission. 

In this case, 488 different sequences were found with a consumption of less than 1.3 km/s, and 
that fulfil the maximum time bound. Moreover, of all these sequences 191 have a ∆V lower than 
1 km/s while only 52 sequences are performed in less than 200 days. This last thing implies that 
most of the sequences are close to the mission time limit. 

So, obviously, the maximum time bound does have a great influence in the problem. By deleting 
the mission maximum time, the only parameter to be minimised is the propellant consumption, 
so other new sequences are found. Under these new conditions 5 objects could be removed in 384 
years with a ∆V lower than 0.004 km/s. Nevertheless, must be outlined that, as previously 
happened in the first case, it is not a feasible option as the duration of the mission is too long to a 
real application. 
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Figure 4.10 – Possible sequences, 5 debris 

Graphically can be easily seen that there is no a sequence of objects that results in a mission with 
a lower mission time of 100 days. It can also be appreciated a concentration on the top right part 
of the graph, which are amongst the possible solutions the worst ones. Due to the difficulty of 
exploring the spectral space, as it has been explained in previous chapters, some probes have been 
done initialization from points that were of interest, such as the best sequences in terms of 
propellant consumption and in terms of time. 

4.2.3 Best Results 

The following section consists on representing in tables the top 10 sequences, according to two 
different criteria, minimisation of the mission time and minimisation of the propellant 
consumption. 

∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 5 

0.4870 276.0855 94 32 71 42 9 
0.4909 276.0855 32 94 102 42 9 
0.4909 256.9440 32 94 102 42 132 
0.4917 276.0855 32 94 71 42 9 
0.4964 276.3678 94 32 71 42 48 
0.5004 276.3670 32 94 102 42 48 
0.5035 256.9446 94 32 71 42 132 
0.5067 276.0855 71 94 102 42 9 
0.5075 256.9446 32 94 102 42 132 
0.5162 276.3670 71 94 102 42 48 

Table 4.5 – Best sequences minimising ∆V, 5 debris 

Firstly, the sequences that need less propellant consumption are all in the neighbourhood of the 
mission maximum lifetime, 300 days. There is just a difference of at most 20 days between all of 
them. Apart from that, the ∆V is very similar in all of the different sequences, being much higher 
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than the previous case as there is a need of performing an extra manoeuvre. It must be considered 
that all the possible best sequences involve almost the same debris, permutating them and 
introducing a couple of new ones. So, in this case all the best solutions are very similar, so the 
choice depends on the criteria used or the objective or constraints. 

∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 5 

0.7138 106.3745 103 151 7 2 60 
0.7154 131.7702 103 151 7 3 60 
0.8664 131.7702 151 7 2 60 3 
1.1359 131.7702 133 7 2 60 3 
1.1406 142.3484 151 133 60 2 93 
1.2522 142.3484 7 133 60 2 93 
1.2142 160.7062 26 1 84 133 49 
1.1858 160.7062 133 84 4 89 2 
1.1897 160.7062 133 7 2 93 3 
1.2016 160.7062 151 133 26 2 89 

Table 4.6 – Best sequences minimising ∆T, 5 debris 

Comparing the sequences of table 4.6 with those of table 4.5, it can be said that they do not have 
nothing to do between each other. When prioritising the mission time, much more higher values 
of propellant consumption are achieved. In particular, it is appreciated that the sequence of objects 
that minimise the mission time also is the one that has the lower ∆V among the top10. Just as 
before, the results are not very different between each other talking about their sequences, but 
they are a permutation between 6 different objects except for a couple of them. Furthermore, some 
of them end with the same object but are not performed in the same time. This can occur due to 
the reasons which were explained in previous chapters.  

Finally, to be highlighted the great increase referring to ∆V that takes place when changing from 
4 objects to 5, while there is just a slight increase in the lifetime of the mission, just 3 days, when 
trying to minimising it. 

4.3 Case 3: 8 Debris 
In this case the objective is to remove 8 debris out of 155 possible debris to delete. One last time, 
applying equation 4.1, the possibilities are: 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 =  
155!

(155 − 8)!
= 2.77 · 1017 

(4.7) 

For the removal of 8 objects, two different cases are studied with different times of service. The 
other parameters of the problem remain with the same value that the precedent cases, except for 
the maximum mission time. 

𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑚𝑎𝑥 = 365 𝑑𝑎𝑦𝑠   (4.8) 
𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 5 𝑑𝑎𝑦𝑠 (4.9) 

𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 10 𝑑𝑎𝑦𝑠 (4.10) 
 

4.1.1 Efficiency of the algorithm 

As the number of objects increases, the complexity of the problem becomes greater, hence, the 
computational cost is greater while trying the different sequences and in the process of 
optimisation. Apart from that, taking into account that the increase of the maximum mission time 
is just of 65 days when increasing the number of objects in 3, the possibility to find a sequence 
that fulfils all the constraints is reduced significantly. 
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This fact was clearly noted when the algorithm was run, and the algorithm was unable to find a 
suitable solution with most of the combinations in population and iterations that were studied in 
precedent sections. Therefore, it can be said that the algorithm does not function as good as wished 
for this specific case. However, a sequence of objects was found which was acceptable. 

Unlike the cases of 4 and 5 objects, this time the study of the efficiency of the algorithm was 
unfeasible, as the time to carry it out would be enormous. The percentage of convergence is so 
low that it is strongly dependant of the randomness in each time the code is run. This is the reason 
why different configurations have been tried, and although some results were found, it is not 
showed the study of the algorithm. 

It can be said that the algorithm is not very efficient in this case, nevertheless, this problem 
involves a lot of difficulty with lots of different possible sequences. For all this, a different 
strategy has been implemented in order to achieve better results. Such a strategy will be explained 
in the following chapter. 

4.1.2 Possible Sequences 

As previously mentioned, the algorithm was able to find a couple of solutions, but the execution 
time was enormous. Therefore, the strategy used to find more solutions was to initialise the 
population from previously found solution. This is, the code was run and after plenty of execution 
time a solution was found which fulfilled the time limitation, less than 365 days. Afterwards, the 
code was run again but this time with the initial population equal to the genes of the just mentioned 
solution. So, as was mentioned in chapter 3, the algorithm will change this population searching 
for better solutions with most of them similar to the initial population. Thanks to this strategy it 
was possible to find much more sequences and improve the mentioned result. 

 

Figure 4.11 – Possible sequences, 8 debris 

The sequences obtained for a service time of 5 days are 34. From those, 25 need a ∆V lower than 
2 km/s and just 8 sequences need a mission time of less than 200 days. Of course, both parameters 
are greater in this case that in the studied before in this same chapter. Also, remarkable the fact 
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that can be appreciated that all the sequences would be performed in just 4 different times. This 
happens because all of them are permutations of very few genes and implies that the sequences 
only finish at most in 4 different objects, one per each mission time. 

 

Figure 4.12 – Possible sequences, 8 debris 

As can be seen in figure 4.12, the results are almost the same when the service time is doubled. 
This happens because for these sequences obtained, the increase of service has no influence, but 
as the service time increases less points would be seen in the graph. Thus, 31 results are achieved, 
3 less than before. 22 of those need less than ∆V, which means that the three sequences that cannot 
be done belong to this group. 

For both service times some conclusions can be drawn. As could be easily predicted, the 
sequences which can be done for 10 days are also acceptable results for a service time of 5 days. 
Apart from that, it can be observed that the propellant consumption doubles its precedents. 
Another noticeable point is that in both cases under study, there is a concentration of possibilities 
close to the time constraint.  

4.1.3 Best Results 

Now, the best results in terms of propellant consumption are presented. Firstly, with a service 
time of 10 days which is more restrictive, and afterwards with a service time of 5 days. Indeed, it 
is supposed to find all the best solutions of one of them in the other. 
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∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 5 6 7 8 

1.6110 336.3860 151 133 4 50 2 76 3 49 
1.6197 292.0726 151 133 4 26 2 50 3 76 
1.7091 336.3860 26 1 50 4 76 2 49 3 
1.7217 336.3860 26 1 50 4 76 2 89 3 
1.7217 336.3860 26 1 50 4 89 2 49 3 
1.7241 336.3860 50 1 76 4 89 2 49 3 
1.7264 292.0726 60 4 133 26 2 50 3 76 
1.7264 292.0726 60 133 4 26 2 50 3 76 
1.7304 336.3860 60 4 133 26 2 50 3 49 
1.7304 336.3860 60 133 4 26 2 50 3 49 

Table 4.7 – Best sequences minimising ∆V, 8 debris, Tserv=10 

∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 5 6 7 8 

1.6110 336.3860 151 133 4 50 2 76 3 49 
1.61973 292.0726 151 133 4 26 2 50 3 76 
1.7091 336.3860 26 1 50 4 76 2 49 3 
1.7154 292.0726 26 1 50 4 84 2 76 3 
1.7162 303.3364 26 1 50 4 76 2 89 3 
1.7217 336.3860 26 1 50 4 89 2 49 3 
1.7241 336.3860 50 1 76 4 89 2 49 3 
1.7265 292.0726 60 4 133 26 2 50 3 76 
1.7265 292.0726 60 133 4 26 2 50 3 76 
1.7304 336.3860 60 4 133 26 2 50 3 49 

Table 4.8 – Best sequences minimising ∆V, 8 debris, Tserv=5 

To be outlined that the best sequence in both cases is the same. Furthermore, the sequence that 
provides the best ratio between time and consumption, is also the same, the one located in second 
place. In fact, in this top only the one placed in forth position is just possible when the service 
time is 5 days. As previously said, all the sequences look similar as they are nearly a permutation 
between 8 genes. Also, as mentioned before, it is shown how the different sequences only finish 
in 3 different objects, with their correspondent mission time. 

The next tables represent the best sequences of objects to be removed minimising the mission 
time, first for a service time of 10 days and afterwards of 5 days. 

∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 5 6 7 8 

1.6197 292.0726 151 133 4 26 2 50 3 76 
1.7264 292.0726 60 4 133 26 2 50 3 76 
1.7264 292.0726 60 133 4 26 2 50 3 76 
1.8814 292.0726 151 133 26 4 50 2 76 3 
1.9075 292.0726 151 133 26 4 84 2 76 3 
1.9881 292.0726 60 133 26 4 50 2 76 3 
2.0141 292.0726 60 133 26 4 84 2 76 3 
1.9083 303.3364 151 133 26 4 76 2 89 3 
2.0150 303.3364 60 133 26 4 76 2 89 3 
1.9652 313.8257 1 26 133 50 4 76 2 49 

Table 4.9 – Best sequences minimising ∆T, 8 debris, Tserv=10 
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∆𝐕 [km/s] ∆𝐓 [days] 1 2 3 4 5 6 7 8 

1.6197 292.0726 151 133 4 26 2 50 3 76 
1.7265 292.0726 60 4 133 26 2 50 3 76 
1.7265 292.0726 60 133 4 26 2 50 3 76 
1.8814 292.0726 151 133 26 4 50 2 76 3 
1.9075 292.0726 151 133 26 4 84 2 76 3 
1.9881 292.0726 60 133 26 4 50 2 76 3 
2.0142 292.0726 60 133 26 4 84 2 76 3 
1.7154 292.0726 26 1 50 4 84 2 76 3 
1.7162 303.3364 26 1 50 4 76 2 89 3 
1.9083 303.3364 151 133 26 4 76 2 89 3 

Table 4.10 – Best sequences minimising ∆T, 8 debris, Tserv=5 

Not a lot of comments that have been done before can be said. With a service time of 5 days there 
is a new sequence with respect to the first table, which is in eight position. Apart from that, just 
as before said, the sequences are mostly a permutation between 8 different genes, and they only 
finish in 3 different genes. Finally, must be outlined that there is not great difference in time nor 
in propellant consumption, hence, all these solutions could be a good choice for the mission of 
removal of debris 
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CHAPTER 5 
Conclusions & Future work 

5.1 Conclusions 
The thesis presented has consisted on the development and study of a genetic algorithm in the 
programming language Matlab, in order to obtain the best sequences to be deleted with a mission 
of active removal of space debris. The immediate conclusion that can be drawn is that the code 
has proven to be effective as it worked correctly while achieves the goal. Indeed, some comments 
must be outlined which are stemmed from the results shown in chapter 5. 

In the first place, the evolutive algorithm has shown its capacity to adapt to different conditions 
of the problem. The algorithm has probed to work correctly for the removal of 4 and 5 space 
debris, changing the maximum mission time. Due to the difficulty to find solutions in the case of 
8 debris, it was needed another approach when facing the problem, nevertheless, it can be said 
that the algorithm behaviour has been acceptable. Apart from that, it has also probed to reach 
solutions of the problem when changing the service time. In addition, it has also demonstrated 
that it reaches solutions when trying to minimise the mission time. Another important aspect of 
the code is that for the cases of 4 and 5 debris, it has been able to obtain high percentages of 
convergence, being even of 100% for the first case. 

On the other hand, the algorithm has shown a great improvement with the reinitialization of the 
initial population. However, the more the number of reinitializations increases the more the 
computational time rises, and hence, this number cannot be very big. Instead, reinitialising each 
member of the population 100 times, it has shown a noticeable improvement while the 
computational time did not increase a lot. Moreover, in the case of 8 space debris, the 
implementation of the initialisation from a known valid sequence has been demonstrated to be 
absolutely efficient for the search of other valid solutions. 

Finally, it must be highlighted that the algorithm does not provide assurance of having reached 
the best solution whatsoever. It has proved itself to be useful in finding good solutions for active 
debris removal missions but not the best one. Therefore, each time the algorithm is run it may 
give a different result, but as its objective is to provide a wide range of good sequences, the 
algorithm seems to be suitable for its function. For all this, the choice of an evolutive algorithm 
in order to find the sequence of debris to be followed in ADR missions seems to be feasible and 
effective. 
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5.2 Future work 
Firstly, although the algorithm showed good functioning under different conditions, more tests 
are to be done in order to validate the versatility of the code. As it was explained, depending on 
the numbers of debris to be deleted, the algorithm was able to reach solutions easily or not. Thus, 
the number of debris until the genetic algorithm is feasible could be studied. It must be reminded 
that while for the cases of 4 and 5 debris it reached acceptable solutions, when considering 8 
debris it is not able to find a sequence rapidly. Apart from that, new solutions can be obtained, as 
this work does not assure that all the sequences were obtained, nor the best sequence for the 
removal of the space debris 

Secondly, the parameters of the genetic algorithm could be modified, so the genetic algorithm is 
improved for this type of problem. This is, change the parameters such as the contribution of 
mutation, crossover, strategies used… Some important aspects that could be analysed with the 
new configuration are the computational time, the variety in the solutions and if it is able to reach 
the best solution, and in the best a better one. What is more, the fitness function could be changed 
as well as the reinitialization could be improved or changed of criteria.  

Moreover, the code is prepared for the implementation of other input files with a different number 
of possible debris to be deleted. Therefore, other targets could be studied if the input files are 
implemented correctly, as it should not be forgotten that the objective of this algorithm is to be as 
versatile as possible. In addition, this thesis only considered the variation of the ascending node, 
so the code could also be adapted to other problems in which the debris are not just dependant of 
this variation. However, if a propagator is introduced within the algorithm, the code would have 
to be drastically changed, hence, this is not the line of work recommendable for the developed 
genetic algorithm. 

Finally, if the active debris removal mission is intended to be done, there are several studies that 
should be carried out. Despite this thesis has obtained the impulses, a study of the most suitable 
propellant should be done with the consequent contribution to the mass budget. Moreover, the 
deorbiting technology and strategy should be defined as it could change some details such as the 
service time. Furthermore, the data imported from the debris catalogue could be propagate 
accurately until the date of launching, in order to minimise the possible failure of the mission. 
Another important aspect is to decide which debris are to be deleted, as it could be possible that 
the best solution in terms of propellant is not the selected sequence. These are some of the most 
important aspects to care about, as well as, of course, the pertinent actions and studies 
corresponding to the development of a space mission.
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Appendix A: Matlab Code 
function varargout = tspo_ga(varargin) 

tic 

Loading data 

load kosmos.txt 

 

departure_ID = kosmos(:,1); 

arrival_ID   = kosmos(:,2); 

dv           = kosmos(:,3); 

dt           = kosmos(:,4); 

d_omega      = kosmos(:,5); 

 

total_debris     = 155; 

Debris_to_remove = 5;   % Parameter to be changed (4 5 or 8) 

 

time_service    = 20*86400;  % Parameter to be changed (5 10 or 20) 

mission_timemax = 300*86400; % Parameter to be changed (180 300 or 365) 

 

g  = 1; 

Constants and times of references 

mu = 398600.4415; 

r  = 6378.1363; 

v_ref              = sqrt(mu/r); 

time_ref           = r/v_ref; 

time_servref       = time_service/time_ref; 

mission_timemaxref = mission_timemax/time_ref; 

Configuration of the Algorithm 

defaultConfig.popSize     = 1000; 

defaultConfig.numIter     = 10; 

defaultConfig. showProg   = true; 
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defaultConfig.showResult  = true; 

defaultConfig.showWaitbar = false; 

 

num_redo         = 1; % If there is no reinitialization of pop, set to 0. 

numeroProve      = 2; 

 

% Interpret user configuration inputs 

if ~nargin 

    userConfig = struct(); 

elseif isstruct(varargin{1}) 

    userConfig = varargin{1}; 

else 

    try 

        userConfig = struct(varargin{:}); 

    catch 

        error('Expected inputs are either a structure or parameter/value 

pairs'); 

    end 

end 

 

% Override default configuration with user inputs 

configStruct = get_config(defaultConfig,userConfig); 

 

% Extract configuration 

popSize     = configStruct.popSize; 

numIter     = configStruct.numIter; 

showProg    = configStruct.showProg; 

showResult  = configStruct.showResult; 

showWaitbar = configStruct.showWaitbar; 

Creation of matrixes & Sanity checks 

% Sanity Checks 

popSize     = 4*ceil(popSize/4); 

numIter     = max(1,round(real(numIter(1)))); 

showProg    = logical(showProg(1)); 
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showResult  = logical(showResult(1)); 

showWaitbar = logical(showWaitbar(1)); 

% Matrixes dmat, tmat, omegamat 

dmat     = zeros(total_debris,total_debris); 

tmat     = zeros(total_debris,total_debris); 

omegamat = zeros(total_debris,total_debris); 

row       = 1; 

rowt      = 1; 

row_omega = 1; 

 

for fileCounter = 0:total_debris:length(departure_ID)-total_debris 

    dmat(row,:) = dv(fileCounter+1:fileCounter+total_debris); 

    row = row + 1; 

end 

for fileCounter_time = 0:total_debris:length(departure_ID)-total_debris 

 

    tmat(rowt,:) = dt(fileCounter_time+1:fileCounter_time+total_debris); 

    rowt = rowt + 1; 

end 

for fileCounter_omega = 0:total_debris:length(departure_ID)-total_debris 

 

    omegamat(row_omega,:) = 

d_omega(fileCounter_omega+1:fileCounter_omega+total_debris); 

    row_omega = row_omega + 1; 

end 

 

% Creation of Matrixes 

resultMatrix   = zeros(numeroProve,4+Debris_to_remove); 

totalDist      = zeros(1,popSize); 

totalTime      = zeros(1,popSize); 

distHistory    = zeros(numeroProve,numIter); 

timeHistory    = zeros(numeroProve,numIter); 

Result_History = zeros(numIter*numeroProve,2+Debris_to_remove); 

newPop         = zeros(popSize,Debris_to_remove); 
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Start with the GA 

for prova=1:numeroProve 

    prova 

    bestIter = inf; 

    % Initialize the Population 

    pop = zeros(popSize,Debris_to_remove); 

 

    for k = 1:popSize 

        b = randperm(total_debris); 

        c = b(1,1:Debris_to_remove); 

        pop(k,:) = c(:); 

 

        % Reinitialization of each member of population 

        if num_redo>0 

            [d_pop_initial] = 

EvaluatePath_Initial(c,time_servref,mission_timemaxref,tmat,dmat,omegamat,Debr

is_to_remove,total_debris); 

            counter_initial=0; 

            while d_pop_initial>=1000 & counter_initial<num_redo 

                d_pop_initial_vec(counter_initial+1)=d_pop_initial; 

                counter_initial=counter_initial+1; 

                b = randperm(total_debris); 

                c = b(1,1:Debris_to_remove); 

                [d_pop_initial] = 

EvaluatePath_Initial(c,time_servref,mission_timemaxref,tmat,dmat,omegamat,Debr

is_to_remove,total_debris); 

                d_pop_initial_min=min(d_pop_initial_vec); 

                if d_pop_initial<=d_pop_initial_min 

                    pop(k,:) = c(:); 

                end 

            end 

        end 

    end 
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Start iteration loop & Evaluate Each Population Member 

    for iter = 1:numIter 

        

[totalDist,minDist,index,distHistory,globalMin,bestIter,optRoute,totalTime,tim

eHistory,route_time,Result_History,g] = 

EvaluatePath(pop,popSize,dmat,tmat,omegamat,numIter,iter,totalDist,distHistory

,totalTime,timeHistory,time_servref,mission_timemaxref,Debris_to_remove,prova,

total_debris,g,Result_History); 

Write the results in a matrix 

        format long 

        resultMatrix(prova,1) = globalMin; 

        resultMatrix(prova,2) = route_time; 

        resultMatrix(prova,3) = bestIter; 

        resultMatrix(prova,4) = index; 

        resultMatrix(prova,5:4+Debris_to_remove) = optRoute; 

Bubble Sorting 

        [popSorted4Fitness,choice,roulette_it,totalTime] = 

BubbleSorting(popSize,pop,totalDist,totalTime,Debris_to_remove); 

APX crossover (PMX) 

        [child1,child2] = 

APX_Crossover(choice,popSorted4Fitness,roulette_it,Debris_to_remove,total_debr

is); 

 

        newPop(1:0.3*popSize,:)             = [child1;child2]; 

        newPop(0.3*popSize+1:0.5*popSize,:) = 

popSorted4Fitness(0.8*popSize+1:1:popSize,:); 

Mutation of a part of the best vectors 

        [child1M,child2M] = 

Mutation(popSorted4Fitness,Debris_to_remove,total_debris,popSize); 

 

        newPop(0.5*popSize+1:0.6*popSize,:) = [child1M;child2M]; 
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Single point crossover 

        [child1SP,child2SP] = 

SinglePointCrossover(popSorted4Fitness,Debris_to_remove,total_debris,popSize); 

 

        newPop(0.6*popSize+1:0.7*popSize,:) = [child1SP;child2SP]; 

Double Point Crossover 

        [child1DP,child2DP] = 

DoublePointCrossover(popSorted4Fitness,Debris_to_remove,total_debris,popSize); 

 

        newPop(0.7*popSize+1:0.8*popSize,:) = [child1DP;child2DP]; 

Simple inversion of 2 elemnts over the 40 best vectors 

        invertParent = 

InvertParent(popSorted4Fitness,Debris_to_remove,popSize); 

 

        newPop(0.8*popSize+1:0.9*popSize,:) = invertParent; 

Introduction of random elements in the new population 

        for t=0.9*popSize+1:popSize 

            newPop(t,:) = randperm(total_debris,Debris_to_remove); 

        end 

Creation of new population 

        pop = newPop; 

Elimination of part of population for iter=0.5*numIter 

        regCounter = 0; 

        if iter == 0.5*numIter 

            for regCounter=11:popSize 

                pop(regCounter,:) = randperm(total_debris,Debris_to_remove); 

 

            end 

        end 
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Elimination of part of population for iter=0.75*numIter 

        if iter == 0.75*numIter 

            for regCounter=6:popSize 

                pop(regCounter,:) = randperm(total_debris,Debris_to_remove); 

 

            end 

        end 

    end 

end 

if showWaitbar 

    close(hWait); 

end 

 

if showResult 

    plot(distHistory.','x','LineWidth',2); 

    title('Best Solution History'); 

end 

 

% Return Output 

if nargout 

    resultStruct = struct( ... 

        'popSize',     popSize, ... 

        'numIter',     numIter, ... 

        'showProg',    showProg, ... 

        'showResult',  showResult, ... 

        'showWaitbar', showWaitbar, ... 

        'optRoute',    optRoute, ... 

        'minDist',     minDist); 

 

    varargout = {resultStruct}; 

end 

toc 

end 
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% Subfunction to override the default configuration with user inputs 

function config = get_config(defaultConfig,userConfig) 

 

% Initialize the configuration structure as the default 

config = defaultConfig; 

 

% Extract the field names of the default configuration structure 

defaultFields = fieldnames(defaultConfig); 

 

% Extract the field names of the user configuration structure 

userFields = fieldnames(userConfig); 

nUserFields = length(userFields); 

 

% Override any default configuration fields with user values 

for i = 1:nUserFields 

    userField = userFields{i}; 

    isField = strcmpi(defaultFields,userField); 

    if nnz(isField) == 1 

        thisField = defaultFields{isField}; 

        config.(thisField) = userConfig.(userField); 

    end 

end 

 

end 

Evaluation of the distance 

function 

[totalDist,minDist,index,distHistory,globalMin,bestIter,optRoute,totalTime,tim

eHistory,route_time,Result_History,g] = 

EvaluatePath(pop,popSize,dmat,tmat,omegamat,numIter,iter,totalDist,distHistory

,totalTime,timeHistory,time_servref,mission_timemaxref,Debris_to_remove,prova,

total_debris,g,Result_History) 

 

globalMin = Inf; 

totalDist = zeros(1,popSize); 

totalTime = zeros(1,popSize); 
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for p = 1:popSize 

    d = 0; % Open Path 

    t = 0; 

    for k = 2:Debris_to_remove 

        t = t + time_servref; 

        t_old = t; 

        if length(unique(pop(p,:)))<Debris_to_remove 

            pop(p,:) = ChromosomeHealing(pop, 

p,Debris_to_remove,total_debris); 

        end 

        t = tmat(pop(p,k-1),pop(p,k)); 

        omij = abs(omegamat(pop(p,k-1),pop(p,k))); 

        if omij == inf 

            omij = 1e12; 

        end 

        if t == inf 

            t = 1e12; 

            t_old = 1e12; 

        end 

        d = d + dmat(pop(p,k-1),pop(p,k)); 

        if t < t_old 

            while t < t_old 

                t = t + omij; 

            end 

        end 

        if t > mission_timemaxref 

            d = 1000+t/107.088; 

        end 

    end 

 

    totalDist(p) = d; 

    totalTime(p) = t; 

end 

 

% Find the Best Route in the Population 
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[minDist,index] = min(totalDist); 

distHistory(prova,iter) = minDist; 

timeHistory(prova,iter) = totalTime(index); 

if minDist<1000 

    Result_History(g,:) = [minDist totalTime(index) pop(index,:)]; 

    g=g+1; 

end 

if minDist < globalMin 

    globalMin = minDist; 

    bestIter = iter; 

    route_time = timeHistory(prova,iter); 

    optRoute = pop(index,:); 

end 

 

end 

Evaluation of the distance for the initial population 

function [d_pop_initial] = 

EvaluatePath_Initial(c,time_servref,mission_timemaxref,tmat,dmat,omegamat,Debr

is_to_remove,total_debris); 

d_pop_initial = 0; % Open Path 

 

for k = 2:Debris_to_remove 

    t = 0; 

    t = t + time_servref; 

    t_old = t; 

    if length(unique(c(:)))<Debris_to_remove 

        c(:) = ChromosomeHealing(c, 1,Debris_to_remove,total_debris); 

    end 

    t = tmat(c(k-1),c(k)); 

    omij = abs(omegamat(c(k-1),c(k))); 

    if omij == inf 

        omij = 1e12; 

    end 
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    if t == inf 

        t = 1e12; 

        t_old = 1e12; 

    end 

    d_pop_initial = d_pop_initial + dmat(c(k-1),c(k)); 

 

    if t < t_old 

        while t < t_old 

            t = t + omij; 

        end 

    end 

    if t > mission_timemaxref 

        d_pop_initial = 1000+t/107.088; 

    end 

end 

end 

Sorting population function 

function [popSorted4Fitness,choice,roulette_it,totalTime] = 

BubbleSorting(popSize,pop,totalDist,totalTime,Debris_to_remove) 

 

popSorted4Fitness = pop; 

temp1 = zeros(1,Debris_to_remove); 

temp  = 0; 

temp2 = 0; 

fitness_rank = 1:1:popSize; 

 

for indice=1:popSize 

    for indice1=1:popSize-1 

        if totalDist(indice1) < totalDist(indice1+1) 

            temp = totalDist(indice1); 

            temp1 = popSorted4Fitness(indice1,:); 

            temp2 = totalTime(indice1); 

            totalDist(indice1) = totalDist(indice1+1); 

            popSorted4Fitness(indice1,:) = popSorted4Fitness(indice1+1,:); 
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            totalTime(indice1) = totalTime(indice1+1); 

            totalDist(indice1+1) = temp; 

            popSorted4Fitness(indice1+1,:) = temp1; 

            totalTime(indice1+1) = temp2; 

        else if totalDist(indice1) == totalDist(indice1+1) && 

totalTime(indice1) < totalTime(indice1+1) 

                temp = totalDist(indice1); 

                temp1 = popSorted4Fitness(indice1,:); 

                temp2 = totalTime(indice1); 

                totalDist(indice1) = totalDist(indice1+1); 

                popSorted4Fitness(indice1,:) = popSorted4Fitness(indice1+1,:); 

                totalTime(indice1) = totalTime(indice1+1); 

                totalDist(indice1+1) = temp; 

                popSorted4Fitness(indice1+1,:) = temp1; 

                totalTime(indice1+1) = temp2; 

            end 

        end 

    end 

end 

roulette_it = 0.3*popSize; 

choice = zeros(roulette_it,1); 

accumulation = cumsum(fitness_rank); 

for i = 1:roulette_it 

    p = rand() * accumulation(end); 

    chosen_index = -1; 

    for index2 = 1 : length(accumulation) 

        if (accumulation(index2) > p) 

            chosen_index = index2; 

            break; 

        end 

    end 

    choice(i) = chosen_index; 

end 

end 
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Healing of Chromosomes function 

function healedChromosome = ChromosomeHealing(chromosome, 

counter,Debris_to_remove,total_debris) 

 

n = zeros(1,Debris_to_remove); 

[C, ia, ic] = unique(chromosome(counter,:),'sorted'); 

for e=1:length(ia) 

    n(ia(e)) = chromosome(counter,ia(e)); 

end 

repetition = chromosome(counter,:)-n; 

q = find(repetition); 

for u = 1:length(q) 

    chromosome(counter,q(u)) = 

randsample(setdiff(1:total_debris,chromosome(counter,:)), 1); 

 

end 

healedChromosome = chromosome(counter,:); 

end 

APX Crossover function (PMX) 

function [child1,child2] = 

APX_Crossover(choice,popSorted4Fitness,roulette_it,Debris_to_remove,total_debr

is) 

 

parent1_index = choice(1:2:roulette_it); 

parent2_index = choice(2:2:roulette_it); 

 

parent1Var = popSorted4Fitness(parent1_index,:); 

parent2Var = popSorted4Fitness(parent2_index,:); 

 

child1 = zeros(roulette_it/2,Debris_to_remove); 

child2 = zeros(roulette_it/2,Debris_to_remove); 

 

for counter=1:length(parent1Var) 

    parent1 = parent1Var(counter,:); 
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    parent2 = parent2Var(counter,:); 

    nVar = numel(parent1); 

    c  = randsample(nVar,2); 

    c1 = min(c); 

    c2 = max(c); 

 

    L1 = parent1(1:c1); 

    L2 = parent2(1:c1); 

 

    k1 = parent2(c1+1:c2); 

    k2 = parent1(c1+1:c2); 

 

    nVar1 = numel(k1); 

    nVar2 = numel(k2); 

 

    R1 = parent1(c2+1:end); 

    R2 = parent2(c2+1:end); 

 

    for j=1:nVar 

        for i=1:nVar1 

            [a,loc1] = ismember(k1(i),L1); 

            if a==1 

                L1(loc1) = k2(i); 

                break; 

            end 

        end 

        for i = 1:nVar1 

            [b,loc2] = ismember(k1(i),R1); 

            if b==1 

                R1(loc2) = k2(i); 

            end 

        end 

    end 

    child1(counter,:) = [L1,k1,R1]; 
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    for n=1:nVar 

        for i=1:nVar2 

            [c,loc3] = ismember(k2(i),L2); 

            if c==1 

                L2(loc3) = k1(i); 

            end 

        end 

        for i=1:nVar2 

            [d,loc4] = ismember(k2(i),R2); 

            if d==1 

                R2(loc4) = k1(i); 

            end 

        end 

    end 

    child2(counter,:) = [L2,k2,R2]; 

    unique(child1(counter,:)); 

    unique(child2(counter,:)); 

 

end 

 

% Healing of chromosomes 

if length(unique(child1(counter,:)))<Debris_to_remove 

    child1(counter,:) = ChromosomeHealing(child1, 

counter,Debris_to_remove,total_debris); 

end 

 

if length(unique(child2(counter,:)))<Debris_to_remove 

    child2(counter,:) = ChromosomeHealing(child2, 

counter,Debris_to_remove,total_debris); 

end 

 

end 
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Mutation function 

function [child1M,child2M] = 

Mutation(popSorted4Fitness,Debris_to_remove,total_debris,popSize) 

 

mutationParents = popSorted4Fitness(0.9*popSize+1:popSize,:); 

mutationParent1 = mutationParents(1:2:0.1*popSize,:); 

mutationParent2 = mutationParents(2:2:0.1*popSize,:); 

child1M = zeros(0.05*popSize,Debris_to_remove); 

child2M = zeros(0.05*popSize,Debris_to_remove); 

 

for counterM = 1:length(mutationParent1) 

 

    child1M(counterM,:) = mutationParent1(counterM,:); 

    child2M(counterM,:) = mutationParent2(counterM,:); 

    child1M(counterM,1) = randperm(total_debris,1); 

    child1M(counterM,2) = randperm(total_debris,1); 

    child2M(counterM, Debris_to_remove-1) = randperm(total_debris,1); 

    child2M(counterM, Debris_to_remove)   = randperm(total_debris,1); 

 

    if length(unique(child1M(counterM,:)))<Debris_to_remove 

        child1M(counterM,:) = ChromosomeHealing(child1M, 

counterM,Debris_to_remove,total_debris); 

    end 

 

    if length(unique(child2M(counterM,:)))<Debris_to_remove 

        child2M(counterM,:) = ChromosomeHealing(child2M, 

counterM,Debris_to_remove,total_debris); 

    end 

end 

end 
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Single Point Crossover function 

function [child1SP,child2SP] = 

SinglePointCrossover(popSorted4Fitness,Debris_to_remove,total_debris,popSize) 

 

singlePointParents    = popSorted4Fitness(0.9*popSize+1:popSize,:); 

singlePointParent1Var = singlePointParents(1:2:0.1*popSize,:); 

singlePointParent2Var = singlePointParents(2:2:0.1*popSize,:); 

child1SP = zeros(0.05*popSize,Debris_to_remove); 

child2SP = zeros(0.05*popSize,Debris_to_remove); 

 

for counterSP=1:length(singlePointParent1Var) 

    p1 = singlePointParent1Var(counterSP,:); 

    p2 = singlePointParent2Var(counterSP,:); 

 

    nVar = numel(p1); 

 

    c = randi([1 nVar-1]); 

 

    child1SP(counterSP,:) = [p1(1:c) p2(c+1:end)]; 

    child2SP(counterSP,:) = [p2(1:c) p1(c+1:end)]; 

 

    if length(unique(child1SP(counterSP,:)))<Debris_to_remove 

        child1SP(counterSP,:) = ChromosomeHealing(child1SP, 

counterSP,Debris_to_remove,total_debris); 

    end 

    if length(unique(child2SP(counterSP,:)))<Debris_to_remove 

        child2SP(counterSP,:) = ChromosomeHealing(child2SP, 

counterSP,Debris_to_remove,total_debris); 

    end 

 

end 

end 
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Double Point Crossover function 

function [child1DP,child2DP] = 

DoublePointCrossover(popSorted4Fitness,Debris_to_remove,total_debris,popSize) 

doublePointParents    = popSorted4Fitness(0.9*popSize+1:popSize,:); 

doublePointParent1Var = doublePointParents(1:2:0.1*popSize,:); 

doublePointParent2Var = doublePointParents(2:2:0.1*popSize,:); 

child1DP = zeros(0.05*popSize,Debris_to_remove); 

child2DP = zeros(0.05*popSize,Debris_to_remove); 

 

for counterDP=1:length(doublePointParent1Var) 

    p1   = doublePointParent1Var(counterDP,:); 

    p2   = doublePointParent2Var(counterDP,:); 

    nVar = numel(p1); 

 

    c  = randsample(nVar-1,2); 

    c1 = min(c); 

    c2 = max(c); 

 

    child1DP(counterDP,:) = [p1(1:c1) p2(c1+1:c2) p1(c2+1:end)]; 

    child2DP(counterDP,:) = [p2(1:c1) p1(c1+1:c2) p2(c2+1:end)]; 

 

 

    if length(unique(child1DP(counterDP,:)))<Debris_to_remove 

        child1DP(counterDP,:) = ChromosomeHealing(child1DP, 

counterDP,Debris_to_remove,total_debris); 

    end 

 

    if length(unique(child2DP(counterDP,:)))<Debris_to_remove 

        child2DP(counterDP,:) = ChromosomeHealing(child2DP, 

counterDP,Debris_to_remove,total_debris); 

    end 

 

end 

end 



Missions for Removal of Orbital Debris | Appendix A: Matlab Code 

 94 

Inversion function 

function invertParent = 

InvertParent(popSorted4Fitness,Debris_to_remove,popSize) 

 

invertParent = popSorted4Fitness(0.9*popSize+1:popSize,:); 

tempInvert = 0; 

 

for counterInvert=1:0.1*popSize 

    numbers = randperm(Debris_to_remove,2); 

    tempInvert = invertParent(counterInvert,numbers(1,1)); 

    invertParent(counterInvert,numbers(1,1)) = 

invertParent(counterInvert,numbers(1,2)); 

    invertParent(counterInvert,numbers(1,2)) = tempInvert; 

end 

end 

 


