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Chapter 1

Introduction

Sometimes the level of structural complexity exceeds our ability to make design changes,
especially in aerospace engineering, where a single design is performed by different teams,
each one focusing on a different subject. It goes without saying that the final target of the
different teams is the same, for example minimizing the structural weight.
Multidisciplinary design optimization (MDO) is exactly the field of engineering that uses
optimization methods to solve design problems incorporating a number of disciplines. De-
sign optimization is the process of generating improved design through the use of different
algorithms. This process is performed by an optimizer, which, in order to achieve the best
solution, uses the design sensitivity coefficients. The latter describe the rates of change of
structural responses with respect to changes in design parameters. They usually represent
beam cross section dimensions, shell thicknesses and so on.
When performing optimization design, we must set a goal to achieve. Suppose we want
to find the point of lowest elevation of an hill: this is called the "objective". Suppose that
we want to study only a portion of the hill: we are setting some "constraints" that act as
bounds in our "design space", which is the region the defines all of our possible position on
the hill.
There are different algorithms available that we can use when searching for an optimum.
NX Nastran, for example, uses a gradient-based algorithm. This kind of algorithm deter-
mine the direction in which to search using the gradients of the objective function and
constraints. Moreover, there are several issues to be highlighted. First of all it should be
underlined that not every optimization analysis leads to a feasible solution. Say we want
to change a plate’s thickness in order to limit the deformation under load. If we impose
overly stringent constraints to the variation of the thickness, we could not find the solution
sought.
Furthermore, the solution to an optimization problem is not singular. It means that, if
we change the initial conditions or the algorithm used, we may obtain a different solution.
This is particularly noticeable when using a gradient-based algorithm, since, it inherently
looks for a local minimum and not for a global one. So, if we want to find the minimum
of an irregolar function, we will have different solution depending on the starting point
chosen.
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Chapter 2

Composites materials

Composites materials are used in a wide variety of market, including structures, energy,
automotive and aerospace. In particular, in the aerospace industry, where saving weight
and increasing safety is a highly significant topic, the use of composites materials allowed to
improve structures, dealing with always new challenges such as environmental regulations
and fuel cost increasing.
As early as in the 1950s, fiberglass was used in the design of the Boeing 707 passenger
jet and, in the 1960s, Rolls Royce introduced carbon fiber in the design of the compressor
blades of the RB211 jet engine. In the first stage of the development of composites, they
were used only in small amount in military aircraft and they became available in civil
aviation since the 1960s.
In a short time composites have primarily been used for secondary wing and tail com-
ponents such as wing trailing edge panels and rudders. Nowadays, modern aircraft are
commonly made up of 50% to 70% composite material, since this provides benefits over
different issues, such as:

• weight reduction up to 50%;

• higher impact resistance;

• higher resistance to fatigue and corrosion;

• easy to assemble.

Composite materials are made from two or more materials, called constituent, with differ-
ent physical or chemical properties that, once combined, produce a material with different
characteristics from the individual components, depending on the way the constituent are
put together.
Depending on the constituent and on the way they are combined, composite materials can
be classified in different ways. First of all, constituent can be organic (wood, for instance) or
inorganic (metals). Organic composites are often avoided when high stiffness and strength
are needed, furthermore, this kind of composite is too sensitive to environmental effects
such as moisture. A different classification relies on the nature of the constituent is derived.
For instance, we can identify four different classes of composites: particulate composite,
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Figure 2.1

flake composite, fiber reinforced composite and laminate composite.

The following dissertation will be focused on the use of laminate composite, which is
a material made of thin layers fully bonded together. Layers can be of different materials
or can be composite themselves, in order to have different properties in different directions.

2.1 Mechanics of laminated materials

2.1.1 Classical Lamination Theory

In general, the solution of elasticity problems requires a stress strain relation, which is
represented by the Hooke’s law:

σ = [C]ε (2.1)

The vectors σ and ε represent respectively stress and strain and the [C] matrix represent
the stiffness matrix. For a three-dimensional anisotropic material the stiffness matrix is a
full 6x6, but because of symmetry there are only 21 independent constants, as shown in
the following equation.



σ1
σ2
σ3
τ23
τ31
τ12


=



C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C12 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66





ε1
ε2
ε3
γ23
γ31
γ12


(2.2)
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2 – Composites materials

For an orthotropic lamina, we recall the stress-strain relation in the principal material
directions: 

σ1
σ2
σ3
τ23
τ31
τ12


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε1
ε2
ε3
γ23
γ31
γ12


(2.3)

A laminate is composed by two or more layers, perfectly bonded together so that they
form one integral piece. The classical lamination theory (CLT) is founded on the following
hypothesis:

• The laminate is made of orthotropic lamina bonded together, with the principal
material axes of the orthotropic lamina orientated along arbitrary directions with
respect to the x-y axes;

• Laminate thickness, t, is much smaller than any characteristic dimension;

• The displacements u, v, and w are small compared with t;

• In-plane strains εx, εy and γxy are small compared with unity;

• Transverse shear is negligible: γxz = γyz = 0 (plane stress in each ply);

• Displacements u and v are linear functions of the thickness coordinate z (no warping);

• Transverse normal strain εz is negligible;

• Each ply obeys Hooke’s Law.

• The plate thickness is constant throughout the laminate.

• Transverse shear stresse τxz and τyz vanish on the laminate surfaces.

Thus, being 1-2 the principal material plane:

σ3 = τ23 = τ13 = 0 (2.4)

Hence the stress-strain relations are reduced to:
σ1
σ2
τ12

 =

Q11 Q12 0
Q12 Q22 0
0 0 Q66


ε1
ε2
γ12

 (2.5)

where the terms Qij represent the reduced stiffenesses:

Q11 = E1

1− ν12ν21
; Q22 = E2

1− ν12ν21
;

Q12 = ν12E2

1− ν12ν21
= ν21E1

1− ν12ν21
;

Q66 = G12

(2.6)
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These expression are valid in the principal direction of the material, but usually, or-
thotropic layers are rotated with respect to a reference system. So, Eq. 2.5 must be
transformed to the reference axes. In Fig. 2.2 is showed the difference between the co-
ordinate system of the single lamina and the coordinate system of the general reference
axis.

Figure 2.2

The transformation matrix is:

T =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ sin2 θ − cos2 θ

 (2.7)

Furthermore, it is necessary to convert the strain vector from tensor strain notation to
engineering strain notation, through the matrix R:

ε1
ε2
γ12

 = R


ε1
ε2
γ12

 (2.8)

where:

R =

1 0 0
0 1 0
0 0 2

 (2.9)

Substituting in the stress strain relation, we obtain the following equation.
σ1
σ2
τ12

 = T−1QRTR−1


ε1
ε2
γ12

 (2.10)

As a result of the CLT hypothesis, the displacement in the x direction and in the y
direction can be expressed as:

u = u0 − z
∂w

∂x
(2.11)
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2 – Composites materials

Figure 2.3

v = v0 − z
∂w

∂y
(2.12)

Where the subscript 0 indicates the mean surface of the laminate. In Fig. 2.3 is showed
the cross section of a generic laminate, made up of different single layers.Therefore the
displacements can be expressed as the following.

εx = ∂u

∂x
= ∂

∂x
(u0 − z

∂w

∂x
) = ∂u0

∂x
− z ∂

2w

∂x2

εy = ∂v

∂y
= ∂

∂y
(v0 − z

∂w

∂y
) = ∂v0

∂y
− z ∂

2w

∂y2

γxy = ∂u0

∂y
+ ∂v0

∂x
− 2z ∂

2w

∂x∂y

(2.13)

The strain distribution expressed in matrix notation is:
εx
εy
γxy

 =


εox
εoy
γo

xy

+ z


κx

κy

κxy

 (2.14)

where ε is the vector containing the three middle strains (elongations and distortions) and
κ represent the middle surface curvatures (bending curvatures and torsion).

The resultant forces and moments acting on a laminate are obtained by integration of
the stresses in each layer or lamina through the laminate thickness and are defined as:

Nx

Ny

Nxy

 =
∫ +h/2

−h/2


σx

σy

τxy

 dz (2.15)


Mx

My

Mxy

 =
∫ +h/2

−h/2


σx

σy

τxy

 zdz (2.16)
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Substituting the Eq. 2.14 for the displacements and integrating, we obtain the stress
resultant and the moment resultant per unit width of the cross-section acting at a point
in the laminate.


Nx

Ny

Nxy

 =

A11 A12 A16
A21 A22 A26
A36 A36 A36



ε0x
ε0y
γ0

xy

+

B11 B12 B16
B21 B22 B26
B36 B36 B36


κx

κy

κxy



Mx

My

Mxy

 =

B11 B12 B16
B21 B22 B26
B36 B36 B36



ε0x
ε0y
γ0

xy

+

D11 D12 D16
D21 D22 D26
D36 D36 D36


κx

κy

κxy


(2.17)

where:

Aij =
N∑
1

(Q̄ij)k(zk − zk−1)

Bij = 1
2

N∑
1

(Q̄ij)k(z2
k − z2

k−1)

Dij = 1
3

N∑
1

(Q̄ij)k(z3
k − z3

k−1)

(2.18)

In compact format it is usually written as:
{
N
M

}
=
[
A B
B D

]{
ε
κ

}
(2.19)

where:

• [A]: extensional stiffness matrix;

• [B]: bending-extension coupling stiffness matrix;

• [D]: bending stiffness matrix.

The terms Aij , Bij , Dij vary depending on the stacking sequence of the laminate. For
instance, there are three different categories:

• Symmetric laminate (0/θ/θ)s: Bij = 0;

• Symmetric and balanced laminate (0/+ θ/− θ)s: A16 = A26 = Bij = 0;

• Antimetric and balanced laminate (0/ + θ/ − θ/ + θ/ − θ/)s: A16 = A26 = D16 =
D26 = B11 = B12 = B22 = B66 = 0

12



2 – Composites materials

2.2 Lamination parameters

The relation between Q and the rotated matrix Q̄ can be written in a simpler notation
using the material invariants, Ui, which are independent of the ply orientation. The use of
material invariants, as will be seen in the following, is also useful for design optimization.

U1 = 1
8(3Q11 + 3Q22 + 2Q12 + 4Q66)

U2 = 1
2(Q11 −Q22)

U3 = 1
8(Q11 +Q22 − 2Q12 − 4Q66)

U4 = 1
8(Q11 +Q22 + 6Q12 − 4Q66)

U5 = 1
8(Q11 +Q22 − 2Q12 + 4Q66)

(2.20)

The introduction of material invariants yields to a simpler form of the reduced stiffness
matrix Q̄:

Q̄11 = U1 + U2 cos 2θ + U3 cos 4θ
Q̄12 = U4 − U3 cos 4θ
Q̄22 = U1 − U2 cos 2θ + U3 cos 4θ

Q̄16 = 1
2U2 sin 2θ + U3 sin 4θ

Q̄26 = 1
2U2 sin 2θ − U3 sin 4θ

Q̄66 = U5 − U6 cos 4θ

(2.21)

Considering the integral form of Eq. 2.18 and assuming that all layers are of the same
material, we have, for example:

{A11, B11, D11} =
∫ h/2

−h/2
Q̄11{1, z, z2}dz =

= U1{h,0,
h3

12}+ U2

∫ h/2

−h/2
cos 2θ{1, z, z2}dz + U3

∫ h/2

−h/2
cos 4θ{1, z, z2}dz

(2.22)

For the other stiffness terms can be found similar equations. In order to summarize

13
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those expression we can introduce the following terms:

V0{A,B,D} =
∫ h/2

−h/2
{1, z, z2}dz

V1{A,B,D} =
∫ h/2

−h/2
cos 2θ{1, z, z2}dz

V2{A,B,D} =
∫ h/2

−h/2
sin 2θ{1, z, z2}dz

V3{A,B,D} =
∫ h/2

−h/2
cos 4θ{1, z, z2}dz

V4{A,B,D} =
∫ h/2

−h/2
sin 4θ{1, z, z2}dz

(2.23)

In combination with material invariants matrices, lamination parameters constitute a
set of variables that, along with the thicknesses, are sufficient to compute the material
stiffness matrices:

A = h(Γ0 + Γ1V1A + Γ2V2A + Γ3V3A + Γ4V4A)

B = h2

4 (Γ1V1B + Γ2V2B + Γ3V3B + Γ4V4B)

D = h3

12(Γ0 + Γ1V1D + Γ2V2D + Γ3V3D + Γ4V4D)

(2.24)

From Eq. 2.24 it is possible to obtain the normalized stiffness matrices, as follows:

Â = A 1
h

; B̂ = B 4
h2 ; D̂ = D12

h3 (2.25)

Material invariant matrices Γi result from Eq. 2.20:

Γ0 =

U1 U4 0
U4 U1 0
0 0 U5

 ; Γ1 =

U2 0 0
0 −U2 0
0 0 0

 ; Γ2 =

 0 0 U2/2
0 0 U2/2

U2/2 U2/2 0

 ;

Γ3 =

 U3 −U3 0
−U3 U3 0

0 0 −U3

 ; Γ4 =

 0 0 U3
0 0 −U3
U3 −U3 0

 ;

(2.26)

Therefore, with a set of twelve lamination parameters, is possible to completely describe
a stacking sequence. In principle, lamination parameter are allowed to vary independently,
but it is necessary to identify a feasible region in which they can vary in order to get a
feasible stacking sequence. In the last years, many attempts have been made to obtain the
exact relation for the definition of the feasible region for optimizing in-plane and bending
behaviour at the same time. Some approximation can be found in Setoodeh et al.
However, Eqs. 2.24 allow us to restrict the feasible region if some geometrical constraint are
defined. For example, imposing a restriction only to symmetrical laminates, the bending-
extension coupling stiffness matrix vanishes and so the lamination parameters ViB.

14



2 – Composites materials

Furthermore, if the laminate is restricted to be also balanced, also lamination parameters
V2A,V4A,V2D,V4D became equal to zero. As a result, when designing symmetric and
balanced laminates, only four lamination parameter are sufficient to describe the stiffness
properties. Further restriction applied on lamination parameters throughout the optimiza-
tion design will be discussed in the following chapters.
It was shown that the stiffness properties of a generic laminate can be expressed in two dif-
ferent ways: it is possible to define the stacking sequence with the definition of thicknesses
and orientation for each layer, or it is possible to represent the laminate with lamination
parameters. The use of lamination parameters is particularly advantageous in terms of
optimization, since it allows us to reduce the number of design variables.
In fact, a generic laminate can be modelled with one thickness and twelve lamination pa-
rameters, which can be further reduced with proper restrictions. On the other hand, the
description of a laminate with the staking sequence requires 2n variables, with n being the
number of layers that constitute the laminate. In industrial application it is common to
have laminates with hundreds of layers, significantly increasing the number of variables.
Moreover, stiffness matrices are a linear function of continuous lamination parameters,
whereas when parametrized with thicknesses and orientation, stiffness matrices are highly
non-linear with respect to the defining variables.

2.2.1 Membrane stiffness visualization
In order to visualize the in-plane and out of plane stiffness distribution for a given A
matrices, it is possible to introduce the modulus of elasticity Ê11(θ), with θ = 0◦ to 360◦,
defined as:

Ê11(θ) = 1
Â−1

11 (θ)
(2.27)

in which:
Â−1(θ) = TTÂ−1T. (2.28)

The Â matrix correspond to the thickness normalized stiffness matrix A defined previ-
ously, and T is the transformation matrix used in the stress-strain relationship.
From Eq. 2.27 it is possible to obtain polar stiffness distribution of the laminate. Con-
sidering a material with the properties listed in Table 2.1, it is possible to create different
stacking sequences and to visualize the polar stiffness for each one of them.

E11 E22 G12 ν12 ρ
83.0e9GPa 8.5e9GPa 4.2e9GPa 0.35 1452kg/m3

Table 2.1: Ply material properties

15
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(a) [01]s (b) [305]s

(c) [−301/301]s (d) [−451/451]s

(e) [−451/451/901/01]s (f) [−4522/4522/9011/044]s

Figure 2.4: Polar stiffness distribution
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Chapter 3

Design optimization

As said in the previous introduction, an optimization problem is characterized by an ob-
jective function, which represent the value that we want to maximize or minimize. This is
done within some limits called constraints. The optimization design is driven by the chang-
ing of some values called design variables. Design variables can be continuous or discrete.
In the next chapter will be shown an example where the design variable is continuous, that
is the thickness of a plate. When it comes to the optimization of the stacking sequence
of a laminate, for example, the design variables are, in general, discrete. The following
mathematical notation is generally used to describe this problem. The design variables
are described with a vector x with n components. The design objective is f(x) and the
constraints are g(x) (for inequality constraints) and h(x) (for equality constraints).
The optimization problem is, therefore, written as:

minimize f(x) x ∈ X
such that hi(x) = 0, i = 1, ..., ne;

gi(x) ≤ 0, j = 1, ..., ng;
xL ≤ x ≤ xU

(3.1)

Where X represent the domain of the design variables, it is introduced in order to take
account of the design variables that could be discrete. The upper and lower bounds of the
values of the design variables are represented by xU and xL respectively.
For a better understanding of the problem, the following provides an example for this kind
of calculation.
Minimize the objective:

F (x) = x1 + x2 (3.2)

Subject to the following constraints:

g1(x) = 1
x1

+ 1
x2
− 2 ≤ 0

x1 ≥ 0.1 x2 ≥ 0.1
(3.3)

In this simple example the optimal design point can be found by graphical inspection, as
showed in Fig. 3.1. Usually we have more than two design variables and some non-explicit

17
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constraints and objective functions. This increases the complexity of the problem, making
it necessary to use some efficient searching procedures.

Figure 3.1

There are different algorithms that can be used to achieve the optimum design. In the
following discussion is presented a short overview of the different methods available.
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3.1 Gradient based optimization
The optimization algorithm used by NX Nastran belongs to the family of "gradient-based".
With this kind of algorithm, in addiction to function values, function gradients are used
to assist the research for the optimum.
To better understand how the gradient based optimization algorithm works, we can imagine
to stand on the side of a hill and that we would like to find the point of lowest (or highest)
elevation. This represent our objective function. If we also suppose that we are not able
to move everywhere because some fences exist and are restricting our space, we are also
representing the constraints. If we are standing inside of the fences, it is immediate to
understand which point is the lowest or the highest. However, if we are blindfolded and
not able to look at the hill, this is not as simple as before and further analysis are required
to obtain the final decision. This is exactly the task that a numerical optimizer is faced
with.
For a given point in the design space, the gradients of the objective function and of the
constraints are determined and they are used to choose a direction in which to search.
The optimizer will then proceed in this direction as far as possible, and repeats the process
until an optimum point is found. Determining the direction to search could be complicated
if the current design is infeasible or if one or more constraints are critical. Taking small
steps in each of the design variable directions is the same concept of a first-forward finite
difference approximation of a derivative, which is, for a single independent variable:

df(x)
dx

' f(x+ ∆x)− f(x)
∆x (3.4)

Considering the whole vector of design variables, x, we obtain the following expression:

∇F (x) =



∂F

∂x1...
∂F

∂xn


'



F (x + ∆x1)− F (x)
∆x1...

F (x + ∆xn)− F (x)
∆xn


(3.5)

The gradient vector points in the direction of increasing objective function. If we want
to minimize the objective function we will move in the opposite direction. So the search
vector is defined as:

S = −∇F (3.6)
Once the search direction is determined, we can proceed until we reach the lowest point or
a constraint. The new design at the end of the search can be written as:

x1 = x0 + αS1 (3.7)
With this relation we are able to reduce the dimensionality of the problem from n to 1, that
is the single variable α. That is the reason for which this process is called one dimensional
search. If we can no longer proceed in the search direction, this means that we reached the
best design possible for that particular direction. In this situation the coefficient is called
α∗ and the new objective and constraint can be expressed as:

F 1 = F (x0 + α∗S1)
g1

j = gj(x0 + α∗S1) j = 1, ..., ng

(3.8)
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From this point in the design space we can find another search direction, proceeding until
no further improvement can be made. This process will be iterated, if necessary.

Figure 3.2
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3.2 Evolutionary algorithms
In the last years evolutionary algorithms became very popular. The main difference be-
tween the classical methods (such as the gradient based) and the evolutionary algorithms
is that in latter is not required any gradient information, but only a set of design points.
There are two main evolutionary algorithms available: genetic algorithm (GA) and particle
swarm optimization (PSO).

3.2.1 Genetic algorithm
The genetic algorithm is a method for solving both constrained and unconstrained opti-
mization problems that, as the name may suggest, is based on Darwin’s principle of survival
of the fittest and the PSO is based on a simplified social model.
The genetic algorithm repeatedly modifies a population of individual solutions, selecting
individuals at random from the current population to be parents and uses them to produce
the children for the next generation. So, the first step in the GA is to create a random
initial population. Then, the algorithm creates a sequence of new populations, using the
individuals in the current generation to create the next one. In order to create the new
population, the GA scores each member of the population by computing its fitness value,
or raw fitness scores. These values are scaled in order to obtain a more usable range of
values. These values are called expectation values. Parents are now selected, based on their
expectations: the GA selects a group of individuals in the current population, the parents,
who contribute their genes (the entries of their vectors) to their children. The algorithm
usually selects individuals that have better fitness values as parents.

Figure 3.3: Elite child

Figure 3.4: Crossover child

Figure 3.5: Mutation child
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Three types of children are created for the next generation:

• elite children are the individuals in the current generation with the best fitness values.
These individuals automatically survive to the next generation;

• crossover children are created by combining the vectors of a pair of parents;

• mutation children are created by introducing random changes, or mutations, to a
single parent.

This process is repeated, so that the population can evolve toward an optimal solution,
until one of the stopping criteria is met or convergence is achieved.
Unlike other search algorithms that move from one point to another, such as the gradient
based algorithm, GAs work with a population of strings, increasing the chances of obtaining
global or near-global optima. Furthermore, working with a population of designs also allows
the implementation of parallel computing, reducing the time needed for the optimization
analysis.
Another advantage resulting from the use of genetic algorithms is that the outcome of the
search is random, so repeated optimization can yield to different designs, which can be
useful when dealing with a design space with many local optima.

Figure 3.6: Genetic algorithm flowchart

3.2.2 Particle Swarm Optimization
The particle swarm optimization is based on the behaviour of a swarm searching for food.
A collection of individuals called particles move in steps throughout a region. At each
step, the algorithm evaluates the objective function at each particle. After this evaluation,
the algorithm decides on the new velocity of each particle. The particles move, then the
algorithm reevaluates. Each particle is attracted to some degree to the best location it
has found so far, and also to the best location any member of the swarm has found. After
some steps, the population can coalesce around one location, or can coalesce around a few
locations, or can continue to move. The population converges on the optimum design using
information gained both from each individual and from the swarm as a whole.
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Chapter 4

Aeroelastic tailoring

As stated in the previous chapters, weight minimization is one of the primary goals in
aerospace industry. However, the real objective for the design of an aircraft, is performance,
which may involve weight as a constraint, but also payload, range, and others. Aeroelastic
tailoring is a way of maximizing measures of performance. Furthermore, it involves the
use of structural deformation of a lifting surface to achieve aircraft performance objective
which are not usually associated with structural design. Therefore, aeroelastic tailoring
can be defined as following:
Aeroelastic tailoring is the embodiement of directional stiffness into an aircraft structural
design to control aeroelastic deformation, static or dynamic, in such a fashion as to affect
the aerodynamic and structural performance of that aircraft in a beneficial way.
Aeroelastic tailoring is not a new concept, since it was applied by Munk in a wooden
propeller design in 1949. In Munk’s design, fiber orientation of the wood is optimized in
order to obtain a beneficial deformation of the propeller as the load increases. The most
recent application of aeroelastic tailoring is on the X-29 demonstrator aircraft. It is known
that forward-swept wings present some benefits mainly down to manoeuvrability. In fact,
they maintain airflow over their surfaces at steeper climb angles than conventional planes,
which means the nose can point higher without the aircraft going into a dangerous stall.
However, they present an important issue with aeroelastic divergence. In a forward-swept
wing configuration, the aerodynamic lift causes a twisting force that rotates the leading
edge upward, causing a higher angle of attack, which in turn increases lift, and twists
the wing further. With conventional metallic construction, additional torsional stiffening
is typically required which adds weight, and is therefore sub-optimal in terms of aircraft
performance.
In order to avoid divergence, advanced composite materials and aeroelastic tailoring can
be used. For instance, considering a layer of continuos fibre-reinforced composite, if the
fibres are aligned at an angle to the x-direction (θ), and a load is applied in the x-direction,
then the layer will not only stretch in the x-direction and compress in the y-direction but
also shear. This is because the layer will stretch less in the fibre direction than in the
resin direction. This behaviour can be avoided if the number of layers oriented at +θ are
balanced with the same number of layers oriented at −θ, forming a stacking sequence such
as [−θ/+ θ/+ θ/− θ]. However, this stacking sequence will present a bend-twist coupling,
because the bending stiffness of a layer is a factor of the layer-thickness cubed plus the
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Figure 4.1: Munk’s propeller design

distance from the axis of bending (here the mid-plane) squared. Thus, even if the +θ and
−θ layers have the same thickness, the outer +θ layers contribute more to the bending
stiffness of the laminate than the −θ layers do. Therefore, stretching-shearing coupling is
eliminated in a [−θ/+θ/+θ/−θ] laminate as the number of +θ and −θ layers is the same,
but bend-twist coupling will occur because the +θ layers are further from the mid-plane
than the −θ layers.

Figure 4.2: X-29 forward-swept wing demonstrator aircraft
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4.1 Optimization strategy
As mentioned previously, for the purpose of optimization, it is not convenient to directly
use the stacking sequence for optimization design, instead, lamination parameters are go-
ing to be used. The optimization design strategy adopted in the present dissertation is
divided in two steps. The first step of optimization concerns the lamination parameters
of the laminate. In this step, called continuous optimization, lamination parameters are
optimized with a gradient based algorithm, applying all the physical multidisciplinary
constraints. The second step, called discrete optimization, refers to the retrieving of the
stacking sequence, using a genetic algorithm.

4.1.1 Continuous optimization constraints
Feasibility constraints

Nowadays, the explicit expression relating all the 12 lamination parameters are still un-
known. In order to determine the design space for lamination parameters, Diacoun et al.
[6] developed a method based on variational approach. The feasible region is numerically
obtained determining the layup function θ(z) which maximizes:

F (θ(z)) =kA
1 V1A + kA

2 V2A + kA
3 V3A + kA

4 V4A + kB
1 V1B + kB

2 V2B+
+ kB

3 V3B + kB
4 V4B + kD

1 V1D + kD
2 V2D + kD

3 V3D + kD
4 V4D

(4.1)

The functional F results constant on an hyperplane of which unit normal is:

k = {kA
1 , ...k

D
4 } (4.2)

and the boundary of the design space for lamination parameters is found at maximum F
for a given k. Explicit relations relating the lamination parameters can be obtained:

V 2
1B + V 2

3B ≤ 1
V 2

2B + V 2
4B ≤ 1

V2B ≤ 4
(
V1B − V 2

1B

)
for V1B ≥

1
2

V2B ≤ 4
(
V3B − V 2

3B

)
for V3B ≥

1
2

V4B ≤ 2V1B

√
1− V 2

1B for V1B ≥
√

2
2

V4B ≤ 2V3B

√
1− V 2

3B for V3B ≥
√

2
2

4(ViD − 1)(ViA − 1) ≥ (ViA − 1)4 + 3V 2
iB

4(ViD + 1)(ViA + 1) ≥ (ViA + 1)4 + 3V 2
iB

(4.3)

For symmetrical laminates, the feasibility constraint to impose are the following and
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were analytically obtained by Fukunaga and Sekine [7]:

2(V1A)2 − 1 ≤ V2A ≤ 1− (V3A)2

2(1 + V2A)(V3A)2 − 4V1AV3AV4A + (V4A)2 ≤ [V2A − 2(V1A)2 + 1](1− V2A)

2(V1D)2 − 1 ≤ V2D ≤ 1− (V3D)2

2(1 + V2D)(V3D)2 − 4V1DV3DV4D + (V4D)2 ≤ [V2D − 2(V1D)2 + 1](1− V2D)

(4.4)

Those equation are restraining the space of solution for lamination parameters, in the
following figures are showed some examples for the new feasible region after applying those
constraints.

Figure 4.3

Physical constraints

When it comes to optimizing a structure, it is clearly not sufficient to constraint the new
configuration only with theoretical feasibility constraints. It is necessary to translate into
mathematical constraints every structural design requirements, such as strength, stiffness
or stability constraints.
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In order to fulfil the requirements, for each iteration different kind of analysis will be made
by the optimizer, according to the design responses to be constrained. Typically, the re-
sponses are strains, displacement and eigenvalues from static, buckling and flutter analysis.

One of the most critical issues in laminate composite material design is the prediction
of failure. This is usually obtained by comparing stresses or strains computed in the model
with the allowable of the material. For laminate materials there are additional levels
of complexity with respect to isotropic materials. In the first place, composite material
are usually characterized by brittle failure, which is less tolerated than the failure that
happens in ductile materials. In fact, for ductile materials the failure is in form of yielding
and usually remains localized. Furthermore, the failure of a laminate is strongly influenced
by the stacking sequence of the material. Stresses and strengths may be different in layers,
hence it is possible that one of the layers reaches their limit earlier than the others, therefore
the layer would suffer of brittle failure. That is a form of localized failure for the laminate,
preceding the total failure of the material.
In application where this kind of failure is not acceptable, failure prediction on the first
failure is commonly referred as first-ply failure criterion.

Failure index is one of the physical constraints that usually found in design optimization.
Since the staking sequence of the laminate is no longer available when optimizing lamination
parameters, it is necessary to determine a conservative failure envelope, such that every
possible stacking sequence will present no failure. One of the failure criteria that can be
developed is based on the Tsai-Wu criterion:

F11σ
2
1 + F22σ

2
2 + F66τ

2
12 + F1σ1 + F2σ2 + 2F12σ1σ2 = 1 (4.5)

in which the second and fourth order tensors of strength are given by the following expres-
sions:

F11 = 1
XtXc

; F22 = 1
YtYc

; F12 = −1
2
√
XtXcYtYc

;

F1 = 1
Xt
− 1
Xc

; F2 = 1
Yt
− 1
Yc

; F66 = 1/S2
(4.6)

where Xt, Xc, Yt, Yc are tensile and compressive failure stresses of x and y direction, re-
spectively, and S is the shear failure stress.

Manufacturing and blending constraints

Even though the theoretical expressions for lamination parameters allow us to use generic
angles, in real industrial application, this is not possible. Usually, during the manufacturing
process, only specific orientations can be used, yielding to new constraints.
Standard angles in manufacturing are: ±45◦, 0◦, 90◦. Recalling Eq. 2.23 it can be seen
that using only this values for θ, lamination parameters V4A and V4D vanish.
However, considering this limitation on the stacking sequence is not sufficient. We must also
take into account that neighbouring patches share a number of common plies, introducing
the blending constraints. Usually, this kind of constraint is implemented in the second step
of the optimization, which is the discrete optimization, though running a lightly constrained
first step optimization and then a highly constrained discrete stacking sequence retrieval
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can result in high discrepancies between the two analysis. Therefore it is necessary to
introduce the blending constraints also in the continuous optimization with lamination
parameters, in order to get a more significant solution.
There are different blending rules that have been defined in the past decades, such as
blending rules that consider only the outer or the inner layers, or generalized blending,
where plies are dropped also between the inner and the outer ply. In Fig. 4.4 and 4.5 the
two different type of blending are showed.

Figure 4.4

Figure 4.5

The derivation of the blending constraints in lamination parameters space comes from
Eq. . The fundamental idea behind the blending constraint is evaluating the change
in lamination parameters due to ply-drops. For example, the change in the lamination
parameter V A

1 due to one ply drop can be quantified as following. With V A
1(N−1) we denote

the value of V A
1 after one ply drop:

V A
1(N−1) = 1

N − 1

N∑
i=1

cos(2θi) (4.7)

so, the difference between V A
1 before and after one ply drop is:

V A
1(N)→(N−1) = V A

1(N) − V A
1(N−1) = 1

N
cos(2θj) +

( 1
N
− 1
N − 1

) N∑
i=1

cos(2θi) (4.8)

The maximum of the function is:

max||V A
1(N)→(N−1)|| =

2
N

(4.9)
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Generalizing to any number X of ply drops:

max||V A
1(N)→(N−1)|| = 2X

N
(4.10)

Carrying out the corresponding calculations for the remaining lamination paramters, can
be seen that 2(X/N) is always the maximal magnitude, so the blending constraint can be
set as follows:

||∆V A
k(N)→(N−X)|| ≤ 2(X/N), fork = 1,2,3,4 (4.11)

Similarly, also the out of plane blending constraint can be obtained. In summary, the
blending constraint can be defined as:

||∆V A
1,2,3,4||2 − α( Ti − Tj

max(Ti, Tj)
)2 ≤ 0

||∆V D
1,2,3,4||2 − β(3

[
Ti − Tj

max(Ti, Tj)

]
−
[

Ti − Tj

max(Ti, Tj)

]2

+ 4
[

Ti − Tj

max(Ti, Tj)

]3

)2 ≤ 2
(4.12)
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Chapter 5

Preliminary assessment

In the following chapter will be shown some examples of design optimization performed
with Femap and NX Nastran.
Femap (Finite Element Modeling And Post-processing) is a pre- and post-processor devel-
oped to be able to handle different solvers such as Abaqus, NX Nastran, etc. Throughout
this dissertation the optimization tool, among all, will be most widely used. It allows to
perform optimization analysis in order to minimize the weight of a certain component,
modifying the main characteristics of rods, bars and plates elements. Limits can be setted
for several kind of responses, such as stress, strain, displacement or frequency. Moreover,
optimization analysis can be enhanced through add-on tools and APIs. In section 5.1 will
be performed a static analysis, optimizing the weight of a plate constraining the maximum
Von Mises stress. In section 5.2 will be performed a normal modes analysis, constraining
the fundamental natural frequency.

5.1 Static analysis

Figure 5.1

The subject of the study is an aluminium plate subject to uniform tensile stress as
shown in Figure 5.1. The objective of the optimization design is to minimize the weight of
the plate, modifying its thickness.
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The plate has the following geometrical characteristics: l = 100mm, R = 10mm, t = 5mm
and it is loaded with Tx = 50N . Aluminium properties are given in Table 5.1.
The first step is to run a static analysis in order to know how the stress is distributed on
the plate.

E[MPa] ν ρ[kg/mm3] σmax[MPa]
73000 0.33 2.7e-6 400

Table 5.1: Aluminium properties

Figure 5.2: Von Mises stress distribution

In Figure 5.2 is shown the stress distribution on the plate. Stress around the hole is
too high, above the σmax of aluminium, while it decreases moving towards the extremes of
the plates. In order to avoid breaking the plate we can adjust the thickness using Femap
Optimization Analysis.
The ideal solution would be to reach σmax on every point of the plate. This solution is not
simple to achieve, especially because it would depend on the mesh quality.
There will be shown two different solution: in the first case the plate thickness will vary
remaining constant all over the plate, in the second case the plate will be divided in 8 parts
with different thickness.

5.1.1 Constant thickness
In the first case the optimizer will vary the plate thickness in order to avoid breaking the
plate. Initial thickness is set to be ti = 5mm, consequently the weight of the plate is
Wi = 0.033 kg. Plate thickness, t, is the design variable and will vary between a minimum
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and a maximum value:
1mm < t < 10mm

Von Mises stress value will be the design constraint:

10MPa < σ < 400MPa

In Table 5.2 the optimization analysis results are compared with initial values and in
Figure 5.3 is shown the new Von Mises stress distribution.

t [mm] W [kg]
Initial 5 0.033
Final 8.26 0.054

Table 5.2: Optimization analysis results.

Figure 5.3: Von Mises stress distribution (optimized plate)

In order to ensure σ < σmax all over the plate the only possible solution is to increase
the whole thickness. It can be noticed that stress distribution is the same as the previous
analysis, the only difference are the stress values. As mentioned above, this is not the best
solution. A large amount of material is redundant: blue and pink regions are far below the
maximum allowable stress, meaning that in those regions the plate could be thinner. In
the following figures are reported the design variables and design objective variation with
respect to the number of iterations.
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Figure 5.4

Figure 5.5

5.1.2 Variable thickness

In order to obtain a more refined result, in this case the plate is divided in 8 different
sections. The optimizer will vary every zone’s thickness independently: in this case there
are 8 design variables and 8 design constraint. As introduced in the previous analysis,
thicknesses may vary between 1mm and 10mm and in every section maximum stress shall
not exceed σmax. In Figure 5.6 is shown section enumeration.
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Figure 5.6: Section enumeration

Optimization analysis results are given in Table 5.3, compared with initial values. As
expected, thickness of sections 3, 4, 7 and 8 decreased significantly, while thickness of
section 1, where in the first analysis σ > σmax, increased, almost doubling its initial value.

t1 t2 t3 t4 t5 t6 t7 t8 W [kg]
Initial 5 5 5 5 5 5 5 5 0.033
Final 9.29 4.13 2.93 2.51 3.99 3.97 2.77 2.69 0.023

Table 5.3: Optimization analysis results. All length are expressed in [mm].

In Figure 5.7 is shown the new Von Mises stress distribution. Comparing those results
with the previous analysis’ results (Figure 5.3) it can be noticed that the material is
distributed in a more efficient way. In fact, stress value near the plate’s edges is now
almost equal to aluminium maximum allowable stress. Despite this improvement, there
are discontinuities in stress distributions on the edge of each region. This is due to the
new thickness distribution over the plate, which is represented in Figure 5.8. This suggest
that further optimization could be reached by smoothing those edges, in order to avoid an
eventual notch effect. Moreover, additional optimization could be done in the region near
the hole, where there are still some elements where stress is far less than σmax.
In Figure 5.9 is shown the design variables trend with respect to the number of iteration
needed.
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Figure 5.7: Von Mises stress (optimized plate)

Figure 5.8

Figure 5.10: Weight vs number of iteration
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Figure 5.9: Thickness variation vs number of iteration

Variable element-wise thickness

Figure 5.11

As previously said, the best solution is to vary every elemental thickness in order to find
the value that provides σmax on every mesh element. This solution is extremely influenced
by the quality of the mesh. The model used for this kind of analysis is showed in Figure
5.11. In order to minimise the execution time of the optimization analysis, has been used
a mesh with fewer elements.
Through the use of an API has been possible to assign to each element a different property
in order to individually vary the elements thicknesses. Therefore, having 233 elements,
there are now 233 design variables and design constraints. The design objective remains
the same.
It has to be said, however, that not only the mesh quality influences the outcome of
the analysis, but also the initial conditions. This is a characteristic of gradient-based
algorithm, in fact, due to the nature of the method, the optimizer won’t be able to find the
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global minimum, but only a local one. So, according to the initial conditions, optimization
analysis could lead to different results, or, in worst case scenario, could not converge at
all. In there circumstances, setting the initial thickness of the plate to t = 5 causes the
analysis to diverge.
The optimization analysis converges if the initial thickness is set to t = 4mm. Stress
distribution after optimizing the elements thicknesses is showed in Figure 5.12. In this
case stress distribution is almost constant and equal to the maximum allowable stress of
aluminium, except on the elements near the hole. In the following table is shown the
comparison between the optimized weight obtained in the three previous cases. In Figure
5.13 is showed the updated geometry of the plate after being optimized.

Figure 5.12

Weight
Initial (t = 5mm) 0.033 kg
Constant thickness 0.054 kg
Variable thickness (1) 0.023 kg
Variable thickness (2) 0.020 kg

As expected, it may be concluded that the best solution to optimize the weight of the
plate is to vary every element thickness, while the worst is to keep the thickness constant
on the whole plate. Of course, the three cases showed are merely an example of the various
ways that could be used to optimize the weight of an object. Indeed, there are other
aspects to be considered, such as technological issues. For example, the last solution was
established to be the best one, but, on the other hand, it would be hard to manufacture a
piece with such characteristics. So it could be easier and cheaper to chose the first solution,
where the plate won’t break but will be heavier.
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Figure 5.13

5.2 Normal modes analysis

Figure 5.14: Cantilevered beam

In the following example there will be shown the optimization design of a cantilevered
beam with specified natural frequencies. This is known also as "Turner’s problem", since it
was originally published by Turner’s. The objective of the study is to minimize the mass
structure of the beam showed in Figure 5.14 while constraining the fundamental natural
frequency at or above 20 Hz.
Geometrical characteristics are the following: a = 6 in, b = 20 in, t1 = t2 = t3 = 0.2 in,
A1 = A2 = A3 = 1 in2. There are also lumped masses at top and bottom nodes, 16lbs
each. The whole structure is made of aluminium, which properties were reported in Table
5.1.
With initial proprieties the first natural frequency is fi = 24.9Hz. The corresponding
deformed structure is shown in Figure 5.15.

There are six different design variables: three for the different web thicknesses and three
for the rod cross-sectional areas. After running the optimization design the first natural
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Figure 5.15

frequency computed is ff = 19.9Hz and the updated design variables are shown in Table
5.4.

t1 [in] t2 [in] t3 [in] A1 [in2] A2 [in2] A3 [in2] W [lb]
Initial 0.2 0.2 0.2 1 1 1 115.2
Final 0.049 0.044 0.027 0.94 0.48 0.16 103.8

Table 5.4: Optimization analysis results.

In Figure 5.16 is shown a comparison between the initial model (on the left) and the model
with the updated thicknesses and areas (on the right).

Figure 5.16

In Figures ??, 5.18 and 5.19 is shown the trend of the design variables and of the design
objective with respect to the number of iteration.
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Figure 5.17

Figure 5.18

Figure 5.19
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5.2.1 Buckling analysis of a laminated plate
In the following example a laminated plate subject to compressive load is optimized. In
Fig. 5.20 are showed the loading and the constraint of the problem.

Figure 5.20

The design objective of this example is, as previously, the weight minimization. How-
ever, unlike the previous examples, the plate is made of a laminate composite, so that
it is possible to have new design variables. In this particular case, the laminate is com-
posed of three laminae, so a total of six design variables are defined: three comes from
the thicknesses and three from the orientations. In this analysis both the first buckling
eigenvalue and the failure index are constrained. Furthermore, it is possible to consider
also some manufacturing constraint for the orientation of the layers, making the design
variables concerning the orientations no longer continuous but discrete. In summary, the
present problem is defined by:

• 1 design objective: weight minimization;

• 6 design variables:

– 3 ply orientations: −90◦ ≤ θ ≤ 90◦; ∆θ = 15◦

– 3 ply thicknesses

• 2 constraints:

– Failure index ≤ 1

– First buckling eigenvalue: 1 ≤ λ1 ≤ 1.5
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Initial conditions

Initial condition of the problem are characterized by the following values for weight, first
buckling eigenvalue and failure index:

Wi = 0.0578kg
λ1i = 10.6
FIi = 2.03

In Fig. 5.21 are showed the failure index and the first buckling mode of the plate.

(a) Failure index (b) First buckling mode

Figure 5.21

The initial stacking sequence is [−30◦/0◦/30◦] as showed in Fig. 5.22

Figure 5.22

It can be seen that initially, neither the failure index nor the eigenvalue constraint
are satisfied. During the optimization a gradient based algorithm will change the layers
thicknesses and orientation in order to get an optimum solution that fulfils the indicated
constraints.
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Final conditions

After running the optimization, the following results are obtained:

Wi = 0.0435kg
λ1i = 1.03
FIi = 0.801

New failure index and buckling mode are showed in Fig. 5.23.

(a) Failure index (b) First buckling mode

Figure 5.23

The new stacking sequence obtained is [−15◦/0◦/30◦] as showed in Fig. 5.24.

Figure 5.24
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Chapter 6

CFM Dardo wing model

The present work is part of the Aeroelastic Tailoring project headed by Embraer S.A. The
Aeroelasting Tailoring group involves more than ten International partners, whose aim is
to develop a framework of processes and tools to navigate structural design drivers of an
aircraft satisfying multiple physical requirements (structures, loads, flutter, and perfor-
mance) and to provide insight on how new technologies may affect aircraft design with
particular reference to composite materials.
The project is focused on optimization, manufacturing and testing of a composite wing for
an aircraft that can be representative for the assessment of Embraer Aeroelastic Tailoring
framework. In the following chapter will be presented the model of the current wing and
the analysis simulations result obtained with FEMAP, which represent the basis for the
future optimization.

6.1 FEM model
The project is focused on a specific Embraer airplane model, although the CFM’s Dardo
airplane is used for research, in order to have a more economical and practical solution.

Figure 6.1: CFM Dardo

To support the test campaign of the current configuration of the wing, a structural
analysis is carried out using the Finite Element Method (FEM), through the use of FEMAP
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and NX Nastran. The main parts of wings are spars, stringers, ribs and skin, which in the
FEM simulation are all modelled, in order to get accurate solutions for static, dynamic,
buckling and aeroelastic analysis. It is worth noting that stringers are not used in the
current configuration.

Figure 6.2: CAD model of the current DARDO’s wing.

In the proposed study, the symmetry of the problem is exploited and only half of the
wing is modeled in the FEM simulation. Figure 6.3 shows FEM mesh of the wing. All the
components are modeled using plate linear elements of Nastran, i.e. four-node CQUAD4
and three-node CTRIA3 for laminates. Beam elements (CBEAM) are used for the L-
shaped attachments between the main spar and the first rib. Rigid elements (RBE2 and
RBE3) are also employed to link the external masses and loads to the wing structure. In
total, the mesh accounts for around 27,000 elements (26,000 nodes). A brief description of
the most important features of the FEM model is included in the following.

Figure 6.3: FEM model of the half wing.
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6.2 Materials
The stacking sequence of each component of the wing is modelled using the PCOMP
property, that allows the user to assign different materials with arbitrary thicknesses. In
the following table are showed the different materials used in the wing model.

Material E1 [GPa] E2 [GPa] G12=G1z=G2z [GPa] ν12 ρ× 10−3 [kg/m3]
Carbon fabric (FAB) 77.2 77.2 2.21 0.25 4.71
PVC foam (PVC) 1.0 1.0 0.28 0.25 0.075
Celeron (CEL) 7.0 7.0 2.0 0.25 1.4
Tape isotropic (ISO) 92.0 92.0 8.0 0.25 2.51
Tape unidir. (UNI) 109.0 8.0 2.21 0.25 4.71

Table 6.1: Materials used in the layups.

6.3 Boundary conditions
As stated above, due to the symmetry of the wing, only one half of the model is used for
the analysis, so in order to impose the symmetry condition, displacement and rotations in
x and z direction are blocked in nodes laying on the left-hand edge, as showed in Fig. 6.4.
For the analysis two loading configurations are considered, ground test and in-flight test,
with three different mass configurations. Every simulation is performed for a 225% of the
limit load, which is obtained from the flight envelope and is equivalent to 3.8g.

Figure 6.4

In ground test simulation the loading applied is that generated by the test rig, manu-
factured in order to accurately simulate the lifting forces on the wing. Those simulations
allow us to validate the FEM model with experimental results. In order to model this type
of loading, these forces are applied at virtual nodes linked to the ribs with a set of rigid
connections (RBE2).
For the in-flight simulation, forces applied on the wing are obtained from a CFD analysis
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and then modelled in the FEM simulation with a pressure load on the top skin.
In both of the simulations, three mass configurations are used:

• Empty weight: only the weight of the structure is used for the simulations;

• Landing weight in this configuration, weight of the landing gear is added. It results
to be 15kg and is modelled as a non structural mass;

• Fuel weight: in this configuration, other than the landing gear weight, also the fuel
is considered. It is modelled as a non structural mass of 40 kg.

6.4 Results
6.4.1 Static analysis
In Fig. 6.5 and Fig. 6.6 are showed the results for linear static analysis for ground test
and in-flight condition, respectively. A further important point in static analysis, is the
failure index which is showed in Fig. 6.7. It is showed the contour of the maximum failure
index for ground test simulation, obtained with Tsai criteria. The maximum failure index
results to be 0.753 and can be found in the spars at the root of the wing, as they are the
most critical zones because of the maximum bending moment.

Figure 6.5: Ground test

6.4.2 Buckling analysis
For both configurations, ground test and in-flight analysis, also a linearized buckling anal-
ysis is performed. In Table 6.2 are showed the first five eigenvalues. For the different
configuration, eigenvalues results to be similar and always greater than 1, meaning that
the buckling will not happen for the 225% of the limit load but for a higher value.
Furthermore, as showed in Fig. 7.1, it can be noticed that the buckling will happen in
panels in top skin, near the wing root.
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Figure 6.6: In-flight

Figure 6.7

6.4.3 Free vibrations
Modal analysis is performed for every mass configurations. In Table 6.3 are showed the
first ten natural frequencies for empty weight, landing weight and fuel weight. It can be
observed that the mode that is less affected by the positioning of the extra mass is the first
one (bending mode).

6.4.4 Flutter analysis
Flutter analysis is performed with the empty weight configuration. In Fig. 6.10 and Fig.
6.11 are showed the evolution of natural frequencies and damping with respect to M = 0
and sea level altitude. From those curves it is possible to obtain the flutter velocity and
the flutter frequency, which are:

Vf = 249m/s, ff = 48.8Hz.
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Buckling mode Ground test In-flight
1 1.698 1.678
2 1.793 1.787
3 1.930 1.937
4 2.020 2.029
5 2.261 2.264

Table 6.2: First five buckling load factors for ground and in-flight loadings.

Figure 6.8

Flutter is triggered from the fourth mode, which is bending/torsion. In Fig. 6.12 is showed
the shape of the fourth mode in flutter conditions.
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Empty weight Including LG Including LG + fuel
Mode 1 14.16 14.1 13.33
Mode 2 41.27 39.49 34.59
Mode 3 42.94 41.84 36.41
Mode 4 58.14 54.5 44.23
Mode 5 85.29 75.38 70.14
Mode 6 96.35 83.72 81.95
Mode 7 105.7 96.35 96.35
Mode 8 124.4 106.7 101.7
Mode 9 132.7 112.7 109.1
Mode 10 151.7 131.1 113.5

Table 6.3: First ten natural frequencies (Hz) of the wing for all three mass configurations.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 6.9: The first four modes of the empty wing.
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Figure 6.10: Variation of the modal values for increasing velocities.

−2.5

−2

−1.5

−1

−0.5

 0

 0.5

 50  100  150  200  250  300  350  400

d
am

p
.

velocity (m/s)

Figure 6.11: Variation of the damping values for increasing velocities.

Figure 6.12: Shape of the 4th mode at 249 m/s, f = 48.8 Hz.
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Chapter 7

Dardo wing optimization

In the following chapter will be discussed the optimization analysis done for the CFM
Dardo’s wing. As stated in the previous chapters, one of the most important aspects for
the optimization is to choose the formulation of the problem and, therefore, the number of
design variables. We have seen that for small problems it is possible to directly manipulate
the stacking sequence, using orientations and thicknesses as design variables, so that the
dimension of the problem will be proportional to the number of plies of the laminate. The
advantage of this approach would be to have immediate access to the optimized stacking
sequence.
For our purpose using thicknesses and orientations as design variables could be non con-
venient, due to the large number of plies concerned. Hence, in the following optimization
design lamination parameters will be used as design variables, in order to have a smaller
problem.
Every analysis will be performed with Nastran, therefore Nastran default optimizer will be
used, that is based on the gradient-based method that was introduced in Chapter 3.1.

7.1 Objective function
The objective of the following optimization will be to minimize the weight of the current
Dardo’s wing configuration, focusing on the value of the first buckling eigenvalue. As
mentioned in Chapter 6 the buckling will happen for an higher value than the 225% of the
limit load, more precisely at λ1 = 1.677. The goal of the optimization design is to change
the current stacking sequence in order to get the buckling at the 225% of the limit load,
meaning that in this loading condition the first buckling eigenvalue should be λ1 = 1.

7.2 Design variables
Every component will respond differently to each kind of objective and constraint that
we can set, and, of course, some part can be more significant in certain analysis than
other. In this particular case, since our main objective is to change the value of the
first buckling eigenvalue, it has been chosen to optimize only the spar caps. In order to
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Figure 7.1: First buckling eigenvalue for the original wing stacking sequence.

obtain a meaningful solution, the spars are divided in different patches, whose lamination
parameters will change during the optimization analysis. In Fig. 7.2 the patches are shown
in different colors. The dimensions of the patches take into account the current stacking
sequence, the loading on the wing and the blending and manifacturing constraints.

Figure 7.2: Patches for the spar optimization
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7.3 Constraints
Since the optimization analysis is performed in the lamination parameters space, the first
constraint to set is the feasibility constraint, represented by the following equations.

2(V1A)2 − 1 ≤ V2A ≤ 1− (V3A)2

2(1 + V2A)(V3A)2 − 4V1AV3AV4A + (V4A)2 ≤ [V2A − 2(V1A)2 + 1](1− V2A)

2(V1D)2 − 1 ≤ V2D ≤ 1− (V3D)2

2(1 + V2D)(V3D)2 − 4V1DV3DV4D + (V4D)2 ≤ [V2D − 2(V1D)2 + 1](1− V2D)

(7.1)

These equations shall ensure that the lamination parameters obtained will represent a
feasible stacking sequence.
In order to take into account also the manifacturing constraint, will also be imposed the
symmetry of the laminate and the standard angles.

• Symmetry constraint:

V1B = V2B = V3B = V4B = 0 (7.2)

• Standard angles constraint:
V4A = V4D = 0 (7.3)

7.4 Initial configuration
Forward spar caps

Figure 7.3: Forward spar caps patches

In Fig. 7.3 the patches for the forward spar caps are shown. In the initial configuration
each patch is characterized with different stacking sequence, that will lead to different stiff-
ness matrices and, hence, different lamination parameters. Each patch is made of carbon
fabric and the material has been chosen to remain constant throughout the optimization
process.
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Patch Stacking sequence Thickness
1 [−45/03/45/02/45/02/− 45/03/45] 8.4mm
2 [−45/03/45/02/− 45/02/45] 5.6mm
3 [−45/06/45] 4mm
4 [−45/03/45] 2.2mm
5 [−45/45] 0.4mm

Rear spar caps

Similar to the forward spar caps, also the rear spar caps are divided in five different patches.
In Fig. 7.4 is shown the configuration of the patches.

Figure 7.4: Rear spar caps patches

Patch Stacking sequence Thickness
1 [−45/02/45/− 45/02/45] 3.2mm
2 [−45/0/45/− 45/0/45] 2mm
3 [−45/0/45] 1mm
4 [−45/45] 0.4mm
5 [−45/45] 0.4mm

Weight and buckling eigenvalues

With the present stacking sequence the total weight of the spar caps is equal toWspar,init =
20.50kg. The buckling eigenvalues obtained with this configuration are presented in the
following table.

λ1 1.677
λ2 −1.680
λ3 1.786
λ4 −1.790
λ5 1.937
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7.5 Results and final configuration
Throughout the optimization process, lamination parameters of the second patch of the
front spar are allowed to change, along with its thickness. Given the manufacturing con-
straint, only 6 lamination parameters will be used during the analysis, as stated in the
previous paragraph. To sum up, the optimization problem for the spars can be expressed
as the following.

• Design objective: weight minimization

• Design variables: 6 lamination parameters (V1A, V2A, V3A, V1D, V2D, V3D), 1 thick-
ness

• Constraints: buckling eigenvalue (λ1 = 1), feasibility and manufacturing con-
straints.

The comparison between the initial and final stiffness matrices is given below:

[Ai] =

568552 49049 0
49049 81518 0

0 0 35312

 [Af ] =

223430 140270 0
0 223430 0
0 0 75340



[Di] =

1428650 176564 0
176564 259770 0

0 0 121640

 [Df ] =

223200 155170 0
0 223200 0
0 0 87620


Together with the lamination parameters and the stiffness matrices, also the thickness

of the patch changed, specifically it decreased:

ti = 5.6mm tf = 3.5mm

Thickness reduction is ensuring the desired weight reduction, while the variation of the
stiffness matrices is changing the behaviour of the wing for the buckling. The new buckling
eigenvalues are showed in the following table.

λ1 1.002
λ2 1.051
λ3 1.305
λ4 1.401
λ5 1.662

At the end of the optimization the weight of the spars is reduced to Wf = 20.04kg.
More specifically, focusing only on the second patch of the spar, the comparison between
the initial and final weight is the following:

Winit,patch2 = 1.18kg Wfinal,patch2 = 0.747kg

In Fig. 7.5 is shown the first buckling eigenvalue of the optimized wing.
As expected, the major changes happen in the terms of the D matrix, which is the

one that directly affects the buckling behaviour, while the changes in the A matrix can be
related to the feasibility and manufacturing constraints imposed.
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Figure 7.5
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Chapter 8

Conclusions

The purpose of this thesis was to develop an efficient methodology to optimize the struc-
ture of a composite wing. This is a relevant subject in aeronautic industry, since one of
the main goals of a project is to minimize the weight of the aircraft. Furthermore, weight
reduction translates also into a reduction in consumption, providing an aircraft which is
not only cost-effective, but also environmental friendly.
The optimization analysis is never trivial, since it’s intrinsically a multidisciplinar problem
and many issues must be take into account at the same time. First of all, when designing
the code for the optimization analysis, it is important to choose properly which will be the
variables that will govern the analysis. As seen in Chapter 2, composite materials can be
described in different ways. Following the classical method, a laminate can be described
through the orientations and thicknesses of each ply, which is the stacking sequence. Alter-
natively, the behaviour of a laminate can be also described through the stiffness matrices
[A], [B], [D], which can be, in turn, expressed as a linear combination of material invari-
ants and lamination parameters. This implies that, in the optimization analysis, the design
variables can be three different kind. In fact, it is possible to directly manipulate the stack-
ing sequence (orientations and thicknesses), or the terms of the stiffness matrices, or the
lamination parameters and the thickness. The choice of the design variables is a crucial
point for the optimization analysis, since every relation (such as constraint equations) must
be written in accordance to the variables. Furthermore, the choice of design variables can
also affect the outcome of the analysis, both in terms of accuracy and time.
In Chapter 3 are described the principal algorithms nowadays used in design optimiza-
tion, explaining the pros and cons. The choice of the algorithm is also influenced by the
expression of the design variables. For instance, genetic algorithm are more indicated to
the manipulation of the stacking sequence, since this kind of variables would be discrete.
Gradient based algorithm can be used when working on stiffness matrices or lamination
parameters, since these variables would be continuous.
In order to develop the optimization analysis for the Dardo’s wing, it has been decided to
use lamination parameters as design variables, in order to reduce the number of variables
needed to describe the structure.
Another fundamental issue in optimization design concerns the understanding and the ex-
pression of the constraint to impose. As shown in Chapter 4, some constraint are directly
related to the formulation chosen for design variables. In fact, in the present work, in
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order to use lamination parameters as design variables, it has been necessary to set some
feasibility constraint, that will ensure that the results obtained correspond to a real and
feasible stacking sequence. There have been shown also the physical constraint, such as
buckling and failure, and their formulation in the lamination parameter space.
In Chapter 6 was introduced the model of the current Dardo’s wing, showing some details
about the materials and boundary conditions, followed by the results of the most signifi-
cant analysis.
In the final chapter, the knowledge acquired in the previous chapters, have been finally
applied to the wing model, trying to obtain an optimized, lighter wing, imposing a buckling
constraint. The optimization analysis has been performed on a section of the front spar
cap. At the end of the analysis, the 36% of the weight was saved, leading to a lighter
structure.

8.1 Future development
Even if the result obtained on the spar is remarkable, some extension to the developed
optimization analysis can be envisaged. First of all, the expression of the manufacturing
constraint and of the physical constraints can be improved, taking into account, for ex-
ample, different physical constraints at the same time, which could be buckling analysis,
flutter analysis and so on. Furthermore, in the present work the geometry of the wing re-
mained constant throughout the optimization, changing only the lamination of the spars.
In future works also the shape of the wing could be optimized, directly using mesh nodes
coordinates as design variables.
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