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Abstract

In the last years, the technological improvement and the resulting miniaturization of pro-
cessors and electronics gave small satellites new capabilities and performance, previously
possible only with larger satellites. As the development made possible to inexpensive and
high-quality imagery as well, more satellites have been used for Earth imagery purpose
and, in the next few years, this trend will not change easily. The smaller mass also allows
to achieve lower launch cost, therefore giving access to space to universities and non-
governmental companies. This played as a breakthrough for the entire space economy.
Since the beginning of XXI century, this increased usage led to bigger attention by cus-
tomers for any kind of failure, that can affect the spacecraft at any moment. In detail,
the reduced mass turns the spacecraft more sensitive to the external perturbations and
the Momentum Exchange Devices (MEDs) have more limitations due to their smaller di-
mensions. For this reason, the key feature of the proposed research is on the design of a
robust control system, able to withstand parametric uncertainties (within the plant and
bounded) and matched failure of the actuation system.
The main objective is the design of an H∞ controller, starting from Linear Matrix In-
equality (LMI) formulation. This method allows achieving the required robustness, with
the uncertainty derived from the unknown angular momentum of the reaction wheels and
including uncertainties in the spacecraft system. The obtained controller, suitably designed
for attitude control maneuver, is a “unique” state-feedback controller for both uncertain-
ties.
The closed-loop system is evaluated for different initial conditions, including attitude posi-
tions far from the desired conditions. The effectiveness of the proposed approach is demon-
strated by extensive simulations considering a pyramidal baseline configuration. Moreover,
a fault detection method based on the theory of parity equation is proposed. The control
law can ensure mission accomplishment in case of one wheel failed, considering a proper
Fault Detection, Isolation and Recovery (FDIR) procedure. A mission scenario based on
an optical Earth Observation mission is tested, in which different spacecraft configurations
and failures are described.





Sommario

Negli ultimi anni, il progresso tecnologico e la conseguente miniaturizzazione di processori
e componenti elettronici ha dato ai small satellites nuove capacità e prestazioni, possibili
precedentemente solo con satelliti più grandi. Poiché lo sviluppo ha permesso anche di
ottenere immagini di alta qualità a basso costo, sempre più satelliti sono usati, oggigiorno,
per osservazioni legate all’ambiente terrestre e difficilmente cambierà il trend nei prossimi
anni. La minore massa, inoltre, permette di avere costi di lancio meno esosi, rendendo
possibile l’accesso allo spazio anche a università e compagnie non governative. Un atto
senza precedenti nell’economia spaziale.
Dall’inizio del XXI secolo, questo aumento nell’utilizzo ha portato all’attenzione della co-
munità spaziale la maggiore vulnerabilità che questi satelliti hanno per via delle loro ridotte
dimensioni. Infatti, ciò li rende maggiormente sensibili alle perturbazioni esterne e possono
portare a bordo sistemi di scambio di momento (Momentum Exchange Devices o MEDs)
con limitate capacità. Perciò, la caratteristica principale di questa ricerca è la progettazione
di un sistema di controllo robusto che sia in grado di funzionare correttamente nonostante
le incertezze parametriche, bounded, del sistema e malfunzionamenti del sistema attuatore.
L’obiettivo principale è quindi il design di un controllore H∞, ottenuto attraverso la formu-
lazione delle Linear Matrix Inequality (LMI). Questo metodo, infatti, permette di ottenere
la robustezza richiesta, considerando come incertezze del sistema il momento angolare del-
le reaction wheels, non conoscibile a priori, e le failure come incertezze degli attuatori. Il
controllore così ottenuto, progettato specificatamente per manovre di controllo d’assetto,
è un unico controllore state-feedback per entrambe le incertezze.
Il sistema ad anello chiuso è valutato per diverse condizioni iniziali, anche estremamente
lontane dalle condizioni desiderate. L’efficacia dell’approccio proposto è dimostrata attra-
verso simulazioni approfondite considerando una configurazione piramidale a base quadra-
ta. Inoltre, si propone un metodo di detezione di fault, basato sulla teoria delle parity
equations. La legge di controllo garantisce la sopravvivenza della missione anche in pre-
senza di una reaction wheel non funzionante, considerando una procedura Fault Detection,
Isolation and Recovery (FDIR). Si è testato, infine, un scenario di missione, ovvero una
missione di osservazione terrestre, con diversi casi di malfunzionamento.
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Chapter 1

Introduction

Since the dawn of time, mankind has enhanced its sight towards the stars. Myths and
traditions were born through the attentive observations of the sky and the creative imagi-
nation of people all around the globe. Space exploration was just a children’s story, with
no other purpose than letting the imagination run wild. An impossible dream until Octo-
ber 4th 1957, when the first artificial satellite, called Sputnik I, was successfully launched
and reached the boundaries of the space [1]. From that moment, satellites have travelled
all over the solar system, even going beyond its further limits with mission Voyager I and
Voyager II [2][3]. Man footsteps have already reached the lunar soil in July 20th 1969 when
Apollo 11 astronauts Neil Armstrong and Buzz Aldrin became the first men reaching the
moon and the day where astronauts will land on Mars is getting closer.

The first satellites were necessarily small because of reduced launch capabilities: Sput-
nik I weighted just 83 kg while Explorer I, the first American satellite, even less than 14 kg.
As the launch technology improved, satellites acquired new dimensions and capabilities.
This led to a strong decrease of the so-called small satellites launched, culminating in a
small satellite doldrums in the 80’s. This depression ended with the technological improve-
ment and the relative miniaturization of processors and electronics, that characterized the
90’s and the early 2000s. New kinds of missions were allowed thanks to the introduction of
more capable payloads. Furthermore, the reduced mass, and thus a reduced launch cost,
opened a new space market for universities and non-governmental companies, completely
changing space industry [4].

In fact, some non-governmental companies, like SpaceX and Electron, emerged with a
special focus on cutting launch cost through reusability. In December 3rd 2018, a Falcon
9 rocket (SpaceX) lifted off from Vandenberg Air Force Base, California with 64 small
satellites, whose customers were from 34 different organizations [5]. Another remarkable
example occurred in February 15th 2017, when ISRO’s Polar Satellite Launch Vehicle suc-
cessfully launched 104 satellites (103 were nanosatellites) in a single flight, breaking any
previous record for the largest number of satellites launched on a single rocket[6].
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1 – Introduction

Figure 1.1: PSLV-C37, when successfully lifted off with 104 satellites. Credits: Indian
Space Research Organization

Since every satellite works in a harsh environment far from a direct human control,
it requires a subsystem that can handle and control autonomously the attitude dynamics
far from Earth. It is called Attitude Control System. Its main purpose is to control the
orientation of the spacecraft with respect to an inertial reference frame. This subsystem
includes sensors and actuators to measure the orientation and to apply the torques needed
to change the orientation. The reduced dimensions, however, brought new difficulties, since
small satellites are more sensitive to disturbances and perturbations than larger satellites.
Therefore, a robust control is required. A first definition of robustness, although not so
rigorous, can be the capability of the control system to work well under sets of parame-
ters different from the nominal one. For example, these parameters can be uncertainties
within the system, not known but bounded. In this thesis, an attitude control system is
designed, to follow a pre-defined orientation, guaranteeing robustness to bounded uncer-
tainties and external disturbances. The robust selected architecture is an H∞ controller,
able to guarantee performance through a mathematical optimization. This strategy was
introduced in the ‘70s-‘80s by George Zames[7], J.William Helton [8] and Allen Tannen-
baum [9]. Another remarkable work in H∞ methods is done by Kemin Zhou[10], in which
the suboptimal H∞ problem is explained. In the last ten years, researchers focused on
Linear Matrix Inequalities (LMIs) approaches[11].

As the controller acts on the actuators through algorithms ruling the operations, it
is crucial to understand the several categories of actuators used so far, analyzing their
specific fields of application. In fact, several mechanisms can be used, but each case can
be fitting for different scenarios. For example, thrusters are mostly used for their possible
re-use for station keeping maneuvers and for their reliability in manned spacecrafts. Spin

2



1 – Introduction

stabilization method, where the spacecraft itself is spun up to stabilize the orientation of
a single vehicle axis, is strongly used for stabilise the final stage of a launch vehicle. Then,
for precise control, momentum wheels are used, where rotors, controlled by electric motors,
spin to re-orient the vehicle. In case of saturation, i.e. the device reaches the maximum
speed of the wheel, it is used to employ magnetorquers in presence of a magnetic field or
ion thrusters. As the accuracy required in this project is remarkable, the chosen actua-
tors are reaction wheels. However, several events have shown some vulnerabilities within
these systems that can lead to serious consequences, potentially fatal for the mission. A
well-known example is the mission Kepler, where two reaction wheels in a 4-configuration
failed. Those failures almost cost the integrity of the mission and led NASA engineers to
reformulate the mission with new constraints[12].For this reason, in this thesis, different
failure cases are analyzed, to guarantee the success of the mission, even in presence of
uncertainties.

Figure 1.2: An artistic concept of Kepler, from NASA Photo Archive

In the last years, several studies considered the study of failures, including active or
passive fault-tolerant methodology[13]. While the passive, due to its conservative design,
has limited faults tolerance capability, the active approaches has better results, even if this
method requires a Fault detection system for a complete awareness of the system in real
time. An example of an adaptive attitude tracking strategy considering the fault within
the controller design process is shown in [14]. In addition, a Fault-Tolerant Control (FTC)
based on adaptive sliding mode have been developed by Y.Bai, J.D.Biggs, X.Wang and
N.Cui[15].

3



1 – Introduction

1.1 Overview

As enhanced in this brief introduction, robust control methods for small satellites are get-
ting the attention of the space systems community as they need effective approaches to
withstand failures. Therefore, the aim of this thesis is to design a linear robust controller,
specifically a H∞ controller with LMI formulation, able to work well under plant uncer-
tainties and when a failure of the actuator system occurs. The studied case is with reaction
wheels as actuators in a pyramidal baseline 4-configuration. In addition, to identify in real
time any failure, there has to be a fault detection method. Thus, a method based on parity
equations approach has been chosen.

• In chapter 2, all the mathematical equations used to describe the system are shown
and explained into details. The kinematics is studied with quaternions formulation
to avoid singularity problem that can occur with Euler angles, while the dynamics
concerned derives from the attitude problem.

• In chapter 3, a robust linear controller is described. The chosen method is an H∞
controller, obtained through a LMI formulation. A first uncertainty, derived from
the system is described.

• In chapter 4, the failure implementation is explained and tested. An assumption
concerning the weight of each reaction wheels allows to consider the failure as an
uncertainty.

• In chapter 5, the fault detection method used is shown. In this case, a parity equations
method has been used and tested.

• In chapter 6, the controller has been tested in a real mission scenario, concerning an
Earth Observation mission. The results are shown and explained in detail.

• in the last chapter, conclusion and future works are briefly discussed.

4



Chapter 2

Spacecraft mathematical model

In this chapter, the mathematical model is described. First, the used reference frames are
described and, then, the attention will focus on the kinematics defined with quaternions
and the dynamics of the satellite. Eventually, the actuator system, or Momentum Exchange
Device (MED) system, is shown.

2.1 Spacecraft model

The spacecraft considered is a box of 80cm × 80cm × 120cm. The weight is 200 Kg,
falling within small satellite definition. In fact, according to weight and dimensions, every
satellite can be classified as following:

Figure 2.1: A CAD model of the spacecraft

Category Mass [in Kg]
Large satellite >1000

Medium satellite 500 to 1000
Mini satellite 100 to 500
Micro satellite 10 to 100
Nano satellite 1 to 10
Pico satellite 0.1 to 1
Femto satellite <0.1

Table 2.1: Category of satellite
In control system engineering, it is useful to consider a dynamic system as a union of

interconnecting blocks. It is therefore crucial to recreate a realistic block diagram, able
to describe correctly the system. The considered case is defined as a closed-loop system,
based on feedback control. It can be explained with 3 blocks: one concerning the controller,
one for the system or plant and a final one for the measurements. In this thesis, it will

5



2 – Spacecraft mathematical model

be considered no difference between the system output and the measured output, so the
sensor part will be neglected.

Controller MED system Attitude Dynamic

System

uth ureal

Measurements

r e y

−

ym

Figure 2.2: Block Diagram

2.2 Reference frames

Since the motion of a body can be described relative to a frame of reference, it is crucial
to explain the used reference frames. In this thesis, it will be used an inertial frame and
a body frame. The first one is a reference frame in which any body within that frame
is not accelerating, if zero net force is acting upon it. Moreover, the inertial frame has
the feature of being a fixed right-handed frame. Then, the body frame, corresponding to
a non-inertial frame, is a moving right-handed frame centered in the spacecraft center of
mass. However, these two frames, fixed and moving, are linked with each other thanks to
a general property of vector, also called conversion from fixed to moving frame.

y axis

z axis

x axis

yB axis

zB axis

xB axis

Figure 2.3: Inertial frame and body frame shown together
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2.3 – Attitude Dynamics with quaternions

2.3 Attitude Dynamics with quaternions

2.3.1 Kinematics

First described by W.R. Hamilton in 1843[16], quaternions are a mathematical system
extending complex numbers. Useful to describe spatial rotations due to their more com-
pact nature, lower computational cost and their lack of singularity, they were successfully
implemented in several control algorithm. A quaternion, however, can be interpreted as:

• point in a 3D projective space (w,x,y,z);

• linear transformation of four space;

• algebraic quantity;

• and a scalar plus 3-vector

In this thesis, the last interpretation is chosen and, consequently, it can be described as:

q = q0 + q1î+ q2ĵ + q3k̂ (2.1)

In this thesis, it will be used a second representation too, as follows:

q =


q0

q1

q2

q3

 or q =


q1

q2

q3

q4

 (2.2)

where q0 and q4 are the scalar value, while q1,2,3 are the vector ones.
Furthermore, it is possible to describe the orientation of a rigid body through a σ rotation
over an axis ν, according to Euler’s theorem. Thus, considering ~ν as the unit magnitude
vector, quaternion can be represented as:

q0 → cos
σ

2
~q → ~ν · sin σ

2

For what concern quatermions, the following rules are applied:

i2=j2=k2=−1
ij=k=−ji jk=i=−kj ki=j=−ik

In addition, the quaternion norm is the following:

q2
1 + q2

2 + q2
3 + q2

4 = 1

Then, it is important to evaluate the evolution of quaternions in time. It does not go
unnoticed that these equations are functions of the angular velocity.

q̇ =
1

2
Σ(q)ωB =

1

2
Σ(ωB)q (2.3)

7



2 – Spacecraft mathematical model

where

Σ(q) =


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 and Σ(ωB) =


0 −ωx −ωy −ωz
ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωy ωx 0


For ease of visualization, it is useful to know how to convert quaternions into Euler

angles, as they are a more intuitive approach for displaying results.φθ
ψ

 =

arcsin−2(q1q3 − q0q2)

arctan 2(q0q1+q2q3)
q20+q21−q22−q23

arctan 2(q1q2+q0q3)
q20−q21−q22+q23

 (2.4)

2.3.2 Dynamics

Let define the total angular momentum vector as the sum of spacecraft angular momentum
vector and Momentum Exchange Devices(MED) angular momentum vector.

hNtot = hNs/c + hNmed

Let describe the moment equilibrium equations of a rigid body, written in an inertial ref-
erence frame.

τext =
d

dt

(
hNtot
)

= ḣNtot = ḣNs/c + ḣNmed (2.5)

where τext is the sum of the external torques.
Let assume that ḣNmed is equal to −u where u is the control input, because equivalent to
the negative torque in the body frame. Then, it is useful to convert ḣNs/c into body frame,
considering no variation of inertia in time, i.e. dI

dt = 0.

ḣNs/c = ḣBs/c + ωB ∧ hBs/c =��
�İωB + Iω̇B + ωB ∧ hBs/c

So equation (2.5) becomes:

τext = Iω̇B + ωB ∧ hBs/c + ḣNmed

Iω̇B = −ωB ∧ hBs/c − ḣ
N
med + τext

ω̇B = I−1
(
−ωB ∧ hBs/c + u+ τext

)
(2.6)

2.4 Actuator system

Spacecraft capability of modifying its orientation arises from the use of MED systems, in
particular in this thesis reaction wheels will be used. These devices apply a torque through
a motor putting a wheel in rotation. Then, an equal and opposite torque is applied to the

8



2.4 – Actuator system

body frame, allowing the spacecraft to rotate. It is possible to describe the behaviour of
a reaction wheel through a basic model, as shown in figure 2.4. The device is composed
mainly by two components: a motor and a wheel. It can be described with a local frame,
referenced as the wheel frame with its spin axis aligned with the third axis.

ŵ2

ŵ3

h

τ

ŵ1

Ω

Figure 2.4: A basic model describing a reaction wheel, where the red body represents the
motor and the blue body the wheel itself.

Let define the unit versors for the body frame and ith wheel frame, respectively b̂1, b̂2, b̂3
and ŵi1, ŵi2, ŵi3. A tool fundamentals for next step is to understand how to convert from
a frame to another, so it is necessary to define a transformation matrix. It can be achieved
through rotations and represented as a direction cosine matrix, but for the moment it will
be described just in dyadic form with component-wise dot product, as it follows:

BRWi =

b̂1 · ŵi1 b̂1 · ŵi2 b̂1 · ŵi3
b̂2 · ŵi1 b̂2 · ŵi2 b̂2 · ŵi3
b̂3 · ŵi1 b̂3 · ŵi2 b̂3 · ŵi3

 (2.7)

Consequently,

hBwi =B RWihWi
wi (2.8)

Focusing on angular momentum for ith reaction wheel, some considerations can be done:

hWi
wi = IBwiω

Wi
wi =

jwi11 0 0
0 jwi22 0
0 0 jwi33

Wi  0
0
Ωi

Wi

=

 0
0

jwi33Ωi

Wi

(2.9)

Therefore, equation (2.8) becomes:

9



2 – Spacecraft mathematical model

hBwi =

b̂1 · ŵi1 b̂1 · ŵi2 b̂1 · ŵi3
b̂2 · ŵi1 b̂2 · ŵi2 b̂2 · ŵi3
b̂3 · ŵi1 b̂3 · ŵi2 b̂3 · ŵi3

Wi→B  0
0

jwi33Ωi

Wi

hBwi =

b̂1 · ŵi3b̂2 · ŵi3
b̂3 · ŵi3

 jwi33Ωi (2.10)

These matrices are valid just for one reaction wheel, so it is useful to consider all the reac-
tion wheels used. The adopted configuration is a pyramidal arrangement with 4 reaction
wheels (n = 4). The total angular momentum of the system is simply the sum of each
MED existing in the body frame.

hBw =
n∑
i=1

hBwi =


b̂1 · ŵ 1

3
b̂1 · ŵ 2

3
b̂1 · ŵn

3

b̂2 · ŵ 1
3

b̂2 · ŵ 2
3
· · · b̂2 · ŵn

3

b̂3 · ŵ 1
3

b̂3 · ŵ 2
3

b̂3 · ŵn
3


W→B h1

...
hn


W

(2.11)

The equation (2.11) is the product of a transformation matrix 3 × n, where n is the
number of reaction wheels, and a vector n × 1 corresponding to vector column about an-
gular momentum. It can be rewritten as:

hBw = ZW→BhWw (2.12)

where

hWw =


jw111 0 · · · 0

0 jw222 · · · 0
...

...
. . . 0

0 0 · · · jwn33




Ω1

Ω2
...

Ωn


Thus, the inertia matrix for reaction wheels is a n× n matrix, while the vector describing
the angular rate of each reaction wheels is a 1×n vector.Then, it is important to describe
analytically the MED torque, which is known to be equal to the variation in time of the
angular momentum.

τWmed = ḣWw = IwΩ̇w τBmed =
d

dt

(
ZW→BIwΩw

)
(2.13)

Let consider a case in which the orientation is fixed and the moment of inertia is not de-
pendent with respect to time. So, the following is a correct assumption:

τBmed =((((
(((

ŻW→BIwΩw +((((
(((

ZW→B İwΩw + ZW→BIwΩ̇w

Eventually, to consider the inertial frame, equation concerning the conversion from fixed
to moving frame is needed:

ḣNw = ḣBw + ω ∧ hBw (2.14)
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2.4 – Actuator system

2.4.1 Transformation matrix Z

Knowing the configuration, it is possible to evaluate the transformation matrix properly.
Apart from the explaination requiring the form with component-wise dot product shown
previously, it is possible to study the problem with a geometric point of view.

y axis

z axis

x axis β

Figure 2.5: A pyramidal reaction wheel configuration, with angle α = 0°.

Therefore, considering the angle α as the angle between X−axis and the first reaction
wheel and the angle β as the angle between the plane X − Y and any reaction wheel
assumed that every reaction wheel has the same elevation, it is possible to evaluate the
angular momentum in the inertial frame starting from the reaction wheel frame:

hx = h1 cosβ cosα− h2 cosβ sinα− h3 cosβ cosα+ h4 cosβ sinα

hy = h1 cosβ sinα+ h2 cosβ cosα− h3 cosβ sinα− h4 cosβ cosα

hz = h1 sinβ + h2 sinβ + h3 sinβ + h4 sinβ

Consequently, the transformation matrix is the following:

Z =

cosβ cosα − cosβ sinα − cosβ cosα cosβ sinα
cosβ sinα cosβ cosα − cosβ sinα − cosβ cosα

sinβ sinβ sinβ sinβ

 (2.15)

With α = 0°and β = 30°, the transformation matrix used in this thesis is equal to:

Z =


√

3
2 0 −

√
3

2 0

0
√

3
2 0 −

√
3

2
1
2

1
2

1
2

1
2

 (2.16)
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2 – Spacecraft mathematical model

2.4.2 Reaction wheels saturation

A real reaction wheel has some limitations. Both the angular momentum and the maximal
torque should fall within a certain range. To simulate this behaviour, better known as
saturation of the reaction wheels, a specific block on SIMULINK has been used with
specific data obtained by real model existing in commerce. The model considered is a
Honeywell HR16-50[17].

Model Mass Max Angular momentum Max torque Inertia
[in Kg] [in Nms] [in Nm] [in Kgm2]

HR16-50 6 50 0.1 0.02

Table 2.2: Reaction wheel Data
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Chapter 3

Control System Design

In this chapter, the controller used will be explained. The system is exploiting a control
loop feedback mechanism control technique. The controller can be linear or nonlinear and
for the purpose of this thesis a linear H∞ is designed. The equations ruling the dynamics
of a spacecraft, however, are nonlinear. It is therefore necessary to adapt the real system
to a simplified mathematical model. This is achieved through a linearisation, explained in
details in this chapter.

3.1 Introduction

P(s)

K

z

y

ω

u

Figure 3.1: Diagram of the system, where P(s) is the open-loop system

Let consider a continuous linear time invariant (LTI) dynamical system described in a
state space definition as following:{

ẋ = Ax+Bww +Buu

z = Czx+Dzww +Dzuu
(3.1)

where

• x is the vector state, equal to: x = {~qError; ~ωBError};

13



3 – Control System Design

• u is the control input, equal to: u = {u1;u2;u3};

• w is the disturbance vector, equal to: w = {w1;w2;w3};

• and z is the measured output

This system, with a state-feedback controller u = −Kx, produces a closed-loop system as
the following: {

ẋ = (A−BuK)x+Bww

z = (Cz −DzuK)x+Dzww
(3.2)

Which the corresponding transfer matrix from w to z is defined as:

Z(s)

W (s)
= G(s) = (Cz −DzuK)(sI −A+BuK)−1 +Dzw (3.3)

3.2 Linearisation

As mentioned before, a crucial part of the thesis was the linearisation of the equations. In
order to do so, it is required to evaluate the equations (2.3) and (2.6) through a jacobian
matrix, i.e. a matrix composed by all the first-order partial derivatives of a vector-valued
function. However, in equation (2.3) the scalar value has to be avoided, considering hence
just the vector error.

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


where

f =



q̇Error1
q̇Error2
q̇Error3
ω̇B1Error

ω̇B2Error

ω̇B3Error


The matrices A,Bu and Bw are therefore the Jacobian matrices of the function f , with
respect to x, u and w, respectively. Then, they are linearised in the neighbourhood of the
equilibrium condition, which are the following:

Quaternion error Angular rate error [in rad
s ]

[1, 0, 0, 0] [0, 0, 0]

Table 3.1: Equilibrium condition
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3.2 – Linearisation

For what concern Cz, Dzu and Dzw, it is possible to do the same methods, knowing
the equations describing the measurements, but for the purpose of this thesis, it has been
chosen to assume Cz equal to an identity matrix (6× 6) and Dzu and Dzw as null matrices
(6× 3).

3.2.1 Matrices A,Bu, Bw, Cz, Dzu and Dzw

The matrix A is the following:

A =



0 ωz
2 −ωy

2
qe0
2 − qe3

2
qe2
2

−ωz
2 0 ωx

2
qe3
2

qe0
2 − qe1

2
ωy

2 −ωx
2 0 − qe2

2
qe1
2

qe0
2

0 0 0 0 hw3
I1

hw2
I1

0 0 0 hw3
I2

+ ωz 0 ωx
2 −

hw1
I2

0 0 0 −hw2
I3
− ωy

2
hw1
I3
− wx

2 0


(3.4)

Then, with equilibrium condition:

A =



0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 0 0 hw3
I1

hw2
I1

0 0 0 hw3
I2

0 −hw1
I2

0 0 0 −hw2
I3

hw1
I3

0


(3.5)

The matrices Bu and Bw are the following:

Bu =



0 0 0
0 0 0
0 0 0
1
I1

0 0

0 1
I2

0

0 0 1
I3


(3.6)

Bw =



0 0 0
0 0 0
0 0 0
1
I1

0 0

0 1
I2

0

0 0 1
I3


(3.7)
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3 – Control System Design

The matrices Cz, Dzu and Dzw are the following:

Cz =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3.8)

Dzu =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 (3.9)

Dzw =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 (3.10)

3.3 Controllability and observability

As well as a linearisation for a nonlinear system, linear controllers require the system to be
controllable and observable, fundamental properties in control systems. Controllability is
the ability of the system to be moved within its configuration space via a finite number of
manipulations, while observability can be described as the ability of a system to let know
about its internal states through external outputs.

Controllability

To evaluate the controllability, it is needed to build n × nr controllability matrix as it
follows:

C =
[
B AB A2B · · · An−1B

]
(3.11)

The system is fully controllable if the controllability matrix has full row rank, i.e. Rank(C) =
n.

Observability

For the observability, the process is similar to the controllability, thus it is needed the
observability matrix:
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O =


C
CA
CA2

...
CAn

 (3.12)

The system is fully observable if observability matrix has full row rank, i.e. Rank(O) = n.

The system considered in this work has full row rank for both controllability matrix
and observability matrix, thus the system is fully controllable and fully observable. Con-
sequently, the system fulfills all the requirements for the linear controllers.

3.4 H∞

Requiring a certain level of robustness, a controller has been synthesized through a H∞
method. This family of controllers is chosen thanks to a mathematical optimization prob-
lem. In fact, the name of this method comes from the plane where the optimization is
made, i.e. H∞ is the Hardy space of matrix-valued functions. These are analytic and
bounded in the open right-half of the complex plane defined by <(s) > 0, i.e. RH+

∞.

Considering the LTI system in (3.1), the H∞ norm is the induced energy-to-energy
gain (induced L2 norm).

‖G‖∞ = ‖G(jω)‖∞ = sup
ω∈R

σ̄(G(jω)) (3.13)

Unfortunately, unlike H2 norm, H∞ norm cannot be computed analytically. For that
reason, it can be solved only with numerical methods, such as Bisection algorithm or LMI
resolution. For the purpose of this thesis, the last method is chosen. However, it is possible
to give a physical interpretation of this norm. In fact, it can be considered as the maximal
gain of the frequency response of the system. In addiction, it can be called the worst case
attenuation level as well, because it measures the maximum amplification deliverable by
the system over the whole frequency set.

3.4.1 H∞ norm computation

As previously told, numerical methods are needed. A classification can be done in this
way[18]:

• First Method:Using a thin grid of frequency points {ω1, · · · , ωn},let compute Bode
magnitude plot, then: ‖G(jω)‖∞ ≈ max1≤k≤N σ̄{G(jωk)};

• Second Method:considering (3.1),‖G‖∞ < γ if and only ifσ̄(D) < γ and the Hamil-
tonian H has no eigenvalues on the imaginary axis, where
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3 – Control System Design

H =

[
A+BR−1DTC BR−1BT

−CT (In +DR−1DT )C −(A+BR−1DTC)

]
and R = γ2 −DTD

• Third Method:(Bounded Real Lemma) The system (3.1) is internally stable and
with ‖G‖∞ < γ, i.e. H∞ performance specification, if and only if there exists a
positive definite symmetric matrix P such that P = P T andATP + PA PB CT

BTP −γI DT

C D −γI

 < 0, P > 0

3.4.2 Definition of control problem

After the definition and the computation of theH∞ norm, it is possible to define the control
problem. Basically, the control objective is to minimize H∞ norm of the transfer function
from w to z. Besides, the control problem can be divided into optimal and suboptimal.
H∞ Optimal control problem: Find a controller K(s) able to generate a control signal
u that minimizes the closed-loop norm form w to z. It aims therefore at finding the mini-
mum value of γ.
H∞ suboptimal control problem: Given a γ pre-specified, design a stabilizing con-
troller that ensures:

‖G(s)‖∞ = max
ω

σ̄(G(jω)) ≤ γ

3.4.3 State feedback control problem

The method used in this thesis is a state-feedback H∞ control, using LMIs formulation.
Therefore, considering the continuous-time LTI system defined in (3.1), it is known that
the control law is equal to:

u = −Kx such that ‖G(s)‖∞ ≤ γ

Then, it is necessary to apply the bounded real lemma to the closed-loop system, trying
to obtain some convex solutions.
Moreover, H∞ performance specification written in (3.4.3) can be considered equivalent to
the following linear matrix inequalities:

M =

AQ+QAT +BuY + Y TBT
u QCTz +���

�Y TDT
zu Bw

CzQ+���DzuY −γ21 Dzw

BT
w DT

zw −1

 < 0 , Q > 0

where Q,Y and γ are the variables. The variable Q is defined as a squared matrix such that
Q = QT , while the matrix Y is (r × n), with n = number of vector state components and
r = number of control input components. These two variables derives from a linearizing
change of variables, i.e. Q = P T and Y = KP T where P is such that P = P T . Then, the
variable γ is a scalar value.
The solution of these LMIs is processed by a mathematical solver. In this thesis, Mosek[19]
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has been used, integrated on MATLAB with Yalmip[20] package. After the computation,
the variables are equivalent to the final solutions, that allow to evaluate the H∞ subopti-
mal state-feedback controller K as it follows:

K = YsolQ
T
sol (3.14)

3.4.4 Uncertainties in A

A fundamental property of H∞ controllers is their robustness with respect to uncertain-
ties within the system. As seen in (3.5), the matrix A has some uncertainties related to
the values of reaction wheels angular momentum, while the ones from the inertia matrix
can be ignored in this thesis. This choice because the values of hw will vary a lot during
the simulation, as it is dependent to the control input. However, to understand how this
could vary, it is necessary to look at the reaction wheels configuration used. Then, it is
appropriate to analyze the working range for each reaction wheel, shown in chapter 2.4.2.
Since each reaction wheel hWw can vary from -50 to +50, it is possible to obtain hω in body
reference frame through the transformation matrix Z.

hBw = ZhWw

Therefore, let consider a certain number of values between −50 and +50 for each reaction
wheel angular momentum and evaluate the corresponding Ai matrix. Therefore, it has
been obtained a number of Ai matrices equal to the number of values chosen between −50
and +50 times 4, as the configuration of reaction wheels is with 4. Eventually, with each
Ai matrix, let evaluate Mi matrices.

hwiRW1 =

N values︷ ︸︸ ︷
−50, · · · ,50

hwiRW2 =

N values︷ ︸︸ ︷
−50, · · · ,50

hwiRW3 =

N values︷ ︸︸ ︷
−50, · · · ,50

hwiRW4 =

N values︷ ︸︸ ︷
−50, · · · ,50

→


hwi1
hwi2
hwi3

 = Z


hwiRW1

hwiRW2

hwiRW3

hwiRW4

→

→ Ai =



0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

0 0 0 0 −hwi3
I1

hwi2
I1

0 0 0 hwi3
I2

0 −hwi1
I2

0 0 0 −hwi2
I3

hwi1
I3

0


→

→Mi =

AiQ+QATi +BuY + Y TBT
u QCTz Bw

CzQ −γ21 Dzw

BT
w DT

zw −1


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Eventually, to achieve an unique state-feedback controller K, the mathematical solver
Mosek processes all Mi matrices through the LMI formulation, similarly as shown in the
previous paragraph.

Mi < 0 and Q > 0→ K = YsolQ
T
sol

As an example, the following case is analyzed, starting from the initial conditions in
terms of quaternion dynamics qin = [−0.1206,0.4236,0.3300,0.8349]T and in terms of an-
gular velocity. ωBin = [0.0091,0.0063,9.754e− 04]T .
The controller manages to effectively control the behavior of the spacecraft regardless of
the initial conditions. In fact, in approximately 300s, the spacecraft configuration is equal
to q = [0,0,0,1]T , ω = [0,0,0]T .
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Figure 3.2: An example of quaternions variations
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Figure 3.3: An example of angular rates variations
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Chapter 4

Failure analysis

In this chapter, reaction wheels failure is analyzed and considered as an uncertainty in
matrix Bu.

4.1 Failure cases

Firstly, it is necessary to define the Actuator Health Indicator matrix.

AHI = ∆ =


δ1 0 · · · 0
0 δ2 · · · 0
...

...
. . .

...
0 0 · · · δn


where δi with i = 1,2, · · · , n indicates the status of health of the ith reaction wheel. It is a
scalar value between 0 and 1, where 1 represents an healthy reaction wheel while 0 a failed
one.
For the sake of clarity, it is then possible to create a matrix, showing the several cases of
failures. In this thesis the focus will be firstly on none failure and then on 1 RW failure
with a 4 reaction wheels configuration.

FailureCases =

δ11 δ21 δ31 δ41
...

...
...

...
δ15 δ25 δ35 δ45

 =


1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


where each row is equivalent to the diagonal components of AHI matrix and each column
represents δi, where i is the column, for the several cases. Thus, all AHI matrices are well
defined.
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4 – Failure analysis

4.2 B uncertainties

It is possible to rewrite the dynamic equations, through the Actuator Health Indicator, as
the following:

Iω̇ = −ω × (Iω + hω) + Z ·∆ · Twheel + Tdisturbances

In the nominal case, the jacobian matrix of these equations with respect to the control
input u would be like Bu = [03x3; I−1

s/c] so it is verified that the derivative of Z ·∆ · Twheel,
with respect to u, is equal to [1; 1; 1]. This is obtained by 4 Reaction wheels working, so it
is possible to understand the weight of each reaction wheel, knowing the configuration.

Consequently, in nominal case, there is

Z ·


τ1

τ2

τ3

τ4

 =

1
1
1


A problem occurs as the transformation matrix Z is not squared and not invertible.

However, in linear algebra, there exists a generalization of inverse matrix, called Moore-
Penrose inverse or, more usually, pseudoinverse. For the purpose of this thesis, it will be
used the MATLAB function pinv. So, the weights of each reaction wheel are the following:

τ = Z+ · 13x1

In nominal case, Z ·∆ · τ = Z · τ is verified, so

Z ·∆ · τ
Z · τ

= 1

In case of failure, this ratio would not be equal to 1, but it represents the uncertainty
we are looking for. So, in the most general case, it is possible to rewrite the matrix Bu in
the following way:

Bu =



0 0 0
0 0 0
0 0 0

I−1
s/cX

(uncertainty(1)) 0 0

0 I−1
s/cY

(uncertainty(2)) 0

0 0 I−1
s/cZ

(uncertainty(3))


where uncertainty = Z·∆·τ

Z·τ .
In the simulation, the allocation torque matrix used will be the following:

Z = Zgeometric ·∆

So, as shown for A’s uncertainties, for each case it will be necessary to build matrices Mi

and then generate a single state-feedback controller K.
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4.3 – Nominal and failure cases

4.3 Nominal and failure cases

The initial conditions are the following:

qin -0.1206 0.4236 0.3300 0.8349 (scalar)
ωBin 0.0091 0.0063 9.7540·10−4

In the following case, the nominal system is analyzed, in which no failures are consid-
ered.

As it is possible to notice, the controller achieves the convergence of the solution within
300s. This solution is almost equal to the one obtained by the controller made without Bu
uncertainty, shown in 3.3. In fact, the initial conditions are the same for both cases.
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Figure 4.1: Quaternions behaviour with no failure
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Figure 4.2: Angular rates behaviour with no failure
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4.3 – Nominal and failure cases

Then, the case concerning the first reaction wheel failed is shown:
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Figure 4.3: Quaternions behaviour with 1st Reaction wheel failed
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Figure 4.4: Angular rates behaviour with 1st Reaction wheel failed

27



4 – Failure analysis

Due to the failure of the first reaction wheel, the controller requires more time than the
nominal case to achieve the optimal control, obtained in approximately 520s. The time
spent in maneuvering is almost three-quarters more. It is, however, acceptable for this
kind of satellite.

Next, the case with the second reaction wheel is considered.

The failure of the second reaction wheel is more complicated to control for the con-
troller. Although the initial conditions are the same, the desired configuration is obtained
in approximately 910s. This different behavior can be explained through the different
weight that each reaction wheel has. As it is seen previously in this chapter, the work done
by each reaction wheel is not equally divided.
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Figure 4.5: Quaternions behaviour with 2nd Reaction wheel failed
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Figure 4.6: Angular rates behaviour with 2nd Reaction wheel failed
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The third case is analyzed and shown in figure4.7.

For what concern the failure of the third reaction wheel, the behavior is very close to
the nominal case, even better. In fact, the controller achieves the desired configuration in
less than 300s, spending less time than the nominal case.
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Figure 4.7: Quaternions behaviour with 3rd Reaction wheel failed
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Figure 4.8: Angular rates behaviour with 3rd Reaction wheel failed

The fourth case is presented in the following figures 4.9 & 4.10.

The consequences of the failure of the fourth reaction wheel lead the controller to de-
lay the achievement of the desired configuration of almost 80s, keeping however a good
behavior. Therefore, the control maneuver lasts for approximately 380s.

In Conclusion, it is possible to affirm that the controller with these initial conditions
can always manage a reaction wheel failure within an acceptable time. However, it is clear
that the behavior is different according the kind of failure.

31



4 – Failure analysis
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Figure 4.9: Quaternions behaviour with 4th Reaction wheel failed
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Figure 4.10: Angular rates behaviour with 4th Reaction wheel failed
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4.4 – Effectiveness of the failure assumption: comparison between controllers

4.4 Effectiveness of the failure assumption: comparison be-
tween controllers

In order to validate the assumption made and the real effectiveness of it, the work focused
on the comparison of two different controller: the first one made with only the uncertainty
derived from the system, the second one that considers, as well, the uncertainty of the
matrix relative to the actuators, i.e. Bu matrix. Therefore, a MATLAB script has been
written, able to compare autonomously the two different controllers with several initial
conditions. An example that well represents the behaviors of these controllers is shown in
the following sections.
The example considered has the following initial conditions:

qin -0.0641 0.3897 0.3093 0.8650 (scalar)
ωBin 0.0049 0.0045 0.0065

The nominal case is shown, where no failure is affecting the actuator system.
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Figure 4.11: Quaternions behaviour with none Reaction wheel failed
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Figure 4.12: Angular rates behaviour with none Reaction wheel failed

The nominal case shows no big differences. However, the controller made without the
assumption achieves the control in less time than the current controller. This behavior is
explained because the first controller was designed considering only the nominal case. The
first controller reaches the final configuration in approximately 225s, while the second in
approximately 250s.

Then, the first reaction wheel failed is considered, so the simulation is the following.

The effectiveness of the assumption is clear: with the first reaction wheel failed, the
basic controller cannot achieve a control in less than 5000s, while the second can achieve
it in less than 500s. The difference is not neglectable and the assumption is a key factor
for the controller success.
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Figure 4.13: Quaternions behaviour with 1st Reaction wheel failed
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Figure 4.14: Angular rates behaviour with 1st Reaction wheel failed
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Next, it is analyzed the failure of the second reaction wheel. The simulation is the
following.
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Figure 4.15: Quaternions behaviour with 2nd Reaction wheel failed
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Figure 4.16: Angular rates behaviour with 2nd Reaction wheel failed

Both controllers behave in almost the same way. They reach the desired configuration
in approximately 400s, with the first controller slightly earlier. However, the difference is
neglectable. In addition, it can be seen that the behavior of the second controller is always
within 500s.

The case concerning the third reaction wheel failed is now presented.

The third reaction wheel failed leads to a behavior like what seen during the first re-
action wheel failure. In fact, the first controller cannot achieve the desired configuration
in 5000s, while the second successfully concludes the maneuver in less than 500s. the
assumption is still a key factor for the maneuver success.
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Figure 4.17: Quaternions behaviour with 3rd Reaction wheel failed
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Figure 4.18: Angular rates behaviour with 3rd Reaction wheel failed
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Finally, the case with the fourth reaction wheel failed is analyzed. The simulation gives
the following results:
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Figure 4.19: Quaternions behaviour with 4th Reaction wheel failed
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Figure 4.20: Angular rates behaviour with 4th Reaction wheel failed

In the case showing the fourth reaction wheel failed, the behavior of both controllers is
similar, with the first controller achieving the equilibrium almost 100s earlier. The desired
configuration is achieved in less than 400s for the first controller and approximately in
450s for the second controller.

To sum up, the controller made without assumption is more sensitive to failure, show-
ing an inability to achieve the desired configuration during the first and the third reaction
wheel failures. As well as the effectiveness of the assumption made, it is proven the capa-
bility of the controller to achieve the equilibrium in a range of acceptable time with these
initial conditions.
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Chapter 5

Fault Detection Methods

In this chapter, the fault detection method is presented. Since the spacecraft requires a
high level of reliability and safety of technical plants, it is crucial to have a complete aware-
ness of the system in real-time. Therefore, an early detection of process faults is needed.
By literature, it is possible to find several methods, that can be, however, summed up
into three main groups [21]: Data Methods and Signal Models, exploiting available data
from previous experiments; Process Model Based Methods, based on analytical redundancy
concept, and Knowledge Based Methods, concerning artificial intelligence and rule-based
expert methods. For what concern this project, a Process Model Based Method has been
chosen, specifically a Parity equations approach.

control input, u

MED supposed

MED real

Fault Detection Method

real control input

−
+

Figure 5.1: MED system and Fault Detection system

5.1 Parity equations

This method is based on the concept of the analytical redundancy. Basically, it requires to
compare two systems, ruled by the same equations, where one is not affected by any failure.
Thus, the redundant nominal system and the real system receive the same input signal,
but the output signals may not coincide as the real system can be affected by failures. The
discrepancies of the output signals are then analyzed and can detect the specific position
of the failure.
As this thesis focuses on actuators failure, the system required for the redundancy is the
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5 – Fault Detection Methods

MED system. To well describe the failure, as previously told in chapter.4, it can be rep-
resented as a control allocation torque matrix problem. More specifically, for the nominal
system, this matrix is always equal to the geometric transformation matrix Zgeometric and,
thus, independent to failures. For the real system, the geometric transformation matrix is
multiplied by the control allocation torque, as shown in chapter.4.
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hw
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Figure 5.2: Nominal MED system
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Figure 5.3: Real MED system, where blue blocks are the one affected by the failure and
sat. is for saturation.

Focusing on the MED systems, in order to detect the failure, it has been chosen to
compare the angular momentum hwi of each reaction wheel for both systems. Through a
simple subtraction of these values, it is possible to understand the behavior for each device.
In fact, if there is any difference, the reaction wheel is failed, else it is healthy. To ease
the understanding, the health condition is shown graphically in 5.4, where 0 is equal to
healthy reaction wheel and 1 to failed reaction wheel.
However, the system concerning the description of the spacecraft attitude requires reaction
wheels angular momentum with respect to the inertial frame, while for the right function-
ing of the fault detection method a wheel frame is required. For that reason, it is possible
to notice a change of reference frame in the last part of the real system.
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Figure 5.4: hw differences, with 1st reaction wheel failed

Figure 5.5: Fault visualization, with 1st reaction wheel failed
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Chapter 6

Mission Scenario

As introduced in the first section of this thesis, small satellites are living a revival in these
last few years and they are acquiring a whole new kind of missions. Due to the strong
increase of imagery capabilities, it is now possible to plan an Earth observation mission
even with satellites whose mass is less than 300 Kg. Therefore, to verify the reliability
and the robustness of the designed controller, a real mission scenario concerning an Earth
Observation has been tested for 5 cases: one with no reaction wheel failure and the other
4 with a reaction wheel failure, one for each reaction wheel failed considering a pyramidal
baseline RW-configuration.

6.1 Desired configuration

As the controller works with the error, i.e. the difference between the reference and the
output, that should be kept zero or, at least, very small, it is important to define the
right reference. For this mission, an example of desired quaternions and angular rates
are proposed in the following figures. The whole mission lasts 86400s, equal to one civil
day, but the actual maneuver occurs in 695s starting after 83984s. Therefore, only the
part concerning this maneuver is shown, as the remaining parts always keep the same
configuration. Moreover, the maneuver can be described in three phases. Firstly, there is a
transitional phase, where the spacecraft moves from the initial configuration to the desired
configuration. Then, a scientific phase occurs, in which the spacecraft moves according
the mission chosen path. Finally, the spacecraft returns to its initial configuration after a
second transitional phase.
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Figure 6.1: Desired quaternions
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Figure 6.2: Desired angular rates
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6.2 Resulting mission scenario with designed controller

The nominal case is analyzed and the next figures show the behaviors of quaternions and
angular rates compared to the desired ones and their relative errors.
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Figure 6.3: Quaternions, no failure
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Figure 6.4: Angular rate, no failure
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Figure 6.5: Quaternion error, no failure
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Figure 6.6: Angular rate error, no failure
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The simulation shows a controller that struggles trying to follow the desired configu-
ration, especially during the transitional phases. In these parts, the errors are important,
but they are more acceptable in the scientific phase, where the errors should be minimized.
The quaternion q1 is really close to the desired one, while the others, q2, q3 and q4, present
an overshooting problem. The angular rates seem to not be affected by the controller.

Then, the case concerning the first reaction wheel failed is considered.
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Figure 6.7: Quaternions, 1st reaction wheel failed
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Figure 6.8: Angular rate, 1st reaction wheel failed
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Figure 6.9: Quaternion error, 1st reaction wheel failed
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Figure 6.10: Angular rate error, 1st reaction wheel failed

The behavior is almost the same compared the nominal case, showing that the con-
troller does not suffer the effect of actuators failure during the mission. However, the
simulation shows the same problematic of the nominal case.

The second case is shown in the following figures:

Everything told for the first case applies for case concerning the second reaction wheel
failed. The behavior is like the nominal case, even for what concern the errors.
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Figure 6.11: Quaternions, 2nd reaction wheel failed
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Figure 6.12: Angular rate, 2nd reaction wheel failed
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Figure 6.13: Quaternion error, 2nd reaction wheel failed
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Figure 6.14: Angular rate error, 2nd reaction wheel failed
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The case considering the third reaction wheel failed is presented and analyzed as it
follows in figure 6.15.

The third case is almost the same of the previous case, no differences can be seen. The
errors are still important in the transitional phases, while slower in the scientific phase.
This proves the capability of the controller to work even in case of failures.
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Figure 6.15: Quaternions, 3rd reaction wheel failed
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Figure 6.16: Angular rate, 3rd reaction wheel failed
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Figure 6.17: Quaternion error, 3rd reaction wheel failed
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Figure 6.18: Angular rate error, 3rd reaction wheel failed

The last case, the one with the fourth reaction wheel failed is shown in figure6.19.

This simulation shows almost the same behavior seen in the previous cases. The vari-
ations of quaternions and angular rates are quite the same, as the errors as well.

To sum up, it is possible to notice that the behavior of these cases is similar, showing
that the controller is not affected by the failure. However, the existing quaternion and
angular rate errors, almost the same for each case, can be important and unneglectable.
Every case shows a well behaviour for the quaternion q1, while for the other quaternions
q2, q3 and q4 show an overshooting problem.
More specifically, the nature of the resultant error can be interpreted as the controller
inability to follow exactly the desired configuration during the transitional phase of the
mission, i.e. where the satellite changes its configuration from the starting one to the
desired one. In fact, when the satellite should be operating the error is acceptable, less
than 7 degree for the worst-case scenario.
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Figure 6.19: Quaternions, 4th reaction wheel failed
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Figure 6.20: Angular rate, 4th reaction wheel failed
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Figure 6.21: Quaternion error, 4th reaction wheel failed
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Figure 6.22: Angular rate error, 4th reaction wheel failed
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Chapter 7

Conclusion & Future works

In conclusion, this work of thesis can be summed up in three main topics: H∞ controller,
Fault Detection method and the mission scenario.
In the first part of the thesis, the attitude control system is presented. An H∞ con-
troller is designed through a mathematical optimization of the LMIs problem. Through
the robustness that characterizes this kind of controllers, it has been possible to work with
uncertainties within the plant and with a reaction wheel failure. In fact, with an assump-
tion about the weights of each reaction wheel, the failure was considered as an uncertainty.
The final design shows a unique state-feedback K controller for both uncertainties.
Then, a fault detection method based on parity equations is designed. Two MED systems
are considered, where the only difference between them is the allocation matrix: one is
varying according the failure and the other is always equal to the nominal case. If the two
systems show some discrepancy, it means the system is affected by a failure. This method,
eventually, shows the health of each reaction wheel.
Finally, a mission scenario is tested with the previously designed H∞ controller imple-
mented with the fault detection system. The controller shows a good behavior against the
failures, as their presence do not produce any significant difference. However, during the
transition part of the mission, the error can be important, but during the scientific part is
lower within acceptable margin of operation.
In the future, several improvements can be done to achieve a greater level of exhaustiveness
of this project.
Firstly, a fault detection method more advanced than the one used in this thesis can be
achieved. For example, it could be a good idea to implement some methods based on
machine learning or artificial intelligence, that nowadays are gaining more attention by
researchers.
Secondly, as the last chapter emphasises, the current controller can achieve the desired
configuration but the behavior cannot be handled as detailed as a PID controller, showing
thus some difficulties to tune the controller. Therefore, it may be necessary to re-design
an H∞ controller that can be tuned more easily.
Eventually, Monte Carlo simulations, based on the Chernoff bound, may be done to verify
the designed approach.
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