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Introduction

The space, as it is called everything placed beyond Earth’s atmosphere, has always
fascinated the human mind.

Astronomy, the observation of objects in space, is an ancient science that precedes reliable
recorded history. It is only in the latter half of the 20th century, when were developed
rockets powerful enough to overcome the force of gravity and to reach orbital velocities,
that the physical space exploration become a practical possibility.

The early era of space exploration was driven by a "Space Race" between Unites States
and Soviet Union. Two significant events mark the boundaries for this period: on October
4, 1957, occurs the launch of the first man-made object to orbit the Earth, the USSR’s
Sputnik 1, while on July 20, 1969, took place the first Moon landing by the American
Apollo 11 spacecraft.

At present days, common rationales for exploring space include advancing scientific
research, uniting different nations and ensuring the future survival of humanity. The
International Space Station (ISS), which is a research laboratory in low Earth orbit,
represents an important example of cooperation among different states all over the world.

Interplanetary missions is needed to study the planets, asteroids, and comets by their close
proximity. An interplanetary mission is a voyage through the outer space that involves
at least two different celestial bodies. A large number of robotic interplanetary missions
have been performed by the NASA, the Soviet Union (and later by Roscosmos), Indian
Space Research Organisation, Japan Aerospace Exploration Agency and the European
Space Agency. However, until now, all manned missions have been in Earth’s orbit or to
theMoon. First, properly named, manned interplanetarymission will be, in all likelihood,
one of the proposed human missions to Mars for the 2030s.

In many cases is not possible to deliver the required payload mass due to propulsion
capabilities. In fact, the mass of propellant requested to developing the velocity change
to accomplish the mission can represents the vast majority of the spacecraft mass (for
example the 99 %, for an Earth-Saturn Hohmann transfer) if current chemical engine
technology is used. For this reason a technique that produces a change in velocity
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1 – Introduction

without having to resort to the propellant consumption becomes necessary. Gravity assist
maneuvers are able to fulfill this task.
Gravity assists have been exploited in the past 50 years to reach targets with very high
or very low energy orbits with respect to the Earth and also to considerably change the
heliocentric orbit inclination. All these types of orbits are known under the category of
high ∆V targets, due to the high ∆V budget necessary to reach them from Earth. The
concept of gravity assist is illustrated in "Escape maneuvers".
The aim of this thesis is to evaluate an evasion maneuver with a double lunar gravity
assist (LGA) for a future interplanetary mission (one possibility was the ARM mission
described in "Features of the mission").
The analysis starts from an attempt of replicate a solution obtained in the paper “Design
of Lunar-Gravity-Assisted Escape Maneuvres” [6], which is characterized by a phase
between the two lunar encounters affected by the solar gravity attraction. This fact is
caused by the high distance from Earth reached in this phase.
In order to obtain an exact numerical solution of the escape maneuver, the method must
include solar gravity attraction and solar radiation pressure in addition to Earth asphericity
and lunar perturbation. Each one of these terms is defined in "Analysis".
In the present document four different solutions are presented. They are characterized by
different dates and, due to numerical convergence necessity, by different escape velocities.
A comparison among these results is effectuated with the purpose of underlying the
differences between them and to find the more efficient solution. This study is conducted
in "Results".
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The two body problem

The two body problem describes the interaction between two masses caused by their own
mutual gravity attraction. The motion of a body around another one can be defined by
using this approach. The trajectory of the mass is a conic section (circle, ellipse, parabola
or hyperbola) depending on the value of the eccentricity. Typically, the main body has an
higher mass compared to the secondary body. They are modelled as point masses located
in the mass center of the relative bodies.

This problem descent from the N-body problem, which is the complete case of study,
talking about the motion of a celestial body. For example the Earth’s revolution is
influenced, in addition to the Sun’s gravity field, by the gravity attraction of: Moon,
Mars, Venus, Mercury, Juno, Saturn and also by Ceres (the largest asteroid of the asteroid
belt, classified as a dwarf planet). Considering the higher distance, Uranus, Neptune and
Pluto have a smaller effects on the Earth’s orbit.

If all the effects of these bodies are taking into account, a numerical integration is needed
to identify a solution. The two body problem allows to obtain an analytic solution by
limiting the problem solely to a main and a secondary body.

2.1 Equation of motion in an inertial frame

Figure 2.1 shows the position of the two bodies, which are represented as point masses
relative to the inertial reference frame XYZ. The origin of the frame "O" may have a
constant velocity (relative to the fixed stars), but the axes can’t rotate. Each of the two
masses is subjected to the gravitational attraction of the other. The force that the mass
m2 exerting on m1 is identified by the vector F12. According to Newton’s third law (the
action-reaction principle) the mass m2 applies the force F21 over the the mass m1.

The position vector of m2 relative to m1 is identified by the vector r , which is:

r = R2 − R1 (2.1)
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2 – The two body problem

Figure 2.1: Free-body diagram of two masses in an inertial frame [1]

Assume ûr as the unit vector that points from m1 to m2, so:

ûr =
r
r

(2.2)

where r = | |r | | is the magnitude of r .
Newton’s law of universal gravitation is used:

F21 = −
Gm1m2

r2 ûr (2.3)

in which the minus sign takes into account the fact that the force vector F21 points from
m2 towards m1.
It is important to note that the gravitational force is inversely proportional to the square
of the distance between the two masses and it is directed along their joining line.

G is the gravitational constant, which values 6.674 ∗ 10−11 m3

Kg∗s2 .

Newton’s third law imposes F12 = F21 , meaning that for m1 is possible to write:

Gm1m2

r2 ûr = m1
ÜR1 (2.4)

where also Newton’s second law of motion is applied. In the same way, m2 : F12 = m2
ÜR2,

with ÜR2 as the absolute acceleration of m2. Therefore:
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2 – The two body problem

−
Gm1m2

r2 ûr = m2
ÜR2 (2.5)

Equations 2.5 and 2.4 are the equations of motion of the two bodies in an inertial space.
At this point, equation 2.5 is multiplied by m1 and equation 2.4 by m2, thus:

−
Gm2

1m2

r2 ûr = m1m2
ÜR2 (2.6)

Gm1m2
2

r2 ûr = m1m2
ÜR1 (2.7)

By subtracting equation 2.7 to 2.6 we obtain:

m1m2(
ÜR2 −

ÜR1) = −
Gm1m2

r2 (m1 + m2)ûr (2.8)

The terms m1 and m2 can be eliminated and equation 2.1 used:

Ür = −
G(m1 + m2)

r2 ûr (2.9)

The gravitational parameter µ is identified as:

µ = G(m1 + m2) (2.10)

µ is expressed in km3/s2. Equations 2.9 and 2.10 can be combined together to obtain:

Ür = −
µ

r3 r (2.11)

Equation 2.11 is a second order differential equation. This equation governs the motion of
m2 with respect to m1. It is composed by three scalar components, so it is characterized by
six constants of integration in two vector constants made up of three scalar components.
Equation 2.11 can bemultiplied through by−1 in order to note that is possible to exchange
the roles of m1 and m2 in the above amounts. Therefore, the motion of m2 as seen from
m1 is exactly the same as the motion of m1 as seen from m2.

2.2 Constants of the motion

Two significant quantities must be introduced before the integration of the equations of
motion, they are: the specific angular momentum h and the specific mechanical energy
E.
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2 – The two body problem

2.2.1 The angular momentum

The body m2 has an angular momentum relative to m1, which can be defined as:

H21 = r × m2Ûr (2.12)

dividing this equation by m2 leads to:

h =
H21
m2
= r × Ûr (2.13)

where Ûr = V is the velocity of m2 with respect to m1.

The specific relative angular momentum, h, is the relative angular momentum of m2 per
unit mass. It is expressed in km2/s.

Starting from equation 2.11 first and second terms of the equation are left cross multiplied
by r , so that:

r × Ür = −r ×
µ

r3 r (2.14)

Considering that a vector is always parallel to itself, so that: r × r = 0, the second term
of the equation 2.14 is going to zero. Therefore:

r × Ür = 0 (2.15)

Taking into account that:

d
dt
(r × Ûr) = r × Ür + Ûr × Ûr (2.16)

also in this case, is possible to point out that: Ûr × Ûr = 0, due to the reason illustrated
before.

Finally, since that the term (r × Ûr) has a null derivative, is possible to identify the specific
angular momentum: h = r × V as a constant of the motion.

The definition of cross products establish the perpendicularity between r and V , by its
very nature. The fact that the angular momentum is constant in magnitude and direction
means that r and V will always lie on the same plane. Therefore, Newtonian orbits are
characterized by a fixed plane of motion, which is called orbital plane.
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2 – The two body problem

Figure 2.2: Plane of the orbit of the mass m2 around m1 identified by the vector h [1]

2.2.2 Specific mechanical energy

The specific mechanical energy E is defined as the sum of kinetic and potential energy
per unit mass. Its units are km2/s2.

Starting from equation 2.11, both members are multiplied by r , so that:

Ûr · Ür + Ûr ·
µ

r3 r = 0 (2.17)

That is equivalent to:

Ûr Ür + Ûr
µ

r2 = 0 (2.18)

Remembering that Ûr = V , is possible to write:


V ÛV =

d
dt

(
V2

2

)
Ûr
µ

r2 =
d
dt

(
−
µ

r

) (2.19)

So that:

d
dt

(
V2

2
−
µ

r

)
= 0 (2.20)
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2 – The two body problem

Finally, the energy equation can be written:

E =
V2

2
−
µ

r
+ C = const . (2.21)

which taking into account:

•
V2

2
, that represents the specific kinetic energy and expresses the energy contribution

caused by the motion;

• −
µ

r
, which is the specific potential energy, it represents the contribution given by

the gravity field, that depends only on the mass of the main body and on the position
on the secondary body;

• C, which is a constant term that is given by the integration of equation 2.20 and
has an arbitrary value. Choosing the zero reference for potential energy at infinity
allows to set this constant equal to zero.

2.2.3 Equation of the trajectory

Now that constant of the motion have been defined, is possible to integrate twice equation
2.11 in order to obtain the trajectory equation of the two body problem. Nevertheless,
before the integration is convenient to manipulate the starting equation to highlight the
derivative.
Firstly, it is left cross multiplied by the specific angular momentum vector h:

Ür × h = −
µ

r3 r × h (2.22)

That can be rewritten as:

Ür × h =
µ

r3

(
h × r

)
(2.23)

In the first member of the equation 2.23 a derivative can be easily identified as:

d
dt

(
Ûr × h

)
=

(
Ür × h

)
+

(
Ûr × Ûh

)
(2.24)

where the second term in the right side can be canceled, knowing that h is a constant of
the motion. Thus:
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2 – The two body problem

d
dt

(
Ûr × h

)
=

(
Ür × h

)
(2.25)

On the other hand, for the second member is possible to write:

µ

r3 (h × r) =
µ

r3 (r × V) × r = (2.26)

=
µ

r3 [V(r · r) − r(r · V)] = (2.27)

=
µ

r
V −

µ Ûr
r2 r = (2.28)

=µ
d
dt

(
r
r

)
(2.29)

Therefore, equation 2.11 can be rewritten as:

d
dt

(
Ûr × h

)
= µ

d
dt

(
r
r

)
(2.30)

that is integrated and lead to:

Ûr × h = µ
r
r
+ B (2.31)

in which B is the constant vector that comes from the integration.
At this point, equation 2.31 is dot multiplied by r :

r · Ûr × h = µ
r · r

r
+ r · B (2.32)

By developing the scalar product:

h2 = µr + rBcos(ν) (2.33)

that is the desired equation, which can be solved for r in order to obtain the following
trajectory equation:

r =
h2/µ

1 + B
µ cos(ν)

(2.34)

equation 2.34 represent, in polar coordinates, the equation of a conic section with its
origin in one of the foci.
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2 – The two body problem

Finally, if equation 2.34 is rewritten as:

r =
p

1 + e cos(ν)
(2.35)

is possible to identify: the semilatus rectum p, the eccentricity e and the angle ν, that
is the angle between periapsis (the point of the orbit which is closest to the focus of the
conic section) and r .

2.2.4 Types of trajectories and orbits

The words trajectory and orbit both refer to the path of a body in space. Trajectory is
commonly associated with paths of limited extent, i. e., paths having clearly identified
initial and end points. Orbit is commonly used with paths that are more or less indefinitely
extended or of a repetitive character, like the orbit of the Moon around the Earth. In
discussions of space flight, both terms are used, with the choice usually dependent upon
the nature of the flight path. Therefore, we talk about trajectories from the Earth to Moon,
and of planets orbits around the Sun.
In table 2.1 and in figure 2.3 are illustrated the characteristics of the different types of
trajectories and orbits.

trajectory type eccentricity major semi-axis energy V∞
circular e = 0 a > 0 E < 0 —
elliptical 0 < e < 1 a > 0 E < 0 —
parabolic e = 1 a→∞ E = 0 V∞ = 0

hyperbolical e >1 a < 0 E > 0 V∞ > 0

Table 2.1: features of the different kind of trajectories and orbits
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circular orbitcircular orbit

elliptical orbitelliptical orbit

iperbolic trajectoryiperbolic trajectory

parabolic trajectoryparabolic trajectory

m1m1

Figure 2.3: Different types of path of the mass m2 around a main body of mass m1
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Escape maneuvers

In order to be on the way to the destination celestial body, target of the space mission, it
is necessary, first of all, to climb out of the potential well of the originating planet.
A spacecraft that travels on a parabolic trajectory, relative to the planet, will arrive at
the sphere of influence with a relative speed of zero. With a view to obtain a propellant
save, is possible to perform an hyperbolic trajectory, arriving at the sphere’s boundary
with a relative velocity V∞ (hyperbolic excess velocity) greater than zero. In that case the
spacecraft embarks upon a heliocentric elliptical path, leaving the orbit of the planet.
Therefore, an interplanetary mission can be divided into three parts:

• the hyperbolic trajectory relative to the departure planet;

• the interplanetary trajectory, relative to the sun;

• the hyperbolic arrival trajectory, relative to the target celestial body.

3.1 Method of patched conics

The noun ‘conics’ descends from the fact that two-body or Keplerian orbits are conic
sections having a focus coincident with the attracting body. Is possible to study an
interplanetary trajectory under the assumption that the spacecraft follows an unperturbed
Keplerian orbit around the sun when it is outside the sphere of influence of the planet.
On the other hand, the spacecraft describes another unperturbed Keplerian path around
the planet within each planetary sphere of influence.
While the sphere of influence appears as a mere speck on the scale of the solar system,
from the point of view of the planet it is very large indeed and may be considered to lie
at infinity.
The sphere of influence (SOI) is a concept that generally involves: a planet of mass mp,
the Sun of mass ms and a spacecraft of mass ms/c (negligible mass). Essentially, this is

13



3 – Escape maneuvers

the region in which the gravitational attraction of the planet overwhelms the attraction of
the sun.

One way to determine the radius of the sphere of influence is to calculate the distance
between the planet’s center of gravity and the points at which the perturbing effect of the
sun on the vehicle’s orbit around the planet is equal to the perturbing effect of the planet
on the vehicle’s orbit around the sun.

This approach leads to the equation of the Lagrangian sphere of influence:

rSOI

R
=

(
mp

ms

) 2
5

(3.1)

where R is the distance between the planet and the Sun and rSOI is the radius of the sphere
of influence.

For example, for our planet, giving:


mearth = 5.974 ∗ 1024 Kg

msun = 1.989 ∗ 1030 Kg
Rearth = 149.6 ∗ 106 Km

is possible to determine:

rSOI = 149.6 ∗ 106 ∗

(
5.974 ∗ 1024

1.989 ∗ 1030

) 2
5

= 0.925 ∗ 106 Km

it means that the SOI of the Earth is about 1 million of Km, while the distance between
the Earth and the Sun, which is used as a scale for our solar system and for the the
interplanetary trajectories that are involved, is about 150 million of Km. Comparing this
two quantities is clear how is it possible to use the patched conics approach that neglect
the dimension of SOI and to consider them, like the planets they surround, to be just
points in space coinciding with the planetary centers.

Finally, it is mandatory to remember that the Lagrangian sphere of influence is an
approximated model useful only for a preliminary analysis of an interplanetary mission.

3.2 Hohmann transfer

The heliocentric phase usually consists of an Hohmann trajectory from planet 1 towards
a target planet 2 which is, in this case, more distant from the sun (as in Figure 3.1).
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3 – Escape maneuvers

Figure 3.1: Hohmann transfer from an inner planet 1 to an outer planet 2 [1]
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3 – Escape maneuvers

Hohmann transfer ellipse is the most energy efficient way for a spacecraft to transfer from
an orbit around planet 1 to another around the target planet 2. The transfer ellipse starts
from the departure point D, at the perihelion, and finishes on the arrival point A, at the
aphelion.
The circular orbital speed of planet 1 relative to the sun is given by:

V1 =

√
µs

R1
(3.2)

while the angular momentum in term of periapse ad apoapse radii is:

h =
√

2µ
√

rarp

ra + rp
(3.3)

is therefore possible to evaluate the velocity of the space vehicle on the transfer ellipse at
the departure point D:

VD =
h
R1
=

√
2µs

√
R2

R1(R1 + R2)
(3.4)

At the sphere of influence crossing, the heliocentric velocity VD of the spacecraft is
parallel to the asymptote of the departure hyperbola as well as to the planet’s heliocentric
velocity vector V1. This leads to the fact that only the magnitude can be added up, not
the vectors. VD and V1 must be parallel and in the same direction for a Hohmann transfer
such that ∆VD is positive. Clearly, the hyperbolic excess speed of the departure hyperbola
V∞, is identical to ∆VD and can be determined by the following equation:

∆VD = VD − V1 =

√
µs

R1

(√
2R2

R1 + R2
− 1

)
(3.5)

in the same way the ∆V at the arrival point A is:

∆VA = V2 − VA =

√
µs

R2

(
1 −

√
2R1

R1 + R2

)
(3.6)

As we can see in figure 3.1, the velocity change at point A and D is grater than zero, since
we transfer to orbits with augmented semi-major axis, that are characterized by an higher
energy.
The same two∆V will be both negative if themission is directed to an inner planet, because
of departure point and arrival point are now at aphelion and perihelion, respectively, of
the transfer ellipse. At the departure point D the speed of the spacecraft must be reduced
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3 – Escape maneuvers

because it drop into the lower-energy transfer ellipse (with a reduced semi-major axis)
and it must be reduced again at point A in order to arrive in the lower-energy circular
orbit of planet 2.

3.3 Planetary departure

The required conditions at the escape, necessary to reach a celestial body target, are
been evaluated, now is possible to discuss about the geocentric phase that realize these
conditions.
The spacecraft starts its interplanetary trajectory from a circular parking orbit, whose
radius equals the perigee radius rp of the departure hyperbola. Using the energy equation,
it is easily to determine the semi-major axis, a, as also the ∆V required to achieve the
desired trajectory, knowing the value of the hyperbolic excess velocity V∞ (which is the
∆VD calculated before) and of the perigee radius rp.

E =
V2
∞

2
= −

µE

2a
(3.7)

thus:

a = −
µE

V2
∞

(3.8)

Also, equation 3.7 can be rewritten as:

E =
V2

P

2
−
µE

rp
=

V2
∞

2
(3.9)

and so:

VP =

√
V2
∞ +

2µE

rp
(3.10)

with the velocity of the circular parking orbit defined by:

VP0 =

√
µE

rp

The required ∆V to leave the parking orbit is: ∆V = VP − VP0
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Figure 3.2: Departure for an interplanetary mission from an inner planet to an outer planet [1]
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The angle Φ, in figure 3.2, identifies the orientation of the apses line of the hyperbola to
the hyperbolic excess velocity V∞, which is parallel to the planet’s heliocentric velocity
vector V1, as said above. It can be calculated as:

Φ = arccos
(
1
e

)
(3.11)

Therefore, the eccentricity of hyperbola is needed. The equation of semilatus rectum can
be written:

p =
h2

µE
= a(1 − e2) = rp(1 + e) (3.12)

in which is used h, the angular momentum of the departure hyperbola, that is (relative to
the departure planet):

h = rPVP

So the eccentricity of the escape trajectory can be evaluated as:

e =
rpV2

P

µE
− 1 (3.13)

At this point, is possible to go back to equation 3.11 and to calculate the value of the
angle Φ.
The case depicted refers to a front door exit and can be seen in figure 3.2.
On the other side, if the mission consists to sent a spacecraft from an outer planet to an
inner planet, the space vehicle must emerge from the backside of the sphere of influence
with a relative velocity opposite directed respect to V1, that cause a reduction of the
heliocentric velocity. This is a case of back door exit.

3.4 Gravity assist maneuvers

Since they can significantly change the heliocentric velocity of a spacecraft without using
propellant, gravity assist maneuvers are a widely used technique to save fuel.
These maneuvers can be used to accelerate a spacecraft, that is, to increase or decrease its
speed or to redirect its path. Angular momentum is transferred from the orbiting planet
to a spacecraft approaching the planet in its progress about the sun.
The idea was first proposed by astronomical pioneers Yuri Kondratyuk and Friedrich
Zander in their papers published in 1925 and 1938, respectively. It was first implemented
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in 1959 by the Soviet probe Luna 3 to photograph the far side of the Moon. Since then,
notable successful implementations include space probes: Mariner 10, Voyager 1 and 2,
and Cassini.

On September 1977 Voyager 1 was launched and 2 years later, it performed a flyby of
Jupiter (March 1979) used to reach Saturn in November 1980. Following, in August
1977 Voyager 2 started its ‘grand tour’ of the outer planets. Its journey involved gravity
assist flybys of Jupiter (July 1979), Saturn (August 1981), Uranus (January 1986) and
Neptune (August 1989), after which the spacecraft departed at an angle of 30° to the
ecliptic. The two probes have now reached the interstellar space and represent the most
distant human-made objects from Earth.

Figure 3.3: Voyager 1 and Voyager 2 trajectories [13]

The international Cassini mission to Saturn also made an extensive use of gravity assist
flyby maneuvers. The Cassini spacecraft was launched on 15 October 1997 from Cape
Canaveral, Florida, and arrived at Saturn nearly seven years later, on 1 July 2004. The
mission involved four flybys. A little over eight months after launch, on 26 April 1998,
Cassini flew by Venus at a periapse altitude of 284 km and received a speed boost of about
7 km/s. This placed the spacecraft in an orbit which sent it just outside the orbit of Mars
(but well away from the planet) and returned it to Venus on 24 June 1999 for a second
flyby, this time at an altitude of 600 km. The result was a trajectory that vectored Cassini
toward the earth for an 18 August 1999 flyby at an altitude of 1171 km. The 5.5 km/s
speed boost at earth sent the spacecraft toward Jupiter for its next flyby maneuver. This
occurred on 30 December 2000 at a distance of 9.7 million km from Jupiter, boosting
Cassini’s speed by about 2 km/s and adjusting its trajectory so as to rendezvous with
Saturn about three and a half years later.
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Figure 3.4: Artistic representation of the spacecraft Voyager 2 [14]

Figure 3.5: Cassini interplanetary trajectory [1]
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A planetary flyby occurs when a spacecraft enters a planet’s sphere of influence and
does not landing on the planet or going into orbit around it. The s/c will continue in
its hyperbolic trajectory through the periapsis and come back outside of the sphere of
influence.
In particular, in this section the case of a spacecraft that realizes a lunar gravity assisted
maneuver is illustrated.
The patched conicsmethod is applied, so starting from the point where the spacecraft goes
inside Moon’s sphere of influence, the system can be described by the 2-body problem
model, in which Earth’s satellite represents the main body and the spacecraft represents
the orbiting body. A planar maneuver is chosen for the sake of simplicity.
In Figure 3.6 a schematic representation of the problem is provided.
As the 2-body problem is used, at the edge of the lunar sphere of influence the velocity
vector needs to be transformed from a geocentric reference velocity V

−

S/C to a velocity in
the lunar reference frame, so the Moon’s velocity V M is taking into account by using:

V
−

∞ = V
−

S/C − V M (3.14)

Lunar orbital velocity VM and hyperbolic inbound velocity V
−

∞ are divided by the so
called pump angle, that is, in detail for this case, the pump angle before LGA (p−) and
represents a significant quantity for evaluating the effectiveness of the maneuver.
At this point, considering thatV −∞ has been evaluated and remembering that the spacecraft
starts to orbit around the Moon since the moments that enters lunar sphere of influence
(that can be approximated by r →∞, so a grater than zero V −∞ is needed in order to pass
through a periselenium higher than the moon radius and to avoid impact), the spacecraft
is heading to escape the sphere of influence with a relative velocity V

+

∞ .
Is possible to write the conservation of mechanical energy at the edge of the lunar sphere
of influence, so that the equivalence V −∞ = V +∞ has been demonstrated.

E =
(V −∞ )

2

2
−
µ

r
=
(V +∞ )

2

2
−
µ

r
(3.15)

where the gravitational terms
µ

r
tends to 0, taking into account that r →∞ at the edge of

the SOI.
On the other hand, the angle δ = π− 2φ, in which φ = arccos(1/e) stands as the opening
angle of the hyperbola’s eccentricity "e", describes the variation related to the direction
of the vector V∞.
For the same reason, the angle between V∞ and V M varying as well. Thus p− , p+ and
consequently:
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V
+

S/C = V M + V
+

∞ , V
−

S/C (3.16)

The usefulness of the gravity assist maneuver is then represented by a change of the
heliocentric (or geocentric, when talking about LGA) velocity without using propellant.
Conservation of angularmomentum for themoon-spacecraft system can be used to explain
the character of this ∆V :

∆H = mrs∆V − MMrs∆VM = 0 (3.17)

where rs is the radius of the Moon’s sphere of influence.
Then, by simplifying rs :

∆VM =
m

MM
∆V (3.18)

A comparison between spacecraft’s mass and lunar mass can be carried out, giving
m << MM is possible to assume that the effect on the moon’s velocity is negligible.

Figure 3.6: Geometrical schema for a generic lunar gravity assist manoeuvre [9]

As a complement, also the crank angle has to be defined in order to deal with a more
general case, in which also a change in the orbital inclination takes place, meaning that
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a ∆i exists in addition to the ∆V . Finally the components of the velocity vector: radial,
tangential, and normal are shown in figure 3.7.


u∞ = V∞ sin p cos k
v∞ = V∞ cos p
w∞ = V∞ sin p sin k

(3.19)

Figure 3.7: Components of V∞ expressed via pump (p) and crank (k) angles [9]

Finally, an important feature distinguishes two different kinds of flyby:
- leading-side flyby, which has the periapsis of the hyperbola on the side of the planet
that faces the direction of motion of the encountered body.
- trailing-side flyby, which has the periapsis of the hyperbola on the side of the planet that
is opposed to the direction of motion of the encountered body.
As long as the outbound hyperbolic velocity V∞2 is directed in the opposite side of the
planet orbital velocity V, a decrease of the heliocentric velocity is shown. In Figure 3.8
this result can be noted by observing that V2 has a smaller module than V1 for the case of
a leading-side flyby. On the other hand, in Figure 3.9 is illustrated a case of trailing-side
flyby, which produces an increase of the heliocentric velocity (V2 > V1). In this kind of
flyby V∞2 points to the same direction of the planet orbital velocity V .
An analogue discussion can be conducted in the case of a lunar flyby with the adjustment
of using geocentric velocities in place of heliocentric velocities.
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Figure 3.8: Leading-side flyby [1]

Figure 3.9: Trailing-side flyby [1]
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3.5 Coordinate systems

The motion of a spacecraft around the Earth, or around another celestial body, is defined
in a particular coordinate system. The different coordinate systems used in this document
are described in the present section.

3.5.1 ECI system

ECI, Earth Centered Inertial, is a geocentric coordinate system, so it has the center of
the Earth as origin, in which the equator represents the fundamental plane and the vernal
equinox indicates the positive direction of the X axis.

ECI is a system fixed with respect to the stars (with only the precession of the equinoxes
as exception), so it is called inertial, while the Earth rotates relative to it.

The apparent motion of the Sun viewed from Earth defines an orbit plane called the
ecliptic, this is a different plane with respect to the Earth’s equatorial plane. In fact an
angle of 23°27’ is described between the two defined planes.

Two directions are used in order to define the orientation of an ECI frame: the orientation
of the Earth’s rotational axis in space and the ecliptic plane.

At the point where the Earth-Sun vector (directed from Earth to the sun) points at the
intercept between the ecliptic and the celestial equator, an equinox is defined. The vernal
equinox, which occurs near the first day of spring in the northern hemisphere (21 March),
is used to indicate the direction of the X axis on the ECI frames.

As fundamental plane for the ECI frames the equatorial plane, or the ecliptic, can be
used. In this document the first one is adopted.

The orientation of theX axis in this frame is not fixed over the time, mainly as a result of the
combined effect of the Earth’s asphericity and of the luni-solar gravitational effects, that
produces a slowly moving of the ecliptic and of the celestial equator. This phenomenon
is called precession and causes a continuous turning of the coordinate system westward
relative to the poles of the ecliptic, a complete revolution is described in about 26000
years. Another effect, called nutation, generates a small oscillation of the Earth’s axis
with a period of 18.6 years (that is equal to the time of revolution of the nodes in the
Moon’s orbit).

The EME2000, or J2000, is a particular ECI frame determined with the Earth’s Mean
Equator and Equinox at 12:00 Terrestrial Time on 1 January 2000.

The X axis is aligned with the mean equinox. The Z axis is aligned with the Earth’s spin
axis or celestial North Pole. The Y axis is rotated by 90 degrees East about the celestial
equator.
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Figure 3.10: J 2000 ECI reference system [16]

3.5.2 Heliocentric system

The orbits of a spacecraft in the Solar System can be efficiently described by using
an ecliptic heliocentric coordinate system. The use of ecliptic as fundamental plane
is beneficial because most planets and many small Solar System bodies (for example
asteroids) have orbits with slight inclinations with respect to this plane.
The system has its origin in the mass centre of the Sun, the primary direction (positive X
values) is indicated by the vernal equinox. The Z axis is aligned with the celestial North
Pole. It has a right-hand convention. Also in this case the EME2000, or J2000, is used
to establish a fixed standard direction.

3.5.3 Spherical coordinates

In both the introduced coordinate systems, spherical coordinates (polar 3D coordinates)
are used to identify the position of the generic point P as a function of the quantities
(r, θ, φ), which are defined as:

• radius, r , indicates the magnitude of the segment that connects the origin O and
the point P (segment OP). It is the distance between O and P.

• right ascension, θ, measures the angle between the X axis and the segment OQ,
where Q is the projection of P in the fundamental plane XY.
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• declination, φ, measures the angle between the fundamental plane and the segment
OP.

Figure 3.11: J 2000 heliocentric ecliptic reference system [16]

Figure 3.12: spherical coordinates
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Analysis

Although the advent of private space companies causes market competition and conse-
quently, a reduction of the costs, present-day launch costs of a space missions are still
considerable. Regarding to low Earth orbit (LEO), they ranging from 2,500 to 25,000
dollars per kilogram. If launch can be made less expansive, the mission itself will be
cheaper, taking into account that launch costs represents a large percentage of the cost of
all space activities.

In this context, payload maximization is fundamental to reduce costs and to mission
feasibility. Is possible to pursue these objectives through the use of numerical methods.
Numerical methods for trajectory optimization can be in general classified into three main
groups: indirect methods, direct methods, and evolutionary algorithms.

Indirect methods are typically faster and more accurate compared to direct methods
(because of the reduced number of variables) and they can provides useful theoretical
notions on the problem to be solved. However, the use of these techniques also involves
drawbacks:

• it is required to derive analytic expressions for the necessary conditions

• the convergence region for a shooting algorithm may be quite small

4.1 Shooting method

For the reasons exposed an indirect method has been used to evaluate the spacecraft
trajectory. Indirect methods are commonly used to solve a class of ordinary differential
equation (ODE): the boundary value problems (BVP). Strictly speaking BVP has been
solved by using the shooting procedures. The shooting methods solve numerically the
BVP problem by reducing it into the initial value problem (IVP). Different trajectories
were calculated until a trajectory that matches the desired boundary values was founded.
This method allows to estimate the initial conditions.
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In the current problem escape radius and escape velocity components are imposed as also
the inclination at launch:

r f ,u f , v f ,w f , i0

Number of parameters are the same of imposed conditions, so we have:

θ0, φ0, v0,w0,∆t

Note that initial radius is not parameter, while it is fixed at r0 = 1.0302. That is the radius
of initial parking orbit, a dimensionless value by using mean Earth radius. In fact all the
quantities used in the shooting method are dimensionless:

• geocentric distances become dimensionless by using mean Earth radius

rconv = 6378 Km

• geocentric velocities become dimensionless by using circular orbit velocity at
Earth’s surface

Vconv = 7.9054 Km/s

• geocentric times become dimensionless by using the reference time

tconv =
rconv

Vconv
= 806.811 s;

• heliocentric distances become dimensionless by using mean Earth-Sun distance

rconvelio = 1.496 ∗ 108 Km

• heliocentric velocities become dimensionless by using circular orbit velocity of the
Earth around the Sun

Vconvelio = 29.7847 Km/s

• heliocentric accelerations become dimensionless by using

tconvelio = aconvelio =
µsun

r2
convelio

= 5.93 ∗ 10−6 Km/s2

• heliocentric times become dimensionless by using the reference time

tconvelio =
Vconvelio

aconvelio ∗ 86400
= 58.1324 days
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A transformation from geocentric reference to heliocentric reference and vice versa
is possible by using these quantities. For example, when the numerical code starts an
heliocentric dimensionless time is read froman input file and it is immediately transformed
in a geocentric dimensionless time by using:

tescape−geo =
tescape−elio ∗ tconvelio ∗ 86400

tconv

Trajectory was, initially, divided into two phases: a first that started at perigee (circular
parking orbit) and ended at the first lunar flyby and a second one from first lunar flyby to
the escape. In that manner the whole problem has a single solution, because the number
of free parameters equals the number of conditions.
Subsequently, two additional inner phases were inserted to improving the numerical
convergence. Therefore, the whole trajectory was split into four phases:

1. from perigee to the first lunar flyby;

2. from first lunar flyby to apogee;

3. from apogee to the second lunar flyby;

4. from second lunar flyby to escape.

Among which, there are three internal points, where the state variables are discontinuous
or where constraints are imposed:

1. first periselenium;

2. apogee;

3. second periselenium.

Considering the internal points, for each one we add a parameter (time) and a condition
(relative velocity perpendicular to vector (S/C - Moon) for the periselenium, u = 0 at the
apogee).
This method made up of 4 phases is knowing as the multiple shooting method, where
additional variables are added after apogee’s passage and continuity of these variables
are inserted as conditions.
The method solves an initial value problem in each of the smaller intervals, and imposes
additional matching conditions to form a solution on the whole interval. The division into
smaller intervals guarantees improvement on numerical stability over single shooting me-
thods. So, on the whole, four IVP are solved, derived from the initial BVP. Furthermore,
nonlinear constraints at both internal and external boundaries are imposed.
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In general, these boundary conditions are grouped into a vector ψ:

ψ(x( j−1)+, x j−, t( j−1)+, t j−) j = 1, .....,n (4.1)

where the jth arc starts at t( j−1)+ and ends at t j− (+ and - denote values just after and before
point j).
The initial values of some of the variables are usually unknown, for this reason the
solution is determined through an iterative process. Known p(r), the initial values at the
r-th iteration, obtained through previous iteration, the equations shall be integrated along
the whole trajectory, taking into account any discontinuities in the internal boundaries.
Notes that p(1) is derived from the tentative solution. At the end of the integration the
errors on the boundary conditions are calculated.
Each unknown parameter is in turn perturbed by a small amount δp; the new IVP is
solved, and the change of the errors on the boundary conditions δψ is evaluated. The
choice of the perturbation step δp is important to achieve a proper evaluation of the
sensitivity matrix. A rule of thumb suggests δp of the same order of the square root of
the absolute tolerance used by the integrator (10(−7) in this application). So Newton’s
method is used to bring the errors to zero.
Considering only first order’s terms, is possible to write:

δψ =

[
∂ψ

∂p

]
δp (4.2)

So, in order to delete errors on the boundary conditions (i.e. δψ = −ψr , because of
ψ(r+1) = ψ(r) + δψ = 0), at each iteration the initial values are corrected as:

δp = p(r+1) − p(r) =
[
∂ψ

∂p

]−1
ψr (4.3)

until the boundary conditions are verified with the desired accuracy. In order to not get
too far from the solution, only a fraction of the correction is made:

p(r+1) = p(r) + K1δp (4.4)

where K1 = 0.1 - 1, depending on how the attempt solution is distant from the solution
sought.
At each iteration, after the evaluation of vector p(r+1) by using equation 4.4, the equations
of themotion (described in the next section) are been integrated and a comparison between
the maximum error on the boundary condition at the current iteration E (r+1)

max and the same
error on the previous iteration E (r)max is performed. If E (r+1)

max < K2E (r)max is possible to
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proceed with the next iteration. K2 coefficient is necessary because while convergence is
sought the error may increases on the early steps.
K2 = 2 − 3 typically represents a good choice.

Else if E (r+1)
max > K2E (r)max a bisection of the correction is performed and the equations of

motion are been integrated with the attempt values:

p(r+1) = p(r) +
K1δp

2
(4.5)

repeating the comparison between the two maximum errors (E (r+1)
max and E (r)max) and, if

necessary, repeating the bisection. A maximum number of 5 bisections is fixed, after
these the procedure has been arrested, meaning that the attempt solution is not appropriate
to carry to the convergence.
An example of the vector r (p) is illustrated in figure 4.1, this is the solution obtained when
the method reaches the convergence for the case A described in the next chapter.

Figure 4.1: example of p(r) vector

A brief description of the quantities contained in the p(r) vector is given.
The first 18 terms indicate the nature of the phase: 0 states for a coast phase (no thrust),
1 for a thrusted phase, 4 denotes a phase that has to be ignored (no phase). In this case,
four phases are identified.
Following, 4 terms indicate the time frames for the phases of the mission, starting from
the perigee launch (they are identified as: t1, t2, t3 and t4).
After that, one term is set equal to 1 (fixed), followed by 6 terms, which represents
position (r2, θ2, φ2) and velocity (u2, v2,w2) of the apogee.
Then, three terms are equal to zero and represents ∆λr , ∆λθ and ∆λφ of the periselenium.
From this fact descends an important condition: the radius of the periselium is a free
parameter.
Subsequently, since that r0 is fixed, only 5 terms are used indicate the position and velocity
of the perigee (θ0, φ0,u0, v0,w0). Since that a topocentric reference frame is used, the
radial velocity component at perigee and at apogee is null: u0 = u2 = 0.
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Finally, 4 terms represent respectively: λr0 , λu0 , λv0 , λw0 , while the last one is the mass
at the perigee launch m0. Considering that no propellant is used during the escape leg
(which is a coast phase), mass at perigee m0 is equal to the escapemass m∞. It is evaluated
by using the method that will be explained later.

4.2 Equation of motion

The spacecraft is modeled as a point with variable mass. Position r , velocity v, and mass
m of the spacecraft are the problem’s state variables, described by differential equations:



dr
dt
= v

dv
dt
= −

µr
r3 +

T
m
+ aP

dm
dt
= −

T
c

(4.6)

where − µr
r3 is the spherical-Earth gravitational acceleration, aP collects the perturbing

accelerations due to Earth’s oblateness aJ , to Moon and Sun attraction alsg, and to solar
radiation pressure asrp.

aP = aJ + alsg + asrp (4.7)

The thrust vector T is assumed to be zero in the present document (all the phases are
coasted).

It is adopted the EME2000 reference frame (Earth Mean Equator and Equinox of Epoch
J2000): Î, Ĵ, and K̂ are unit vectors along the axes of EME2000. Precession and nutation
are neglected. The position is expressed in spherical coordinates by using: radius r, right
ascension θ and declination φ:

r = rcosθcosφ Î + rsinθcosφĴ + rsinφK̂ (4.8)

A topocentric reference frame is introduced, whose unit vectors are î (radial), ĵ (eastward),
and k̂ (northward).


î
ĵ
k̂

 =


cosθcosφ sinθcosφ sinφ
−sinθ cosθ 0
−cosθsinφ −sinθsinφ cosφ

 ·


Î
Ĵ

K̂

 (4.9)
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In the topocentric frame the position vector can be easily written as r = rî, while the
velocity as

v = r = uî + v ĵ + w k̂ (4.10)

where u, v, and w being radial, eastward, and northward components, respectively.

Then the scalar state equations can be derived:



dr
dt
= u

dθ
dt
=

v

r cos φ
dφ
dt
=

w

r
du
dt
= −

µ

r2 +
v2 + w2

r
+

Tu

m
+ (aP)u

dv
dt
=
(−uv + vw tan φ)

r
+

Tv
m
+ (aP)v

dw
dt
=
(−uv + v2 tan φ)

r
+

Tw

m
+ (aP)w

dm
dt
= −

T
c

(4.11)

Is important to not forget that the thrust and all her components are assumed to be zero
along the whole trajectory of escape.

4.3 Perturbations

In this document the following perturbations will be included:

• perturbation due to the Earth asphericity;

• perturbation due to the gravitational attraction of the Sun;

• perturbation due to the gravitational attraction of the Moon;

• pressure of solar radiation.

Also the eccentricity of Moon’s orbit is taking into account.
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4.3.1 Earth asphericity

In order to evaluate the effects of the Earth’s oblateness, a description of the Earth
potential based on the Earth Gravitational Model EGM2008 is used. This method
provides normalized spherical harmonic coefficients for the Earth gravitational potential;
the “Tide Free” system is used (whichmeans that all ,direct and indirect, effects of the Sun
and Moon are removed). A uniform rotation of the Earth is assumed, while precession
and nutation are neglected. The EME2000 reference frame is adopted.
Using this formulation the potential corresponding to the Earth asphericity can be written
as:

Φ = −
µE

r

N∑
n=2

(
rE

r

)n n∑
m=0
(Cnmcos(mλ) + Snmsin(mλ))Pnm(sinφ) (4.12)

where rE is the semi-major axis of the Earth ellipsoid. N = 8 is used in this document. The
associated Legendre functions Pnm(sinφ) and the spherical harmonic coefficientsCnm and
Snm are taken in the unnormalized form that permits faster computations. Normalized
quantities would allow for a greater accuracy, which is not necessary for the present
application.
The declination φ corresponds to the terrestrial latitude, while terrestrial longitude λ is
obtained as λ = θ − θGre f −ωE (t − tre f ) where θGre f is the Greenwich right ascension at
the reference time tre f .
The perturbing acceleration due to the Earth asphericity is the gradient of −Φ, and its
components in the topocentric frame are thus evaluated as :



(aJ)u = −
∂Φ

∂r

(aJ)v = −
(∂Φ/∂θ)

rcosφ

(aJ)w = −
(∂Φ/∂φ)

r

(4.13)

derivatives with respect to φ require the derivatives of the associated Legendre functions,
which are obtained recursively.

4.3.2 LuniSolar perturbation

The lunisolar perturbation is given by the sum of the gravitational perturbations due
to the Moon and to the Sun. Positions of Sun and Moon are evaluated by DE405 JPL
ephemeris. It gives the body position in rectangular coordinates xb, yb and zb with respect
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to the Earth in the International Celestial Reference Frame and therefore in the EME2000
frame (between these frames there are very small differences that can be neglected in the
present problem). Subscript b could indicates the Sun (b=s) or the Moon (b=l).
The perturbing acceleration on the spacecraft

abg = −

(
µb

R3

)
R −

(
µb

rb
3

)
rb (4.14)

is caused by a body with gravitational parameter µb, whose position vector relative to the
Earth is: rb = xb Î + yb Ĵ + zbK̂ , where R = r − rb is the spacecraft relative position vector
with respect to the perturbing body and −rb is the Earth relative position, as can be seen
in Figure 4.2.

Figure 4.2: Schematic geometry of gravitational perturbations [8]

The perturbing acceleration is not composed only by the gravitational acceleration that
the perturbing body causes on spacecraft, but also on the Earth. In the topocentric frame
(based on the spacecraft position), it can be written as



(abg)u =

(
µb

R3

)
[(rb)u − r] −

(
µb

rb
3

)
(rb)u

(abg)v =

(
µb

R3

)
(rb)v −

(
µb

rb
3

)
(rb)v

(abg)w =

(
µb

R3

)
(rb)w −

(
µb

rb
3

)
(rb)w

(4.15)
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with

R =
√
[r − (rb)u]

2 + (rb)v
2 + (rb)w

2 (4.16)

The position components of the perturbing body "b" in the spacecraft topocentric frame
are:


(rb)u = xbcosθcosφ + ybsinθcosφ + zbsinφ
(rb)v = −xbsinφ + ybcosθ
(rb)w = −xbcosθsinφ − ybsinθsinφ + zbcosφ

(4.17)

4.3.3 Solar radiation pressure

For this perturbation, it must be taken into consideration the photon pressure: at a distance
R from the Sun, it can be evaluated as:

p =
Ls

4πR2clight
(4.18)

where Ls is the total power radiated by the Sun and clight is the speed of light. At a
distance R = 1 AU, p = 4.55682 ∗ 10(−6) N/m2. The acceleration on a spherical body is

asrp = (1 + η)p∗
(

R∗

R

)2 ( S
m

)
R
R
=
ΓR

mR3 (4.19)

with the cross-section "S", the mass of the spacecraft "m" and the reflectivity "η".
Projected onto the topocentric frame:



(asrp)u =

(
Γ

mR3

)
[(rs)u − r]

(asrp)v =

(
Γ

mR3

)
[(rs)v]

(asrp)w =

(
Γ

mR3

)
[(rs)w]

(4.20)

Since the solar radiation pressure acts along the Sun-spacecraft direction, this acceleration
is parallel butwith opposite directions to the solar gravity acceleration and also is inversely
proportional to the squared distance of the two bodies. In the equation 4.19 it can be
noted that, unlike equation 4.14, the perturbing acceleration depends on the instantaneous
mass.
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4.4 Mass evaluation

Finally, the model that gives the escape mass evaluation is illustrated.
The values of position and velocity at perigee (VP) are rotated to the J2000 ECI frame to
determine the corresponding latitude, longitude and azimuth. Azimuth and∆VP = VP−VC
can be used to evaluate the mass that the launcher can insert into the escape trajectory.
The following calculations refer to the Delta IV Heavy rocket. The starting mass on the
initial 200-km parking orbit is the sum of useful mass (mu) and upper stage dry mass md
(3550 kg). The useful mass given by NASA’s Launch Vehicle Performance Website is
here approximated with the quadratic equation:

mu = 26280 − 0.6642(A − 90)2 (4.21)

where mu is in kg and the azimuth A in degrees. Rocket equation can be used to evaluate
the useful escape mass:

m∞ = (mu + md)e(
−∆V
c ) − md − mPAF (4.22)

where the stage dry mass and the payload attach fitting mass (800 kg) are subtracted from
the final mass. In addition:

∆V = 1.046(VP − VP0) (4.23)

where VP is the perigee velocity at the start of the trajectory to the Moon, and VP0 is the
circular velocity of the parking orbit. An addition of a 4.6 % margin is included to attain
a reference value of 9995 kg for the escape mass in the case of C3 = −1.5 km2/s2.
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Features of the mission

5.1 interplanetary leg: the ARM mission

Lunar gravity assist maneuvers are used to reach the escape conditions needed to accom-
plish the desired space mission. They are useful beacuse allow to increase the escape
mass, in which payload mass is included, with a fixed energy of escape (due to a gain of
∆V without using propellant, as illustrated previously).

A double lunar gravity assist was planned to be employed in the scientific mission firstly
presented by NASA in 2013: the ARM mission.

The Asteroid Redirect Mission (ARM) proposed to reach a large Near-Earth asteroid in
order to pick up a heavy boulder (2-3 m of diameter) from its surface and to bring it into a
lunar stable orbit. Thereafter, manned missions would have been directed to the boulder,
with the purpose of exploring it and collecting samples for a detailed analysis on Earth.

The entire mission represents a testing ground for new technologies and spaceflight
experience which will be useful for the future manned missions directed to the Moon and
to Mars.

In order to identify the best candidate, NASA’s Near-Earth Object Observation Program
has discoveredmore than 1000 new near-Earth asteroids, amongwhich four of them could
be good candidates for the ARM. Target of the mission is chosen by NASA’s scientists
by evaluating orbit, velocity, size and spin of the different asteroids.

The carbonaceous boulder that would have been redirected by the mission (maximum
6 meter diameter, 20 tons) is not big enough to harm our planet because, despite it
entering Earth’s atmosphere, it would burn up. Bringing the asteroid boulder to a distant
retrograde orbit around the Moon would ensure it could not encounter the Earth and also
it is leaved in a stable orbit, suitable for future studies.

NASA paid their attention on 2008 EV5 as a preliminary baseline target. Itokawa, Bennu
and several other asteroids, were considered besides 2008 EV5, indeed no definitive
choices have been operated.
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2008 EV5 is an oblate spheroid with a diameter of 400 m (sub-kilometer asteroid). This
celestial body rotates in a retrograde direction with a very low speed. A 150 m diameter
concave feature was observed on the asteroid, it can represents an impact crater, or a
reconfiguration of the asteroid’s shape caused by an episode of rapid rotation in the past.
Visible and near-infrared spectroscopy highlight a composition which is similar to that
of carbonaceous chondrite meteorites.
2008 EV5 is part of the Aten group (a group of near-Earth asteroids which have a semi-
major axis smaller than 1 AU and with an high eccentricity), and it was discovered on 4
March 2008.
The asteroid is characterized by: a semi-major axis of 0,958242 AU, an eccentricity of
0,083401 and an inclination of 7,437 degrees. On 23 December 2008, 2008 EV5 made
a close approach to Earth at a distance of 3.2 million km (0,022 AU), its closest until
2169. It is potentially hazardous to our planet, which means that the asteroid has an orbit
that can make exceptionally close approaches to the Earth and it is large enough to cause
significant regional damage if an impact occurs.

Figure 5.1: Obit of 2008 EV5 (in white), position on 1st January 2010 [18]

Unfortunately, the development of the Asteroid Redirect Mission ended under a directive
of the White House, in December 11, 2017, that establishes the defunding and so the
consequently closeout of the mission. Nevertheless, many of the central technologies in
development for that mission, such as solar electric propulsion, will continue, as they
constitute vital capabilities needed for future human deep space missions. Also the
implementation of a double LGA may be useful with the perspective of similar missions.
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Figure 5.2: different views of the2008 EV5 [18]

5.2 Solar perturbed Moon to Moon leg

As long as a preliminary analysis of an interplanetary mission can be conducted by
employing the patched conic approximation, escape phase and heliocentric phase can be
studied separately.

Two different approaches can be used when lunar gravity assist (LGA) escape trajectories
have to be designed.

The first one pre-computes and maps the escape C3 (which is the hyperbolic escape
energy, defined as C3 = V∞2, in km2/s2) as a function of date (i.e., position of the Moon
along its orbit) and C3 value before the flyby.

In the other approach, the interplanetary leg is first evaluated, then the trajectories to the
target celestial body are computed for different departure dates and values of hyperbolic
excess velocity. Indirect methods can perform this analysis in a reduced computational
time. For each trajectory, feasibility and performance of a LGA escape are evaluated by
means of an approximate analysis that may also provide tentative solutions for a detailed
analysis of the maneuver.

Short maneuvers, which are supposed to be less affected by solar perturbation, are treated
with the approximate analytical approach. On the other hand, during longer Moon to-
Moon transfers an evaluation of the pre-computed C3 is used to analyze planar escape
sequences. In this manner is possible to take into account the relevant effects of the solar
perturbation on the escape trajectory.
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In this document a result that descends from the first of the two approaches is applied as
a reference solution, guiding through the implementation of the numerical solution. It is
explained in detail in the next chapter.

Only maneuvers with two lunar gravity assists are considered in this analysis.The develo-
pment of solar-perturbed trajectories that connect two lunar flybys is challenging because
these trajectories are no longer simply conic, so a pre-computed database of Moon-to-
Moon transfers in the Sun-Earth CRTBP (circular restricted three body problem) covers
the phase between two lunar encounters.

An upper case letter indicates the number of lunar revolutions (in an approximated way)
between the two lunar flybys, therefore first letter of each family name denotes the time
frame using alphabetic order. In such a manner is possible to group lunar-lunar transfers
in different families.

Additionally, two lowercase letters, "o" and "i", follow the uppercase letter and identify
the kind of flybys, which can be outbound or inbound.

As the solar phase angles varying, significant differences between trajectories of the same
family can be noted.

Figure 5.3: Families of solar-perturbed Moon-to-Moon transfers for an initial lunar relative velocity of 1
km/s. The Moons initial and final positions at the flybys are identified by black and green
dots, respectively. Each family includes various trajectory that correspond to a different solar
phase angle. To visually emphasize the differences between family members, all trajectories
are rotated so that can start at the same lunar position [6]
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In the case of an out of plane escape, the flyby event has also to provide a turn angle
capable of both boost the energy of the spacecraft and change the plane of the trajectory,
meaning that the out of plane scenarios cannot reach the values of C3 that the in plane
ones do. A relation between the declination of the escape, i.e. its inclination with respect
to the Earth’s ecliptic plane, and the maximum achievable C3, exists.
As can be seen in Figure 5.4 an escape C3 up to 1.5 km2/s2 is guaranteed for any right
ascension and declination directions. The escape C3 tapers off in a more gradual way if
compared to the results obtained by using two-body approximation only.
As is possible to predict, the maximum escape C3 decreases with increasing declination,
since flyby is most effective when V∞ vector of the spacecraft is aligned with the orbital
velocity vector of the encountered body.

Figure 5.4: Maximum escape C3 vs declination when lunar-assisted escape is used [6]
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Results

Starting from the escape data and velocity necessary to accomplish the ARRM mission,
the exact numerical solution of the escape maneuver is sought. It has to take into account
the real ephemeris and the full gravity of the Sun, the Earth and the Moon.
Is possible to obtain the required input escape quantities by using MALTO (Mission
Analysis Low Thrust Optimizer), a software tool for preliminary design of low-thrust
trajectories, as a first optimizer and an indirect method for the further optimization steps
(to produce a fully continuous trajectory). In such a manner, it has been evaluated that
an escape in June 2022 with an inclination of -65° should be the optimal choice.
With regards to this thesis, the object is to design the escape leg. The entire phase is
computed by using the multiple shooting method presented previously.
In order to reach the convergence of the numerical solution, is mandatory to proceed by
steps, using a sequential target, for example the first flyby represents the initial target.
Also a reference solution similarly to the present objective is required : a solution that
pre-calculates the hyperbolic escape energy, C3, as a function of its value before the flyby
event and of the date, can fulfill this task.
It was decided to use as reference solution an escape maneuver presented in the paper:
"Design of Lunar-Gravity-Assisted escape maneuvers" by Lorenzo Casalino and Gregory
Lantoine. It is illustrated in figure 6.1 and 6.2.
Starting from an attempt of replicate this solution is possible to investigate for other
solutions that achieve the same escape condition by performing the two lunar flybys.
Particular attention is placed on the final mass of escape and on the different escape
velocity values.
Because of the different escape conditions that they involve, a crucial part of the escape
maneuver is represented by the choosing of the Lunar-Lunar leg type. By analyzing the
characteristics of the different families of transfer reported in figure 5.3, the authors chose
a Moon to Moon transfer orbit of the Doi family.
Through successive optimization steps, the entire trajectory has been defined and it
involves: the first flyby, which occurs on the 21st of February 2022 and the second flyby
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on the 9th of June 2022 at an altitude of, respectively, 5119 km and 55 km, and with a
Moon-relative velocity vector of 1.05 km/s in the first case and 2.15 km/s for the second
case. The produced escape C3 is 1.74 km2/s2 with an ecliptic declination of -67.6°.

Figure 6.1: in plane and out of plane views of the reference solution in the ecliptic inertial reference frame
[6]

Figure 6.2: in plane and out of plane views of the reference solution in the Sun-Earth rotating frame [6]
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6.1 Stepped procedure

Defined the reference solution is possible to start the analysis with the multiple shooting
method by fixing the escape data and the heliocentric velocity, which are contained in an
input file. All the dates reported from here on are related to the year 2022.
Knowing the final time of escape, on June 16, and setting an attempt solution which has
a duration of 118 days, is possible to insert mission’s starting time, that correspond to the
18th of February.
At this point, a solution that realizes the corrected first flyby, three days after the launch
from the circular parking orbit (LEO), is sought by varying the angle θ0 and φ0 of
the launch. Current target is to realize a first flyby with an angle θ < θMoon (at the
periselenium, in the geocentric refernce frame), which is a trailing side flyby that allows
the spacecraft to gain geocentric velocity.

Figure 6.3: First flyby of the Moon, the red line identifies the spacecraft trajectory, the blue line identifies
Moon’s path

The next target is to perform a Moon to Moon leg that allows to realize a second flyby
of the Moon. Reaching a distance from Earth similarly to the corresponding value in
the reference solution and evaluate the effect of the solar perturbation that affects the
spacecraft, are the critical points of this phase.
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The orbital parameters, particularly the semi-major axis and the inclination, can give us
these information. A change in inclination of 180°-(starting inclination value) causes the
orbit to became a retrograde orbit. On the other hand the semi-major axis has to follow
a declining trend, because of the solar gravity that pulls the spacecraft in the opposite
direction of the current motion.
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Figure 6.4: effect of the solar perturbation on the orbit
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Figure 6.5: effect of the solar perturbation on the orbit
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Last target is to achieve the required escape conditions by realizing the second lunar flyby.
Because of the declination desired value at the escape and considering a Moon to Moon
leg as a near planar transfer (almost lies in Moon’s plane orbit) another trailing side flyby
takes place, but this time it involves also a change in inclination. The spacecraft passes
"under" Moon’s orbit at the periselenium and this causes an initial increase of declination
followed by a reduction that leads to the correct final value of -67.6°.

Shooting procedure achieving the convergence with a first flyby on the 23rd of February
at a relative distance of 24725 Km (which corresponds to an altitude of 22988 Km above
lunar surface, giving a Moon’s radius of 1737 Km) and a second flyby that takes place on
the 10th of June with a relative distance of 1796 Km from the Moon (it means a passage
at an altitude of only 59 Km above lunar surface). One can notes that the first flyby in
figure 6.3 is effectuated at lower distance with respect to that one in the complete solution.
This is because the numerical code starts from an attempt solution and achieves a target
by adjusting, iteration by iteration, the attempt solution.

The escape occurs on 18th of June, while launch from perigee is on 21st of February.
Therefore, the mission has a duration of 117 days, very close to the 118 days of the
reference mission.
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Figure 6.6: case A, escape on the 18th of June, XY view
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Figure 6.7: case A, escape on the 18th of June, YZ view

Finally, the steps to perform a solution are summarized:

• insert escape date on the input file "escape.txt" (code starts from this information
and calculates backward the required time frame)

• achieve the right semi-axis and inclination (relative position to Earth and Sun) after
first flyby – first flyby with an angle θ < θMoon (trailing side flyby, accelerate the
spacecraft and rises the apoapsis)

• realize a second flyby of the Moon which gives the correct escape position and
velocity. It is obtained by adjusting Moon’s relative position and velocity of the
spacecraft at the first flyby

6.2 Cases with different data and escape velocity

Once that a solution is achieved, is possible to investigate the effect of a different time of
escape. Whereas the constraint of the interplanetary mission persists and considering the
quite difficult convergence of the code, escape data has been varied, directly in the input
file, by a time step of 1 day to obtain case B and C and by a time step in the order of just
half an hour (or less is some subcases) regarding to case D.
Case B is a solution which has a perigee launch on the 20th of February. The escape
occurs on 17th of June and the flybys are respectively on the 22nd of February with a
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periselenium of 33248 Km and on the 9th of June with an altitude of 1775 Km (that
means an altitude of 38 Km above the surface). In order to reach a restrained error also a
change in the escape velocity has been necessary, in particular a reduced value is required,
passing from 1.61 Km/s to 1.55 km/s.
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Figure 6.8: case B, escape on the 17th of June 2022, XY view
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Figure 6.9: case B, escape on the 17th of June 2022, YZ view
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Case C is a solution which has a launch on 22nd of February , while the 24th of February,
at a distance of 21768 Km, and on the 10th of June, at a distance of 1887 Km, take place
the two flybys. The escape maneuver reaches the target position on the 19th of June and,
also in this case, a velocity change is required due to convergence necessity. The escape
velocity has slightly augmented at the value of 1.56 Km/s.

An important difference exists between this case and the previously other: the first lunar
flyby becomes a leading edge flyby, instead of a trailing edge one. This means that
the spacecraft is no longer accelerated in the first lunar encounter, but a deceleration is
verified. Figure 6.12 shows a detail of the first flyby.

Although the effect on the spacecraft is mitigate by a relative high distance with the
Moon (more than 20000 Km among this three cases), and considering also that a higher
apogee is reached in this case (see table 6.1), a higher launch velocity (from parking
orbit) is needed. In fact a rise, from a value of 10.994 Km/s of the case B to a value of
11.025 Km/s for this case, can be noted by analyzing the p(r) vector.
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Figure 6.10: case C, escape on the 19th of June 2022, XY view
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Figure 6.11: case C, escape on the 19th of June 2022, YZ view
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Figure 6.12: case C, a detailed view of the first flyby
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Finally, case D is characterized by an escape on the 20th of June, obtained by moving the
launch date on the 28th of February and the flybys on the 2nd March, with a distance of
2191 Km, and on the 11th of June, at a distance of 2496 Km. Another reduction in the
escape velocity is needed at the value of 1.49 Km/s.
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Figure 6.13: case D, escape on the 20th of June 2022, XY view
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Figure 6.15: a comprehensive, in plane, view of the four different cases
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Figure 6.16: a comprehensive, out of plane, view of the four different cases
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case A case B case C case D
r 1.0302 r 1.0302 r 1.0302 r 1.0302

launch θ 1.6440 θ 1.5391 θ 2.0599 θ 3.3867
φ 0.4461 φ 0.4452 φ 0.4937 φ 0.2657
r 55.566 r 53.951 r 58.081 r 59.842

FB1 θ 4.5201 θ 4.4197 θ 4.8816 θ 6.2038
φ -0.3810 φ -0.3785 φ -0.4571 φ -0.1164
r 331.82 r 323.67 r 337.14 r 321.17

apogee θ 4.9384 θ 4.8537 θ 5.0308 θ 5.4629
φ -0.6515 φ -0.5370 φ -0.5397 φ -1.0410
r 59.215 r 60.527 r 58.354 r 58.091

FB2 θ 3.4751 θ 3.2504 θ 3.6533 θ 3.7548
φ -0.0902 φ 0.0235 φ -0.1770 φ -0.2205
r 156.79 r 156.79 r 156.79 r 156.79

escape θ 7.1275 θ 7.3874 θ 7.0731 θ 7.1712
φ -0.8612 φ -1.3959 φ -0.7663 φ -0.6535

Table 6.1: position in spherical coordinates for each phase of the different analyzed cases

perigee first flyby second flyby escape
case A dates 21-02-2022 23-02-2022 10-06-2022 18-06-2022

case A dimensionless time — 210 11668 12537
case B dates 20-02-2022 22-02-2022 09-06-2022 17-06-2022

case B dimensionless time — 203 11637 12513
case C dates 22-02-2022 24-02-2022 10-06-2022 19-06-2022

case C dimensionless time — 207 11580 12472
case D dates 28-02-2022 02-03-2022 11-06-2022 20-06-2022

case D dimensionless time — 184 10991 11924

Table 6.2: times of the different analyzed cases

In table 6.2 are reported the times of the most significant points of the escape maneuver.
Dimensionless times are used in the shooting method, these quantities are measured star-
ting from a reference point, that is the perigee launch, which is calculated by subtracting
the total mission time from the escape time. The escape time is known, while the total
mission time (from perigee to escape, t4 in the pr vector) has an attempt initial value (at
the first iteration) given by the reference solution from the mentioned paper [6].

t4 = 118 days ∗ 86400/tconv = 12636

86400 are the seconds in a day, needed to obtain a dimensionless quantity, considering
tconv in seconds.
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The perigee dimensionless time is not reported in the table, it is the "zero time point".
Finally, the times are transformed in dates for the sake of practicality.
A comparison of the four different solutions is possible in terms of escape mass, that is a
final mass with respect to the escape phase, while it is an initial mass with respect to the
heliocentric phase.

m∞A = 9822 kg

m∞B = 9835 kg

m∞C = 9735 kg

m∞D = 9522 kg

Is possible to observe that Case D, which has characterized by a non-planar Moon to
Moon leg, is the less efficient solution in terms of escape mass, while case B, the solution
that reaches the lower declination on the same phase, has the highest value of the escape
mass.
In table 6.3 velocities components and module are reported at the perigee launch and at
the escape position. Note that the radial component at the perigee, u0, is null among all
the analyzed cases, according that was predicted in the analysis description.

u0 v0 w0 V0[km/s] u f v f w f Vf [km/s]
case A 0.000 1.3553 0.3142 10.998 0.0585 0.0965 -0.1703 1.6145
case B 0.000 1.3542 0.3167 10.994 -0.0113 0.0284 -0.1943 1.5546
case C 0.000 1.3918 0.0888 11.025 0.0734 0.0929 -0.1586 1.5644
case D 0.000 1.2777 0.5792 11.090 0.0679 0.1066 -0.1394 1.4873

Table 6.3: comparison of the velocities at the perigee and at the escape for the analyzed cases

In conclusion, the values of the launch energy escape, C30 and of the hyperbolic escape
energy are reported in table 6.4. Higher value of C3 correspond to higher value of V∞
(which is the same ofVf in table 6.3), according to the definition of the hyperbolic escape
energy.
It is important to observe that the case D has the highest value of C30 (associated with
the highest values of V0), while it has the lower escape energy and velocity. In particular,
it has a C3 lower than C30 , so the two flybys acting in an undesired way and causing an
escape energy loss. This fact remarks, also with regard to the energy, that the last case is
the lower efficient solution.
In terms of relative energy variation: Case A are characterized by a significant energy
gain, near +350 %, while case B by +280 %, +265 % for case C, and a negative value is
shown in the -58 % of case D.
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dimensionless C30 C30 dimensionless C3 C3 - C30 V∞
case A -0.005799 -0.362430 Km2/s2 0.014477 0.0203 1.61 Km/s
case B -0.007215 -0.450906 Km2/s2 0.012957 0.0202 1.55 Km/s
case C 0.003611 0.225651 Km2/s2 0.013202 0.0096 1.56 Km/s
case D 0.026830 1.676700 Km2/s2 0.011320 -0.0155 1.49 Km/s

Table 6.4: energy comparison among the different solutions
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Conclusions

In this section a summary of all the fundamental concepts, which are previously analyzed,
is given.
In this work a case of a double lunar gravity assist with a solar perturbed lunar-lunar leg
is treated. For this maneuver is important to underline the usefulness of each one of the
two lunar encounter:

• first flyby is required to reach an apogee characterized by a relative position from
Earth and Sun at which the spacecraft path is affected by solar gravity attraction.
This perturbation causes the orbit to become a retrograde orbit and, for case A and
B (which have a first trailing-side lunar flyby), an energy gain.

• second flyby is necessary to achieve the desired escape conditions, in terms of
position and velocity.

All the analyzed cases has an escape that ranging from June 17, 2022 to June 20, 2022,
according to an interplanetary mission directed to a Near Earth Asteroid. Launch from
perigee occurs on February of the same year. While the first three cases have a duration
of near 117 days, Case D is the shorter maneuver with a duration of 112 days.
The advantage of the used gravity assist maneuvers can be highlighted by observing that
case A has an energy gain equals to +350 %. This represents the most efficient solution
in terms of energy. On the other side, Case D is a solution that achieves the required
escape conditions, although it produces a -58% energy loss. In addiction, case D is also
characterized by the lover value of escape mass, therefore, it can be identified as the less
efficient solution.
The second lunar encounter is characterized by a very close passage over the lunar surface.
In particular, case B has a periseleniumwith an altitude of only 39Km, so special attention
is needed if this escape maneuver has to be implemented.
As a result of the imposed constraints and due to convergence necessity of the numerical
solution, is not possible to freely vary the escape date and the exact value of the velocity
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escape. This fact represents the main drawback of the present study, although remains
valid the high efficiency of the escape maneuver which involves a double lunar flybys.
Future development of this work may include a detailed investigation on the different
possibilities of escape velocity value, starting from the results obtained in the present
document. It is important to remember that the convergence of the system imposes a
variation of the current solution by a very little quantities. Also, a check on the radius of the
two flybys, in order to avoid an impact with the lunar soil, is needed. However, taking into
account the defunding of the ARM mission, a more reasonable future implementation of
the presented work should involves the use of a double lunar flyby that enhance the escape
energy for realizing a future interplanetary mission by using the procedure illustrated in
the present document.
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