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Sommario

Sin dai primi voli spaziali fu chiaro che la fase di rientro richieda particolari attenzioni al
fine di assicurare sia l’incolumità del personale di bordo che l’integrità di strumentazione e
campioni.

In questo lavoro viene analizzato uno dei fattori critici di questa fase molto complessa:
la stabilità aerodinamica. Nello specifico, avvalendosi della tecnica numerica, si è validata
una procedura in grado di estrapolare le derivate aerodinamiche che qualificano la stabilità
aerodinamica di un velivolo spaziale in fase di rientro.

Per estrarre le derivate aerodinamiche di interesse é stato utilizzato il metodo delle
oscillazioni forzate. Si è imposto una determinata legge oscillatoria al dominio di calcolo
comprendente il corpo in esame e mantenuto fisso il vettore velocità della corrente indi-
sturbata. Da ciò consegue un’alterazione temporale dell’angolo di attacco e dei coefficienti
aerodinamici. Tenendo traccia della variazione di questi coefficienti, a posteriori, si sono
estratti i parametri di interesse.

Per lo studio ci si è avvalsi di due codici CFD commerciali: Ansys Fluent e Metacomp
CFD++. Una casistica semplice é stata inizialmente oggetto di studio, andando ad analizzare
il comportamento della caspula di rientro Hayabusa in condizioni di volo subsonico. Ottenuti
i primi risultati, lo studio é stato condotto sul velivolo Space Rider.

I risultati numerici confermano la bontà dell’approccio scelto e identificano in CFD++
il codice numerico più performante per questo tipo di simulazione.
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Summary

Since the first space flights it was clear that the re-entry phase requires particular attention in
order to ensure both the safety of the personnel on board and the integrity of instrumentation
and samples.

In this paper, one of the critical factors of this very complex phase is analysed: aero-
dynamic stability. Specifically, using the numerical technique,it was possible to validate a
procedure that can extrapolate the aerodynamic derivatives which qualify the aerodynamic
stability of a spacecraft during re-entry phase.

The forced oscillations method was used to extract the aerodynamic derivatives of
interest. A certain oscillatory law has been imposed on the computational domain which
includes the body in question, while the velocity vector of the undisturbed flow is kept fixed.
This lead to a temporal alteration of the angle of attack and of the aerodynamic coefficients.
Keeping track about the variation of these coefficients the parameters of interest were
extracted a posteriori.

This study was carried out using two commercial CFD codes: Ansys Fluent and
Metacomp CFD++. A simple case was initially studied, analysing the behaviour of the
Hayabusa return capsule in subsonic flight conditions. After first results had been achieved,
the study was conducted on the Space Rider vehicle.

Numerical results confirm the accuracy of the chosen approach and identify CFD++ as
the most performing numerical code for this type of simulation.
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Chapter 1

Introduction

In the second part of the twentieth century the ideological struggle between the United
States and the Soviet Union gave impetus to spatial exploration in order to demonstrate
their technological and intellectual superiority to the world. Today the Cold War is over
but the space exploration continues and new countries have brought their flag into space in
the name of research and progress.

Planetary exploration is focused on the analysis of the soil composition and the atmo-
sphere of celestial bodies. This type of mission is performed by carrying out analyses in
situ, using probes with appropriate instruments, or collecting samples and sending them to
the Earth (sample return mission). Moreover, there are missions, such as the Apollo, in
which men have set foot on the moon soil and return on Earth. The future space missions
profile foresees also to bring a payload into orbit and conduct experiments in microgravity
and return to Earth without human crew.

The common element of these missions is the atmospheric re-entry phase. This phase is
the most dangerous one, in which a spacecraft enters from the outer space into a planet
atmosphere. In Earth re-entry the initial phase is characterize by orbital velocities up
to 12 km/s and the recorded flight Mach numbers can be as high as 30 and more. The
dissipation of kinetic energy via interaction with the gaseous atmosphere is the only way
to to decelerate in order to allow safe landing without spending fuel. In fact the amount
of rocket fuel required to slow the vehicle would be nearly equal to the amount used to
accelerate it initially, so due to weight constrain the use of retro rockets is usually highly
impractical for the entire re-entry procedure.

1.1 Re-entry from Orbit
Since the atmospheric composition and vehicle velocity change during the descent pahse, a
re-entry space-craft deals with variable flow regimes and the aerodynamic performances,
together with aerothermal loading conditions, change accordingly.

A typical re-entry path of a space craft returning from low Earth orbit (LEO) is close to
those reported in figure 1.1. At the beginning of the atmospheric re-entry, the space vehicle
has a velocity of close to 8 km/s and it encounters the free molecular flow at about 120 km
altitude. Then the vehicle flies through transitional flow regime and it reaches continuum
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flow conditions at about 70 km altitude, where spacecraft velocity ranges from 7 to about
5 km/s.

Figure 1.1: Stagnation-point flow regimes for re-entry vehicle (Viviani and Pezzella 2015).

Free molecular flow occurs when the flow is constituted by a rarefied gas. The distance
that the molecules travel between consecutive collisions is called mean free path (λ) and in
rarefied gases it becomes comparable with the characteristic dimension of the flowfield. In
this case the continuum hypothesis is not respected, and it is not possible to treat a gas
using the macroscopic properties.

Conversely, for a gas with a high particles density, the intermolecular collision frequency
is high. The mean free path becomes small compared to the characteristic dimension of the
flowfield and the macroscopic properties vary continuously, thus the gas can be treated as a
continuum.

An expression of free molecular path can be found from kinetic theory of gases:

λ = 1√
2πσ2n

(1.1)

where n is the molecules number per volume unit and σ [m] is the collision diameter.
Each flow regime is defined by comparing the mean free path to a characteristic dimension

of the flow field, so it is possible to introduce an important non dimensional parameter
named Knudsen number, defined as:

Kn = λ

Lref
(1.2)

Three flow regimes can be individuated by mean of these parameters:

• 1. Free molecular flow Kn� 1

2



1.2 – Re-entry Vehicle Design

• 2. Transitional flow

• 3. Continuum flow Kn� 0,01

The characteristic length could be a dimension of a flowfield characteristic or of the
body, for example the base radius for a blunt cone or the mean aerodynamic chord for a
wing. The Knudsen number highlights that not only λ is important, but also Lref which
depends on the case studied. Indeed free molecular flow occurs at high altitudes where
density is low, λ � Lref . Nevertheless, the Knudsen number can be high also when the
characteristic dimension is small, for example in cas of a flow through a shock wave where
the characteristic dimension would be the thickness of the shock wave itself.

1.2 Re-entry Vehicle Design
The design of a entry space-craft is the result of choices aimed to fulfilling the missions
requirements. In (Viviani and Pezzella 2015) the authors have identified some major mission
drivers in:

• Manned or unmanned

• Reusable or disposable

• Large or small payload

• Atmospheric environment

• GN&C maneuverability (L/D)

• Entry speed range

The first one is the decision regarding manned or unmanned flight. Obviously a manned
flight requires stricter constraints on deceleration (g) accordingly to human body, minimal
duration, and higher factors of safety.

The re-usability pays particular attention on thermal protection. In case of a non-
reusable space-craft, ablative materials are used. This kind of materials discharge heat
loads. from their own erosion and vapour. For a vehicle that is designed for multiple use
and long life cycle non-ablative, reflective heat shields will be used.

Guidance, navigation, and control (GN&C) is directly connected to L/D parameter.
A design that required aeromaneuverability lead to a Vehicles with high L/D. High-drag
bluff vehicles, such as capsules, with low L/D are necessary when maximum deceleration is
required for direct entry aerobraking or aerocapture manoeuvrers.

The L/D, in turn, determines the flight angle of incidence which, determines wake
impingement angle.

Direct entry capsules utilizing ballistic entry trajectories require very little GN&C control
and hence can be designed to maximize drag characteristics. Aerobraking or aerocapture,
on the other hand, will require somewhat more control, and a variety of considerations
must be balanced to define an optimal configuration.
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Thus two types of entry vehicle design are envisaged, those which are purely ballistic
with no means to control the course of the trajectory save changes in drag and those
which have a lifting capability where an on-board control system is required to shape the
trajectory.

1.3 Balistic and Lifting Re-Entry
In the entry phase the most important parameters for a vehicle are (Viviani and Pezzella
2015):

• Lifting parameter, m

CLSref

• Ballistic coefficient, m

CDSref

• Lift-to-drag ratio, L
D

The effect of lifting parameter and ballistic coefficient on the vehicle re-entry trajectory
is shown in figure 1.2. The vehicles with larger values penetrate deeper into the atmosphere
before slowing.

Figure 1.2: Influence of L/D for different configuration and landing region on Earth (Viviani and
Pezzella 2015).

The increase of complexity and mass is compensated by a more flexibility on entry
path thanks to moving surfaces. The lifting force allows to increase the margin of error
in re-entry velocity or angle and “stretch” the size of the entry corridor. Controlling lift
also improves accuracy over an aerocapture manoeuvrer. Configurations with rather high
aerodynamic efficiency, as opposed to ballistic vehicles where the lift is zero, have the
advantage to control the lift vector, reducing level of deceleration and giving a maneuvreing
capability. This allows to increase the landing region on Earth, as shown in figure 1.2 and
to guide the vehicle directly to the desired landing area.
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1.4 – Instability for Blunt-Body Shape

Moreover, the L/D affectsthe stagnation-point heat-transfer rate as is shown in figure
1.3. Lift allows the configuration to decelerate at higher altitudes when the value of the
free-stream density is lower and consequently the aerodynamic heating will be lower at a
given velocity. However, despite the decrease in heat flux, the heat load could increase
due to the increase in flight time. The accurate prediction of peak and time-integrated
heat fluxes is important for the selection and sizing of the thermal protection system (TPS)
material.

L / D=0

L / D~1

Time

q
.

Figure 1.3: The effect of L/D on the reference heating-rate history (Viviani and Pezzella 2015).

Generally, in case of exploration missions, design philosophy is to provide, as much as
possible, a minimum cost solution. Consequently, the adoption of a simple sphere cone
with large half cone angle is the natural choice.

For a ballistic entry, the vehicle shape is chosen in order to ensure a high deceleration at
the highest possible altitude. In this case a vehicle with a low ballistic coefficient accomplishes
a direct entry and aims to lose sufficient kinetic energy in the upper atmosphere to achieve
the desired velocity and altitude conditions for the later mission phases. To achieve a
low ballistic coefficient, large area, high drag coefficient, low mass vehicle are required,
therefore no guidance or control are installed. It is thus necessary to take into account a
margin of dispersion. The aerobraking concept is, therefore, less costly than the aerocapture
equivalent but places emphasis on the design of an acceptably low ballistic coefficient stable
aeroshell. On the other hand, a large drag coefficient leads to a loss of of stability, and
since mass and cost budgets can not provide an onboard stability and control system, the
geometric configuration has to be sufficiently stable in free flight.

1.4 Instability for Blunt-Body Shape
As cited in paragraph 1.3 sphere-cone and spherical section fore-bodies have been proven
to be efficient designs for decelerating payloads from very large entry speeds, minimizing
the peak heating to which the structure has to resist. This body shape is generally called
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a blunt body and some examples are visible in figure 1.4, for example the Apollo Module
Command and the planetary probe Huygens.

However, a dangerous aerodynamic property is associated with blunt vehicles. This is
the dynamic instability that tends to begin near Mach 3.5 and increases with decreasing
Mach number. This instability causes oscillations of the attitude around the equilibrium
angle. If it is not damped it grows so much that affects landing trajectory or even a safe
parachute deployment. Therefore, the suppression of such unstable movement is one of the
key design points for a re-entry capsule (Schoenenberger and Queen 2008).

Figure 1.4: Apollo and Huygens shape.

Packaging and mass requirements tend to drive the back-shell shape, which varies
according to the type of mission it has to face. The backshell geometry is thought to be
the main factor affecting how the wake structure interacts with the body and consequently
the level of vehicle dynamic stability.

1.4.1 Physics of the phenomenon
The first investigations about the dynamic stability of blunt bodies began in the 1950s when
the development of space exploration and ballistic missile technology gained strength. At
that time, engineers knew the phenomena of dynamic instability because even the aircraft
dynamics suffered the same problem. However, due to the really different operating envi-
ronments and geometries of atmospheric entry vehicles, engineers lacked an understanding
of the problem in the early stages.

There is an extensive bibliography about the studies carried out at the time on this
phenomenon: the analytical work of Allen (J. H. Allen 1957), Tobak (Tobak and H. J.
Allen 1958) and the experimental investigations realized by Bird (Bird and Reese Jr 1958),
Fletcher (Fletcher 1959), Short and Sommer (Short and Sommer 1959). These studies
highlighted the unpredictable nature of the phenomenon, its sensitivity to shape and
operational variables and the difficulties linked to analytical, numerical and experimental
tests. However, the detailed mechanism remains largely unknown (Kazemba et al. 2012).
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Recent studies, thanks to the achievements of CFD, have deepened the subject reaching
a better understanding about the nature and the mechanism of this phenomenon, identifying
two triggering causes: pitching moment hysteresis and flow separation and reattachment.

The first observation suggested the existence of a non-linear pitching moment slope
caused by a finite temporal delay existing between the change of the attitude angle and the
consequent variation of the pressure field around the body, showing the phenomenon of the
hysteresis.

In this regard, experimental (Hiraki K. 1998) and numerical (Teramoto, Kouju Hiraki,
and Fujii 2001) tests were carried out on Hayabusa capsule, which demonstrated this delay
between aft-body fields and fore-body pressure. Teramoto data from his paper (Teramoto,
Kouju Hiraki, and Fujii 2001) are presented in figures 1.5 and 1.6.This definitively proved
that the dynamic stability of the capsule depends mainly on the behaviour of the base
pressure and that the capsule is dynamically unstable when the change in the pitch-down
moment induced by the base pressure distribution at positive pitch angle is delayed with
respect to the change in the pitch angle. This time lag causes the phase delay of the
base pressure. The base pressure distribution and delay are closely related to the vortices
behaviour that develop downstream of the body.

Figure 1.5: Pressure variation with pitching motion (Teramoto, Kouju Hiraki, and Fujii 2001).

This is not the only way in which the flow structure could generate unsteady dynamic
forces. The second cause, as said previously, is flow separation and reattachment. Baillion
(Baillion 1997) cited harmful effects of flow reattachment on a vehicle after flow separation.
Just as the near-wake, the reattaching flow creates a zone of unsteady pressure forces that
act on the rear portion of the vehicle and generate unsteady pitching moment. A theory
was developed in Ericsson and Reding 1971 in order to predict the induced forces that act
on the vehicle and cause instabilities. The application of this method to slender cylindrical
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Figure 1.6: Corresponding hysteresis in pitching moment (Teramoto, Kouju Hiraki, and Fujii
2001).

bodies produced moderate success in damping determination, although a more descriptive
picture about these process and its governing principles is still required.

1.5 Numerical investigation
Wind tunnel experiments, free flight experiments and numerical investigations are the main
techniques to examine the dynamic behaviour of aerospace vehicles. In the wind tunnel
free and forced oscillations are the most common measuring of dynamic behaviour.

Wind tunnel testing has traditionally been used to extract derivatives for aircraft based
on scale models. The physical realism of wind tunnel data is well known, but it can be
limited by blockage, scaling, Reynolds-number effects and support interference issues that
prevents the proper modelling of the full-scale vehicle behaviour.

On the other hand, wind tunnel and free flight experiments are costly, hence today
the numerical simulations are widely used, especially during the preliminary phases of the
project, for dynamical investigation analysis, thanks to the low cost and high speed and
accuracy achieved.

Some existing prediction methods are based on semi-empirical formulas for individual
vehicle components. This is the DATCOM-type approach. Results obtained with these
methods are rather rough and they often fail to display the critical behaviour of a particular
configuration. Other methods are based upon linearised potential equation and they use
oscillating boundary formulations for the unsteady effects. These methods provide accurate
results as long as the aerodynamics is governed by irrotational flow and small perturbation.
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Many of the existing theoretical methods are restricted to particular geometries such as
slender bodies, delta wings, etc (Korfanty and Longo 2008).

At the end of the 90’s CFD numerical methods for dynamic derivatives prediction, based
on unsteady Navier-Stokes calculations, have been successfully applied. Navier-Stokes CFD
solvers have reached a level of robustness and maturity to support routine use on relatively
inexpensive computer clusters. A key functionality of CFD solvers is the ability to move the
mesh accordingly to body motion. Rigid body motions can be treated by moving the mesh
rigidly (Arbitrary Lagrangian-Eulerian formulation) in response to the applied sinusoidal
motion. The mesh is deformed once per real time step during the unsteady calculation.

1.6 Scope and Overview of the present dissertation
In this thesis the dynamic stability of two re-entry vehicles, the Hayabusa capsule and the
Space Rider, have been investigated numerically using forced oscillations technique in order
to validate a numerical model that allows to calculate the dynamic derivatives of these two
vehicles. The numerical method developed in “Evaluation of dynamic derivatives using
computational fluid dynamics” has been reproduced using two commercial CFD codes. The
validated procedure could reduce costs and time required by experimental tests, making
the design phase faster.

First of all, the work done in Ravera and D’Ambrosio 2018 was resumed, analysing
Hayabusa capsule and reaching useful informations about numerical approach. Afterwards,
the Space Rider vehicle has been analysed with same procedure comparing the results with
those present in database.

In both cases the setup is based on continuum hypothesis (Kn� 0.01) and subsonic
flow regime (0.3 < M < 0.7). The fulfilment of the first hypothesis allows to use the
Navier-Stokes equations while the second one imposed a compressible flowfield. The capsule
was tested at at various angle of attack of 0, 10 and 20 degrees, while Space Rider was only
tested at an angle of attack of 65 degrees.

The 3D simulations were performed using two commercial solvers, ANSYS FLUENT,
developed by ANSYS, and CFD++ by Metacomp. The capsule geometry was designed
with ANSYS SPACE CLAIM, while the aeroshape of Space Rider was provided by TAS-I.
Both bodies were meshed using ANSYS MESHING.

The first part of this thesis introduces some informations about the space-crafts missions
and explains the methodology applied and numerical technique used to carry out the
analyses. In the second part, results of 3D simulations are presented and discussed. Finally,
conclusions and proposals for further analyses are reported in the last chapter.
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Chapter 2

Mission analysis

The choice to start from Hayabusa is linked to its simple geometry that can be easily
modelled and studied as a first approach. Moreover the presence of a database in literature,
allowed to do comparisons concerning numerical results.

After the procedure developed had been validated, Space Rider shape was analysed.
About this one a complete database and numerical results are available that allowed to
reach a definitive validation of the procedure presented here.

Before talking about the numerical methods a summary about the two bodies and their
mission is reported.

2.1 Musec-C Mission

Figure 2.1: Hayabusa (Hayabusa: A technology Demostrator 2005).

The Hayabusa capsule was adopted by Institute of Space and Astronautics Science (ISAS)
for MUSES-C mission. The main mission purpose was to verify some technologies developed
to achieve a full-scale "sample return mission". These are: a highly fuel efficient ion engine,
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an automatic navigation system to approach far-away asteroids by spacecraft self-control,
sampling under microgravity and a re-entry capsule designed to be heat-resistant in order
to return its captured samples to Earth.

The probe was launched in May 2003 and arrived at Itokawa asteroid, on September 12
2005. After remote scientific observations and terrain measurement, in November 2005 it
conducted three descent operations and two touchdowns on Itokawa’s surface. After its
landing, the one-meter long sampler horn was extended from the bottom of "HAYABUSA"
until to touch the Itokawa surface. A bullet was launched to crush the monolith and raise
a curl of sand gravel, which went through the internal path of the horn. Fragments that
reached "HAYABUSA" were then sampled.

In April 2007, Hayabusa started orbit transfer for returning to the Earth and then
re-entered the atmosphere in June 2010 after overcoming many troubles. At an altitude of
about 200 kilometres the return capsule was separated from probe and began descendent
path. Then the fore-body and aft heat shields of the capsule were separated at an altitude
around 10 kilometres and the sampler container descended with a parachute until the
touchdown at Woomera, Australia.

Figure 2.2: Hayabusa: sample collecting mechanism (Asteroid Explorer Hayabusa 2005).

2.1.1 Hayabusa Capsule
In figure 2.3 the shape of the re-entry capsule is represented. This was determined to respect
the weight and dimension constraints, and to maximize the inside volume for installing the
sample canister, parachute, pyrotechnic devices and electronics. The capsule weights 17
Kg and is constituted by a hemispherical nose with 202 mm in radius and a conical side
body with 45 degrees in half cone angle. Maximum diameter is 404 mm, and the centre of
gravity position is approximately 120 mm from the nose (Ishii and Koju Hiraki 2003).

One of the most peculiar features of the Muses-C mission was the re-entry velocity of the
sample return capsule. It re-entered directly into the Earth’s atmosphere, at about 12km/s,
and was exposed to a much higher temperature than the Space Shuttle’s atmospheric
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Figure 2.3: Hayabusa reproduction (on the left) and size (on the right) (Ishii and Koju Hiraki
2003).

re-entry. Its cooling system employed ablation cooling in which the heat-resistance material
itself decreased while releasing heat, for this purpose a carbon phenolic resin was employed.
Due to weight constraint, capsule had no active equipment for attitude control, therefore
passive aerodynamic stability was ensured over the entire re-entry flight.

Aft 
(Parachute 

Heat Shield 
Cover)

Figure 2.4: Technologies aboard the Hayabusa (Asteroid Explorer Hayabusa 2005).

2.1.2 Reference System and CAD Model
It is mandatory to establish an unique reference system. As shown in figure 2.5 the centre
of gravity is fixed and located on the x axis at 0.12m behind the capsule apex. Referencing
to Schoenenberger, Kutty, et al. 2014, the axis are organized in the following way:

• x axis is placed along with revolution axis and the positive direction is towards the
nose;

• y axis is chosen in order to measure a positive pitch moment for positive angle of
attack;
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• z axis is set in order to respect the right hand rule.
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Figure 2.5: Forces and moments convention.

The reference length is Lref = 0.404m, the reference surface is Sref = 0.1282m2, while
the moment reference centre (MRC) is located in the centre of gravity.

Following the measures reported in figure 2.3 and the reference system shown in figure
2.5, a CAD model is realized on Ansys Space Claim.

Figure 2.6: Hayabusa: CAD model.

2.1.3 Aerodynamic Database
In Ishii and Koju Hiraki 2003 is available a database of the capsule aerodynamic coefficients.
The aerodynamic properties are function of Mach number and angle of attack and they are
based on the wind tunnel data from the subsonic to supersonic regime, while in hypersonic
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regime the data are based on numerical analyses. Moreover, using balloon drop tests the
wind tunnel results in transonic regime are revised.
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Figure 2.7: Axial force coefficient as function of Mach number and angle of attach (Ishii and
Koju Hiraki 2003).

Figure 2.8: Normal force coefficient as function of Mach number and angle of attach (Ishii and
Koju Hiraki 2003).
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Figure 2.9: Pitching moment coefficient as function of Mach number and angle of attach (Ishii
and Koju Hiraki 2003).
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Figure 2.10: Dynamic damping coefficient as function of Mach number and angle of attach (Ishii
and Koju Hiraki 2003).

2.2 Space Rider Program

In the framework of the Future Launchers Preparatory Programme (FLPP), the ESA aimed
to provide a development plan for the design and test for a technology platform capable to
perform a manoeuvred re-entry flight. The vehicle was also intended to serve as a test bed
for in-flight qualification of vehicle subsystems and systems and to provide another source
of data on fundamental hypersonic aero-thermodynamic phenomena for validation of tools,
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databases, and design processes (Viviani and Pezzella 2015).
In this context the Italian Space Agency presented their own Programme for Reusable

In-orbit Demonstrator in Europe (PRIME program) called Intermediate eXperimental
Vehicle (IXV).

The IXV mission was successfully performed on the 11th of February 2015, completing
a parabolic flight and returning intact in the Pacific Ocean. All flight hardware and all
flight data were successfully recovered, and through the telemetry of the flight segment,
acquisition of the ground segment and on-board registration, it was confirmed that the
flight was completed with success.

2.2.1 Space Rider Vehicle
The Space Rider program is the successor of the IXV experience and it applies all design,
development and flight experiences for the first European reusable space transportation
system. This platform provides European routine access and return from orbit, with the
purpose to perform operation and experimentation in low Earth orbit and also a safely
return on Earth, allowing payload recovery and rapid vehicle re-utilization for successive
missions (Balossino et al. 2017).

Figure 2.11: Space Rider with service module.

The baseline system architecture is a combination of a modified version of the AVUM
(Vega C fourth stage Space Rider that allows to to operate in orbit for about two months)
as disposable de-orbit module and an IXV derived lifting-body as re-entry reusable module.
The re-entry module can host payloads in the Multi-purpose Cargo Bay.

The re-entry module is a lifting body based on the IXV 1:1 scale vehicle, which had
already demonstrated space entry and hypersonic/supersonic flight capabilities. Respect
to the IXV mission, the Space Rider will have the capability of landing on ground and
re-usability, thus an appropriate recovery approach has been defined based on adoption
of a Descent and Landing system. For the descent phase an exploiting parachutes will be
used, while a Landing Gears will allow the aircraft to be laid down (Marini et al. 2017).
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Survival to atmospheric re-entry environment will be guaranteed by a thermal protection
system based on ceramic and ablative materials and by a control system with aerodynamic
control surfaces and reaction control rockets. After the hot re-entry phase the vehicle will
tackle the descent phase aided by a guided parafoil that will bring the spacecraft up to a
soft landing either on a runway or on an open field (Space Rider PRIDE 2017).

The reference mission for the spacecraft design foresees a rendezvous with the Inter-
national Space Station that will release scientific payloads to be captured by the vehicle
robotic arm, stored in the cargo bay and brought on ground. Space-Rider will be capable
to (Space Rider homepage 2017):

• free-flying applications such as experiments in microgravity;

• in-orbit technology demonstration and validation for applications for:

– exploration, such as robotics;
– Earth observation, such as instrumentation;
– others, such as Earth science, telecommunication;

• surveillance applications such as Earth disaster monitoring, satellites inspection.

Figure 2.12: Space-Rider concept of operations (Marini et al. 2017).

Space Rider will be launched on Vega-C from Europe’s Spaceport in Kourou, French
Guiana, with up to 800 kg of cargo and remain in space in a low-drag altitude orbit
for about two months. It is designed to operate at different orbital inclinations, from
equatorial to high-latitude. For orbits with inclination more than 37°, landings will be
performed at the Portuguese Santa Maria Island in the Azores archipelago. The Azores
archipelago is a suitable European landing location for missions that require high-latitude
inclinations because it allows Space Rider to return at the same latitude as its operational
orbit, requiring fewer de-orbiting manoeuvres (Space Rider homepage 2017). For lower
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inclination missions, French Guiana and Dutch Curaçao are being considered (Space Rider
Esa Multimedia 2018).

As far as the descent phase is concerned, since lifting body vehicle stability decays at
high angles of attack and low airspeeds, a combination of parachutes and para-foil has been
investigated. The Descent System will be triggered at subsonic speed, below Mach 0.8, a
first phase of deceleration guaranteed by drogue parachute(s) at about 15 km altitude, then
from a Mach number of 0.22 and 0,18 parafoil will be deployed. Then the controlled descent
phase will begin with a vertical speed lower than 0.3 m/s and with 35 m/s horizontal speed.
This solution will allow to land safely, reducing operating costs as well as recovery and
refurbishment time of the vehicle (Balossino et al. 2017).

2.2.2 Reference System and CAD Model

The reference length is Lref = 4.4 m, the reference surface is Sref = 7.26 m2, while the
moment reference centre (MRC) is located in the plane of symmetry at 58% of the reference
length from the nose.

• x axis is placed along with revolution axis and the positive direction is towards the
nose;

• y axis is chosen in order to measure a positive pitch moment for positive angle of
attack;

• z axis is set in order to respect the right hand rule.

Figure 2.13: Aerodynamic convention (Marini et al. 2017).

In figure 2.14 it is reported the Space Rider CAD provided from TAS-I.
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Figure 2.14: Space Rider CAD model.

2.2.3 Aerodynamic Database
The values of the coefficients and aerodynamic derivatives for Space Rider were extracted
from an aerodynamic database provided by TAS-I. Specifically to the static coefficients, they
refer to tests carried out in the wind tunnel for the IXV aero-shape which for what concerns
the aerodynamic part is the same as the Space Rider aircraft. Instead the aerodynamic
derivatives are proper to Space Rider and refer to numerical tests.

AoA Database
[deg] CA CN Cm

3σ 0.0115 1.1305 0.0409
65 0.0260 1.0255 0.0199
3σ -0.0635 0.9205 -0.0011

Table 2.1: Aerodynamic coefficients from database with uncertain values at 3σ.

AoA Data Sheet
[deg] Cmα Cmα̇ Cmq Cmq̇

65 -0.211 1.336 -0.06 -

Table 2.2: Aerodynamic derivatives from database.
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Chapter 3

Background theory:
aerodynamic stability

Stability is an equilibrium property of physic systems and describes the its behaviour in the
near of equilibrium point. In this acceptation there are three types of equilibrium. Neutral
equilibrium is when for each little perturbation a system assumes a new stable position.
A system is in stable equilibrium when even it is disturbed with a little perturbation it
returns to its initial state. Conversely, an unstable system lost its equilibrium state when it
is perturbed.

Now, imagine to leave a ball on a semi-spherical surface. The equilibrium point is
in the lower point of the surface. When the ball is released it tends to the equilibrium
point but due to its kinetic energy he passes that point and reach a new height. The ball
oscillates around the equilibrium point with gradually smaller amplitude until to stop at
the lowest point of the surface. In this scenario it is possible to distinguish two aspects:
the tendency to return to equilibrium point and oscillations behaviour over time. The
first feature falls into static stability acceptation meanwhile the second falls into dynamic
stability acceptation. Intuitively static instability implies dynamic instability, but static
stability does not generally guarantee dynamic stability.

Figure 3.1: In order: stable, unstable and neutral equilibrium.

With reference to a vehicle, the design can be done in such a way that the stability
is ensured without a particular control system. This type of stability is called inherent
aerodynamic stability, but for particular design this is not possible so a de-facto stability is
implemented, in which stability requirements are met with moving surfaces and the aid of a
control system augmented with sensors and feedback. Generally, for a re-entry capsule, due
to restrictive weight requirements it is preferable to ensure an inherent stability, avoiding
to install active attitude control systems.
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In this chapter the link between aerodynamic forces/moments and stability is discussed
in the first part, then the forced oscillation method is shown in order to extract the
aerodynamic derivatives.

∆θ

t

∆θ

t

∆θ

t

Figure 3.2: Dynamic behaviour: neutral, stable and unstable.

3.1 Stability Derivatives
Stability is usually associated with the response trajectory following the application of a
disturbance on a physical system at static equilibrium position. These disturbances could be
internal such as changes in the system configuration, changes in centre of gravity locations,
or changes in the control surface deflections, but also external, i.g. turbulence or wind
gusts. For the specific case, all of these changes have effects on the aerodynamic forces and
moments on the vehicle.

In fluid dynamics dimensionless parameters are largely used, such as Mach number,
Reynolds number, and Knudsen number and also dimensionless force and moment coeffi-
cients. An aerodynamic force coefficient is defined as:

Force coefficient = Force

q∞Sref
(3.1)

while moment coefficient is defined as:

Moment coefficient = Moment

q∞SrefLref
(3.2)
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3.2 – Stability and Stability Derivatives

where:

q∞ = Dynamic pressure = 1/2ρ∞V 2
∞ (3.3)

ρ∞ = Free-stream mass density of fluid (3.4)
V∞ = Free-stream fluid velocity (3.5)

About the body axes there are axial, normal, and lateral force coefficients (CA, CY ,
CN ), roll, pitch, and yaw moment coefficients (Cl, Cm, Cn). These coefficients are function
solely of the flight conditions and vehicle configuration, Cj = Cj(α, β,M∞, h, δi, p, q, r, α̇, β̇),
where j represents each of the individual force and moment coefficients, h is the altitude, δi
represents any other configuration such as control surface settings, and p,g, and r are the
rotation rates about the body axes.

Bryan was the first on 1911 to introduce a representation of aerodynamic force and
moment coefficients by means stability and control coefficients (Bryan 1911). The technique
proposed by Bryan assumes that the aerodynamic forces and moments can be expressed
in terms of perturbation variables. Perturbation variables are the instantaneous changes
from the reference conditions for the translational velocities, angular velocities, control
deflections, and their temporal derivatives. With these assumption, the aerodynamic forces
and moments can be expressed by means of a Taylor series expansion. For example:

∆CM (α, β,M∞, h, δi, p, q, r, α̇, β̇) = ∂CMα

∂α
∆α + ∂CMM∞

∂M∞
∆M∞ + ...+H.O.T. (3.6)

The contribution to CM due to the change in incidence α is just ∂CMα

∂α ∆α. The term
∂CMα

∂α is called stability derivative and is evaluated at the reference flight condition. The
same discuss is possible to apply it to the other terms.

3.2 Stability and Stability Derivatives
For thesis aim, the hypothesis of decoupling between lateral directional dynamics (CN , Cl,
Cn) and longitudinal one (CA, CY , Cm) is made. In particular, attention has been paid to
characterisation of longitudinal stability in symmetric fly at a specific velocity, altitude and
angle of attack. Furthermore, the free body can rotate only around pitching axis. Thus,
pitching moment coefficient can be expressed as:

CM = CM0 + CMα α + CMα̇ α̇

(
Lref
V∞

)
+ CMq q

(
Lref
V∞

)
+ CMq̇ q̇

(
Lref
V∞

)2
(3.7)

Static stability associated with a vehicle longitudinal axis normally is addressed by the
sign of CMα. To obtain a stabilizing response this derivative must be negative, in this way
when the angle of attack increases due to a perturbation a negative moment develops and
restore the flight trim configuration.

The α̇ and q derivatives owe their existence to the fact that the pressure distribution
around the body does not adjust itself instantaneously to its equilibrium value when the
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3 – Background theory: aerodynamic stability

angle of attack and the pitch angle are suddenly changed. It is necessary to treat the
two terms distinctly because they induce different longitudinal distribution of the normal
velocity. In fact considering a free-flying aircraft, the distribution due to the angle of pitch
variation (i.e. due to the pitching velocity q) varies along chord and intersects zero at the
axis of rotation (figure 3.3), while the distribution due to the angle of attack variation
is constant along the chord (figure 3.4). Although they are two different concepts, in a
rotation around the pitch axis their effects overlap.

y

q

x

qx

Figure 3.3: Velocity distribution along the chord due to a rotation around the pitch axis.

y

x

−ż

Figure 3.4: Velocity distribution along the chord due to a translation along the z-axis.
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3.3 – Forced Oscillation Technique

In unsteady oscillatory motion, static terms are not enough to express forces and
moments. They are no longer in phase with motion and the non-stationary terms take on
more weight; thus they depend also on the rate of change of the aircraft motion.

The Cmq is called damping derivative. While Cmα̇ derivative is labelled acceleration
derivatives since, from the aerodynamic point of view, the effects due to a vertical acceleration
are equivalent to those due to a time rate of change in the angle of attack. This information
is used to separate the purely-rotary derivatives Cmq from fixed-axis oscillatory counterparts
Cmq + Cmα̇ (Orlik-Rückemann 1981).

The sum of the two terms, Cmq +Cmα̇, takes the name of damping sum and for a vehicle
dynamically stable it is negative. The negative sign induce a moment that dampens the
oscillations of motion.

3.3 Forced Oscillation Technique
There are four main experimental methods for determining the dynamic stability of a body
that involve the use of a wind-tunnel. Two of these make use of a support, called sting,
to hold back the body: free oscillations and forced oscillations technique. In the first the
body is exposed to the flow and is free to oscillates, while for the second support impose
a specific motion to the body. Another technique is free-flight wind-tunnel test in which
a scaled body is monitoring while drop down eliminating the intrusive effect of the sting.
Vehicle observations are made in test section of the wind tunnel with Schlieren photography
and high-speed video to capture the pitching behaviour and wake structure. Similar to the
free-flight wind-tunnel methods, ballistic range testing offers free-flight dynamic behaviour
without the constraints imposed by supports. A scale model is fired from a gun and travels
through measuring stations where position, speed and orientation are recorded together with
the current time step. Ballistic range testing is generally chosen over free-flight wind-tunnel
testing because it offers more pitch cycle observations,and reducing uncertainty (Kazemba
et al. 2012).

The forced oscillations technique is the best to be implemented in a CFD analyse, and
it is the method chosen in this work to extract the aerodynamic derivative. In this chapter
an overview on this technique and the consequence data reduction is shown.

With the forced oscillations technique, a specific periodic motion is imposed to the
body. In particular, for the aerodynamic derivative relative to pitching moment a sinusoidal
variation around pitching axes is imposed to the angle of attack.

α(t) = α0 + ∆α(t) = α0 + A sin (ωt) (3.8)

Where ω = 2πf , f is the frequency and A is the amplitude of oscillation. Angle of
attack and pitch angle are related by this kinematic relation:

θ = α + γ (3.9)

Where γ is the ramp angle. The pitch angle variation law is the following:

θ(t) = α0 + γ + A sin (ωt) (3.10)
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3 – Background theory: aerodynamic stability

With these relations it is possible to obtain the time rate of change in the angle of attack
and pitching rate:

∂α

∂t
= α̇ = ωA cos (ωt) = ∂θ

∂t
= q (3.11)

∂q

∂t
= q̇ = −ω2A sinωt (3.12)

All these relations can be substituted in the linear relation of CM :

CM = CM0 + CMα α + CMα̇ α̇

(
Lref
V∞

)
+ CMq q

(
Lref
V∞

)
+ CMq̇ q̇

(
Lref
V∞

)2
(3.13)

To obtain:

CM = CM0 + CMα α0 + CMα A sin(ωt) + CMα̇ ωA cos(ωt)
(
Lref
V∞

)
+

+ CMq ωA cos(ωt)
(
Lref
V∞

)
− CMq̇ ω

2A sin(ωt)
(
Lref
V∞

)2 (3.14)

Gathering the constant terms in C0 and the terms dependent by sine and cosine, it is
possible write the following expression:

CM = C0 + Aω (CMα̇ + CMq)
(
Lref
V∞

)
︸ ︷︷ ︸

out−phase component

cos(ωt) + A

[
CMα − CMq̇

(
ωd

V∞

)2
]

︸ ︷︷ ︸
in−phase component

sin(ωt) (3.15)

The form obtained can be associated to the 1st Fourier coefficients:

CM = C0 + CM1c cos(ωt) + CM1s sin(ωt) (3.16)
The procedure shown produces two terms that take the name of out-of-phase and

in-phase coefficients (Thompson, Frink, and Murphy 2010), respectively:

CM1c = Aω (CMα̇ + CMq)
(
Lref
V∞

)
(3.17)

CM1s = A

[
CMα − CMq̇

(
ωLref
V∞

)2
]

(3.18)

Considering only the time-dependent terms (contribution at CM due to oscillations )
the two components can be calculated as shown in Da Ronch et al. 2012:

CM1c = 1
ncT

∫ ncT

0
∆CM cos(ωt)dt (3.19)

CM1s = 1
ncT

∫ ncT

0
∆CM sin(ωt)dt (3.20)
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3.3 – Forced Oscillation Technique

As reported in the section 3.2 the rotation around pitching axis produces two different
effects that are superimposed. In fact from CM1c it can not possible to extract the single
aerodynamic derivatives. To do that it is necessary to impose a new oscillation motion. In
particular to extract CMα̇ and CMα, a variation law of the angle of attack, with pitch angle
constant and equal to, zero has to be imposed. This is possible with a periodic motion
along z axis:

z = z0 sin(ωt) ⇒ ∂z

∂t
= ż = ωz0 cos (ωt) (3.21)

The body animated by ż motion sees a variation of angle of attack, but its body axis
remains aligned to local horizontal axis, so pitch angle is zero and constant. With reasonable
error, for ż/V∞ << 1 it is possible to calculate angle of attack variation approximating the
arctangent to its argument:

z
x

V∞

żVeff

∆α

Figure 3.5: Angle of attack due to ż velocity.

∆α = arctan
(
ż

V∞

)
≈ ż

V∞
= ωz0 cos (ωt)

V∞
(3.22)

Referring to the convention shown above, if the body moves along z axis, the flow field
form body viewpoint is similar to see a free stream with a velocity component in opposite
direction. Combining the two component the resulting angle of attack is positive. The
complete angle of attack’s law is:

α(t) = α0 + ∆α(t) ≈ α0 + ωz0 cos (ωt)
V∞

(3.23)

and its time rate of change:

∂α

∂t
= α̇ = −ω

2z0 sin (ωt)
V∞

(3.24)

Remembering that:

θ = 0 ⇒ ∂θ

∂t
= q = 0 (3.25)

The CM expression 3.7 will be:

CM = CM0 + CMα α + CMα̇ α̇

(
Lref
V∞

)
(3.26)

So, substituting all the expression found:
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3 – Background theory: aerodynamic stability

CM = CM0 + CMα α0 + CMα
ωz0 cos (ωt)

V∞
− CMα̇

ω2z0 sin (ωt)
V∞

(
Lref
V∞

)
(3.27)

Doing the same steps executed upon, it is possible to recognize the out-phase and
in-phase component:

CM = C0 + CMα
ωz0

V∞︸ ︷︷ ︸
out−phase component

cos (ωt)− CMα̇
ω2z0

V∞

(
Lref
V∞

)
︸ ︷︷ ︸
in−phase component

sin (ωt) (3.28)

Again, the form obtained can be associated to the 1st harmonic Fourier’s coefficients:

CM = C0 + CM1c cos(ωt) + CM1s sin(ωt) (3.29)

And the out-phase component and in-phase component are in the following form:

CM1c = CMα
ωz0

V∞
(3.30)

CM1s = −CMα̇
ω2z0

V∞

(
Lref
V∞

)
(3.31)

These two component can be calculated as shown previously:

CM1c = 1
ncT

∫ ncT

0
∆CM cos(ωt)dt (3.32)

CM1s = 1
ncT

∫ ncT

0
∆CM sin(ωt)dt (3.33)

and then extracting the terms CMα and CMα̇ it is possible to calculate CMq and CMq̇

using the expressions 3.17 and 3.18.
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Chapter 4

Numerical Techniques

The build-up of test required the adoption of particular numerical techniques. Over the
years, a particular procedure has been established for the calculation of aerodynamic
derivatives using the forced oscillations method, called the ALE approach. This numerical
method uses a mobile grid whose law is completely independent from the flow. This method
is implemented in both Fluent and CFD++, however tests have proved numerical errors
spread in Fluent. Thus, Chimera technique has been adopted using a moving and a fixed
domain. This chapter presents two sections concerning the discussion of the two methods
and a section in which models and algorithms used are shown.

4.1 Arbitrary Lagrangian Eulerian Approach
The fluid mechanics equations are classically written in two kinematic descriptions: La-
grangian and Eulerian. In Lagrangian algorithms, the computational cells move along
with local fluid velocity and allows to track free surfaces and interfaces between different
materials. However, this capability may lead to a large computational grid distortion
and recourse to frequent re-meshing. In Eulerian algorithms the computational nodes
are fixed while the flow evolves; they are more robust and widely used in fluid dynamics.
The weakness reveals in simulations involving interactions of multi-materials, where extra
numerical procedures are required to identify the interfaces, generating numerical errors.
Moreover, in complex flow, accuracy and details are wasted due to lacking resolution.

To cope with each algorithm defects, a new technique has been developed, capable to
maintaining the best features of Lagrangian and Eulerian approaches (Donea et al. 2004).
Because of this flexibility the method is referred as Arbitrary Lagrangian–Eulerian (ALE)
technique and it was proposed in Hirt, Amsden, and Cook 1974 to solve fluid dynamics in a
moving and deforming grid. In fact, in ALE formulations, the grids for the computational
domain can move arbitrarily and independently from fluid motions, which makes the code
more robust in moving boundary simulations. Thanks to this freedom, the approach can
handled greater mesh distortions than a purely Lagrangian method and with more resolution
than that afforded by a purely Eulerian approach.

It is important to note that the influence of an ALE formulation in flow problems
is on the convective terms that have to be rewritten to account mesh motion, while all
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t Lagrangian description

t Eulerian description

t ALE description

Material point

Node

Particle motion

Mesh motion

Figure 4.1: One-dimensional example of Lagrangian, Eulerian and ALE mesh and particle motion
(Hirt, Amsden, and Cook 1974).

spatial gradients are computed in respect to the stationary frame. The convective velocity
v− ug, where ug represents mesh velocity, replaces the flow velocity v, which appears in
the convective term of Eulerian formulations (Donea et al. 2004).

∂

∂t

∫
Ω
ρdΩ +

∫
S
ρ (v− ug) · ndS = 0 (4.1)

∂

∂t

∫
Ω
ρvdΩ +

∫
S
ρ (v− ug) v · ndS +

∫
S
pĪ · ndS −

∫
S

¯̄τν · ndS =
∫

Ω
ρfbdΩ (4.2)

∂

∂t

∫
Ω
EdΩ+

∫
S

(E + p) (v− ug) ·ndS−
∫
S

(¯̄τν · v) ·ndS+
∫
S

q̇ ·ndS =
∫

Ω
ρ
(
fb · v + ξ̇

)
dΩ

(4.3)
In the foregoing equations, Ω and S are the volume and boundary surfaces of a moving

control volume, respectively. It is very important to note that the integral form for the
Lagrangian and Eulerian mesh descriptions are contained in the above ALE forms. In
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4.1 – Arbitrary Lagrangian Eulerian Approach

(a) (b)

(d)(c)

Figure 4.2: Lagrangian versus ALE descriptions: (a) initial FE mesh; (b) ALE mesh at t =1 ms;
(c) Lagrangian mesh at t =1 ms; (d) details of interface in Lagrangian description (Hirt, Amsden,
and Cook 1974).

fact, for ug = 0 the equations are written in Eulerian description, while the Lagrangian
description corresponds to selecting ug = v. For a mesh rigid motion, volume and surfaces
of each cells are constant in time, but for deforming grid, Ω = Ω(t), volume is determined
using the geometric conservation law:

dV

dt
=
∫
S
ug · dS (4.4)

It is possible to identify three levels of ALE:

• Steady ALE - used to simulate flows on non-moving grids, for example in a rotating
frame.

• Moving grids - this approach is typically used for the calculation of the aerodynamic
derivatives. It is used to simulate a flow on moving grids but grid deformation does
not take place, dV/dt = 0.

• Deforming grids - cells are deformed and adapted to the physical system. It is indicated
for simulate fluid-structural interactions.
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In CFD codes this technique requires further procedures to take into account the
temporal movement/deformation of the grid. For further details refer to Hirt, Amsden, and
Cook 1974.

4.2 Chimera Technique
The Chimera method was developed by Benek et al. 1986 as a meshing simplification in
alternative to unstructured grids. The main idea is to decompose a complex geometrical
domain into simpler and overlapping subdomains. Each of these is generated independently
and then coupled by means a coupling strategy in order to obtain a global solution and
provide a natural level of parallelism for execution on massively parallel computers (Tang,
Jones, and Sotiropoulos 2003).

Summarizing the technique allows to (Houzeaux et al. 2014):

• simplify mesh generation - handle complex geometries, generating different meshes
around the components of the computational domain in an independent way.

• execute local refinement - when more accuracy is required in some specific computa-
tional domain parts, local refinement can be achieved by putting a refined patch mesh
into the original mesh.

• handle moving components - treat problems where components are moving without
having to re-mesh the whole computational domain. The independent meshes are
moved as rigid bodies and the solution is recoupled when suited.

Generally the mesh is divided into a background mesh, which covers all the computational
domain, and patch meshes attached to the different components which are located upon the
background mesh. The governing equations are solved independently in each subdomain
and to obtain continuous solution the informations are transferred from one subdomain to
another via interfaces.

The implementation of boundary conditions for all flow variables at interfaces (especially
in complex, unsteady flows) is the weak point of overset grid algorithms (Tang, Jones, and
Sotiropoulos 2003). In complex, unsteady flow simulations such boundary conditions should
ensure that vortical structures generated in one subdomain can cross interfaces and interact
with the flow in adjacent subdomains without distortions. The original Chimera technique
developed by Benek, accomplishes this exchange using a linear-interpolation of all primitive
variables. This approach, however, does not guarantee that the obtained numerical solution
will be globally conservative. The term globally conservative implies that the fluxes of
conserved quantities (mass, momentum and energy) integrated over the boundary of the
composite domain add up to zero. Lack of global conservation could be detrimental to
the accuracy and smoothness of the computed solution, especially in incompressible flow
simulations where global mass conservation is a necessary condition for the existence and
uniqueness of a smooth pressure field.

4.2.1 Fluent: Overset Mesh
In Fluent code this technique is called overset mesh and it is useful to report how the
chimera technique is implemented to highlight also the requirements to be met in the
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4.2 – Chimera Technique

generation of the mesh (Ansys Fluent User and Theory’s Guide 2018). Figure 4.3 shows
a simplified mesh for a flow over a cylinder in a duct. The mesh consists of two parts: a
background mesh representing the duct and a separate component mesh around the cylinder.
The case is set up specifying the outer boundary of the cylinder mesh as overset boundary,
and creating an overset interface.

Figure 4.3: Overset case set-up (Ansys Fluent User and Theory’s Guide 2018).

Thus Fluent automatically establishes the necessary connectivity between the meshes.
In this process the cells are classified as dead cells those that fall outside the domain and
solve cells those where the flow equations are solved. To these are added two other types of
cells: receptor cells and donor cells. Receptor cells receive data interpolated from another
mesh, while the donor cells are those from which the first ones get their data. When an
overset interface is initialized, there are three main steps that Fluent completes to establish
connectivity between the participating zones:

• hole cutting;

• overlap minimization;

• donor search;

Hole cutting is the process by which cells lying outside of the flow region are marked as
dead cells. This is achieved by marking all the cells that are cut by physical boundary zones
(wall, inlet, outlet, symmetry, and so on). The result of this operation is a valid overset
mesh with maximum mesh overlap.

The maximum overlap mesh shown in figure 4.4 is a valid overset mesh, however, it may
not be ideal. A large overlap between component and background meshes is computationally
inefficient since the equations are solved in more cells than are necessary. Additionally, the
cell sizes of the overlapping meshes may vary greatly, this affects the data interpolation
and is detrimental to solution quality. Ideally meshes should transition in regions of similar
resolution.
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Figure 4.4: Overset mesh before and after hole cutting (Ansys Fluent User and Theory’s Guide
2018).

Here comes into play overlap minimization. It is used to minimize mesh overlap among
different component and background meshes by converting additional solve cells into receptor
cells and turning unnecessary receptors into dead cells. During this process, a solve cell
is turned into a receptor cell if the cell can find a suitable donor cell with higher donor
priority. In mesh overlap areas, without additional user input, the solver attempts to obtain
the solution on the finest local mesh. The resulting mesh interface moves to an area where
the meshes are more comparable in cell size, leading to better solution quality.

Figure 4.5: Figure shows the cylinder case after the overlap minimization step (Ansys Fluent User
and Theory’s Guide 2018).

Also note that with overlap minimization, data interpolation between cell zones does not
necessarily occur at the overset boundaries. The purpose of specifying an overset boundary
is primarily to specify that overset mesh coupling should happen, and not where it should
occur.
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The donor search is the final step in establishing the domain connectivity. Fluent
searches other meshes for valid solve cells for each receptor. The solve cell containing the
cell centroid of the receptor cell, along with its connected solve cells, are used as donor
candidates for a given receptor. Each receptor must have at least one valid donor cell.
There must be four or more cells in the overlap of both meshes to ensure a successful
donor search. The receptor cells, which form the fringe layer of a mesh zone, must overlap
sufficiently with the opposite mesh, such that they find valid solve cells as donors. For an
example of valid mesh overlap.

4.3 Numerical set-up
In general partial differential equations such as Navier-Stokes equations requires the def-
inition of initial conditions and all specific conditions on the boundaries of the domain.
In this way the problem is defined well-posed and the algorithm is able to start iteration.
Moreover, to set-up a calculation using finite element method for Navier-Stokes equations
gas behaviour, turbulence model, resolution scheme and discretization order have to be set.

4.3.1 Boundary conditions
Although the sequence of setting is different between one software and another, the boundary
conditions are the same. In cases under study, three boundary conditions are utilized and
they are symmetry, wall and far-field conditions:

• symmetry boundary conditions are used when the physical geometry of interest, and
the expected pattern of the flow/thermal solution, have mirror symmetry. In every
case, the symmetry plane is recognized as an inviscid tangency (Slip Wall), where the
normal velocity in the ghost cells is a reflection of the velocity in the interior cell.

• solid wall boundary conditions are used to bound fluid and solid regions. It imposes
the tangency condition to the flow.

• far-field conditions are used to model a free-stream condition at infinity. it uses
characteristic information (Riemann invariants) to determine the flow variables at
the boundaries. To set correctly this boundary condition the following information
are necessary: static pressure, Mach number, temperature, flow direction,turbulence
parameters.

The table 4.1 shows what parameters are assigned for each boundary type.

4.3.2 Gas Model
Ideal gas law has been used to connect pressure, density and temperature of the air. For
compressible flows, the it is written in the following form:

ρ = pop + p
R

Mw
T

(4.5)
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Body’s Wall {Wall}
Wall Motion -
Thermal Conditions -
Free-Stream {Pressure far-field}
Static Pressure (Pa) -
Free-Stream Mach number -
x-component of flow Direction -
y-component of flow Direction -
z-component of flow Direction -
Temperature (K) -
Turbulent Intensity (%) -
Turbulent Viscosity Ratio -
Symmetry Plane {Symmetry}
- -

Table 4.1: Summarizing table for each boundary type.

where pop is the operating pressure (set to 0 Pa), p is the local static pressure relative to
the operating pressure, R is the universal gas constant, and Mw is the molecular weight.
The temperature, T , is computed from the energy equation.

Moreover, Sutherland law has been set to get the gas dynamic viscosity coefficient from
temperature value.

µ = µ0

(
T

T0

)3/2 T0S

T + S
(4.6)

For air T is the static temperature, µ0 = 1.716 · 10−5 Kg/m s, T0 = 273.11 K and
S = 110.56K.

4.3.3 Turbulence Models
In this section are shown the type of N-S equations and three turbulence models used in
this thesis.

The study of a turbulent flow can be conducted in two ways. The first is the direct one,
in which the equations of motion are studied in all their details called direct simulations.
The second is the mediated one, in which new sizes are apparently defined, simpler than the
original ones, and in terms of which the new evolutionary equations are written (Germano
2010).

Since the direct study of the N-S equations requires enormous computing power, thus
to resolve the flow evolution, Reynolds Averaging Navier-Stokes (RANS) have been used.
According to Reynolds, in a stationary turbulence flow each of the instantaneous dependent
variables in the N-S equations can be decomposed into a time–average and a fluctuating
component:

f(x, t) = f̄(x) + f ′(x, t) (4.7)
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f̄(x) = 1
T

∫ t0+T

t0

f(x, t)dt (4.8)

where f̄ is the time–averaged component and f ′ is the fluctuating one. For the sake of
simplicity considering the incompressible N-S equations:

∂ui
∂t

= 0 (4.9)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xi

= − ∂p

∂xj
+ µ

∂2ui
∂x2

j

(4.10)

Substituting into these equations the flow variables seen above and averaging over time,
the Reynolds Averaged Navier-Stokes (RANS) equations are obtained:

∂ūi
∂t

= 0 (4.11)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xi

= − ∂p

∂xj
+ µ

∂2ui
∂x2

j

− ∂

∂xj
ρu′iu

′
j (4.12)

They have the same general form as the instantaneous Navier-Stokes equations, with the
velocities and other flow variables represented in time-averaged form. The only difference is
the additional called Reynolds stresses that account the effects of turbulent fluctuations on
mean flow. The Reynolds stress tensor, represents the mean flux of momentum in i-direction
due to turbulent fluctuations in j-direction.

The media process has left the number of equations unaltered, but has increased the
number of unknowns variable. The problem of solving these equations is the so-called
problem of closure, where for closure it means the formulation of a turbulence model that
expresses Reynolds’ efforts in relation to average values (Germano 2010).

A common method to write the Reynolds tensor employs the Boussinesq hypothesis
that permits to relate the Reynolds stresses to the mean velocity gradients.

− ρu′iu′j = 2µts̄ij −
2
3∂xk + ρkδij (4.13)

where s̄ij is the mean rate-of-strain tensor:

s̄ij = 1
2

(
∂ūi
∂xj

+ ∂ūj
∂xi
− 2

3δij
∂ūk
∂xk

)
(4.14)

This hypothesis places in analogy the turbulent agitation with the thermal one, where
for analogy the speed of thermal stirring is substituted by a velocity of macro-scale, or
turbulent stirring speed vt, and the free collisional mean path by a macro-scale length, or
mixing length lt. Respect to complete Navier-Stokes the mediated equations have the same
structure but the viscosity is increased by a turbulent viscosity µt given by:

µt ' ρvtlt (4.15)

and it is clear that the problem is now how determining vt and lt.
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4 – Numerical Techniques

The Boussinesq hypothesis is used in the k − ε models, and the k − ω models. The
advantage of this approach is the relatively low computational cost associated with the
computation of the turbulent viscosity, µt. For k − ε and k − ω models, two additional
transport equations are solved and µt is computed as a function of k and ε or k and ω. The
disadvantage of the Boussinesq hypothesis is that it assumes µt as isotropic scalar quantity,
which is not strictly true.

k − ε

The turbulent viscosity models use two transport equations for the determination of
turbulent length and time scale from witch turbulent viscosity depends. The semi-empirical
standard k−ε model is based on model transport equations for the turbulence kinetic energy
(k) and its dissipation rate (ε). The model transport equation for the turbulence kinetic
energy is derived from the its differential equation, while the model transport equation for
turbulence dissipation rate is obtained using physical reasoning and bears little resemblance
to its mathematically exact counterpart. Their resolution allow to obtain k and ε. Directly
from the definition of turbulent kinetic energy is possible to extract the macro-scale velocity
while thanks to the Taylor study on turbulence is possible to estimate the mixing scale by
mean of turbulence dissipation ε:

vt ' k1/2 (4.16)

lt '
k3/2

ε
(4.17)

The turbulent viscosity, µt, is computed by combining k and ε as follows:

µt = ρCµ
k2

ε
(4.18)

where Cµ = 0.09.
One improved version of the standard k− ε model is known as the realizable k− ε model.

It attempts to correct two deficiencies of standard k − ε model. First, when strain rates
are large, the standard k − ε model can produce non-physical normal and shear stresses.
This is addressed using a new eddy-viscosity formula involving a Cµ variable. Second, the
standard k − ε model utilizes an empirical transport equation for turbulence dissipation
that is believed to be the cause of poor spreading rate predictions for laminar jets. The
realizable k− ε model replaces the empirical ε equation with a modified transport equation,
derived from an exact equation for the transport of the mean-square vorticity fluctuation
(Ansys Fluent User and Theory’s Guide 2018).

The realizable model have shown substantial improvements over the standard - model
where the flow features include strong streamline curvature, vortices, and rotation.

One limitation of the realizable k − ε model is that it produces non-physical turbulent
viscosities in situations where the computational domain contains both rotating and station-
ary fluid zones. This is due to the fact that model includes the effects of mean rotation in
the definition of the turbulent viscosity. This extra rotation effect has been tested on single
moving reference frame systems and showed superior behaviour over the standard model.
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4.3 – Numerical set-up

However, due to the nature of this modification, its application to multiple reference frame
systems should be taken with some caution (Ansys Fluent User and Theory’s Guide 2018).

k − ω

The standard k − ω model is based on the Wilcox k − ω model, which incorporates
modifications for low-Reynolds number effects, compressibility, and shear flow spreading.
The standard model is an empirical model based on model transport equations for the
turbulence kinetic energy (k) and the specific dissipation rate (ω). Main weak of the Wilcox
model is the sensitivity of the solution to the free-stream boundary condition.

The shear stress transport (SST) formulation combines the best of Wilcox k−ω and k−ε
turbulence model. The use of a k − ω formulation in the inner parts of the boundary layer
makes the model directly usable all the way down to the wall through the viscous sub-layer.
The SST formulation switches to a k − ε behaviour in the free-stream and thereby avoids
the common k − ω problem that the model is too sensitive to the free-stream turbulence
properties.

Authors who use the SST k − ω model often merit it for its good behaviour in adverse
pressure gradients and separating flow.

The proper transport behaviour is obtained by a limiter to the formulation of the
eddy-viscosity:

νt = a1k

max(α1ω, SF2) (4.19)

where Ω is the vorticity modulus, α1 is a constant and F2 = 1 vale 1 in the inner of
boundary layer and decreases moving away from the wall and In the boundary layer Ω > a1k
(Ansys Fluent User and Theory’s Guide 2018).

4.3.4 Resolution Scheme
The pressure-based coupled flow solver has been used to solve the N-S equations. In
this resolution scheme velocity field is obtained from the momentum equations, while the
pressure field is extracted by solving a pressure correction equation which is obtained by
manipulating continuity and momentum equations. The pressure equation is derived in such
a way that the velocity field, corrected by the pressure, satisfies the continuity (Ansys Fluent
User and Theory’s Guide 2018). This method was originally developed for incompressible
flows,where strictly ∇ ·V = 0, then and it has been extended to solve compressible flows
modifying the pressure correction equation to include density effects on pressure.

Unlike the segregated algorithm, coupled algorithm solves at the same time momentum
equations and the pressure-based continuity equation. The remaining scalars equations are
solved in a decoupled fashion as in the segregated algorithm. Removing the approximations
due to isolating, coupled approach allows to find an unique solution that respects both
the continuity and momentum equation which improves significantly the rate of solution
convergence.

An overview of the two pressure-based solution methods is showed in Figure 4.6.
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The FLUENT computational fluid
dynamics (CFD) solver has undergone
extensive development to extend its
robustness and accuracy for a wide
range of flow regimes. Since its 
initial release, the FLUENT solver has 
provided two basic solver algorithms:
The first is a density-based coupled
solver (DBCS) that uses the solution of
the coupled system of fluid dynamics 
equations (continuity, momentum and
energy); the second is a pressure-based
algorithm that solves the equations in a
segregated or uncoupled manner. The
segregated pressure-based algorithm
has proven to be both robust and 
versatile, and has been utilized in 
concert with a wide range of physical 
models, including multiphase flows,
conjugate heat transfer and combus-
tion. However, there are applications in
which the convergence rate of the 
segregated algorithm is not satisfactory,
generally due to the need in these 
scenarios for coupling between the 
continuity and momentum equations.
Situations in which equation coupling
can be an issue include rotating machin-
ery flows and internal flows in complex
geometries.

Coupling Momentum 
and Continuity Increases
CFD Robustness 
FLUENT technology introduces a pressure-based 
coupled solver to reduce computation time for low-speed 
compressible and incompressible flow applications.
By Franklyn J. Kelecy, Applications Specialist, ANSYS, Inc.

Figure 1. Flowchart illustrating FLUENT solver algorithms
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Pressure-Based
Solver PBCS
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Check Convergence

Update Properties

Solve U-Momentum

Solve Energy

Solve Species

Solve Turbulence

Solve Other Transport
Equations as Required

Solve Mass &
Momentum

Solve V-Momentum

Solve W-Momentum

Solve Mass Continuity;
Update Velocity

The ANSYS CFX solver relies on 
a pressure-based coupled solver
approach to achieve robust conver-
gence rates. ANSYS now offers a
similar pressure-based coupled solver
(PBCS) for the first time with version
6.3 of the FLUENT software. As its
name implies, the algorithm solves the
continuity and momentum equations in
a coupled fashion, thereby eliminating
the approximations associated with a

segregated solution approach where
the momentum and continuity equa-
tions are solved separately. While
these approximations do not affect
solution accuracy at convergence,
they can hamper the convergence rate
for certain classes of problems. With 
the coupled approach, removing the
approximations due to isolating the
equations permits the dependence of
the momentum and continuity on each

ANSYS Advantage  •  Volume II, Issue 2, 2008

TIPS & TRICKS

www.ansys.com 49

Figure 4.6: Flowchart illustrating solver algorithms (Franklyn 2008).
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Chapter 5

Hayabusa: Numerical Analysis

This chapter discusses the procedure followed to obtain results of Hayabusa capsule using
two 3D solvers, Fluent and CFD++, starting from mesh generation up to set-up simulation.
Finally, the main results of the 3D calculations are presented and the two solvers solutions
are compared to each other.

Simulations are performed with the use of different software in order to create capsule
geometry, calculation domain and mesh generation. The first step has been the creation
of the 3D geometry file for the capsule and flow domain around with the aid of Ansys
SpaceClaim. The second step has been the generation of the mesh suitable for the fluid
domain using Ansys Meshing and the third step has been the actual numerical simulation
procedure and solution acquirement. The final step has been the post processing of the
solution files.

5.1 Pre-Processing
Two codes require two different set-ups. As seen, a moving grid approach is recommanded for
aerodynamic derivatives calculation, but this implementation in Fluent produces numerical
error which spread inside computational domain from boundary. This problem has been
bypassed using Chimera Technique. Two fluid volumes have been created: a moving volume
including body walls and one another fixed in time for the rest of fluid volume. In CFD++
this problem has not been revealed, so a unique mesh has been created.

5.1.1 Basic Assumptions
It is useful to introduce some considerations to frame the type of simulations:

• centre of gravity is fixed and the aerodynamic moment is calculated respect to it;

• only pitching moment is measured, considering side-slip angle equals to 0o;

• analyses have been conducted at different angles of attach [0o,10o,20o].

• taking advantage of body axial-symmetry only a half volume is taking account; in
post processing all aerodynamic forces and moments have been corrected;
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5 – Hayabusa: Numerical Analysis

• flow regime is subsonic and fully turbulent;

• there is not heat-exchange between fluid and body wall;

• no gravitational effects have been considered;

• Reynolds number of 1.04 · 106 has been considered;

• this work section is a continuation of Ravera Chiara’s thesis (Ravera and D’Ambrosio
2018), so the same flight conditions are used in order to start from the same point.
The ambient conditions are: pressure of 19212 Pa, temperature of 220K and a Mach
number of 0.381.

5.1.2 Mesh Generation
Ansys Meshing is a mesh-generation software which provides an easy mesh generation
algorithm. Generally, the input required is the geometry of the fluid domain; this is
obtained starting from a box and executing a subtract operation with capsule CAD model.

The use of Chimera technique in Fluent imposes the building of two domains. The first
is a simple box which constitutes the fixed fluid domain, while the second is a semi-sphere
upon which is performed the subtract operation with capsule CAD 2.6 and it constitutes the
moving fluid domain. The whole CAD origin axis is placed in correspondence of Hayabusa
centre of gravity. In this way the position of gravity and rotation centre can be easily
localized.

Figure 5.1: Size and shape of the fixed domain.

Maximum domain dimension has been chosen large enough for subsonic conditions
to avoid pressure waves reflections on boundary which could affect the computation of
aerodynamic coefficient. Instead moving volume size has been defined in order to avoid
large gradient falling into overlap region.

Generated mesh is hybrid, composed by combination of different elements: tetrahedra
and prism. Capsule and box surface mesh are reproduced in figures 5.3, its minimum size
is a trade-off between computational cost and capacity of the mesh to reproduce correctly
the body shape.
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5.1 – Pre-Processing

Figure 5.2: Size and shape of the moving domain.

Y

Z

X

YX

Z

Figure 5.3: View of the domain and capsule mesh.

As shown in figure 5.4, some volume size controls are used to optimize the cells density
around body and into wake region where high turbulent flow is aspected to develop. These
refinement areas are important to improve domain resolution and thus solution accuracy.
Moreover it is possible to notice the zone where is performed the overlap. In figures 5.4 is
shown where the overset has been adopted. In the first figure notice the cells which come
into play for the transmission of primitives through the two grids. In the second figure
a contour scene of mass imbalance is represented and it is possible to see high values of
residual concentrated close up the overset boundary due to Chimera technique.

A last look is reserved to prism layers generation. These are located around the body in
order to capture the boundary layer. The first cell height requires a particular attention. It
must have a precise height to capture the viscous sublayer; it can be estimated using the
definition of y+ and flat-plate boundary layer theory:

y+ = ρuτ∆y
µ

⇒ ∆y = y+µ

ρuτ
(5.1)

43



5 – Hayabusa: Numerical Analysis

YX

Z

YX

Z

Mass_Imbalance: 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

Figure 5.4: On the left the cells affected by the overset are highlighted, while on the right we can
see the region where the continuity residual is high.

where uτ is friction velocity, y+ is the distance from the wall (∆y) normalized by the
viscous length-scale. The definition of friction velocity allows to correlate it with wall shear
stress (τw):

uτ =
√
τwall
ρ

(5.2)

τwall = CfρU
2
∞

2 (5.3)

Utilizing the skin friction coefficient of a flat-plate in high turbulent regime flow it is
possible find a correlation with Reynolds’ number:

Cf = 0.026
Re

1/7
x

(5.4)

Rex = ρU∞Lref
µ

(5.5)

Following this procedure, the first cell height of 1 · 10−5m has been chosen to obtain a
y+ = 1 near wall with the parameters in possession and as it is possible to see in figure 5.5
it has been set correctly.

Everything discussed above also applies to mesh generated for CFD++ solver, with the
difference that only one volume is required.

It is not possible to know a priori which is the trade-off between resolution and accuracy,
so a mesh convergence study has been performed.

5.1.3 Mesh Convergence Study
Mesh convergence study is based on the fundamental principle that with increase in grids
fineness, the spatial discretization errors will asymptotically approach to zero and thereby
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Figure 5.5: On the left an image of the prism layers at the wall and on the right the values of y+

on the capsule.

helping to achieve a solution independent from grid resolution. When this happens any
further refinement does not improve the solution.

Thus convergence study is performed putting to test different grids starting from a low
cells number and then increasing resolution. This procedure requires an orderly variation
in spatial resolution in every corners of the domain. It is not a random refinement in the
fluid domain.

This process can be monitored seeing residuals and the value of moments and forces.
Taking into account a steady state simulation, a double check is necessary in order to
consider convergent solution: residuals value and a problem characteristic magnitude, such
as aerodynamic forces/moments, flow rate, heat exchange etc... A solution is considered
convergent when the first is low and the second has a variation lower than its mean value.
When two consecutive grids have convergent solution with a very small deviation the mesh
with less cells number is taken.

In this specific case, axial force, normal force and pitching moment have been under
examination. A zero angle of attack has been set thus normal force and pitching moment
are expected to be equal to zero. In the table 5.1, results for three mesh with 5, 6 and 8
millions cells are reported.

N. of cells Axial
Force [N]

Normal
Force [N]

Pitching
Moment [Nm]

∆ A.F.
[N]

∆ N.F.
[N]

∆ P.M.
[Nm]

5M -182,40 4,760 0,6980 6,80 4,83 0,70
6M -189,16 -0,013 0,0040 0,04 0,05 0,00
8M -189,20 -0,068 0,0009 0,00 0,00 0,00

Table 5.1: Results of the convergence test with various numbers of cells.

The simulation with 5 millions cells mesh shows a good residuals value, but there are
significant differences in forces and moments compared to 8 millions cells one. Although
residuals reach a value close enough to that reached by the other two mesh, it shows that a
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5 – Hayabusa: Numerical Analysis

double number of iterations is required. Switching to the other two meshes, parameters
are substantially in line, suggesting that the 6 millions cells mesh is a good compromise.
Notice that the value of normal force is never equal to zero and that for more dense mesh
case its value get away from zero. This is a consequence of the use of unstructured mesh
since it is not perfectly symmetrical.

(a) AoA=0o (b) AoA=10o

(c) AoA=20o

Figure 5.6: Graph of the residuals as a function of the number of iterations for each of the
convergence tests.
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5.2 Numerical Set-up
Three boundary conditions are utilized: symmetry, wall and pressure far-field conditions. As
shown in figure 5.7 the walls of the domain have been divided and grouped into sub-groups
on which the same boundary condition type is imposed. For each of sub-groups, a boundary
condition type and characteristic parameters are reported in table 5.2.

Figure 5.7: Boundary groups.

Capsule Wall {Wall}
Wall Motion Stationary Wall
Thermal Conditions adiabatic
Pressure far-field {Pressure far-field}
Static Pressure (Pa) 19212.6
Free-Stream Mach number 0.381
x-component of flow Direction − cosα
y-component of flow Direction 0
z-component of flow Direction − sinα
Temperature (K) 220
Turbulent Intensity (%) 5
Turbulent Viscosity Ratio 10
Symmetry Plane {Symmetry}
- -

Table 5.2: Parameters set for each boundary.

Recalling what has been shown in section 4.3, the table 5.3 reports models and numerical
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schemes used in the CFD simulations. A different combination of discretization scheme
have been used in Fluent and CFD++. For the last a second upwind scheme has been
used for spatial and temporal discretization. Instead the use of Chimera technique and
moving mesh does not allow to use a second order in time for Fluent. Regarding spatial
discretization upwind scheme has been used except for ε equation because forcing a second
order it has been seen numerical instability in the zone of high turbulent flow.

5.3 Fluent Simulations
In the following section, the results for the Fluent simulations are presented for three angles
of attack: 0o, 10o, 20o. Dynamic analysis have to conducted in transient tests in order to
calculate pitching moment coefficient time-history. Two strategies can be followed: running
the entire test with a transient simulation or starting from a steady state solution. The last
approach has been used in this work. It is used to reach a motion field advanced reducing
significantly the physical time of the transitory phase, the time between the beginning of
the oscillations and the achievement of the limit cycle.

5.3.1 Steady State Tests

AoA CFD Data Database
[deg] CA CN Cm CA CN Cm

0 0.833 0.000 0.000 0.88 0.00 0.000
10 0.811 0.076 -0.024 0.88 0.06 –0.022
20 0.735 0.146 -0.050 0.83 0.16 -0.044

Table 5.4: Fluent steady state tests results.

In the table 5.4 are reported the aerodynamic coefficients calculated from Fluent solutions
and the corresponding values shown on database. The result that stands out to the eye is
the quite substantial error that exists between CA values, while for CN and Cm this error
is reduced.

5.3.2 Transient Tests
To pursue the goal, transient simulation has been activated. As explain in section 3.2 the
simple rotation implies a variation of both angle of attack and pitching, so this test type is
not sufficient to derive individual aerodynamic derivatives. For this reason a second test is
necessary, in which the pitching angle is kept constant and the angle of incidence varies.
From this test derivatives relative to the angle of incidence are obtained and joined to the
results of the previous test derivative relative to pitch angle are obtained. To implement
the second approach, an oscillation along the z-axis is required , and the motion is called
the plunging.

For each of three angles of attach, motion and transient test parameters have been set
as is shown in the table 5.5:
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Numerical Set-Up For Fluent

Gas model Compressible
Ideal Gas

Viscous model Sutherland Law
N-S equations RANS
Turbulence Model k − ε standard

Resolution Algorithm Coupled
Pressure-Based

Numerical Scheme Upwind
- Pressure 2nd Order
- Density 2nd Order
- Momentum 2nd Order
- Turbulent k 2nd Order
- Turbulent ε 1st Order
- Energy 2nd Order

Transient Configuration
Numerical Scheme 1st Implicit Order
Inner iteration 50/100

Numerical Set-Up for CFD++

Gas model Compressible
Ideal Gas

Viscous model Sutherland Law
N-S equations RANS
Turbulence Model k − ε realizable

Resolution Algorithm Coupled
Pressure-Based

Numerical Scheme Upwind
- Pressure 2nd Order
- Density 2nd Order
- Momentum 2nd Order
- Turbulent k 2nd Order
- Turbulent ε 2nd Order
- Energy 2nd Order

Transient Configuration
Numerical Scheme 2nd Implicit Order
Inner iteration 50

Table 5.3: Models and algorithms set.

In figures 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 pitching moment variation as function of z/∆α
and time is displayed. Note that in all the tests the oscillations reach limit cycle very
quickly after about a period.
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Plunging motion
Motion z = zo cos(ωt)

Amplitude 0.01m
Frequency 20Hz
Time Step 1 · 10−3s

Pitching motion
Motion ∆α = α0 sin(ωt)

Amplitude 1 o

Frequency 20Hz
Time Step 1 · 10−3s

Table 5.5: Motion and transient test parameters for Fluent simulation.
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Figure 5.8: Hayabusa: plunging oscillation, AoA=0o.
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Figure 5.9: Hayabusa: pitching oscillation, AoA=0o.
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Figure 5.10: Hayabusa: plunging oscillation, AoA=10o.
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Figure 5.11: Hayabusa: pitching oscillation, AoA=10o.
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Figure 5.12: Hayabusa: plunging oscillation, AoA=20o.
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Figure 5.13: Hayabusa: pitching oscillation, AoA=20o.

5.3.3 Post-Processing
Utilizing a Matlab script Cmα, Cmα̇, Cmq, Cmq̇ have been extracted. The integrals 3.19 3.20
3.32 3.33 have been calculated considering only the variation of Cm around mean value and
the last period of time history. Then using the equation 3.7 it has been tried to reproduce
the Cm variation and verify that a very small mistake is made neglecting the terms of
higher order of the Taylor’s series.

AoA CFD Data Data Sheet
α Cmα Cmα̇ Cmq Cmq̇ Cmq

0 -0.2629 -0.0849 -0.0187 -0.6887 0.14
10 -0.2882 -0.0890 -0.0151 -0.8310 -0.29
20 -0.2378 -0.0588 -0.0277 -0.7117 -1.61

Table 5.6: Hayabusa: aerodynamic derivatives from Fluent simulations.

0.1 0.11 0.12 0.13 0.14 0.15

Time [s]

-3

-2

-1

0

1

2

3

P
it
c
h
in

g
 M

o
m

e
n
t 
C

o
e
ff
ic

ie
n
t V

ar
ia

tio
n

10
-3

Fluent results

Cm reconstruction

0.09 0.1 0.11 0.12 0.13 0.14 0.15

Time [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

P
it
c
h
in

g
 M

o
m

e
n
t 
C

o
e
ff
ic

ie
n
t V

ar
ia

tio
n

10
-3

Fluent results

Cm reconstruction

Figure 5.14: Hayabusa: oscillation reconstruction, AoA=0o.
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Figure 5.15: Hayabusa: oscillation reconstruction, AoA=10o.
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Figure 5.16: Hayabusa: oscillation reconstruction, AoA=20o.

From the figures 5.14, 5.14, 5.14 and table 5.6 two conclusions can be deducted. Matlab
algorithm for the derivatives extraction has worked as shown by the perfect overlap of the
Cm curve from CFD and Cm reconstruction. Despite this, the derivatives do not match
absolutely, so the error lies in the numerical results.

5.4 CFD++ Simulations
In the following section, the results for the CFD++ simulations are presented for the angle
of attack of 10o. The approach is the same as that used for Fluent simulation: a steady
state solution has been used as stating point for transient simulation.

5.4.1 Steady State Tests
In the table 5.7 are reported the aerodynamic coefficients calculated from CFD++ solutions
and the corresponding values shown on database.
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AoA CFD Data Database
[deg] CA CN Cm CA CN Cm

10 0.737 0.066 -0.022 0.88 0.06 -0.022

Table 5.7: CFD++ steady state test results.

Also in this case on the axial force a substantial error is made, while the gap is reduced
in the case of the normal force and the axial moment.

5.4.2 Transient Tests

For plunging and pitching motion tests, amplitude and frequency parameters are reported
in table 5.5. In CFD++ a sinusoidal motion is imposed for both motion.

Plunging motion
Motion z = zo sin(ωt)

Amplitude 0.01m
Frequency 20Hz
Time Step 1 · 10−3 s

Pitching motion
Motion α = α0 sin(ωt)

Amplitude 1 o

Frequency 20Hz
Time Step 1 · 10−3 s

Table 5.8: Motion and transient test parameters.

In figures 5.17, 5.18, the variation of pitching moment in function of z/∆α and time is
displayed.

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

z [m]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

P
it
c
h

in
g

 M
o

m
e

n
t 

 V
ar

ia
tio

n 
[N

m
]

0 0.05 0.1 0.15 0.2 0.25 0.3

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

P
it
c
h

in
g

 M
o

m
e

n
t 

 V
ar

ia
tio

n 
[N

m
]

Figure 5.17: Hayabusa: plunging oscillation, AoA=0o.
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Figure 5.18: Hayabusa: pitching oscillation, AoA=10o.

Also in this case, the oscillations of Cm have about a transitory period before to reach
the limit cycle.

5.4.3 Post-Processing
In table 5.9 the aerodynamic derivatives extracted from the CFD++ results are presented.

AoA Prove CFD Data Sheet
α Cmα Cmα̇ Cmq Cmq̇ Cmq

10 0.0762 -0.0391 -0.0079 0.9602 -0.29

Table 5.9: Hayabusa: aerodynamic derivatives from CFD++ simulations.

The two figures 5.19 show the Cm reconstruction using the equation 3.7 and the calculated
derivatives.
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Figure 5.19: Hayabusa: oscillation reconstruction, AoA=10o.
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Once again the script proves to be able to extract the aerodynamic derivatives from the
time history of the Cm but this one is subject to accuracy errors that go to influence the
parameters calculated.

5.5 Comparison

For alpha equal to 10o, it is possible to compare the results obtained by two solvers. Since
plunging motion in Fluent is a co-sinusoidal law while in CFD++ is a sinusoidal one, Fluent
results have been translate over time of π/2 to allow a direct comparison (figure 5.20).
Regarding plunging motion a substantial difference can be seen between the amplitudes of
the two curves. The amplitude of the Cm oscillations obtained from CFD++ is smaller
than about two thirds of the curve obtained with Fluent. It is also noted that in CFD++
the time required for the solution to repeat itself is slightly greater. Conversely in the case
of pitching oscillation the two solutions show only small differences in amplitude and period,
but while the solution from CFD++ has reached the limit cycle in the first iterations, in
Fluent it has required about a period of settling.
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Figure 5.20: Hayabusa: CFD++ results compared with Fluent results for plunging oscillation,
AoA=10o.
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Figure 5.21: Hayabusa: CFD++ results compared with Fluent results for pitching oscillation,
AoA=10o.
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Analysing the values of each derivative extracted from the two solvers, they show a
convergence in signs but they are quite far from the value of the damping derivative present
in the literature.

α [deg] Cmα Cmα̇ Cmq Cmq̇ Damping sum
CFD++ 10 -0.0762 -0.0391 -0.0079 -0.9602 -0.0483
Fluent 10 -0.2871 -0.0923 -0.0118 -0.8253 -0.1042

Data Sheet 10 - - -0.2900 - -

Table 5.10: Hayabusa: aerodynamic derivatives from CFD++ simulations.
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Chapter 6

Space Rider: Numerical
Simulations

In the previous chapter a rather simple case has been analysed to define the processes for
extracting the aerodynamic derivatives from a CFD calculation. In this chapter, the study
of a slightly complex geometry, Space Rider aero-shape, has been examined, comparing
again the two solvers and collecting results that provide the definitive proof of the analysis
method accuracy.

In the first part is shown mesh generation and numerical set-up that sets the foundation
for the numerical code. Finally, the two solvers results are shown and a comparative is
reported at the end. Since this chapter is an extension of the previous one, some aspects
previously analysed are taken for granted while more attention is paid to analysis peculiar
aspects.

6.1 Pre-processing
As explained, two codes require two different set-ups and so two different mesh for the
specific type of analyse.

6.1.1 Basic Assumption
Even here, before introducing procedures and final mesh it is useful to introduce some
general assumptions which have guided this study:

• centre of gravity is fixed and the aerodynamic moment is calculated respect to it;

• the only pitching moment is measured, considering side-slip angle equals to 0o;

• analyses have been conducted at the angles of attach of [65o].

• the free-stream conditions have been set in such a way as to be consistent with the
tests carried out in the database: static pressure 15570 Pa , temperature 216.65 K
and Mach number of 0.6.
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6 – Space Rider: Numerical Simulations

• taking advantage of body XZ-symmetry plane only a half volume is taking account;

• flow regime is subsonic and fully turbulent;

• there is not heat-exchange between fluid and body wall;

• a Reynolds- number Re = 3.12 · 106 has been considered.

6.1.2 Mesh Generation
Fluent requires two meshes, one fixed and one mobile. The last one includes the body
walls and in the calculation initialization it is superimposed on the first one using Chimera
technique. About the mesh for CFD++, only the largest domain is taken into consideration
and the resulting grid is quite similar to that prepared for Fluent (maximum dimensions,
cell dimensions, etc...).

For Fluent the two fluid domains consist of two hemispheres of 300 m and 25 m in
diameter. On the smaller one a subtract operation with Space Rider CAD model has been
executed in order to defining the shuttle walls. The external diameter has been chosen in
such a way to allow wake evolution and avoid the reflection of pressure waves. Meanwhile
the inner diameter has been selected in order to prevent that large gradients fall into
overlapping zone.

The origin axis is placed in correspondence of shuttle centre of gravity and the moments
are calculated with respect to it.

Figure 6.1: Size and shape of the fixed domain.

The generated mesh is composed by two element types: prisms and tetrahedrons. The
first are used to compose prism layers generation, a discrete volume located around the body.
This shape allow to capture boundary layer in efficient and accurate way. Following the
same procedure executed for Hayabusa, the first cell height is 5 ·10−6m so that capturing the
viscous sublayer. The total height is limited to 1.2 · 10−2 m due to some quality constrains
such as excessive aspect ratio of the last cell, skewness and mutual penetration in some
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6.1 – Pre-processing

Figure 6.2: Size and shape of the moving domain.

points of the geometry. As it is possible to see in figure 6.3 the first height is set correctly
since the y+ it does not exceed the value of one on the wall.

X

Y

Z

Y Plus: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Figure 6.3: On the left an image of the prism layers at the wall and on the right the values of y+

on the capsule.

The tetrahedrons cells fill the discrete volume from prism elements up to external
boundary. The minimum surface elements size is 5mm in correspondence of the joints and
40mm on the rest of the body in order to follow perfectly the surfaces curvature. About
volume elements minimum size is 110mm in order to improve accuracy where the flow is
strongly turbulent while the maximum size is limited to 32m in order to have not a too low
resolution in zones away from body. Figure 6.4 shows the whole grid, where it is possible
to notice the use of volume cells control to optimize the cells density around the body and
in wake region.
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XY

Z
X

Z

Y

Figure 6.4: View of the domain and Space Rider mesh.

In figures 6.5 it is shown the zone in which the overset has been adopted. In the first
figure notice the cells that come into play for the transmission of primitives through the
two grids. In the second figure a contour scene of mass imbalance is represented. Due to
Chimera technique a high value of residual is concentrated close up the overset boundary.

YX

Z

oversetcelltype: 0123

YX

Z

Mass_Imbalance: 0 2 4 6 8 10121416182022

Figure 6.5: On the left the cells affected by the overset are highlighted, while on the right we can
see the region where the continuity residual is high.

6.2 Numerical Set-Up
Three boundary conditions are utilized: symmetry, wall and pressure far-field conditions. As
shown in figure 6.6 the walls of the domain have been divided and grouped into sub-groups
on which the same boundary condition type is imposed. For each of sub-groups, a boundary
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6.3 – Fluent Simulations

condition type and characteristic parameters are reported in table 6.1.

Figure 6.6: Boundary groups.

Capsule’s Wall {Wall}
Wall Motion Stationary Wall
Thermal Conditions adiabatic
Pressure far-field {Pressure far-field}
Static Pressure (Pa) 15570
Free-Stream Mach number 0.6
x-component of flow Direction −0.4226
y-component of flow Direction 0
z-component of flow Direction −0.9063
Temperature (K) 216.5
Turbulent Intensity (%) 5
Turbulent Viscosity Ratio 10
Symmetry Plane {Symmetry}
- -

Table 6.1: Parameters set for each boundary.

Finally in the table 6.2 models and numerical schemes used in the CFD simulations are
reported.

6.3 Fluent Simulations

The results of the Fluent simulations for Space Rider are presented in this section. Only
the 65o angle of attack has been tested and the all procedures seen for Hayabusa have been
reproduced. Time-step of 6 · 10−3 s has been chosen; it has been obtained by the empirical
formulation, time-step= T/256, that recent similar studies report (Marongiu et al. 2013).
A second time-step of 1 · 10−3 s has been chosen in order to improve the solution accuracy.
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Numerical Set-Up For Fluent

Gas model Compressible
Ideal Gas

Viscous model Sutherland Law
N-S equations RANS
Turbulence Model k − ω SST

Resolution Algorithm Coupled
Pressure-Based

Numerical Scheme Upwind
- Pressure 2nd Order
- Density 2nd Order
- Momentum 2nd Order
- Turbulent k 1st Order
- Turbulent ω 1st Order
- Energy 2nd Order

Transient Configuration
Numerical Scheme 1st Implicit Order
Inner iteration 50/100

Numerical Set-Up for CFD++

Gas model Compressible
Ideal Gas

Viscous model Sutherland Law
N-S equations RANS
Turbulence Model k − ω SST

Resolution Algorithm Coupled
Pressure-Based

Numerical Scheme Upwind
- Pressure 2nd Order
- Density 2nd Order
- Momentum 2nd Order
- Turbulent k 2nd Order
- Turbulent ω 2nd Order
- Energy 2nd Order

Transient Configuration
Numerical Scheme 2nd Implicit Order
Inner iteration 50

Table 6.2: Models and algorithms set.

64
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6.3.1 Steady State Test

First a steady state solution has been performed. In table 6.3 it is possible to find the
aerodynamic coefficients found from CFD data and aerodynamic coefficient from database.
The nominal values are in bold while the other represent the uncertainty range.

Comparing the values, the normal force and pitching moment coefficient are perfectly
within the uncertainty range, while for the axial force, the values is out of limits.

AoA CFD Data
[deg] CA CN Cm

65 -0.0900 0.9414 0.0172

AoA Database
[deg] CA CN Cm

3σ 0.0115 1.1305 0.0409
65 0.0260 1.0255 0.0199
3σ -0.0635 0.9205 -0.0011

Table 6.3: Fluent steady state tests results.

6.3.2 Transient Tests with Time-step of 6e-3 s

The first transient test has been performed with a time step of 6 ·10−3 s. Both the rotational
and translational oscillations have a sinusoidal shape and table 6.4 contains all simulation
parameters.

Plunging motion
Motion z = z0 sin(ωt)

Amplitude 1.63m
Frequency 0.605Hz
Time Step 6 · 10−3 s

Pitching motion
Motion ∆α = α0 sin(ωt)

Amplitude 2 o

Frequency 0.605Hz
Time Step 6 · 10−3 s

Table 6.4: Motion and transient test parameters.

In figures 6.7 and 6.8 it is shown the variation of pitching moment in function of z/∆α
and time for the two motions. Both curves are very irregular and the solver shows difficulties
especially near maximum amplitude of the sinusoid.
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Figure 6.7: Space Rider: plunging oscillation, AoA=65o.
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Figure 6.8: Space Rider: pitching oscillation, AoA=65o.

6.3.3 Transient Tests with Time-step of 1e-3 s

In the second transient test a time step of 1 · 10−3 s has been used in order to obtain a
smoother solution. The other parameters remain unchanged.

Plunging motion
Motion z = z0 sin(ωt)

Amplitude 1.63m
Frequency 0.605Hz
Time Step 1 · 10−3 s

Pitching motion
Motion ∆α = α0 sin(ωt)

Amplitude 2 o

Frequency 0.605Hz
Time Step 1 · 10−3 s

Table 6.5: Motion and transient test parameters.
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Figure 6.9: Space Rider: plunging oscillation, AoA=65o.
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Figure 6.10: Space Rider: pitching oscillation, AoA=65o.

As it is possible to see in figures 6.9 and 6.10 the solution becomes very irregular so it
was decided to stop prematurely the running.

6.3.4 Post-Processing
Since the second test was not completed an attempt to extract the derivatives is performed
only on the first case.

AoA Prove CFD Data Sheet
α [deg] Cmα Cmα̇ Cmq Cmq̇ Cmα Cmα̇ Cmq Cmq̇

65 -0.1149 1.1414 0.0836 16.3993 -0.211 1.336 -0.06 -

Table 6.6: Space Rider: aerodynamic derivatives from Fluent simulations.
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As expected by looking at the cm trends in the two tests, the values of the derivatives
show a substantial difference with respect to the values from the database.
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Figure 6.11: Space Rider: oscillation reconstruction, AoA=65o.

6.4 CFD++ Simulations

The last campaign of test has been performed using CFD++ solver. The results for the
Space Rider simulations are presented for an angle of attack of 65o.

6.4.1 Steady State Test

In the table 6.7 it is reported the aerodynamic coefficients calculated from CFD++ solutions
and the corresponding values shown on database. The nominal values are in bold while the
other represent the uncertainty range.

Again comparing axial force coefficient it is quite out of the uncertainty range, while
pitching moment and normal force coefficient fall into range.

AoA CFD Data
[deg] CA CN Cm

65 -0.1168 1.0621 0.0423
AoA Database
[deg] CA CN Cm

3σ 0.0115 1.1305 0.0409
65 0.0260 1.0255 0.0199
3σ -0.0635 0.9205 -0.0011

Table 6.7: CFD++ steady state test results.
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6.4.2 Transient Tests
In matter of transient testing campaign, only a time step of 6 · 10−3 s has been performed.
Plunging and pitching oscillation parameters are reported in table 6.8.

Plunging motion
Motion z = zo sin(ωt)

Amplitude 1.63m
Frequency 0.605Hz
Time Step 6 · 10−3 s

Pitching motion
Motion ∆α = αo sin(ωt)

Amplitude 2 o

Frequency 0.605Hz
Time Step 6 · 10−3 s

Table 6.8: Motion and transient test parameters.
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Figure 6.12: Space Rider: plunging oscillation, AoA=65o.
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Figure 6.13: Space Rider: pitching oscillation, AoA=65o.

In figures 6.12, 6.13, the variation of pitching moment in function of z/∆α and time is
displayed. The curves are very smooth and the limit cycle is reached correctly.
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6.4.3 Post-Processing

Utilizing the Matlab script Cmα, Cmα̇, Cmq, Cmq̇ have been extracted and reported in 6.9.
Results very close to those from databases have been achieved, but it is necessary to notice
a displacement that occurs between the curve obtained from CFD and the reconstructed
one for plunging motion. It is practically zero in the peaks of the curve while it increases
in the two descending and ascending branches. This error may be caused by the fact that
the Cm curve is not perfectly sinusoidal and reconstructed one is not able to completely
overlap it because the higher order terms of Taylor’s series have been truncated.
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Figure 6.14: Space Rider: oscillation reconstruction, AoA=65o.

AoA Prove CFD Data Sheet
α [deg] Cmα Cmα̇ Cmq Cmq̇ Cmα Cmα̇ Cmq Cmq̇

65 -0.212 1.4077 -0.0617 12.7352 -0.211 1.336 -0.06 -

Table 6.9: Space Rider: aerodynamic derivatives from CFD++ simulations.

6.5 Comparison

Now it is possible to compared all the results obtained by the two solvers concerning Space
Rider with each other and with those on database.

Concerning Fluent results with time step of 6 s, in pitching oscillation seem to overlap
enough with the results present in the database. However it is very unstable, in fact in the
lower peaks the code fails to provide a very clean and accurate solution, and in the last
period, there is a slight overshoot in correspondence with the upper peak. In plunging case
results worsen and both in positive and negative peaks the solution loses accuracy.
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Figure 6.15: Space Rider: Fluent results with time step=6 · 10−3s compared with database results.
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Figure 6.16: Space Rider: Fluent results with time step=6 · 10−3s compared with database results.

Shifting to the shorter time step, curves become much more irregular as is shown in
figures 6.18 a-b. Although the average trend of the solution seems to be slightly better in
positive and negative peaks in plunging motion compared to solution calculated at time
step of 6 · 10−3 s; it shows a deterioration in the case of pitching with the presence of an
overshoot in the positive peak 6.18 c-d.

71



6 – Space Rider: Numerical Simulations

0 0.5 1 1.5 2 2.5 3

Time [s]

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Pi
tc

hi
ng

 m
om

en
te

 c
oe

ffi
ci

en
t v

ar
ia

tio
n

CM plunging

Database
Fluent TS 1e-3

(a) Time Step = 1 · 10−3s: plunging motion.
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(b) Time Step = 1 · 10−3s: pitching motion.

Figure 6.17: Space Rider: Fluent results with time step=1 · 10−3s compared with database curve.
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(a) Results for plunging motion.
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(b) Results for pitching motion.

Figure 6.18: Space Rider: Fluent results with time step=1 · 10−3s and time step=6 · 10−3s.

As demonstrated by the results of aerodynamic derivatives very close to the values from
the database, the Cm, calculated by CFD++ solution, overlaps the database curve below
and it is very smooth and clean (figure 6.19 and figure 6.20). In addition it seems to go
even better than the original solution in correspondence with the peaks, addressing what
seems to be the natural evolution.
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Figure 6.19: Space Rider: CFD++ results with Time Step=6 · 10−3s compared with database.
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Figure 6.20: Space Rider: CFD++ results with Time Step=6 · 10−3s compared with database.
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Chapter 7

Conclusions

The purpose of this work was to validate a numerical procedure for the calculation of
aerodynamic derivatives using two types of re-entry vehicles: the Hayabusa capsule and the
lifting-body Space Rider. The study was conducted implementing the forced oscillation
method in two commercial computational fluid dynamics codes, Ansys Fluent and Metacomp
CFD++.

Results achieved show that the target has been fully accomplished. In particular, results
relating to the Space Rider study, attained using the CFD++ solver and shown in section
4.3, are fairly coincident with the values present in the aerodynamic database. The presence
of a very small deviation is due to multiple factors, first of all the error induced by using a
different calculation grid.

Concerning the error between the reconstructed curve and the original moment coefficient
curve for plunging oscillation, (figure 6.19), it could be associated with the need of further
running the simulation over time to reach a complete convergence; this is corroborated
observing that none of the previous elaborations show a similar deviation.

Results obtained on Space Rider with Fluent solver are not very satisfactory. The mo-
mentum coefficient curves are really irregular and not accurate, especially in correspondence
with the oscillation peaks. The identification of the cause will require further analysis;
starting from the set-up differences between the solvers a possible cause could be identified
in the use of a first order time discretization, or the use of the chimera technique. An
investigation of the solution sensitivity to turbulence model could be also conducted.

Capsule simulations are not completely accurate. Although they provided some positive
indications about the approach implemented, results are very far from the database values.
It was not possible to identify where errors occurred due to the lack of a complete and
accurate database for the flow regime used. Moreover, it is important to underline that in
literature there are many different capsule geometries with the name of Hayabusa, which
makes difficult to identify a correct reference documentation.

In conclusion, this work allowed to validate a numerical procedure able to calculate the
aerodynamic derivatives of a vehicle during re-entry phase. At the same time it opens the
way to future investigations, e.g. continuing the work on Space Rider using other angles
of attack, studying how the solution could vary with respect to changes in amplitude and
frequency of oscillation. Afterwards, a further step should be to analyse cases in transonic
and supersonic flow regime.
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Appendix A

CFD Figures
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Figure A.1: Hayabusa: steady state result at 10o of AoA. Stream-lines and Mach number contour.
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Figure A.2: Hayabusa: Mach number distribution in symmetry plane for 4 times-times over one
period (Plunging motion)
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Figure A.3: Hayabusa: pressure distribution in symmetry plane for 4 times-times over one period
(Plunging motion)
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Figure A.4: Hayabusa: Mach number distribution in symmetry plane for 4 times-times over one
period (Pitching motion).
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Figure A.5: Hayabusa: pressure distribution in symmetry plane for 4 times-times over one period
(Pitching motion)
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Figure A.6: Space Rider: steady state result at 10o of AoA. Stream-lines and Mach number
contour.
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Figure A.7: Space Rider: Mach number distribution in symmetry plane for 4 times-times over one
period (Plunging motion)
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Figure A.8: Space Rider: pressure distribution in symmetry plane for 4 times-times over one
period (Plunging motion)
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Figure A.9: Space Rider: Mach number distribution in symmetry plane for 4 times-times over one
period (Pitching motion)
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Figure A.10: Space Rider:pressure distribution in symmetry plane for 4 times-times over one
period (Pitching motion)

86



Bibliography

Allen, Julian H (1957). Motion of a ballistic missile angularly misaligned with the flight
path upon entering the atmosphere and its effect upon aerodynamic heating, aerodynamic
loads, and miss distance.

Ansys Fluent User and Theory’s Guide (2018).
Asteroid Explorer Hayabusa (2005). url: http://global.jaxa.jp/projects/sat/muses_

c/files/presskit_hayabusa_e.pdf.
Baillion, M (1997). “Blunt bodies dynamic derivatives”. In: Special Course on" Capsule

Aerodynamics", published in AGARD Report 808.
Balossino, Alessandro et al. (2017). “Conceptual Design of the Descent Subsystem for the

Safe Atmospheric Re-Entry Flight of Space Rider”. In: 7TH EUROPEAN CONFER-
ENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS).

Benek, JA et al. (1986). Chimera. A grid-embedding technique. Tech. rep. ARNOLD
ENGINEERING DEVELOPMENT CENTER ARNOLD AFB TN.

Bird, John D and David E Reese Jr (1958). Stability of ballistic reentry bodies.
Bryan, George Hartley (1911). Stability in aviation: an introduction to dynamical stability

as applied to the motions of aeroplanes. Macmillan and Co., limited.
Da Ronch, A. et al. (2012). “Evaluation of dynamic derivatives using computational fluid

dynamics”. In: AIAA journal 50.2, pp. 470–484.
Donea, Jean et al. (2004). “Arbitrary Lagrangian-Eulerian Methods”. In: Encyclopedia of

computational mechanics.
Ericsson, Lars E and J Peter Reding (1971). “Re-Entrv Camule Dynamics”. In: Journal of

Spacecraft and Rockets 8.6, pp. 579–586.
Fletcher, HS (1959). “Damping in Pitch and Static Stability of a Group of Blunt Bodies

from M= 0.6 to 0.95”. In: NASA TM X-194.
Franklyn, J. Kelecy (2008). “Coupling Momentum and Continuity Increases CFD Robust-

ness”. In: ANSYS Advantage • Volume II, Issue 2.
Germano, M. (2010). “APPUNTI DI GASDINAMICA - CAPITOLO 3 - EQUAZIONI

MEDIATE PER I FLUSSI TURBOLENTI”.
Hayabusa: A technology Demostrator (2005). url: http://global.jaxa.jp/projects/

sat/muses_c/files/hayabusa_return.pdf.
Hiraki K., Inatani Y. et al. (1998). Dynamic Stability of Muses-C Capsule.
Hirt, Cyrill W, Anthony A Amsden, and JL Cook (1974). “An arbitrary Lagrangian-

Eulerian computing method for all flow speeds”. In: Journal of computational physics
14.3, pp. 227–253.

87

http://global.jaxa.jp/projects/sat/muses_c/files/presskit_hayabusa_e.pdf
http://global.jaxa.jp/projects/sat/muses_c/files/presskit_hayabusa_e.pdf
http://global.jaxa.jp/projects/sat/muses_c/files/hayabusa_return.pdf
http://global.jaxa.jp/projects/sat/muses_c/files/hayabusa_return.pdf


BIBLIOGRAPHY

Houzeaux, Guillaume et al. (2014). “A Chimera method for the incompressible Navier–
Stokes equations”. In: International Journal for Numerical Methods in Fluids 75.3,
pp. 155–183.

Ishii, Nobuaki and Koju Hiraki (2003). “Attitude motion and aerodynamic characteristics
of muses-c reentry capsule”. In: The Institute of Space and Astronautical Science report.
SP 17, pp. 379–388.

Kazemba, Cole et al. (2012). “Survey of blunt body dynamic stability in supersonic flow”.
In: AIAA Atmospheric Flight Mechanics Conference, p. 4509.

Korfanty, M and J Longo (2008). “CFD based dynamic analysis of atmospheric re-entry
vehicles”. In: 2nd International ARA days, Arcachon.

Marini, M. et al. (2017). “Aeroshape Trade-Off and Aerodynamic Analysis of the Space-
Rider Vehicle”. In: 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND
SPACE SCIENCES (EUCASS).

Marongiu, C et al. (2013). “Dynamic Derivative Computation of a Sub-orbital Vehicle”. In:
31st AIAA Applied Aerodynamics Conference, p. 3027.

Orlik-Rückemann, KJ (1981). “Review of techniques for determination of dynamic stability
parameters in wind tunnels”. In: AGARD LS-114.

Ravera, Chiara and Domenic D’Ambrosio (2018). “Numerical Investigation on Aerodynamic
Stability Derivatives of Earth Re-entry Caspules”. type. Politecnico di Torino.

Schoenenberger, Mark, Prasad Kutty, et al. (2014). “The aerodynamics of axisymmetric
blunt bodies flying at angle of attack”. In: Aerospace Conference, 2014 IEEE. IEEE,
pp. 1–12.

Schoenenberger, Mark and Eric M Queen (2008). “Limit cycle analysis applied to the
oscillations of decelerating blunt-body entry vehicles”. In:

Short, Barbara J and Simon C Sommer (1959). “Some measurements of the dynamic and
static stability of two blunt-nosed, lowfineness-ratio bodies of revolution in free flight at
M= 4”. In: NASA TM X 20.

Space Rider Esa Multimedia (2018). url: https://esamultimedia.esa.int/docs/space_
transportation/Space_Rider_factsheet_HiRes_ok.pdf.

Space Rider homepage (2017). url: https://www.esa.int/Our_Activities/Space_
Transportation/Space_Rider.

Space Rider PRIDE (2017). url: https://www.cira.it/en/space/accesso- allo-
spazio-satelliti-ed-esplorazione/pride/Space%20Rider%20PRIDE.

Tang, HS, S Casey Jones, and Fotis Sotiropoulos (2003). “An overset-grid method for 3D
unsteady incompressible flows”. In: Journal of Computational Physics 191.2, pp. 567–600.

Teramoto, Susumu, Kouju Hiraki, and Kozo Fujii (2001). “Numerical analysis of dynamic
stability of a reentry capsule at transonic speeds”. In: AIAA journal 39.4, pp. 646–653.

Thompson, Joseph, Neal Frink, and Patrick Murphy (2010). “Guidelines for Computing
Longitudinal Dynamic Stability Characteristics on Subsonic Transport”. In: 28th AIAA
Applied Aerodynamics Conference, p. 4819.

Tobak, Murray and H Julian Allen (1958). Dynamic stability of vehicles traversing ascending
or descending paths through the atmosphere.

Viviani, Antonio and Giuseppe Pezzella (2015). Aerodynamic and aerothermodynamic
analysis of space mission vehicles. Springer.

88

https://esamultimedia.esa.int/docs/space_transportation/Space_Rider_factsheet_HiRes_ok.pdf
https://esamultimedia.esa.int/docs/space_transportation/Space_Rider_factsheet_HiRes_ok.pdf
https://www.esa.int/Our_Activities/Space_Transportation/Space_Rider
https://www.esa.int/Our_Activities/Space_Transportation/Space_Rider
https://www.cira.it/en/space/accesso-allo-spazio-satelliti-ed-esplorazione/pride/Space%20Rider%20PRIDE
https://www.cira.it/en/space/accesso-allo-spazio-satelliti-ed-esplorazione/pride/Space%20Rider%20PRIDE

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Re-entry from Orbit
	Re-entry Vehicle Design
	Balistic and Lifting Re-Entry
	Instability for Blunt-Body Shape
	Physics of the phenomenon

	Numerical investigation
	Scope and Overview of the present dissertation

	Mission analysis
	Musec-C Mission
	Hayabusa Capsule
	Reference System and CAD Model
	Aerodynamic Database

	Space Rider Program
	Space Rider Vehicle
	Reference System and CAD Model
	Aerodynamic Database


	Background theory: aerodynamic stability
	Stability Derivatives
	Stability and Stability Derivatives
	Forced Oscillation Technique

	Numerical Techniques
	Arbitrary Lagrangian Eulerian Approach
	Chimera Technique
	Fluent: Overset Mesh

	Numerical set-up
	Boundary conditions
	Gas Model
	Turbulence Models
	Resolution Scheme


	Hayabusa: Numerical Analysis
	Pre-Processing
	Basic Assumptions
	Mesh Generation
	Mesh Convergence Study

	Numerical Set-up
	Fluent Simulations
	Steady State Tests
	Transient Tests
	Post-Processing

	CFD++ Simulations
	Steady State Tests
	Transient Tests
	Post-Processing

	Comparison

	Space Rider: Numerical Simulations
	Pre-processing
	Basic Assumption
	Mesh Generation

	Numerical Set-Up
	Fluent Simulations
	Steady State Test
	Transient Tests with Time-step of 6e-3 s
	Transient Tests with Time-step of 1e-3 s
	Post-Processing

	CFD++ Simulations
	Steady State Test
	Transient Tests
	Post-Processing

	Comparison

	Conclusions
	CFD Figures
	Bibliography

