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Abstract

The objective of this thesis is to find a method to reduce stresses and
strains on a wing structure, due to non-static external loads, i.e. distur-
bances gust, through the deflection of the control surfaces. The control
system, able to reduce the generated loads and stresses, is designed to re-
duce the weight of the structure and to increase the life of the aircraft
components.

A preliminary research on previous works is required to understand dif-
ferent methods and tools, focusing on the hardware devices. With these
devices the deformations of the structure can be measured in some crucial
points, thus obtaining the strains and, as consequence, the displacements.
Next, the complete FEM model is created. This model is then reduced
in an equivalent one, describing various type of loads, concentrated and
distributed. A methodology for the definition of the reduced model is de-
rived and defining the various loads applied, the results of the simplified
version are compared with the one of the detailed model. In a similar way,
a methodology for the evaluation of the external loads is derived, following
two steps: (1) the load reconstruction and (2) the data optimization. This
last point is deeply discussed and a new methodology for the data collecting
is proposed, limiting the number of data collectors.

Finally focusing on concentrated loads, a closed loop system is designed
and a linear quadratic regulator (LQR) is proposed as control strategy.
The objective of this control system is to reduce the internal stresses of the
structure when a gust occur by aileron deflection.



Sommario

L’obiettivo di questa tesi è quello di trovare un metodo per ridurre le
tensioni e le deformazioni di una struttura alare, dovuti a dei carichi non
statici, i.e. carichi di raffica, attraverso la deflessione delle superfici di con-
trollo. Il sistema di controllo, capace di ridurre i le tensioni e i carichi
denerati, è progettato per ridurre il peso della struttura e di incrementare
la vita dei componenti dell’aeromobile.

Una ricerca preliminare su lavori precedenti si è resa necessaria per com-
prendere i vari metodi e strumenti necessari, focalizzandosi sui device hard-
ware. Con questi strumenti le deformazioni della struttura possono essere
misurate, in punti particolamente critici, ottenendo quindi le deformazioni
e, conseguentemente, gli spostamenti. In seguito, è stato creato il modello
FEM completo. Questo modello è poi ridotto ad uno equivalente, descri-
vendo inoltre i vari tipi di carico applicati, concentrati e distribuiti. Una
metodologia per la definizione del modello ridotto è stata derivata e definen-
do i vari carichi applicati, i risultati per il modello ridotto sono confrontati
con quelli del modello di dettaglio. In un modo simile, un metodo per
la valutazione dei carichi esterni è stato esposto, seguendo due step: (1)
ricostruzione dei carichi e (2) ottimizzazione dei dati. Quest’ultimo pun-
to è discusso a fondo e una nuova metodologia per l’acquisizione di dati è
proposta, atta a limitare il numero degli strumenti di misura necessari.

Infine, focalizzandosi sui carichi concentrati, un sistema ad anello chiuso
è stato definito e un Regolatore Quadratico Lineare (LQR) è stato proposto
per il controllo. L’obiettivo del sistema di controllo è quello dir idurre le
tensioni interne alla struttura in presenza di carichi da raffica, attraverso la
deflessione degli alettoni.
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Chapter 1

Introduction

Since the aerospace field has always been focused on the optimization of
weights and performance, always keeping in mind the costs and the time of
maintenance, in recent years, new methods of construction or design have
been progressively made, allowing the use of lighter structures, which are
continuously monitored to evaluate their health and to schedule mainte-
nance or replacement. In this field it is of particular interest an active
aircraft Structure Health Monitoring (SHM), which can be useful for the
continuous monitoring of the structure through the use of tools like strain
gauges or new fiber optic’s sensors which can be installed on the structure
to reconstruct deformations in the crucial points. Several studies have been
carried out for the analysis of the use of these tools for the reconstruction
of deformations and their installation on the structures as investigated in
the SARISTU project (2016) [17], and in [21]. The object of this thesis is
to exploit the possibility of knowing the deformations that these measuring
instruments introduce, in order to be able to calculate the forces acting on
the wing structure, which once known it is possible to limit the effect with
the use of the mobile surfaces of the wing itself. The work carried out within
this thesis can be divided into 3 parts, concerning the construction and def-
inition of the models used, the reconstruction of the loads and the actual
control. Chapter 2 discusses the various types of hardware that can be used
for the measurement of deformations and accelerations, i.e. strain gauges,
FBGs and accelerometers, with consequent operating principles and govern-
ing laws, and how can also be obtained information regarding the position
and displacements of the components, also illustrating the characteristics
and limitations of these components.
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1 – Introduction

In chapter 3 the FEM models are described, which are used in this
thesis for data on which to perform the study, since the method involves
the use of the real structure of the aircraft, thus illustrating the model
of the complete wing box and the concentrated one used for the control.
Precisely for the latter are then illustrated the procedures for obtaining the
mass, stiffness and damping matrices necessary for the construction of the
model. In this chapter are exposed the loads to which the structure will be
subject to reconstruction, and will explain the reasons that lead us to carry
out the reconstruction with two load models, the concentrated one and the
distributed one.

In chapter 4, the principle of reconstruction is illustrated, referring to
Skopinski (1953) [22], through which is it possible to correlate the deforma-
tions within the structure with the external loads applied, and is exposed
the algorithm that defines the number and the position of the data col-
lectors to achieve this reconstruction. We then move on to optimizing the
data collectors in order to have a limited number of the same without los-
ing reliability in the reconstruction, illustrating how the loads were obtained
in the case of concentrated and distributed values, the latter through the
definition of basic functions.

Finally, in chapter 5 the control is given, defining gust loads, how the
control is carried out by the deflection of the wing’s mobile surfaces, the type
of control through a Linear Quadratic Controller, and how our second order
system is defined and reduced to two systems of the first order, controlling
also stability and controllability, then concluding with the results deriving
from the control.

2



Chapter 2

Methods for data collecting

The main purpose of this thesis, as previously explained in the overview, is
to find a way to control stresses and strains inside a structure, in particular
the wingbox one, in order to find a correlation between the deformations,
inside the structure in one or multiple points, the forces applied to it and the
related strains. From this point of view it is necessary an hardware support
able to record the strains in real time, so they can be processed by a software
and, through the ailerons deflection, being controlled. This leads to the
introduction within the model of the strain gages and accelerometers, the
latter being introduced for various reasons, explained later in this chapter.

2.1 Strain Gages

The use of strain gage technology in aerospace applications has a long his-
tory. Strain gages are bonded directly inside the structure, to measure
stresses along load paths for wing deflection. The continuous increasing of
the use of composite materials in the aerospace industry, combined with the
need to have structures that can be monitored in order to reduce produc-
tion and maintenance costs, has led in recent years to the introduction of
new methods for investigating the health of such structures, not only in the
aerospace industry.

From the historical point of view of this type of instrumentation, the

3



2 – Methods for data collecting

first strain gages were analogical, with components made up of springs and
levers, which however did not provide great precision. Subsequently there
was the introduction of strain gages based on the material’s resistive prop-
erties , exploiting the variation of resistance within a conductive material if
subjected to mechanical stresses. Over recent decades, especially after the
NASA development, strain gages based on an optical technology through
the optical fibers have been introduced, taking advantage of optical prop-
erties.

This field includes fiber optic ribbon tapes (FORTs), which are partic-
ularly suitable to be used in composite structures as they can be installed
between the various layers, without introducing particular findings from a
structural point of view, but they can also be applied on the surface, as
in the classical method. Compared to the classic Electrical Strain Gages
they bring not a few notable improvements, so they can be considered the
state-of-art for this type of structural investigation: first of all, they can be
arranged inside the structure, inserting them inside the composite structure
in the autoclave phase, or attached with special glues on the surfaces, still
obtaining excellent results. Compared to the classic ESGs they are much
more resistant to fatigue loads analysis where the structure is stressed to an
high number of cycles, since the sensor does not detach from the structure
after a certain number of cycles.

2.1.1 Electrical Strain Gages

The classic electrical strain gages (ESG) are measuring instruments used
to detect small deformations inside the structure of a component subjected
to mechanical or thermic stresses; these deformations are obtained from
the knowledge of the behaviour and of the mechanical/physical material’s
characteristics. Basically, electrical strain gauges, consist of a thin metal
wire, which is rigidly applied to a plastic material support. It is installed
directly on the surface of the object with a suitable glue, suffering its same
deformations: it is precisely this feature that allows us to measure the
strains, since that, by lengthening or shortening, dimensional variations
are created in the wire so that its electrical resistance varies, and through
the use of a wheatstone bridge, is it possible to measure the variation of
electrical resistance and therefore the deformation.

As we can observe from fig.2.1 the metallic wire is positioned on parallel

4



2 – Methods for data collecting

Figure 2.1. Classical ESG component

rows, so to maximize the deformation’s effect in order to have a more precise
measurement. As can be imagined, the strain gauge is characterized by the
resistance of the wire that constitutes the grid and by a factor which relates
its resistance to the wire’s length variation, which takes the name of Gauge
factor GF , that represent the sensitivity of the strain gauge, expressed as

GF =
∆R/R

∆L/L
(2.1)

Given the electrical resistance of the wire

R =
ρL

A
(2.2)

where R is the electrical resistance of the material which constitute the
wire, L is the conductor length, A is the section area of the conductor and
ρ is the material resistivity, if we differentiate the 2.2 we obtain

dR =
ρdL

A
+
dρL

A
− dρdL

A2
(2.3)

and being able to write the variation of volume of the material in case
of small variations, having that dL/L = ε, as

5



2 – Methods for data collecting

dV = LdA+ AdL = LA− L0A0 = L(1 + ε) · A(1− νε)2 (2.4)

and substituting the 2.4 in 2.2, with some mathematical steps, we get

dR/R

ε
= 1 + 2ν +

dρ/ρ

ε
(2.5)

thus obtaining that the Gage Factor GF can also be expressed as

GF = 1 + 2ν +
dρ/ρ

ε
(2.6)

where the first two components express the dependence on the defor-
mation, while the last one represent the effect of the variation of specific
resistivity. In this way is it possible to write the relationship that is used
for the strain gauges

∆R

R
= GF · ε (2.7)

which binds the variation in resistance to deformation of the strain
gauge’s metal wire.

Since resistance variations are usually very small, the Wheatstone bridge
is used to convert the variation of resistance into voltage variation, so that
they can be amplified to allow the measurement.

Considering

V0 =
R1R3 −R4R2

(R2 +R1)(R3 +R4

Ve (2.8)

we have that the variation of one of the resistances varies the V0 tension’s
value, so differentiating the equation 2.8 on the basis of the 4 resistances ,
we get

6



2 – Methods for data collecting

Figure 2.2. Wheatstone bridge scheme

V0
Ve

=
1

4

[
∆R1

R1

− ∆R2

R2

+
∆R3

R3

− ∆R4

R4

]
=
GF

4
[ε1 − ε2 + ε3 − ε4] (2.9)

By actively using 1,2 or all 4 strain gauges is it possible to measure the
strain of the object under examination, being also able to perform a thermal
deformation compensation, since, due to an appropriate positioning of the
resistors, the deformation effect due to the temperature is compensated, and
therefore the value of the deformation is due only to mechanical stresses.

Although they are widely used in laboratory tests, and are instruments
with excellent precision, in the case of dynamic measurements, the use of
this type of strain gauge is not the best choice: first of all, their connection
to the object is made by gluing, and even if suitable glues are used, these
glues can lose effectiveness over time and cause the strain gauge to detach
from the object, thus losing the possibility of measuring the deformation;
moreover the connection is made through conducting wires, which despite
the low voltages, can lead to interference in the transmitted signal, as well
as representing an additional weight on the structure in the event of a high
number of applied strain gages

7



2 – Methods for data collecting

2.1.2 Fiber Bragg Gratings

A Fiber Bragg Grating (FBG) is a microstructure, which is typically few
millimetres in length, that is photo inscribed in the core of a single mode
fiber. This is obtained through a transverse illumination of the fiber with
a UV laser beam and a mask, so to generate an interference pattern on its
core, that will induce a permanent change in the physical characteristics of
the silica matrix, that lead to a periodic modulation of the core index of
refraction, creating a resonant structure [1] [2].

Figure 2.3. Bragg grating inside the fiber, due to the incident laser beam

The resonant structure take the name of Bragg grating, which is able to
reflect a precise wavelength, called Bragg wavelength λG, given by

λB = 2neffΛ (2.10)

where neff is the average refractive index and Λ is the grating period.
When a thermal or mechanical load is applied to structure, the grating is
strained, having a change in the peak of the reflected wavelength. Assuming
therefore that there is no change of pressure, we can find that the variation
of the reflex wavelength using the following equation:

8



2 – Methods for data collecting

∆λB
λB

=

[
1−

(
n2
eff

2
(p12 − ν(p11 + p12))

)]
ε+(a+ξ)∆T = FGε+(a+ξ)∆T

(2.11)

where ∆λB is the wavelength shift, λB is the initial reference wavelength,
ν is the Poisson‘s ratio of the fiber, p11 and p12 are the elasto-optic coeffi-
cients of the elasto-optic tensor constants of the strain optic tensor and FG
represents in total the gage factor of the fiber; a is the coefficient of thermal
expansion of the glass fiber, ξ is the fiber thermo-optic coefficient, and ∆T
is the temperature change [3].

Figure 2.4. Reflected wavelength from the Bragg grating [3]

The technology of the FBG is used in the FORTs (Fiber Optic Ribbon
Tapes) that are ribbon of optical fibers, formed in a flat strip. Are obtained
through the manufacturing of a series of separates optical fibers laid down
on a flat distribution, bonding them each other, using a special water tight
tape material to hold them in their position. This type of cables are one of
the best solutions when the installation has to be performed in tight places
or with weight restrictions, as in the aerospace industry.

Those properties lead to the installation of those sensors in several type
of structures, and in particular allow the installation either on the surface
of the composite component of interest, or embedded inside their structure.
This type of installation allow not only a constant knowledge about the
displacements inside the structure, but also its heath doing so that could be

9



2 – Methods for data collecting

Figure 2.5. FORT structure [4]

also utilized for a component approval or qualification. Despite its advan-
tages the concept of the embedding could lead to a degrade of the mechan-
ical properties of the structure, since the region of the material around the
FBG is a potential site of damage initiation, but in several studies as [23]
no decreased properties have been reported if the direction of the deployed
fiber corresponds to the reinforcement one.

2.1.3 Displacement reconstruction

The real-time displacement prediction of the deformed structures is really
important in the engineering applications, and considering the advantages
introduced by the fiber bragg grating sensors, is it possible to reconstruct
the dynamic deformation of a structure by the displacement got from the
sensors. A method, investigated in [23], is based on a Kalman filter and the
inverse Finite Element Method (iFEM). The iFEM method is based on the
reconstruction of the displacement of a structure using the measurement ob-
tained from strain sensors [5]. In this case is investigated a beam structure,
developing a strain state equation of the structure using the finite element
method (FEM), considering a model with 2n degrees of freedom, considering
at each station wn, vertical nodal displacement, and θn the nodal rotation,
establishing a relationship between strain and nodal displacement as

10



2 – Methods for data collecting

{ε} = [B]{δ} (2.12)

where the coefficients inside the B matrix are given by the shape function

B(ξ) =
1

l2
[l + 12ξ,l(−4 + 6ξ),6− 12ξ,l(−2 + 6ξ)]

h

2
(2.13)

where l is the length of the beam element, ξ = x
l
, and x is the location

of the FBG in element. Having the eq. 2.12 we can get

{δ} = [B]−1{ε} (2.14)

where δ and ε are (2n × 1) vectors and [B] is an (2n × 2n) matrix.
Considering the vibration equation of the beam, and substituting the eq.
2.14, multiplying left by [B]T we have

[Ms]{δ̈}+ [Cs]{δ̇}+ [Ks]{δ} = {f} (2.15)

[B]T [Ms][B]−1{ε̈}+[B]T [Cs][B]−1{ε̇}+[B]T [Ks][B]−1{ε} = [B]T{f} (2.16)

obtaining in this way a strain vibration equation as follow

[Mε]{ε̈}+ [Cε]{ε̇}+ [Kε]{ε} = {fε} (2.17)

where the mass, damping and stiffness matrix are the one obtained in
eq. 2.16 as [B]T [·s][B]−1. It’s possible to write the state equation as

Ẋ(t) = AX(t) +BF (t) (2.18)

with
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2 – Methods for data collecting

A =

[
0n×n In×n

−M−1
ε Kε −M−1

ε Cε

]

B =

[
0n×n
M−1

ε

]

X =

[
ε
ε̇

]

The system is then discretized over time intervals ∆t, becoming

X(k) = ΦX(k − 1) + Γ (F (k) + w(k)) (2.19)

Φ = exp(A ∗∆t) (2.20)

Γ =

∫ k∆t

(k−1)t
exp[A(k∆t− τ)]Bdτ (2.21)

where X(k) represents the state vector; Φ represents the state transition
matrix; Γ represents the input matrix; ∆t represents the sampling interval;
F (k) represents the load sequence. Then, Kalman filter is used to suppress
vibrational dynamic noise.

At the last, iFEM is used to construct dynamic deformation, where
the displacement vector are expressed by kinematic variables u(x) and the
kinematic variables are interpolated by element-shape function as

u(x) ≈ ue = N(x)qe (2.22)

where N is the shape-function matrix, qe is the nodal degrees-of-freedom.
Defining the strain field as ε = {εk} the strain values can be expressed as

ε(ue) = B(x)qe (2.23)

12



2 – Methods for data collecting

with B the shape-function matrix. After minimizing the least-square
error between the analytic strain measure and the corresponding experi-
mental strain measured at the n discrete locations by FBG sensors, it’s
possible to obtain the displacement vector, where the error functional is
written as reported in [23] as

Φe(ue) =‖ ε(ue)− εe ‖2 (2.24)

2.2 Accelerometers

An accelerometer is a measurement instrument able to detect and measure
the acceleration, calculating the force on the object in comparison to its
mass. The use of this type of transducers and sensors during the years
is increasing, not only in the traditional applications as the scientific and
aerospace fields, but also in several civil fields, really often used in combina-
tion with other sensors, as gyroscopes. There are several type of accelerome-
ters but all of them is based on the same principle: calculating the inertia of
a mass subjected to an acceleration, and due to this acceleration the mass
moves from its initial position in a proportional way to the acceleration,
having that the difference on the several types of accelerometers is based
on the working principle of the sensor which detect the mass movement.
Through the installation of an accelerometer on a structure is it possible
to know the acceleration of the structure thanks to the inertia mass of the
sensor, which reference system moves with the structure, calculating in this
way the structure acceleration. The data form the accelerometer could be
1-D, having just one mass and a one dimensional movement detector, or
3-D, having one mass and three movement detector or three masses three
different movement detectors, one for each axis of the orthogonal reference
system.

13



2 – Methods for data collecting

Figure 2.6. Schematic accelerometer structure [6]

2.2.1 Displacement reconstruction

The accuracy in the estimation of the vibration characteristics and the pos-
sibility to reconstruct the velocities and displacements form the time signal
makes the the accelerometers are some of the most frequently used sen-
sors in the vibration response measurement for the structures. But this
reconstruction it’s quite difficult. Usually there are two ways in to convert
measured time history of the acceleration signal into a displacement signal:
one is to integrate directly le signal in the time domain, and the other one is
by dividing the Fourier-transformed acceleration signal by the scale factor
of −ω2 and taking its inverse Fourier transform. But both of these methods
produce a significant amount of errors depending by the sampling resolu-
tion in the digitalization of the response signal. In [14] are discussed the
problems involving the calculation of displacements from the acceleration
recordings, so through double integration, and the amplification measure-
ment errors of the input signal, with a correction of the errors thanks to a
double integration introduced by an algorithm, and it’s also shown that the
main issues are due to the errors in the lower frequencies, so that the use
of accelerometers capable to measure low frequency signal with high reso-
lution was proposed and tested with quite reasonable results. In [10] both
the ways to reconstruct the displacement are investigated, finding out that
when the time signal of the acceleration is available and the Nyquist fre-
quency of digitization is much higher than the highest frequency component
of the signal, the direct double integration of the acceleration in the time
domain provides reasonably accurate displacement time signal. When using
the time domain method, the success of the reconstruction process depends
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on the appropriate initial conditions during the double integration process.
But if the frequency components of the measured acceleration signal are
relatively high compared to the Nyquist frequency, the frequency domain
method should be used. The effect of a double integration in the time
domain is achieved by scaling the discrete Fourier transform of the mea-
sured acceleration signal in the frequency domain. The curve fitting around
the peak values of the scale discrete Fourier transform provides a reason-
ably accurate shape of the Fourier transform of the original displacement
signal. Is it possible, accordingly to the cited papers, to reconstruct the
displacement from the acceleration signal with reasonable accurate results,
so to reconstruct the displacements of some part of the structure during the
flight.

15



Chapter 3

Models

Within this chapter, the models that have been created and will be used in
the following chapters are shown and explained in detail. The first model,
the detailed one, is a finite element model, realized using the MSC Patran/-
Nastran 2018 software, whose task is to simulate the analysis structure
behaviours and its response to the loads, and therefore to carry out the
strains and the displacements that will be necessary during the reconstruc-
tion of the forces acting on the structure. It is also used to design the
approximate beam-like model, through the reduction, where the structure
is approximated to a series of beam elements, whose properties are extracted
from the detailed model, and which will be necessary in the control phase.
It will be used the reduced model because with this is possible to have a
much lighter and faster system to be used during calculations, in order to be
controlled quickly and with greater success, however not sacrificing the pre-
cision in the approximation of the behaviour. It will also be shown how the
characteristics of mass, damping and stiffness necessary for the construc-
tion of the control system are obtained, which approximations regarding
the loads were made, and some considerations about the independence of
some degrees of freedom and the associated damping factors.

In the aeronautic field, the structures are designed taking into account
in particular two key aspects: a maximum resistance, such as to be able
to withstand the loads during flight, and a minimum weight, for propulsive
reasons. These two aspects are bounded each other, as much of the weight
of the aircraft is due to the structure, as well as its stiffness, which means
that is it necessary to find the right compromise between the two properties.
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For this reason in the aeronautical field there is a wide use of the half-shell
structures, which are characterized by their ability to divide the different
types of loads between the various elements within them, thus succeeding in
reducing weight, as each component is specialized to absorb a type of load,
and then optimized from the weight point of view to perform this task. In
the half-shell model we can identify two main elements:

• Panels: structural elements, in which two dimensions are several or-
ders of magnitude higher than a third one, which are specialized to
withstand to shear stresses

• Stringers: structural elements, in which one dimension is several
orders of magnitude higher than the other two, whose main function
is to absorb axial loads on their surface, perpendicular to the axis of
the main dimension

Through the combination of these two elements, aircraft structures are
designed, and referring in particular to the wing, makes it possible to iden-
tify 4 main structures

Figure 3.1. Aircraft wing structure [20]

17
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• Spars: the elements that run along the wingspan and whose main
task is to withstand the bending. They are composed by two spar
caps and a spar web, assimilating their shape to a double T, where
the first ones have to withstand the axial loads along the wing, while
the web spar, located in the middle, link them each other, transferring
the shear stresses.

• Ribs: elements similar to the beams, are placed in a direction per-
pendicular to the spars and with a similar structure, with external
reinforcements and a core, which task is to maintain the shape of the
profile and to support it in areas with concentrated loads, such as
engine attachment points or junctions with moving surfaces.

• Skin Panels: constitute the coating of the structure, that not only
give the shape of the profile, but also contribute to the structural
rigidity, ensuring torsional rigidity as they are able to withstand shear
stresses.

• Stringers: longitudinal stiffening elements, connected with the panels
and able to provide the stiffness for the compressing loads, to discharge
part of the shear stresses in the form of normal stresses and to avoid
instability of the panel due to the compression forces.

3.1 Detailed FEM Model

For the development of the complete FEM model, as mentioned in the in-
troduction, the MSC Patran pre and post-processing software was used,
through which the geometry and the finite elements model were defined.
For the sizing of the model, different types of aircraft were taken into con-
sideration, evaluating the profiles and dimensions of the wing structures, in
particular commercial passenger transport aircraft, and taking inspiration
from these structures, have been chosen, for the construction of the wing,
the characteristics shown in the table 3.1
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(b/2) Wing span 20 m
(cr) Root chord 5 m
(ct) Tip chord 1 m
(tr) Profile thickness at the root section 0.25c 0.8 m
(tr) Profile thickness at the tip section 0.25c 0.4 m

(Λ0.25c) Sweep angle 0.25c 5.53◦

(ΛLE) Sweep angle leading edge 11.31◦

(ΛTE) Sweep angle tailing edge 0◦

Table 3.1. Main values of the structure model

Following the values shown in table 3.1 the geometry of the structure
was constructed, which is shown in fig.3.2.

Figure 3.2. Complete detailed FEM model

Figure 3.3. Wing section - plane x− y
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To this geometry has been associated a FEM mesh using, for all the ele-
ments excluding the stringers, the 4-node quadrangular elements, CQUAD4,
according to the theory of Reissner-Mindlin, which unlike the Kirchoff-Love
theory considers the effects of the shear stresses on the plate deformation.
Using these elements the mesh was created manually, imposing a dimension
on the elements, trying to impose an isometric geometry, which however is
conditioned by the tapering of the chord along the wingspan accompanied
by the need to hold a constant number of elements in each row. As regards
the positioning of the ribs inside the structure, an equispaced insertion has
been selected along the wing span, with the ribs spaced 1 m each other, for
a total amount of 20 ribs, since in the root section no one has been inserted
because the constraints will be applied to that section, and therefore would
have been superfluous. Moreover, in order to further increase the rigidity
of the structure, stringers were inserted along the wingspan, as well as from
the theory of the half-shell, thus increasing the capacity of the structure to
withstand the stresses.

Figure 3.4. (x,z)-plane view

The wing structure thus created is composed of 5 main groups, each
of which presents different materials and thicknesses: the upper and lower
skin panels, are made of a composite laminate; the ribs, a thicker structural
part that is introduced to allow the application of concentrated loads; the
spar caps, which are the connecting point between spar and panels; the
stringers, which are distributed as shown in fig. 3.9, and the two front
and rear spars which are made of aluminium alloy. In the table 3.1 are
reported the thicknesses of the various parts that constitutes the wing and
their material.

20



3 – Models

Figure 3.5. Front and rear spars

Figure 3.6. Detail of spar and spar caps

Figure 3.7. Ribs along the model
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Part Thickness [mm] material

Skin panels 8 Composite laminate
Spars 9 Aluminium alloy
Ribs 12 Aluminium alloy

Spar caps 14 Aluminium alloy
Stringers tab 3.1 Aluminium alloy

Table 3.2. Main characteristics on the structure’s part

It is important to highlight that the values used for the aluminium alloy,
as well as those which are shown below for the composite laminate, for the
σr and the σy have been assumed considering the values of the various
aluminium alloys, without however choose a particular one, and since the
structure is not properly dimensioned, in the phase of control when it will be
subjected to the gust loads, the maximum stresses values could be exceeded:
this, as mentioned, is due to various factors such as the non-sizing of the
structure parts or the fact that in this analysis the loads due to the weight
of the fuel or of the structure itself are not taken into consideration. This
also implies that deflections due to the loads will be excessive, but this will
be explained later.

Aluminium alloy properties Value

Young modulus (E) 73000 MPa
Shear modulus (G) 27000 MPa
Poisson’s ratio (ν) 0.33

Density 2700 kg/m3

Tensile ultimate σr 480 MPa
Yield strength σy 345 MPa

Table 3.3. Aluminium alloy characteristics

A carbon-epoxy composite laminate made of 20 layers of carbon fiber
in an epoxy resin matrix was used for the skin panels, and every layer has
a thickness of 0.4 mm having that the whole panel is 8 mm, and whose
lamination is obtained with the properties in table 3.1.
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Figure 3.8. Top and bottom skin panels in the model

Laminate properties Value

Young modulus direction 1 (E1) 111000 MPa
Young modulus direction 2 (E2) 8000 MPa
Shear modulus G12 = G13 = G23 3000 MPa

Poisson coefficient ν12 0.33
Density 1500 kg/m3

[45 /− 45 / 0 / 0 / 90 / 0 / 0 / − 45 / 45 / 90]s

Table 3.4. Composite laminate properties

As for the stringers, they were created using the beam property, as BAR3
elements, whose main values can be seen in the table 3.1; The use of the
BAR3 elements, instead of the BAR2, is given by the fact that the latter is
composed only by 2 nodes, one at each end of the element, defining a linear
displacement variation along the element, versus a BAR3 element which
has a quadratic displacement variation, even if it has a middle node. For
this reason the BAR3 element was chosen because is more accurate in our
case and fits better with the model’s nodes. As can be seen from fig 3.10
we opted for Z-shaped stringers.

The connection of the beam elements was made using the existing mesh
nodes, that from a rib to the next one, considering also those of the rib,
corresponds to 5, having in this way the BAR3 elements between the two
ribs, with a common joint node, and with the central node of each element
that coincides with the pre-existent panel’s mesh node. Moreover, their
distribution along the wing span is made to avoid that the intermediate
space between the various springers is neither too wide nor too narrow, as
can be seen from the fig. 3.9. They are halved form the middle of the wing
span, since the load from that point on is smaller so their presence could be
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Figure 3.9. Stringers deployment in the structure

superfluous for the purposes of the stiffness of the structure, contributing
only to the increase of the weight.

t
a

t
b

h

w

Figure 3.10. Stringer section
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Stringer section properties Value [mm]

tb 3
ta 3
w 20
h 47

Table 3.5. Stringer section properties

Figure 3.11. Section model with various elements

3.1.1 Loads

The main purpose of the thesis is the reduction of the loads acting on the
structure. Before to go any further, some of the adjustments used in the
implementation of the loads in the model will be pointed out below. First of
all it is essential to illustrate that two different types of loads were applied:
the first type is constituted by concentrated loads, applying the force in some
nodes of the structures, in particular in correspondence of the ribs, and a
second set made by distributed loads, which are distributed along the upper
and lower surfaces of the structure according to the specific distribution
laws. The choice of applying the load in two different ways and in two
different analysis, is due to the fact that when we are going to analyse the
concentrated model. Being based on the representation of the structure as
a succession of beams, is more convenient for the application of the loads to
apply directly the concentrated ones instead of using the distributed; doing
this is possible to avoid making a further step to discretize the distributed
loads, in order to apply them on the nodes of the beam-like structure. In
this way it is also possible to evaluate the correctness of the reconstruction of
the concentrated model, applying the same loads to the two structures. The
use of a distributed load instead aims to subject the structure to a more
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truthful load, applying a pressure distributed along the upper and lower
surfaces of the structure, which better simulates the aerodynamic forces to
which the structure is subjected. The differences that characterize the two
results will certainly be highlighted, both because the FEM elements will
respond differently to the two types of loads, and because the distribution
of pressures will be composed as the sum of a force and a moment.

For the shape of the distribution of forces acting on the wing, was chosen
an elliptical shape

L =
1

2
ρSV 2CL (3.1)

where rho is the density of the air at the chosen flight altitude, S is
the complete wing surface, V is the velocity of the flow that invests the
profile, and CL is the coefficient of lift of the profile. It is noted that the
air density is obtained from the flight altitude h = 6096 [m] through the
thermal gradient which influences the temperature of the atmosphere as its
altitude changes, thus having a resulting density at a certain height given
by

ρ = ρ0

(
T0 − g · z

T0

)4.256

(3.2)

where ρ0 represents the density of air at the sea level, with T0 the stan-
dard sea level temperature of 288.15K, and with g the vertical thermal
gradient that is 0.0065K

m
. The lift coefficient is composed by a contribution

due to the complete profile and its angle of incidence with respect to the
flow direction that invests it, and a component due to the rotation of the
aileron that changes the characteristics of the profile. Indicating with α the
angle of incidence between the profile and the flow, and with δ the angle of
rotation of the aileron, we have that

CL = Clα · α + Clδ · δ (3.3)

The equation 3.3 will be very important when we are going to apply the
control, since it will be through the deflection of the aileron angle that the
control will be carried out.
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Referring to the equation 3.1 we have chosen an elliptic-type lift distri-
bution, having therefore, in the z direction, that is the span-wise direction
for the wing structure, the lift represented as

L(z) =

∫ b/2

0

L0

√
1−

(
z

b/2

)2

(3.4)

where b/2 is the wings span and the value L0 is obtained knowing
the total lift L and the value of the integral of the elliptical distribution√

1−
(

z
b/2

)2
.

L(z)

Figure 3.12. Lift distribution on the model

The choice of the elliptical distribution for the lift was made because,
according to the 3D aerodynamic theory, it is the shape that has the least
induced drag and the greater aerodynamic efficiency, even if in this case the
surface plan is trapezoidal, and therefore also the form of the lift should
have this shape, given that the shape of the lift force around the profile

L(z) ∝
∫ z

0

c(z) (3.5)

which causes the shape of the surface to influence the distribution of lift.
In the Prandtl finite wing theory, the aerodynamic forces are applied, on a
profile, to the front quarter of the chord, but in this case the aerodynamic
forces will be applied to 1

3
c: this is because in the case of distributed loads

a triangular pressure distribution along the chord has been chosen. This
means that in the comparison with the concentrated load, those will be
applied on the center of gravity of the chord-wise pressure distribution,

that correspond in this case to
1

3
. Moreover, it is not the purpose of this

analysis to provide an aerodynamic analysis of the structure, but to evaluate
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the reconstruction of the forces acting on it, for this reason approximations
to the aerodynamic theory of the wing have been adopted, however trying
to remain faithful to the real forces distribution, in order to obtain realistic
results.

Concentrated

The analysis with concentrated loads requires an application point for the
concentrated forces, since applying them on a single node of the model could
lead to excessive and inaccurate deformations, thus distorting the structure
response. For this reason the concentrated loads have been applied to the
sections of the wingspan coinciding with the ribs, so as to better support
the transverse loads, avoiding deformations that are not suitable for the
panels. To apply those loads, MPC (Multi Point Constrains) elements of the
RBE3 type were used, linked to the nodes that join the connecting elements
between the panels and the ribs, in order to distribute the concentrated
forces and moments between all the nodes, having a more accurate response.

L(z)
L₁ L₂ L₃

Figure 3.13. Application of the concentrated force from the lift distri-
bution

For the calculation of the values of the concentrated forces, once the
distribution of lift is obtained, as shown in eq.3.4, it has been divided into
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10 parts, equally divided along the wingspan, and calculating the integral
of the force distribution on each load section, the resultant force value have
been applied as a concentrated force on the rib which it is located at the
midpoint of the section, as in fig. 3.13.

The analysis with the concentrated forces allow us to use these loads as
forces applied to the nodes of the concentrated model, being able in this way
to make a comparison between the two models, verifying their accuracy.

Distributed

The concentrated loads analysis case is used to better compare the complete
structure and the concentrated one. But an analysis of the structure subject
to distributed loads is however carried out, as they better represent the
real forces to which the structure will be subjected. It’s now illustrated
the characteristics of the forces that have been used to load the structure.
Instead of distributed forces, it was decided to apply distributed pressures,
on the upper and lower surfaces of the structure, because the lift is generated
by a difference of pressure between the upper and the lower surfaces of the
profile, with an overpressure on the lower one accompanied by a depression
on the upper one. This create a pressure difference that generate the lift, and
this reason lead to apply a pressure load cause is more realistic. Following
this consideration it is logical to think to distribute the pressure load among
the two upper and lower surfaces to better simulate the lift, having so a
pressure contribution acting on the two surfaces. In addition to consider a
dependence of the lift forces along the wingspan, which follows an elliptical
shape as reported by the equation 3.4, instead of applying a pressure with
such distribution on a line corresponding to a quarter of the chord from the
leading edge, it was chosen to provide a chord-wise pressure distribution,
choosing a triangular shape distribution. This distribution has a maximum
value at the point corresponding to the front spar, linearly decreasing up to
the null value at the rear spar.
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Figure 3.14. Chord-wise pressure distribution

Considering therefore the ramp distribution along the chord, consider-
ing the distribution as in the eq. 3.4, the pressure distribution applied to
surfaces is obtained as

L(x,z) = L0x,z

√
1−

(
z

b/2

)2

· x
(
cr −

cr − ct
b/2 · z

)
(3.6)

where cr e ct are the values of the chord at the root and at the tip
section respectively, and L0x,z it’s constant value that is obtained, in a
similar way to what was done for the distribution of concentrated forces,
from the equation 3.1. Note well that the values of the constant L0 and
L0x,z are different values, because in the case of concentrated loads it was

used to relate the integral of the distribution
∫ b/2
0

√
1−

(
z
b/2

)2
to the value

of the lift L referring to the 3.1, while in the case of L0x,z it relates to the

value of the double integral
∫ b/2
0

∫ c(z)
0

√
1−

(
z
b/2

)2
· x
(
cr − cr−ct

b/2·z

)
.
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Figure 3.15. Total pressure distribution

3.2 Control Model

This part of the chapter focuses on how the finite element model is reduced
to a simplified beam-like model. Since there are different techniques, such
as static condensations of the mass and stiffness matrix, in this case we have
opted for the creation of an aircraft simplified beam finite element model,
also known as stick model, which is commonly used in the design of civilian
aircraft or also in multidisciplinary design optimization (MDO). An accurate
prediction of the deformations due to twists and bends in the structure of
the aircraft depends on the accuracy with which the stiffness characteristics
are collected and reconstructed from the model. In particular, the process
for the generation of a stick model is based on the extraction of the stiffness
properties of the main structure and applying it to a set of beams which
displaced along the elastic axis of the structure. The possibility of having
a simplified structural model of the entire structure of the aircraft is very
important in the aeronautical field. Having the deformations of the aircraft’s
structure during the flight is important also from the point of view of the
aerodynamic performances, since that the aerodynamic loads can be used
for the preliminary dimensioning of the structure. The finite element 3D
model is usually used mainly after that the structural details are obtained,
for this reason is used for verification, validation and optimization from a
structural point of view. This gives that a simplified FEM beam model is
more useful in the preliminary studies because is enough accurate and is
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cheaper to develop from both the financial and the computational point.
The difficulty in constructing such a model is that it’s needed to be able to
develop it sufficiently simple but at the same time quite sophisticated and
accurate enough to predict the dynamic trend of the structure. Taking as
a guideline the method used in [12], is explained how the beam model has
been developed.

Figure 3.16. Complete detailed FEM model

3.2.1 Stiffness

The analysis for the reconstruction of the stiffness of the beam, starting
from the complete FEM model, consists of a process divided into 3 phases:

• First of all the axes for referencing the beam and the nodes of the
beam elements in the complete FEM are defined;

• Flexibility matrices are determined numerically, through the behaviour
of the complete FEM submitted to a small number of static load cases;

• For each element are calculated a set of 13 physical parameters nec-
essary to define by rigidity of the beam element.

As far as the first two steps are concerned, this is nothing more than the
result of Malcolm and Liard process for the BPE [9], while the third step
create a small number of independent physical parameters. This analysis
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assume linear behaviours of the structure, with small wing deflections and
rotations.

In the figure 3.16 it’s exposed the complete model, and in the figure
3.17 the associated beam structure is represented on a x − z plan view.
The reference axis for the beam model, correspond to the line that link all
the nodes of the beam elements from the root section to the tip one. The
definition for the reference axis of the beam has not particular guidances,
except that it must be continuous and aligned with the structure of the
wing. For each section a xyz local coordinate system (LCS) is defined as
shown below, highlighted in red, where the z axis extends from the beam
node of the root section to that of the tip section.

x

z

l
i

L
i

L
j

Figure 3.17. Representation of the concentrated beam model compared
to the complete one in the x− z plan

Referring to the figure 3.16 of the complete structure, it has been di-
vided in different sections, corresponding to them bounded between two
consecutive ribs, with the root section fixed through the constraints. It is
advisable to make the sections coincide with the beam element so that the
structural stiffness, provided by ribs and stringers, allows greater accuracy
in the results. But also choosing sections that do not correspond to these
areas should not be considered wrong. Moreover, as mentioned previously,
there are no contraindications on the choice of the beam reference axis,
which for example may not be perpendicular to the selected sections. Con-
sidering now each box section, an element RBE3 is applied to the nodes of
that section, connecting them with to the node corresponding to the section
axis. By doing this the node will be dependent on the displacement of all
the nodes in the section. The dependant node corresponds to the node on
the shear center of that section. There are no contraindications on the num-
ber of nodes of the section to be included, but it is suggested to take those
corresponding to the junctions between the various structural parts, such
as skin-ribs or skin-spar. In the figure 3.18 there is an example of the MPC
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link between the dependant done (the one in the center) and the nodes of
the section.

Figure 3.18. Side view of the structure section with the MPC connec-
tions

It is suggested to include, as node’s section, the ones that are not in-
cluded inside the rib, but only the one on the structural junctions, as the
ones with the panels. This because, applying the loads, there could be
distorted deformations on the core of the rib.

The choice of the RBE3 element instead of the RBE2 element is moti-
vated by the fact that although it may be more appropriate to use RBE2
elements for structures formed by spar-ribs structures, but since our panels
are made of composite layers, it is no longer advised, since introduces a
stiffness that does not represent the real one of the structure. This because
this element introduce constraints conditions between the dependent node
and the independent ones, which fix the distance between them and the
dependent one, thus introducing a much greater resistance in that degree
of freedom.

The properties of the equivalent beam are extracted from the various
boxes through a static analysis, which follows the following expression

{F} = [K]{u} → [K]−1{F} = {u} → [FF ]{F} = {u} (3.7)

where {F} it is the vector containing the forces and moments, {u} is the
displacements vector, [K] is the stiffness matrix and [FF ] is the flexibility
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matrix. It can also be noted that by applying forces and unit moments it
is possible to derive the flexibility matrix as the following equation shows:


u1 . . . . . . . . . . . . . . .
u2 . . . . . . . . . . . . . . .
u3 . . . . . . . . . . . . . . .
u4 . . . . . . . . . . . . . . .
u5 . . . . . . . . . . . . . . .
u6 . . . . . . . . . . . . . . .





1
0
0
0
0
0


=



u1
u2
u3
u4
u5
u6


(3.8)

In eq.3.8 it’s showed that applying an unit load is it possible to calculate
the components of the flexibility matrix due to that load as the displacement
vector u1rightarrow6. Each section, corresponding to the MPC, has its own
flexibility matrix, whose dimension is n × n, with n number of degree of
freedom, and is obtained aligning the various displacement vectors due to
the unit load, composing in this way, the flexibility matrix. It is important,
in order to increase the accuracy of the reconstruction, to apply the unit
loads separately, so to analyse the response of the section for each load.

Figure 3.19. z − y plan view of the structure section deformation due
to an unit load along y axis

Following this procedure, are derived the flexibility matrices at the sta-
tions j and i, or [FF ]j and [FF ]i. It should be noted that since the loads
are very small, the flexibility matrices can result in very small values, even
close to zero, which could lead to results which do not correspond to the
true properties of the section.
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Figure 3.20. Structure section deformation due to an unit load along y
axis

Considering then li the distance between the various nodes of the beam
in the global reference system, fig. 3.21

li = Lj − Li (3.9)

Figure 3.21. Distance between the various sections on the global refer-
ence system

the flexibility matrix of the entire j-th section [ff ]j can be calculated as
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[ff ]j =
[FF ]j − [FF ]i

li
(3.10)

from which I can then derive the stiffness matrix associated at each
section, which corresponds to that of the equivalent beam

[kk]j = [ff ]−1j → {F} = [kk]{u} (3.11)

Once the stiffness matrix of the beam element has been found, it is now
necessary to compensate the offset of the elastic axis of the beam element
and of its shear center. This offset is caused by the non-alignment between
the reference axes of the complete system and the reference axes of the
various beam elements, reported in fig. 3.17. In order to match the two
reference systems, we need to introduce rotation matrices that rotate the
axes from the global reference system to the local one, of the element. Since
in our case, the structure is symmetrical with respect to a plane parallel to
the x− z one, a rotation of the y axis is not necessary but for completeness
it will be considered within the following equations.

Taking into consideration the flexibility matrix of the j − th element
[ff ]j, and naming with γqp the angles relative to the p axis in the rotation
q =′ ,′′,′′′. The [R] rotation matrix is created

[R] =

[
T 0
0 T

]
(3.12)

where [T q] is

T
′
=

cos(γz) −sin(γz) 0
sin(γz) cos(γz) 0

0 0 1

 for i = z (3.13)

T
′′

=

 cos(γy) 0 sin(γy)
0 1 0

−sin(γy) 0 cos(γy)

 for i = y (3.14)
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T
′′′

=

1 0 0
0 cos(γx) −sin(γx)
0 sin(γx) cos(γx)

 for i = x (3.15)

In this way, the rotation matrices are obtained to perform the rotations
through which it is possible to pass from a reference system xyz to a x′y′z′.
Instead of using these rotational matrices, you can use those relative to
Euler’s angles, respectively referred to as the angle of nutation, angle of
rotation, and angle of precession. Assuming therefore that we want to
switch from our system xyz to that x′y′z′ we have the definition of the 3
angles as

• θ as angle between the axis z′ and the axis z

• φ as an angle between the axis x′ and the line of intersection between
the x′y′ plane and the xy plane also called line of nodes

• ψ angle between the line of the nodes and the axis x

Following these 3 angles we are able to make a rotation following θ,φψ
to overlap the systems xyz e x′y′z′ through, respectively

1. counterclockwise rotation of ψ angle around the z axis

2. counterclockwise rotation of θ angle around the node line, which now
coincides with x

3. counterclockwise rotation of φ around the z′ axis.

similarly to how indicated above, these rotations can be expressed in
terms of rotation matrices, with the matrices associated with the 1,2,3 ro-
tations as

T1 =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.16)

T2 =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (3.17)
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T3 =

cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 (3.18)

obtaining a complete rotation matrix from them T = T1T2T3 which looks
like

T = [(·)1 (·)2 (·)3] (3.19)

with

(·)1 =

cos(ψ)cos(φ)− sin(ψ)cos(θ)sin(φ)
sin(ψ)cos(φ) + cos(ψ)cos(θ)sin(φ)

sin(θ)sin(φ)

 (3.20)

(·)2 =

−sin(φ)cos(ψ)− sin(ψ)cos(θ)cos(φ)
−sin(ψ)sin(φ) + cos(ψ)cos(θ)cos(φ)

sin(θ)cos(φ)

 (3.21)

(·)3 =

sin(ψ)sin(θ)
sin(θ)cos(ψ)

cos(θ)

 (3.22)

having therefore that the matrix of flexibility of the elements in the
global system becomes

[
ffj

]
= [R][ffj][R]T =

[
T 0
0 T

]
[ffj]

[
T 0
0 T

]T
(3.23)

3.2.2 Mass

For the mass matrix reconstruction, a ”lumped” masses and inertias ap-
proach is used, calculating them at the beam nodes approximating the mass
properties of the complete FEM along the wing span. As before, the FEM
model is divided into various sections associated with the nodes of the beam
elements, thus calculating the mass and inertia properties. For each group
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of elements an equivalent mass ms, a CG center of gravity and an inertia
with respect to the beam reference system are determined as:

ms =
n∑
i=1

mi (3.24)

XCG =
n∑
i=1

Ximi

ms

(3.25)

YCG =
n∑
i=1

Yimi

ms

(3.26)

ZCG =
n∑
i=1

Zimi

ms

(3.27)

IXX =
n∑
i=1

mi

(
Y 2
i + Z2

i

)
(3.28)

IY Y =
n∑
i=1

mi

(
X2
i + Z2

i

)
(3.29)

IZZ =
n∑
i=1

mi

(
Y 2
i +X2

i

)
(3.30)

IXY =
n∑
i=1

miXiYi (3.31)

IXZ =
n∑
i=1

miXiZi (3.32)

IY Z =
n∑
i=1

miYiZi (3.33)
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where mi,Xi,Yi and Zi are the mass of element i and the distance of its
centroid from the beam node. So the 6× 6 symmetric mass matrix [M ] at
the beam node may be then be determined from

[
M
]

=


ms

0 ms sym.
0 0 ms

0 0 0 IXX
0 0 0 −IXY IY Y
0 0 0 −IXZ −IY Z IZZ

 (3.34)

Alternatively, it’s possible to use the tool contained in PATRAN, Mass
Properties, so that the properties of the detailed FEM model can be found.
For the calculation of the mass properties, as reported in tab. 3.2.2, this
tool was used. The software provides to obtain the mass, the position of the
center of gravity and the inertia tensor of an area of the model. Therefore
it is possible to select the mass properties of the sections created for the
reduction. Once these properties are obtained they can be modelled as
concentrated masses placed in the beam nodes with CONM2 elements of
NASTRAN. This element in particular allows to shape the inertia tensor,
as well as the position of the center of gravity, with an offset with respect
to where the element is positioned. In this way the masses are well defined
and all the properties of a possible reduced model are equal to those of the
detailed one [8].

Figure 3.22. Mass properties
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3.2.3 Damping

The estimation of damping in structures made up of different materials
still remains one of the biggest and most extensive challenges, also be-
cause the concept of damping within a structural system can have different
meanings according to different branches of study. Damping is the physical
phenomenon by which mechanical energy is dissipated in dynamic systems
(usually by transforming it into internal thermal energy), and a good un-
derstanding of the damping within a dynamic system is very important for
the use, analysis and test of the system. We can divide the damping of the
dynamic systems into 3 main contributions:

• Internal damping of the material, generated by the dissipation of me-
chanical energy inside the material due to microscopic and macro-
scopic processes;

• Structural damping, caused by the dissipation of mechanical energy
resulting from the relative movements of the various mechanical com-
ponents of the structure, which has contact points, junctions or sup-
ports;

• Fluid damping derives from the dissipation of mechanical energy due
to drag forces associated with the dynamic interaction between a me-
chanical system and its components within a fluid.

The damping can be represented by different parameters and models,
for this reason before trying to measure it within a system, we must decide
a representation, through a certain model, that can describe the character-
istics and nature of the dissipation of mechanical energy in the system. In
general, damping is usually studied in two different ways: or through time-
response or frequency-response methods, with the main difference, between
the two methods, that in the first case it consists of a recording of the sys-
tem’s time response to measure the damping, while the latter is based on a
recording based on the response in frequency.
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Damping measurement

To better understand the damping that afflicts the structure, we take as
an example the vibrational model of a cantilever beam, reporting the con-
sideration taken in [16], which presents deformations due to bending with
displacement measured along the y axis which satisfy the following eq

∂4y

∂x4
+
ρA

EI
· ∂

2y

∂x2
= 0 (3.35)

where ρ is the density of the beam material, A is the cross section area
of the beam, E is Young’s modulus, and I is the cross section inertia of the
beam. The equation can be solved as follows:

y(x,t) =

[
Acos

√
ωn
σ
x+Bsin

√
ωn
σ
x+ Ccohs

√
ωn
σ
x

+Dsinh

√
ωn
σ
x

]
· sin(ωnt+ φ) (3.36)

with

σ2 =
EI

ρA
(3.37)

where ωn is the n− th natural angular frequency of vibration.

It is possible to solve the eq. 3.36 through the boundary conditions,
depending on the model under analysis. When the conditions are such that
there are small deformations, the behaviour of the first vibrating mode of a
cantilever beam can be approximated to the behaviour of a system with one
degree of freedom mass-string-damper, whose well-known equation describes
vibration, as a linear system is

ẍ+ 2ζωẋ+ ω2x = 0 (3.38)
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with the resonant frequency equal to ω =
√
k/m from which the damp-

ing ratio

ζ =
c

2
√
km

=
c

2mω
(3.39)

Figure 3.23. Linear model

where k is the stiffness, c is the damping coefficient and m is the mass;
the general solution of the equation can be written as

x(t) = A · e−ζωt · cos(ω
√

1− ζ2 · t+ φ) (3.40)

Usually in the methods used to measure the damping coefficient are
based on the determination of the parameters ζ and ω.

It is possible to introduce the damping factor through the equivalent
damping of Rayleigh, in fact, having the free vibration equation of a struc-
ture written as

mẍ+ cẋ+ kx = 0 (3.41)

where x it is a vector representing the displacement of each element of
the structure. The Rayleigh’s theory assumes that the damping matrix c is
a function of mass and stiffness matrices that can be linearized with α and
β as constants that multiply the matrices of mass m and stiffness k :
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c = αm+ βk (3.42)

Considering the mathematical theory of matrices, the same orthogonal
transformation that allows to diagonalize m and k allows to diagonalize c.
Is it possible in this way to write the equivalent expression:

Mδ̈ + Cδ̇ +Kδ = 0 (3.43)

where M , C and K are the diagonalized matrices, for a set of coordinates
δ. So we can write, for each mode of vibration, an equation of the form:

Miiδ̈i + Ciiδ̇i +Kiiδii = 0 (3.44)

that can be written as

δ̈i + 2ζωiδ̇i + ωiδii = 0 (3.45)

where ωi and ζi are the resonance angular frequency and damping ratio
of the i− th mode. Since that the damping ratio for each mode, from 3.44
and 3.45 satisfies

2ζiωi =
Cii
Mii

(3.46)

we can write as follow

ζi =
αMii + βKii

2
√
KiiMii

=
α

2ωi
+
βωi
2

(3.47)

More details about Rayleigh’s model [18] of damping can be found in
Newland (1989) [15] or Caughey and O’Kelly (1965) [13]. In almost all
structural problems, the resonance frequencies are relatively high, so the

46



3 – Models

damping component related to the mass (the term involving α) is negligible.
Therefore:

ζ =
βωi
2

(3.48)

One of the methods that can be used to estimate the damping value is
based on the magnitude of the frequency response function curve [11]. A
bandwidth ∆ω is defined as the depth of the frequency response magnitude

when the magnitude is
1√
2

of the peak value.. So the damping ratio can be

determined by the bandwidth using the equation

ζ =
1

2

∆ω

ωn
(3.49)

Figure 3.24. Half power widthband method
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In the case of an underdamped system, i.e. with ζ < 1 we can write the
solution of the differential equation of our system as

x(t) = C1e
(−ζ+i
√

1−ζ2)ωnt + C2e
(−ζ−i
√

1−ζ2)ωnt =

= e−ζωnt
{
C1e

i
√

1−ζ2 + C2e
i
√

1−ζ2
}

(3.50)

that we can lead back to the form

x(t) = X0e
−ζωntcos(

√
1− ζ2ωnt− φ0) (3.51)

where

X0 =

√
x20ω

2
n + ẋ20 + 2x0ẋ20ζωn√

1− ζ2ωn
(3.52)

φ0 = tan−1

(
ẋ20 + ζωnx0

x0ωn
√

1− ζ2

)
(3.53)

Figure 3.25. Response of the under-damped system with logarithmic
decrease

As can be seen from the figure 3.25 we see how in the presence of damping
the amplitude of the response decreases over time according to a logarithmic
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law, and one can find a correlation between the damping that acts and the
relationship between two successive oscillation peaks, in fact

x1
x2

=
X0e

−ζωnt1cos(
√

1− ζ2ωnt1 − φ0)

X0e−ζωnt2cos(
√

1− ζ2ωnt2 − φ0)
(3.54)

and given that

t2 = t1 + τd (3.55)

and

τd = 2π/ωd (3.56)

with τd oscillation period, and ωd =
√

1− ζ2 the damped pulsation of
the oscillation, we can write that

cos(ωdt2 − φ0) = cos(2π + ωdt1 − φ0) = cos(ωdt1 − φ0) (3.57)

from which follows

δ = ln
x1
x2

= ζωnτd (3.58)

and replacing the 3.56 in the 3.58 is found

δ =
2π

ωd
· c

2m
(3.59)

therefore being able to evaluate the damping coefficient by analyzing the
system’s response to a certain oscillation
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in [19] there are several other methods to calculate the damping, with
experiments done on a cantilever beam.

The use of the methods listed above leads to a more or less exact mea-
surement of the damping to which the structure is subjected, but within
this work it is not possible to calculate the damping by these methods as
the response data in frequency of the real structure from which the damping
can be obtained, for this reason inside the control part, to give a realistic
effect of the structure response, it was decided to introduce a damping equal
to 5% of the critical one for each d.o.f.

ζ = 0.05→ c = 2
√
km · 0.05 (3.60)
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Reconstruction

This chapter will explain the procedure for the reconstruction of the loads
starting from the strains, which is the cornerstone of the thesis, then neces-
sary for the analysis and the control. The need to reconstruct the external
loads acting on the wing from the strains arises from the fact that having
a time history of the strains, thanks to the FBGs installed on the struc-
ture, we are able to keep the deflections under control in some points of the
structure. The points that need much more attention are those individu-
ated from the preliminary analyses as the most critical. Once the entity
and the distribution of the forces is known, through the control introduced
by the ailerons and the mobile surfaces through their deflection, is possi-
ble to control the loads on the wing and then indirectly the deformation
of the structure so that on one side it is able to guarantee a longer life to
the structure, since the maximum loads suffered can be reduced, while on
the other hand it opens up the possibility of a lighter structure as with the
control of the loads is possible to reduce the stresses.

4.1 Sensitivity matrix

Since pressure-distribution method-based loads on a wing are usually not
used except in specific cases where an accurate load distribution is desired,
another method for load reconstruction is analysed in Skopinski (1953) [22],
where is discussed the use of strain gages, their position in some points of

51



4 – Reconstruction

the structure and also their calibration.

We are able to write a system of linear equations that expresses the
correlation between the strains and the applied forces as

{ε} = [C] {F} (4.1)

where

• {ε} is a (n× 1) vector of strains measured at n distinct locations

• [C] is a (n × nF ) sensitivity matrix, with cij represents the strain at
location i due to a unit load applied at location j

• {F} is an (nF × 1) vector of the nF applied forces in the structure

The equation 4.1 create a correlation between the strains at any point in
the structure and the forces acting on it, in the form of a linear combination
of strains produced in a particular point by each of the applied loads. This
causes the introduction of an approximation to a linear elastic problem
assuming that the deformations are small enough that the superposition
principle is valid. Assuming that [C] is known and {ε} is measured, the
least-squares estimate of the unknown forces {F} is given by

{F} = ([C]T [C])−1[C]T{ε} (4.2)

In the practical act of measurement, the strain vector is subject to er-
rors, so that if the errors in the strain measure are independent and dis-
tributed identically, and the standard deviation of each of them is σ, then
the variance-covariance matrix for the estimated loads is expressed as

var({F}) = σ2([C]T [C])−1 (4.3)

We have so that the matrix ([C]T [C])−1 is called sensitivity of [C]. For
a given variance in the strain measurement, the minimization of the [C]
sensitivity leads to an increase in the accuracy in the load estimation. The
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sensitivity of [C] is a function of the number, position and angular alignment
of the strain gages installed on the structure. Therefore, an optimal selection
of the positioning, the number and the angle can lead to a minimization of
the sensitivity of [C] and therefore lead to a better estimation of the loads.
A procedure that can lead to minimization and therefore to a more precise
load reconstruction can be divided in three phases with

1. generation of a candidate set;

2. determination of the number of strain gages that have to be used;

3. determination of the D-optimal design.

Candidate set

For the generation of the candidate set it must be taken into account that
on the aeronautical structures there is a large number of locations where
the strain gages can be installed. In particular, if we take into account
that the FBG can be introduced inside the fiber layers of composite, the
combination of possibilities increases a lot, always considering to not take
in consideration all these positions that are not accessible or that could lead
to excessive efforts in the structure, altering the result of the strain. Each
position and angular orientation is determined with a candidate point, and
each one of these points can determine a possible row within the matrix [C].
All possible combinations of positions and angular orientations constitute a
set, then called a candidate set. The matrix [C] is therefore only a subset
of the candidate sets that gives me the most accurate reconstruction of the
applied loads.

The candidate set can be generated analytically for a structure having
any complexity through the use of the finite element model of the structure
itself, even if there are some considerations to be made in the creation
through this method. The finite element model must be prepared in such a
way that all the surfaces from which the strain data can be extracted can be
considered as a possible point of application of the strain gages, for example
if we refer to the values of surface deformations the model can be created
of shell type.

From a purely numerical point of view, it is preferred to use the central
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value of the shell element instead of the one of a node, since the node of
the surface can be a common node for four distinct surfaces, and therefore
an average of the strain in that point of the four superficial elements. Once
that is this value is obtained it must be taken into account that this value is
measured with respect to the coordinated reference system of the element
itself, positioned at the center of the element, so this means that also the
angle between the reference system of the element and the global one has
to be taken into account.

Figure 4.1. Quadrilateral inverse shell element, showing global and local
coordinate systems. (b) Nodal degrees of freedom in the local coordinate

system xyz.

Unit loads are applied to the finite element model, one at a time, at
the points corresponding to those where the unknown loads have to be
reconstructed. For each applied unit load, the strain tensor is obtained for
each of the elements corresponding to the positions in which a strain gage
can be installed. Always taking into account the orientation of the various
strain gages, we need to transform the strain tensor according to the global
reference system, implementing a transformation from a reference system
of the element xyz to a XY Z global one, as

[ε]XY Z = [T ][ε]xyz[T ]T (4.4)

where [T ] denotes the transformation matrix that contains the direction
cosines for the XY Z system with respect to the xyz system, and [ε]XY Z is
the strain tensor, a (3× 3) matrix containing the strains contributions.

Usually for the shell element, as the one used in this work FEM model,
the z-axis has a normal direction respect to the plane of the element. There-
fore, the strain transformations involve rotation about the z-axis with the
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transformation matrix, is given by:

[T ] =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (4.5)

Number of strains

THe increasing of the number of the used strain gages increase the amount of
information on the state of tension, helping to obtain a better reconstruction
of the applied loads. From the practical and economic point of view there is
a limit to the number of strain gages that can be used. It can be calculated
that if the number of forces applied is nF , then the number of strain gage
used n must be n ≥ nF . If εei denotes the experimentally measured strain
from gage i and εpi denotes the predicted strain for gage i, using eq. 4.1,
then the estimation error for gage i is given by

ei = εei − εpi (4.6)

and for a system of linear equations with n−nF degrees of freedom, the
variance in strain measurement errors is given by

σ2 =

∑n
i=1 e

2
i

n− nf
(4.7)

Given the maximum allowable variance in strain measurement errors
that is acceptable, the number of required strain gages can be calculated
using the equation 4.7.
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4.2 Optimization

Given a strain gage number n, we look for a candidate set to find the
gage locations and angular directions that give the least variance in the
load reconstruction. There are several criteria that have been studied to
decrease the sensitivity of the matrix [C], and the criterion chosen, which
also brings the best relevance with the case in question, is that which aims
at maximizing |[C]T [C]|, that is the determinant of [C]T [C]. This type of
optimization is called D-optimal design, where D stands for determinant.
This criterion is used to select the best candidate points that can lead to
the most accurate estimation of the loads.

4.2.1 D-Optimal

In order to be able to construct a D-optimal design for n points, the po-
sitions of the n strain gage and their angular orientations that maximize
|[C]T [C]|, must be selected by the candidate set. To do this, algorithms
based on the principles of the optimal augmentation and reduction of an
existing design can be implemented. Through an optimal augmentation,
the candidate point with the greatest variance prediction is added in the
form of a row to the matrix, so that the process of inserting and deleting
candidate points goes on until the implementation of new rows does not
lead to no improvement of the objective function.

The algorithm used to obtain the best candidate set is composed as fol-
lows: given the candidate set, a number n of usable strain gages and nF
applied forces, the first step is to take a candidate point n randomly from
the candidate set so as to initialize the matrix [C]n×nF . From the remaining
candidate set, a candidate point is selected, and the corresponding row is
added to matrix [C], so that it becomes [C]+, such that |[C]T+[C]+| is maxi-
mum. Next, out of the n+ 1 rows in matrix [C]+, a row is deleted to arrive
at matrix [C]− such that |[C]T−[C]−| is maximum. This process of augment-
ing and deleting rows continues until there is no further improvement in the
value of |[C]T [C]|. The final [C] so obtained is the D-optimal design and
provides the information on the optimum strain gage locations and angular
orientations.
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Initialize the number of strain gages  g

Initialize the matrix C randomly selecting g distinct candidate points 

from the candidate set. Each candidate point provides a unique row 

for the matrix C  

Form C
+  

by augmenting a distinct row to the matrix C 

from the candidate set that yields the maximum value 

of | C
+

T C
+
 |

Form C_
  
by deleting a row from the 

matrix C that yields the maximum 

value of | C_T C_ |

ratio =  
| C_T C_ |

| CT C |

  

YES

NO

C = C _

Is ratio = 1  

Optimal C = C _

Figure 4.2. Algorithm of the rows exchange
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4.2.2 Concentrated Loads

For the reconstruction of the loads in the case of concentrated loads, 10
couples of loads have been applied, on the dependant node fn the MPC
RBE3 of the corresponding rib, coinciding with the point of the rib that
intercepts the elastic axis of the part to which the load is applied. Each
load is composed by the force and a concentrated moment related to the
various forces, introduced to include the transport moment for moving the
forces from the quarter chord line to the elastic axis. Therefore, once the
unit and total loads have been applied to the structure, in fig 4.3 and 4.4 the
results of the reconstruction are shown, accompanied by the tables showing
the values of the reconstruction, including those after optimization and the
relative errors between the data applied and those reconstructed.

Figure 4.3. External concentrated forces reconstruction

Figure 4.4. External concentrated moments reconstruction

In the figure 4.5 the elements identified by the D-optimal design for the
reconstruction are highlighted. These element correspond to the position
on which the strain gages should be installed for the best results. It is noted
that these elements in the case of the concentrated loads are all positioned in

58



4 – Reconstruction

the front end of the structure, all identified either in the upper or the inferior
spar, while in the rear part of the structure in the panels adjacent to the
rear spar caps, and this is probably caused by the fact that such elements
are the best one to reconstruct the loads since they are the furthest from
the main elastic axis and therefore react more intensively to the stresses due
to the torsion.

Figure 4.5. Elements from D-Optimal Design

From fig. 4.3 and 4.4 is it possible to observe the results of the recon-
struction. In the 4.3 is represented the reconstruction of the concentrated
forces, and as reported in the table 4.2.2 is possible to see that the errors
between the applied loads and the reconstructed ones are very small, con-
sidering an average error in the order of 1E − 4, with the only exception of
the F8 force, which has a reconstruction with an error of an order of mag-
nitude higher than the others, but which amounts to 1E − 3, but still with
an excellent level of confidence. An analogous consideration may be made
concentrated moments, in 4.4, which however present a value of the moment
M9 with a reconstruction error, respect to the applied load of 29.38%. This
value is not aligned with the other values of the reconstruction, which in
fact, as shown in the table 4.2.2, excluding this element, have average er-
rors of the order of 1E− 5, with a minimum value of an order of magnitude
lower. The fact that the moment M9 does not respect the fidelity of recon-
struction may be due not by a bad accuracy of the method, but a particular
behaviour of the structure to that load, which therefore does not respond in
a particularly linear way, just as it is necessary for reconstruction. It is also
emphasized that for the purposes of this reconstruction only the strain val-
ues in the z direction were used, taking the local references of each element
and rotating them to make them conform to the global reference axes, and
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this could also contribute to in the measure of the moment concentrated
out of scale.

Load
FEM Model

Reconstructed load [N]
Reconstructed load

load [N] with optimization [N]

F1 8.0920E + 4 8.0920E + 4 8.0920E + 4
F2 8.0103E + 4 8.0103E + 4 8.0103E + 4
F3 7.8444E + 4 7.8444E + 4 7.8444E + 4
F4 7.5888E + 4 7.5888E + 4 7.5888E + 4
F5 7.2337E + 4 7.2337E + 4 7.2337E + 4
F6 6.7637E + 4 6.7636E + 4 6.7636E + 4
F7 6.1520E + 4 6.1520E + 4 6.1520E + 4
F8 5.3496E + 4 5.3495E + 4 5.3495E + 4
F9 4.2463E + 4 4.2463E + 4 4.2463E + 4
F10 2.3800E + 4 2.3800E + 4 2.3800E + 4

Table 4.1. Values of the concentrated forces

Load Error %
Error with

optimization %

F1 −9.0414E − 6 −7.9347E − 5
F2 +1.3801E − 5 +5.0480E − 5
F3 −4.6097E − 5 −2.6667E − 5
F4 −1.8330E − 5 −2.9296E − 5
F5 −3.1206E − 5 −2.5570E − 5
F6 −5.8048E − 5 −6.1176E − 5
F7 +2.0935E − 5 +2.1908E − 5
F8 −1.2174E − 3 −1.2151E − 3
F9 +3.5449E − 5 +3.8761E − 5
F10 +1.5827E − 4 +3.8761E − 5

Table 4.2. Values of the error in the concentrated forces reconstruction

From the data in the tables representing the errors in the reconstruction
of the forces and concentrated moments before and after the optimization
4.2.2 and 4.2.2 it can be noticed that the data concerning the optimization
are afflicted by a slightly higher percentage error than those of simple recon-
struction. The reconstruction still have a good level of accuracy, since that
the order of magnitude in the average error doesn’t increase. The higher
error is consequence of the fact that in the optimization are not used the
data extracted from all the elements of the model but only by the ones
obtained through the D-optimal design, such that the reconstruction is as
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Load
FEM Model

Reconstructed load [N]
Reconstructed load

load [N] with optimization [N]

M1 6.6031E + 7 6.6031E + 7 6.6031E + 7
M2 5.9917E + 7 5.9917E + 7 5.9917E + 7
M3 5.3342E + 7 5.3342E + 7 5.3342E + 7
M4 4.6443E + 7 4.6443E + 7 4.6443E + 7
M5 3.9352E + 7 3.9351E + 7 3.9352E + 7
M6 3.2195E + 7 3.2195E + 7 3.2195E + 7
M7 2.5100E + 7 2.5100E + 7 2.5100E + 7
M8 1.8189E + 7 1.8189E + 7 1.8189E + 7
M9 1.1550E + 7 1.4942E + 7 1.4942E + 7
M10 4.8553E + 6 4.8553E + 6 4.8553E + 6

Table 4.3. Values of the concentrated moments

Load Error %
Error with

optimization %

M1 +2.8913E − 6 +1.2008E − 4
M2 −7.9599E − 6 −1.1420E − 4
M3 +1.0808E − 4 +2.5322E − 4
M4 +8.9740E − 5 +1.6211E − 4
M5 −1.2648E − 5 +1.5961E − 5
M6 +1.8603E − 5 +2.1660E − 5
M7 +3.6105E − 5 +4.8832E − 5
M8 −1.1985E − 4 −1.8377E − 5
M9 +2.9370E + 1 +2.9370E + 1
M10 −7.1355E − 5 −6.4127E − 5

Table 4.4. Values of the error in the concentrated moments reconstruc-
tion

precise as possible using a much smaller data number. In particular for this
model there are 4880 elements and in the optimization only 20 is used, that
is the minimum since the rank of the [C] matrix is also 20 or the number of
concentrated forces and moments applied to the structure
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Value for Forces % Value for Moments %

maximum error 1.2175E − 3 2.9370E + 1
maximum error

1.2152E − 3 2.9370E + 1
with optimization

minimum error 9.0414E − 6 2.8913E − 6
minimum error

2.1908E − 5 1.5961E − 5
with optimization

mean error 1.6086E − 4 2.9370E + 0
mean error

1.7081E − 4 2.9370E + 0
with optimization

Table 4.5. Errors in the concentrated loads

max error % min error % mean error %

Value 1.1985E − 4 2.8913E − 6 5.9876E − 5
Value

2.5322E − 4 1.5961E − 5 9.0953E − 5
with optimization

Table 4.6. Concentrated moments loads, excluding M9
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Figure 4.6. Stresses in spars and ribs due to concentrated loads

Figure 4.7. Stresses on skin panels due to concentrated loads

Figure 4.8. Stresses in stringers due to concentrated loads
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4.2.3 Distributed Loads

The reconstruction is now performed in the case of distributed forces: in our
analysis we are dealing in particular with the distribution of both span-wise
and chord-wise pressures, having in this way a 2D function distribution.
Unlike the previous case here, although a [C] matrix must be reconstructed
anyway, the coefficients of this matrix are not the values of the strains after
the unit forces will be applied, but coefficient linked to some basis functions.
These basis functions are necessary because through their combination we
are able to describe the function to be reconstructed. In this configuration
we determine the coefficients cij of the sensitivity matrix as the coefficients
of the linear combination of the functions. Having the function to be recon-
structed, is it possible to write

F (x) = c1 · f(x)1 + c2 · f(x)2 + . . .+ cn · f(x)n (4.8)

where the coefficients ci represent the weights of the various basis func-
tions for the reconstruction of the function F (x). It is very important, in
the selection of the basis functions, to choose functions that are linearly
independent from each other, so as to have a solid function base and which
allows a [C] reconstruction matrix of maximum rank. For the reconstruction
of the lift function, the basis functions that have been chosen are

{f(z)} =



f(z)1 = 1− ξ
f(z)2 = 1− ξ2

f(z)3 = 1− ξ3

f(z)4 = 1− ξ4

f(z)5 =
√

1− ξ

(4.9)

where ξ =
z

l
and l is the value of the wing span. As we note the

function vector {fz} is expressed only in terms of the z coordinate, because
the distribution of the function along the chord has been chosen as a ramp
function, which takes on value unitary to the tailing edge, and instead zero
value to the tailing edge, then like
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f(x) =
x

c
(4.10)

where c is the chord of the wing, which varies as

c(z) = cr −
cr − ct
l · z

(4.11)

thus having the vector of functions in two dimensions as

{f(z,x)} = {f(z)} · x

cr − cr−ct
l·z

(4.12)

Figure 4.9. Basis functions selected for reconstruction

The fact of having opted for an elliptical distribution instead of a dis-
tribution that respected the shape of the wing plan, thus going to define a
descending ramp-like shape added to a step, was made to better show the
reconstruction and reliability of the method. A lift function as the one of
the chord in eq 4.11 would have required only two functions of shape, step
and ramp. The elliptical one allows us to use a complete and linear base of
functions independent, excluding however a basic elliptical function.

Once the functions that compose the base have been selected, they are
applied, as in the case of concentrated loads, to the structure with unitary
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values, so as to record the structure response to these efforts and thus to
construct the matrix [C] using the data of the various basis functions.

Figure 4.10. D-Optimal design elements position

In figure 4.10 the elements identified by the D-optimal design for recon-
struction in the case of distributed loads are highlighted. Here, unlike in
the case of concentrated loads, the selected elements are all in the front of
the structure and 3 of them in a position corresponding to approx 1

3
of the

chord, probably du to the fact that in that area the influence of the pressure
distribution increases.

It is then finally shown in the figure 4.11 the reconstruction of the distri-
bution of forces applied to the model, plotting the value of this distribution
at the leading edge point, since the distribution along the chord goes from
this value to zero on the rear spar. From the data is it possible to observe
excellent results, with low percentage errors. In particular in the table 4.2.3
the values of the weight coefficients for the various functions of the base are
shown, comparing the values obtained from the linear combination applied
to the distribution of forces, and their reconstructions before and after the
optimization. An analysis of the most significant values is made, so to eval-
uate the error in the reconstruction, both as regards the coefficients and for
the final function, reported in table 4.2.3. From this table it is clear that
despite the coefficient reconstruction values are affected by an average error
of the order of 1E + 0 the consequent combination of functions to compose
the complete function leads to an error in the values of the function much
smaller, with average values of the order of 1E − 3. This means that, com-
pared to the case of concentrated forces, there is a bigger error, but that it
is linked to the more complex response of the structure, which in this case
is subjected not to concentrated, but distributed forces.
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Figure 4.11. Distributed load reconstruction

{f(z,x)} ci FEM applied ci reconstructed
ci reconstructed
+ optimization

f1 −2.6051E − 2 −2.6128E − 2 −2.5982E − 2
f2 +1.2481E − 2 +1.2710E − 2 +1.2002E − 2
f3 −4.6582E − 3 −4.9132E − 2 −3.8649E − 3
f4 +2.7220E − 3 +2.8216E − 3 +2.2897E − 3
f5 +5.1872E − 2 +5.1822E − 2 +5.1880E − 2

Table 4.7. Coefficients ci

Value coefficients ci % Value distribution L(z,x) %

maximum error 5.4740E + 0 2.3436E − 2
maximum error

1.7031E + 1 5.7860E − 2
with optimization

minimum error 9.9691E − 3 5.4267E − 6
minimum error

1.0223E − 1 1.7601E − 4
with optimization

mean error 2.2546E + 0 4.1161E − 3
mean error

7.4232E + 0 6.8374E − 3
with optimization

Table 4.8. Comparison of errors in the reconstruction of distributed
loads
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Figure 4.12. Stresses in spars and ribs

Figure 4.13. Stresses on skin panels

Figure 4.14. Stresses in stringers
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Chapter 5

Control System Design

The knowledge of the stresses, moments and forces acting on the aircraft is
useful to control the dynamic behaviour of the analysed system. The control
system should be able to reduce the forces acting on the wing and the dam-
age due to the deformations, that are generated by a disturbance. Thanks
to the control surfaces, the objective of the control system is to reduce the
deformations and stresses acting on the aircraft after a gust. Through the
use of the ailerons, used for the rolling attitude control, being able to variate
the angle of these ailerons it is possible to generate a lift variation which
aims to reduce the aerodynamic loads acting on the structure, in order to
reduce the internal stresses. In the following analysis a disturbance due to
a gust during a flight will be taken into consideration, and a control will
be performed through the variation of the angle of the mobile surfaces to
reduce the deflections to which the wing would be subjected.

5.1 Gust

Taking into account the regulations given by the European Aviation Safety
Agency (EASA) (paragraph CS 25.341 in [7]) the shape of the gust is given
as a form called 1− cos which is identified as
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vg =

{
Ugust

2
[1− cos

(
πs
Hg

)
] 0 < s ≤ 2H

0 s > 2H
(5.1)

where s is the penetration distance of the gust, measured in meters. H
instead is the gradient of gust, also measured in meters, while Ugust is gust
speed at equivalent air speed, given by the following formula

Ugust = UrefFg

(
Hg

107

)1/6

(5.2)

with Uref which in this case is 17.07 m/s, Fg having the value of the first
bending frequency of the structure, making sure that the gust frequency
matches that of the first natural frequency of the structure, in this case the
bending one, maximizing its impact on the wing. A summary of the data
concerning the gust and its shape can be found later

V Flight speed 164.6 m/s
h Altitude 6096 m
Hg Gust gradient 26 m
Uref Gust value 17.07 m/s
Fg First bending frequency 2.39 Hz

Table 5.1. Gust values

The aircraft control surfaces are aerodynamic devices that allows the
pilot to control the aircraft’s flight and to adjust its attitude. In particular
the aileron is an hinged flight control surface that is usually placed in the
trailing edge of each wing of a fixed-wing aircraft, and is used to control the
aircraft in roll.

Defining as δA the angle that is created between the zero lift line of the
aileron and that of the entire profile when the aileron is in the rest position.
Through the variation of this angle it is possible to vary the aerodynamic
forces acting on the profile as it is

L =
1

2
ρSV 2

(
Clα · α + ClδA · δA

)
(5.3)
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Figure 5.1. Aileron

where α is the angle of inclination between the speed of the flow that
invests the profile and the zero lift line of the profile, Clα represents the
variation of the lift coefficient as a function of the inclination angle, and
ClδA similarly it represents the variation of the coefficient of lift due to the
variation of δA, depending only to the ailerons.

Given the eq. 5.3, given an negative angle δA there is a decrease of the
lift forces, used in a gust load scenario, to reduce the loads on the structure.
Within this work it was therefore decided to divide the lift acting on the
wing into two contribution: the one due to the inclination angle α, and
a negative force generated by the aileron deflection, in order to simplify
the problem by decoupling the two contributions. In this way two different
sets of forces acting on the system are created. This decomposition is a
simplification of the real condition, since in this case the two forces have
simply been superimposed. It’s not taken into account the aerodynamic of
the wing, and the variation in the forces distribution if the mobile surfaces
are actuated. In fact their movement, modifying the pressure distribution
around the profile, could lead to a generation of twisting forces on the wing,
due to the distance from the elastic axis.

In chapter 3 the distribution of the lift on the wing was discussed, propos-
ing both the model with concentrated loads and the one with distributed
loads. What was said for the entire structure can also be done as regards
the aileron. But, in the control analysis, was decided not to consider the
distributed model, focusing only on the effect of the concentrated loads,
since it is the one applied to the beam-like structure to be controlled. The
shape of the load, acting on the structure in the areas of the aileron, has
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been decided to be a ramp shape, taking into account into account the chord
of the section, given that the aileron is assumed constant.

Figure 5.2. Aileron lift force due to δA

Similarly to what has been done for the case of the concentrated forces,
once the shape has been defined, it has been decomposed into concentrated
contributions, applying them to the control model, thus becoming the con-
trol component of the system which is predisposed to control the wing de-
flection.

It is also noted that being from eq. 5.3 the speed composition of the
flight speed and of the gust speed can be written

L =
1

2
ρS(V + vg)

2
(
Clα · α + ClδA · δA

)
(5.4)

having therefore that the component due to the aileron is

Lδ =
1

2
ρS(V + vg)

2ClδA · δA (5.5)

therefore having to also take into account the contribution of the increase
in speed within the variation of the aileron, as an additional contribution
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to the control.

5.2 Design of Linear Quadratic Regulator

The Linear Quadratic Regulator is an optimal control technique that pro-
vides the best possible performance with respect to certain performance
measures. The design problem with LQR is to turn off a state feedback con-
troller K such that the objective function J is minimized. In this method,
a feedback gain matrix is designed, that minimizes the objective function so
as to reach a compromise between the force in the use of control, the magni-
tude, and the responsiveness to guarantee a stable system. For a continuous
linear system in time described as

ẋ = Ax+Bu (5.6)

with a cost function defined as

J =

∫ ∞
0

(xTQx+ uTRu)dt (5.7)

where Q and R are the weight matrices; Q must necessarily be a positive
or semipositive symmetrically defined matrix; R must be a positive definite
symmetric matrix. A practical method for choosing Q and R is that they
are diagonal matrices. The value of the elements in Q and R is related to
their contribution in the cost function. By making sure that the control law
minimizes the value of the cost function, there is feedback like

u = −Kx (5.8)

with K obtained as

K = R−1BTP (5.9)
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and where P is obtained from the resolution of the continuous time
Algebraic Riccati Equation (ARE)

ATP + PA+Q− PBR−1BTP = 0 (5.10)

The control design to find a feedback gain for the LQR can then be
summarized in the following steps:

• Selection of the design parameters in the form of the matrices Q and
R

• Find a P to solve ARE

• Find the state feedback matrix K using K = R−1BTP .

In order to achieve zero steady state error, an integral action is included
within the LQR controller. The basic approach that is used in the integral
feedback is to create a state with a controller that computes the integral
of the signal error, which is then used as a feedback term. This is done by
increasing the system description through a new z state:

d

dt

[
x
z

]
=

[
Ax+Bu
y − r

]
=

[
Ax+Bu
Cx− r

]
(5.11)

where the final compensation is given by

u = −K(x− xe)−Kiz + ud (5.12)
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5.2.1 Mathematical model of the System

Before proceeding with the results of the control with the system forced
by gust loads, given that the LQR system provides a linear system of type
dotx = Ax + Bu, the current second degree system must be brought back
to a similar system. From the definition of our system as

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F} (5.13)

we can define inside the forces and moments vector {F} all the external
contributions that interact with our system as forces and moments, so we
can write

{F} = {FB}+ {Fg} (5.14)

where {FB} includes all the forces and moments generated by the de-
flection of the mobile surface δA, while {Fg} represents the external distur-
bances introduced by the gust in our case under examination. The forces
FB are expressed as

{FB} = {FδA} · δA (5.15)

where δA is the aileron deflection, and FdeltaA , referring to eq. 5.5, is

FδA =
1

2
ρS(V + vg)

2ClδA (5.16)

Performing a change of variables as follows

z =

{
z1
z2

}
=

{
x
ẋ

}
(5.17)

is it possible to write, taking into account eq. 5.13
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ż =

{
ż1
ż2

}
→ ż =

{
z2

−[M ]−1[K]− [M ]−1[C] + [M ]−1{F}

}
(5.18)

thus being able to write our system as

ż = Az +Bu+ Ed (5.19)

where

ż =

{
ẋ
ẍ

}
and z =

{
x
ẋ

}
(5.20)

A =

[
0 1

−[M ]−1[K] −[M ]−1[C]

]
(5.21)

B =

[
0

[M ]−1{Fδ}

]
(5.22)

u = δ (5.23)

E =

[
0

[M ]−1{Fg}

]
(5.24)

Note therefore that the A matrix corresponds to the state matrix, the B
matrix is the matrix that multiplies the input δA our aileron variation, and
Ed that corresponds to the external inputs, in the form of accelerations,
which introduces the gust into my system, with E which contains within it
all the normalized aerodynamic coefficients with respect to the mass, and d
which indicates which degrees of freedom are affected by the disturbance.

As denoted in [24] the reduction of the system from n equations of the
second order to 2n equations of the first order produces a system matrix
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Figure 5.3. System block diagram

which is not symmetrical, and eventually this can lead to a non symmetric
eigenvalue problem which is a drawback of this formulation. The solution for
this eigenvalue problem can be obtained through various iterative methods.
In particular, the eigenvalue problem is obtained by inserting the solution
of the equation within the original equation; in the case of free vibration,
we have

Ẋ = AX (5.25)

For the first order matrix differential equation we can assume a solution
of this type

X =
∑

Cie
λit (5.26)

where here Ci represent the vector which contains the constants that
are obtained by the initial conditions, and λi has to be obtained using the
solution inside the space-state equation in the homogeneous care, as

λiX = AX (5.27)
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from which it follows

(A− λI)X = 0 (5.28)

which corresponds to the problem with standard eigenvalues, with the
difference in this case that A is a non-symmetric matrix.The solution to the
eigenvalue problem posed as a state space equation must give 2n complex
eigenvalues and complex of matrix A. This 2n set consists of n eigenvalues
and n conjugates, which means that the eigenvalues and their eigenvector
correspondences are in conjugate pairs. Diagonalizing the matrix A, the
equations are decoupled and solved for the individual variables. First of all,
we must obtain the vectors that diagonalize the matrix. Having that

AVj = λjVj (5.29)

W T
j A = λ∗jWj (5.30)

with every Vj such that

(A− λjI)Vj = 0 (5.31)

and every Wj that suits

W T
j (λ∗jI − A) = 0 (5.32)

Pre multiplying the two eigenproblems for V T
j and V T

j respectively, one
can find that the eigenvectors of A and the left eigenvectors of A have the
same values:

W T
j AVj = λjW

T
j Vj (5.33)

V T
j A

TWj = λ∗jV
T
j Wj (5.34)
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(V T
j A

TWj)
T = W T

j AVj (5.35)

W T
j AVj = λ∗jW

T
j Vj (5.36)

follows that

λ∗j = λj (5.37)

In this way it is shown that the left eigenvectors of A are also eigenvalues
of AT

in [24] it is also shown, besides the fact that the eigenvalues of A and AT

are the same, that to decouple the two equations are necessary 2n orthogonal
eigenvectors, then is tested the orthogonality between the eigenvectors of A
and AT so that they are orthogonal to each other.

5.2.2 Stability and controllability

Once we have defined our system, which corresponds to a second-order
system, before to proceed with the control it is good to check its values
from the point of view of stability, and if it is controllable. First of all
we must evaluate the stability of the system, that is, if given an external
perturbation to the system of limited duration, its response is limited and
converges to a condition of equilibrium. To evaluate the stability of our
system we study the roots of the associated characteristic equation in the
form

a0λ
2 + a1λ+ a2 = 0 (5.38)

where a0,a1ea2 are constant values and λ are the eigenvalues of the
equation, thus having a stable system if, in the case of roots in complex
form, their real part is negative, so if
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λ = λr + λi → Stability ⇔ λr < 0 (5.39)

Therefore, deriving the roots of the characteristic equation of our system,
which correspond to the eigenvalues of the same, it is possible to notice that
our system is stable, as shown in the figure 5.4, where the poles of the system
are represented in the complex plan
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Figure 5.4. Eigenvalues of the system

Focusing now on the controllability of the system, defining a controllable
system if it is possible to reach any of its configurations in a finite time,
through an input function, or forcing, to the system. In particular for a
dynamic linear system like ours

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(5.40)

it is controllable if its controllability matrix
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R = [B AB A2B . . . An−1B] (5.41)

has all columns or rows linearly independent, i.e. with rank n, where
n number of system states. In our case n = 4, since the system states are
dependent on each other. The forcing, within the array [B], act only on the
translation on y axis, then directly on the deflection v and the bending θx,
and on the rotation around z, so on the twist θz. Since for the construction
of the stiffness matrix, v and θx are dependent on each other, and that θz
is independent to all other d.o.f., this means that the maximum rank of
the controllability matrix is 4, which means that our system can also be
controlled.

5.3 Simulation Results

Finally, the results related to the control of the system are shown below
through the use of the forcing introduced by the ailerons. The vertical de-
flection values of the v structure along the y axis, the corresponding flexural
rotation θx around the x axis and the twist rotation θz have been taken into
consideration around the axis z, representing in the various graphs the value
of the known final structure. Given the structure of the system, which in-
cludes an external forcing, two types of control for the system were tested:
in fact, since the forcing is external to the system, it has been possible to set
the reference that the controller K must follow in two ways, that in one case
it has been set to 0 making the system controlled in order to dampen the
effects of the external forcing going to stabilize to an equilibrium condition
imposed by the forcing, making sure that when the system suffers the gust,
the controller does nothing but dampen this effect by following its course;
another type of control was to make the controller intervene to minimize
the difference between the system’s response and a threshold value, making
sure that once the forcing due to the gust is received, the system is forced by
the controller K to return to a value lower than the equilibrium condition.

In the figure 5.5 the trends of the variation of the δA aileron angle over
time are reported, in the two control cases, from which it can be seen that,
in the case of reference equal to 0, the angle has an angle variation with a
higher slope and which reaches a higher value, equal to approx −1.8◦ and
then tend to return to an equilibrium position, assuming a smaller positive

81



5 – Control System Design

95 100 105 110 115 120 125 130 135 140

 Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

 A
ile

ro
n
 d

e
fl
e
c
ti
o
n
 [
°]

 Aileron deflection damped effect

 Aileron deflection with reference signal

Figure 5.5. Deflection of δA angle during the control

value due to the avoidance of overshooting; while in the case of the reference
one has a value of δA which reaches a lower value than the previous one,
but then goes on to assume a positive value of approximately equivalent
intensity, due to the greater oscillations that the system undergoes in this
case.
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Figure 5.6. Comparison between the deflection response v

It can be seen from the comparisons that regarding the v deflection and
the θx flexural rotation, which are related to each other by the stiffness
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Figure 5.7. Comparison between the flexural response θx
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Figure 5.8. Comparison between the torsional response θz

matrix, we have, in the case of null reference, a response that takes on a
greater but more gradual and attenuated value over time while for that with
a reference signal there is a lower maximum value but with some oscillations
around the equilibrium condition due to the type of control, which activates
only if the deflection exceeds a certain threshold and is no longer active when
value falls below the threshold value. A slightly different consideration must
be made regarding the torsion, since for it the control has been indirect, since
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the references and the threshold values have been set for the deflection, and
therefore the torsion response is a consequence of the implementation of
the ailerons for deflection control. Another point of analysis is that of the
speed of the response, that the deflection and deflection is much slower than
that of torsion, due to the dynamic properties of the various displacements,
which in this case are different from each other.

Open Loop response
Controlled system Controlled system
response damped response with

effect reference signal

v [mm] 2070.2 1895.59 1867.59
θx [◦] 0.1491 0.1395 0.1380
θz [◦] 0.0151 0.0136 0.0137

Table 5.2. Maximum values during the gust

Given that through the control of the deflections and of the rotations
of the structure is accomplished the internal stresses control, here below
are reported the results concerning this control, and in particular we refer
in particular to the internal efforts concerning the condition of maximum
deflection of the wing, as it is the one to which the greatest forces corre-
spond. To the condition of maximum deflection in the case of a free system,
a system with aileron control with and without a reference signal, refer to
the figures from 5.9 to 5.17 in which the internal stresses of the stringers
are highlighted, referring to the axial stresses, as they are the ones that
most characterize them, of the skin panels, analyzed in their outer layer,
and finally of the side members, ribs and spar caps in the three conditions.

As regards the distribution of the stresses concerning spar caps and
spars in particular, a greater concentration of stresses is noted in the area of
intersection between the spars and panels, in correspondence with the spar
caps, which is the maximum concentration point in the section, in particular
to the root of the structure, and this is due to the fact that in that area,
being the structure constrained, there are the greatest concentrations of
stresses.

Similarly to what has been observed for the spar and spar caps, in the
panels too, have a stress distribution that goes from the root to the extrem-
ity, with a greater concentration in the front part of the structure, due to
the greater rigidity in that part, which therefore leads to greater stresses.
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Figure 5.9. Stress on spars and ribs

Figure 5.10. Stress on spars and ribs with control

Figure 5.11. Stress on spars and ribs with control and reference signal
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Figure 5.12. Stress on stringers

Figure 5.13. Stress on stringers with control

Figure 5.14. Stress on stringers with control and reference signal
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Figure 5.15. Stress on skin panels

Figure 5.16. Stress on skin panels with control

Figure 5.17. Stress on skin panels with control and reference signal
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Here below are also reported the data related to the stresses in the
various elements that make up the structure, where are highlighted those in
conditions of free deflection of the system, those of deflection with control of
the displacement and those related to the control with the reference value.
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Figure 5.18. Stresses on the rear spar caps elements
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Figure 5.19. Stresses on the front spar caps elements
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Figure 5.20. Stresses on the rear spar elements
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Figure 5.21. Stresses on the front spar elements
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Figure 5.22. Stresses on the skin panels elements

Part Stress [MPa]
Stress with Stress with control

control [MPa] and reference signal [MPa]

Skin panels 2.7320E + 2 2.6096E + 2 2.5877E + 2
Spar 2.8720E + 2 2.7306E + 2 2.7054E + 2

Spar caps 4.1484E + 2 3.9332E + 2 3.8948E + 2

Table 5.3. Max stresses (σz) on structure parts

In the table 5.3 the values of the maximum stresses that can be reached
in the three conditions of the system can be observed and a significant
decrease of these stresses can be observed when a system deflection control is
introduced, with reductions of stress that are shown in the table 5.3that go,
with average values, from 10% to 14% in the various areas of the structure,
which makes it even more understandable the importance and the usefulness
of introducing a control on the deflections of the structure, which in this
way can bear lower loads.

Part
Stress reduction Stress with control and
with control % reference signal %

Skin panels 10.82 12.74
Spar 10.70 12.61

Spar caps 12.22 14.39

Table 5.4. Mean stresses (σz) reduction on structure parts
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Chapter 6

Conclusions

A method for the reconstruction of the external loads for a wing is proposed.
Moreover, a mitigation methodology is also designed, including a feedback
control system based on mobile surfaces’ deflection.

In Chapter 2 a preliminary research on the various types of sensors for
strains and acceleration measurements has been performed. In this chapter,
the methodologies for the displacement reconstruction are exposed. Two
methods we proposed: starting (1) from deformations and (2) from accel-
erations. The criticalities of both methods are also introduced. The FEM
model, used to perform analyses, is described in Chapter 3. In this chapter,
concentrated and distributed loads are introduced. Finally, the reconstruc-
tion method for an equivalent reduced model is described, focusing on the
properties needed to characterize it.

In chapter 4, as done previously, a method on the evaluation of the
external loads from the strains measurement is derived, focusing on the
reconstruction of the sensitivity matrix. A data optimization algorithm is
presented, necessary to reduce the number of the strain gages required for an
accurate reconstruction. The results of the reconstruction, with and without
optimization, lead to reconstruction values with very low relative percentage
error. In detail, an error of the order of 1E−3 % for the reconstructions using
the optimization of the strain gauges, with a minimum number of measures,
and errors of about 1E − 4 % if the data of all the strain gauges are used.
Since the error of the reconstruction is low, the methodology here proposed
is validated. This result is important, since the number of the strain gages
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needed will be higher than the minimum required, considering that come of
them could be damaged during the time. The minimum number corresponds
to the number of concentrated forces, or functions of the base in the case of
distributed load. Is important, in choosing the right number, to take into
account both the economic factor, linked to the number of detectors and the
costs related to the installation, and the accuracy of the reconstruction to
be performed. In chapter 5 a closed loop control system has been designed.
The external perturbation, a gust disturbance, was defined, and a linear
quadratic regulator (LQR) is proposed as control strategy. A control surface
deflection is provided by the control system, and the variation of loads are
analysed. The characteristics of the controller have been analysed, as well
as the stability and controllability of the system once the controller has
been introduced. From this analysis the reduction of the maximum internal
stresses when a gust occurs is between 10% and 14%.

Since some assumptions have been made within this thesis, such as those
concerning the distribution of forces or the damping definition, for future
works it would be interesting to perform an aerodynamic and aeroelastic
study of the wing, extrapolating the data related to the distribution of
forces, including their variations with control surfaces. Furthermore it is
possible to better evaluate the damping of the structure, introducing the
one deriving from the aeroelastic analysis and include in the complete model
all the wing structures and moving parts, carrying out a dynamic analysis
of the complete structure subjected to a gust load in order to evaluate the
impact and effectiveness of control through mobile surfaces.
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