
POLITECNICO DI TORINO

Master degree course in Aerospace Engineering

Master Degree Thesis

Control of Rendez-vous and
Docking phases of two CubeSats,
by means of artificial intelligence

algorithms.

Supervisors:
Prof. Sabrina Corpino
Prof. Fabrizio Stesina

Candidates
Agnese D’Acunto
Matricola: 233417

Anno accademico 2018-2019



This work is subject to the Creative Commons Licence



Summary

On-orbit proximity operations require advanced guidance, navigation and control
systems to obtain high pointing accuracy and very precise manoeuvring. The de-
sign of an attitude and orbit control is of primary importance in such delicate
operations, since a spacecraft is subjected to many disturbance forces and torques,
due to many sources, that lead to orbit variation (e.g. decay) and undesired an-
gular accelerations. For missions with proximity operation, innovative Attitude
Determination and Control Subsystem (ADCS) and a Guidance, Navigation and
Control Subsystem (G, N &S) are of paramount importance. Orbit and attitude
control is carried out thanks to the proper interactions of several elements, such as
sensors, controller and actuators. The sensors determine the position and orienta-
tion of the body in space, but also its translational speed and rotational velocity
around its centre of mass with respect to local and inertial reference systems. The
control system is governed by sophisticated algorithms that aim at optimize the
number and quality of manoeuvres and fuel, determining the commands to actu-
ators, in order to correct the spacecraft trajectory and orientation and match the
desired values. The complexity of this system increases in the small satellite field,
where the technology is not completely mature and these kind of missions are never
been performed.

The aim of this thesis is the definition of a control strategy for proximity ma-
noeuvres between two 6U CubeSats. In particular, it was analysed the control of
the last phases of the rendez-vous, from the last hold point up to the mating, the
rendez-vous and docking operations, through the definition of the mathematical
model of the problem (i.e. relative translational and rotational dynamics and kine-
matics, environmental effects on the spacecraft movements), its implementation
and simulation in Matlab®/Simulink®, and the assessment of the results, consid-
ering different simulation conditions (e.g. final accuracy, execution time, initial
position and orientation). The choice of the control strategy to adopt in this work
fell on machine learning algorithms; more precisely, a direct artificial neural net-
work control was developed, in order to explore the capability . Artificial neural
networks are a framework of many different machine learning algorithms and they
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are a mathematical and simplified representation of a biological neural system.
Their main characteristic is the learning capability from a training input/output
set or a mathematical function: the neural network, once learnt its task, can re-
produce the desired output, even if the inputs change. The neural network was
trained with an input/output set of values acquired by the simulation of the same
model in which the control was exerted through a Proportional-Integral-Derivative
controller.

The ability of neural network algorithms to adapt to different and sometimes un-
predictable conditions could be very useful in spacecraft control problems, and has
been studied in this work. In particular, a basic comparison between two controller,
one based on neural networks and one Proportional Integrative and Derivative con-
troller, was made demonstrating the more adaptability and efficiency of the neural
network method over PID control, when external conditions change.
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Chapter 1

Introduction

The purpose of this thesis is to implement a control strategy of rendez-vous and
docking operations between two spacecrafts, belonging to the class of small satel-
lites. Proximity operations between two vehicles are extremely delicate from the
point of view of relative motion control, which implies the development and design
of extremely accurate control systems and sensors. The control systems are funda-
mental, since an object in orbit is subjected to various disturbing forces and torques,
which tend to modify its orbital path and induce undesired accelerations. Attitude
and orbit control systems are complex tools, consisting of many hardware and soft-
ware, designed to fulfil the specific mission requirements. The main objective of
this elaborate is the development of a control algorithm, which drives the system
control unit, through its implementation and simulation in Matlab®/Simulink® .
The general theory of automatic controls of dynamic systems was analysed, lead-
ing to a better understanding of the control strategies taken into account; the
chosen algorithm belongs to the family of algorithms based on machine learning,
a vast field of methods and applications, developed trying to emulate, at a con-
siderably more basic level, the biological nervous system. A control algorithm of
translational and rotational motion for the proximity manoeuvre, based on neural
networks, was then carried out, a tool capable of learning a task to be performed,
based on input and output data. The set of input/output data to be supplied to
the neural network for its training has been obtained through the implementation
of a controller based on a Proportional-Integrative-Derivative algorithm.
The mathematical model that describes the motion of a satellite in orbit is based
on the dynamics and kinematics of a rigid body. Therefore, the translational and
rotational dynamics of a rigid body has been presented, first at theoretical level,
then at simulation model level: in terms of Euler-Hill equations, to describe the
relative translational motion between the two spacecraft, and of moment Euler
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1 – Introduction

equation to describe the evolution over time of the rotational dynamics and kine-
matics of the Chaser vehicle with respect to the Target vehicle.
The simulation model includes the mathematical modelling of the disturbance
forces and torques affecting the vehicles during the manoeuvre. Since the mis-
sion considered takes place in low-Earth orbit, the elements to be considered are:
the atmospheric drag, the solar radiation pressure, the gravity gradient and the
Earth magnetic fields.
By analysing and studying the results reported in the last chapter, we want to
highlight the greater adaptability of neural networks to the change of external
conditions and simulation time with respect to the PID control.

1.1 Mission description
The mission considered in this work consists in performing proximity operations
between two 6U CubSats in low-Earth orbit. The manoeuvre sequence starts with
the deployment, from the International Space Station (ISS), of the two CubSats
docked to each other. Then, the CubSats separate: one of them, the Chaser, move
away from the Target up to a distance of 10 km. From that distance, it starts the
approach phase towards the Target and come to a relative distance of about 2 km
on one of the main axis of LVLH frame (R-bar, V-bar or H-bar). The main focus of
this dissertation, although, will be the orbit and attitude control of the last phases:
the rendez-vous and docking phases, as shown in figure 1.1, that takes place from
a relative distance of approximatively 50-100 m. For all the mission phases, the
Target will be considered a cooperative target, that is position and attitude will
be considered fixed. The reference orbit, where the CubeSats will be deployed and
the operations will be carried out, is close to the one of the ISS. The orbit will be
considered circular to simplify the equations of motion, with a radius od 400 km
and an inclination of 51.64 degress. Nevertheless, the mathematical and simulation
model that will be further developed should work for any low-Earth orbits, and this
kind of mission should be performed without involving the ISS, but the CubSats
could be launched from the ground with any suitable launch vehicle.

1.1.1 CubSat
The CubeSat standard was created by California Polytechnic State University, San
Luis Obispo and Stanford University’s Space Systems Development Lab in 1999 to
create an affordable spacecraft for educational purposes. It facilitates frequent and
affordable access to space with launch opportunities available on most launch ve-
hicles. CubeSats are research spacecrafts, called nanosatellites, designed in terms
of standard dimensions called units (U), where a 1U CubeSat is a 10 cm cube
with a mass of up to approximately 1.5 kg, as depicted in figure 1.2. The present

2



1.1 – Mission description

Figure 1.1: Rendez-vous and docking phases. s0, s1, s2, s3 and s4 are key points
of the last approaching phases.

Figure 1.2: CubeSat.

3



1 – Introduction

work deals with 6U CubeSat, whose graphic representations are shown in figure
1.3; it is a cuboid with size of 30x20x10 cm. CubSats electronic components and

Figure 1.3: 6U CubSat.

structures are often realized by use of Commercially available Off-The-Shelf prod-
ucts (COTS1), reducing developing times and costs, being already available on the
market and not needing an ad-hoc design. They are intended to be deployed from
the International Space Station or launched as secondary payload from launchers
in Low Earth Orbit (LEO), to perform many tasks, as communication, scientific,
exploration and observation missions. Due to their affordability and versatility,
CubSats are largely exploited also for commercial purposes. [1]

1.2 Space Environment
The space environment of interest in this thesis is the near-Earth environment,
since the spacecrafts are meant to be launched in LEO, which altitude range varies
from 200 to 1000 Km, as shown in figure 1.4. The spacecraft on-orbit life is inter-
ested by the interaction with many factors that tend to influence its trajectories
and operating life of its components. Plasmas, high-energy charged particles, neu-
tral gases, x-rays, ultraviolet (UV) radiation, meteoroids, and orbital debris cause
degradation of materials, thermal changes, contamination, excitation, spacecraft
glow, charging, radiation damage, and induced background interference. For con-
trol purposes, although, we take in consideration only the environment elements
that influence the orbital trajectory and spacecraft attitude, such as disturbance
forces and torques. In low-Earth orbits, the most important disturbance sources

1Commercially available off-the-shelf products are packaged solutions which are then adapted
to satisfy the needs of the purchasing organization
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1.2 – Space Environment

Figure 1.4: Low-Earth Orbit.

are: the atmospheric drag, the gravity-gradient, the solar radiation pressure and
the Earth’s magnetic field.
The atmospheric drag is due to the fact that some atmospheric particles are still
present at LEO altitudes and, even though their small amount, they generate a
small drag on spacecraft, which can lead to orbit decay. The same drag force will
produce a disturbance torque on the spacecraft due to any offset existing between
the aerodynamic centre of pressure and the centre of mass.
Planetary gravitational fields decrease with distance r from the centre of the planet
according to the Newtonian law. Thus, an object in orbit will experience a stronger
attraction on its side facing the planet than on the side facing outer space. This
imbalance, the gravity-gradient, generates a torque acting on the spacecraft.
The solar radiation pressure is the force exerted by solar radiation particles on the
surface of a spacecraft when it’s in sunlight; it may, as well, generate a torque.
The Earth magnetic field, coupled with the dipole moment of the spacecraft, gen-
erates a disturbance torque on it. Nevertheless, it is common to take advantage
of the planetary magnetic field as a control torque to counter the effects of other
disturbances. [6]

5



1 – Introduction

1.3 Attitude and orbit Control
Spacecraft attitude and orbit control are executed by two different subsystems: the
Attitude Determination and Control System (ADCS) and the Guidance,
Navigation and Control System (GN&C). The motion of a spacecraft is defined
by its position and velocity, that describe the translational motion of the centre of
mass of the spacecraft, and the attitude and attitude rate, defining the rotational
motion of the body of the spacecraft about the centre of mass. Orbit and attitude
systems are constituted by the hardware, software and processes used to measure
and control the spacecraft trajectory and orientation during all phases of a mission.

GN&S maintains and changes a vehicle’s position and velocity, using three func-
tions: the navigation represents the subsystem sensors area, that determines the
current position and velocity of the spacecraft; guidance is the controller function
and control uses navigation and guidance informations to change spacecraft po-
sition and velocity, by means of actuators. The guidance and navigation function
measures and maintains the position of the spacecraft’s centre of mass. In some
applications (for instance to rendezvous and dock with other vehicles or to deploy
other vehicles) propulsive manoeuvres and navigation and guidance of the space-
craft require an on-board Guidance Navigation and Control Subsystem. Given the
desired velocity, guidance acts as a controller. It compares this velocity to the
inertial velocity from the inertial navigation system, which acts as a sensor, and
sends command to the engines or actuators, which apply a force to the spacecraft.
The principal actuators used in these circumstances are:

• cold gas systems;

• monopropellant hydrazine;

• bi-propellant nitrogen tetroxide/monomethylhydrazine;

• solid propellant;

ADCS stabilizes the vehicle and orients it in desired directions during the mission
despite the external disturbance torques acting on it, therefore it is tightly coupled
to the propulsion and navigation subsystems and requires the use of sensors to mea-
sure the current spacecraft attitude. Attitude dynamics analysis is complex due to
three factors: the attitude information is inherently vectorial, requiring three co-
ordinates for its complete specification; it deals with rotating, hence non-inertial,
frames; rotations are inherently order dependent in their description. ADCS is
typically a major vehicle subsystem, with requirements that quite often drive the
overall spacecraft design. Its components tend to be relatively massive, power con-
suming, and demanding for specific orientation, alignment tolerance, field of view,
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1.4 – Thesis Organization

structural frequency response, and structural damping. A body in space is subject
to small but persistent disturbance torques from a variety of sources. The ADCS
is designed within the spacecraft in order to resist these torques.
Attitude control systems can be classified in passive and active control systems
and in closed-loop and open-loop control systems. The discriminating concept
between open-loop and closed-loop control architectures is the presence of a feed-
back line. In closed-loop control, unlike in open-loop control, the measurement, by
means of sensors, of the spacecraft actual attitude is compared with the desired
attitude. Taking into account the error value, control torques are generated by
means of actuators, to restore/acquire the desired attitude. The correction process
is therefore continuous. Passive stabilization techniques take advantage of the dis-
turbance torques to control the spacecraft, choosing a design to emphasize one and
mitigate the others, and/or uses the mass characteristics of the spacecraft itself,
depending on the mission. In active attitude control, the spacecraft attitude is
measured and compared with a desired value. The error signal is then used to
determine a corrective action (control torque) to generate a manoeuvre by means
of the onboard actuators. Attitude actuators can be based on:

• thrust: reaction control jets;

• controlling momentum: reaction wheels, momentum wheels, control moment
gyros;

• magnetism: magnetic torquers or magnetic coils.

In proximity manoeuvres, the most important requirement of ADCS is the de-
termination and control accuracy, i.e. how well the spacecraft orientation with
respect to an absolute reference is known and how well the vehicle attitude can be
controlled with respect to a commanded direction. [11]

1.4 Thesis Organization
The problem under examination is developed firstly mathematically, analysing the
equation of motion of a rigid body, to describe the spacecrafts relative motion, in
the Mathematical Model Chapter. In this Chapter, the Hill-equations and
Euler moment equations, applied to the specific case, are reported. Then, the gen-
eral Control Theory is briefly delineated before introducing the control algorithm
taking in consideration. In the Control Theory Chapter, Artificial Neural Net-
work and PID control are introduced. In the Simulation Model Chapter all the
processes and equations that lead to the definition of the Simulink® model are de-
scribed in detail. The last Chapter, Simulation Results, contains all simulation
graphs and data collected.
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Chapter 2

Mathematical model

2.1 Reference frames
To approach the problem of a satellite motion in orbit, several reference frame
needs to be defined. [4]

1. ECEF (Earth Centered Earth Fixed) frame, shown in figure 2.1, is considered
inertial for what concerns missions in Earth orbit. Its origin, O, is in the
centre of the Earth, xE in the equatorial plane, pointing toward the mean of
the vernal equinox; zE is normal to the equatorial plane and pointing north,
yE is in the equatorial plane, such that zE = xE × yE .

Figure 2.1: ECEF reference frame.

9



2 – Mathematical model

2. Local Orbital frame, in figure 2.2, has its origin in the Centre of Mass (CoM)
of the spacecraft; xorb is defined such that xorb = yorb × zorb (xorb is in the
direction of the orbital velocity vector but not necessarily aligned with it),
yorb is in the opposite direction of the angular momentum vector of the orbit
and zorb is radial from the spacecraft CoM to the centre of the Earth.

Figure 2.2: Spacecraft Local Orbital frame.

3. The Body Fixed Reference frame, in figure 2.3 is a moving coordinate frame,
fixed on the spacecraft. The origin, OS is located in the satellite centre
of mass, the directions of the axes are along the main inertia axes of the
spacecraft and zBody = xBody × yBody forming a right handed system.

2.2 Satellite translational dynamics and kinemat-
ics

2.2.1 Equation of motion of a body in an inertial frame
The equation of motion of a satellite in space is derived by solving the two-body
problem, which considers two rigid point masses acted upon only by the mutual
force of gravity between them, as shown in figure 2.4. Their centre of mass positions
is defined in relation to an inertial reference frame XYZ. Both the bodies are
mutually subjected by the gravitational force of the other: F12 is the force exerted
on m1 by m2 and F21 is the force exerted on m2 by m1. The position vector RG

of the centre of mass of the whole system, shown in figure 2.4, is defined by:

RG = m1R1 +m2R2

m1 +m2

10



2.2 – Satellite translational dynamics and kinematics

Figure 2.3: Spacecraft Body Fixed Reference frame.

Figure 2.4: Two-body problem.

The velocity and acceleration of the system centre of mass, relative to the inertial
reference frame, are the derivative and the second derivative of RG, respectively:

vG = ṘG = m1Ṙ1 +m2Ṙ2

m1 +m2

aG = R̈G = m1R̈1 +m2R̈2

m1 +m2

11



2 – Mathematical model

As shown in figure 2.4, r is the position vector of m2 relative to m1:

r = R2 −R1

ûr is the unit vector pointing from m1 towards m2:

ûr = r
r

where r = ||r|| is the module of the position vector. The force of gravitational
attraction, which acts along the line joining the centres of mass of two bodies, is:

F21 = Gm1m2

r2 (−ûr) = −Gm1m2

r2 ûr

the minus sign of the unit vector is due to the fact that the force vector is directed
fromm2 tom1; G is the universal gravitational constant. Taking into consideration
Newton’s second law of motion, F21 = m2R̈2, we obtain:

−Gm1m2

r2 ûr = m2R̈2 (2.1)

For m1, we have, as well:
Gm1m1

r2 ûr = m1R̈1 (2.2)

To obtain the equation of relative motion between the two bodies, we multiply the
equation 2.1 by m1 and the equation 2.2 by m2:

−Gm
2
1m2

r2 ûr = m1m2R̈2

Gm1m
2
2

r2 ûr = m1m2R̈1

Subtracting the second equation from the first one:

m1m2(R̈2 − R̈1) = −Gm1m2

r2 (m1 +m2)ûr

r̈ = −G(m1 +m2)
r2 ûr

We define the gravitational parameter µ as:

µ = G(m1 +m2)

So, the equation of motion becomes:

r̈ = − µ
r3 r (2.3)

This represents the second order differential equation that governs the motion of
the body m2 relative to m1. [5]

12



2.2 – Satellite translational dynamics and kinematics

2.2.2 Keplerian orbit and orbital parameters
According to Kepler’s laws of planetary motion, the only possible paths for an
orbiting object on the two-body problem are a family of curves called conic sections,
which includes circle, ellipse, parabola and hyperbola, shown in figure 2.5. To
obtain a form of the two-body problem equation of motion that can be integrated,
we have to cross multiply it with h, the specific angular momentum:

h = r× v

where r is the position vector of the satellite and v is the velocity vector. Their
cross product remains constant along the orbit. Thus, multiplying equation 2.3
with h, we have:

r̈× h = µ

r3 (h× r) (2.4)

Figure 2.5: Conic sections.

µ

r3 (h× r) = µ

r3 (r× v)× r = µ

r3 [v(r · r)− r(r · v)] = µ

r
v− µṙ

r2 r

Note that µ times the unit vector is also:

µ
d

dt

1r
r

2
= µ

r
v− µṙ

r2 r

Thus, we can rewrite the equation 2.4 as:

d

dt
(ṙ× h) = µ

d

dt

1r
r

2
Integrating both sides:

ṙ× h = µ
r
r

+ B

13



2 – Mathematical model

where B is the vector constant of integration. Now, we multiply both sides of the
equation by r:

r · ṙ× h = r · µr
r

+ r ·B

h2 = µr + rB cos ν

where ν is the angle between the constant vector B and the radius vector r. Solving
for r, we obtain the trajectory equation expressed in polar coordinates:

r = h2/µ

1 + (B/µ) cos ν (2.5)

Equation 2.5 is mathematically identical, in form, to the general equation of a
conic section written in polar coordinates, with the origin located at a focus and
the polar angle, ν, the angle between r and the point on the conic nearest the
focus:

r = p

1 + e cos ν
p is a geometrical constant of the conic called semi-latus rectum and the constant e
is called the eccentricity and it determines which type of conic section the equation
represents:

• e = 0, Circular orbit;

• 0 < e < 1, Elliptical orbit;

• e = 1, Parabolic orbit;

• e > 1, Hyperbolic orbit.

The other parameters that define a keplerian orit are: semi-major axis (a) , the
sum of the periapsis and apoapsis distances divided by two; the orbit inclination
(i), vertical tilt of the ellipse with respect to the reference plane, measured at
the ascending node; longitude of the ascending node (Ω), horizontally orients the
ascending node of the ellipse, with respect to the reference frame’s vernal point;
argument of periapsis (ω), defines the orientation of the ellipse in the orbital plane,
as an angle measured from the ascending node to the periapsis. From this descrip-
tion of orbital motion, it derives that the focus of the conic orbit must be located at
the centre of the central body; the mechanical energy of a satellite does not change
as the satellite moves along its orbit, so it must slow down where r increases and
accelerate as r decreases; the orbital motion takes place ina plane which is fixed in
inertial space; the specific angular momentum of a satellite, h, remains constant. [2]

14



2.2 – Satellite translational dynamics and kinematics

Figure 2.6: Types of orbits.

Figure 2.7: Orbital parameters.

2.2.3 Euler-Hill equations

In proximity manoeuvres as rendez-vous and docking operations between two satel-
lites, the relative distance and velocity between them can be calculated defining
a non-inertial coordinate system. The equations of motion of the Chaser satellite
are developed with respect to this moving frame. The system origin is fixed in
the centre of mass of the Target satellite and it moves with it. These equations,

15
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the Euler-Hill equations, describe the relative motion of satellites with respect
to the mating point. The derivation of these equations can be carried out by the
linearisation of the equation of motion in orbit. In figure 2.8, the Target satellite
A is positioned at a distance equal to r0 from the Earth and the position vector of
the Chaser B is r. The position vector of the Chaser vehicle relative to the target
is δr:

δr = r0 + r
The relative position vector δr is very small with respect to the satellites distance

Figure 2.8: Relative position of Chaser and Target satellites.

from the origin of the inertial reference frame.
The equation of motion of the Chaser vehicle B is:

r̈ = −µ r
r3

where r = ||r|| and µ is the gravitational constant of the planet. The equation of
motion of the chaser relative to the target is:

δr̈ = −r̈0 − µ
r0 + δr
r3

Manipulating this equation, considering that δr is very small and neglecting all
terms of higher order than one, the Chaser-Target relative equation of motion can
be written as:

δr̈ = − µ
r3

0

5
δr− 3

r2
0

(r0 · δr)r0

6
As said before, the reference frame will now be centred in the Target body centre
of mass; the x axis lies along r0:

î = r0

r0
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2.2 – Satellite translational dynamics and kinematics

The y axis is in the direction of the local horizon, and the z axis is normal to the
orbital plane of the Target, such that k̂ = î × ĵ. The inertial angular velocity of
the moving frame of reference is ω, and the inertial angular acceleration is ω̇. For
the relative acceleration formula:

r̈ = r̈0 + ω̇ × δr + ω × (ω × δr) + 2ω × δvrel + δarel

The relative position, velocity and acceleration in the moving reference frame are

Figure 2.9: Non-inertial coordinate reference frame.

given by:
δr = δx̂i + δŷj + δzk̂

δvrel = δẋ̂i + δẏ̂j + δżk̂

δarel = δẍ̂i + δÿ̂j + δz̈k̂

Assuming that the Target orbit is circular, ω̇ = 0 and the angular velocity can be
written as:

ω = nk̂

where n is the mean motion and it’s constant. Thus we obtain:

δr̈ = (−n2δx− 2nδẏ + δẍ)̂i + (−n2δy + 2nδẋ+ δÿ)̂j + δz̈k̂

The mean motion n is:
n = v

r0
= 1
r0

ò
µ

r0
=
ò
µ

r3
0

17
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Thus,
µ

r3
0

= n2

Substituting n in the equation, it becomes:

(δẍ− 3n2δx− 2nδẏ)̂i + (δÿ + 2nδẋ)̂j + (δz̈ + n2δz)k̂ = 0

So, the homogeneous Euler-Hill equations are:

δẍ− 3n2δx− 2nδẏ = 0
δÿ + 2nδẋ = 0
δz̈ + n2δz = 0

If disturbance and control accelerations are taken into account, changing notation,
the previous equations become:

ẍ− 2nẏ − 3n2 = ax

ÿ + 2nẋ = ay

z̈ + n2z = az

where x, y, z are the relative distances between the two spacecrafts in the three
directions, respectively; the ai terms contain the disturbance and control acceler-
ations. [5]

2.3 Satellite rotational dynamics and kinematics
2.3.1 Rotational kinetics of a rigid body
One way to define a spacecraft attitude is through the Euler angles, (φ, θ, ψ). They
provide the orientation information by the angular difference between the axis of
two reference frames, in this case, between the body frame (xyz) and the inertial
frame (XY Z), like shown in figure 2.10. Thanks to the Euler angles, it is possible
to define a transformation matrix between the body frame (xyx) and the LVLH
frame (XY Z), Rb

o(φ, θ, ψ): cosφ cosψ − sinφ sinψ cos θ − cosφ sinψ − sinφ cos θ cosψ sinφ sin θ
sinφ cosψ + cosφ cos θ sinψ − sinφ sinψ + cosφ cos θ cosψ − cosφ sin θ

sin θ sinψ sin θ cosψ cos θ


2.3.2 Quaternions
In attitude control problems, it is very common to prefer the use of unit quaternions
to express rigid-body attitude, due to the fact that quaternions present no inherent
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2.3 – Satellite rotational dynamics and kinematics

Figure 2.10: Euler angles.

geometric singularity and the linear equation to be integrated in time in order
to determine their evolution as a function of angular velocity components is less
computationally expensive than that derived for the Euler’s angles. A quaternion
is a 4×1 matrix which elements consists of a real scalar part s, which is the first
element of the matrix, and a complex vector part þv.

q =
5
s
þv

6
=


s
vx

vy

vz

 =


q0
q1
q2
q3


The unit quaternion satisfies: qqT = 1, which also means that:

q2
0 + q2

1 + q2
2 + q2

3 = 1
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Every unit quaternion express a rotation in R3. A spacecraft’s kinematics equation
gives the dependency of the time derivative of its relative orientation in space from
the angular rate:

q̇ = 1
2ω · q (2.6)

q̇0
q̇1
q̇2
q̇3

 = 1
2


0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0



q0
q1
q2
q3


The transformation matrix between body frame and LVLH frame, written with
quaternions, is:

Rb
o =

 q2
0 + q2

1 − q2
2 − q2

3 2 ∗ (q1q̇2 − q3 · q0) 2 · (q1 · q3 + q2 · q0)
2 · (q1 · q2 + q3 · q0) q2

0 − q2
1 + q2

2 − q2
3 2 · (q2 · q3 − q1 · q0)

2 · (q1 · q3 − q2 · q0) 2 · (q2 · q3 + q1 · q0) q2
0 − q2

1 − q2
2 + q2

3


The satellite’s attitude can then be determined by integrating equation 2.6. To

express the spacecraft attitude with Euler angles, the following equations must be
used for the transformation:

θ = asin[−2(q1q3 − q0q2)]

φ = atan

C
2(q0q1 + q2q3)

q1
0 + q2

1 − q2
2 − q2

3

D

ψ = atan

C
2(q1q2 + q0q3)

q2
0 − q2

1 − q2
2 + q2

3

D

2.3.3 Rotational dynamics of a rigid body: Euler’s moment
equation

The Euler moment equation describes the rotation of a rigid body, using a rotating
reference frame with its axes fixed to the body and parallel to the body’s principal
axes of inertia. This equation derives from the Newton second law, according to
which, in an inertial reference frame, the time derivative of the angular momentum
h equals the applied torque:

dh
dt

= M

The angular momentum is equal to:

h = Iω
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2.3 – Satellite rotational dynamics and kinematics

where ω is the angular velocity about the principle axes, I ∈ R3 is the inertia
matrix:

I =

 Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz


where Ix, Iy and Iz are the moments of inertia about the x, y and z − axes,
respectively and Ixy = Iyx, Ixz = Izx and Iyz = Izy are the products of inertia
defined as:

Ix =
Ú

V

(y2 + z2)ρdV

Iy =
Ú

V

(x2 + z2)ρdV

Iz =
Ú

V

(x2 + y2)ρdV

Ixy = Iyx =
Ú

V

xyρdV

Ixz = Izx =
Ú

V

xzρdV

Iyz = Izy =
Ú

V

yzρdV

where ρ is the mass density of the body.
If the axes of the body frame coincides with the principal axes of inertia, as in the
case considered in this work, the inertia matrix reduces to:

I =

 Ix 0 0
0 Iy 0
0 0 Iz


In a rotating reference frame, the time derivative must be replaced with:

dh
dt

+ ω × h = M

Since the inertial matrix doesn’t depend on time, the equation becomes:

Iω̇ + ω × (Iω) = M
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2.4 Perturbing Forces and Torques
Spacecraft dynamics is influenced by several environmental forces and torques
which the body is subjected to, during his life. Perturbing forces tend to mod-
ify orbit parameters and can lead to orbit decay; perturbing torques influence the
spacecraft rotational motion and induce rotational accelerations. In LEO, the main
disturbance elements to take into account to design the control system are: the
aerodynamic drag, the gravity gradient, the solar radiation pressure and the Earth
magnetic field.

2.4.1 Aerodynamic Drag
A spacecraft orbiting the Earth at low altitude is affected by a small drag, due to
residual atmospheric particles in the upper layers of the atmosphere. The drag will
create an acceleration component in the opposite direction of the velocity vector.
This small force acting on the surface of the vehicle can lead to orbit decay, if not
controlled. The atmospheric drag is:

þFa = 1
2ρV

2ACD

þV

V

where

• ρ is the atmospheric density, which at an altitude of 400 km is equal to
2.803 · 10−12kg ·m−3;

• V is the spacecraft velocity;

• A is the projected area of the spacecraft surface normal to þV ;

• CD is the drag coefficient, which is 2.2.

This drag force will produce a disturbance torque on the spacecraft, if any offset
between the aerodynamic centre of pressure and the centre of mass exists. The
aerodynamic torque will be:

þTa = þrcp × þFa

where þrcp is the centre-of-pressure (cp) vector , measured from the centre of mass,
in body coordinates.

2.4.2 Solar radiation pressure
Solar radiation particles (photons) hitting the spacecraft surface can generate, in
addition to many other effects, also a mechanical pressure, which leads to periodic
variations of the orbital elements. It is a fluctuating perturbation and has more
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effect at high altitudes, (e.g. geocentric orbits) and on light objects with a large
surface. This perturbation is periodic as it applies only when the spacecraft faces
the sun (if the Earth’s albedo is neglected ) and depends on the attitude of the
satellite. The radiation pressure is expressed as follows:

þFsun = −λCRP0Aþu

where

• λ is the shadow function, that has a value of 0 if the satellite is in the Earth’s
shadow;

• CR is the radiation pressure coefficient, which lies between 1 and 2. Assuming
a value of 1.5 means that half of the photons are absorbed and half are
reflected;

• P0 = 4.644 · 10−6Nm−2 is the solar pressure assumed constant;

• A is the spacecraft surface projected area normal to sun vector;

• þu is the vector pointing from the Earth to the Sun.

Solar radiation pressure can produce, also, a torque on the spacecraft:

þTsun = þrsp × þFsun

where þrsp is the vector from body centre of mass to spacecraft optical centre of
pressure.
Solar radiation torque is independent of spacecraft position or velocity, as long as
the vehicle is in sunlight, and is always perpendicular to the sun line.

2.4.3 Gravity gradient
An orbiting object around a planet is subjected to a gravitational gradient, due
to the newtonian law, which states that the planetary gravitational fields intensity
follow the inverse-square law. The gravitational attraction on the side of the space-
craft closer to the planet is bigger than the one acting on the side more distant
from the planet. This differential attraction, if applied to a body having unequal
principal moments of inertia, results in a torque tending to rotate the object to
align its minimum inertia axis with the local vertical, causing a periodic oscillatory
motion. The gravity-gradient torque for a satellite in a near-circular orbit is:

þTgrav = 3µ
R3 ue × [I] · ue
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where

• µ = 3.986 · 1014m3/s2 is Earth’s gravitational coefficient;

• R is the distance of the spacecraft from the Earth’s centre;

• I is the spacecraft inertia matrix;

• ue is the unit vector from planet to spacecraft.

2.4.4 Earth magnetic field
Earth has a strong magnetic field, which field lines enclose around the planet, form-
ing the magnetosphere, as shown in figure 2.11. The interaction of the magnetic

Figure 2.11: Earth magnetic field.

field and the spacecraft dipole moment, generates a torque on the spacecraft, equal
to:

þTmag = þm× þB

where þm is the spacecraft dipole moment, due to current loops and residual mag-
netization, measured in Am2 per turns and þB is the Earth magnetic field vector,
expressed in body frame, measured in Tesla, T. Its magnitude is proportional to
the magnetic moment of the Earth, µ = 7.96 · 10−15Tm3 and to 1/r3, where r is
the radius vector to the spacecraft.
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Chapter 3

Control Theory

3.1 Dynamic system control
3.1.1 Dynamical system
A dynamical system is described by variables evolving in time. The functions
that describe the variables evolution in time are called signals. The fundamental
signals of a dynamical system are the input signal u(t) and and the output signal
y(t); depending on the controllability of the input signal, it can be a command or a
disturbance signal. The dynamical systems are governed by differential equations,
that constitute a model of the system. In control theory, a mathematical model is
used to describe the system upon which to perform the control. This leads to two
types of uncertainties: a parametric and a dynamic uncertainties, due to the fact
that a model is always an approximation of the system that it represents.
Every dynamical system, which is a continuous time and finite dimension system,
can be described by a first order differential equations system:

ẋ(t) = f [x(t), u(t); t]

y(t) = h[x(t), u(t); t]

dove x(t) ∈ Rn is the system state, u(t) ∈ Rn is the input, y(t) ∈ Rn is the output
and n is the system order. This description of a dynamical system is called state
equation. The first equation is dynamic:

ẋ(t) = f [x(t), u(t); t] =⇒ x(t+ dt) = x(t) + f [x(t), u(t); t]dt

The state at t+ dt depends on the state and on the input at time t. So, the time
evolution is described. The second equation, y(t) = h[x(t), u(t); t] instead, is static,
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because it expresses a relation between quantities at the same time.

For practical reason, it is better to analyse the system in terms of transfer func-
tions. The transfer function is obtained by applying the Laplace transform to
the state equation. If we consider the state equations of a Linear-Time Invariant
(LTI) system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

applying the Laplace transform to the first equation, we have:

sX(s)− x(0) = AX(s) +BU(s)

(sI −A)X(s)− x(0) = BU(s)

X(s) = (sI −A)−1x(0) + (sI −A)−1BU(s)

Applying the Laplace transform to the second equation, we obtain:

Y (s) = CX(s) +DU(s)

Considering that X(s) = (sI −A)−1x(0) + (sI −A)−1BU(s),

Y (s) = C(sI −A)−1x(0) + [C(sI −A)−1B +D]U(s)

Let x(0) = 0:
Y (s) = G(s)U(s)

G(s) = C(sI −A)−1B +D

where G(s) is the transfer function of the system. It can, also, be seen in a rational
representation as:

G(s) = bms
m + bm−1s

m−1 + ...+ b1s+ b0

sn + an − 1sn−1 + ...+ a1s+ a0
= KG

rm
i=1(s− zi)rn
i=1(s− pi)

Where p1, ..., pn are G(s) poles, z1, ..., zm are G(s) zeros and KG is the gain.

3.2 Dynamical system control
Dynamical system control is based on the imposition of a command signal u(t) to
the system, in order to make the output y(t) to follow a desired signal r(t), set as
a reference. We can point out a first discrimination in control approaches: open-
loop control and closed-loop control. In open-loop control 3.1, the input does
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Controller Plant
Input

Actuating
Signal Output

Figure 3.1: Open-loop control.

not depend on the output and, also, the controller doesn’t take into account any
possible disturbance signals.

In closed-loop control, represented in figure 3.2, instead, the input signal depends
on the output and on the disturbing signals acting on the plant, if present. So,
thanks to the feedback signal, the controller corrects the behaviour of the system
on the basis of the output, step by step. This leads to more precision while con-
trolling the system and to a more effective attenuation of disturbances.

Controller Plant

Error
Detector

Feedback
Elements

+
Input

Error
Signal

Actuating
Signal Output

Feedback
Signal

-

Figure 3.2: Closed-loop control.

In this work, the Neural network control and the PID control have been chosen
amongst all existing control techniques and they have been described in next sec-
tions.

3.3 Neural control
3.3.1 Neural Network
Artificial Neural Network models are mathematical and computational emulations
of the biological nervous system. These networks aim to retrace biological organ-
ism brain behaviour, in order to reproduce the capability to generalize from a large
number of inputs and learn from external stimuli; therefore they are used, in many
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fields, for the resolution of complex problems involving numerical data. [10]
These algorithms can learn to perform a task by being trained with example data,
as they are able to establish a relationship between input and output data, without
further informations. The mathematical model of a neural network is an approx-
imation of what in neuroscience is known as "Neural Circuit". Hence, as a neural
circuit is a population of neurons interconnected by synapses, more simplistically,
an artificial neural network is a group of artificial neurons linked by connection
links. The artificial neurons are the elementary units of the network, connection
links interrelate them and transmit the informations in form of signals among the
neurons, that process it. The connection links are associated to a specific weight,
which properly multiplies the signal transmitted. [10]
There are many types of neural networks in use in machine learning algorithms: in
this work, the one taken in consideration is the feed-forward neural network,
which is a neural network in its simplest form. This network is characterized by
the linearity of the information path: the signal propagates from the input layer
to the output layer, without any cycle.

x1

x2

...
xn

qw1

w2

wn

y

Figure 3.3: Scheme of the artificial neuron.

The first computational model for artificial neurons was proposed by McCulloch
and Pitts. The single neuron produce an output signal based on an activation
function f :

y = f(
nØ

i=1
wixi − b)

The activation function depends on the resulting input, given by the sum of the
input signals x1, x2, ..., xn multiplied for the associated weights of the connection
links w1, w2, ..., wn; while b is the firing threshold 3.3.
The f function is the step function, so the outputs are binary :

f(x) =
;

1 if x ≥ 0
0 if x ≤ 0

Therefore, the neuron is activated if the weighted sum of the inputs is bigger than
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the threshold:

f(
nØ

i=1
wixi − b) =

;
1 if

qn
i=1 wixi − b ≥ 0

0 if
qn

i=1 wixi − b ≤ 0

The neural network is formed by these elementary units, grouped in layers.
Depending on the number of layers, there are single-layer neural networks,
also called perceptron, and multi-layer neural networks. The single-layer
neural network consists in one input layer of input nodes and an output layer of
neurons.
The multi-layer neural network has more than one layer of neurons: it consists of
one input layer, one or more middle layers and one output layer 3.4. The middle
layer is called "hidden" because its outputs can’t be directly observed.

x0

x1

x2

...
xn

A1

A2

...

Ap

B1

B2

...

Bm

y1

y2

ym

Figure 3.4: Two-layer neural network.

To be utilized, neural networks have to be trained to perform a specific task. The
training is made by feeding the network with a specific example set of inputs and
outputs. Only when the neural network is trained, it can be used.

3.3.2 Training the neural network
The key problem for neural network training and learning is to define which kind
of functions can be represented by a neural network. Using the Stone-Weierstrass
theorem in the theory of approximation of functions, the Universal approxima-
tion theorem has been proven:

Theorem: A feed-forward network with a single hidden layer containing a finite
number of neurons can approximate continuous functions on compact subsets of
Rn, under mild assumptions on the activation function.
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This means that all continuous functions whose domains are closed and bounded
in Rn can be approximated by neural networks with smooth activation functions.
The learning process takes the name of "supervised learning", when it occurs
through known input-output pairs. The network shall find a function that opti-
mizes the action that produces such outputs from the corresponding inputs. If
(xi, yi), i=1,...,m is the set of example pairs, yi = φ(xi) where φ is the control law,
the algorithm shall find a function φN that produces φN (x) outputs similar enough
to φ(x). The approximation function φN is provided by the neural network and it
is contained in the set of functions F from the input space X to the output space
Y . The fact that the approximation functions belonging to F are suitable for φ
is guaranteed by the universal approximation property of neural networks,
written above.
An information about the amount of training data is also needed to identify the
class of functions that obtain a good approximation. At this purpose, the Vapnik-
Chervonenkis dimension of class of functions computable by the neural network
has been defined. The concept of VC dimension of a class of sets can be extended
to the case of a class of functions by using subgraphs. The subgraph of a function
f is the subset Rn × R defined by:

S(f) = (x, t) : x ∈ Rn, t ∈ R, t ≤ f(x)

The dimension of F is defined by the VC dimension of the class of its subgraphs1:

S(f) : f ∈ F

In conclusion, neural networks with finite VC dimensions are trainable. [10]

3.3.3 The backpropagation algorithm
Multi-layer neural networks are trained by means of the backpropagation al-
gorithm, which is a generalization of the Delta rule, a learning algorithm for
single-layer neural networks. The Delta rule is based on the optimization of the
performance of the neural network: it aims to reduce the error between the neural
network outputs, oq, and the target outputs yq (for all q=1,..,m), by changing the
weights. The measure of the error taken into account is:

E =
NØ

q=1
Eq

1A subgraph of a function f: Rn → R is the set of points lying on or below its graph.
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where Eq is:

Eq = 1
2

mØ
i=1

(yq
i − o

q
i )2

In order to use the gradient descent method2 for our purpose, the weight wij has
to be differentiable, being wij the weight from node j to output neuron i. So, the
following expression has to be differentiable:

oq
i = fi

A
nØ

j=0
wijx

q
j

B

where xq
j is the input given to the network. Hence, the activation function fi on

the ith neuron has to be a differentiable function.
Applying the gradient descent method to E, to find its minimum, we move pro-
portionally to the negative of the gradient of E, -∇E, updating each weight wij

as:
wjk → wjk + ∆wjk

∆wjk = −η ∂E
∂wij

where ∂E
∂wij

is the vector of partial derivatives representing the ∇E at a point w
with components wij and η is a positive number, called learning rate.

∂E

∂wij
=

NØ
q=1

∂Eq

∂wij

∂Eq

∂wij
= ∂

∂wij

A
1
2

mØ
i=1

(yq
i − o

q
i )2

B
= (oq

i − y
q
i ) ∂

∂wij
fi

A
nØ

i=0
wjix

q
i

B
Since ∂

∂wij
(oq

i − y
q
i ) = 0 for i /= j, and

oq
j = fj

A
nØ

i=0
wjix

q
i

B
Therefore,

∂Eq

∂wij
= xq

k(oq
j − y

q
j )f Í

j

A
nØ

i=0
wjix

q
i

B
= δq

j · x
q
k

2The gradient descent method is a first-order iterative optimization algorithm for finding the
minimum of a function. To find a local minimum of a function using gradient descent, one takes
steps proportional to the negative of the gradient of the function at the current point.

31



3 – Control Theory

where

δq
j = (oq

j − y
q
j )f Í

j

A
nØ

i=0
wjix

q
i

B

for the jth output neuron. [10]

∆wjk =
NØ

q=1
∆qwjk = −η

NØ
q=1

∂Eq

∂wjk
=

NØ
q=1
−ηδq

jx
q
k

This leads to find a certain weight vector, w∗, such that the ∇E at w∗ is zero.
To train more complex neural networks, as the multi-layer neural networks 3.5, we
need to generalize the Delta rule, obtaining the backpropagation algorithm.
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Layer
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Figure 3.5: Two-layer neural network.

The main problem encountered in applying the delta rule to a multi-layer neural
network is the fact that when the errors are analysed, it’s not possible to detect
which hidden neurons are responsible for the error, because yq

j is the target patterns
of the output layer only. However, to change the weight as needed, it’s sufficient
analysing the partial derivative of E with respect to the output oi, i=1,...,p. If the
activation function is differentiable, then it’s possible to apply the gradient descent
method to find the w∗ that minimizes the error E, also in this case, doing some
changes in the formulas. The weights of the hidden layer must be introduced: vji

is the weight of the link connecting the hidden neuron i to the output neuron j,
and wik the weight of the link connecting the input node k to the hidden neuron i.
The delta rule can be applied to vji, by considering the hidden layer as an input
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layer:

∆vji =
NØ

j=1
∆qvji = −η

NØ
j=1

∂Eq

∂vji
=

NØ
j=1

(−ηδq
j z

q
i )

where zq
i is the net input to the hidden neuron i,

zq
i = fi

A
mØ

k=0
xq

kwik

B

and

δq
j = (oq

j − y
q
j )f Í

i

A
mØ

k=1
vjkz

q
k

B
The update of the weight wik for a hidden neuron i and input node k is:

∆qwik = −η ∂E
q

∂wik

with
∂Eq

∂wik
= ∂Eq

∂oq
i

∂oq
i

∂wik

where oq
i is the output of the hidden neuron i,

oq
i = fi

A
nØ

l=0
wilx

q
l

B
= zq

i

∂oq
i

∂wik
= f Í

i

A
nØ

l=0
wilx

q
l

B
xq

k

δq
i = ∂Eq

∂oq
i

=
pØ

j=1

∂Eq

∂oq
j

∂oq
j

∂oq
i

where j is in the output layer. The ∂Eq

∂oq
j
are known from previous calculations.

oq
i = f Í

i

A
mØ

l=1
vilz

q
l

B
vji

The δq
i , for hidden neurons i, are computed from the already-known values of δq

j

for all j in the output layer. So, first the network is fed the input patterns xq

forward to the output layer and then the δq
j are calculated for all output neurons

j. Next, these δq
j are propagated backwards to the layer below (in this case, the
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hidden layer) in order to calculate the δq
i for all neurons i of that layer. At this

point there are two approaches for training the network: the batch approach
and the incremental approach. The batch approach consists on updating the
weights wik, according to:

∆wik = −η
NØ

q=1

∂Eq

∂wik

after all N training patterns are presented to the neural network.
The incremental approach, instead, changes the weights wik after every training
pattern is fed to the neural network, using:

∆qwik = −η ∂E
q

∂wik

The stopping criterion can be a threshold or the error function E.

3.3.4 Direct neural control

The direct neural control is a way of exploiting neural networks in control prob-
lems. We talk of direct neural control when the controller is a neural network, as in
figure 3.6; instead, when the controllers are built based on a neural network model
of the plant, we talk about indirect neural control. Direct neural controllers are
designed by modelling inverse dynamics of the plant. The network must be trained
as the controller using numerical input-output data or a mathematical model of
the system. For developing a neural controller, several types of neural network ar-
chitectures can be used. As been said in 3.3.1, the feedforward networks has been
employed: feedforward neural configurations are multi-layer networks composed by
various hidden layers of neurons, which number depends on the choice of the user,
between the input and output layer. The learning algorithm used for training the
neural network is the Levenberg-Marquardt algorithm.

Neural network
controller Plant

Figure 3.6: Direct neural control scheme.
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3.3.5 Feed-forward neural network and Levenberg-Marquardt
algorithm

Neural networks are distinguished into two main categories, based on their ar-
chitectures: feed-forward neural networks and recurrent neural networks.
The feed-forward neural network is characterized by the absence of a feedback, a
synaptic connection from the outputs towards the inputs; otherwise, if there exists
such a feedback, then the network is called recurrent neural network. Feed-forward
neural networks can be single layer or multi layer, depending on the number of hid-
den layers the user decide to employ. In the input layer, there is no computation
performed; input signals are passed on to the output layer via the weights and
the neurons in the output layer compute the output signals. The hidden neurons
intervene between the external input and the network output, in order to enable
the network to extract higher-order statistics. In Figure 3.7 the network is fully
connected because every neuron in each layer is connected to every other neuron
in the next forward layer.

Inputs Outputs

Input Hidden
Layer

Output
Layer

Figure 3.7: Multi-layer feed-forward neural network.

If some of the synaptic connections were missing, the network would be called
partially connected. [12]

To train the network, the Levenberg-Marquardt (LM) algorithm has been used.
The LM algorithm arise from the back-propagation algorithm, but combining the
stability of the steepest descent method with the speed of the Newton algorithm.
In the BP algorithm, the performance index E(w) to be minimized is defined as
the sum of squared errors between the target outputs and the network’s simulated
outputs:

E(w) = δT δ
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Where w = [w1, w2, ..., wN ] consists of all weights of the network, δ is the error
vector comprising the error for all the training examples. When training with the
LM method, the increment of weights ∆w can be obtained as follows:

∆w = [JTJ + ηI]−1JT δ

Where J is the Jacobian matrix, η is the learning rate which is to be updated
using the β depending on the outcome. In particular, η is multiplied by decay rate
β(0 < β < 1)whenever E(w) decreases, whereas η divided by β whenever E(w)
increases in a new step. The standard LM training process can be illustrated in
the following pseudo-codes:

1. Initialize the weights and parameter η (η=.01 is appropriate).

2. Compute the sum of the squared errors over all inputs Ei(w).

3. Solve step 2. to obtain the increment of weights ∆w.

4. Recompute the sum of squared errors Ei+1(w) .

5. Using w + ∆w as the trial w:

if Ei+1(w) < Ei(w) then
w = w + ∆w

η = η · β(β = .1)

and go back to step 2.

else
η = η

β

and go back to step 4.

end [13]

3.4 PID control
Proportional-Integral-Derivative (PID) control is the most common control algo-
rithm employed in industrial control systems and in a wide range of applications.
The reason why it is so largely diffused can be attributed to the fact that it is a
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robust control and it is simple to implement.
It is a closed loop feedback, continuously modulated control, 3.8: the controller
continuously calculates the error e(t) between a desired value and the output of
the plant. On the basis of this error, it applies a correction governed by a mathe-
matical control law:

u(t) = Kpe(t) +Ki

Ú t

0
e(τ)dτ +Kd

de(t)
dt

where u is the control signal, e is the calculated error between the setpoint value and
the plant output, and Kp, Ki and Kd are the proportional, integral and derivative
gains, respectively. The control signal is thus a sum of three terms: the P-term,
which is proportional to the error, the I-term, which is proportional to the integral
of the error, and the D-term, which is proportional to the derivative of the error.
The proportional, integral and derivative terms can be interpreted as actions on
the present error, on the average of the past errors and on a prediction of future
errors, respectively. With the proportional action the error decreases if the gain
increases, but the system output becomes more oscillatory. When integral gain is
increased, the steady state error3 is removed, but the system behaviour is more
oscillatory; for small values of Ki the system response tends slowly towards the
reference. When no derivative action is performed, the behaviour is oscillatory and
it becomes more damped as derivative gain is increased.

Figure 3.8: PID control scheme.

An important step in PID control developing is gains tuning. Optimizing gains

3The steady state error is defined as the difference between the input (command) and the
output of a system in the limit as time goes to infinity.
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values is fundamental for the convergence of the solution. Traditional control
techniques based on modelling and design can be used, but there are also special
methods for direct tuning based on simple process experiments.
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Chapter 4

Simulation model

In this chapter the Matlab/Simulink model of the system is described. In figure
4.1, the overall Simulink architecture is depicted: the control blocks, one for trans-
lational motion and one for rotational motion, the dynamics blocks, that describe
the spacecraft translational and rotational dynamics, and the block containing the
disturbance forces. In figure 4.2, the functioning of the simulator is explained:
the system consists of the translational and rotational dynamics blocks, which
represent the chaser spacecraft motion with respect to the target. In the Chaser
Dynamics block are contained the Hill equations, the kinematic equations and the
Euler equations. The outputs of the dynamic block are sent to the two controllers,
which compare the outputs with a reference set of values. If the two controllers
detect a discrepancy with the desired values, they emit a signal to correct the
spacecraft trajectory or rotational motion.
The input for the dynamics block are the disturbance torques and forces, which
main sources are represented by the gravity gradient, the Earth magnetic field,
the solar radiation pressure and the aerodynamic drag. The Guidance, Navigation
and Control block gives the control input to the dynamics block, mediated by the
Thrusters and Reaction Wheels block. The forces and torques are transformed to
the body-coordinate system. The output of the system are the relative positions
and velocities, the satellite attitude and attitude rate and the control forces and
torques.
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Figure 4.1: First level Simulink scheme.
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Figure 4.2: Spacecraft dynamics and control scheme.

41



4 – Simulation model

4.1 Satellite Dynamics Model
4.1.1 Translational Dynamics model
The dynamics of the satellite is modelled taking into account both the translational
and rotational dynamics of the satellite motion towards the Target. The transla-
tional motion is described in figure 4.3: the model represents the integration of the
Hill equations of relative motions in the local orbital frame, LVLH:

ẍ = 1
mc

Fx + 2ωż

ÿ = 1
mc

Fy − ω2y

z̈ = 1
mc

Fz − 2ω2ẋ+ 3ω2z

where Fx, Fy and Fz are the sum of the disturbance and control forces, expressed
in N, in x, y and z direction, respectively; mc is the mass of the Chaser satellite,
in kg; and ω is the angular velocity of the spacecraft around Earth, in rad/s. By
integrating these equation one time, we obtain the relative translational velocities
in the three directions, in m/s; the second integration gives us the relative positions,
in m. The linearisation of the Hill equations is represented in the state space form
as:

ẋ(k) = A(k)x +B(k)u
where x(k) = [x y z ẋ ẏ ż] is the state vector constituted by the three components
of Chaser position and velocity with respect to the Target centre of mass, u(k) =
[Fx, Fy, Fz] is the vector of the control forces given by the controller, and A and B
are defined as follows:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω2

0 −ω 0 0 0 0
0 3ω2 0− 2ω2 0 0



B =


0 0 0
0 0 0
0 0 0

1/mc 0 0
0 1/mc 0
0 1/mc
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Figure 4.3: Relative Translational dynamics block.
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The control output u is given by:

u = Kpe(k)

where Kp is the proportional gain and e(k) is the error vector, given by the dif-
ference of the state vector and the desired reference vector. So, the state-space
equation for translational dynamics becomes [4]:

ẋ =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω2

0 −ω 0 0 0 0
0 3ω2 0− 2ω2 0 0

x + 1
mc


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 1 1

u

4.1.2 Rotational dynamics model
The rotational dynamic block is depicted in figure 4.4. It contains the disturbance
and control torques, the kinetic and kinematic blocks. In figure 4.5, the kinetic
block is shown, where the Euler equation is implemented:

Iω̇ + ω × (Iω) = T

where, I is the satellite inertia matrix, ω and ω̇ are its angular velocity and its
angular acceleration, respectively, with respect to the inertial reference frame; T
is the sum of the control and disturbance torques.

ω̇ = I−1[T− ω × Iω]

By the integration of this equation, we obtain the angular velocity of the space-
craft with respect to the inertial reference frame.The Chaser angular velocity with
respect to the orbital local frame, ωOB , is:

ωBO = ωBI −RT
OBωOI

where ωOI is the angular velocity of the orbital frame with respect to the inertial
frame and RBO is the rotation matrix. In the kinematics block, in figure 4.6, the
quaternions and the angular velocity with respect to the body frame are obtained.
For control problems, quaternions are more suitable than Euler angles, then the
attitude kinematics equations are expressed in terms of quaternions:

q̇OB = [QOB ]ωOB

where qOB = [qOB0, qOB1, qOB2, qOB3] is the quaternion vector, expressing the
Chaser attitude, with respect to the orbital frame and QOB is obtained through a
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Figure 4.4: Chaser Rotational dynamics block.
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Figure 4.5: Kinetics.

Matlab interpreted function, from the quaternions:

QOB =


−qOB1 −qOB2 −qOB3
qOB0 qOB3 −qOB2
−qOB3 qOB0 qOB1
qOB2 −qOB1 qOB0


In this case, the state vector is x(k) = [qOB0, qOB1, qOB2, qOB3, ωIBx, ωIBy, ωIBz]
and u(k) is the vector of the control forces given by the controller, [Tx, Ty, Tz].
The A and B matrices are:

A =



04×3 [QOB ]

03×3


0 ωIBz(Iy−Iz)

Ix

ωIBy(Iy−Iz)
Ix

−ωIBz(Ix−Iz)
Iy

0 −ωIBx(Ix−Iz)
Iy

ωIBy(Ix−Iy)
Iz

ωIBx(Ix−Iy)
Iz

0





B =



0 0 0
0 0 0
0 0 0
0 0 0
1

2Ix
0 0

0 1
2Iy

0
0 0 1

2Iz
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The control output u is given by:

u = Kpe(k)

where Kp is the proportional gain and e(k) is the error vector, given by the dif-
ference of the state vector and the desired reference vector. So the state-space
equation for attitude dynamics becomes [4]:

ẋ =



04×3 [QOB ]

03×3


0 ωIBz(Iy−Iz)

Ix

ωIBy(Iy−Iz)
Ix

−ωIBz(Ix−Iz)
Iy

0 −ωIBx(Ix−Iz)
Iy

ωIBy(Ix−Iy)
Iz

ωIBx(Ix−Iy)
Iz

0




x+



0 0 0
0 0 0
0 0 0
0 0 0
1

2Ix
0 0

0 1
2Iy

0
0 0 1

2Iz


u

Figure 4.6: Kinematics.

4.2 PD-controller
PD-controller for translational motion is depicted in figure 4.7 . It controls both
the translational relative position and velocity of the Chaser with respect to the
Target spacecraft. The Target position and velocity are considered as reference by
the controller: the LVLH reference frame is centred in the Target centre of mass,
so the reference position vector is [0 0 0] and the reference velocity vector is [0 0
0], as the Target is considered a non moving object, i.e. a cooperative target. The
Chaser actual trajectory, calculated in the translational dynamic block, is compared
with the reference at each iteration; the error signals of position and velocity,e(k),
are multiplied by proportional gains, properly tuned to make the system converge
to the desired solution. The control signal values, generating the control forces to
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correct the trajectory, are limited between a maximum and a minimum permissible
value, given by the thrusters constrains:

−Fth,min ≤ u(k) ≤ Fth,max

The same logic is followed by the attitude PID-controller, in figure 4.8. The atti-

Figure 4.7: PID-controller for translational motion.

tude quaternions vector and the angular velocity vector calculated in the Rotational
dynamics block are compared with the reference attitude and attitude rate: since
the Target is considered non spinning, the reference angles and angular rate are
both [0 0 0]. The error signals of attitude and attitude rate,e(k), are multiplied
by proportional gains. The control signal values, generating the control torques,
are limited between a maximum and a minimum permissible value, given by the
actuators constrains; in this case we consider the Reaction wheels:

−TRW,min ≤ u(k) ≤ TRW,max
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Figure 4.8: PID-controller for rotational motion.
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4.3 Neural Network Controller
The Neural Network controller for translational and rotational motion, shown in
figure 4.9, was realized thanks to the Mathworks’ Neural Network Toolbox, which
provides a tool to generate a neural network Matlab code and a Simulink block. The

(a) Neural Network controller for translational motion.

(b) Neural Network controller for translational motion.

Figure 4.9: Neural Network controller.

Neural Network Toolbox offers four types of the most common design techniques:

• Supervised Learing → Fitting app;

• Pattern Recognition → Pattern Recognition app;

• Clustering → Clustering app;

• Regression → Dynamic time series app;
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Supervised Learning consists in training the neural network to produce the de-
sired outputs in response to sample inputs, making them particularly suitable for
modelling and controlling dynamic systems, classifying noisy data and predicting
future events. The goal is to give the neural network the ability to generalize from
the training data and to adapt to unseen data sets.
Pattern Recognition works by classifying the input data into objects or classes
based on key characteristics, using the supervised or unsupervised classification. It
is considerably useful in machine vision, radar processing, speech recognition and
text classification.
Clustering learning technique is an unsupervised approach in which neural net-
works can be used for analysing exploratory data to find hidden patterns or group-
ings in data. This process involves grouping the data by similarity. Among the
applications of the cluster analysis are the analysis of the genetic sequence, market
research and object recognition.
Regression algorithms establish the relationship between a response variable (out-
put) and one or more explanatory variables (inputs).

In this work, the Neural Networks used were generated by the Fitting app. The
Neural Net Fitting app solves a data-fitting problem with a two-layer feed-forward
neural network with sigmoid hidden neurons and linear output neurons. It allows
the creation and training of a neural network, selecting input and output data
from the MATLAB® workspace, dividing it into training, validation, and testing
sets and defining the network architecture by choosing the number of hidden lay-
ers. The evaluation of the network performance is carried out, evaluating its mean
squared error (MSE) and regression analysis. If the results are not satisfying, the
app permits the retraining of the network with modified settings or on a larger
data set. [7]
The activation function of the hidden neurons is a sigmoid function, which is dif-
ferentiable, necessary requirement for a network to be trainable [10]. The sigmoid
function is expressed by the formula,

f(x) = 1
1 + e−x

and has the form shown in figure 4.10.
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Figure 4.10: Sigmoid activation function.
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4.3.1 Regression and Mean Squared Error
The network learning performance are expressed in terms of mean squared error
(MSE) and of linear regression. Regression is a statistical technique to determine
the linear relationship between two or more variables. Regression is primarily
used for prediction and causal inference. The linear form of regression shows the
relationship between one independent variable (X) and a dependent variable (Y),
as shown in the formula:

Y = β0 + β1X + u

The magnitude and direction of that relation are given by the slope parameter (β1),
and the status of the dependent variable when the independent variable is absent
is given by the intercept parameter (β0). An error term (u) captures the amount
of variation not predicted by the slope and intercept terms. The linear regression
model is designed to establish a relationship between a pair of variables in a data
set. In this case, Y is the target data set, the dependent variables, and X is the
input data set, the independent variables. The aim of the regression equation is to
find the best fitting line relating the variables to one another [3].
MSE measures the average of the squares of the errors, that is the discrepancy
between the estimated values and what is observed. The equation that defines the
MSE is:

MSE = 1
n

nØ
i=1

(yi − ỹi)2

where n is the number of data points, ỹi is the estimated data and yi is the observed
data. It indicates how close a regression line is to a set of points. It does this by
taking the distances from the points to the regression line and squaring them. The
squaring is necessary to remove any negative signs. [9]

4.4 Training the Neural Network with PD-control
4.4.1 Translational motion NN control
To generate the neural network Simulink block, first, the trajectory points and
commands using PD control were obtained. The training data sets was constituted
by the error vector, i.e. the PID controller input, and the PID output vector. So the
neural network received as input the errors on the trajectory measured with respect
to the desired position and velocity vectors, and as target data, it received the PD
output commands.The data provided to the network for the training are divided,
according to the user’s wishes, into a percentage for training, one for the test and
one for validation. The data used for validation are needed to validate that the
network is generalizing and to stop training before overfitting. The test data will
be used as a completely independent test of network generalization. The number
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of hidden layers chosen to perform the training was 6. In figure 4.11, the regression
plots relative to each training set are shown. For a perfect fit, the data should fall
along a 45 degree line, where the network outputs are equal to the targets. In figure
4.11.a, the regression plot shows that the network was not successfully trained, as
the targets do not fit the desired output. In this case, it is necessary to retrain the
network, sightly changing the data training set. This will change the initial weights
and biases of the network, and may produce an improved network after retraining.
After the third training session, the regression plot shows that the target fits the
data. Although, if we train the network once again, the performance drops, as
depicted in figure 4.11.d. This is due to overfitting. The error on the training set
is driven to a very small value, but when new data is presented to the network
the error is large. The network has memorized the training examples, but it has
not learned to generalize to new situations.The method used here for improving
network generalization is decreasing the number of hidden layers, so the make the
network just large enough to provide an adequate fit. The larger network, the more
complex the functions the network can create; so if the network is small enough,
it will not have enough power to overfit the data. [8]

At this point, it is necessary to adjust the number of hidden neurons layers and
train the network again. After other two training sessions, the regression plot shows
satisfying results, 4.12. The following regression plots display the network outputs
with respect to targets for training, validation, and test sets. The neural network
control block thus generated is ready to be inserted and used in the rendez-vous
manoeuvre Simulink model.
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(a) Regression plot, after first training session. (b) Regression plot, after second training session.

(c) Regression plot, after third training session. (d) Regression plot, after forth training session.

Figure 4.11: Regression plot after every training session.
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(a) Regression plot, after fifth training session. (b) Regression plot, after sixth training session.

Figure 4.12: Regression plot after every training session.
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Figure 4.13: From the first up on the left, clockwise: Training regression plot,
Validation regression plot, Test regression plot, All data regression plot.
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4.4.2 Rotational motion NN control
To generate the neural network Simulink block, first, the attitude, attitude rate
and control torque data points using PID control were obtained. The training
data sets was constituted by the error vector, i.e. the PD controller input, and
the PD output vector. So the neural network received as input the errors between
the desired attitude and the actual attitude or attitude rate vectors, and as target
data, it received the PID output commands. As said in previous paragraph for
the trajectory controller, the data provided to the network for the training are
divided, according to the user’s wishes, into a percentage for training, one for the
test and one for validation. The data used for validation are needed to validate
that the network is generalizing and to stop training before overfitting. The test
data will be used as a completely independent test of network generalization. The
number of hidden layers chosen to perform the training was 5. In figure 4.14, the
regression plots relative to each training set are shown. For a perfect fit, the data
should fall along a 45 degree line, where the network outputs are equal to the
targets. In figure 4.14.a, the regression plot shows that the the network was not
successfully trained, as the targets do not fit the desired output. In this case, it is
necessary to retrain the network, sightly changing the data training set. This will
change the initial weights and biases of the network, and may produce an improved
network after retraining [8]. After the second training session, the regression plot
shows that the target fits the data, as shown in figure 4.14.b. The neural network
control block thus generated is ready to be inserted and used in the rendez-vous
manoeuvre Simulink model.
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(a) Regression plot, after first training session. (b) Regression plot, after second training session.

Figure 4.14: Regression plot after every training session.
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Figure 4.15: From the first up on the left, clockwise: Training regression plot,
Validation regression plot, Test regression plot, All data regression plot.
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Chapter 5

Simulation results

In this chapter, the simulation results are reported, in order to show the behaviour
of the spacecraft in relation to the two different control strategies and its response
to different initial conditions. The Chaser physical characteristics are shown in
table 5.1: the mass, external dimensions and inertia elements respects the CubeSat
standard, which require small masses and dimensions that has to be multiples of
the 1U (1cm×1cm ×1cm). The orbit where the mission takes place is a low-

Table 5.1: Chaser nominal properties.

Mass (kg) 10
lx (m) 0.2
ly (m) 0.1
lz (m) 0.3

Ix (kgm2) 0.0833
Iy (kgm2) 0.10833
Iz (kgm2) 0.04166

Earth orbit, whose parameters are shown in table 5.2. The orbit is considered
circular to avoid model complications. The orbital elements taken into account are
the orbit altitude h, the orbit inclination i in table 5.2: The PD controller gains

Table 5.2: Orbital parameters.

Altitude, h (Km) 400
inclination (°) 98

obtained after properly tuning the controller, both for trajectory and attitude
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control, are shown in tables 5.3 and 5.4: The disturbance forces and toques taken

Table 5.3: Trajectory PID-controller gains.

Kpx Kpy Kpz Kpẋ Kpẏ Kpż

-0.4 -0.08 -0.4 -40 -8 -40

Table 5.4: Attitude PID-controller gains.

Kpq1 Kpq2 Kpq3 Kpωx Kpωy Kpωz

0.2 0.2 0.2 -2 -2 -2

into account are due to aerodynamic drag, the Earth magnetic field, the gravity
gradient and the solar radiation pressure. The translational motion is interested
by the aerodynamic drag and the solar radiation pressure, since the magnetic field
and the gravity gradient do not produce a torque on the spacecraft. The attitude
dynamics, instead, in interested by all the said elements: aerodynamic, magnetic,
gravitational and solar pressure torques. The maximum values of this forces and
torques is approximately:

• Aerodynamic Drag : Fa ∼ −10−6 N;

• Solar Radiation Pressure: Fsun ∼ 10−5 N;

• Aerodynamic Torque: Ta ∼ 0.2124 · 10−7 Nm ;

• Solar Radiation Torque: Tsun ∼ 10−8 Nm

• Gravity Gradient Torque: Tg ∼ 10−8 Nm

• Magnetic Torque: Tm ∼ 10−7 Nm

The limitations of the control forces and torques are dictated by the actuators
constraints: CubeSats can be equipped with actuators suitable for their small di-
mensions and masses. So, the thrusters for trajectory control can have a minimum
and maximum force:

−0.4N ≤ Fth ≤ 0.4N

The actuators for attitude control, the reaction wheels, can give a maximum and
a minimum control torque:

−0.01Nm ≤ TRW ≤ 0.01Nm
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5.1 Translational motion control: nominal condi-
tions

The following results represent the trajectory control of the Chaser with respect to
the Target, in terms of relative positions and velocities along the three directions
in the LVLH frame. These results were carried out considering the input data in
table 5.1 for the Chaser physical characteristics and the orbital parameters in 5.2;
all the disturbance forces acting on the spacecraft has been considered as indicated
in the previous section; PID controller gains for trajectory control are indicated in
table 5.3.
The Neural Network controller was trained several times, with different sets of
input/output obtained with PD-control, and the final net architecture is depicted
in figure 5.1; the neural Network here represented has 6 hidden neurons layers:
The total simulation time is 1000 seconds, with a fixed step of 0.01; the initial

Figure 5.1: Neural Network architecture for trajectory control.

conditions for this set of simulations are:

Table 5.5: Initial conditions.

x (m) y (m) z (m) vx (m/s) vy(m/s) vz(m/s)
-50 2 0 0.15 0 0

In figure 5.2, it is shown the comparison between the system controlled by PD and
by Neural Network. It is evident that the Neural Network precisely emulates the
PID behaviour, leading the system to convergence. The Chaser spacecraft reaches
the Target position in approximately 500 seconds, both in x and y directions;
it takes a little longer in the z direction, about 700 seconds. To have a better
understanding of the NN controller behaviour, it is possible to estimate an error
between the final position and velocity at the end of the simulation between the
PD model and the NN model:
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(a) Chaser-Target relative position, PID control.

(b) Chaser-Target relative position, NN control.

Figure 5.2: Chaser-Target relative position, nominal conditions.
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(a) Chaser-Target relative velocity, PID control.

(b) Chaser Attitude relative velocity, NN control

Figure 5.3: Chaser-Target relative velocity, nominal conditions.
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(a) PID control Forces.

(b) NN control Forces

Figure 5.4: Control Forces, nominal conditions.
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• Final position, along x-axis: xf,P D=-0.0273 and xf,NN=-0.0274;

• Final position, along y-axis: yf,P D = 8.0800 · 10−5 and yf,NN=0.0055;

• Final position, along z-axis: zf,P D = −1.0628 · 10−4 and zf,NN = −1.8642 ·
10−4;

• Final velocity, along x-axis: vxf,P D = 2.0520 · 10−4 and vxf,NN = 2.0438 ·
10−4;

• Final velocity, along y-axis: vyf,P D = −8.18471̇0−7 vyf,NN = −7.0538·10−6;

• Final velocity, along z-axis: vzf,P D = 6.9225e · 10−7 and vzf,NN = 5.5802 ·
10−7;

The error on the final position along x-axis is approximately of ex=0.36%; this is
an indication of the good quality of the network approximation.

5.2 Translational motion control: changing initial
conditions

5.2.1 Simulation 1
The Neural Network controller was tested by changing the initial conditions, as in
table 5.6 and an additional disturbing force has been added. The simulation time is
1000 seconds, all physical Chaser characteristics and orbital parameters remain the
same. In this graphs, it is shown the trajectory in terms of position and velocity

Table 5.6: Initial conditions. Simulation 1

x (m) y (m) z (m) vx (m/s) vy(m/s) vz(m/s) Disturbance Force (N)
-60 2 0 0.15 0.012 0 −2 · 10−6

of the Chaser spacecraft with respect to the Target controlled by the same NN
controller, and its control forces. The spacecraft arrives at the desired point, even
if the initial starting position are changed and a new disturbance force is added,
with respect to the previous simulation. This demonstrates the adaptability of the
NN controller to unseen external conditions. In figure 5.5 and 5.6 are represented
the Chaser-Target relative positions and velocities;in figure 5.7 are represented
the control forces. We can observe that the changes in the initial conditions and
the added disturbance force brought a little oscillation in the first instants of the
simulation, but the system reach the solution, nevertheless.The final positions and
velocities reached are:
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Figure 5.5: Chaser-target relative position.

Figure 5.6: Chaser-target relative velocity.
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Figure 5.7: Chaser-target relative position.
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• Final position, along x-axis: xf,NN=-0.0316 m;

• Final position, along y-axis: yf,NN=0.0053 m;

• Final position, along z-axis: zf,NN = −2.0060 · 10−4 m;

• Final velocity, along x-axis: vxf,NN = 2.362 · 10−4 m/s;

• Final velocity, along y-axis: vyf,NN = 8.7315 · 10−6 m/s;

• Final velocity, along z-axis: vzf,NN = 6.5673 · 10−7 m/s;

5.2.2 Simulation 2
In this second simulation, the initial conditions change again, as shown in table 5.7
and an additional disturbing force has been added, this time bigger than in simu-
lation 1. The simulation time is 1000 seconds, all physical Chaser characteristics
and orbital parameters remain the same.

Table 5.7: Initial conditions. Simulation 2

x (m) y (m) z (m) vx (m/s) vy(m/s) vz(m/s) Disturbance Force (N)
-55 4 0 0.15 0.012 0 −2 · 10−5

• Final position, along x-axis: xf,NN=-0.0323 m;

• Final position, along y-axis: yf,NN=0.0056 m;

• Final position, along z-axis: zf,NN = −1.9503 · 10−4 m;

• Final velocity, along x-axis: vxf,NN = 2.3929 · 10−4 m/s;

• Final velocity, along y-axis: vyf,NN = 6.1970 · 10−6 m/s;

• Final velocity, along z-axis: vzf,NN = 6.0907 · 10−7 m/s;

In figure 5.8 and 5.9 are represented the Chaser-Target relative positions and ve-
locities;in figure 5.10 are represented the control forces. As in the previous results,
a little oscillation in the first instants of the simulation is present, but the system
reaches the solution, in spite of the changed starting position/velocities and of the
increased disturbance force.
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Figure 5.8: Chaser-target relative position.

Figure 5.9: Chaser-target relative velocity.
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Figure 5.10: Chaser-target relative position.
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5.2.3 Simulation 3
In this third simulation, the initial conditions change again, as shown in table 5.8
and the additional disturbance force is further increased. The simulation time is
1000 seconds, all physical Chaser characteristics and orbital parameters remain the
same.

Table 5.8: Initial conditions. Simulation 3

x (m) y (m) z (m) vx (m/s) vy(m/s) vz(m/s) Disturbance Force (N)
-30 4 0 0.15 0.015 0 −2 · 10−4

Figure 5.11: Chaser-target relative position.

• Final position, along x-axis: xf,NN=-0.0233 m;

• Final position, along y-axis: yf,NN=0.0064 m;

• Final position, along z-axis: zf,NN = −1.5862 · 10−4 m;

• Final velocity, along x-axis: vxf,NN = 1.5121 · 10−4 m/s;

• Final velocity, along y-axis: vyf,NN = 1.9565 · 10−6 m/s;
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Figure 5.12: Chaser-target relative velocity.

Figure 5.13: Chaser-target relative position.
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• Final velocity, along z-axis: vzf,NN = 3.4401 · 10−7 m/s;

In figure 5.8 and 5.12 are represented the Chaser-Target relative positions and
velocities;in figure 5.13 are represented the control forces. In this case, the initial
oscillation takes longer to be damped, but the system reaches acceptable solutions.
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5.3 Attitude control: nominal conditions
In the following graphs, the attitude and attitude rate control is represented. It
is shown the comparison between the satellite behaviour controlled by the PD-
controller and by the Neural Network controller, in different conditions. In table
5.9, the initial conditions of the simulations are indicated, in terms of initial attitude
and attitude rate.These results were carried out considering the input data in table
5.1 for the Chaser physical characteristics and the orbital parameters in 5.2; all the
disturbance torques has been considered. The PD gains for attitude and attitude
rate controller are all proportional, as indicated in 5.10. The same simulations,
with the same initial conditions, is performed using, this time, the Neural Network
control. The Neural Network controller was trained several times, with different
sets of input/output obtained with PD-control, and the final net architecture has
5 hidden layers, as shown in figure 5.14. The simulation time is 1000 seconds, with
a time step of 0.01.

Figure 5.14: 5 hidden-layers Neural Network.

Table 5.9: Initial conditions.

φ (°) θ (°) ψ (°) ωx (rad/s) ωy(rad/s) ωz(rad/s)
20 30 -10 0.5 0.5 0.5

Table 5.10: Attitude PID-controller gains.

q kp 0.2
ω kp -2

In figure 5.15 and 5.16 are shown the Chaser attitude and attitude rate con-
trolled by PD-controller and by the NN controller. It is evident that the behaviour
of the system under the two different controllers is basically identical. Also the
control torques, in figure 5.17, follow the same trend. The dynamics is very fast
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(a) Chaser Attitude angles, PID-control.

(b) Chaser Attitude angles, NN-control.

Figure 5.15: Chaser Attitude angles, nominal conditions.
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(a) Chaser Attitude rate, PID-control.

(b) Chaser Attitude rate, NN-control.

Figure 5.16: Chaser Attitude rate, nominal conditions.
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(a) Control torques, PID-control.

(b) Control torques, NN-control.

Figure 5.17: Control torques, nominal conditions.
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and the solution is reached in the first 100 seconds of the simulation, both on the
attitude and attitude rate.

5.4 Attitude control: changing initial conditions
5.4.1 Simulation 1
The Neural Network controller was tested by changing the initial conditions, as
in table 5.11 and an additional disturbing torque has been added. The simulation
time is 1000 seconds, all physical Chaser characteristics and orbital parameters
remain the same. In figure 5.18 and 5.19 the Chaser attitude and attitude rate

Table 5.11: Initial conditions.

φ (°) θ (°) ψ (°) ωx (rad/s) ωy(rad/s) ωz(rad/s) Disturbance Torque (Nm)
15 21 -6 0.5 0.5 0.5 10−6

Figure 5.18: Chaser attitude angles.

are shown and in figure 5.20, the control torques are depicted. The NN controller is
able to successfully control the Chaser attitude, despite the additional disturbance
torque applied to the spacecraft and the changed initial conditions.
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Figure 5.19: Chaser attitude rate.

Figure 5.20: Control Torques.
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5.4.2 Simulation 2

In this second simulation, the NN controller was tested by changing the initial con-
ditions, as in table 5.12, and increasing the disturbing torque value. The simulation
time is 1000 seconds, all physical Chaser characteristics and orbital parameters re-
main the same. In figure 5.21 and 5.22 the Chaser attitude and attitude rate are

Table 5.12: Initial conditions.

φ (°) θ (°) ψ (°) ωx (rad/s) ωy(rad/s) ωz(rad/s) Disturbance Torque (Nm)
40 10 6 0.06 0.06 0.06 10−5

Figure 5.21: Chaser attitude angles.

shown and in figure 5.23, the control torques are depicted. The NN controller is
able to successfully control the Chaser attitude, despite the additional disturbance
torque applied to the spacecraft and the changed initial conditions. Since the ini-
tial angular velocity is much smaller than in the previous simulations, the solution
converges faster.
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Figure 5.22: Chaser attitude rate.

Figure 5.23: Control Torques.
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5.5 Attitude control: adding sensor
In the same simulation model, a disturbing random signal was added to the quater-
nion vector, in order to simulate the presence of a sensor, to detect the current
attitude.

5.5.1 Simulation 1
The initial conditions are depicted in table 5.13.

Table 5.13: Initial conditions.Simulation 1

φ (°) θ (°) ψ (°) ωx (rad/s) ωy(rad/s) ωz(rad/s)
40 10 6 0.06 0.06 0.06

• Disturbance Torque: 10−5 Nm;

• Sensor error:0.00001;

Figure 5.24: Chaser attitude angles.

In figure 5.24, 5.25 and 5.26 are represented the Chaser attitude, attitude rate
and control torques, respectively. The error signal introduced by the sensor is
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Figure 5.25: Chaser attitude rate.

Figure 5.26: Control Torques.
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evident in the control torques representation in figure 5.26. While the angular
rate is subjected to persistent small oscillations around zero, in the attitude angles
graphs, in figure 5.24, the angular oscillation is almost intangible. This results
demonstrate that the NN control is able to control the system, even adding a noise
signal on its inputs, which it was not trained for.
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5.5.2 Simulation 2
In this second simulation, the error signal was augmented. The initial conditions
are shown in table 5.14.

Table 5.14: Initial conditions. Simulation 2

φ (°) θ (°) ψ (°) ωx (rad/s) ωy(rad/s) ωz(rad/s)
50 15 8 0.06 0.06 0.06

• Disturbance Torque: 10−5 Nm

• Sensor error: 0.0001

Figure 5.27: Chaser attitude angles.

In figure 5.27, 5.28 and 5.29 are represented the Chaser attitude, attitude rate
and control torques, respectively. The error signal introduced, here, by the sensor
is more evident in the control torques representation in figure 5.26. Now, the
oscillations on the angular rate and attitude angles are more evident, although still
small.
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Figure 5.28: Chaser attitude rate.

Figure 5.29: Control Torques.
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5.6 Discussion
The results carried out in this chapter, thanks to Matlab/Simulink modelling of
the system dynamics and controllers, shows that the neural network trained with
PD-controller data sets of trajectory and rotational motion is able to control the
same system almost with the same level of accuracy, with a reasonably small error.
If the external conditions change, the NN controller is able to control the system.
The translational motion simulations demonstrate that, if the initial positions and
velocities change or if a disturbance force is added to the system, the NN control
is able to control the system with the same level of accuracy, expect for a brief
oscillations is the first instants of the simulations. Also increasing the force value,
the controller is able to reach the desired solutions.
The rotational motion simulations show that the NN controller is able to imitate
the PD behaviour and the attitude angles and angular velocities reach the expected
solutions is less then 100 seconds. Also in this case, varying the initial conditions
of angular position and velocity, the network is able to give the same results.
Adding another disturbance torque, of increasing value, is not cause of controller
malfunction.
For the rotational motion control, a sensor error was taken into consideration. To
show its presence, a noise random signal was added to the quaternion vector. From
the results, it is evident that, although with small and persistent oscillations, the
system converges to the expected solution.
From all this results, it can be assumed that the Neural Network was reasonably
well trained and that it has gained the ability to generalize.
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Chapter 6

Conclusion

The present thesis was based on the development of an attitude and trajectory con-
trol strategy for a rendez-vous and docking manoeuvre between two small satellites.
The proximity manoeuvre mission was described defining the mission profile, re-
quirements and environment: the mission involves two 6U CubeSats, a Chaser
which performs a rendez-vous towards a cooperative Target satellite. The mission
requirements and constraints are guided by the design of the ADCS and GN&C
subsystems, that demands very high accuracy. The complexity of the mission was
addressed, taking into consideration the disturbance forces and torques acting on
a spacecraft in LEO and considering the small dimensions and characteristics of
the CubeSats satellites.
The main focus of this work was the implementation of a control algorithm able to
control the trajectory and attitude of the Chaser spacecraft in its path towards the
Target, from the last hold point to the mating point. A control algorithm based on
deep learning neural network was made, based on PID-control of the same system.
All the results were carried out by developing a Matlab®/Simulink® model of the
system, based on the translational and rotational dynamics equations describing
the spacecraft motion.
Neural network controllers for trajectory and attitude control were developed thanks
to the Matlab® Neural Network Toolbox, a tool that allows the user to control and
manage all the processes involved in the definition, training and testing of the neu-
ral network with a set of input/output data, present in the Matlab® workspace.
In training the neural network was important to avoid overfitting, i.e. when the
network learnt too well a single task and loses its capacity to generalize from in-
puts. But, it was also important to avoid undertraining, meaning that the network
did not have enough training sets or amount of data to learn its task. Depending
on the problem, it is necessary to choose the appropriate number of hidden layers
constituting the network architecture and to establish the more suitable amount
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of training sets and size of the data sets. For the translational dynamics control,
it was necessary to train the network multiple times, with different data sets, to
obtain satisfying performance. Instead, for the rotational dynamics, the number
of training sets could be smaller.
The results obtained show that the NN control is able to obtain the desired solu-
tions, even when the inputs change, indicating its capability to generalize.
From the results obtained, it was evident that the more the neural network is
trained, or trained on a larger data set, the better it works and responds to differ-
ent inputs; but, it is also important to avoid overtraining. Moreover, the number of
hidden layers that constitute the network architecture, is determinant in optimiz-
ing the network performance. The more the network architecture is articulated,
the better can fit complex functions, with increased accuracy. If the neural net-
work is well trained, it can adapt to different external conditions and control the
spacecraft towards the target with high precision.
For future works, the Neural Network should be generated on the basis of data
obtained from a different control algorithm and should be trained with larger data
sets, to increase its adaptive performances.
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