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1. Introduction

The sea wave energy is one the most greatest resource of energy in the world.
Many ideas have been developed to convert the mechanical wave power into electric
power: from tidal energy to offshore platform. The inertial sea wave energy converter
(ISWEC), born by the idea of the engineers Giuliana Mattiazzo and Ermano Giorcelli,
is a new concept: the working principle is based on the gyroscopic effect of a flywheel.
The incident waves induce a pitching moment on the floater which starts to oscillate
with a pitch speed δ̇; the combination of flywheel speed L and pitch speed δ̇ generates
a gyroscopic torque which can be harnessed from PTO to harvest energy.
In figure 1.1 the three main components of the gyroscopic system are shown: the

Figure 1.1: Gyroscopic system reference frame

flywheel (red), the gyro structure (blue), the PTO (green). To describe the system
dynamics three reference frames have to be introduced as described below.

a) The fixed reference axes (FRA) is the inertial one and its axes are x0, y0 and z0

b) The hull-fixed coordinate system (LSA) is composed by x1, y1, z1
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1 – Introduction

c) The gyroscope structure-fixed (GSA) whose coordinate system are x2, y2 and
z2

while i⃗i, j⃗i, k⃗i are the versors of the reference frames.
Both the LSA and GSA have their origins coincident with the centre of gravity of
the system. Their x axes are coincident and oriented towards the bow. Moreover
they match with the zero sea wave direction. The hull rotates about the y1 axis
with the induced pitching motion δ due to the wave-floater-gyro interaction. The
combination of the pitch speed δ̇ with the flywheel speed ϕ̇ about the z2 axis
generates a gyroscopic torque T around the x2 ≡ x1 axis, which can be exploited by
the PTO for power conversion. This effect may be easily understood simplifying
the problem so that the gyroscopic torque is given by the cross product of the pitch
speed δ̇ along y1 and the flywheel angular momentum L along z22 thus the resulting
torque is T along the x1 axis. Hence, the gyroscopic torque is:

Tϵ⃗i2 = δ̇j⃗1 ∧ Lk⃗2

It can be notice that increasing δ̇ the torque T increase and consequently the energy
available to be converted in electic energy increases.
Thus, the best work condition is when the pitch resonance condtion of the floater
is induced by the wave: this obviously happens when the frequency of the wave
coincides with the pitch resonant frequency of the floater.
Unfortunately the sea waves do not have always the same frequency and this lead to
an ineffecient working condition of the system; the capability of tuning the frequency
of floater system such that it is as close as possible to the frequency of the upcoming
waves is one of the main aspect to consider in the project design.
The pitch resonant frequency of the system can be modified by mean of a particular
devices developed by Frahm in 1919: the U-shaped tank partially filled with water
located inside the ship from starboard to port. The transversal sea waves extert
their energy to the ship causing some disturbances that can compromise the comfort,
the safety, the reliability and the operation capability of the ship; if an U-tank
is employed, the water inside the U-tank starts to move from port reservoir to
starboard reservoir and viceversa due to the roll motion and it exerts a counter
torque on the ship that can dampen the motion.

If the Utank is designed such that its roll resonant peak occurs at the same
angular frequency of ship’s roll resonant peak then the coupled system presents
a interesting frequency response where instead of only one peak, two new peaks
appear. In the case of wave energy converter, if the frequency of the upcoming
waves is not close to floater’s resonant peak, the U-tank can be activated to allow
the system to have one of its peak at the same angular frequency of the waves.
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1 – Introduction

1.1 Anti Rolling Tank

Froude (1874) was the first to use anti-roll tanks to reduce roll motion. He installed
water chambers in the upper part of the ship. The free-surface effect of the water
tank lengthened the period of the rolling motion and reduced the ship’s stability;
consequently, the system was abandoned.

Frahm (1911) was the first to understand the importance of placing the horizontal
leg or cross duct of the U-tube below the center of gravity of the ship and thereby to
take advantage of the stabilizing component developed by the horizontal acceleration
of the water. The active counterpart of Frahm’s passive tank was conceived by
Minorsky (1935). A restoring moment was developed by transferring the water
directly with a proper phase from one leg of the U-tube tank to the other at a high
rate.
In the past few decades, the performance of anti-roll tanks has received considerable
attention. Chadwick and Klotter (1954) investigated the use of tanks for the US
Navy. Van Den and Vugts (1964) and Stigter (1966) studied the performance of
various types of anti-roll tanks for the Netherlands Ship Research Center. Field and
Martin (1976) evaluated the performance of passive U-tube and free-surface roll
stabilization systems. Webster et al. (1988) studied the performance of free-flooding
anti-roll tanks during the major upgrade of the USS Midway. Later, Lee and
Vassalos (1996) investigated the use of flow obstructions inside the tank.
Recently Abdel Gawad et al. (2001) studied the performance of passive U-tube
anti-roll tanks. They modeled the ship motion by a single degree-of-freedom in roll.
They presented a detailed parametric study on the effect of tank damping, mass,
location relative to the ship CG, and tuning. They found that a well-tuned, well
designed tank can be very effective in reducing the roll motion.
The numerical model to study the fluid motion of U-tube tank and its performance
has been developed first from Stigter and then Lloyd(1989) who introduced a
simplified one dimensional model to study the oscillation of a rolling U-tank based
on Euler momentum equation.He obtained a damped double pendulum differential
equation in which most of parameter are determined by the geometry of the system
with exception of the friction factor parameter. Most of the studies have focused on
non linear rolling motion of ships in different sea condition while little effort has
gone into studying the fluid motion inside the tank and in estimation the damping
coefficient as pointed out by Gawad et al. 2001.
With the increase of computational power more studies are carried out about the
flow inside U-tube tank. Zhong et al.1999 performed CFD 2D simulation with Finite
Element method in which the Navier Stokes equation are solved using Galerkin
scheme. Van Daalen er al. studied the performace of Utank by mean fully 3D CFD
numerical simulations validated through experimental results.
Bhushnan et al 2014 proposed a method to estimate the damping coefficient from
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1 – Introduction

curve regression of a free decay test in 2D and 3D numerical simulation and stated
that the damping is quadratic with the velocity and most of the head losses are
due to the bends of U-tube. Kerkvliet et al. tested and validated a new CFD code
ReFRESCO with experimental results and demonstrate the effectivnesss of CFD
code to calculate the roll damping of a U shaped ART.
Here the fluid motion inside the U-tube is investigated through 3D numerical
simulation with Volume of Fluid method. First the model is validated with the
experimental results with particular attention on resonance condition. The grid
sensitivity and time resolution effects are investigated.

1.1.1 Coupled system
With reference to figure 1.2 the degrees of freedom are three traslation x1, x2 and
x3 and three rotation x4, x5 and x6. They are defined as

- Surge x1: traslation along x

- Sway x2: traslation along y

- Heave x3: traslation along z

- Roll x4: rotation around x

- Pitch x5: rotation around y

- Yaw x6: rotation around z

The motion of a floater can be described in frequency domain:

[M + A(ω)]ẍ(ω) + B(ω)ẋ(ω) + Kx(ω) = fw(ω) + fm(ω) (1.1)

M: mass matrix of the floating body

A(ω): added mass coefficient, due to the relative motion between the floater
and the fluid

B(ω): linear radiation damping, due to the forces generated by the floater in
its motion

K: hydrostatic stiffness matrix

fw(ω): wave forces coefficients vector

fm(ω): mooring forces vector

And in time domanin:

[M + A∞]ẍ +
∫︂ t

0
hr(t − t′)ẋdt + Kx = Fw + Fm (1.2)

Where:
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1 – Introduction

Figure 1.2: Ship body-fixed reference system

A(ω) = A∞ − 1
ω

∫︂ ∞

0
hr(t) sin(ωt)dt

B(ω) =
∫︂ ∞

0
hr(t) cos(ωt)dt

hr(t) = 2
π

∫︂ ∞

0
[B(ω) − B(∞)] cos(ωt)dt

Neglecting all the degree of freedom but the pitch motion and adding the torque
exerted by the tank to the floater evaluated in according to Lloyd analytical model
the set of equations that describes the coupled motion is:

⎧⎪⎨⎪⎩ [M55 + A∞55]δ̈ +
∫︂ t

0
hr(t − t′)δ̇dt + K55δ = Fw,5 + a5τ τ̈ + c5τ τ

aττ τ̈ + bττ τ̇ + cττ τ = aτ5δ̈ + cτ5δ
(1.3)

In figure 1.3a is depicted the Response Amplitude Operator (RAO) of the floater
without the U-tank and in figure the RAO of the U-tank is shown 1.3b. They have
in common the same natural frequency.
In figure 1.3c the coupled system response is shown: when the system is excited
by a wave whose frequency correspond to the natural frequency of the U-tank and
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1 – Introduction

of the ship the RAO is small and the pitch motion is highly damped, thus in this
condition the U-tank is deactived. When the incident wave’s frequency differs from
the ship’s natural frequency the coupled system’s RAO is greater or equal than the
ship’s RAO without U-tank, thus in these conditions the U-tank is activated.
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Figure 1.3: Response Amplitude Operator: a) RAO of the Floater, b) RAO of the
U-tank, c) RAO of the coupled system
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2. Physical Model

2.1 Utank motion
The water motion inside a tank with only 1 DoF, the rotation along the y-axis, can
be regarded as two dimensional flow since the velocity e gradients along the third
dimension are negligible. It can be described by the general Navier-Stokes equation
for a two dimensional incompressible flow in a inertial reference system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇ · v = 0
∂v
∂t

+ ∇ · (vv) = −1
ρ

∇p + g + 1
ρ

∇ · τ̄

vb = Ω⃗ × r⃗

Where:

- ρ is the water density

- v is the velocity field

- p is the pressure field

- g is the gravitational field

- τ is the shear stress tensor. In a incompressible flow it is defined as:

τij = µ
(︃

∂ui

∂xj

+ ∂uj

∂xi

)︃

- vb is the wall velocity

- Ω is the pitch rotation imposed to the tank

- r is the radius vector starting from the center of rotation

The rotation imposed to the system generates a secondary wave inside the tank that
propagates from one side to the other; Due to shape of the U-tank this secondary
wave cause the water sloshing inside the reservoirs.
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2 – Physical Model

Figure 2.1: U-tank motion scheme

2.1.1 Free Decay
Neglecting the slosing phaenomena, in case of no external rotation the fluid motion
can be regarded as a nearly one dimensional channel flow. The origin is located at
the center of the duct centerline as shown in figure 2.4. The hypotheses are:

• v << u

• ρ = const

• µ = const

• w = 0, ∂
∂z

= 0

• ∂P
∂y

= 0
The water moves from one reservoir to the other due to the gravity forces, the
pressure forces and the imposed rotation. Thus, the Navier-Stokes equations are:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂P

∂x
+ g + µ

(︂∂2u

∂y2

)︂
∂p

∂y
≃ 0

The shear stress can be integrated over the transversal coordinate to obtain the
friction force acting on a generic section of the channel.
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2 – Physical Model

2.1.2 Energy Dissipation
• Major Losses due to friction

• Bend Losses due to the corners

• Losses due the sloshing phaenomena

Major Losses

In figure 2.2 the velocity distribution over the section is shown. The slope of the
curve at the wall represent the wall shear stress τw. In figure 2.2b the velocity
distribution for a turbulent flow is depicted: the wall shear stress is greater in
turbulent flow than in laminar, hence it is Reynolds dependent.

γ : τw = µ tan γ

(a) Laminar channel flow (b) Turbulent channel
flow

Figure 2.2: Boundary layer in a channel flow

It is possible to correlate the wall shear stress with the maximum velocity acting
on the section (the velocity at section’s center).

Bend Losses

At the upper corners the flow separation can occur because of the adverse pressure
gradients: the viscous forces are not strong enough to make the the flow rotates
such that it remains parallel to the wall, hence the generic volume portion of flow
behaves as the cross section area is increasing and according to Euler Bernoulli
theorem. Similar considerations apply to the lower corner.
The separation of the flow from the boundary cause loss of energy in generating
local eddies. Because of the angular velocity of the flow at the corner a secondary
flow in radial plane produces a spiral motion that propagates downstream. This

17



2 – Physical Model

flow affect the local velocity and gradients at the wall increasing the wall shear
stresses and consequently the friction losses.

Figure 2.3: Flow Separation

Loss due to sloshing phaenomena

The wall rotation generates a wave that propagates from one side to the other.
Inside the reservoir this wave propagates from the one side to the other side of the
reservoir increasing the vorticity at the free surface. This wave then impacts on the
wall and breaks dissipating its energy. Also the wave pressure discharge on the wall
increasing the flow velocity parallel to the wall. This results in greater friction losses.

In Lloyd model the wall shear stress is assumed to be linear with the mean
velocity v:

∂τw

∂y
= 1

2q
|v|
n

= −1
2q

v
n

Where n is the normal dimension of the channel. This assumption neglects the
contribute of the corners and of the sloshing. The mass flow can not change, thus
the

2.2 Linearized Analytical model of U-tank

Lloyd in 1988 [1] proposed a numerical model for the fluid motion inside the U-tube.
The flow is described ad one dimensional motion along the centerline of duct and
the two reservoirs. The y axis run from the starboard reservoir where the coordinate
is negative to port reservoir where the coordinate is positive as shown in figure 2.4.
Here the local acceleration due to the coupling with the ship motion is not kept into
account. Where G is the position of the rotation centre of the U-tube tank (if the
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2 – Physical Model

Figure 2.4: U-tube tank scheme

system is coupled with ship then G is the position of the center of gravity of the
whole system) With reference to figure 2.5:

- x5 is the rotation angle of the tank;

- ϕ1 is the angle between the vertical axis (in a inertial reference system) and
the local vertical axis of the system;

- ϕ2 is the angle decribed by the radius vector starting from the center of rotation
and pointing the fluid particle and the particle’s velocity vector;

The motion can be described then with the Euler’s momentum equation:

∂u

∂t
+ u

∂u

∂x
= − 1

ρt

∂P

∂x
+ Y

And Y contains:

a) acceleration due to gravity: −g cos ϕ!

b) acceleration due to roll motion: −rẍ4 cos(ϕ2 − π/2)

c) frictional and damping forces assumed linearised: −qu/n where n is the dimen-
sion of the tank orthogonal to the velocity

The velocity can be expressed as function of τ :

u = wrwτ̇

2n
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2 – Physical Model

Figure 2.5: U-tube tank motion scheme

Integrating along the x direction the equation of motion for the tank with 1 DoF is
obtained:

aτ5ẍ5 + cτ5x5 + aττ τ̈ + bττ τ̇ + cττ τ = 0 (2.1)
And the coefficients are:

- aτ5 = Qt(rd + hr)

- cτ5 = Qtg

- aττ = Qtwr

(︂
w

2hd
+ hr

wr

)︂
- bττ = Qtqwr

(︂
w

2h2
d

+ hr

w2
r

)︂
- cττ = Qtg = cτ5

- Qt = ρtwrw2xt

2
In free decay motion the partial differential equation reduces to:

aττ τ̈ + bττ τ̇ + cττ τ = 0 (2.2)

And dividing by aττ :
τ̈ + 2ξωnτ̇ + ω2

nτ = 0
Where:
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2 – Physical Model

- 2ξωn = bττ

aττ

- ω2
n = cττ

aττ

- ξ is damping factor

- f = ωn/2π is the natural frequency of the system

Whose solution is:
τ = A · e−bt sin(ωt + ϕ) (2.3)

Where:

- b = ξωn

- ω = ωn

√
1 − ξ2

The case of regular wave forced motion instead is described by partial differential
equation:

aττ τ̈ + bττ τ̇ + cττ τ = aτ5δ̈ + cτ5δ (2.4)
Where:

δ = A · sin(ωt)
The system can be studied in frequency domain applying the Fourier transform:

X(ω) =
∫︂ +∞

−∞
x(t)e−jωtdt

F
(︃

d

dt
x(t)

)︃
= jωX(ω)

Hence:[︃
− aττ · ω2

]︃
τ(ω)+

[︃
bττ · jω

]︃
τ(ω) + cττ τ(ω) =

[︃
− aτ5ω

2
0

]︃
δ(ω) + cτ5δ(ω)

τ(ω) =
δ(ω)

[︃
cτ5 − aτ5ω

2
0

]︃
aττ

(︃
− ω2 + jω

bττ

aττ

+
cττ

aττ

)︃

τ(ω)
δ(ω) =

cτ5 − aτ5ω
2
0

aττ

(︃
− ω2 + jω · 2ωnξ + ω2

n

)︃
The Fourier transform of a sinusoidal signal is:

F
(︂
A sin(ωt)

)︂
= j

4π
Aδ(ω + ω0) − j

4π
Aδ(ω − ω0)
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2 – Physical Model

So the frequency response of the system has non null values only for ω = ω0 and:

δ(ω) = δ(ω0) = − j

4π
A

Then:

τ(ω)
δ(ω) = τ(ω0)

δ(ω0)
=

cτ5 − aτ5ω
2
0

aττ

(︃
− ω2

0 + jω0 · 2ωnξ + ω2
n

)︃ =

=
cτ5 − aτ5ω

2
0

aττ

(︃
(ω2

n − ω2
0) + j2ω0ωn · ξ

)︃

Hence:
⃓⃓⃓⃓
⃓τ(ω)
δ(ω)

⃓⃓⃓⃓
⃓ =

cτ5 − aτ5ω
2
0

aττ

√︂
(ω2

n − ω2
0)2 + 4ω2

0ω2
nξ2

/
τ(ω)
δ(ω) = − arctan

(︃
2 ω0ωnξ

ω2
n − ω2

0

)︃

From the expression of the response amplitude operator τ(ω)
δ(ω) it is evident that the

U-tank is band pass filter and when the frequency of imposed pitch motion match
the natural frequency of system the phase lag is 90 deg.
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Figure 2.6: Sytem Response
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3. Experimental Tests

3.1 Experimental setup
The Utank is structurally fixed at the HPR (heave pitch and roll) platform which
has three degrees of freedom whose limits are:

- Roll motion: +/ − 25°

- Pitch motion +/ − 25°

- Heave motion: 300mm

The electro-actuators are position controlled by a digital signal processor which
include the numerical model of the device. The position signal is defined by a
sinusoidal profile.
The Utank model is fixed at the HPR platform and the center of rotation is located
63mm above the duct centerline. The walls of the Utank are realized in tranparent
PVC panels while the rear panels is built with a matt surface as shown in figure 3.1
In each reservoir is placed a floater with a reflecting marker at its top. The markers

Figure 3.1: Prototype empty tested in experimental tests

indicate the position of the free surface and they are tracked by a vision acquisition
system.
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3 – Experimental Tests

The experimental setup consists mainly in a HPR (Heave, Pitch and Roll) platform,
at which the ART scaled model is structurally fixed, a camera for the vision
acquisition system and a computer used for the saving and elaboration of the images.

Table 3.1: Main characteristic of the model

CoR distance from duct centerline D 63mm
Duct Height HD 170mm
Duct Lenght LD 514mm
Reservoir Length LR 170mm
Model Height H 610mm
Model Width* W 100mm
Inner Fillet Radius R1 65mm
External fillet radius R2 115mm
Datum Level from duct centerline hr 235 mm

Markers

The markers are located not only on the floaters. Other markers are placed on the
Utank structure to determine the pitch motion of the tank. The position of the
markers is shown in figure 3.2

Figure 3.2: Model used in experimental tests
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3 – Experimental Tests

The Vision Acquisition system

A camera equipped with a LED lighting device. The camera sends the images to a
computer via USB cable to be processed by the software.

The post processing software

The Frames are analysed by mean of LABView that extrapolates the position of
the markers at each instant of time from the frames; the markers on the walls track
the position of the system and the pitch angle, hence the local reference system is
defined. The floater markers track the position of the free surface. the output is
the position signal of the markers on the floaters in the local reference system. A
schematic representation is shown in figure 3.3.

Figure 3.3: Post processing algorithm

3.2 Results
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Figure 3.4: Frequency response of the system
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3 – Experimental Tests

Table 3.2: Experimental Results

T [s]
Water Level

Left Reservoir
[m]

Water Level
Right Reservoir

[m]
τ [deg]

1.1 0.0024 0.0028 0.4371
1.2 0.0097 0.0097 1.6224
1.3 0.0352 0.0352 5.8764
1.35 0.0930 0.0930 15.2095
1.4 0.1530 0.1550 24.2417
1.45 0.0555 0.0574 9.3767
1.5 0.0377 0.0388 6.3824
1.6 0.0264 0.0258 4.3591
1.7 0.0209 0.0222 3.6080
1.8 0.0184 0.0194 3.1615
1.9 0.0172 0.0178 2.9284
2 0.0163 0.0170 2.7872
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Figure 3.5: Water level oscillation angle τ and tank angle (pitch angle) δ. Amplitude
A = 2deg, Period T = 1.4s

26



4. CFD setup, verification and
validation

4.1 Numerical Model
An incompressible fluid motion can be described by Navier-Stokes equations in
conservative form expressing the conservation of the mass, momentum:

∂ρ

∂t
+ ∇ · (ρv) = 0 (4.1)

∂ρv
∂t

+ ∇ · (ρvv) = ∇p + µ∇2v + ρg (4.2)

vB = Ω⃗ × r⃗ (4.3)

In which:

• v is the velocity field;

• ρ is the density of the fluid;

• p is the pressure field;

• g represent the gravity field;

• vB is the wall velocity;

• Ω⃗ × r⃗ is the tangential velocity induced by the rotational motion;

The energy equation and momentum equation for incompressible flow are decoupled
thus the system can be described only by the two equation above.
The U-tube tank here described is partially filled with water therefore two phase fluid
are present in the physical domain, air and water, both described as incompressible
fluid.
To encounter the two phase the VOF (CVolume of Fraction) method is introduced.
(Volume of Fractio)
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4 – CFD setup, verification and validation

The two phase have different density and viscosity. A field function to encounter
the presence of the phases is introduced as follow:

α2 = −α1

ρ = α1 · ρ1 + α2 · ρ2 = (ρ1 − ρ2) · α1 + ρ2

Where:

• αi is volume fraction of the i − th phase (here the primary phase is water)

• ρi is the density of the i − th phase

The interface between the two phase is well defined and no mixing occurs. To better
describe the motion of it a new transport equation for the Volume of Fraction is
introduced:

∂αi

∂t
+ ∇ · (αiv) = 0

4.1.1 Volume of Fluid Method
The interface between the two phases is captured with an Interface capturing method
developed by Muzaferija and Peric 1998. The methods to capture the interface of a
free surface can be classified in two groups:

• Interace tracking methods where the free surface is considered as a boundary
whose motion is followed in time. Thus, boundary fitted grids are used;

• Interface capturing methods where the shape of the interface is determined by
cells that are partially filled

The Volume of Fluid scheme belong to the second group. In this method a new
transport equation is introduced for the volume of fraction of the phase c:

∂c

∂t
+ ∇ · (cv) = 0

Mazufreija and Peric developed an High Resolution Interface Capturing scheme
(HRIC) to solve this equation and avoid a smeared interface or artificial mixing of
the two fluids.

4.1.2 Temporal discretization
Consider the generic trasport equation of the quantity ϕ:

∂ϕ

∂t
= f(ϕ)
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4 – CFD setup, verification and validation

Integrating both sides of the equation in time between time step n and time step
n + 1:

ϕn+1 − ϕn =
∫︂ tn+1

tn

f(ϕ)

To evaluate the integral on the right hand side some approximation are needed since
it can not be usually solved analytically. If it is estimated using the value of the
integrand at the initial point the explicit Euler method is obtained:

ϕn+1 = ϕn + f(ϕn) · ∆t

If the integral is estimated using the value of the integrand at final point then the
implicit Euler method is obtained:

ϕn+1 = ϕn + f(ϕn+1) · ∆t

The implicit Euler method as described above is first order accuracy in time and
needs nested iterations (inner and outer). The first order is numerical diffusive
because of its first order truncation error. Here the time discretization of the
variables is by mean of the implicit Euler 1◦ order.

4.1.3 Spatial Discretization
The volume integral of convective and diffusive term are transformed in surface
intergral by mean of Gauss’s theroem. The convective fluxes are discretized with a
2°order Upwind interpolation. The diffusive fluxes at the cell’s face are evaluated by
mean of linear interpolation of cells center values. Thus, the second order accuracy
is achieved for both convective and diffusive fluxes.

4.1.4 Turbulence Modelling
RANS Model
In nature most of the flow are turbulent, the fluid motion is chaotic and all properties
of it change chaotically neverthless a statistically mean flow could be found. Reynolds
introduced the idea of decomposing each instantaneuous quantity of the fluid motion
in its time averaged quantity and its fluctuating quantity. This idea is known as
Reynold decomposition:

ϕ = ϕ̄ + ϕ′

Where ϕ̄ indicate the timea averaged quantity. The two governing equation (4.1)
and (4.5) become:

∂ρ

∂t
+ ∇ · (ρv̄) = 0 (4.4)

∂ρv̄
∂t

+ ∇ · (ρv̄v̄) = ∇p̄ + ∇ ·
(︂
µ∇v̄ − R

)︂
+ ρg (4.5)
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4 – CFD setup, verification and validation

Where R = ρu′
iu

′
j is the Reynolds stress tensor that is momentum fluxes of the

fluctuating velocities. According to how the Reynolds stress tensor is modelled
various methods have been developed. Here the Realizable k-ϵ is used.

Realizable K-ϵ

This method derives from Boussinesq eddy viscosity hypothesis that relates the
Reynolds stress tensor to the mean velocity gradients. It can be defined through
two integral quantities:

• k the turbulent kinetic energy;

• ϵ the turbulent dissipation rate

Two transport equation are introduced for each:

∂(ρk)
∂t

+ ∇ · (ρkv) = ∇ ·
[︂(︂

µ + µt

σk

)︂
∇k

]︂
+ Pk − ρ(ϵ − ϵ0) + Sk (4.6)

∂ϵ

∂t
+ Uj∂ϵ

∂j
= −∂(ūjϵ)

∂j
+ C1Sϵ − C2 ϵ2

k +
√

nuϵ
(4.7)

The turbulent kinetic energy transport equation is derived from the isotropy hy-
pothesis of turbulence and definition of k as:

k =
√

u′2 + v′2 + w′2

2
The turbulent dissipation rate equation is derived from the second order moment of
vorticity and it is corrected by mean of correction coefficients found experimentally.

Wall treatment

A turbulent boundary layer is much different by a laminar boundary layer: the
motion of the particles is caotic and the total boundary layer thickness (δ) increase
but the mean velocity can be still considered parallel to the wall. In the former one
the wall shear stress τw is greater than in the latter one as shown in figure. The
turbulent boundary layer can be described by mean of non dimensional parameter:

• y+ = yuτ

ν

• u+ = u
uτ

Where:

- y is the distance from the wall

- ν is the cinematic viscosity of the fluid
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4 – CFD setup, verification and validation

- u is the velocity of the fluid particles inside the boundary layer

- uτ =
√︂

τw

ρ
is the friction velocity

- ρ is the density of the fluid

- τw is the wall shear stress at location y = 0 (at the wall)

It is possible to divide the entire boundary layer in two major zones:

• Outer Region (or Wake Region) y/δ >0.2 (δ here is the boundary layer thick-
ness)

• Inner Region y/δ <0.2.

Within the Inner Region the relationship between u+ and y+ is defined by the law
of the wall:

u+ = fw(y+)

The inner region can be divided in three small regions:

• Viscous sublayer (y+ < 5): the viscous stress dominate above the Reynolds
shear stress and the law of the wall is linear:

u+ = y+

• Logarithmic Layer (30 < y+ < 500 ):the Reynolds shear stress dominate and
the law of the wall is logarithmic, hence in literature is usually called the log
law :

u+ = 1
k

ln y+ + C

Where k = 0.41 is the von Karman constant and C = 5.

• Buffer Layer (5 < y+ < 30): it is a transition region between the viscous
sublayer and the log law layer. Here the law of the wall is a blended function
of the previous two. In figure 4.1 a schematic representation is shown.

4.2 CFD Setup

Model Design

In figure 4.2 a scheme of the model is shown. The main design parameters are
reported in 4.1. The scale of the model is 1:35 of the full scale U-tank.
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Figure 4.1: Near wall regions and wall law validity

Figure 4.2: Design Parameters
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Table 4.1: Main characteristic of the model

CoR distance from duct centerline D 63mm
Duct Height HD 170mm
Duct Lenght LD 514mm
Reservoir Length LR 170mm
Model Height H 610mm
Model Width* W 100mm
Inner Fillet Radius R1 65mm
External fillet radius R2 115mm

33
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Boundary Conditions and Initial conditions

With reference to figure 4.4 the boundary conditions are:

• Stagnation inlet at the top of each reservoir:

- The static pressure is evaluated by mean of Bernoulli equation and the
total pressure is set to P0 = 101325Pa

- The velocity magnitude is extrapolated by the interior domain and the
direction is normal to the boundary : v = |vext| · n with n the inward-
pointing normal vector to the surface

• At y = 0 Symmetry:

- Non fluxes through the surface: ∂
∂n = 0 with n normal vector to the surface

• No slip wall for the other boundaries:

- No relative velocity with respect to the wall: vB = 0

The initial datum level of water is hr = 320mm as shown in figure 4.3

Figure 4.3: Initial Datum Level

With the symmetry condition only half of the prototype is simulated with the
assumption that the flow is symmetric with respect the plane y = 0.
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Stagnation Inlet

Wall

Wall 

Wall Symmetry

Figure 4.4: Boundary conditions

Motion

The U-tank has 1 DoF around the y-axis that runs through the center of rotation
that lie on the symmetry plane and is located at 63mm from the duct centerline.
The motion of rotation is defined by the angular position and angular velocity as
follow:

δ = A · sin(ωt)
δ̇ = Aω · sin(ωt)

Where:

• δ is the angle of rotation around the center of rotation;

• A = 2deg is the amplitude of the motion;

• ω = 2π/T is the rotation rate;

• T = 1.4s is the period of the motion;

Mesh settings

The physical domain is discretized in hexahedral cells that are trimmed near
the surface. The unstructured grid is refined only in the two reservoirs to save
computational time and keep the accuracy of the model since the free surface need
to be correctly captured. A grid refinement based upon the curvature is adopted
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for the elbows.
The side view of the mesh is shown in the figure 4.5 where the refinements are
shown.

Figure 4.5: Mesh refinement

The main settings of the mesh are reported in 4.2

Table 4.2: Mesh Settings

Default Controls
Base Size 1 m
Target surface Size 1 %
Minimum Surface Size 0.25 %
Surface Curvature 72 pts/circle
Prism Layer Total Thickness 1.5 %
Number of prism layers 4
Prism layer stretching factor 1.3

Custom Controls
Refinement - surface size 0.5 %

4.2.1 Grid Dependance study
The grid convergence study is not easy for unstructured grids; here it is performed
varying the BaseSize and keeping constant the ratio between it and the time step is:
BS
T S

= 1000 so the global Courant number is constant too. Than a time dependance
study is performed varying only the time step to show to which extent the solution
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is time step dependent.
To estimate the discretization error a grid convergence study is performed varying
the base size of the mesh; the ratio between the different base sizes is constant and
equal to:

Base Size Mesh 2
Base Size Mesh 1 =

√
2

The Fourier analysis are carried out through the FFT algorithm; the signal analysed
is the water level from t1 = 70.7s and t2 = 98.7s as shown in figure 4.6.

Figure 4.6: TimeCut for FFT Analysis: a) the whole original signal, b) the cut
signal to be analysed through FFT

In the table are reported the base sizes and the corresponding amplitudes of
water oscillation obtained by simulation. In figure 4.7 the solution shows a linear
trend with respect to the base size until BS = 0.5m. The number of cells, and
consequentely the computational time, increase very fast with the decreasing of the
base size.
In figure 4.8 the trend of the solution with respect to the number of cells per cm3

shows how the computational power required by the simulation fastly increase. In
this last graph the solution shows a strongly convergent behaviour for the last three
base sizes.

The grid convergence study does not present a strongly convergent trend for
the water level, instead it show a nearly-linear behaviour trend. An other integral
quantity that can be used as target for the grid convergence study is the Torque.
The trend of the Torque with respect the base is shown in figure 4.9: it is possible
to notice a faster nearly linear convergence and a monotone convergence for the
last three meshes. The amplitudes and the phases of the Torque for each mesh are
reported in table 4.4

To better understand the grid dependance characteristic of the solution can be
useful compare the mean vorticity and the resolution of the free surface motion.
The first one because the main cause of dissipation is the generation of vortices
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Figure 4.7: Grid Convergence: in red the experimental results for T = 1.4 , in blue
the numerical value at T = 1.4s

Figure 4.8: Grid convergence: in red the experimental result for T = 1.4s, in blue
the numerical results for T = 1.4s

from the elbows, the second one has to be validated with the experimental data.
The water level has a 90° lag phase with respect to the angular position δ. Thus,
around δ = 0° the water level is maximum in one reservoir and minimum in the
other, hence the hydraulic jump is maximum. In figure 4.10 the volume fraction of
water field is shown for three meshes.

In the mesh with the finest base size the secondary wave that has generated from
the elbow is sharper. Also, in the figures 4.10b and 4.10c in the left reservoir a small
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Table 4.3: Grid dependance study

Base Size
[m]

Number of
cells

Number of Cells
per cm3

Water Level
Oscillation

Amplitude [m]
2 25824 1.775 0.1241√
2 49324 3.391 0.1318

1 98058 6.741 0.1393
0.5 552079 37.955 0.1456

0.5/
√

2 1436525 98.757 0.1463

Table 4.4: Torque amplitude and phase

Base Size Torque
Amplitude [N m]

Torque Phase
[deg] (with
respect the
phase of δ)

2 2.9733 90.8564√
2 3.2421 88.6027

1 3.4701 99.6298
0.5 3.5729 93.5031

0.5/
√

2 3.5167 91.8626

mixing zone is present that could happen in sloshing liquid phaenomena neverthless
it could be due to numerical diffusion either.

The energy loss due to the turbulent dissipation is directly dependent by the
vorticity that allows the energy transfer from large unstable eddies to small scale
eddies. These smaller eddies break up and transfer their energy to yet smaller eddies.
This process is historically called energy cascade and continues until the eddy is
stable and the energy is finally dissipated by viscosity. The oscillatory behaviour of
the motion increase the fluid vorticity and create small energy eddies that are due
to the changing in flow direction during the oscillation. The upper elbows generate
larger vortices that are transported by the fluid. Then they stretch up and break
up transferring their energy to smaller eddies. The turbulence is considered to be
composed of eddies of different sizes. A RANS model averages each physical quantity
in time and the Reynolds stress tensor is modelled. In the k − ϵ only the integral
quantities of the Reynolds stress tensor have been modelled: the turbulent kinetic
energy and the dissipation rate. Furthermore,to capture the small scale eddies it is
important that the cells size is smaller than the eddies lenght scale and the time
step size is smaller than the eddies time scale. This lead to an huge increasing in
computational power and computational time. Here the time resolution and the
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Figure 4.9: Torque with respect the base size

mesh resolution are not fine enough to capture the details of this phaenomena. In
figure 4.11 the mean vorticity for three meshes. In figure 4.11c it is possible to
notice two intense spots that gradually disappear in the figure 4.11b while in figure
4.11a they are totally disappeared and the solution is smooth.

4.2.2 Time Step Dependance study
A fine enough time step is required to well capture the sloshing of water and
the characteristic of the motion. To highlight the effect of the time step size the
simulations are performed with the same mesh (base size) and different time step.
In the table 4.5 are reported the values of water oscillation amplitude obtained by
each simulation. In figure 4.12 the trend of water oscillation amplitude with respect
the time step size is presented. It present a linear convergence.

Table 4.5: Time dependance study

Time Step
[m]

Water
Oscillation

Amplitude [m]
0.1 0.1557

0.1667 0.1544
0.25 0.1526
0.5 0.1477
1 0.1393
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(a) Base size = 1m , Time Step = 1ms

(b) Base size = 0.5m , Time Step = 0.5ms

(c) Base size = 0.3535m , Time Step =
0.3535ms

Figure 4.10: Volume fraction of water at t = 71.4s for three different cases: a) Base
Size = 1 m, b) Base Size = 0.5 m, c) Base Size = 0.3535 m. The ratio between Base
Size and Time Step is constant

The time step size strongly influence the solution. The free surface surface is well
captured for all the simulations as shown in figure 4.13. As the time step decrease
the free surface level at the elbow for δ = 0° is generally lower. This can be seen as
a time resolution problem of the motion of the tank and of the fluid. The truncation
error of the first rder discretization is a diffusive term proportional to ∆t, thus
convergence of the solution is linear with the time step size.
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(a) Base size = 1m , Time Step = 1ms(b) Base size = 0.5m , Time Step =
0.5ms

(c) Base size = 0.3535m , Time Step
= 0.3535ms

Figure 4.11: Mean Vorticity at t = 71.4s for three different cases: a) Base Size = 1
m, b) Base Size = 0.5 m, c) Base Size = 0.3535 m. The ratio between Base Size
and Time Step is constant

The simulation with the lowest time step size has more intensive vorticity spots
which weaken with larger time step size. The vorticity field of the lowest Time Step
size simulation in figure 4.14c is still far from the VeryFine Mesh solution shown in
figure 4.11c, indeed the vorticity needs a finer mesh resolution nevertheless the first
one’s water amplitude is closer to the experimental results than the latter one.
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Figure 4.12: Water oscillation amplitude versus time step size. In red the experi-
mental result at T = 1.4s, in blue the CFD results

Volume of water changing during the time simulation

The total volume of water inside the tank changes during the simulations. in table
4.6 are reported the error percentage calculated as:

Error = V olumeEnd − V olumeStart

TrueV olumeStart

· 100

Where:

- V olumeStart is the volume of water in the numerical domain when the simulation
starts (t = 0s)

- V olumeEnd is the volume of water inside the numerical domain at t = 100s

- TrueV olumeStart is the volume of water inside the physical domain (analytical
value)

In figure 4.15 the trend of the error percentage is shown versus the N°cells per
cm3 (4.15a) and versus the Time Step (4.15b). The water volume error decrease
with respect the mesh size and it deacres much faster with respect the time step:
the diffusion of primary phase on the free surface is strongly correlated with the
Courant number Co = |v| ∆t

∆x
. It is important to avoid high water volume error since

the response of the system is very sensitive to the water volume inside the tank
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(a) Base size = 1m , Time Step = 1ms

(b) Base size = 1m , Time Step = 0.5ms

(c) Base size = 1m , Time Step = 0.1667ms

Figure 4.13: Volume fraction of water at t = 71.4s for three different cases: a) Time
step = 1 ms, b) Time step = 0.5 ms, c) Time step = 0.1667 ms.

44



4 – CFD setup, verification and validation

(a) Base size = 1m , Time Step = 1ms(b) Base size = 1m , Time Step = 0.5ms

(c) Base size = 1m , Time Step =
0.1667ms

Figure 4.14: Mean Vorticity at t = 71.4s for three different cases: a) Time step = 1
ms, b) Time step = 0.5 ms, c) Time step = 0.1667 ms.

Table 4.6: Volume of water variation

N°cells per
cm3 Error %

Time Step
(fixed base

size = 1
m)

Error %

98.7574 0.7044 0.1 0.0542
37.9540 0.7953 0.1667 0.0855
8.6338 1.1663 0.25 0.1861
6.7412 1.34280 0.5 0.5099

1 1.3428
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(a) Base size = 1m , Time Step = 1ms (b) Base size = 1m , Time Step = 0.5ms

Figure 4.15: Water Volume variation during time simulation between t = 0s and
t = 100s
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4.2.3 Mesh Choice
The purpose of this thesis is the perfomance investigation of a U-tank device therefore
the head losses and the torque. In a duct the head losses can be divided in major
losses due to the length of the pipe and minor losses due to localized losses near
bends. In this case the turbulence occurs due to complex geometries and the minor
losses dominate. A good resolution of the mesh near the wall is required to well
capture the friction losses, hence the first cell near the wall needs to be at least
inside the log region to solve the boundary layer by mean of wall functions. To keep
in account the vortices generate from the elbows and their transport a fine mesh
resolution near the bends and along the path of the vortices is required. To avoid a
high computational effort a good balance between it and CFD model accuracy is
necessary. These considerations lead to the mesh settings reported in table 4.7 and
shown in figure 4.16.

Figure 4.16: Final mesh settings

In figure are compared the solution between the case the medium mesh (base size
= 1 m time step = 1 ms), the medium mesh with new refinement (base size = 1 m
time step = 1ms with new refinement reported in table 4.7) and the choosen setup
(base size = 1 m time step = 0.5 ms with new refinement reported in table 4.7)

In figure 4.17 it is noticeble the difference in capturing the free surface adding
new refinements near the elbow indeed the solution in figure 4.17b present a better
defined interface than solution in figure 4.17a. Furthermore halving the time step
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Table 4.7: Mesh Settings

Default Controls
Base Size 1 m
Target surface Size 1 %
Minimum Surface Size 0.25 %
Surface Curvature 72 pts/circle
Prism Layer Total Thickness 1.5 %
Number of prism layers 4
Prism layer stretching factor 1.3

Custom Controls
Refinment - surface size 0.5 %
Elbows sup - surface size 0.5 %
Elbows down - surface size 0.5 %
Block - surface size 0.5 %
Number of cells 121051

the interface is sharper as seen in figure 4.17c. In figure 4.18 the vorticity field is
less smooth adding new refinements near the elbows and in the upper central zone
of the horizonat duct. The solution in figure 4.18b present a more intense vorticity
spot than solution in figure 4.17a. Furthermore halving the time step these spots
become more intense as seen in figure 4.17c. Obviously they are not so intense as
in test case shown in figure 4.10c neverthless this new setup has the best balance
between computational cost and solution accuracy. Henceforth the choosen setup
(mesh settings and time step) will be called b1_t05_Ref.

4.2.4 Water Level processing
With reference to figure the water elevation is extrapolated by averaging the free
surface on a portion of 40mm along the x direction on a plane section located at
y = 0.25mm (0.25mm from the symmetry plane).

In the experimental setup, the sloshing of the water has constrained by the
presence of the floater upon the free surface. Thus, the water level is an average on
the whole free surface in a reservoir and even the floater weight can influence the
results. To keep in account the floater presence (even though is not physcally similar
to real setup) new results are obatined by averaging the whole free surface per each
reservoir. In figure 4.19 the differences between these two methods(averaging on the
whole free surface and averaging only on a portion of the free surface as explained
above) are shown.

The values of water oscillation amplitude obtained by mean of these two methods
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are reported in table 4.8.

Table 4.8: Water oscillation amplitudes for two different extrapolation methods

Time Step = 0.1667ms
Average on 40mm of free
surface on plane section 0.1482m

Average on the whole free
surface 0.1486m

Time Step = 0.5ms
Average on 40mm of free
surface on plane section 0.1431m

Average on the whole free
surface 0.1433m
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(a) Base size = 1m , Time Step = 1ms

(b) Base size = 1m , Time Step = 1ms and new refinements

(c) Base size = 1m , Time Step = 0.5ms and nre refine-
ments

Figure 4.17: Volume fraction of water at t = 71.4s for three different cases: a) Base
size = 1 m and Time step = 1 ms, b) Base Size = 1 m and Time step = 1 ms with
new refinements, c) Base Size = 1m and Time step = 0.5 ms with new refinements
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(a) Base size = 1m , Time Step = 1ms(b) Base size = 1m , Time Step = 1ms
and new refinements

(c) Base size = 1m , Time Step =
0.1667ms and new refinements

Figure 4.18: Mean Vorticity at t = 71.4s for three different cases: a) Base size =
1 m and Time step = 1 ms, b) Base Size = 1 m and Time step = 1 ms with new
refinements, c) Base Size = 1m and Time step = 0.5 ms with new refinements
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(a) Time Step = 1ms (b) Time Step = 1ms

Figure 4.19: Comparison between two extrapolation technique for evaluate the
postion of the free surface
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4.3 CFD validation
The regular waves tested are characterized by different period of motion and three
different amplitudes. Close to the resonance peak the CFD is performed with a
finer time step too. In table 4.9 the results are reported. In figure 4.20 the trend of

Table 4.9: Water oscillation amplitudes results

T Experimental CFD (time step
= 0.5 ms ) Error %

CFD (time step
= 0.1667 ms) Error %

[s] [m] [m] [m]
1.1 0.0026 0.0019 28.7083 − −
1.2 0.0096 0.0080 16.4122 − −
1.3 0.0352 0.0262 25.7102 0.0275 21.8807
1.35 0.0900 0.0625 30.5778 0.0657 26.96
1.4 0.1540 0.1432 6.9870 0.1481 3.8182
1.45 0.0565 0.0762 34.9978 0.0763 35.0456
1.5 0.0383 0.0463 21.1084 0.0451 17.8852
1.6 0.0261 0.0285 9.3709 − −
1.7 0.0216 0.0227 5.4069 − −
1.8 0.0189 0.0198 4.7485 − −

the water oscillation amplitude versus the period T of the forced sinusoidal motion
imposed obtained by mean of numerical simulation and experimental tests is shown.

Both the experimental setup and CFD setup lack in accuracy to well capture the
too slight water oscillation at the two lowest period therefore the error percetage is
high. Also the water level oscillation at those period is equal or less than the size of
the cells where the free surface is located.
At the two highest periods (T=1.7 s and T=1.8 s) both the experimental and CFD
setup are still able to capture the slight (but larger than the oscillation for the
lowest two periods) water oscillation.
At the resonant period (T=1.4 s) the CFD simulation reaches a good accuracy
whereas at the periods close the maximum the accuracy decreases: the error due
to the lack of capability of the experimental setup in setting the period of the
motion with an high precision generate a larger error where the curve slope is higher
(i.e. if the value corresponding to the period T=1.3 s is actually corresponding to
T=1.28 s then the difference between experimental value and CFD result decreases).
Henceforth the CFD setup defined as b1_t0p5_Elbows will be used for further
analysis.
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Figure 4.20: Water Oscillation amplitudes
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5. Free decay

With reference to Lloyd equation expressed in terms of ωn and ξ:

τ̈ + 2ξωnτ̇ + ω2
nτ = 0

Integrating in time we obtain:

τ = τ0 · e−ξωn sin(ωn

√︂
1 − ξ2 + ϕ)

Or expressing τ in term of the elevation from the datum level in one reservoir h
considering the small angle approximation

τ ≃ tan(τ) = h

w/2
=⇒ h = h0e

−ξωn sin(ωn

√︂
1 − ξ2 + ϕ)

To find the two parameters in this equation a free decay test is perfomed by mean
of CFD simulation. In the post processing two methods are used to identify the
parameters ξ and ωn:

1. Method 1: from the time history of τ find the best approximation curve through
the least square method with the model function f defined as:

f = A · e−bt · sin(ωt + ϕ)

Thus, the parameters to be find that minimize the residuals are: A, b and ω.

2. Method 2: From the time history of τ find the local maxima and the time
distance between them . Calculate the frequency:
%% MatLab Code
[PKS, LOC]= f indpeaks ( tau ) ;
Time_PKS=time (LOC) ;
Period=mean( d i f f (Time_PKS ) ) ;
Frequency=1/Period ;
y=log (PKS) ;
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and finally find the curve that best fit y by mean of least square method with
the model functionf defined as:

f = a − b · t

Thus, the parameters to be find that minimize the residuals are: a and b. Then
the standard deviation of the difference between the time history τ by mean of
CFD simulation and the time history of τ by mean of the curve fitting is found.

5.1 Model Scale
The model design tested is the same of the section 4 whose parameter are reported in
table. With reference to figure.. z = 0.200m(delta h) while three different conditions
of datum levels have been tested. With reference to Lloyd analytical model without
forced motion the parameters are reported in table:

Parameter Definition Value
ρ Water Density 997 kg/m3

w Distance between reservoirs 0.684 m
wr Reservoir lenght 0.170 m
Qt

1
2ρw2wrxt 3.9688

aττ Qtwr

(︃
w

2hd

hr

wr

)︃
2.2901

b∗
ττ Qtwr

(︃
wr

2h2
d

+ hr

w2
r

)︃
13.4707

cττ Qtg 36.6882

Kaττ τ̈ + b∗
ττ qτ̈ + cττ τ = 0

Where K is a mass correction factor which keeps in account that errors due to the
integration along the one dimensional axis: whereas in the duct and in the reservoirs
the assumption of one dimensional flow can lead to negligible errors, the fluid motion
through the elbows can not be considered one dimensional due to the non negligible
normal gradient (orthogonal to the velocity vector), thus the terms aττ and b∗

ττ

present large errors that have to be corrected. Hence, the mass correction factor
K is introduced to keep in account these errors with regard the mass term while q
represents the sum of shear stresses and b∗

ττ correcion term. The relation between
the parameters in Lloyd model and ξ and ωn are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

2ξωn = bττ ∗ q

Kaττ

ω2
n = cττ

Kaττ
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From the relations above it is important to notice that K is bound to the natural
frequency.

Case A: hr = 0.235m from duct centerline

At time t = 0s the hydraulic jump is set to z = 200mm. In figure the time history
of τ is reported. In table 5.1 are reported the values obtained. And in figures 5.1
and 5.2 the fitting curves are compared with CFD data.

Table 5.1

Method 1 Method 2
STD b ω STD b ω

0.0033 0.0414 4.5053 0.0054 0.0379 4.5059
ξ 0.0092 ξ 0.0084

ωn 4.5055 ωn 4.5061
Tn 1.3946 Tn 1.3944
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Figure 5.1: hr = 0.235m. Comparison between CFD time history of τ and curve
fitting with method 1
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Figure 5.2: hr = 0.235m. Comparison between CFD time history of τ and curve
fitting with method 2

Case B: hr = 0.285m from duct centerline

At time t = 0 the hydraulic jump is z = 200mm. In table are reported the values
extrapolated. In figure 5.3 and in figure 5.4 the comparison between the fitting
curve and the CFD data for each method is shown.

Table 5.2

Method 1 Method 2
STD b ω STD b ω

0.0024 0.0384 4.2878 0.0039 0.0360 4.2883
ξ 0.0090 ξ 0.0084

ωn 4.2880 ωn 4.2885
Tn 1.4653 Tn 1.4651

58



5 – Free decay

5 10 15 20 25 30 35 40 45 50

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
 [

ra
d

]

CFD

Method 1

Figure 5.3: hr = 0.285m. Comparison between CFD time history of τ and curve
fitting with method 1
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Figure 5.4: hr = 0.285m. Comparison between CFD time history of τ and curve
fitting with method 2

Case C: hr = 0.335m from duct centerline

At time t = 0s the hydraulic jump is z = 200mm. In table are reported the values
extrapolated. In figure 5.5 and in figure 5.6 the comparison between the fitting
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curve and the CFD data for each method is shown.

Table 5.3

Method 1 Method 2
STD b ω STD b ω

0.0023 0.0366 4.0987 0.0039 0.0344 4.0976
ξ 0.0089 ξ 0.0084

ωn 4.0989 ωn 4.0977
Tn 1.5329 Tn 1.5333
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Figure 5.5: hr = 0.335m. Comparison between CFD time history of τ and curve
fitting with method 1
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Figure 5.6: hr = 0.335m. Comparison between CFD time history of τ and curve
fitting with method 2
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Analytical model calibration

It is possible to characterize the analytical model in terms of q and K with the
values of ξ and ωn found. In the analytical model K is correction factor that applies
to the mass term. Not all the mass inside the tank partecipates to the motion, hence
the correction factor is probably K < 1. Through the definition of these parameter
with reference to section 2 :

Kaττ τ̈ + b∗
ττ τ̇ + cττ τ = 0

K = cττ

aττ

1
ω2

n

b∗
ττ = Qtwr

(︂ w
2h2

d

+ hr

w2
r

q = 2ξωn
Kaττ

b∗
ττ

The values of these are reported in table 5.4.

Table 5.4: analytical model calibration parameters

Case A Case B Case C
q 0.0118 0.0111 0.0107
K 0.8375 0.8509 0.8625
ωn 4.5055 4.2880 4.0989
ξ 0.00919 0.00895 0.00892

Comparison of the results

In figure 5.7 the a linear behaviour of the damping is shown. The variation of the
datum level hr change the natural frequency of the system neverthless it does not
seem to affect the damping factor ξ. In the figure 5.8 the natural frequency and the
damping factor trend towards the datum level hr is shown. The natural frequency
decreases with respect hr as expected; the relation between ωn and hr is :

ωn =

⌜⃓⃓⃓
⃓⃓⎷

2g

K
(︃

2hr +
w wr

hd

)︃
The trend of ξ in figure 5.8b present a very slow decreasing with respect hr. Also
the values calculated are really sensitive to the error of the fitting curve, hence this
trend could be non real. In figure 5.9 the variation of K and q with respect to the
datum level is shown. K is nearly constant with respect the datum level while the
friction factor q decrease very slightly with respect to hr.

62



5 – Free decay

0 5 10 15 20 25 30 35 40

t* = time /Period

-3

-2.5

-2

-1.5

-1

-0.5

0
P

e
ri
o
d
 *

 l
o
g
 (

/
0
)

h
r
 = 0.185 m

h
r
 = 0.235 m

h
r
 = 0.285 m

Figure 5.7: Damping characteristic trend of the Free Decay in Model Scale with
different initial conditions
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Figure 5.8: In a) the natural frequency ωn versus the datum level hr, in b) the
damping factor ξ versus the datum level hr
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Figure 5.9: Correction factor K in blue and friction factor q in red with respect to
datum level hr
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5.2 Scale comparison
To keep in account the scale effects of the phaenomena, CFD simulation are per-
formed for different scale factor λ. Flow conditions for different scale factors are
similar if all relevant parameters have the same corresponding scaled values: There
are three types of similarity:

1. Geometric Similarity (similar length scale)

2. Kinematic similarity (similar lenght and time scales)

3. Dynamic Similarity (similar lenght, time scale and force (or mass)scales)

The geometric similarity is reached if the lenght scale of the model are similar to
the lenght scale of the prototype:

Lm

Lp

= Lr

Where:

• Lm is the length scale of the model

• Lp is the length scale of the prototype

• Lr is the scale factor

The kinematic similarity is reached if the velocities (distance in length / distance
in time) of two geometrically similar objects are similar too. Since the lenghts are
similar by mean of scale factor Lr, to achieve the kinematic similarity the time
interval need to be similar too by mean of time ratio Tr. Hence:

Vm

Vp

= Lm/Tm

Lp/Tp

= Lm/Lp

Tm/Tp

= Lr

Tr

The dynamic similarity is reached if the magnitude of forces at correspondigly
similar points are in a fixed ratio. In shallow water application, in which the flow is
buoayancy driven the dynamic similarity is reached by imposing the same Froude
number Fr = V0√

gL0
.

Therefore, imposing the three similarity implies:
Lm

Lp

= Lr

Vm

Vp

= ωm · Lm

ωp · Lp

= Lr

Tr

=⇒ ωm

ωp

= 1
Tr

Frm

Frp

= Vm

Vp

√︄
Lp

Lm

= Lr

Tr

·
√︄

1
Lr

=
√

Lr

Tr

= 1 =⇒ Tr =
√︂

Lr
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Here for sake of simplicity the inverse of the scale factor λ = 1/Lr is used. In the
table are reported the different scale tested. λ is defined as Lscalei

/Lmodel, hence
λmodel = 1. The time step size needs to be scaled with

√
λ to keep the same time

resolution of the motion. With reference to the mesh settings of the table .. in sec
4 the base size is consequently scaled In table 5.5 it is noticeble that the mesh is

Table 5.5: Scaled design tested

Design λ Time Step Mesh Base Size
Model 1 0.5 ms 1 m
Scale 4 4 1 ms 2 m
Scale 9 9 1.5 ms 9 m
Scale 16 16 2 ms 16 m
Scale 25 25 2.5 ms 25 m
Full Scale 35 0.5·

√
35 ms 35 m

scaled with λ too. This is partially incorrect since the viscous effects are confined
in the boundary layer that does not scale with the geometry. The first cell near the
wall might be not immersed in the viscous sublayer and in the log region neither.
Therefore, further considerations regarding the prism layer controls are necessary.
The first cells near the wall has the same height throughout the simulations. The
boundary layer become thinner with increasing the size of the model tested, hence
the first cell near the wall will not be immersed in the viscous sublayer. The solver
uses wall functions to solve the flow inside the boundary layer only if the y+ of the
first cell is immersed in the log region at least. In the section 5.1 the signal has
been analyzed in the time interval t ∈ {0 ÷ 51}s; hence the signal of τ contained
51/timestep samples. The number of samples Ns to be analyzed will be the same
for each case study.

Scale 4

In table 5.6 are reported the prism layer controls and the maximum y+ and surface
average y+ (only on wetted surface) achieved in the simulation.
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Table 5.6: Prims Layer settings

Scale 4
λ 4
Base Size [m] 4
Prism Layer Total thickness [%] 1.5
Number of prism layer 7
Prism Layer stretching factor 1.3
First cell size near the wall [mm] 3.4124
maximum y+ 140
Average y+ 40

The signal of τ is processed between 0s and Ns · TimeStep = 102s where Ns is
the number of samples.

The results are presented in table 5.12b and the linear damping is shown in figure
5.16b

Scale 9

In table 5.7 are reported the prism layer controls and the maximum y+ and surface
average y+ (only on wetted surface) achieved in the simulation.

Table 5.7: Prims Layer settings

Scale 9
λ 9
Base Size [m] 9
Prism Layer Total thickness [%] 1.5
Number of prism layer 10
Prism Layer stretching factor 1.3
First cell size near the wall [mm] 3.1675
maximum y+ 200
Average y+ 80

The signal of τ is processed between 0s and Ns · TimeStep = 102s where Ns is
the number of samples.

The results are presented in table 5.12c and the linear damping is shown in figure
5.16c

Scale 16

In table 5.8 are reported the prism layer controls and the maximum y+ and surface
average y+ (only on wetted surface) achieved in the simulation.

67



5 – Free decay

Table 5.8: Prims Layer settings

Scale 16
λ 16
Base Size [m] 16
Prism Layer Total thickness [%] 1.7
Number of prism layer 12
Prism Layer stretching factor 1.3
First cell size near the wall [mm] 3.6395
maximum y+ 250
Average y+ 120

The signal of τ is processed between 0s and Ns · TimeStep = 102s where Ns is
the number of samples.

The results are presented in table 5.12d and the linear damping is shown in figure
5.16d

Scale 25

In table 5.9 are reported the prism layer controls and the maximum y+ and surface
average y+ (only on wetted surface) achieved in the simulation.

Table 5.9: Prims Layer settings

Scale 25
λ 25
Base Size [m] 25
Prism Layer Total thickness [%] 1.7
Number of prism layer 14
Prism Layer stretching factor 1.3
First cell size near the wall [mm] 3.3225
maximum y+ 250
Average y+ 100

The signal of τ is processed between 0s and Ns · TimeStep = 102s where Ns is
the number of samples.

The results are presented in table 5.12e and the linear damping is shown in figure
5.16e
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Scale 35 (Full Scale)

In table 5.10 are reported the prism layer controls and the maximum y+ and surface
average y+ (only on wetted surface) achieved in the simulation.

Table 5.10: Prims Layer settings

Scale 35
λ 25
Base Size [m] 25
Prism Layer Total thickness [%] 1.7
Number of prism layer 14
Prism Layer stretching factor 1.3
First cell size near the wall [mm] 3.3225
maximum y+ 170
Average y+ 85

The signal of τ is processed between 0s and Ns · TimeStep = 102s where Ns is
the number of samples.

The results are presented in table 5.12f and the linear damping is shown in figure
5.16f

Results comparison

In figure 5.10 and in figure 5.11 the time history of τ for each scale is reported; to
compare the time histories the time is normalized by the own natural period of each
scale while τ is normalized by the value of τ at t = 0s . As expected increasing the
size of the scale the damping decrease and Tn, the natural period increase.
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Figure 5.11: τ history in the range {25s − 40s}. The signal τ is normalized by its
max value and the time vector is normalized with own natural period

69



5 – Free decay

5 10 15 20 25 30 35 40 45 50

Time/Natural Period 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(t
)/

(0
)

Model

Scale4

Scale9

Scale16

Scale25

FullScale

Figure 5.10: τ history. The signal τ is normalized by its max value and the time
vector is normalized with own natural period

To highlight the damping (parameter b of the exponential function Ae−bt ), the
function y = −b · t is reported in figure 5.12. The slope of the curve decrease with
the inverse scale factor λ.
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Figure 5.12: Damping as log(Ae−bt) − log(A) = −bt .The time vector is normalized
with own natural period

In table 5.11 the values of q and K , and for ξ and ωn for each scale are presented:
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Scale λ q K ωn ξ

Model 1 0.0111 0.8509 4.2880 0.008952
Scale 4 4 0.0161 0.8510 2.1439 0.006485
Scale 9 9 0.0214 0.8505 1.4297 0.005748
Scale 16 16 0.0271 0.8501 1.0725 0.005460
Scale 25 25 0.0334 0.8498 0.8582 0.005395
FullScale 35 0.0379 0.8503 0.7251 0.005169

Table 5.11: Calibration parameters for each scale

The values ξ and ωn with respect to λ are shown in figure 5.13. The natural
angular frequency follows the square root of the scale factor and the trend of ξ is
similar. The viscous loss in the system follow the Reynolds number that increase
with respect the λ.
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Figure 5.13: Natural angular frequency ωn and damping factor ξ toward the scale
factor λ

With reference to figure 5.14in which the trends K and q with respect the scale
factor λ are shown, the parameter K is nearly constant with increasing the scale
whereas q decrease with λ.

However, q is a dimensional value (it has the dimension of a velocity) and the
velocity increase with

√
λ; it is possible to define a non dimensional q as:

q∗ = q

ωn · rd

And ωn · rd ∝
√

λ. In figure 5.15 the comparison between q and q∗ are presented.
The non dimensional friction factor behave as the Moody’s friction factor towards
the scale factor λ (and consequentely towards the Reynolds number).
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Figure 5.14: In red the trend of the correction factor K, in blue the friction factor q
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Figure 5.15: in blue the dimensional friction factor q, in red the non dimensional
friction factor q∗

The friction factor can be defined by mean of a Reynolds number. Here the
system is scaled wih the Froude number Fr = V/

√
gL, hence:

Re1

Re2
= V1

V2
·

√︄
D2

D1
=

√
λ

λ

Where the subscript 1 refers to model scale and subscript 2 refers to corresponding
scale such that L2 = λL1 and λ is the ratio between the size of the corresponding
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scale and the size of model scale. It is possible to define a Reynolds number as:

Re = V D

ν
=

(ω · rd)(
w
2

wr

hd

)

ν

In figure 5.16a q* are presented with respect to Re and in figure 5.16b the trend is
reported in logarithmic scale. For Reynolds number below Re = 5E + 06 the trend
is nearly linear while seem to converge to a constant value for Reynolds number
above Re = 5E + 06.
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Table 5.12: Curve fitting results

(a) Model
Method 1 Method 2

STD b ω STD b ω

0.0024 0.0384 4.2878 0.0039 0.036 4.2883

ξ 0.0089 ξ 0.0084
ωn 4.2880 ωn 4.2885
Tn 1.4653 Tn 1.4651

(b) Scale 4
Method 1 Method 2

STD b ω STD b ω

0.0024 0.0139 2.1439 0.003 0.0134 2.1437

ξ 0.0065 ξ 0.0063
ωn 2.1439 ωn 2.1437
Tn 2.9307 Tn 2.9309

(c) Scale 9
Method 1 Method 2

STD b ω STD b ω

0.002 0.0082 1.4297 0.0022 0.0081 1.4296

ξ 0.0057 ξ 0.0056
ωn 1.4297 ωn 1.4296
Tn 4.3947 Tn 4.395

(d) Scale 16
Method 1 Method 2

STD b ω STD b ω

0.0019 0.0059 1.0725 0.002 0.0058 1.0724

ξ 0.0055 ξ 0.0056
ωn 1.0725 ωn 1.0724
Tn 5.8584 Tn 5.8589

(e) Scale 25
Method 1 Method 2

STD b ω STD b ω

0.0018 0.0046 0.8582 0.0019 0.0046 0.8582

ξ 0.0054 ξ 0.0053
ωn 0.8582 ωn 0.8582
Tn 7.3217 Tn 7.3217

(f) FullScale
Method 1 Method 2

STD b ω STD b ω

0.002 0.0037 0.7251 0.002 0.0038 0.725

ξ 0.0052 ξ 0.0052
ωn 0.7251 ωn 0.725
Tn 8.6656 Tn 8.6659
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(a) Model Scale: Linear Damping
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(b) Scale 4: Linear Damping
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(c) Scale 9: Linear Damping
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(d) Scale 16: Linear Damping
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(e) Scale 25: Linear Damping
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(f) Full Scale: Linear Damping

Figure 5.16: Linear Damping. In the figures the function f = A−B · t is represented
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6. Regular wave

The system forced by a regulare wave can be described by the equation:

Kaττ τ̈ + b∗
ττ qτ̇ + cττ τ = aτ5δ̈ + cτ5δ

δ = A sin(ωt) regular wave forcing the system

The general solution can be written as:

τ = τg + τp

Where τg is the solution of the corresponding homogenous equation. As seen in sec
4 it can be written as:

Le−ξωnt sin(ωn

√︂
1 − ξ2t + ϕ)

Where:

- 2ξωn = b∗
ττ q

Kaττ

- ω2
n = cττ

Kaττ

The particular solution τp can be written as:

τp = B cos(ωt) + C sin(ωt)

B =

A

Kaττ

(︃
aτ5ω

2 − cτ5

)︃(︃
2ξωnω

)︃
(︃

ω2 − ω2
n

)︃2
+

(︃
2ξωnω

)︃2

C =

A

Kaττ

(︃
aτ5ω

2 − cτ5

)︃(︃
ω2 − ω2

n

)︃
(︃

ω2 − ω2
n

)︃2
+

(︃
2ξωnω

)︃2

Hence:
τ = Le−ξωnt sin(ωn

√︂
1 − ξ2t + ϕ) + B cos(ωt) + C sin(ωt) (6.1)

The value ωn is the same of the free decay test, thus the mass correction factor is
the same too. The value of ξ is bound to q. The latter one might be not the same
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of the value obtained by mean of the free decay test. It is of particular interest the
case ωn

√
1 − ξ2 = ω and the solution can be written as:

τ = cos(ωt)
[︃
Ke−ξωnt sin(ϕ) + B

]︃
+ sin(ωt)

[︃
Ke−ξωnt cos(ϕ) + C]

And C ≃ 0. The value of q can be found by mean of curve fitting of τ ’s signal.

6.1 Model Scale
The design parameters of the model are reported in table 4.1 in section 4.2 and
mesh settings are reported in table 4.7 in section 4.2 and time step = 0.5ms . The
forced motion is described by the sinusoidal wave:

δ = A sin(ωt)

Where

• δ is the angular position of the tank

• A is the amplitude of the motion

• ω = 2π/T is angular frequency of the motion

• T is the Period of the motion

The center of rotation is located at y = 63mm from the duct centerline.
In figure 6.1 the time histories of τ for each period of the forced motion in the

range between T = 1.1s and T = 1.6s are shown. The amplitude is set to A = 2°.
With reference to the figure 6.1 it is noticeable the effect of the first term in

equation 6.1 that couples with the other two term with different angular frequency.
However some effects could be not totally realistic.

In figure 6.2 the amplitude and the phase (with respect to δ) of τ and of the
Torque are reported with respect the period T of the forced motion imposed. In
T = 1.4s the RAO is maximum becuase the angular frequency of the imposed
motion is close (or equal) to the natural frequency of the system.

The cases with different amplitudes are also tested. To highlight the non linearities
the values are normalized by the δ amplitude A. In figure 6.3 the curve of τ/δ and
of the torque normalized by δ with respect the period of the imposed motion for
each amplitude A are shown; in table the results are reported.
The frequency response by mean of the analytical model is:⃓⃓⃓⃓

⃓τ(ω)
δ(ω)

⃓⃓⃓⃓
⃓ =

c5τ − a5τ ω2

Kaττ

√︂
(ω2

n − ω2)2 + 4ω2ω2
nξ2
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Figure 6.1: Time history of τ
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Figure 6.2: Amplitude and phase of tau and of the torque of the system forced by a
sinusoidal motion with different periods T and same amplitude A = 2°
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Figure 6.3: Response Amplitude Operatore and Phase Response of τ and the torque
exerted by the U-tank
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Table 6.1: Frequency Response

(a) Amplitude A = 1°
Period [s] τ Amplitude [deg] τ Phase [deg] Torque Amplitude [N m] Torque Phase [deg]

1.2 0.6824 168.42 0.6824 2.49
1.3 2.2515 172.83 2.2515 60.729
1.35 6.5373 165.04 6.5373 156.96
1.4 15.71 80.64 15.71 72.309
1.45 6.5337 11.868 6.5337 9.7076
1.5 3.7592 2.952 3.7592 2.52
1.6 2.3782 0.2025 2.3782 0.2025

(b) Amplitude A = 2°
Period [s] τ Amplitude [deg] τ Phase [deg] Torque Amplitude [N m] Torque Phase [deg]

1.2 1.348 169.29 1.348 2.85
1.3 4.3817 171.14 4.3817 66.462
1.35 10.385 161.65 10.385 150.88
1.4 23.049 98.769 23.049 88.894
1.45 12.637 15.468 12.637 11.495
1.5 7.7203 5.664 7.7203 4.296
1.6 4.7638 0.765 4.7638 0.99

(c) Amplitude A = 2.5°
Period [s] τ Amplitude [deg] τ Phase [deg] Torque Amplitude [N m] Torque Phase [deg]

1.2 1.6724 171.06 1.6724 3
1.3 5.4585 170.89 5.4585 66.628
1.35 12.333 160.69 12.333 148.48
1.4 25.24 109.85 25.24 99.617
1.45 15.946 18.646 15.946 11.818
1.5 9.6069 6.456 9.6069 4.8
1.6 5.997 1.7325 5.997 1.3275
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6.1.1 Comparison with Analytical Model
In free decay test the values of ωn and ξ, and q and K have been extrapolated. With
reference to the case in figure 6.2 where the forced motion has amplitude A = 2deg
and datum level hr = 0.235m the parameter found in free decay test were:

• ωn = 4.5rad/s

• ξ = 0.0092

• K = 0.8375

• q = 0.01179

• q∗ = 0.04157

The value of K, as said before, is bound to the natural frequency of the system
and can not be used as a degree of freedom to evaluate the best function that fit
the frequency response curve. Therefore the friction factor q will be used.

In figure 6.4 the frequency responses of the analytical model, corrected with
values found in free decay and values found through curve fitting based on finding
the free parameter q, are presented and compared with the frequency response
btained through CFD analysis.

The friction factor q, and consequently ξ, of the Regular Wave study are about
two times the values found in free decay test. In table 6.2 are reported the values of
these parameters for both free decay test and regular wave test.
The motion causes an increase of turbulent phaenomena obviously. The loss of the

Table 6.2

Free Decay Regular wave
q 0.0118 0.0209
K 0.8396 0.8396
ξ 0.0092 0.0163

system are due to:

• the major losses: the friction losses that increase with the rotation of the wall;
the wall velocity couples with the velocity gradients;

• the minor losses: the curvature of the elbow force the flow to swirl and because
of the inertia of the fluid a secondary flow moves in radial direction increasing
the velocity gradients at the wall
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Figure 6.4: RAO of Model Scale with hr = 0.235m. In black the CFD values, in
blue the RAO of Lloyd model with K and q found in free decay test, in red the
RAO of Lloyd model with q found by mean of curve fitting upon CFD data

• the sloshing phaenomena: the secondary wave starts at the elbow and move
towards the reservoir’s wall crashing on it and breaking into small eddies
which dissipate or flow out of the domain(this latter condition occurs at large
amplitudes);

In free decay test there is no motion imposed, hence the swirling of the flow and its
radial velocity is less intense. The loss due to generation of eddies and dissipation
of their energy on one side and due to the greater shear stresses on the other, is
represented by the term q in Lloyd model which increase with the amplitude of
the imposed external sinusoidal motion. In figure 6.5 a comparison between free
decay vorticity field and regular wave vorticity field is shown: in free decay test
the volume averaged vorticity is lower than in regular wave test, thus less energy is
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employed to sustain the swirling of the flow.

(a) Free Decay (b) Regular Wave A = 2°

Figure 6.5: Vorticity field along the y-axis normal to the plane. a) Free decay
Vorticity, b)Regular wave vorticity with amplitude A = 2deg

(a) Free Decay (b) Regular Wave A = 2°

Figure 6.6: Velocity field along the y-axis normal to the plane. a) Free decay
Velocity, b)Regular wave velocity at amplitude A = 2deg

With the same procedure the values of q and ξ are extrapolated for the other
two amplitude of motion: A = 1deg and A = 2.5deg. In table 6.3 are reported these
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values compared to the values of free decay test. In figure 6.7 the trend of q and ξ
with respect the amplitude A is reported.

Table 6.3

Free Decay Regular wave
A = 1deg A = 2deg A = 2.5deg

K 0.8396 0.8396 0.8396 0.8396
q 0.0118 0.0154 0.0209 0.0241
ξ 0.0092 0.012 0.0163 0.0187
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Figure 6.7: Variation of the friction factor q and the damping factor ξ with respect
the amplitude of forced angular motion A

Both the friction factor q and the damping factor ξ increase with respect to the
amplitude because:

1. the velocity increases

2. the swirling of the flow increases

3. the sloshing’s intensity increases

The velocity and the consequently the friction q increase with δ; the friction factor
q can be assumed to be constant inside a narrow range of amplitudes of interest.
When used to describe the frequency response in irregular waves the frequency
response, the Lloyd model will overstimates the wave with greater amplitudes and
understimate the waves with smaller amplitude.
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It is interesting to notice that ξ found in this case is about two times the value
obtained in the free decay section. The analytical model does not keep in account
the loss due the generation and dissipation of the eddies; in free decay test the
swirling of the flow is due to the shape of the U-tube only while here the swirling of
the flow increases due to the rotation imposed.
The relation between q and the amplitude of δ and between the mean velocity and
the amplitude of δ is shown in figure 6.8a. The slope of the curve that shows the
relation between the friction factor and the mean velocity is nearly linear. When the
amplitude increases, the water depth in one reservoir diminuishes and the sloshing
is more violent causing more energy dissipation. In literature [2], the minor losses
(bend losses) are usually regarded as a quadratic function of the velocity, so q has
to be linear with the velocity from the hypothesis of Lloyd model:

Fshear ≃ −qV/n =⇒ q ≃ q∗ · V

Where q∗ is a non dimensional friction factor.
The sloshing phaenomena become more intense if the water depth diminuishes, hence
the energy dissipation due to this phaenomena increases with greater amplitudes
of angular motion. This explains the trend in figure 6.8b where the friction factor
parameter q is non linear towards the velocity which means the sum of the dissipation
forces are not exactly quadratic with respect to the velocity.
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Figure 6.8: a) friction factor q and mean velocity v towards the amplitude of the
angular motion, b) friction factor q towards the mean velocity v

6.2 Full Scale
The regular motion is tested with full scale prototype. To achieve the same motion
dynamics the Froude scaling is used. Hence:
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• LF ullScale

LModelScale

= λ

• PeriodF ullScale

PeriodModelScale

=
√

λ

• Amplitude of the rotation does not change

• ForceF ullScale

ForceModelScale

= λ2 (the fluid density does not change)

• MomentF ullScale

MomentModelScale

= λ4 (fluid density does not change)

The ratio between the inertia forces and viscous force are usually scaled with
Reynolds; when the Froude scaling is used the Reynold Number increase with the
scale factor:

ReF ullScale

ReModelScale

= λ3/2

Consequently the viscous forces are less dominant with the increasing of the scale.
This leads to greater values of τ as shown in figure 6.9. In table 6.4 are reported
the values of frequency response.
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Figure 6.9: Amplitude and phase of τ and of the torque of the system forced by a
sinusoidal motion with different periods T and same amplitude A = 2°

86



6 – Regular wave

Table 6.4: Frequency Responde

Period [s] τ Amplitude [deg] τ Phase [deg] Torque Amplitude [N m] Torque Phase [deg]
7.0993 1.3771 189.9924 778010.0000 -5.0000
7.6909 4.6622 185.6240 121250.0000 83.9558
7.9867 10.8955 173.3445 1470584.1711 169.5447
8.2825 28.6158 124.1797 6654932.1099 117.1949
8.5783 12.7972 5.3843 3778759.5901 3.4496
8.8741 7.5742 11.7727 2563426.0787 7.9309
9.4657 4.7712 13.3302 1891209.3656 7.2527

The parameters found in free decay test and in regular wave test are reported in
table 6.5

Table 6.5

Free Decay Regular Wave
A = 2deg

ωn 0.76064 rad/s 0.76064 rad/s
ξ 0.0052 0.0120
K 0.8370 0.8370
q 0.03793 0.091

The comparison with the analytical model is shown in figure 6.10.

6.3 Scale Comparison

The Reynolds number increase with the scale factor, hence in full scale test the
inertia forces are much greater with respect the viscous forces and water oscillation
amplitude become higher as shown in figure. Also, the vorticity field in full scale
test is smoother than in model scale.
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Figure 6.10: RAO of Full Scale with hr = 8.225m. In black the CFD values, in blue
the RAO of Lloyd model with K and q found in free decay test, in red the RAO of
Lloyd model with q found by mean of curve fitting upon CFD data
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(a) Model Scale (b) Full Scale

Figure 6.11: Volume of Fraction of water at the same correspondending condtion

(a) Model Scale (b) Full Scale

Figure 6.12: Vorticity field along the y-axis normal to the plane at the same
correspondending condtion

As a result, also the torque exerted by the U-tank increases as shown in figure
6.13b where the frequency is normalized with the scale factor λ:

Frequency = FrequencyF ullScale√
λ

= FrequencyModelScale

And the torque T is normalized by λ4.
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Figure 6.13: Comparison between Model Scale and Full Scale. The frequency is
normalized with the square root of the scale factor; the Torque is normalized with
the fourth power of the scale factor
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7. Irregular waves

The response of the system to an irregular forced motion is here discussed. In
the chapter.. the motion imposed was The irregular motion can be defined by the
superposition of regular sinusoidal waves. In naval architecture there are two mainly
idealized wave spectra:

• Bretschneider wave spectra which describe a fully developed ocean waves
spectra

• JONSWAP wave spectra which describe coastal wave spectra

Here the latter one is used to impose the irregular motion of the tank. (it would
be more correct to obtain the irregular motion of the tank by mean of a transfer
function of the ship’s rolling motion)

JONSWAP Spectrum

To represent the wave spectra in coastal water with limited fetch the Joint North Sea
Wave Project spectrum is used. The amplitude of the waves in frequency domain is
described by:

S(w) = αg2

ω5 exp
{︃

− 5
4

(︃
ωp

ω

)︃4}︃
γ

exp

{︃
− 0.5

(︃
ω − ωp

σωp

)︃2}︃
(7.1)

Where:

• α = 5.061
(︃

ωp

2π

)︃4
H2

s [1 − 0.287 log γ]

• ωp is the peak angular frequency

• Hs is the significant wave height

• γ = 3.3 is the peak enhance coefficient

• σ = 0.07 for ω < ωp and σ = 0.09 for ω ≥ ωp
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• ωp = ωn is the natural frequency of tank

The time history of δ is obtained through an inverse Fourier transform while the
rotation rate is calculated as a discrete derivate:

ω = ∆δ

∆Time

The rotation rate is then imported into the CFD software enviroment which inter-
polate the values by mean of a STEP method. Therefore the rotation rate is a step
function.
The output signal may contains much noise because of the caotic motion of fluid
particles at the free surface due to the water sloshing induced by a narrow range of
frequencies. Thus, the estimation of power spectral density of the output signal by
mean of Welch’s method is preferred to FFT analysis.
The Welch’s method consists in splitting up the signal of L points in K data seg-
ments which contain M points each; if M is more than L/K than each segment is
overlapping with the other. Denote R the number of overlapping points, therefore if
R= M/2 then the percentage of overlap is 50%.
The next step is to apply a window to each segment and calculate the Periodogram
by computing the squared magnitude of the discrete Fourier transform of the win-
dowed segment. Each periodogram is averaged by the number of points it contains
and the power spectral density is compute by the summation of the periodograms
divided by K. The computing of Power Spectral Desnsity is performed by mean of
pwelch Matlab’s command in which the Hann window is used.

7.1 Model Scale
In model scale the natural period of the system is T = 1.4s, hence the JONSWAP
spectra generated has its peak in wn = wp. In figure 7.1b the spectrum of δ (the
pitch angle) is reported and in figure 7.2 the Power density spectrum of the rotation
rate is shown. The settings of the CFD setup(mesh and timestep) are reported in
table 4.7.

Results

In figure is reported the δ angle that the U-tank describes during the simulation
and it is compared to the δ input (JONSWAP Spectrum) to verify that the motion
imposed in CFD is correct.
In figures 7.4b and 7.5b the τ and Torque spectrum respectively are shown. The
peak width is narrower than the input: the system, as expected, behaves like a band
pass filter.
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Figure 7.1: Angular position of input: a) Time hystory of δ, b) Power density
spectrum of δ
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Figure 7.2: Comparison between spectral density of pitch angle δ and rotation rate

Comparison with Analytical model

In figure 7.6 the time history of τ obtained by CFD analysis is compared with time
history of τ obtained by analytical model time response. The value of the friction
factor q used is the one found in regular wave test corresponding at amplitude
A = 2deg: q = 0.0212.
The analytical model generally overstimates the response for τ > 12° and understi-
mate the response for τ < 8°. This is due to the non linear correlation between the
friction losses and the velocity.
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Figure 7.3: δ output
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Figure 7.4
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Figure 7.5
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Figure 7.6: Comparison between the τ time responses from CFD analysis and from
Lloyd analytical model
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Figure 7.7: Comparison between the τ time responses from CFD analysis and from
Lloyd analytical model
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7.2 Full Scale

The natural period of FullScale System is Tn =, therefore the wp of the JONSWAP
spectrum is set as wp = wn. The CFD setup settings are reported in table ..

In figure 7.8 the time history and the power density spectrum of δ (the pitch
angle) are reported and in figure 7.9 the comparison between the PSD of the rotation
rate and the PSD of δ input is reported. The settings of the CFD setup(mesh and
timestep) are the same used in Regular motion and Free Decay test.
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Figure 7.9: Comparison between the pitch angle δ and the pitch rotation velocity
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Results

In figure 7.10b and 7.11b the τ and Torque power density spectrum respectively
are shown. The peak width is narrower than the input: the system, as expected,
behaves like a bandpass filter.

200 400 600 800 1000 1200

Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) τ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Freq (Hz)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
PSD

 input

 output

(b) τ

Figure 7.10
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Figure 7.11

Comparison with Analytical model

In figure 7.12 the time history of τ obtained by CFD analysis is compared with time
history of τ obtained by analytical model time response. The value of the friction

98



7 – Irregular waves

factor q used is the one found in regular wave test corresponding at amplitude
A = 2deg: q = 0.091.
The analytical model generally overstimates the response for τ > 15° and understi-
mate the response for τ < 13° neverthless the dynamic response is well captured
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Figure 7.12: Comparison between the τ time responses from CFD analysis and from
Lloyd analytical model
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Figure 7.13: Comparison between the τ time responses from CFD analysis and from
Lloyd analytical model
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8. Conclusion

The CFD model has been validated with experimental data. The good accuracy in
describe the flow motion has been demonstrated while the time and power consuming
can be improved with further considerations.
By mean of free decay test the correction factor K is found and its variation with
the scale is negligible. The friction factor q vary with the scale factor following the
well known trend of Moody’s friction factor with respect the Reynolds number.
In regular motion tests the non linearities have been shown: the RAO becomes
lower with increasingly large amplitudes of the imposed sinuisoidal motion.
The analytical linearized Lloyd model has been calibrated and validated in regular
wave test: the friction factor q changes with the amplitude and in particular it
increases with the motion’s amplitude.
In irregular wave tests the system response is investigated through the analysis
of the power density spectrum: the system shown its band-pass filter behaviour.
The analytical linearized Lloyd model has been calibrated with the friction factor q
corresponding to water level condition in the range of interest: the analytical model
succeeds to capture the system dynamic with low percentage error.
Thus, further tests can be performed in different conditions and different scales to
improve the accuracy of the linearized model in proximity of the working condition.
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