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ABSTRACT

T
he aim of this thesis is the optimization of the CNAO synchrotron working point in order
to achieve beam extraction with the RF-KO (Radio Frequency Knock-Out) technique. This
method would reduce the time needed for patient treatment since the non-extracted beam

is kept in the machine and could be re-accelerated in order to attain a new energy for the new
irradiation field. At present, the re-acceleration of the non-extracted beam is not possible since
the beam is de-bunched and the bunching process, i.e. trapping particles in the bucket, performed
by the RF cavity, would induce great particle losses (almost 50%). With the RFKO technique the
beam remains bunched so the RF cavity can accelerate it without losing half of the particles. As a
nuclear engineer, particle physics, accelerators and beam dynamics were not part of my academic
background. This is why the first two chapter of the thesis concern the physics of accelerator
as well as beam dynamics, they contain a kind of summary of the topics studied and of the
different references used. The third chapter is still a fully theoretical one since it contains the
different techniques for beam extraction, in particular, the slow ones will be highlighted since
the main topic of the thesis concerns the study of RFKO. From the fourth chapter on results
will be presented. The analysis of the hardware was the first set of experimental measures
performed and post-processed. At the beginning, different test benches have been built with the
aim of optimizing of the connections between the different components, i.e. long or short cable
connections (and so the location of the components themselves in the electronic or synchrotron
room). Fourier analysis was part of the study in order to highlight the fundamental harmonics
and their evolution as a function of the peak-to-peak inlet voltage signal. Then the numerical
simulation step has been performed. Deterministic particle codes simulating beam extraction
have already been developed. The post-processing code has been written on MatLab. Since first
results seemed to be promising, the modification of the original codes has been started in order to
try to improve the performances of the machine. Due to statistics the profile of the extracted beam
is not constant (as required for medical application) therefore the code for the kicker ramp-up
has been written using a Monte Carlo method for the random generation of kicks. An additional
code to further study the extracted particles has been developed in order to monitor the last three
turns of the particles before the extraction.
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RIASSUNTO

L
o scopo di questa tesi è l’ottimizzazione del punto di lavoro del sincrotrone del CNAO al
fine di ottenere l’estrazione del fascio con la tecnica RF-KO (Radio Frequency Knock-Out).
Questo metodo ridurrebbe il tempo necessario per il trattamento del paziente poiché il

fascio non estratto viene tenuto nella macchina e potrebbe essere nuovamente accelerato al
fine di ottenere la nuova energia per il nuovo campo di irraggiamento. Allo stato attuale, la
ri-accelerazione del fascio non estratto non è possibile poiché il fascio è de-bunched longitudinal-
mente e il processo di bunching, cioè l’intrappolamento di particelle nel bucket, eseguito dalla
cavità RF, indurrebbe grandi perdite di particelle (quasi 50 %). Con la tecnica RFKO il fascio è
sempre bunched in modo che la cavità RF possa accelerarlo senza perdere metà delle particelle.
Come ingegnere nucleare, la fisica delle particelle, gli acceleratori e le dinamiche del fascio non
facevano parte del mio background accademico. Questo è il motivo per cui i primi due capitoli
della tesi riguardano la fisica dell’acceleratore e la dinamica del fascio, contengono una sorta
di riassunto degli argomenti studiati e delle diverse fonti utilizzate. Il terzo capitolo è ancora
completamente teorico in quanto contiene una descrizione delle tecniche di estrazione del fascio,
in particolare quelle lente saranno evidenziate dal momento che il tema principale della tesi
riguarda lo studio della RFKO. Dal quarto capitolo in poi i risultati saranno presentati. L’analisi
dell’hardware è stata la prima serie di misure sperimentali eseguite e post-elaborate. All’inizio,
sono stati costruiti diversi banchi di prova con l’obiettivo di ottimizzare i collegamenti tra i diversi
componenti, cioè i collegamenti con cavi lunghi o corti (e quindi la posizione dei componenti
stessi nella sala elettronica o sincrotrone). L’analisi di Fourier faceva parte dello studio al fine di
evidenziare le armoniche fondamentali e la loro evoluzione in funzione della tensione picco-picco
del segnale in ingresso. Quindi è stata eseguita la fase di simulazione numerica. Erano già
stati sviluppati codici deterministici per studiare il percorso delle particelle nell’acceleratore
che dunque simulano l’estrazione del fascio. Il codice di post-elaborazione è stato scritto su
MatLab. Dal momento che i primi risultati sembravano essere promettenti, la modifica dei codici
originali è stata avviata al fine di cercare di migliorare le prestazioni della macchina. A causa
della statistica, il profilo del fascio estratto non era costante (come richiesto per l’applicazione
medica) quindi il codice per la rampa del kicker è stato scritto utilizzando un metodo Monte
Carlo per la generazione casuale di kick. È stato infine sviluppato un codice ulteriore per studiare
più nel dettaglio le particelle estratte al fine di monitorare gli ultimi tre giri delle stesse prima
dell’estrazione.
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HADRONTHERAPY AND CNAO

T
his chapter will give an introduction to radiobiology, useful to understand why the con-

ventional radiotherapy could be (in selected cases) substituted with hadrontherapy. This

medical treatment exploits the physics of particles beams and thus particles accelerators

can be studied in a new context. Hadrons are particles composed by quarks and held together by

the strong nuclear force,protons and neutrons are two of the elementary hadrons that compose

most of the ordinary matter. In this context, the focus will be on protons and carbon ions. In

the world there are several proton centres for cancer treatment, but just few of them are able

to accelerate also carbon ions. There are just six (operative) centres around the world that use

both the particle beams for treatments, but new ones are under construction or commissioning.

One of these centre has been built in Pavia (PV - Italy) and it is called CNAO: National Centre

for Oncological Hadrontherapy. At the and, the description of CNAO accelerating facility will be

done.
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CHAPTER 1. HADRONTHERAPY AND CNAO

1.1 Introduction to radiobiology

A cell can live, grow, reproduce and die thanks to the information contained in its DNA, perfectly

enclosed in the nucleus. Among all the processes occurring within a cell the most important is

its reproduction. Mitosis is the division process that brings the mother nucleus to divide in two

daughters nuclei both with the same genetic information, other processes (occurring also in other

parts of the human body) bring the cells to get specialized for a particular function. From embryo

to old people, the velocity at which cells reproduce themselves strongly decreases, being one of

the reasons of aging. This characteristic is also the reason of the different effects of radiation

interactions with biological tissue. When the radiation reaches the tissue, it can interact with the

local cells leading to different possible outcomes:

• No effects on the living cell;

• Delay in the division;

• Apoptosis: the cell dies before it divides or afterwards by fragmentation into smaller bodies,

and it is then absorbed by the neighbouring cells;

• Reproductive failure: the cell dies when it tries the first or subsequent mitosis;

• Genomic instability: delayed form of reproductive failure as a result of induced genomic

instability;

• Mutation: the cell survives but it contains genetic mutations:

• Transformation: the cell survives but the mutation leads to a transformed phenotype and

possibly carcinogenesis;

• Bystander effects: an irradiated cell can send signal to neighbouring unirradiated cells and

induce genetic damage in them;

• Adaptive responses: the irradiated cell is stimulated to react and become more resistant to

subsequent irradiation.

A tumour consists in a small group of cells, with genetic mutation that doesn’t respond to normal

apoptosis and then undergoes to fast growth. The altered cells still look like normal ones, but

their reproduction velocity is too high (hyperplasia). It can occur that one of the abnormal cells

undergoes to a further mutation that increases again its reproduction velocity. If this happens,

then an optical difference can be observed because that group of cells has a different form

and orientation (dysplasia) with respect to the healthy tissue. If the growth continues and

the boundaries of the local tissue is still not broken then the tumour is called in-situ tumour,

otherwise it is an invasive cancer. In this latter case if abnormal cells reach the blood or the

lymphatic system, they are able to set in another part of the body generating new tumour

2



1.1. INTRODUCTION TO RADIOBIOLOGY

FIGURE 1.1. Schematic representation of DNA-radiation interaction highlighting the
difference between direct and indirect action [23].

locations (metastases). The radiation interaction with biological tissue is one of the possible

reasons why a cell can be subjected to genetic mutation. There are two main mechanisms of

interactions, schematically shown in Figure 1.1:

• Direct action. The radiation interacts with the target causing ionization or excitation

through coulomb interactions. This starts a chain of physical and chemical events that is

typical of high LET particles.

• Indirect action. The radiation interacts with molecules producing free radicals (as hydroxyl

radical) which can damage the DNA through diffusive process within the cell. The biological

damage is caused by the rupture of chemical bonds substituted by new and abnormal ones.

The high reactivity of the free radicals can be explained thanks to their unpaired valance

electron. This type of interaction is characteristic of low LET particles.

To have a better understanding of the phenomenology it is important to explain the concept

of LET. LET (Linear Energy Transfer) can be defined as the energy locally deposited, dE, in the

medium by a charged particle of specified E0 energy on a path length dl.

(1.1) LET =
dE

dl

¯

¯

¯

¯

E0

LET is expressed in keV/µm and it is common practice to divide it into two regions: low and high

LET. The boundary is set around 10 keV/ µ m from sparsely ionizing (X and γ -rays, Co-60) to

densely ionizing (i.e., heavy charged) particles. In Table 1.1 there are values of LET for different

types of particles at different energies. The same particle can be considered a low LET particle

or a high LET particle according to its energy. On the one hand, radiation can cause biological

damages in the tissue, on the other hand if it is well controlled and accurately chosen it can be

used for cancer treatment. The therapeutic index, also referred to as therapeutic ratio, defines
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CHAPTER 1. HADRONTHERAPY AND CNAO

Energy [MeV] LET[keV /µm]

Electrons

0.01 2.30
0.1 0.42
1 0.25

Protons

2 16
5 8

10 4
Neutrons 5 3 - 30
Photons 1 -25 0.2 - 2

Carbon Ions 10 - 250 MeV/u 170 - 140

Table 1.1: LET for electrons, protons, neutron, photons and carbon ions for different energy values
or ranges [24].

FIGURE 1.2. Survival fraction and tumor response versus dose in Gy [25].

the amount of agent (in this case, the dose) above which the side-effects arise (i.e., radiation is

no longer helping in cancer treatment) and below which no effect can be seen. In Figure 1.2 it is

represented how the therapeutic ratio changes with the dose. It is easy to understand how low

doses induce no reactions in the tumour cells, as if they were almost insensible to lower doses.

On the other hand, a too high dose could be able to kill the tumour cells but, at the same time, it

is highly probable that it could produce side effects. There is so a quite thin line that separates

benefits from drawbacks of such a treatment.

Interactions of heavy charged particles with matter is of interest because at CNAO tumours

are treated using beams of protons and carbon ions. Due do their relatively high mass with

respect to the one of electrons with which they interact, their flight direction is practically left

unchanged after the collision. But as they move in matter, they continuously lose energy according
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1.1. INTRODUCTION TO RADIOBIOLOGY

FIGURE 1.3. X-rays undergo to exponential decay with the deposition of the maximum
dose at the skin level while beam of particles can deposit the the maximum dose at
the Bragg peak, which position can be changed by changing the beam energy [3].

to the Bethe-Bloch formula, reported in Equation (1.6).

(1.2) −
dE

dx
= 4πNer2

emec2 z2

β2

³

ln
2mec2β2γ2

I
−β2 −

δ(γ)

2

´

The formula describes the mean energy loss (that justifies the minus sign) per distance

travelled by the radiation across the medium. From a physical point of view, the kinetic energy

lost by the particle (Kerma) can be different from the energy absorbed by the biological tissue

(Dose). From Figure 1.3 it is possible to see this phenomenon in case of tumour treatment with

conventional radiotherapy (X-rays). The dose delivered to the tissue increases as the radiation

penetrates inside the body, it reaches a maximum and then it exponentially decreases. The initial

growing trend is known as skin sparing effect and it is due to collisions that make the radiation

non-collimated. On the contrary, when a beam of particles is considered a different phenomenology

occurs. There is an initial region along which the energy loss is constant, then it rapidly increases

reaching a maximum. The maximum energy lost (i.e., the Bragg peak) occurs at a certain

distance within the matter and then the particle has not enough energy to travel so the energy

loss falls to zero almost vertically and the particle is absorbed by the medium. This phenomenon

can be observed in Figure 1.3 where different Bragg peaks for different energies of the incoming

beam are represented. This feature is of great interest for medical applications since it allows

the positioning of the maximum energy loss at the tumour location just by changing the beam

energy. The combination of different Bragg peaks has to be carefully studied in order to match the

energy loss with the medical dose. This procedure takes into account different drawbacks as the

non perfectly mono-energetic beam, the penumbra region, the tumour shape and even more. As
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Type of radiation weighting factors

X-rays and γ -rays for all energies 1
Electrons and muons for all energies 1

Protons @ energy>2Mev 5
Alphas, fission fragments, heavy nuclei 20

Neutrons @ energy<10keV 5
Neutrons between 10keV and 100keV 10
Neutrons between 100keV and 2MeV 20
Neutrons between 2MeV and 20MeV 10

Neutrons @ energy>20Mev 5

Table 1.2: RBE for different particles at particular energies [18]

the exponentially decay is the characteristic feature of x-rays used in conventional radiotherapy,

the Bragg peak is the main physical characteristic of heavy charged particles interactions with

matter, and it is the main reason why it can be easily exploited to release the highest amount

of energy at the tumour location. This type of treatment is known as hadrontherapy or highly

precise radiotherapy. The amount of energy able to produce biological damages in the tumour

site is of fundamental importance in the treatment planning stage. It could be useful to compare

the dose necessary to produce the same biological damage by different type of radiations: this

information is collected in the Relative Biological Effectiveness (RBE) defined in Equation (1.7).

It should be considered that the RBE strongly depends on the radiation, as shown in Table 1.2.

(1.3)

RBE =
DX

DR

=
re f erence absorbed dose of a standard type X

absorbed dose of type R that causes the same amount of biological damage

The content of oxygen in cancer treatment is fundamental, in fact cell that are not fully

oxygenated require a higher dose (with respect to fully oxygenated cells) to obtain the same

biological effect. This behaviour is numerically expressed by the Oxigen Enhanced Ratio (OER) is

defined in Equation (1.8).

(1.4) OER =
dose to produce a given e f f ect without oxygen

dose to produce the same e f f ect with oxygen
≥ 1

The reason why a hypoxic cell has a different behaviour compared with an oxic cell, leading

then to a different radiotherapy response, could be due to the way the oxygen molecules affect

indirect actions, in particular the combination of free radicals (OH− and H+) with the molecules

themselves, making a chain reaction to build up. It is important to highlight that there is still not

unanimous agreement in the scientific community to explain how oxigen affect the radiotherapy

response. Assuming to deliver the same dose to the tissue (for example look at the red line in

Figure 1.9), the fraction of hypoxic cells that survive to the irradiation is larger than the one
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FIGURE 1.4. Fraction of survival cells vs. dose as a function of oxygen content. Focus on
different behavious of oxic and hypoxic cells when the same dose is delivered and
on the different dose necessary to kill a cell (of a certain family) when irradiated
with low or high LET particles [25].

FIGURE 1.5. RBE and OER vs LET comparison [9].

of oxic one, no matter if the irradiation is performed with high or low LET particle. It further

confirms the idea that the first type of cell (hypoxic) shows a higher resistance to radiation

treatment. In addition, considering just hypoxic or oxic cells the probability they survive to low

LET particle irradiation is higher than the case of high LET particle irradiation. This means

that the effect of oxygen content is more relevant in case of low LET particle treatment. By the

comparison between OER and RBE with respect to LET, as shown in Figure 1.10, it is possible

to conclude that high LET particles have a smaller OER but a higher RBE, which means that

the effective dose absorbed by the tissue is relevant but the effect on hypoxic cells is small; on

the other hand, low LET particles have higher OER so they have a greater effect on low oxygen

content cells but the biological damage they can induce is small.
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CHAPTER 1. HADRONTHERAPY AND CNAO

FIGURE 1.6. Penetration length versus relative dose for photons at 18Mev, protons at
135MeV and carbon ions at 254Mev/u and 300MeV/u. At 0cm corresponds the skin
of the patient. [26].

1.2 Hadrontherapy

Hadrontherapy is an innovative radiotherapy which first date back to 1946 [26]. The term

hadrons refers to those particles composed by quarks held together by the strong nuclear force.

Protons and neutrons are the two fundamental hadrons that compose most of the ordinary matter.

Among the different medical procedures for oncological patients, the main difference between

conventional radiotherapy and hadrontherapy can be observed in Figure 1.6. Photons show the

highest dose release between 2.5cm and 3.5cm well above the tumour position; a beam of protons

or carbon ions with specific energy shows the characteristic Bragg peak at the desired position.

From Figure 1.6, it is possible to understand that to totally cover the tumour, it is necessary to

irradiate the patient with beams at different energies and to assess that the cells receive the

required dose to be killed. The overlapping of the dose curves of mono-energetic beams in depth

will issue an expanded Bragg peak, or “spread-out Bragg peak” (SOBP), which will guarantee

the conformation of the dose delivered to the target volume in the direction of beam penetration

and, simultaneously, a narrow distal penumbra as shown in Figure 1.8. By the knowledge of the

specific ion RBE, for every value of energy, i.e. the RBE at various depths of SOBP as shown in

Table 1.2, physical dose may be conformed to obtain a uniform biological dose along the SOBP and

avoid regions with high dose and high RBE outside the tumour volume. In both cases (photons

and protons/carbon ions), the tissue in front of the tumour interacts with the particles and

receives a certain dose. This side-effect can be handled, in fact, if in the front of the tumour there

are organ at risks (organs sensible to irradiation and fundamental for patient life), the patient

can be irradiated from another direction or with multiple beams in order to reduce as much

8
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FIGURE 1.7. Comparison attenuation coefficients of water and lead in the energy range
for radiotherapy [14].

as possible the dose deposited in the sensible region. A fundamental drawback of conventional

radiotherapy is that photons have an infinite range, i.e. their intensity is exponentially reduced

as it passes by the medium and it goes to zero as the travelled path approches to infinte, meaning

that all the "thickness" of the patient receives a dose that must be minimized as much as possible.

In the energy range of interest for radiotherapy, water has a smaller attenuation coefficient than

lead (frequently used to shield radiation in medical X-ray scanning technique), that globally

explains why photons have the slowly decreasing trend in Figure 1.6.

Obviously, cancer treatment with hadrons is not always possible. The tumour has to be of

a specific kind, very resistant to conventional radiotherapy (or other therapies), and localized.

In Table 1.2 there is a row where generic heavy nuclei are considered, to this category pertains

carbon ions too. The reason why it is difficult to assess a weighting factor to each of those particles

is due to the way they interact with matter. On the one hand, as Figure 1.6 shows, carbon ions

have a narrower Bragg peak than the one of protons, meaning that they release the highest

energy in a very limited region. On the other hand, they release a higher amount of energy in the

region behind the tumour because as they pass in the medium they undergo to fragmentation,

producing an additional but unnecessary dose released in the tissue; this phenomenon leads to a

non-zero dose released smaller than the one given by photons in the same range.

Figure 1.9 shows the different dose distribution to the tumour and the surrounding healthy

tissue when the patient (either paediatric or adult) is irradiated with protons (on the right hand

side of each group of pictures) or with IMRT (Intensity-Modulated Radiation Therapy). In the

paediatric case study, the tumour is in the upper part of the body (thoracic tumour) near critical

organs like heart, lungs, cord and testes, and it is well confined in the left-hand side of the body.

9
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FIGURE 1.8. Spread-Out Bragg Peak (SOBP) [21].

FIGURE 1.9. Comparison between Hadrontherapy and IMRT in paediatric and adult
critical tumour location. From the left to the right there are: an abdominal paedi-
atric tumour, two case of lungs tumour in adults. The different dose distribution for
the two treatment strategies has to be strongly highlighted. To the blue colour is as-
sociated the lowest dose delivered to the patient, whereas the red one corresponds
to the highest one [7].
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FIGURE 1.10. Schematic representation of the CNAO synchrotron and treatment rooms
[27].

The use of IMRT gives the highest dose to the tumour, but also the critical organs around it, the

use of protons beam ensures the highest dose in the required region, leaving the cord and part of

the testes unirradiated. In the same way, two different case of lungs tumour in adults are shown.

The use of protons succeeds in avoiding heart, stomach (on the right side of Figure 1.9) and cord

(on the left side) to be irradiated by the beam.

1.3 CNAO facility

CNAO (Italian acronym for National Centre for Oncological Hadrontherapy)[27] is a facility

conceived to supply hadrontherapy treatments to patients recruited all over the Country and it

has been realised in Pavia, Italy. It is constituted by three operating treatment rooms with four

beam lines (three horizontal and one vertical) and one experimental room under installation.

The construction of the CNAO facility has been completed at the beginning of 2010 and on

October 2010 the Italian Ministry of Health approved the beginning of the Phase 1 of clinical trial,

i.e. the dosimetry and radiobiology programme necessary for the qualification of the two types of

beams. The particle beams accelerated in the synchrotron are extracted and send alternately in

one of the treatment rooms. In particular, proton beams have an energy range between 60MeV

and 250MeV, while carbon ions have an energy between 120MeV/u and 400MeV/u. Energies of

such beams will cover a range in water up to about 27 cm, complying with the requirements

of clinical use. As far as the main characteristics of CNAO synchrotron are concerned, it is a

circular accelerator, of about 25m in diameter. Inside the ring, the sources, the injection lines

(particles are injected at 7MeV/u) and a linear accelerator are housed. Outside the ring there are

four extraction lines, about 50m each, leading the extracted beam into one of the treatment rooms.

11
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FIGURE 1.11. Real image of CNAO synchrotron. The blue components are the dipoles,
while at the centre is possible to observe the LINAC in pink, the electric instru-
mentation in orange, the sources of hydrogen and bioxide carbide in grey. [27].

FIGURE 1.12. Schematic representation of CNAO lattice sequence. [27].

In each of the two side rooms (Room 1 and Room 3), in Figure 1.15, a horizontal beam is driven,

while in the central one (Room 2) the beam can be directed both horizontally and vertically. The

lattice, i.e. the sequence of magnets building up the accelerator, is based on two symmetric arcs

joined by two non-dispersive straight sections. The resulting geometry is illustrated in Figure

1.17. In the synchrotron there are sixteen dipoles and twenty-four quadrupoles. The dipoles are

powered in series, the quadrupoles have been divided into three families of eight quadrupoles

each and there are also three sextupoles. The independent power supply configuration of the three

families allow the necessary flexibility to obtain the two non-dispersive regions. The injection

12
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FIGURE 1.13. Active dose distribution. Fast horizontal and slow vertical scanning. [27].

scheme is multi-turn in the horizontal plane and the beam acceleration is provided by a single RF

cavity located in the non-dispersive region. The extraction procedure is the most critical step of

the whole synchrotron project. An extracted beam (often called spill) as much as possible uniform

in time and constant in transverse distribution is a necessary requirement for a clinical use.

In this scheme a circulating beam, having a momentum spread, is extracted by pushing it into

resonance with a betatron accelerator (the detailed explanation of the extraction process will

be discussed in the next chapters). The location of the betatron core is not critical and it has

been placed in a free straight section of the synchrotron lattice. CNAO is designed for a fully

active dose distribution system, as Figure 1.13 shows. This means that the tumour is ideally

divided into “slices”, i.e. into regions that are reached by particles of the same energy; the energy

change of the beam for each slice is performed by the synchrotron. Each slice is then irradiated

by “painting” it with a pencil beam. In this way the beam is directed to the various points of the

tumour, delivering the correct number of particles prescribed by the treatment plan. The position

of the beam is controlled in real time thanks to a system of monitors that measure the position

of the beam and the number of particles received by each elementary volume element. Patient

set-up verification and motion management in particle therapy is a critical issue as the required

accuracy level is higher than in conventional photon radiotherapy.
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BEAM DYNAMICS

A
n accelerator has one dimension which is dominant with respect to the other two. This

dimension defines the direction along which the particle undergoes to revolutions within

the machine and it is called longitudinal direction. The other two are called transverse

directions. The particle is accelerated along the longitudinal direction and the study of the

phenomena is part of the longitudinal beam dynamics. Even if this topic is of great interest, a

brief explanation of the phenomenology will be performed only at the end of this section. The

main focus will be on the other two directions and the study of this motion is called transverse

beam dynamics.

The chapter will be divided in different subsection, at the beginning there will be a brief

description of the different accelerators and of the most common magnets for adjust and control

particle position and particle motion; then a detailed derivation of the motion equation will be

presented. Thus, the concept of dispersion function will be introduced as the particular solution of

the particle motion equation. It will follow a description of particles beams, new concepts will be

introduced and other will need to be redefined, so it will be possible to observe common points and

differences with respect to single particle motion. At the end, fundamental machine parameters

will be mathematically defined and briefly described since they will be strongly used in the next

chapters.
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CHAPTER 2. BEAM DYNAMICS

2.1 Accelerators

A particle accelerator is a device that increases particle energy using electromagnetic fields. A

group of particles with almost the same energy and that is kept well-confined in the machine is

called beam. Accelerators can be classified according to different criterions. At first the simplest

and more intuitive one is: the geometrical shape. Accelerator can be linear or circular. The

design of linear accelerators (named also LinAcs) strongly depends on the type of particle to

be accelerated, electrons, ions or protons which strongly differs on their mass. Although this

topic is interesting it will not be treated in this context because the focus will be on circular

accelerators. They are usually connected to a Radio Frequency (RF) cavity that allows particles to

be accelerated up to the required energy. According to this classification an important exception

exists: betatron is a circular accelerator that increases the beam energy using the magnetic

induction principle. As particles energy is increased they lose part of it due to electromagnetic

radiation: the synchrotron radiation. This emission gets more and more important as lighter

particles are accelerated.

When a charged particle moves in an electromagnetic field, it is subjected to a force that is

called Lorentz force:

(2.1) F= q(E+vxB)

A component of the force is in the same direction of the electric field, the other one is proportional

to the cross product between the particle velocity and the magnetic field. Obviously, if the particle

is subjected just to one between the electric and the magnetic field, then Equation (2.1) simplifies

as well as the particle motion.

2.1.1 Electrostatic accelerators

A charged particle is subjected to the action of a constant and time independent electric field,

thus, in a non-relativistic case Equation (2.1) simplifies into:

(2.2) F= qE= ma

It was one of the first accelerator to be designed and its first construction can be dated back

to 1932 by J.D. Cockcroft and E.T. Walton. It exploits the physical principle of electrostatic

acceleration: it works by accelerating a particle through a constant potential difference V. The

particle acceleration can be retrieved being the potential difference directly proportional to the

electric field by the particle charge. The strong limitation of such a device is due to physical

properties of capacitors and diodes, it leads to a maximum potential difference of 700kV. Higher

energies could be obtained with a Van de Graaff accelerator. Moreover, being the electric field

conservative, it is not possible to impose too high potential difference otherwise a disruptive

electric discharge occurs. In order to have particle beams at higher energies it is necessary to

make the electric field time dependent.
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FIGURE 2.1. Working principle of a LINear ACcelerator. It is highlighted the fact that
frequency of the voltage generator is synchronous to the passage of the particle in
the free flight region [1].

2.1.2 LinAcs

LinAcs are Linear Accelerators where particles are subjected to a time dependent electric field.

In this context and under the assumption of not considering relativistic particles, Equation (2.1)

is written as:

(2.3) F= qE(t)= ma

Linear accelerators are constituted by two different components: drift tubes and space between

them. Drift tubes are connected to the voltage generator that imposes a sinusoidal potential

difference, in particular, consecutive drifts are connected to the two opposite sides of the generator.

They work like a Faraday cage, so when the beam crosses them, it does not feel any potential

difference, and so, any electric field. Instead, when it moves in the space between the drifts

its motion is influenced by the periodic wave of the voltage generator. For this reason, it is

necessary to perform opportune changes in such a way that the electric field vector points in the

same direction of the particle momentum. So, a change in the length of the drift tubes or in the

frequency of the generator is mandatory. If the aim of the accelerator is producing a continuous

particle beam at the required energy, then the best choice is changing the length of the drift tubes

so that the previous conditions are satisfied. Between two drifts the particle has to be accelerated,

this means that if it enters this space while the generator is imposing an electric field which

direction is coherent with the particle motion, then it will enter the next drifts with a higher

energy. By keeping drifts of the same length would mean that particles always need less time to

cross them and so they will pass in the space between drift always at different times and soon

the direction of the electric field will not be any more coherent with the direction of the particle
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motion (the particle could be decelerated instead of being accelerated). For this reason, the length

of the drift tube is increased so that the particle can be always accelerated when it moves in the

space between drifts. Otherwise, the change of the generator frequency is possible too, but having

clear in mind that in this configuration is not possible to achieve a continuous beam. In this

latter case, the frequency is adapted to the transit time of the particle in the free flight region.

Usually drifts are connected to only one RF generator, so when the frequency is adapted to allow

the acceleration of particles exiting the drift n, those that are going out from the drift n-1 will

have a lower energy so they will see the accelerating field for a lower time. Performing the same

reasoning for particles exiting the first drift, if the difference in energy is significant, they could

enter the free drift space when the field is in the opposite direction, being so decelerated. This is

the reason why in this last configuration is not possible to accelerate in a coherent way all the

particle, so it is not possible to have a continuous beam but just a bunch of particles.

2.1.3 Cyclotron

It belongs to cyclic RF accelerators. It has a fixed magnetic field imposed by an external electro-

magnet, that it is responsible for curving particle trajectories, and a time dependent electric field

made by a RF generator that accelerates particles. Thus Equation (2.1) turns into:

(2.4) F= q(E(t)+vxB)

In the Figure 2.2, it is reported a schematic representation of a cyclotron accelerator. There

are two electromagnets imposing the external magnetic field which direction can point upward

or downward according to the polarization of the electromagnets themselves. In the region

between the magnets there are two (or more) electrodes, called dees. The dees are connected to an

alternating RF voltage generator that give rise to a potential difference between the electrodes.

In the space between the dees, the particle perceives the electric field, whereas once it is inside

the structures it is shielded (they work as Faraday Cages). The ion source is located (red dot in

Figure 2.2) in the horizontal plane that contains the dees, and it is also the plane where particles

motion occurs. In particular, we can distinguish two main regions: the one inside one of the two

dees and the space between the dees themselves. In the first one, the particle is totally shielded

from the electric field, so it undergoes only to the motion imposed by the presence of the magnetic

field. The motion equation (for particles with v << c) is found by the balance between the Second

Newton’s law and the magnetic component of the Lorentz force:

(2.5) F = ma =
mv2

r
= qvB

From the force balance described in Equation (2.4), the curvature radius can be computed:

(2.6) r =
mv

qB
=

p

qB
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FIGURE 2.2. Schematic representation of a cyclotron from [4].

Once the particle leaves the dee, it perceives the electric field and in the space between the

dees and so it is accelerated. Due to the change in its velocity, when it enters the next dee, the

curvature radius will be different and it will change according to Equation (2.2). So, it results

in a spiral motion of the particle towards higher radii. The frequency of the motion is called

gyro-frequency and can be computed as written in Equation (2.5).

(2.7) f =
qB

2πm

Usually, a cyclotron is designed according to the maximum particle energy, so that it can reach

the required value at the last spiral step, slightly before it is deflected and extracted. The main

characteristic of this kind of accelerator is that it continuously accelerates particles, resulting in

a beam of particles of almost the same energy. Their are mainly used for proton therapy, but due

to the constant energy of the extracted beam it is necessary to put degraders before the beam

reaches the patient in order to get the right energy for the treatment. This feature leads to the

impossibility to use cyclotrons with heavy charged particles, as carbon ions. More sophisticated

cyclotrons have been built. It is possible to find multi-dees cyclotrons with curved edges in order

to ensure beam fusing and higher maximum energy.

In the Figure 2.3 it is possible to observe a cyclotron of Paul Scherrer Institut (PSI - Switzer-

land) which has eight curved dees (eight sector cyclotron) and four accelerating cavities. In this

new configuration, a particle is accelerated four times before it passes again by the same electrode.

The general result is that cyclotrons of the same dimensions (i.e. equal extraction radius) but with

a different number of accelerating sections will generate particles beams of different energies.
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FIGURE 2.3. PSI Cyclotron from [8].

2.1.4 Synchrocyclotron

The main defect of cyclotrons is detectable when light particles, i.e. electrons, are accelerated.

In this case, when the particle approaches the speed of light, its mass reduces according to

relativistic laws. So, to account for this changes, the rest mass of the particle is corrected adding

the ratio between the particle speed and the speed of light (known as β, one of the two Lorentz

factors). The mathematical expressions is found in Equation (2.8).

(2.8) m =
m0

q

1− ( v
c
)2

=
m0

p

1−β2

A synchrocyclotron is a circular accelerator that accelerates particles with RF cavities and

it can be said to be the first one that solves the problem of relativistic effects in light particles

acceleration. In this condition, the mass reduces according to Equation (2.8) so the gyro-frequency

increases according to Equation (2.7). In order to keep a constant gyro-frequency there are

two available options: the magnetic field can be changed or a reduction of the RF voltage

generator could be performed. Usually this last option is preferred. So, a synchrocyclotron works

with a constant frequency up to the moment when particles start to get closer to the speed

of light, i.e. relativistic mass reduction becomes important, then the frequency is reduced. In

this configuration a continuous beam can not be obtain, because as the frequency is adapted

to relativistic particles, those near to the centre of the accelerator, that are still not relativistic,

will not be accelerated in a coherent way. So, only “packages” of particles are accelerated up to

the required energy the others can be considered to be lost. Obviously, one of the main cons of

this accelerator is to have a non-continuous beam and dimensions that depend of the maximum

energy.
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FIGURE 2.4. Betatron schematic representation from [11].

FIGURE 2.5. Transverse and longitudinal section of a betatron from [6, 28].

2.1.5 Betatron

As the names says, a betatron is an accelerator for beta particles, i.e. electrons. The main feature

of a betatron is in the way it accelerates particles: it does not exploit the RF cavity principle,

i.e. a RF electric field, but it practically works as a transformer. It has a toroidal shape and

makes the beam work as the secondary winding. In Figure 2.4, primary winding is highlighted

with the number 24 and 25: it is connected to an AC generator (number 36) and it is twisted

around two electromagnets (number 18 and 19). In this configuration, the magnetic field varies

in time according to the time dependent current in the winding. This field imposes the circular

trajectories on which electrons move inside the torus and it also induces in the secondary of

the transformer, i.e. the beam, a time dependent electric field that accelerate the particles. It is
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FIGURE 2.6. Schematic representation of a synchrotron from [2].

possible to observe the torus from above on the right hand side of Figure 2.5, while on the left

hand side there is a representation of its transverse sections. At the centre particles are subjected

to the nominal field that progressively decreases moving towards the outer region. Looking at the

behaviour of light particles in a betatron, different discoveries have been made. When a particle

is accelerated it loses part of its energy by radiation emission: the synchrotron radiation or

magnetobremsstrahlung radiation. It is characteristic of those acceleration phenomena where the

acceleration occurs on a closed circular path, i.e. it occurs both in the cyclotrons and synchrotrons.

It has been detected the first time during the acceleration of an electron beam and it is easy

to measure for almost relativistic particles. As far as particle optics is concerned, particles in

a beam do not follow exactly a circular path and when they move from the equilibrium orbit

they are subjected to restoring forces that bring them back to the stable orbit. This phenomenon

was studied at first in betatron. Hence the name of betatron oscillations for the particle motion

around the reference orbit, but this topic will be studied in detail in the next chapter.

2.1.6 Synchrotron

In a synchrotron, Figure 2.6, particles can move on a closed circular path which radius is constant

and they reach the required energy after the acceleration step; both goals are achieved by a

time dependent magnetic field that increases in time. The process is done in such a way that

the electric current in the magnets, and so the magnetic field generated, is always synchronous

with the actual kinetic energy of particles, thus the name of synchrotron. Once the beam has

reached the desired energy, the machine provides a constant magnetic field to keep particles well

confined in space. Particle motion in the longitudinal direction (i.e. along the main circumference

of the accelerator) is characterized by the accelerating phenomenon achieved by RF cavities. The

bending function in the longitudinal direction is ensured by a magnet made by just two poles:

dipole magnet. The magnetic field is vertically directed, and it can point upwards or downwards
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FIGURE 2.7. CNAO accelerating facility - schematic

according to the way the magnet is connected to the electric grid, but the bending magnitude,

i.e. the angles, strongly depends on the particle’s charge too. On the transverse direction, other

phenomena occur. The particle is subjected to the Lorentz force which direction is given by

the cross product between the particle velocity and the magnetic field. The confinement of the

beam in the transverse direction is mainly ensured by quadrupoles that impose focusing and

defocusing forces. A synchrotron is usually composed by section that repeats N times until the

whole circumference is covered. This feature can be observed in Figure 2.6, where there are

four elementary sections connected by a straight one on the right side and the injection septa

on the left side; while in the other two are located the RF cavities. According to the description

performed in the previous chapter, a similar structure can be found in CNAO synchrotron too. It

is possible to observe that there are almost two symmetric sections connected by the injection and

extraction septa, located on the right hand side of the Figure 2.7 and, on their opposite side there

is the RF cavity. Moreover, at the middle of each section there is an almost straight section which

host the betatron (used for the beam extraction) on one side and a kicker for RFKO extraction on

the other side.
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2.2 Magnets for accelerators

In order to further study the particle motion in a circular accelerator a synchrotron will be

considered. It is a complex machine and its description is quite hard, but starting from a simple

and schematic representation there are three main components that are necessary to obtain an

energetic well confined beam of particles on a limited space:

• RF cavities: accelerate particles up to the required energy;

• Dipoles: bend the beam in the longitudinal plane so that it can follow the studied path.

They are used in general to let the beam move on a specific path, it could be the longitudinal

plane or the extraction line, in order to move the beam to treatment rooms or to change

the irradiation direction (common practice in medical accelerators, more specifically for

CNAO);

• Quadrupoles: focus the beam in the two transverse planes;

• Sextupoles: influences the momentum spread of a beam, i.e. the width of its (almost)

gaussian distribution.

RF cavities influence particle motion in the longitudinal plane so they will be treated at the end

of the chapter as previously explained. Instead, the other two components are of great interests.

A dipole is a magnet constituted by just two poles. Its function is to bend the beam in the

required direction. An example can be obserbed is Figure 2.8 where it is reported a real image of

a dipole magnet (left side of the picture) and its schematic working principle (on the righ side).

In the case represented in the figure, the magnet bend the particle in the longitudinal plane

making it follow, for example, a circular path. Assume to consider a simplified configuration

where the magnetic field is constant and uniform along all the magnet, then the particle motion

is influenced by just one component of the Lorentz force:

(2.9) F= qvxB

According to the vectors represented in Figure 2.8, the force direction (given by the cross product

between velocity and magnetic field) is towards the centre of the accelerator when a negative

charged particle is accelerated. It easy to observe that changing the direction of the particle

velocity, or the polarization of the magnet, the force would be directed on the opposite side leading

the particle to move outwards the circumference and soon being lost if nothing else is done to

bring it back.

The other component to study is a quadrupole and as the name says, it is constituted by

four poles. Assume that the magnet is connected to the electric grid in such a way that the

electromagnets generate magnetic poles as represented on the right hand side of Figure 2.9. If a

positively charged particle moving along the direction outgoing from the page plane is considered,
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FIGURE 2.8. The figure represents the image of a real bending dipole (on the left) and
the way it works when it is installed in the longitudinal plane of an accelerator.
The direction of the force can be justified if the particle accelerated has a negative
charge, as electrons. [10]

FIGURE 2.9. Real image of a quadrupole and its schematic representation. The blue
lines represents the magnetic field line whereas the red ones show the direction
of the Lorentz force in the magnet, considering a particle moving with a velocity
directed in the outgoing direction from page plane. [12]
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FIGURE 2.10. Focusing and defocusing quadrupoles: schematic representation and
beam envelope from [5, 28].

then it is subjected to a Lorentz force directed as the red line. So, if the particle is horizontally

displaced, the force will move it back towards the centre leading to a focusing action on the

particle; on the contrary, if the particle is vertically displaced, it will be further pushed away

because of the defocusing effect of the force in that direction. Imagine now to change the way the

magnet is connected to the electric grid, then the electromagnets will have opposite polarization

with respect to the one represented in the schematic, i.e. the magnetic field lines (in blue) will be

directed in the opposite way. This means, that if the chosen particle is always the same (same

charge, same velocity direction), the focusing/defocusing effect induced by the Lorentz force will

act in the opposite way to the one represented in the Figure 2.7. The first kind of quadrupoles

(horizontally focusing and vertically defocusing) is called Focusing Quadrupoles (QF) while the

others (vertically focusing and horizontally defocusing) are called Defocusing Quadrupoles (QD).

According to Figure 2.10, it is possible to understand that according to particle position within

the vacumm chamber, it undergoes to strong or weak focusing or defocusing forces. The sequence

of a QF and QD allows a focusing action along the direction in which the previous quadrupole

induced a defocusing action. Thus, in the beam it is possible to observe a generally focusing effect.

Sextupoles are magnets composed by six poles as shown on the left side of Figure 2.11. When

a particle enters a quadrupole with a displaced position with respect to the centre of the vacuum

chamber, then it undergoes to a strong focusing along one of the two transverse directions.

Considering a group of particles, each of them with a different displaced position, then the focal

spot of the quadrupole won’t be anymore a dot. It is a common phenomenon that can be observed

also in normal optics, the result is a blurred image. In order to overcome to this chromatic

aberration, sextupoles are introduced. They induce an additional focusing or defocusing action
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FIGURE 2.11. Sextupole and its working principle [12, 13].

leading to have a constant and not blurred focal spot.

The way a particle (and later on, a beam) moves in an accelerator is studied in beam optics,

in particular as far as dipoles and quadrupoles are considered the optics is linear whereas

the addition of other magnets with more than four poles (sextupoles, octupoles, . . . ) induce

interactions between the motion in the two transverse planes leading to a non-linear beam optics.

2.3 Beam optics

In a circular accelerator dipoles and quadrupoles are arranged so that a particle can move on a

close circular trajectory. Usually the radius of this trajectory is called ρ and it is the design value

for the orbit along which particles (theoretically) would have to move on as shown in Figure 2.12.

The motion is stable if restoring forces spontaneously arise when the particle moves from the

design path. In a magnetic field with no dependencies on the azimuthal direction, it is possible to

express this relation in terms of a force balance between the Lorentz force and the centrifugal

one:

(2.10) vxB :







> mv2

r
, i f r > ρ

< mv2

r
, i f r < ρ

Particles that move on an arc with curvature radius slightly larger than the reference one will

experience a Lorentz force bigger than the centrifugal one, this ensure the particles to move

back to the nominal path. On the contrary, those particles that move at radii smaller than ρ will

experience a bigger centrifugal force that will make them move towards the nominal trajectory. A

similar rational can be adopted for all those particles that are vertically displaced with respect to

the plane where the nominal orbit lays. When in an accelerator a beam of particles is considered,

those that are vertically or horizontally displaced with respect to the design orbit will undergo
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FIGURE 2.12. Circular path of a generic charged particle moving in a magnetic field
pointing in the outgoing direction with respect to the page plane. Modified from [5].

to oscillations around it. These oscillations are called betatron oscillations and the number of

oscillations per turn in the machine is called betatron tune or Q-tune. This quantity is a

fundamental characteristic of the beam and it will be analyzed in detailed later on in this chapter.

2.3.1 The Hill’s equation

In order to determine the motion equation, the particle position has to be expressed in terms of

the design value radius of the reference orbit (ρ), as a function of radial position (to account any

possible horizontal displacement) and vertical one (to consider vertical displacements too):

(2.11) R= ρ+ rur + zuz

Then deriving two times with respect to time the previous expression, it is possible to obtain the

acceleration:

(2.12) R̈= (r̈− rθ̇2)ur + (2ṙθ̇+ rθ̈)uθ+ z̈uz

A particle that moves in an electromagnetic field with the acceleration computed in Equation

(2.12) has a confined motion if the condition expressed in Equation (2.10) is respected. So, each

component of the force at which the particle is subjected has to be compared with the magnetic

part of the Lorentz force (it’s the one that ensure the particle confinement):

(2.13) m(r̈− rθ̇2)= q(vθBz −vzBθ)

(2.14) m(2ṙθ̇+ rθ̈)= q(vzBr −vrBz)
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(2.15) mz̈ = q(vrBθ−vθBr)

The previous formulae are the balance equations respectively in the radial Equation (2.13),

longitudinal (or azimuthal) Equation (2.14) and vertical direction Equation (2.15). The second

one can be neglected since it was said that longitudinal dynamics will be discussed later on, so

focus on the other two. They can be further simplified considering that:

• The magnetic field does not depend on θ, i.e. the azimuthal direction;

• The component of the particle velocity on the azimuthal direction is the dominant one with

respect to the others and it can be referred just as v.

So Equation (2.13) and Equation (2.15) turn into:

(2.16) m(r̈− rθ̇2)= qvθBz

(2.17) mz̈ = qvθBr

An additional simplification can be performed by substituting the radial magnetic field with

the one in the x direction; it is only a matter of notation since changing the reference system

the radial direction is coincident with the x one. In addition, even if it is not totally correct,

from a physical point of view it is more interesting to observe how variables change along the

longitudinal axes of the machine (s) instead of their time variation, so:

d

dt
→ v

d

ds

d2

dt2
→ v2 d2

ds2

Then Equation (2.16) and Equation (2.17) can be written as:

(2.18)







mv2 d2x
ds2 −mv2 dθ

ds
=−ev(B0 − gx)

mv2 d2z
ds2 =−ev(gz)

The last passage to be performed before looking for a solution is defining the following quantities:

(2.19) k(s)=
eg

mv
=

eg

p
quadrupole normalized strength

(2.20)
1

ρ(s)
=

eB0

mv
=

eB0

p
dipole strength

From the mathematical definition of arc of circumference, it is possible to perform a Taylor

expansion of the radius and the momentum. By the substitution of definitions (2.19) and (2.20)

the set of Equations (2.18) assumes the following form:

(2.21)







d2x
ds2 − (k(s)− 1

ρ(s)2 )= 1
ρ
∆p

p0

d2z
ds2 +k(s)z = 0
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If only the homogeneous part of Equation (2.18) is considered, then they can be written in a

compact form as:

(2.22) y′′(s)+K(s)y(s)= 0

This equation is called the Hill’s equation.

Where the parameter K(s) assumes different forms according to the considered direction (x or z).

(2.23) K(s)=







−
³

k(s)− 1
ρ(s)2

´

, y= x

+k(s), y= z

The determination of the solutions is quite complex if the parameter K(s) depends on s. But

considering a small section of an accelerator along which K(s) can be considered constant with

respect to s, then the solution of the Equation (2.22) is:

(2.24) y(s)= AC(s)+BS(s)

In this case the Hill’s equation is called piece-wise constant Hill’s equation, where A and B are

constants to be determined by imposing the initial conditions on y(s) and its derivative y’(s) at

s=0. When this step is performed, the final form of the solution is:

(2.25) y(s)= y0C(s)+ y′0S(s)

And it is called Sine-like Cosine-like solution. Another way to write the solution is adopting a

matrix formalism:

(2.26)

Ã

y

y′

!

=
Ã

C(s) S(s)

C′(s) S′(s)

!Ã

y0

y′0

!

2.3.2 Matrix formalism

The matrix that describes how particle position and particle divergence changes when it passes

through a segment of length s in an accelerator is called Transfer matrix. The sign of K defines

the type of sine-like and cosine-like functions to be adopted. In fact, when K>0 the solution is

a linear combination of sine and cosine, whereas when K is negative, then the functions are

hyperbolic sine and hyperbolic cosine. Equation (2.26) can be further developed as follows (the

coefficients in front of the functions come from the integration constants, the detailed calculations

are not reported here to avoid a too heavy notation).

(2.27) For K > 0 :

Ã

y

y′

!

=
Ã

cos
p

K s 1p
K

sin
p

K s

−
p

K sin
p

K s cos
p

K s

!Ã

y0

y′0

!

(2.28) For K < 0 :

Ã

y

y′

!

=
Ã

cosh
p
|K | s 1p

|K | sinh
p
|K | s

p
|K | sin

p
|K | s cosh

p
|K | s

!Ã

y0

y′0

!
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Without removing the assumption of piece-wise constant Hill’s equation, the transport matrix

for those accelerator components (quadrupoles, dipoles) that allow a linear particle optics can be

derived. Moreover, a new component will be added but its description is quite intuitive: the free

drift.

2.3.2.1 Free drift

A free drift is a segment in which the particle is not subjected to any magnetic field. The

particle just “flies” from one point to another one. The transfer matrix describes the position and

divergence transformation at which the particle undergoes when it passes through this element.

The free drift is represented as a space of length l with K=0, so the transfer matrix is easy to

write, with the only exception of the element (1,2) that requires the use of a notable special limit.

(2.29) M f d =
Ã

1 l

0 1

!

2.3.2.2 Quadrupole

Since quadrupoles can focus the beam horizontally and, at the same time, defocus it vertically

(QF type, k > 0) or viceversa (QD type, k < 0); two different matrices have been obtained (for the

specifications on K look to Equation (2.23)):

(2.30) K < 0, k > 0 MQF =
Ã

cos
p

k l 1p
k

sin
p

k l

−
p

k sin
p

k l cos
p

k l

!

(2.31) K > 0, k < 0 MQD =





cosh
p

|k| l 1p
|k|

sinh
p

|k| l
p

|k| sin
p

|k| l cosh
p

|k| l





The matrices can be simplified if the thin lens approximation is adopted; this assumption leads to

consider a magnet of almost zero thickness and same focal length:

l → 0 kl = const

So the sequence of a focusing and defocusing quadrupole (having the same focal length) separated

by a free drift space, as reported in Figure 2.13, can be represented by:

• Horizontal plane: M = MQD ∗M f d ∗MQF =
Ã

1− l
f

l

− l
f 2 1+ l

f

!

• Vertical plane: M = MQF ∗M f d ∗MQD =
Ã

1+ l
f

l

− l
f 2 1− l

f

!

A particle that passes through a lattice composed by sequence of components described above it

tends to be simultaneously focused on both the vertical and horizontal direction. This particular

lattice sequence is commonly known as the FoDo Lattice (Focusing-Defocusing lattice).
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FIGURE 2.13. Tendency of simultaneously focusing on horizontal and vertical direction.
The opposite sequence of quadrupoles in the two directions is due to the fact that a
horizontally focusing quadrupole is also vertically defocusing and viceversa [28].

2.3.2.3 Dipole

It is the magnet responsible for the beam bending, and according to the inclination of the exit and

entry surfaces (with respect to the beam trajectory), it can fulfill a further focusing function. The

first type of magnet considered will be the one with both the entry and exit surfaces perpendicular

to the beam trajectory. In this case the magnet only bends the beam in the longitudinal plane,

leading the parameter K to be equal to 1
ρ2 ; and it leaves the motion in the other transverse

direction unperturbed. So, considering our purpose of bending the particles in the x direction the

matrices assume the following form:

(2.32) Mx =
Ã

cos l
ρ

ρ sin l
ρ

− 1
ρ

sin l
ρ

cos l
ρ

!

Mz =
Ã

1 l

0 l

!

This type of magnet is called dipole sector magnet in opposition with a rectangular dipole

magnet which ensures also a focusing function, their schematic representation can be found

in Figure 2.14. In a rectangular dipole, the entrance and exit surface can be rotated along

two directions as reported in the Figure 2.15. The case reported in Figure 2.14 represents a

rotation of an angle δ around the yellow axes with a sight from above, in order to have a clearer

outline of the configuration. So the particle sees a magnetic wedge as it enters the dipole and its

trajectory is changed according to its radial and vertical position (or displacements with respect

to the reference orbit). In particular, for the case study defined before, the particle passes by a

horizontally defocusing lens, a dipole sector and again a horizontally defocusing lens. The global

result is that while particle is bended it is also horizontally defocused while vertically focused.

(2.33) Mx =
Ã

1 ρ sin l
ρ

0 1

!

Mz =
Ã

cos l
ρ

ρ sin l
ρ

− 1
ρ

sin l
ρ

cos l
ρ

!

If now a rectangular dipole magnet with entrance and exit surfaces rotated around the green

axes is considered, the situation will be reversed, i.e. during the bending process the particle

undergoes to a vertical defocusing and a horizontal focusing. From a mathematical point of view,

matrices in Equation (2.33) will exchange their subscripts.
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FIGURE 2.14. Comparison between a sector dipole (on the left side) that only bends the
beam in the required direction and a rectangular one (on the right side) that can
also ensure a focusing function. [28]

FIGURE 2.15. Possible ways to rotate entry/exit surface of a rectangular dipole. The
case represented in Figure 2.14 is a rotation around the yellow axes.

.

2.3.3 Stability condition

The matrix formalism introduced before is helpful to write how the particle position and diver-

gence change when the particle passes through elementary components like a dipole, a free drift

space or a quadrupole. In particular, an ordered sequence of these elements can be analytically

reproduced by a matrix product. Figure 2.16 represents a possible beam line composed by a

combination of eight different components. Once the particle has undergone to that sequence its

position and divergence can be obtained from:

Ã

y

y′

!

= M

Ã

y0

y′0

!
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FIGURE 2.16. Example of a beam line composed by the sequence of eight elementary
components: dipoles, quadrupoles, free drifts [28].

Where M is the total transfer matrix and its equal to:

M = M8 ∗M7 ∗M6 ∗M5 ∗M4 ∗M3 ∗M2 ∗M1

The subscript of each matrix corresponds to the component in the Figure 2.16. If an accelerator

can be considered as made by N identical sections, each one characterized by the same ordered

sequence of components, then:

(2.34) C= N ∗L

Where L is the Lattice, i.e. the length of the section of elementary components, and N is the

number of times the lattice has to be repeated to cover the whole longitudinal length of the

accelerator C, i.e. the circumference.

A fundamental characteristic of an accelerator is to keep particle confined on a closed orbit.

This requirement has to be successfully satisfied every time the particle does a turn in the

machine; it means that it is necessary that all the elements of the matrices have to be limited as

the number of turns in the machine increases. Thus, it is fundamental to retrieve a mathematical

relation for the stability condition of the total transfer matrix evaluated at the n-th turn. At first

the matrix after the particle completed a single turn in the machine has to be determined:

M

µ

s+N
L

s

¶

=
¡

M(s)
¢N

But the stability condition has to be retrieved from the matrix that describes the particle at the

n-th turn:

(2.35) (M(s))N∗n
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In order to have the total transfer matrix with limited elements, all its elements do not have

to diverge as the number of turns tends to infinite. The problem can be solved assessing the

eigenvalue problem:

My=λy

So at first the eigenvalues are computed:

det(M−λI)= 0

(2.36) λ2 −λ(a+d)− (ad−bc)= 0

As far as the study of the coefficients of Equation (2.36) is concerned, a meaning to both of

them can be given. The second term (a+d) is the trace of the matrix M, while for the other one

(ad−bc) more considerations have to be done. If the Wronski determinant of the general solution

of the motion equation is computed then it can be shown it depends just on the initial conditions,

in particular functions that satisfy the settings are the sin-like and cosine-like solutions. This

leads to the simplification of the third term of Equation (2.36), that is just equal to unity. If the

eigenvalues are written in a general form like λ1 and λ2, then the trace is also the sum of the

eigenvalues themselves. In addition, the previous determinant is the product of the eigenvalues,

so it is possible to write the condition as:

(2.37) λ1λ2 = 1

That it is satisfied for:

(2.38) λ1 =λ2 = 1

Or

(2.39) λ1 = eiµ λ2 = e−iµ

Then the eigenvalues can be found solving Equation (2.36) then imposing that the argument of

the root is real:
s

(a+d)2

4
−1 > 0

Which leads to:

(2.40)
a+d

2
< 1

The sum of the coefficients a and d is the trace of the matrix M, which remains always the same

also when the matrix is diagonalized; that is the reason why the previous expression is also equal

to the following one once the eigenvalues in Equation (2.39), written in terms of sine and cosine,

are substituted inside:

(2.41)
1

2
(a+d)=

1

2
Tr(M)= cosµ
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In conclusion, the elements of the matrix M are limited and they keep to be limited as the particle

performs n turns in the machine if:

(2.42) cosµ< 1

2.4 Dispersion function

When a beam of particles is considered, it is necessary totake into account that particles are

distributed in space and energy around the one moving on the reference (or equilibrium) orbit. In

section 2.3.1 the homogeneous solution of the motion equation has been found. The particular

solution can be found by introducing the concept of dispersion functions. Betatron oscillation has

been already introduced: these oscillation arise from the vertical and/or horizontal displacement

(i.e. non zero initial conditions) of particles with nominal momentum. So, according to their

relative position with respect to the reference orbit, particles are subjected to different bending

and focusing/defocusing forces, since the equilibrium orbit passes exactly at the centre of all

dipoles and quadrupoles. The spatial distribution necessarily leads to an energy spread, especially

in the acceleration process. Here the discussion has to be split in two, according to the direction

along which the particle motion is observed.

In the transverse direction , particles can be spatially displaced with respect to the reference

orbit (and in this case they undergo to betatron oscillations) and they can also have a different

momentum with respect to the nominal value (that will be studied here below). It is equally

probable to have particles with slightly larger and lower momentum, for this reason it is common

to use the momentum deviation or its relative value:

dp = p− p0 or
dp

p0
=

p− p0

p0

In both cases, particles will need a different trajectory on which they can move, for dp > 0

particles will move on an orbit of larger radius,otherwise the orbit will have a smaller radius. Also

in this case, particles can have non zero initial conditions which means that they will undergo

to betatron oscillations around the orbits defined before. In particular, if the maximum and

minimum momentum is used in the evaluation of the dp, and so of the closed orbits, then the

dotted lines in Figure 2.17 represent the beam envelope. So now it is possible to derive the motion

equation for particles with different momentum. They satisfy the inhomogeneous form of the

Hill’s equation, i.e. Equation 2.19. The global solution is given by the linear combination of the

solution to the homogeneous ode and the particular one. The first one has already been derived,

so here it will be studied the particular integral. In Equation (2.40) is reported a modified version

of the Equation 2.22 in order to avoid the reader to look for it:

(2.43)
d2x

ds2
+K(s)x =

1

ρ

∆p

p0
, K(s)=−

³

k(s)−
1

ρ(s)2

´
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FIGURE 2.17. On the left hand side, it is possible to observe the equilibrium orbit and
the two closed orbits. On the right hand side, it is highlighted that the reference
orbit passes at the centre of all the magnets, while the other orbits undergo to
focusing and defocusing actions [28].

The particular solution has to have the same mathematical shape of the forcing therm in the

previous equation. Thus, it has to be proportional to the relative momentum spread times a

function that depends on the longitudinal coordinate s:

(2.44) xp(s)= D(s)
∆p

p0

Equation (2.44) describes the deviation of the closed orbit for particles with momentum dp+ p0.

In order to find the mathematical expression for the function D(s) (the periodic dispersion) the

particular integral has to be substituted in the starting equation. Thus, Equation 2.40 becomes a

second order differential equation in D(s):

(2.45) D′′(s)+K(s)D(s)=
1

ρ(s)

The discussion can be further generalized considering that also along the vertical direction

(previously called z) there could be a forcing term due to misalignment of the magnets, so it is

better to go back to the previous notation, where the variable y was used to refer to both the

transverse directions:

(2.46) y′′(s)+K(s)y(s)= F(s)

Also in this case periodic boundary conditions can be used but an additional specification is

mandatory: K(s) and ρ(s) both are periodic functions with period L (the length of the sequence of

elementary components) while F(s) is a periodic function on the accelerator length (i.e. C = NL).

F(s) is a generic function that represents the right hand side of Equation (2.45) if the x direction

is considered; otherwise, along the z direction, it represents the error in the magnets alignment.
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FIGURE 2.18. The red orbit at energy E is the reference one while the blue at energy
E+δE refers to a closed dispersion one [17].

The general solution of Equation (2.46) is then:

(2.47) y(s)=
p

β(s)

2sin(πQ)

I

p

β(s′) F(s′)cos(Φ(s′)−Φ(s)−πQ)ds′

The whole demonstration is not reported here but it could be found in [28].

In the longitudinal direction, particles with a momentum difference with respect to the nominal

value will move on a different path (smaller or bigger circumference) that is called dispersion

orbit, and also along this orbit betatron motion occurs. Obviously, the momentum spread of the

particle make it move on a different path with a different velocity with respect to the particle on

the equilibrium orbit, leading then to a different frequency of revolution fr inside the machine.

In Equation (2.48) and (2.49) two important quantities are defined:

• Slip factor:

(2.48) η=
d fr/ fr

dp/p

• Momentum compaction factor:

(2.49) αc =
dL/L

dp/p
=

1

L

I

C

Dx(s)

ρ(s)
ds0

The slip factor gives information on the relative change of the revolution frequency with respect

to the momentum spread, while the momentum compaction factor relates the change of the path

length with the momentum spread. The two previous factors can be related in order to find a
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relation for the relative change of the revolution frequency.

fr =
v

2πR
=

βc

2πR
→

d fr

fr

=
dβ

β
−

dR

R
=

dβ

β
−αc

dp

p

From the definition of the revolution frequency it is possible to obtain the relative change

with respect to the nominal value by the evaluation of the differential of the frequency with

respect to the Lorentz factor β and the path length (circumference length and radius are directly

proportional). The last step is performed by the substitution of the definition of the momentum

compation factor. The relative change of the Lorentz factor β can be obtained from the differential

of the momentum, as follows:

p = mv = mβc =
E0

c2
γβc =

E0

c
γβ→

dp

p
=

dβ

β
+

βdβ

(1−β2)
= γ2 dβ

β

In the end, it is possible to obtain the following relation:

(2.50)
d fr

fr

=
³ 1

γ2
−αc

´dp

p
=

³ 1

γ2
−

1

γ2
tr

´dp

p

What it is important to underline is that it exist a value of αc or γtr at which the slip factor is

zero. From a physical point of view, it means that in this configuration the change of velocity of

the particle is perfectly compensated by the change in the path length, leading then to have the

frequency spread independent from the momentum one. For positive values of the slip factor, an

increase of the particle velocity leads to an increase of the revolution frequency; on the contrary,

for negative values of the slip factor the increase in velocity does not compensate the increase in

the path length. This concept will be really important in the description of longitudinal dynamics

that will be performed soon.

2.5 Transverse beam dynamics

As far a group of particles is considered the phenomenon at which they undergo can be handled in

a easier way if the matrix formalism is adopted. Moreover, the use of parametric equation allow

the description of a particle beam with s single equation rather than one equation for each particle.

The total transfer matrix can be written in terms of cosµ and sinµ, and the form it assumes

is called Twiss Matrix:

M = I cosµ+ J sinµ= I cosµ+
Ã

α β

−γ −α

!

sinµ

Where I is the identity matrix. By the use of the transport matrix in the Twiss form it is possible

to determine a relation between the Twiss parameters: α, β and γ. At first is used again the

condition that the Wronski determinant is equal to unity, and it leads to:

(2.51) γ=
1+α2

β
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Then, using the Floquet theory [19] for solutions to periodic linear differential equations, the

particle position can be written as:
Ã

y

y′

!

= M(s|s0)

Ã

y0

y′0

!

= y(s)e±iµ

This particular form is of great importance since it will lead to demonstrate that there is an

invariant of the motion. Where the notation M(s|s0) means the particle motion is considered from

position s0 to the generic position s. Writing down the previous equation in an explicit way and

doing a separation between real and imaginary part, an equation relating α and β can be obtain.

The relation between the two parameters is:

(2.52) α=−
β′

2

After some mathematical passages, the particle position can be written as a function of the β

parameter:

(2.53) y(s)= A
p

β(s) exp
³

±
Z

1

β(s′)
ds′

´

Studying the periodicity of the previous expression, it is possible to retrieve the definition of two

fundamental quantities:

• Phase advance per turn:

(2.54) µ(s)=
Z

³ 1

β(s′)
ds′

´

• Q-tune or betatron tune, that has been already defined but it has never been done from a

mathematical point of view:

(2.55) Q(s)=
1

2π

Z

³ 1

β(s′)
ds′

´

• Chromaticity is a characteristic parameter that can be changed with sextupole magnets.

Off-momentum particles undergo to a different focusing/defocusing action of quadrupoles,

this changes are resumed in the natural chromaticity. It is defined as:

(2.56) ξ=
δQ/Q

δp/p

Furthermore, a non-zero chromaticity leads to have a off-momentum beam and so a tune

spread. But, above all, it can define if some amplitude-dependent phenomenon are stable or

not. The chromaticity control leads to switch on magnets that induce non-linear effects in

the beam optics, thus it ends up to be a really important but critical parameter.
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Taking the real part of the Equation (2.53):

(2.57) y(s)= A
p

β(s) cos(Φ(s)−δ)

It is possible to write the particle motion equation in the accelerator. Note that the integral in

Equation (2.53) has been substituted with Φ(s) in Equation (2.57) above to make the mathematical

notation lighter, when a single revolution in the machine is considered then Φ(s) is equal to

µ(s). Since the particle has always been described by its position and its divergence, it can be

demonstrated that the set of this two equation constitute a parametric representation of an

ellipse in the phase-space (y,y’):

(2.58)











y(s)= A
p

β(s) cos(Φ(s)−δ)

y′(s)=− Ap
β(s)

h

sin(Φ(s)−δ)+α(s)cos(Φ(s)−δ)
i

The equation can be expressed also in terms of the Twiss parameters:

(2.59) γy2 +2αyy′+βy′2 = const.

And as the Equation (2.59) shows, they right hand side is a constant of the particle motion, i.e.

an invariant: the Courant-Snyder invariant. So, as a particle moves in the machine it draws an

ellipse in the phase-space plane and it remains unchanged as the particle moves in the accelerator,

i.e. it is invariant with respect to the longitudinal coordinate s.

Different particles oscillates with different amplitudes (i.e., they have a different value of the

constant A in Equation (2.58)) and each of them has its own ellipse on which it moves as it makes

turns in the machine. So the parametric equations (2.59) can describe the motion of a particle

beam too. In particular, as the ensemble of particle passes trough magnets or free drift spaces,

the “shape” of the beam in the phase-space changes:

• Drift: Looking to the matrix representation reported in section 2.3.2.1, the particle is

elongated while its divergence remains constant, so it tends to diverge

• Quadrupole: For a quadrupole the situation is a bit more complex since it focuses the beam

on one plane and it defocuses on the other one. In Figure 2.20 a QF is considered: if the

beam enters the quadrupole with a divergent trajectory in the direction along which the

quadrupole imposes its focusing action, then it exits the magnet being convergent because

of the rotation at which particles undergo while they move in the quadrupole.

As can be observed from Figure (2.19) and (2.20) it seems that the area of the ellipse enclosing

the beam remains constant. In fact, the mathematical set of equations derived before is still

valid for a beam since the maths has not changed. So, what before was called Courant-Snyder

invariant (or single particle emittance) is said to be the beam emittance when an ensemble of

particles is considered. The definition of beam emittance is not unique, it can be considered as
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FIGURE 2.19. Example of a beam ellipse elongation as it passes trough a free drift from
[13].

FIGURE 2.20. Example of a beam ellipse rotation, i.e. focusing on a specific direction as
the beam passes in a focusing quadrupole [13].

FIGURE 2.21. Representation of how particles oscillate on ellipses [13].

the smallest between all the ellipses that contains all the beam, or the ellipse that contains the

95% of all the particles constituting the beam itself. Considering what has been said till now, the

particle motion in a beam is really much more complex than the description performed. Particles

move on their ellipses, they occupy different position inside the beam envelope as they move in

the accelerator and ellipses themselves evolve and change as they pass through magnets.

On the right side of Figure 2.21, it is possible to observe that particle trajectories evolve along

42



2.5. TRANSVERSE BEAM DYNAMICS

FIGURE 2.22. Comparison between matched and unmatched beam and lattice ellipse
[13].

the longitudinal direction as a combination of sine and cosine (as was mathematically derived

before) and, in addition, the combination of all particles trajectories form what is called the beam

envelope (dotted black line), i.e. the physical region occupied by the beam. Particles move also

inside the beam envelope occupying different position within it. If one could track the position

of a single particle in the accelerator and also the beam envelope, then he will see the particle

moving on the ellipse, except in the case of a lost or extracted particle because it will not be any

more part of the beam envelope. On the left side of the previous picture is reported a general

evolution of the particle ellipse along the longitudinal direction, any rotation and/or elongation is

due to its passage in a quadrupole or free drift (as explained above).

Liouville’s theorem is a fundamental theorem for the distribution of particles within the emittance

and its conservation (constant area), it states that:

"In an electromagnetic, along a particle trajectory the phase-space particle density is constant”.

A synchrotron has a periodic structure, as was previously explained in Equation (2.34), so when

the optic of the beam is studied there is no need to impose boundary conditions because the only

requirement is to have a Twiss parameter at point s equal to the one evaluated at s+C. In the

context of partial differential equations, this problem is said to have periodic boundary conditions.

Usually the β parameter is chosen because it is the one from which it is possible to retrieve

information on the transverse beam dimension and, moreover, it is another way to ask for limited

values of the total transfer matrix elements. Here a fundamental step occurs: once the emittance

of the beam has been determined and the lattice structure has been fixed, then it is possible to

identify the emittance that represents the outermost ellipse containing a predefined percentage

of the beam particles (any other definition is accepted, like referring to the rms); and the Twiss
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FIGURE 2.23. Schematic representation of how the beam adapts to the lattice ellipse
undergoing to the filamentation process [13].

FIGURE 2.24. Simulation of the filamentation process represented in the normalized
phase space [13].

parameters of the lattice components at which it is possible to associate an ellipse. In Figure

2.22 it is possible to have a graphical representation of matched and mismatched ellipses. In the

first case, the beam undergoes to the transformations imposed by the lattice without suffering

any important losses; in the other case this is not anymore true. Due to the mismatched ellipses,

the beam undergoes to a complex motion within the lattice ellipse until particles cover all the

area. A schematic representation of the evolution is reported in Figure 2.23 and Figure 2.24, it

shows how the injected beam tries to adapt to the unmatched ellipse of the lattice. As it makes
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turns in the machine, it undergoes to what is known as filamentation. This problem has to be

faced up every time the beam is injected in the machine, if the machine parameters are kept

constant (i.e., the elements of the total transfer matrix are constants) and the beam does not

undergo to any instability, then filamentation does not occur. Liouville’s theorem requires the

phase space density to be conserved and in a strict mathematical sense this is true, since as

the figure becomes more wound-up the spiral arms become narrower and the area is indeed

constant. However it does not take long before the beam is apparently uniformly distributed over

the matched ellipse and for all practical purposes the beam emittance has been increased [Beam

transfer lines, P. J. Bryant, [28]].

2.6 Introduction to longitudinal beam dynamics

For the sake of completeness, a brief discussion on the longitudinal dynamics of the beam will be

performed. In this direction the beam is accelerated by one (or more) radio-frequency (RF) cavities.

A RF cavity is a closed structure in which electromagnetic waves move, being reflected (with a

certain efficiency) by the walls of the chamber. The way electromagnetic waves are generated is

out of the context of this thesis, but as an example, they could be generated by klystron (particular

linear beam vacuum chamber for RF amplification) and then transported by wave-guides till

the RF cavity. Once the wave reaches the cavity it is amplified until it reaches a steady state

condition at the resonance frequency of the chamber: in this case the wave is called standing

wave. The amplitude and the profile does not change in space but it oscillates in time and the

frequency at which the wave oscillates is called fRF . The interaction between the particle and

the electromagnetic wave in the cavity could lead to the acceleration of the particle itself. It is

possible to associate to a generic electromagnetic wave both an electric field and a magnetic

field, but just the electric field is responsible for the increase in the particle velocity. So, it is

necessary to make the particle cross the cavity when the direction of the (electric) field is equal to

the direction of the particle motion.

A synchrotron can be considered as a sequence of a RF cavity and a free acceleration region,

which is made by all the components that do not accelerate the beam as dipoles, quadrupoles,

sextupoles, octupoles, free drifts, kickers, correction magnets, etc. Also in this case it is necessary

to have the electric field in the cavity that points in the same direction of the particle motion

when the beam crosses the cavity. The working principle is different because, a part from being

accelerated, the particle has to be confined and bended to move on a circular path. But since the

beam changes its energy every time the particle crosses it, the magnetic field has to be changed

in time, i.e. increased, in order to avoid particle losses. The common practice suggested to impose

a time dependent law for the magnetic field, and so for the energy gain, and then adjust the RF

cavity parameters so that they satisfy the energy condition. When the particle crosses the cavity

it gains an amount of energy equal to ∆E0. Assuming that the RF generator imposes a sinusoidal
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FIGURE 2.25. From left to right in the upper part of the figure you find the time
dependent variation of the magnetic field, the kinetic energy increase, in the lower
part there is the RV voltage and the phase [16].

potential difference, then it is possible to relate the energy gain with the voltage amplitude and

its phase as:

(2.60) ∆E0 = eVRF sin(Φ)

The energy gain can be derived from the magnetic field law decided by the designer. The two

main parameters are the time dependent magnetic field and the particle momentum:

(2.61) B(t)ρ =
p(t)

e

Being the bending radius ρ constant as well as the charge number (if particle momentum is

expressed in terms of eV/c) , then the energy gain, i.e. the kinetic energy relative increase, is

proportional to the time dependent law of the magnetic field. The increase of particle energy has

to be guaranteed by the RF generator, so the potential difference VRF and the phase Φ have to

change in time and, at the same time, they always have to satisfy Equation (2.60). In Figure

2.25 an example of time dependent laws for the PIMMS (Proton-Ion Medical Machine Study)

synchrotron. It is possible to observe that the kinetic energy increase (on the top right) has the

same sinusoidal shape as the magnetic field (top left) while in the lower part of the figure is

represented the time dependent behaviour for the potential difference (on the left) and for the

phase (on the right) of the RF cavity.

The description performed till now, implicitly refers to a specific particle that is called the

synchronous particle, i.e. the one that is exactly synchronized with the RF cavity and so the only

one that will gain exactly the energy gain ∆E0. All the other particles will be accelerated for

a lower time, if their energy is slightly below the one of the synchronous particle; or they will

be decelerated in the opposite case. The discussion that will follow it is just qualitative but, for
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FIGURE 2.26. From top to bottom: sinusoidal waveform in the cavity; Bunch of ac-
celerated particles in the Bucket; motion of non-synchronous particle around the
synchronous one. [5].

the sake of completeness, the motion equations in the longitudinal direction for all the particles

(the synchronous and all the not-synchronized one) are reported and derived in Appendix A. In

circular accelerator is common practice give to the synchronous particle a zero phase. Particles

on the right-hand side of the green line in Figure 2.26 a) will be decelerated by the negative

potential and their phase decreases and it tends to the synchronous phase. On the contrary,

particles with lower phase (left-hand side with respect to the green line in Figure 2.26 a) will see a

positive potential meaning that they will be accelerated by the RF cavity. As it is accelerated, the

particle phase will tend to the zero phase of the synchronous one, and its energy will progressively

increase undergoing to the cycle represented in Figure 2.26.c. Here particle A is the synchronous

one, while particle B is a generic particle that arrives in the RF cavity at the same time of A but

with a higher energy. Both particle will gain the energy ∆E0 but, as discussed in the previous

section, a particle with a higher energy will move on a circumference larger than the one of the

reference particle (it will have a revolution frequency slightly lower too). So, at the next turn,

particle A will gain again the same amount of energy, while particle B will arrive in the cavity

with a certain delay being then decelerated. The deceleration effect will continue until particle B

reaches a lower energy than A, so the particle will arrive in the cavity earlier than particle A. In

this way it will see a waveform that will increase again its energy (going back to point B in Figure

2.26). This periodic motion is defined as synchrotron oscillation. When particles are injected in
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FIGURE 2.27. It is reported the schematic of one of the RF cavity of the LHC at CERN.
It is possible to observe the incoming beam and how the electric field in the chamber
changes in time (the red and blue color represents the different polarities of the
field) [5].

the accelerator, it is possible to assume they occupy a certain space along the circumference

of the accelerator. As soon as the acceleration process begins, then particles get “clumped” [5]

around the synchronous particles, leading to the formation of bunch of particles that are then

accelerated up to the required energy. In Figure 2.27 is reported the acceleration of a bunch of

particles highlighting how the electric field in the cavity changes according to the passage of the

bunch throughout it. It is also possible to see (in the lower left part of the figure) that particles at

the beginning of the bunch are subjected to a decelerating electric field.
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3
BEAM EXTRACTION

T
wo main approaches could be used to extract particles from an accelerator. A single-turn

(fast) extraction and a multi-turn (slow) one. The first one allows the deflection of the

beam trajectory into a beam transfer line or, as it is done in big facilities, the transmission

of the beam in a bigger accelerator. As the name says, this step is performed in a single turn

and since particles travel at a high speed the phenomenon is performed in ms or µs, according

to particle mass and accelerator length. It is common practice to adopt the latter technique in

medical accelerator for cancer treatment, the reason is that it is of fundamental importance

to obtain a beam that lasts some seconds (between 1s and 10s) and which intensity, i.e. the

number of particles reaching the patient, is kept constant in time. All these strict requirements

are important in order to evaluate the exact dose reaching the patient and making it conformed

to the medical requirements. Between the multi-turn extraction, two other categories can be

defined: the resonant and the non-resonant one. A non-resonant (slow) extraction is based on

beam scattering by internal target, but it is mentioned just for accademic reasons. A resonant

multi-turn extraction, briefly called slow extraction, is a technique that allows the withdrawal

of a certain number of particles each turn. So, while the core of the beam continues to turn

in the accelerator, some other particles are moved towards the extraction line. The different

way particles are extracted determines different extraction techniques. Between the different

possibilities, just two of these will be analysed:

• Betatron extraction: the beam is extracted by the use of a betatron accelerator;

• Radio Frequency Knock-Out (RFKO) extraction: the beam is extracted by the use of an

electrostatic kicker.
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3.1 Third-order resonance

From the mathematical description performed in the previous chapter, it is possible to see that

under specific conditions the beam optics can be assumed to be linear. In this configuration

the machine is made by dipoles and quadrupoles only and the particle trajectory could be

found solving the equations presented in Chapter 2. But even in this configuration, their main

assumptions that has been performed is that magnets are perfect, so there are no misalignments

or imperfections in the strengths of the magnets themselves, moreover the beam is mono-kinetic.

When the assumption of mono-energetic beam is removed the concept of dispersion function has

been introduced (section 2.4). It is possible compare this beam characteristic with a possible

error in the strength of a dipole magnet. In fact, a mono-kinetic beam that undergoes to an

imperfect magnetic field (that it is supposed to bend the beam trajectory) would end up moving

on a slightly different trajectory because each of its particles have perceived a different intensity

of the magnetic field. Under these considerations the particles trajectories can be found from

Equation (2.47):

(3.1) D′′(s)+K(s)D(s)=
1

ρ(s)

The solution of the Equation (3.1) is:

(3.2) D(s)=
p

β(s)

2sin(πQ)

I

p

β(s′)

ρ(s′)
cos

³

Φ(s′)−Φ(s)−πQ
´

ds′

Where s is larger than s′.

The first condition to be checked is that the denominator does not go to zero, i.e. the tune

of the machine has to be chosen so that the dispersion function is not infinite. This condition is

attained when:

(3.3) Q 6= n

Where n is a generic integer number.

So circular accelerators contain in themselves a source of instability. Moreover, a similar

rational can be adopted for imperfections in the strength of quadrupoles. Since quadrupoles

are responsible for the focusing and defocusing of the beam, their errors mainly affect the

amplitude of betatron oscillations. An expression similar to the one in Equation (3.2) can be

obtain, the demonstration is avoided but it could be found in [28]. Thus, the change in the

betatron oscillations can be evaluated as:

(3.4) ∆β(s)=−
β(s)

2sin(2πQ)

I

β(s′)∆K(s′)cos
³

Φ(s′)−Φ(s)−2πQ
´

ds′

Where s is larger than s′.
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FIGURE 3.1. Tune diagram [28].

Also in this case it is fundamental to check that the denominator does not go to zero otherwise

the relative change in the amplitude of betatron oscillations enormously increases. The condition

that has to be fullfilled in order to keep limited the amplitude of betatron oscillations is that:

(3.5) Q 6=
n

2

Where n is a generic integer number.

Since quadrupoles focus the beam in one transverse direction and defocus it on the other one

it is highly required to avoid a resonant tune on both the transverse directions. Moreover, also the

intrinsic instability generated by dipoles has to be prevented. Thus, the combination of Equation

(3.2) and Equation (3.5) leads to ask for a tune different from both integers and half-integers

values and can be generally resumed in Equation (3.6).

(3.6) mQx +nQ y 6= l

Where m,n, l are generic integer numbers.

It is quite common to represent Equation (3.6) in a graphic that is known as tune diagram

reported in Figure 3.1. From the tune diagram it is possible to observe different resonance lines.

In order to avoid resonant particle losses, the working point of the accelerator has to be chosen

far from the different resonance lines. Considering what has been said so far, dipoles are able to

drive first order resonances, as Equation (3.2) and (3.3) show; according to Equation (3.4) and

(3.5) quadrupoles drive up to the half-integer resonance, thus it can be expected that sextupoles
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induce up to the third-integer resonace. In fact, multipoles are able to drive all the resonances up

to the highest order that is defined by the half number of magnet’s poles. Even if sextupoles can

be present in an accelerator, those responsible for resonances are physically different from those

responsible for chromaticity control. In order to study (and exploit) third-order resonance, it is

common practice to use the Hamiltonian mathematics, in particular, the Kobayashi simplification.

This approach considers sextupoles magnets as a perturbation of the linear optics and it is quite

well performing for beam extraction studies.

A general multipole expansion consists in considering magnets which length is larger than

the radial dimension of the vacuum chamber so that end fields effect can be neglected. Moreover,

the studied region has to be a vacuum space with no electric currents and no iron cores of the

magnets included. Under these assumptions the following set of equations can be used:

(3.7) B=∇×A

(3.8) ∇·B= 0

(3.9) ∇×B= 0

(3.10) B=−∇V

Where A is the magnetic vector potential, the only non-null component is the one along the

longitudinal direction As due to the trasversality of the magnetic field; while V is the magnetic

scalar potential. Using Equation (3.7) and Equation (3.10) it is possible to compute the components

of the magnetic field in the transverse direction (x and z) that are reported in Equation (3.11). To

avoid confusion, from now on the z coordinate will be replaced by y and the letter z will be used

to indicate a general complex number.

(3.11) Bx =
∂As

∂y
=−

∂V

∂x
By =−

∂As

∂x
=−

∂V

∂y

In order to find the analytic form of the two potentials it is useful to define a generic complex

potential function:

(3.12) Ã = As(x, y)+ iV (x, y)

If Equation (3.11) is considered again it can be noticed that it expresses the Cauchy-Riemann

conditions: it means that both the real and imaginary component of A are holomorfic (i.e., since

we are dealing with complex potential function it means they can be expressed in terms of an

analytic function) and differentiable. At the same time complex mathematics ensures that the

complex potential function can be written as a series that converges for a radius lower than the

minimum distance between the origin of the reference system and the closest magnet surface
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(i.e., within this radius the Equations (3.7)-(3.10) can be used without violating any assumption

made before).

(3.13) Ã =
∞
X

n

Cnzn =
∞
X

n

(λn + iµn)(x+ i y)n, |z| < rc;λn,µn ∈ R

If a sextupole has to be studied, then the degree of the sum is reduced to n = 3 since it has six

poles. Developing the single coefficient part of Equation (3.13) and dividing real and imaginary

terms, it is possible to obtain the components of the complex potential function Ã, reported in

Equation (3.14) and (3.15).

(3.14) As = C1x+C2(x2 − y2)+C3(x3 −3xy2)

(3.15) iV = i(C1 y+2C2xy+3C3x2 y−C3 y3)

So, using Equation (3.11) the transverse components of the magnetic field can be computed.

(3.16) Bx =−6C3xy

(3.17) By =−3C3(x2 − y2)

Comparing the magnetic field components with the Taylor expansion of the magnetic field in the

horizontal plane, it is possible to find the coefficient C3.

(3.18) C3 =−
1

6

d2B(x,0)

dx2

¯

¯

¯

¯

0

For the sake of completeness, the final expression of the magnetic field components is reported in

Equation (3.19).

(3.19) Bx =
d2B(x,0)

dx2

¯

¯

¯

¯

0
xy By =

1

2

d2B(x,0)

dx2

¯

¯

¯

¯

0
(x2 − y2)

In order to find the sextupole strength, as it has been done for dipoles and quadrupoles, it is

useful to consider the magnet as a thin lens. A sextupole is used to correct chromatic aberrations,

i.e. the enlargement of the focal spot induced by the focusing/defocusing action of quadrupoles

on a beam with a non-zero momentum spread. Thus, it is possible to compute the change in

divergence induced by a sextupole as the magnetic field Bz the particle perceive along the

sextupole length normalized ls to the magnetic rigidity of the particle itself Bρ. Obviously a

change in the x-divergence is induced by a vertical field while a change in the z-divergence is

induced by a horizontal field. Under the previous assumption of thin lens approximation the

change in particle position can be neglected.

(3.20) ∆x′ =
Bzls

|Bρ|
=

1

2

ls

|Bρ|
d2B(x,0)

dx2

¯

¯

¯

¯

0
(x2 − y2)
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(3.21) ∆z′ =
Bxls

|Bρ|
=

ls

|Bρ|
d2B(x,0)

dx2

¯

¯

¯

¯

0
xy

It is common practice two work in the phase-space horizontal x-x’ or vertical z-z’ where particle

position and divergence is displayed. In the same way, a lighter notation can be obtained if a

normalized phase-space is considered. Looking to the set of Equation (2.42) it is easy to compute

the matrix that allows the conversion from the phase-space to the normalized one and viceversa:

(3.22) Mx→X =





1p
β

0

αp
β

p

β





(3.23) MX→x =





p

β 0

− αp
β

1p
β





So, the particle divergence can be computed as:

(3.24) ∆X ′ =
1

2

ls

|Bρ|
d2B(x,0)

dx2

¯

¯

¯

¯

0
(β3/2

x (X2 −
βz

βx

Z2))

(3.25) ∆Z′ =
ls

|Bρ|
d2B(x,0)

dx2

¯

¯

¯

¯

0
(β1/2

x βz X Z)

The sextupole strength can be then defined as:

• Phase-space:

κ=
1

|Bρ|
d2B(x,0)

dx2

¯

¯

¯

¯

0

• Normalized phase-space:

S =
1

2
β3/2

x lsκ

According to the sextupole gradient, the sign of its strength and the presence (or absence)

of poles in the median place it is possible to distinguish between normal and skew sextupoles

and D-type from F-type. In Figure 3.2 a schematic picture is reported. Normal sextupoles are

defined as six poles magnets with no poles on the median plane and are usually the most common

in particle accelerators. Between the normal sextupoles it is possible to further distinguish

between focusing and defocusing type. If a negatively charged particle is considered, then F-type

sextupoles makes the particle with a positive x-coordinate move towards the centre of the vacuum

chamber.

According to the matrix formalism adopted in the previous chapter, the general transfer

matrix at the nth turn can be written as a function of the tune of the machine since it is the
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FIGURE 3.2. Normal and skew sextupoles [22, 28].

physical quantity directly connected to betatron oscillations that do not allow a particle to reach

the same exact point after a full turn in the machine.

(3.26) Mn =
Ã

cos(2π(nQx)) sin(2π(nQx))

−sin(2π(nQx)) cos(2π(nQx))

!

Since the extraction occurs on one of the two transverse planes (x or z), the tune on the direction

that host the extraction line has to be brought close to a resonance. The case of an horizontal (x)

extraction will be considered. Thus, the tune Qx must be close to a resonance line, in particular, a

third-order one since the aim is to make it reach the resonance with a sextupole that, as said

before, is able to excite up to the third-order one. It will be seen that a this type of resonance

allows the extraction of particles which amplitude is above an unstable value, thus, all those

below this limit are (indefinitely) kept in the accelerator on a stable orbit. Moreover, the control

of the unstable amplitude is defined by the extraction technique and by the average momentum

beam and momentum spread as well. Thus the characteristics of the spill can be controlled and

modified. In order to start the mathematics demonstration for the third-order resonance the Qx

has to be defined accordin to Equation (3.27), where m is a generic integer value.

(3.27) Qx = m±
1

3
+δQ

Neglecting the effect of sextupoles, beam optics is still linear, so it is possible to evaluate the total

transfer matrix with the tune in Equation (3.28), where the term dQ is defined as the particle
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tune distance from the resonance:

(3.28) δQ =Qparticle −Qresonance

So, the position and divergence of a generic particle can be evaluated as the number of turns

increases. If turn 0 is the one at which particle position and divergence is taken as initial

conditions, then their new value after one full turn in the machine can be evaluated as:

(3.29)

Ã

x

x′

!

1

=









cos

µ

2π
³

m± 1
3

´

¶

sin

µ

2π
³

m± 1
3

´

¶

−sin

µ

2π
³

m± 1
3

´

¶

cos

µ

2π
³

m± 1
3

´

¶









Ã

x

x′

!

0

=
Ã

−1/2 ±
p

3 /2

−(±
p

3 /2) −1/2

!Ã

x

x′

!

0

In the previous equation the effect of the tune distance has been neglected, it means that the

particle is on resonance. In the same way the position and divergence can be computed after

another turn in the machine (i.e., turns 2):

(3.30)

Ã

x

x′

!

2

= M2

Ã

x

x′

!

0

=
Ã

−1/2 ∓
p

3 /2

−(∓
p

3 /2) −1/2

!Ã

x

x′

!

0

At the third turn the matrix will assume the following form:

(3.31)

Ã

x

x′

!

3

= M3

Ã

x

x′

!

0

=
Ã

1 sin(6πm)

−sin(6πm) 1

!Ã

x

x′

!

0

=
Ã

1 0

0 1

!Ã

x

x′

!

0

After three turns, a particle with a resonant tune will have the same position and divergence it

initially had, i.e. at those of turn 0. But now if a small (|δQ| << 1/3) tune distance is considered,

then its effect can be neglected for the first two turns, but at the third one the transfer matrix

will be:

(3.32)

Ã

x

x′

!

3

=
Ã

1 sin(6πδQ)

−sin(6πδQ) 1

!Ã

x

x′

!

0

=
Ã

1 6πδQ

−6πδQ 1

!Ã

x

x′

!

0

Equation (3.32) has been derived under the assumption of small angles. So the particle with

a slightly different tune will have a position and divergence slightly different from the initial

one. In this configuration (particle not at the resonant tune) a sextupole can be introduced as a

perturbation of a linear optic. Three different contributions have to be considered and summed

up:

• sextupole is introduced after three turns;

• sextupole introduced after two turns and then a last turn is still performed;

• sextupole introduced after the first turn and then two more turns are performed.
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FIGURE 3.3. Stable and unstable particle trajectories [22].

By summing them up it is possible to compute the change of position and divergence after three

turns in the machine:

(3.33) ∆X3 = ǫX ′
0 +

3

2
SX0X ‘0

(3.34) ∆X ′
3 =−ǫX0 +

3

4
S(X2

0 − X
′2
0 )

Equation (3.33) is usually known as spiral step while Equation (3.34) is known as spiral kick.

And by their integration it is possible to compute the Kobayashi Hamiltonian:

(3.35) H=
ǫ

2
(X2–X

′2)+
S

4
(3X X

′2–X2)

The Hamiltonian is time independent, so in the X-X’ phase-space it is a constant of the motion,

drawing the contours for constant values of the Hamiltonian itself, it is possible to observe the

particle trajectories. In particular, from Figure 3.3 three main information can be gathered. At

first, when S = 0, i.e. non-linear effects induced by sextupoles or higher multipoles are neglected,

particles have a circular trajectory. It is quite intuitive to understand it also without looking at

Equation (3.35). In fact, without multipoles that lead to non-linear effects, the particle trajectory

in the phase-space is an ellipse that turns into a circumference when the normalized phase-space

is studied. Then, when non-linear effects are considered (i.e., the second term of Equation (3.35)

is added), the circumference is perturbed and it starts looking like a triangle. The lines delimiting

the triangle area are called separatrices. Within the triangle the particle trajectory is stable,
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whereas outside it is unstable and particle trajectories do not close on themselves anymore.

Now it is quite intuitive to understand that it is really important to determine the separatrix

equations. By their study it is possible to determine particles characteristics in the last three

turns before the extraction.

There is a special value of the Hamiltonian that allows the factorization of Equation (3.35) as

a product of three terms that represent the separatrix equations:

(3.36)
µ

S

4
X +

ǫ

6

¶µp
3 X ′+ X −

4ǫ

3S

¶µp
3 X ′− X +

4ǫ

3S

¶

= 0

An important parameter is the area of the triangle that can be evaluated as a function of the

apothem h:

(3.37) Astable = 3
p

3 h2

By the knowledge of the coordinates of the points where separatrices intersect each other, it is

possible to compute the apothem h as:

(3.38) h = h =
4π

S
δQ

Moreover, it is possible to demonstrate that best position where to locate a resonance sextupole

is in a free dispersion region in order to avoid change of tune distance that would change the

dimensions of the extracted beam.

In order to study and, eventually, modify the characteristics of the extracted beam in the

different extraction techniques, it is frequently used the Steinbach diagram that allow the

representation of the beam in a tune - (betatron) amplitude diagram, a schematic representation

can be found in Figure 3.4. The stopband, i.e. the width of the “V” shape centred at the resonant

tune, can be changed. The parameters that affect its shape are found by the comparison between

the area of the stable triangle, defined in Equation (3.37) and the single particle emittance, i.e.

the emittance of the particle in the normalized phase-space. To have a stable particle trajectory,

the particle emittance has to be lower or equal to the stable triangle area, in this way the particle

trajectory is contained within the triangle:

(3.39) Aparticle ≤ Astable → A2π≤
48

p
3π

S2
δQ2π

Substituting Equation (3.28) into Equation (3.39) it is possible to develop an inequality for the

particle tune that also defines the width of the "V" shaped unstable region:

(3.40) Qres −

s

1

48
p

3π
|S|A ≤Qparticle ≤Qres +

s

1

48
p

3π
|S|A

This is usually known as stop-band. Once the beam has been positioned on one of the two sides

of the resonance, it is possible to extract it by moving the beam into resonance or by moving
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FIGURE 3.4. Steinbach diagram [22].

the resonance towards the beam. To the first type pertains the betatron extraction (also called

acceleration-driven) and the RFKO one; while to the latter class the quadrupole-driven and the

sextupole-driven are part. In the quadrupole-driven extraction the tune of the machine is changed

by changing the quadrupoles strength, i.e. their current, in order to make the resonant tune

move towards the beam. In the sextupole-driven extraction the sextupole strength is changed

and so the stopband adjusts according to Equation (3.40).

Once the particle enters the unstable region it can be extracted. In particular, from Equations

(3.29) till Equation (3.32) the evolution of a particle at resonance has been derived. So, it is

possible to draw the related phase-space diagram for the separatrix lines. Now matching the

extraction separatrix with the longitudinal position of the electrostatic septum, it is possible to

show that after the third turn the particle overcome the septum and can be led to the extraction

line. A phase advance of ∆µ= 1.25πrad is the optimum relative position between the electrostatic

septum and the resonant sextupole, it allows the extraction separatrix to cross the septum as

reported in Figure 3.6. In this way all the particles contained between the electrostatic septum

and the position #3 will be extracted.

Once the particle crosses the electrostatic septum, it receives a kick that increase its diver-

gence and by the positioning of the magnetic septum at phase advance of 0.5π it is possible

to separate the circulating beam from the extracted one that is nothing else than a secondary

beam then directed in the extraction line. A schematic representation of the extraction is given

in Figure 3.7. After the magnetic septum there will be a sequence of magnets that drives the
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FIGURE 3.5. Evolution of a particle at resonant on the separatrices for the longitudinal
position corresponding to the resenant sextupole [22].

FIGURE 3.6. Evolution of a particle at resonant on the separatrices for the longitudinal
position corresponding to the resonant sextupole [22].
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3.2. BETATRON SLOW EXTRACTION

FIGURE 3.7. Beam trasnfer between electrostatic and magnetic septum [15].

beam towards the treatment rooms or to the experimental points. This sequence is usually called

extraction line.

3.2 Betatron slow extraction

A betatron core is a circular magnetic circuit and the beam passes trough it. With a coil is

possible to change the magnetic flux inside the magnetic circuit. Varying the magnetic flux an

electric field directed along the axis of the betatron core is induced and it is responsible for the

beam acceleration towards the resonance. The betatron core accelerates the beam gradually

and the beam goes in the unstable region. It is possible to observe the shape of the beam in the

Steinbach diagram in Figure 3.8. Once the particles have reached the resonance line (i.e., one of

the two lines that enclose the “V” shaped unstable region) it enters the unstable region and it

can be extracted. The extraction process follows the mathematical description performed before,

i.e., once the particle achieves an unstable betatron amplitude oscillation, it jumps from one

separatrix to the other until it crosses the electrostatic septum where it receives a kick. It is then

transformed in a position difference with respect to the circulating beam as the particle moves

from the electrostatic to the magnetic septum. The main characteristic of such an extraction is

the continuously varying momentum of the beam remaining in the machine. While as far as the

extracted beam is concerned it has a constant amplitude, small momentum spread and a constant

momentum. The only negative remark of such process is that it doesn’t have a fast response, i.e.,

it cannot be switch on and off in order to synchronize with the patient breath. Thus an on-off

system on the extraction line has to be used.
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FIGURE 3.8. Beam evolution for a betatron extraction in Steinbach diagram [22].

3.3 RFKO technique

Apart from the beam energy and the extracted beam has to be uniform in time, i.e. the number of

extracted particles as the beam turns in the machine has to be kept constant in time. In this way

it is possible to ensure that the number of particles reaching the tumour accomplish the medical

requirements. Since the number of particles to be extracted depends on the dose that has to be

delivered to a tumour slice, it is common to still have a circulating beam in the acceleration after

the treatment of a single tumour slice. At present CNAO performs a betatron extraction. This

technique needs the beam to be de-bunched in order to allow its acceleration up to the resonance.

Thus, the acceleration of the non-extracted beam to the new treatment energy requires to turn

on again the RF cavity. Unfortunately, the bunching and de-bunching process is not efficient, it

requires the increase of the RF cavity potential so that the longitudinal acceptance is matched

with the longitudinal emittance of the beam. If the two quantities are not compatible particles do

not get trapped in the bucket, and so they are not accelerated. The process is highly inefficient

since the trapping of particles within the bucket would lead to lose half of the non-extracted

beam. On the contrary, if the extraction could be performed with a bunched beam then the

change of the beam energy would be feasible since it won’t lead to significant particle losses

(RF cavity switched on also during the extraction time). A technique that allows the extraction

of a bunched beam is the RF Knock-Out (RFKO). After the RF cavity brings the beam to the

required energy (acceleration step), it imposes a zero potential to the synchronous particle. Thus,
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FIGURE 3.9. Schematic representation of RFKO beam extraction in the phase-space
[20].

the beam turn in the accelerator with the desired energy and performs betatron oscillations on

both the transverse planes and synchrotron oscillation in the longitudinal direction. In order to

bring the beam close to a resonance the machine parameters are changed: x and y tunes assume

different values in order to move the beam towards one of the third-order resonance line in the

tune diagram; moreover x and y chromaticities are changed to avoid chromatic aberrations. With

this new setup the extraction procedure can start. The RFKO extraction consists in perturbing

the beam transversely with a noise whose frequency and amplitude evolve in time. The change of

the frequency is needed in order to hit all the particles; thus a study of their betatron frequency is

needed: frequency modulation (FM). The study of the noise amplitude induce changes in the time

profile of the extracted particles: amplitude modulation (AM). It is fundamental to understand

which type of noise performs the best action. From a theoretical point of view a white noise is the

best type of solution that could be provided to the beam since it is characterized by the absence of

periodicity in time. In practice it is no possible to generate a purely random noise over an infinite

frequency range. So, a white noise cut on the desired frequency range could be used as well. At

present, the configuration that has been chosen is a sweep in frequency. It is still far from being a

random noise but it allows the particle extraction. The introduction of a noise, or a controlled

perturbation, allows the diffusion of particles from the beam core to the stable triangle, as shown

in Figure 3.9. The frequency sweep ensures to kick all the particles within the beam and thus

start the diffusive process. The general effect of such an extraction is the progressively increase

of the transverse beam emittance. Another strong difference with respect to other extraction

techniques (apart from the bunched beam) is that the stable triangle is fixed in phase-space. In
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FIGURE 3.10. Beam evolution for a RFKO extraction in Steinbach diagram [22].

fact, it is the diffusion of particles towards the separatrix that enables their extraction; otherwise

particle extraction occurs because the stable triangle progressively closes on the beam.

In Figure 3.10 the beam and the extracted particles are shown in the Steinbach diagram.

The non-extracted beam as well as the extracted one have a constant momentum and a constant

momentum spread. In order to have a small momentum spread of the spill the beam core has

to have a small one too, unlike to what happens in a betatron extraction. It leads to adjust the

voltage of the RF cavity that keeps the beam bunched in the longitudinal direction.

3.3.1 FM - mathematical description

As far as the study of the frequency range is concerned it is important to determine how to

perform the frequency sweep as the beam turns in the accelerator. In particular the frequency of

betatron oscillation is computed for the generic particle p that will be called fRES,p, i.e. resonance

frequency for the particle p, its expression is reported in Equation (3.41).

(3.41) fRES,p = fp(n± qp)

Where fp is the revolution frequency and qp is the decimal part of the particle tune. The first

term can be written in terms of the revolution frequency of the synchronous particle using

the definition of the slip factor, defined previously in Equation (2.48), as reported in Equation

(3.42); while the latter quantity can be written in terms of the decimal part of the tune of the

synchronous particle q0, the chromaticity ξ and the relative momentum deviation with respect to

the nominal value dp/p, as shown in Equation (4.43).

(3.42)
fp − f0

f0
= η

dp

p
→ fp = f0

³

η
dp

p
+1

´
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(3.43) qp = q0 +ξ
dp

p

By the substitution of Equation (3.42) and (3.43) into Equation (3.41), it is possible to obtain

a mathematical expression for the resonance frequency of the particle p, in Equation (3.44). A

simplification has been performed since the second power of dp/p is negligible with respect to

the other terms.

(3.44) fRES,p ≈ f0

h

(n± q0)+
dp

p

³

ξ+η(n± q0)
´i

In order to define the frequency range for the sweep, i.e. frequency modulation, the maximum

and minimum relative momentum deviation has to be evaluated. Its value depends on two

contributions, which expression can be found in Equation (3.45). The first term is the average

momentum of the beam and it is computed as the ratio between position and dispersion, as can

be retrieved from Equation (2.44). In order to consider the real transverse position of the beam

within the vacuum chamber, it is necessary to add the the magnets misalignment and beam

bumps (both considered in the xmax.disp. term) to the transverse position of the synchronous

particle xclosed (i.e. the "theoretical" particle that should pass at the centre of the vacuum chamber

all over the accelerator). Then, the momentum spread has to be added and subtracted to the

average momentum of the beam in order to obtain the maximum and minimum value at the

beam tail. The coefficient in front of the momentum spread term in Equation (3.45) is due to the

fact that it is retrieved from experimental measurements that gave the maximum full width of

the momentum beam distribution. From a practical point of view the measurement is performed

by the passage of the RF bucket across the beam, thus a time distribution of the average beam

momentum can be obtained.

(3.45)
dp

p
=<

∆p

p
>±

1

2

dp

p

¯

¯

¯

tot
=

xclosed + xmax.disp.

Dmax

±
1

2

dp

p

¯

¯

¯

tot

By the substitution of Equation (3.45) into Equation (3.4) it is possible to find the boundaries for

the frequency range. The maximum and the minimum value is reported in Equation (3.46) and

(3.47) respectively and their difference gives the frequency range for the sweep in frequency δ f .

(3.46) fRES,max ≈ f0

h

(n± q0)+
³

<
∆p

p
>+

1

2

dp

p

´³

ξ+η(n± q0)
´i

(3.47) fRES,min ≈ f0

h

(n± q0)+
³

<
∆p

p
>−

1

2

dp

p

´³

ξ+η(n± q0)
´i

δ fRES = fRES,max − fRES,min
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CHAPTER 3. BEAM EXTRACTION

Physical quantity Unit Meaning

θ µrad kick given by the electric field
|Vx|
d

V/m electric field imposed at the kicker plates
le f f m effective length of the kicker

p eV/c momentum of the beam
β - relativistic Lorentz factor

Table 3.1: Units and meaning of the physical quantities involved in the evaluation of the kick

Physical quantity Value
|Vx|
d

2676 V/m
le f f 37 cm

Table 3.2: Units and meaning of the physical quantities involved in the evaluation of the kick

3.3.2 AM - mathematical description

The amplitude modulation is also required in order to have a constant profile of the extracted beam

over the extraction time. From a practical point of view, particles move towards the separatrix

if they receive a kick that changes their divergence. In this way, their orbit is perturbed and

if the kick is randomly distributed between particles (thanks to the sweep in frequency) after

some turns it will be possible to observe a diffusion of particles towards the outermost region of

the stable triangle. From here the need to evaluate the kick intensity. By the imposition of an

horizontal electric field in a specific longitudinal position, the extraction process can be initiated.

The deflection due to an electric field is computed as [15]:

(3.48) θx = tan−1
µ |Vx| · le f f

d · p ·β

¶

The meaning and the units of the different quantities in Equation (3.48) are reported in Table

3.1. At CNAO the kicker has the characteristics defined in Table 3.2 .
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4
HARDWARE STUDIES

T
his chapter will deal with hardware studies. At first it will be presented the electronic

instrumentation in detail. A schematic representation of the electronic line will be re-

ported so that it will be possible to follow the path of the signal and how it is modified

when it undergoes to the action of the considered component. Then, there will be the presentation

of test bench measures and check in the field one. Different analysis have been performed, at

first the optimization of the connections between components, i.e. where to locate them (either

in the electronic room or in the synchrotron one), and then the assessment of impedance match.

Under the same rationale, the Fourier analysis will be described; it has been performed to un-

derstand which the dominant harmonics are when the voltage of the inlet signal is changed. In

these case too test bench and in field measures have been done. Later, softwares will be considered.
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CHAPTER 4. HARDWARE STUDIES

width=8cm

FIGURE 4.1. Schematic representation of the components needed to perform a RFKO
extraction.

4.1 Introduction

In order to attain the beam extraction with the RFKO method, the amplitude of betatron

oscillations has to be perturbed in order to make them move to the closest separatrix (as explained

in detailed in the previous chapter). From a practical point of view, this action is performed by

the sequence of components reported in Figure 4.1. The MTG generates the trigger event that

enables the RF signal generation performed by the LLRF-clone. Thus, the signal undergoes to

components that change its intensity. The attenuator performs a reduction in order to mach the

signal with the amplifier requirements. Then the increase of the signal amplitude is performed in

two steps: by the amplifier and by the BalUn. The quality of the signal can be checked after the

first amplification by the filter and, if needed, the signal parameters can be adjust to accomplish

the user requirements. Moreover, it is possible to generate the signal and not deliver it to the

circulating beam, this action is performed by the gate that can enable (or not) the amplifier. It

could be useful to work in this configuration when tests on the signal have to be performed.

4.2 Master Timing Generator (MTG)

The Master Timing Generator (MTG) is a device that generates and distributes, via optic fibre,

the trigger events to all the elements in the accelerator in order to synchronize them. It can

receive a signal from the API or the treatment code and, once it has been processed, the MTG

generate a signal that contains all the fundamental information on the beam to be generated and

delivered to the patient. Between all of them the most important are the beam energy and the

type of particle (protons or carbon ions), additional information are the ramps of the magnets in

order to achieve the required energy.
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4.3. LOW LEVEL RADIO FREQUENCY (LLRF)

FIGURE 4.2. The LLRF-clone can be observed. In particular, the different connections
are visible as well as the screen that shows the correct status of the component.

4.3 Low Level Radio Frequency (LLRF)

LLRF-clone is an acronym that stands for Low Level Radio Frequency and "clone" is added to

distinguish it from the one daily used for clinical treatments. It has the same architecture of the

one used for the RF cavity but it has been adapted for the RFKO extraction objectives. In Figure

4.2 it is possible to observe the LLRF-clone and from left to right the different connections:

• GAP-IN is the cable that comes back from the synchrotron room where there is a filter, as

shown in Figure 4.1, that withdrawn part of the signal and send it to the LLRF to check

that it corresponds to the user requirements;

• POS1-IN is used in the control of the RF cavity, in particular it is connected to a DCT, a

transformer located in the synchrotron that allows the indirect computation of the number

of particles in the beam by the measure of the electric current intensity generated by the

passage of the beam through the transformer;

• RF-0 is the outgoing cable brings the signal generated inside the LLRF to the attenuator,

as reported in Figure 4.1;

• RF-MON is a possible outlet, the signal in this door is an exact copy of the one in the RF-0;

• RF-180 is a possible outlet, the signal in this door is 180° phase shifted;

There is just one way in which it is possible to communicate with the LLRF: the ethernet con-

nection (SLC door), that could also allows the connection with other systems on the internet. It
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CHAPTER 4. HARDWARE STUDIES

FIGURE 4.3. LLRF architecture

is used to communicate all the fundamental information from the user graphical interface to

the FPGA. By the use of the interface is possible to type the user requirements for the beam.

The architecture of the LLRF can be found in Figure 4.3. From the electronic point of view, the

main component is the FPGA (Field Programmable Gate Array); through the ethernet processor

it receives the parameters (defined by the user in the interface) needed to build the RF signal.

Then it sends some of them to the Digital Signal Processor (DSP) that is able to perform complex

algebraic operation; between all the outputs it gives the amplitude of the RF signal that has to

be generated. The FPGA sends the frequency of the RF signal to the Direct Digital Synthesiser

(DDS) that, once it receives the amplitude of the signal from the DSP, it generates the required

RF signal that goes out from the component from the RF-0 door. There is no direct communication

between the electronic boards, the exchange of information is performed by the FPGA. Other

boards like the ADC, are used to control and adjust the signal itself. In this case these functions

are performed in a closed voltage loop. Thanks to the filter that withdrawn part of the signal

and send it to one of the ADC fast doors (“GAP-IN”), it is possible to check the peak-to-peak

amplitude and adjust it according to user requirements. This control is performed by one of the

DSP that makes a Proportional-Integral check, it communicates to the FPGA the how much

the amplitude of the signal has to be modified and so the DDS provides the correct signal. In

order to conclude this description, it could be of interest to highlight that the distinction between

slow (blue components in Figure 4.3) and fast ADC (yellow ones in the same figure) is due to the

70



4.3. LOW LEVEL RADIO FREQUENCY (LLRF)

FIGURE 4.4. LLRF user interface.

maximum frequency at which they can work. Four of them are slow, i.e. they use signals up to

some kHz frequencies, the others are said to be fast and the frequency limit is of some MHz.

The user interface is shown in Figure 4.4. On the top part it is possible to observe that the

LLRF has been switched on correctly, in fact the green dot near “connected”, the absence of errors

and details of the FPGA configuration in the “Details configuration” ensures that the component

is ready to work and has been correctly configured. The parameters can be changed going either

in the "Cavity parameter” section (in Figure 4.5) or in the "Beam parameter” one (in Figure 4.6).

In the cavity parameter section just few quantities can be changed.

• voltageLoop (0; 1): as written in the identifying name, the magnitude can only take two

values. In particular, 0 refers to the open loop work configuration in which the supplied

voltage has a logarithmic trend with the value set by the user in Volt (pp) EmptyBuck.

(This trend can be observed by looking at the data collected in the Excel file called

Data_LLRF_V pp.xlsx). The configuration in which the parameter assumes a unit value

will be used after the end of the interface modification process. The aim is to put a limit on

the RF voltage value that can be generated (this is achieved by imposing a limit on the Volt

(pp) EmptyBuck parameter in order not to exceed 0.6Vpp, to make the amplifier work in

conditions of safety and not in compression.

• FreqRFKO: this is the frequency at which the RF signal is generated. The tests were done
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FIGURE 4.5. LLRF user interface - Cavity parameters. The obscured lines are not of
interest for the purpouse of this work, that is the reason why just few lines can be
read.

for the following frequencies: 0.5MHz, 1MHz, 2MHz, 3MHz, 4MHz, 5MHz, 6MHz.

• characteristic parameters of data acquisition as:

– OffsetAcq: quantifies how much the offset should be;

– PeriodAcq (nt): length of the acquisition period in ns;

– SampleAcq: number of samples to be acquired.

• characteristic column of the acceleration called Acceleration: five coefficients (a1, a2, a3, a4,

a5) characteristic of the 4th degree polynomial to change the amplitude of the signal, to

avoid that the amplitude changes in this way it is sufficient to impose 0.1 at the last cell ,

called Vfin (pp).

Also in the Beam Parameter section, only few parameters can be changed and they are:

• ESB algorithm: defines how the frequency must change during sweep. For each numerical

value a different form is associated. In particular the user can choose between four different

shapes:
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FIGURE 4.6. LLRF user interface - Beam parameters. The obscured lines are not of
interest for the purpose of this work, that is the reason why just few lines can be
read.

– 1: saw tooth;

– 2: the next value of frequency is randomly generated between in a range defined by

deltaF _ ESB, defined here below;

– 3: saw tooth decreasing and vertically increasing;

– 4: saw tooth increasing and vertically decreasing. For the sake of completeness these

frequency sweep are reported in Figure 4.6.

• freq_ ESB: is a numerical value that multiplied by 5e-6s quantifies how often the frequency

of the signal has to be changed;

• deltaF_ ESB: defines instead how much the frequency should be changed;

During the first tests with the LLRF, a problem has been detected. The component is able to

generate a RF signal up to 4MHz. In order to overcome this limit it is necessary to modify its

code, this action is planned to be performed in the next future.
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FIGURE 4.7. Sweep in frequency, possible shapes.

4.4 Electronic line

The electronic line is composed by several elements, it starts from the attenuator and it ends

with the BalUn. In the following it will be presented the line itself with, where necessary, a brief

description of the considered element. The different operational configuration tried will be shown

too so that at the end it will be clear why just one of those has been chosen. Frequency calibration

and response as well as Fourier analysis will be part of this section. The first component to be

study is the BalUn for two main reasons, it is the most important and it has been designed for

the exact purpose of this thesis.

BalUn is an acronym that stands for Balanced to Unbalanced line, and a schematic can be

found in Figure 4.9. It can be considered as a particular type of transformer that makes floating

the ground of the incoming line thanks to the fact that the signal propagates in the magnetic field

generated by the passage of the signal itself in the twelve wires around the ferritic cores. This is

an interesting application when the studied line has a slightly different ground level than the one

of the other components, and it is subjected to an intense electric current or potential difference.

In this condition a normal transformer could induce voltage loops between the two ground levels

which strongly decrease its effect, i.e. the increase or reduction of the signal amplitude between

its ends. In fact, at the beginning of the work the BalUn was not a component of the line, there

was just a normal transformer; then the project of the BalUn has started due to the detection of

voltage loops and to the extremely high feasibility of building “in loco” a balanced to unbalanced

transformer. Dr. Mauro Paoluzzi from CERN provided a scheme of the BalUn knowing that it has

to operate between 0.3MHz and 10MHz and that it has to increase by a factor of two the potential

difference of the incoming signal. Requirements and characteristics of the line are reported in

Table 4.1.

The amplifier is an instrument that can generate up to 500W power on a line with impedance

equal to 50Ω, this is a fundamental requirement to make the component work properly. The other

ways that could bring it to failure are due to an excessively high mismatch in the impedances

of the lines or because the lines try to draw over current from the supply, in this latter case the

amplifier try to protect itself by reducing voltage and current outputs. In Figure 4.5 a red light

near “MISMATCH” will stand for the first type of fault; while a red light near “REF LIM” in
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Electronic line

Attenuator -17dB
Impedance of the line outgoing the amplifier 50Ω
Maximum power generated by the amplifier 500W

Filter (or divider) 56 [-]
Capacity of the kicker 40pF

Frequency range 0.3-10 MHz

Table 4.1: Specifications of the electronic line

FIGURE 4.8. Real picture of the amplifier used, it is located in the electronic room.

case the second fault occurs. For further details look to the user manual [500W CW RF amplifier

Model BT00500-ALPHAS _ CW].

The impedance of the kickers plates has been measured with a Network Analyser and its value

can be found in Table 4.1. The frequency range has been determined in a preliminary study on

the possible extraction frequencies with the RFKO technique: the lower value is slightly slower

than the minimum frequency required to extract a proton beam at the minimum energy (30mm

Bragg-peak position); while the upper limit has been arbitrarily chosen to allow the extraction

of all the beams for every possible energy of interest, but usually it won’t even exceed 8MHz. A

resuming table with the BalUn characteristics, Table 4.2, and a real picture of the component,

Figure 4.10, will follow.

In Figure 4.9 is reported a schematic of the electric circuit of the BalUn. Looking to the

picture from left to right it is possible to follow the signal path. As all the RF signal it propagates

in a co-axial cable, and once it enters in the metallic enclose it is split in two. In the upper line

the metallic shield is at ground level and so the signal propagates just in the copper core, while

in the lower line the opposite occurs. In fact, the copper core is at ground level while the signal

propagates in the metallic shield (for graphical reasons the metallic shield and the plastic jacket

are drawn as coincident). The ferritic ensures the generation of a magnetic field when the signal

passes in the twelve wires wounded around the ferritic core. Then, in order to have a signal in

the desired frequency range, a band-pass filter is added before the kicker’s plates. The filter is
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FIGURE 4.9. Electric circuit of the BalUn.

Component Characteristic

RF inlet signal -
Ferritic element 12 wires with 95Ω cable

L 0.6µH
C 30pF
R 100Ω

cable 40cm* 50Ω
Kicker plate 40pF

Table 4.2: Design parameters of the BalUn. * In the following pages it will be explained how the
cable length has been chosen.

made by a combination of capacitors and inductors which values and electrical connections have

been determined in order to have a RF signal in the frequency range defined in Table 4.1 and

whose characteristics are reported in Table 4.2. At the end the signal sees a parallel between

the resistance of the two lines that ensures a 50Ω impedance of the line and one of the kicker’s

plates. On one of the plates the signal arrives with a positive sign, i.e. with the same amplitude

of the generated signal; on the other one it arrives with an opposite sign. So, the difference of the

two leads to a signal which intensity is twice the original one.

In Figure 4.10 it is possible to see the Balun itself. On the top left of the figure, it is possible to

observe the band-pass filter. In the same picture there is the view from the top of the metallic

structure. It is a static heat sink, the black elements at the ends are two fans that make the air

76



4.5. OPTIMIZATION OF CONNECTIONS IN THE ELECTRONIC LINE

FIGURE 4.10. Picture of the different elements that compose the BalUn.

flow through the metallic structure in order to ensure heat removal. The rationale behind the

choice of having two reduntant fans is due to ensure always a minimum heat removal. In addition,

as a further emergency system there is a temperature probe (on the top right of Figure 4.10) that

when the heat sink reaches the 100°C it removes the “enable” signal in the amplifier that then

stops working. On the bottom right of Figure 4.10 it is possible to observe the toroidal ferritic

element with the twelve wires, while on the bottom left the whole component is enclosed. On the

front part there are tree connections, the central one is where the signal enters, in particular

the "T" connection allows a double inlet or outlet of the signal. One of the two gate is used to

withdrawn of part of the inlet signal that is sent back to electronic room in order to check that

the signal perturbing the beam is matched with the user will. While the other one is where the

cable coming from the electronic room brings the signal from the amplifier to the BalUn. Once

the signal is split in two and its amplitude is increased (as explained before), it is sent on the two

outgoing cables that then are directly connected to the kicker plates as shown in Figure 4.9.

From Figure 4.11 and 4.12 it is possible to see the location of the BalUn in the synchrotron

and the cable connections that will be described in the next section.

4.5 Optimization of connections in the electronic line

One of the first measures performed was to check the good accordance between impedances of

different components. Once the frequency range of interest was defined, the BalUn was the first
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FIGURE 4.11. Picture of the BalUn in the synchrotron room. It is possible to observe
the connection from the BalUn to the kicker’s plates.

FIGURE 4.12. Picture of the BalUn in the synchrotron room. Observe the cable bringing
the signal, the filter and one of the two connections to the kicker’s plates.
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Configuration Length Impedance

Long cable low impedance 92m 75Ω
Short cable low impedance 1.5m 75Ω
Long cable high impedance 92m 95Ω
Short cable high impedance 1.5m 95Ω

Table 4.3: Relative position between amplifier and BalUn

component to be studied. In particular the following parameters have been changed checking

that the impedance at the end of the transmission line, i.e. inlet of the BalUn, was 50 Ω for the

whole frequency range:

• length of the cable bringing the signal from the electronic room to the inlet of the BalUn;

• length of the cables connecting the output of the BalUn with the kicker’s plates.

At the beginning different configurations have been studied at test bench and the capacity of the

kicker plates has been simulated with two capacitors connected at the end of the cables (which

length, as said before, was one of the parameters that could be changed).

4.5.1 Impedance BalUn cable

As a first case study, it has been chosen to study the impedance of the cable to be used to wrap

the ferromagnetic elements of the BalUn and the length of the cable bringing the signal from

the amplifier to the BalUn, i.e. where to locate the two components. The aim being to assess if

there were differences between a short and a long cable (few meters versus 92 meters) and also if

different impedances of the cable wrapped around the ferritic element (75 Ω or 95 Ω) could lead

to significant modifications of the signal.

From Figure 4.13 it is possible to observe that the long cable connection is characterized

by an oscillation behaviour. This peculiarity is further highlighted in Figure 4.14 where it is

reported the Smith diagram, i.e. how impedance of the line (Balun + cable) changes as a function

of the frequency range defined in Table 4.1. The reason why a long cable connection has this

characteristic can be explained by the comparison of the cable length and the wavelength of the

signal. In the frequency range of interest (0.3MHz – 10MHz) the wavelength of the signal changes

from 600m to 30m; so, with a short cable connection the signal, considered as an electromagnetic

wave, does not succeed in performing a full oscillation. The contrary occurs for a long cable

connection because it is longer than the wavelength of the signal itself. So, looking at a given

position in time, a conductor does not feature the same signal level at all its points. Nevertheless,

the long cable connection has been preferred to the short one in order to have the amplifier and

the BalUn located in the Electronic Room and the Synchrotron one respectively, in addition it

also ensures an average impedance of 50 Ω. As far as the impedance of the cable wrapped around
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FIGURE 4.13. Output of the frequency response when a long/short cable is connected at
the inlet of the BalUn. Used to simulate the relative positioning between amplifier
and BalUn in the electronic and synchrotron room respectively.

FIGURE 4.14. Picture of the Network Analyzer output for the third configuration
described in Table 4.2
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Configuration Location N.A. Location BalUn Presence of Filter

N.A. in E.R. w/o Filter Electronic Room Synchrotron Room No
N.A. in E.R. w. Filter Electronic Room Synchrotron Room Yes

N.A. in Sync w/o Filter Synchrotron Room Synchrotron Room No
N.A. in Sync w. Filter Synchrotron Room Synchrotron Room Yes

Table 4.4: Possible configurations and tests to check if a filter used to withdrawn part of the
signal changes the impedance of the system.

the ferritic elements are concerned, the 95 Ω cable was chosen to build the BalUn because it

shows lower peak-to-peak impedance variations, as reported in Figure 4.13.

4.5.2 BalUn positioning

Then the BalUn has been brought in the Synchrotron and the long cable has been deployed

between the Electronic room and the Synchrotron one. In this new configuration the ends of the

BalUn have been connected to the kicker’s plates but, as the previous case study. This setup

doesn’t affect the result of the measures since the signal is studied before it passes by the BalUn

itself. Now the aim is to assess that the impedance of the line (BalUn + cable) has the same trend

as the one determined in the test bench and, in addition, to check if the presence of a divider

(i.e., the filter used to withdraw part of the signal) could induce changes in the impedance of the

studied system. The set of measures consists in evaluating the impedance without divider by

measuring with a Network Analyzer (N.A.) at the beginning of the chain ( i.e. in the electronic

room) and at the end of the same (i.e. in the synchrotron room). Then the filter has been added

(as explained in the previous section) and the same set of measure has been performed again.

These configurations have been resumed in Table 4.4.

From the analysis, which results are resumed in Figure 4.15, it is possible to observe two

main features: when the measure is performed in the electronic room the oscillating trend is still

present while it disappears when the Network Analyser is moved in the synchrotron room, due

to the fact that in this last configuration the long cable is excluded from the analysis. Moreover,

the presence of the filter improves the response of the system at high frequencies because it adds

a small resistive charge parallel connected to the line. Thus, in the final configuration the filter

will be part of the line since it does not affect the characteristic of the line itself. Furthermore,

it will be used to have a close voltage loop control in the LLRF-clone to check (and eventualy

modify) the voltage between the kicker’s plates.

4.5.3 Length cables to the kicker

The last configuration that has been considered concerned the determination of the best configu-

ration for the length of the cables connecting the exit of the BalUn to the kicker’s plates. The two
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FIGURE 4.15. Output of the frequency response when a filter is added as a component
of the line trough a T connection.

Configuration Length Presence of Filter

Long cable w. Filter 80cm Yes
Short cable w/o Filter 40cm No
Long cable w/o Filter 80cm No
Short cable w. Filter 40cm Yes

Table 4.5: Possible configurations to optimize the connection between the BalUn and the Kicker

possible setups are reported in Table 4.5.

From the MatLab output, reported in Figure 4.16, it is quite obvious that the configuration

with short cables (40cm) is better than the one with longer one (80cm) and that the presence

of the filter does not change the behaviour of the system, as was previously assessed too. This

is a fundamental achievement since it allows to have a feedback of the signal injected in the

system without perturbing the response of the system and the signal itself. From the Smith

diagram reported in Figure 4.17, the impedance of the system as a function of the frequency can

be observed. It is almost constant all over the frequency range and it is also confirmed by the

diagram in Figure 4.16. So, at the end of this measure it was decided that the best way to connect

the BalUn to the kicker was with short cables (40cm).

4.5.4 Final checks

The last check performed was to assess the impedance of the whole system: BalUn with 95 Ω

impedance of the cables wrapped around the ferritic elements, long cable from output amplifier

to inlet BalUn, “T” connection to allow a filter extract part of the incoming signal, short cable
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FIGURE 4.16. Output of the frequency response when the BalUn is connected to the
kicker with cables of different lengths.

FIGURE 4.17. Picture of the Network Analyzer output for the fourth configuration
described in Table 4.4
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FIGURE 4.18. Final check of the system impedance. Measures performed at the be-
ginning (from the Electronic room) and at the end of the line (in the Synchrotron
room).

from output BalUn to kicker plates. The measures have been performed at the beginning of the

line in the electronic room and in the synchrotron one, the results are reported in Figure 4.18.

The oscillating behaviour due to the long cable connection is quite visible when the measure

is performed from the electronic room (blue line), while it is absent when the same check is

performed in the synchrotron. Moreover it is possible to see that changing the frequency of the

signal the whole electronic line has an average impedance of 50Ω, as strongly request by the

amplifier.

4.6 Fourier analysis of the electronic line

The Fourier analysis has been performed on part of the electronic line: from the attenuator till

the inlet of the BalUn. This last component was substituted by a fictitious load resr of 50 Ω.

Moreover, instead of connecting the LLRF-clone, a standard function generator was preferred

due to the easiness in changing frequency and amplitude of the signal generated. Then, in order

to assess the behaviour and the quality of the signal at the input and output of the components,

different “T” connections where installed and the signal was sent to an oscilloscope where the

amplitude was read. The test bench built for these measures is reported in Figure 4.20. From

the right to the left there is the function generator, the oscilloscope, the amplifier and above it

there are the attenuator near the right corner and the gate that has on its top the filter, behind

the oscilloscope there is the 50Ω resistor. To have a better understanding of the signal path, a

schematic representation is reported in figure 4.19. Four different signals have been obtained:

• Output of the function generator, amplitude and frequency of the signal generated in order
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FIGURE 4.19. Picture of the test bench built for the Fourier analysis.

FIGURE 4.20. Schematic representation of the Fourier test bench.

85



CHAPTER 4. HARDWARE STUDIES

Impedance 0.3MHz - 10MHz 0.5MHz - 6MHz

Measure from E.R. Measure from S.R. Measure from E.R. Measure from S.R.
Min |Z| 42.9177 40.4164 44.3053 43.6931
Max |Z| 57.6904 50.3383 52.9964 50.3383

Table 4.6: Maximum, minimum and average impedance in the final configuration for the total
and restricted range of frequency.

to check its accordance with user requirements

• Output of the attenuator;

• Intensity of the signal withdrawn by the filter or divider;

• Voltage on the fictitious load.

The objective was to check that the attenuation coefficient of the attenuator was the one required

by the user, compute the gain and the power of the amplifier as a function of the frequency and

compare the results with the specifications in the user manual, check the fraction of the signal

taken by the filter and evaluate the voltage on the resistor.

The impedance of the line in the final configuration is reported in Figure 4.18, so the frequency

range initially defined in Table 4.1 has been changed, i.e. reduced, from 0.5MHz up to 6MHz

where the impedance of the system changes slightly, as reported in Table 4.6.

In the restricted range of frequency, the maximum and minimum impedance is closer to the

required 50Ω than the one for the whole frequency range.

The frequencies chosen to perform the Fourier analysis were 0.5MHz and from 1MHz to

6MHz with a step of 1MHz. The values read on the oscilloscope have been written on an Excel

file then used to perform the following calculations:

• Attenuation coefficient:

(4.1) 20Log
³Vout

Vin

´

= 20Log
³V2

V1

´

• Filter withdrawn

(4.2)
Vprobe

Vout, f ilter

=
V4

V3

• Gain of the amplifier:

(4.3) 20Log
³Vout

Vin

´

= 20Log
³V3

V2

´
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Frequency [MHz] Average attenuation [dB] Average gain amplifier [dB] Filter [-]

0.5 -16.675 60.577 51.7
1 -16.606 59.990 51.9
2 -16.616 58.506 50.7
3 -16.681 57.462 49.6
4 -16.730 56.856 47.9
5 -16.231 57.705 49.1
6 -15.184 56.147 48.9

Average -16.402 - 50.0

Table 4.7: Attenutator, amplifier and filter characteristics as a function of the signal frequency.

• Power of the signal leaving the amplifier:

(4.4) PRMS =
1

2

V 2
p

R
=

1

2R

µ

Vpp

2

¶2

Having a closer look to the shape of the waveform in Figure 4.19, it is possible to notice that

it does not look like a sinusoidal wave even if the one imposed by the generator is sinusoidal.

This is due to imperfections of the amplifier that induces bigger distortions in the waveform

as the frequency and the intensity of the incoming signal is increased. Moreover, when

the Fourier transform of the signal is performed with the function already implemented

on MatLab, then an additional multiplication factor must be added and Equation (4.4)

becomes:

(4.5) PRMS =
1

2R
(2V pp)2

This is due to the different way the Fast Fourier Transform is defined. On MatLab the

algorithm implemented is:

(4.6) Xk =
n
X

j=1
x j e

−i2π
n

( j−1)(k−1)

While the mathematical definition of the FTT is:

(4.7) Xk =
N−1
X

n=0
xne−i2π kn

N

For each frequency the voltage on the generated signal was varied four times in order to attain

more data and so assess the previous characteristics with more confidence. The average gain

of the amplifier and of the attenuator has been computed as the mathematical average of the

values computed for each voltage so that it was possible to have an average value characteristic

for a certain frequency. The results obtained from these calculations are reported in Table 4.7. As

far as the amplifier is concerned, it is better to give a graphical representation of its behaviour
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FIGURE 4.21. Comparison between the amplifier gain measured at the test bench (in
the upper part) and the user manual, in which the frequency range of interest is
highlighted.

Component Test bench measure Long cable connection

Filter 51.2 56

Table 4.8: Final filter characteristics.

rather than a simple numerical value, so that a comparison with the characteristics defined in

the user manual could be performed. In the upper part of Figure 4.21 there is the gain of the

amplifier measured at the test bench while in the bottom part there is the gain as a function

of the frequency taken by the user manual. It is highlighted the frequency range of interest

and it is possible to observe that the trend is almost the same while the numerical values are

a bit different. There is a main reason that could explain this difference: the user manual does

not refer exactly to the amplifier used and tested. On the 8th January 2019, the BalUn has

been brought in the synchrotron and it has been connected to the kicker plates with the final

configuration described in Table 4.5; while the filter was added on the 25th of January and its

final characteristics are reported in Table 4.8. The one used and tested at the test bench was not

the one brought in the Synchrotron since there was already one dedicated for the purpose of this

work. It has been brought in the Synchrotron when the long cable has been deployed and then
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FIGURE 4.22. Example output file of the Fourier analysis performed with MatLab.

it has been left there, measures and tests have been performed with another similar filter, as

can be seen comparing the Table 4.7 and 4.8. So, in Table 4.8 are reported the characteristics of

the filter that will be used from now on to perform additional experimental measures. From the

same table it is possible to observe that the test bench measures gave a certain value of the filter

withdrawal capacity, the presence of the long cable connection (that brings the signal from the

electronic room to the synchrotron one) modifies its behaviour due to the resistance added by the

cable itself, for this reason it is this last value that must be considered in further analysis.

During the measures, for each frequency of the signal generated three waveforms have been

acquired: one at the maximum voltage and the other two for two lower values. This allows to study

which are the main harmonics at the maximum power and also if and how they change when

the intensity of the signal is reduced. So, the Fourier analysis has been performed. A MatLab

code has been developed and it takes the Excel file acquired from the oscilloscope, it does the

Fourier transform of the signal (using the Fast Fourier algorithm implement in the environment)

and for each measure, i.e. for each Excel file analysed, the code looks for the frequency at which

the amplitude of the Fast Fourier transform is maximum, identifying in this way the nominal or

fundamental frequency and then it also looks for the three successive values, identifying other

three harmonics. So, at the end it is possible to check that the fundamental frequency of the

signal is equal to the one imposed by the function generator and that the signal itself is not “pure”

but it has some noise which can be characterized by the frequency and amplitude (referred as

percentage with respect to the amplitude of the fundamental amplitude). In Figure 4.22 it is

shown an example of the output obtained from the previous analysis. The title of the picture as

to be interpreted as “Channel 4, 6MHz 4Vpp signal outgoing from the filter”. In order to have a

better representation of the frequency that characterize the signal, only a part of the frequency

range has been reported. In addition, the MatLab program writes (for each waveform analysed)
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FIGURE 4.23. Fourier analysis of the signal waveforms on the fititious charge and
outgoing from the filter (or divider). The light yellow of some cell represents those
configurations where the percentage value of the harmonic was lower than the 3%.

the value of frequency and amplitude of the four highest harmonics in an Excel file. Then all the

data have been collected and ordered. The final results are reported in Figure 4.23. It is possible

to notice that if the value of the nominal frequency is fixed while the peak-to-peak amplitude is

progressively increased, then the signal amplitude is strongly dominated by the fundamental one

and the percentage of further harmonics progressively increase. In fact, at low signal amplitude

most of further harmonics can be neglected either because their percentage value is lower than

the 3% or because the harmonic is larger or equal to the ninth. At the maximum voltage it is

extremely unusual to have a signal strongly dominated by the fundamental harmonic only, in

fact the relative percentage of the third harmonic is always larger than the 15% and it arrives up

to the 33%.

For the waveforms acquired at the maximum voltage a further study has been performed. It

was interesting to study the evolution of the power, so its value has been computed for each one

of the four harmonics and then the value of the last three has been compared to the one of the

fundamental harmonics in order to quantify the relative contribution (expressed as a percentage)

to the total power of the signal (computed as the sum of the power of all the considered harmonics).

As usual the analysis has been performed for the signal outgoing the filter and for the one at the

inlet of the fictitious load. The results are reported in Figure 4.24.

At the maximum amplitude the signal is dominated by even harmonics only. On the row of

the table reported in Figure 4.24 there is the value of the frequency of the signal (dark green)

expressed in MHz, the value of the peak-to-peak amplitude for each considered harmonic and the

value of the power associated to each harmonic. In particular, the value of the power for all the

harmonics (except the fundamental) is expressed as a percentage with respect to the fundamental

one, while the amplitude is the real value of each harmonic, i.e. it is not a percentage of the
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FIGURE 4.24. Signal power and amplitude for the first four harmonics at the maximum
power

fundamental frequency amplitude. It is possible to notice that increasing the frequency the power

of the harmonics increases, in particular for the third one. As far as the amplitudes are concerned,

the main difference is in the magnitude of the signal going to the probe and the one withdrawn

by the filter. Obviously the one of the filter is much smaller than the one of the probe since it

withdrawn almost 1/50 of the incoming signal, and for both the measurements it is possible to

observe a reduction in the amplitude as further harmonics are considered.
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5
SOFTWARE ANALYSIS

B
efore giving a detailed description of the rationale behind the codes studied and developed

it could be useful a brief introduction on the different programming languages and

software used. The main codes used for particle generation, tracking in the accelerator

and between septa has been developed using:

• FORTRAN 77: FORTRAN codes have been developed for the generation of particles, for

the ramp-up of the resonance sextupole and for the random kick generation. In particular,

the last two codes have been written in MatLab because there was the need to change

parameters in order to optimize the extraction of the particles;

• MAD-X (Methodical Accelerator Design): is a scripting language developed at CERN and

used to describe accelerators, their optical functions, and to simulate and optimize beam

optics and dynamics;

• MatLab is a numerical computing environment optimized for matrix and data manipulation,

and for algorithms implementation.
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FIGURE 5.1. Rationale of the codes used for particle tracking

5.1 Codes description

Figure 5.1 there is a generic explanation of the main code procedure. It is written in MAD-

X except for the particle random generation and ramps generations that has been written in

FORTRAN 77 first and on MatLab later in order to study the effect of different kicker ramp-up

on the spill. Figure 5.2 shows a more detailed explanation of the previous routine. The order in

which different codes had to be run, the data saving in sub-directories, creation, copy and removal

of files is managed by “.bat” files. Thus, just by running one of these .bat files the whole set of

codes can be run, and the beam extraction can be simulated.

From the command prompt the code supergo.bat can be launched. It is the code where the

user can define how many and which average beam momenta have to be simulated, then the

code creates the sub-directories for each one of the momenta. Moreover, all the files needed for

further simulations are copied in the sub-directories and an additional sub-directory for the

output is created for each momentum too. At the end of this step the code runs the first MAD-X

file: extraction_makethin_v3.madx. This is the main code in which CNAO synchrotron is defined

as a “line” of elements which properties (e.g., physical dimensions of the magnets, quadrupoles

and sextupoles strength, . . . ) are loaded and read from another file (that, eventually, can be

modified by the user). Before any other operation is performed, the quadrupoles and sextupoles

strengths are modified in order to accomplish the user requirements using the match command.

It is important to do this step because the working point of the accelerator has to be moved from
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FIGURE 5.2. Detailed description of the codes used for particle tracking

the normal conditions, after the beam has been accelerated, to the extraction configuration, i.e.

the shape of the beam in the phase-space is changed (according to the extraction technique that

it is used) and the working point of the machine is brought closer to a resonance. Then, before

tracking the particles it is necessary to transform the accelerator elements because the tracking

module can work only on “thin” elements. So, the makethin command is executed and specific

characteristics (i.e., the number and type of slices in which the component has to be cut) are

defined for each class of elements (dipoles, quadrupoles). Thus, another match is done to check

that nothing has changed. Now, it is possible to generate the particle distribution and to start

their tracking in the machine. At this point different external codes are called, at first the one

for the particle generation, then the one for the sextupole and kicker ramp-up. At present, only

the code for particle generation has been left unchanged. The sextupoles and kicker ramp-up

has been written on MatLab and, at present, the user has to copy the .txt output files in the

subdirectories for the average beam momenta simulated. The main reason of this choice is that

the modification of the kicker ramp is one of the key parameters to be used to improve particle

extraction. Then MAD-X reads the .txt files and it memorizes the values in tables. So, it starts

the tracking of particles, in particular at each turn it reads the value of the resonance sextupole

strength and of the kick from the table and checks that all the particles are within the apertures

otherwise it considers the particle as lost. Among all the turns simulated (1e6), some of them are
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used for the ramp-up of the sextupole (6e3) that then is kept constant at the nominal value, all

the others are used to simulate the extraction, i.e., the kick assumes a different value at each

turn.

5.2 Post-processing code: outputs

In order to understand how a selected configuration leads to modifications in the number of

extracted particles, different output files can be studied:

• Particles still available in the machine, the check is performed before the kicker is switched

on and five times (the value can be changed by the user) during the kicker operations (so it

is expected to observe a reduction in the number of particles available for the extraction);

• Particles lost during the sextupole ramp-up: some particles already close to the resonance

are immediately lost as the SR is switched on, so they are removed before further analysis

are removed;

• Particles available after sextupole ramp-up (i.e., ready to undergo to RFKO extraction);

• Particle lost during the kicker ramp-up (i.e., considered as extracted). As indirect measure,

those not extracted could be (theoretically) extracted if the number of turns is further

increased. This is why the percentage of extracted particles will be considered in the study

of the quality of a simulation rather than the real number that is meaningless.

To all the particles is associated the longitudinal position at which they are lost, their momenta

and transverse position.So, the particles lost during the kicker operations are then the input

particles for the track module between the electrostatic and magnetic septa. To all the particles

is added the kick of the electrostatic septum making them have a larger x-momentum and then

the magnetic septum allows a physical separation between the remaining circulating beam and

the one that is extracted. Also in this case, particles that are lost in the line can be saved on a file,

otherwise all the extracted particles with their momenta and position are saved on another file.

On the basis of the code described above a MatLab code for the post processing of the results

has been developed and it is possible to find it in Appendix B. Its aim is to give a graphical

representation of the results obtained from the MAD-X simulations. The interesting outcomes

are:

• x-x’ phase-space representation of the particles still not extracted, in particular the picture

is saved as a .gif so that the turn evolution can be observed;

• histogram of the particles lost during the extraction in order to see if there are unexpected

longitudinal positions where losses occur, apart from the electrostatic septum and how

many particles are lost (not reported in Figure 5.3);
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FIGURE 5.3. Example of the possible results from the post-processing code
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FIGURE 5.4. Example of parabolic ramp for the kicker

• transport between septa: particles that have reached the electrostatic septum are repre-

sented in x-x’ phase-space just before they receive the kick from the septum itself and the

same particles are reported after the magnetic septum has transformed their divergence in

a physical separation from the circulating beam;

• the evolution of the spill as a function of the number of turns;

• the shape of the beam in the x-x’ phase-space once the resonant sextupole has been switched

on and it has reached the nominal strength.

In Figure 5.3 there are the graphical results of the post-processing code. The figures have to be

considered as an example to understand which kind of outputs can be obtained from the code, an

additional possible outcome is the histogram of the particle losses during the sextupole ramp.

5.3 Kicker ramp-up code

As far as the kicker ramp-up is concerned another Matlab code has been developed and it can be

found in Appendix C. In Figure 5.4 it is possible to observe an example of the parabolic ramp-up

provided by the code. Moreover, a zoom on the first turns has been performed in order to highlight

that at the beginning of the track the kicker is switch off in order to allow the SR ramp.

The code has been developed in order to allow the used to choose the type of ramp. At present,

there are just three possible functions:

• Constant: the random generation is performed between ± constant value;

• Parabolic: the random generation is performed within a symmetric parabolic shape which

initial and final value can be chosen by the user (as shown in Figure 5.4);
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• Exponential: it is analogous to the parabolic ramp, but there is the exponential function

instead of a second order polynomial.

An index is associated to each type of function, so by the definition of its value it is possible

to obtain the required trend. Thus, the user defined the initial and final value and then the

coefficients associated at each function are computed. Since it is necessary to generate a number

of kicks equal to the number of turns the beam performes in the machine, the value can be either

defined by the user or can be automatically read from the .madx code. According to the description

performed before, the first 6e3 turns are performed with the kicker switched off, so the random

generation starts just after that number is overcome. Thus, the exponential function and the

parabola assume the minimum required value at 6e3+1 in order to start the kick generation

between the values defined by the user. Even if the number of turns with the kicker switched

off is changed, the kicker code adapts in order to move the minimum of the function where the

kicker is turned on. Moreover, at the end of the random generation two .txt files are generated:

in the first one there is the kick for the first 6e3 turns, while in the other there are the kicks

for the remaining turns. By their substitution in the proper folder it is possible to run the next

simulation with the new kicker ramp-up.
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6
RESULTS

T
he results of the numerical simulation will be presented. As described in Chapter 5, each

simulation studies three different beam momentum offsets with respect to the resonance

(dp/p =−0.0005;−0.0010;−0.0015) so there will be three lines in the diagrams that will

be described, one for each dp/p. At first the present configuration (betatron extraction) and the

starting point will be described. Thus the interesting features of the results will be highlighted in

order to understand which characteristics can be optimized, which one have to be avoided or just

modified. The optimization procedure has been performed on both the machine parameters (tune

and chromaticity) and the kicker. The reason for this choice is due to the fact that those physical

quantities affect the quality and quantity of the extracted beam. The different configurations will

be explained and it will be shown why some setups have been abandoned and why others have

been further analysed. After the definition of the "best" kicker ramp-up, a sensitivity analysis on

the machine parameters has been carried on; as well as a study on additional beam momentum

offsets. At the end it will be given a description of the parameters to be computed before the

planning of experimental measurements. Moreover, an Excel file developed for the aim of this

work will be presented: it gives to the user a tool to retrieve data for FM and AM modulation.
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6.1 Present configuration and starting point

At present CNAO performs the beam extraction with a betatron, as described in Chapter 3.

From experimental measurements the machine parameters that allow such an extraction are

reported in Table 6.1. Calling back the tune diagram in Figure 3.1, it could be intuitive why a

change of tune has to be performed (the beam has to be brought close to a third-order resonance)

while a change of chromaticity could be less intuitive. Equation (6.1) recalls the definition of the

chromaticity and shows another way to define the same quantity:

(6.1) ξ=
δQ/Q

δp/p
Q′ =

δQ

δp/p

Changing its value would mean changing the momentum spread of the beam, if the tune distance

from resonance is kept constant; or viceversa. Moreover, as Equation (3.39) and (3.40) shows, the

shape of the Steinbach diagram (amplitude vs. dp/p) would change up to the limit of an horizontal

line, i.e. constant amplitude of extraction, if the chromaticity approaches to zero. Thus, a change

in chromaticity has to be carefully handled. The starting point for the optimization of the RFKO

Machine parameter Value

Q′
x -4.1

Q′
y 0.05

Qx 1.669
Q y 1.785

Table 6.1: Chromaticity and tune for a betatron extraction

extraction has been fixed to the results obtained by previous beam simulation studies performed

by Dr. Marco Pullia and Simone Savazzi. The results of those simulations can be resumed looking

at the machine parameters (tune and chromaticity) reported in Table 6.2.

Machine parameter Value

Q′
x -0.2

Q′
y -1

Qx 1.672
Q y 1.74

Table 6.2: Chromaticity and tune at the starting point of RFKO extraction

102



6.2. KICK STUDIES

FIGURE 6.1. Phase-space representation for a constant kick

6.2 Kick studies

All the studies on the possible random kick generation will be performed with the machine

parameters defined in Table 6.2.

6.2.1 Constant kick

Extraction studies start after the ramp of the resonant sextupoles. Therefore, the phase-space

distribution of the beam is not anymore circular (or ellipse shaped) but triangular, as reported in

Figure 6.1. Being the sextupole ramp always the same there is no difference in the shape and/or

dimensions of the triangles. The only difference will be due to how (and how fast) particles are

extracted from the stable area. At the beginning, a random generation between a positive and

negative constant kick has been chosen due to its simplicity. In this way it has been possible to

check the basic characteristics of the extracted beam. The maximum and minimum kicks have

the same value but opposite sign, in Figure 6.2 it is possible to observe two configurations. On

the left hand side of the picture it is possible to see a random generation of the kick between

±0.5µrad while on the right hand side the limit has been doubled. In both cases not all the kicks

have been shown otherwise it would have not be possible to distinguish one point from the other

in the diagram; thus in the figure there is just one kick every 200 generated. Furthermore, it is

not possible to see that the first 6000 turns are performed without the kicker in order to allow

the ramp-up of the resonant sextupole. So, in Figure 6.3 is reported a zoom on the first 10000

turns. The first feature to be analysed concerns the spill. At first there is the need to check if

the extraction is achieved and then the time (or turn) profile of the extracted particles. Thus
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FIGURE 6.2. Kick random generation between ±0.5µrad (on the left side) and ±1µrad
kick (on the right one)

FIGURE 6.3. Zoom on the first 10000 turns for the random generation of the kick
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FIGURE 6.4. Spill profile for ±0.5µrad kick random generation

FIGURE 6.5. Spill profile for ±1µrad kick random generation

Figure 6.4 shows the turn spill profile for a random generation between ±0.5µrad while Figure

6.5 shows the same profile in the case of ±1µrad. From the comparison of the two figures it

is possible to notice that a ±0.5µrad allows the beam extraction while the other one seems to

not achieve it. Moreover, the profile of the spill is exponentially decreasing. Table 6.3 collect

the percentage of the extracted particles over 1e6 turn in the accelerator, thus if this number is
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increased it is expected to obtain more extracted particles. The configuration with ±1µrad seems

dp/p % extracted

±0.5µrad
-0.0005 39.8%
-0.0010 28.3%
-0.0015 39.1%

±1µrad
-0.0005 71.2%
-0.0010 55.4%
-0.0015 45.1%

Table 6.3: Percentage of extracted particles over 1e6 turns for a constant kick

to ensure an higher percentage of extracted particles but it is also in contrast with the spill profile

(Figure 6.5). The reason of this discrepancy is due to the characteristics (spiral step and spiral

kick) with which particle arrive to the electrostatic septum. Thus, they aren’t really extracted

but just lost due to collisions with the septum itself. Moreover, this configuration induces lost

of particles all over the accelerator length. The combination of these features doesn’t allow the

beam extraction with the machine parameters defined in Table 6.2.

As far as the ±0.5µrad is concerned, it shows a lower percentage of extracted particles but it

is expected to give a better results if the spill profile (Figure 6.3) is considered too. In fact, as the

beam turns in the accelerator the spill profile is exponentially decreasing at the beginning and

then it assumes a uniform shape. In order to further study the extracted beam, it is useful to look

to particle transport between the electrostatic and magnetic septum: Figure 6.6.

On the left hand side of the figure the particles that have crossed the electrostatic septum

are represented just after they’ve received the kick from the septum itself. Then, the same group

of particles is shown after the 0.3π phase-advance has (partially) transformed the kick into a

position difference with respect to the circulating beam. Those particle will then be subjected to

the magnetic field of the magnetic field and reach the extraction line.

After all these considerations it is possible to list pro and cons and start the optimization

procedure.

• The spill profile does not match with the usage of the beam itself. In fact it is strictly

required a beam with almost the same number of particles as a function of time in order to

accomplish the physical dose. Moreover, there are characteristics of the spill to be strongly

avoided while other that can be kept. So, looking at Figure 6.6:

– the initial exponential decay has to be strongly avoided;

– the almost constant trend that can be observed from turn #5e5 till the end can be

improved.
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FIGURE 6.6. Transport of particles between the electrostatic and magnetic septa for
±0.5µrad

Ramp-up Type Initial and Final values

Figure 5.9 left parabolic ±0.5µrad÷±1µrad

Figure 5.9 centre parabolic ±0.2µrad÷±1µrad

Figure 5.9 left parabolic ±0.1µrad÷±0.8µrad

Table 6.4: Type of kicker ramp and their features

6.2.2 Parabolic ramp

The first requirement that has to be fulfilled is the spill uniformity. Therefore, in order to avoid

the exponential decay in the number of extracted particles the kicker has to be raised to the

maximum value in a different way. Moreover, it is expected that the initial and final values of

the ramp could influence the spill profile thus, different possibilities have been tried. In fact, if

at the beginning of the extraction a low kick is given to the beam it is expected to let particle

diffuse towards the outermost region of the triangle with a lower speed. Being the number of

particles available for the extraction higher at the beginning of the extraction phenomenon a

lower diffusion velocity is needed. On the contrary, at the end of the phenomenon, where a lower

number of particles is available in the accelerator, it is necessary to increase the kick and thus

the diffusion velocity in order to keep constant in time the number of extracted particles.

Three different configurations are shown in Figure 6.7 and their characteristics are resumed

in Table 6.4. Following the picture from left to right and the table from up to down, the first

parabolic ramp has been chosen in order to try to mitigate the effects of the random generation of
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FIGURE 6.7. Study to optimize the kicker ramp-up

dp/p % extracted

±0.5µrad÷±1µrad
-0.0005 55.2%
-0.0010 53.0%
-0.0015 54.4%

±0.2µrad÷±1µrad
-0.0005 42.7%
-0.0010 41.7%
-0.0015 39.8%

±0.1µrad÷±0.8µrad
-0.0005 32.5%
-0.0010 31.4%
-0.0015 30.8%

Table 6.5: Percentage of extracted particles for three parabolic ramps

the ±1µrad setup. While the other two setups have the aim of reducing the initial peak in the

turn spill profile. From Table 6.5 it is possible to observe the percentage of extracted particles

over 1e6 turns. Also in this case it is expected to achieve higher values if the beams performs

more turns. As far as the spill profile is concerned, it is reported in Figure 6.10. It is possible

to observe that the first type of parabolic growth has the same trend as the one of the random

generation between ±0.5µrad as well as the same magnitude of the initial peak (as expected

since the range for the random kick generation at the beginning the two simulations is the same).

But it also shows an almost constant spill over a larger number of turn, actually it starts at 3e5

instead of 5e5. Reducing the magnitude of the initial spike and making smoother the spill profile

are the features to be improved in this simulation. On the contrary, the other two simulations

show a strong reduction of the initial peak but also a growing trend in the number of extracted

particles that has to be avoided. So, it could be interesting to study a new setup where:

• The initial value of the parabola has to be closer to 0.2µrad rather than 0.5µrad in order

to reduce the magnitude of the initial peak;
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FIGURE 6.8. Evolution of the spill with three different ramp-up of the kicker

FIGURE 6.9. Spill evolution from the electrostatic to the magnetic septum for three
parabolic kicker ramps

• The difference between the initial and final value of the peak has to be close to 0.5µrad (as

the first type of parabolic ramp-up) in order to have a uniform spill rather than a growing

trend;

As it can be observed by the comparison of Table 6.3 (excluding the ±1µrad case study) and

Table 6.5, a general increase in the percentage of the extracted particles can be assessed. Thus,

the choice of having a smother ramp-up of the kicker was good. For the sake of completeness,

Figure 6.9 shows the x-x’ phase-space for the particles that compose the spill studied above. As it

was expected a parabolic ramp of the kick doesn’t affect the characteristics of the extracted beam

in phase-space since it just induces variation in the "velocity" at which particles are extracted, i.e.

the diffusion speed towards the separatrices.
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Type Initial and Final values ∆ kick

parabolic ±0.3µrad÷±0.9µrad 0.6µrad

Table 6.6: New setup with optimized initial and final values

FIGURE 6.10. Parabolic ramp of the kicker between ±0.3µrad and ±0.9µrad

6.2.3 Optimum parabola

According to the information retrieved till now a new setup has been considered. The character-

istics of its parabolic ramp can be found in Table 6.6 while the kicker ramp-up can be found in

Figure 6.10. As usual, the first 6e3 turns are performed with the kicker switched off in order to

let the beam assume the characteristic triangular shape by the use of the resonant sextupole.

As far as the spill profile is concerned it is possible to find it in Figure 6.11. With respect to

previous simulations the magnitude of the peak has been reduce. In this new setup a value

between those described above is obtained thanks to the reduction of the initial value of the

kicker ramp. Moreover, the evolution is almost constant as the beam turns in the accelerator,

and it matches the conditions of an almost uniform spill profile.In particular, it is possible to

identify which one between the three momenta gives better results with respect to the others.

In fact, with a dp/p = −0.0010 the spill profile is more uniform than the other two. A further

confirmation is given in Table 6.7 where the percentage of extracted particles over 1e6 turns

is reported. Even if a dp/p =−0.0005 shows an higher value, its high initial peak still leads to

prefer the dp/p =−0.0010. For the sake of completeness the phase-space distribution of the beam

after the resonance sextupole ramp is reported in Figure 6.12. It can be observed that the change
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FIGURE 6.11. Spill profile for the parabolic ramp of the kicker between ±0.3µrad and
±0.9µrad

dp/p % extracted particles

-0.0005 43.8%
-0.0010 42.7%
-0.0015 41.2%

Table 6.7: Percentage of extracted particles for parabolic ramp ±0.3÷±0.9µrad

in the random generation of the kick doesn’t affect the beam configuration as the extraction

process is activated.
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FIGURE 6.12. Phase-space representation for the optimum parabola setup

6.3 Change in chromaticity and tune

Since in the previous section an optimum parabolic ramp for the kick has been found. It is of

interest to investigate which machine parameter (or which ones) mostly affect the extraction

process. Between all the possibilities, tune and chromaticity are the selected ones. Tune has

been chosen since it is one of the first parameters to be changed when a beam has to be brought

close to a resonance (tune diagram in Figure 3.1). Chromaticity induce changes in both the

beam momentum and tune (Equation (6.1)) as well as in the width of the unstable region in the

Stainbach diagram. Due to the computational time needed for each simulation (2 days) not all the

average beam momentum could be simulated. Therefore, considering the result obtained in the

previous section an additional check on the intermediate momentum offset has been performed. It

has been verified if it has almost the same trend for the different configurations tried till now. In

Figure 6.13, it is possible to see how the spill profile changes in each setup for the dp/p =−0.0010.

Then sensitivity analysis on the machine parameters has started. The analysis as been performed

by changing one parameter each time and studying how it affects the spill profile, the transport

between septa, the number of extracted particles, ... . In Table 6.8 it is possible to find which

parameters have been changed and, moreover, their initial value (i.e. the one considered in the

previous simulations) and final one (i.e. the one under investigation). It can be observed that the

vertical tune is not included in the analysis. There are multiple reasons but, above all, the fact

that the extraction occurs on the horizontal plane. The same cannot be said for the y chromaticity

since sextupoles non-linearities make not obvious its independence from the extraction process.

It is expected to have a strong dependence on the x-chromaticity while the other two parameters
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FIGURE 6.13. Spill profile for the different setup studied till now

Parameter Initial value Studied value

Q′
x -0.2 -2

Q′
y -1 -0.1

Qx 1.74 1.87

Table 6.8: Parameters’ change in sensitivity analysis

should induce just some modifications. This assumptions is assessed in Figure 6.14. As foreseen,

the x-chromaticity strongly changes the shape of the spill and, above all, it allows the extraction

of a uniform beam. The other two parameters do not affect the results in a significant way, in fact,

it is possible to recognize the exponential decay widely seen in the previous simulations. This is

the reason why, the vertical tune as well as the y-chromaticity will be changed. It is expected

that their change won’t induce modifications in the spill profile. The optimization will be reduced

to check if the new values of machine parameters with the optimum parabola of the previous

section will improve the beam extraction.

Another feature of the extracted beam that changes is the phase-space representation, as

shown in Figure 6.15. The position and divergence of the spill is not significantly affected by

the change of the vertical tune and chromaticity. It still has a divergence between 3mrad and

3.5mrad at a radial position between 0.035m and 0.04m before it receives the kick from the

electrostatic septum. This values are almost the same of those obtained from the previous

simulations if the intermediate momentum−0.0010 is observed. By the observation of the blue

spill in Figure 6.18 a great change can be detected. The spill dimension has been strongly reduced
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FIGURE 6.14. Spill profile for the sensitivity analysis

FIGURE 6.15. Spill transport between septa in the sensitivity analysis
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Septa ξx =−0.2 ξx =−2

∆ position

Before ES 0.007 m 0.005 m
After MS 0.0065 m 0.004 m

∆ divergence

Before ES 0.25 mrad ≃0 mrad
After MS -0.3 mrad -0.3 mrad

Table 6.9: Change of spill dimensions due to x-chromaticity changes

FIGURE 6.16. Detailed transport between septa of the closest particle to electrostatic
septum

as it is highlighted in Table 6.9. The reduction of the radial position after the magnetic septum

reduces the risk to lose particles due to collisions with other elements of the extraction line (the

vacuum chamber has always a maximum radial dimension equal to 0.07 m) but increases the

probability to lose it due to collisions within the vacuum chamber. A drawback of this setup is

the closeness of the last extracted particles to the magnetic septum. The particle studied is the

blue one on the far left on the left hand side of Figure 6.18, i.e. in the Before septum region before

it receives the kick from the electrostatic septum. Then it is kicked and tracked for three turns

before the magnetic septum is able to convert the particle divergence into a position difference

with respect to the circulating beam. Thus, since it is the closest to the physical clearances of the

accelerator it is the particle with the highest probability to be lost. The MAD-X code developed

for the purpose of this analysis is reported in Appendix D while the one used to post-process the

results and produce Figure 6.19 can be found in Appendix E. In Figure 6.19 the x transverse

position is represented as a function of three times the accelerator length and the blue and black

contours represent the physical clearances in the machine. The transverse clearances are not

115



CHAPTER 6. RESULTS

Parameter Value

Q′
x -2

Q′
y -0.02

Qx 1.67
Q y 1.87

Table 6.10: Optimized machine parameters for an optimized kicker ramp-up

FIGURE 6.17. Spill profile for the investigated optimized configuration

symmetric, the black one refers to those on the outer part of the ring (where the magnetic and

electrostatic extraction septa are located) while the blue one to the inner one (where there is the

electrostatic injection septum).

6.4 Investigation on optimized configuration

According to the results of the sensitivity analysis and the studies performed on the kicker ramp,

a new setup has been built the aim being to understand how much the machine parameters affect

the results from a quantitative point of view. Thus, since the last parabolic ramp-up of the kicker

seemed to be optimized, it is considered again and the machine parameters are changed according

to the analysis of the previous section. Hopefully an higher value of extracted particles is expected.

The vertical chromaticity has been further changed in order to check if it could influence the spill

profile. The reason of this choice will be explained at the end of this chapter. The very first result

to be checked is the spill profile, that is reported in Figure 6.17. The combination of machine

parameters changes and kicker ramp lead to a uniform beam over a large number of turns (from
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dp/p % extracted particles

-0.0005 58.2%
-0.0010 46.8%
-0.0015 31.8%

Table 6.11: Percentage of extracted particles for parabolic ramp ±0.3÷±0.9µrad with optimized
machine parameters

≈ 1e6 till the end). Also in this case it is interesting to perform a more detailed analysis for the

three different momenta offset. The only setup where the initial spike is not negligible is for

a momentum of −0.0015 whereas the other two (dp/p = −0.0005 and dp/p = −0.0010) have a

low intensity peak, almost negligible. Moreover, between the three momenta the central one

(−0.0010) seems to be the best (and it further confirms the initial hypothesis) since it has an

uniform spill profile. Moreover, the percentage of extracted particles over 1e6 is higher than the

one obtained with the previous machine parameters. Even if the lower momentum offset shows

an higher percentage in the extracted particles the profile of its spill still leads to prefer the

intermediate momentum offset.

6.4.1 Momenta offset study

To further study how a change in the machine parameters could influence the extracted spill, they

have been changed as reported in Table 6.12. All the parameters have been left unchanged with

respect to the starting point, the only difference has been performed in the x chromaticity. In this

way it will be possible to compare if changes in the spill profile can be attributed just to changes

in the x chromaticity or if they are due to changes of all the machine parameters (as performed

in the previous section). The momentum offset with respect to the resonance has been studied on

Parameter Value

Q′
x -2

Q′
y -1

Qx 1.67
Q y 1.74

Table 6.12: Optimized machine parameters for an optimized kicker ramp-up

a limited range, i.e. simulating three different values determined by previous studies (dp/p =
−0.0005;−0.0010;−0.0015). A check on a wider range could then be performed. In particular,

being the actual betatron extraction performed with a momentum between −0.003÷−0.002, two

additional values have been considered. In Figure 6.18 it is possible to observe the trend of the

extracted spill. The additional momenta added do not allow beam extraction. In the Steinbach
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FIGURE 6.18. Spill profile for momenta offset study

diagram, these momenta are too far from resonance and their extraction is so slow that can be

almost neglected compared to the other momenta. In order to achieve the beam extraction with

these momenta and the machine parameters defined above, it could be necessary to "wait" more

until the beam reaches the unstable region. By the comparison of this spill profile with the one of

the previous sections it is possible to notice that the characteristic exponential decay is a feature

of the lowest momentum offset, it can be explained considering the fact the dp/p =−0.0005 is the

closest to the resonance, thus the feature could be improved by studying another kicker ramp.

This step won’t be performed since it is sufficient to find a single momentum offset that satisfied

the requirements. It is the case of dp/p = −0.0010 since it allows the extraction of a uniform

extracted beam.

6.5 Towards experimental measures

In order to have an experimental verification, it is important to define the frequency range for

the sweep and the amplitude range for the kicker ramp. Thus, an Excel file has been built. The

file contains all the fundamental information and calculations for protons and carbon ions both.

For each value of energy (protons: 60MeV - 240 MeV; carbon ions: 120MeV/u - 400MeV/u) the

following physical quantities have been computed:

• Momentum p[Mev/c2] from the relativistic triangle:
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(6.2)







E2 = (m0c2)2 + (pc)2

E = Ek +m0c2

Where Ek is the kinetic energy of the beam; m0c2 is the rest energy and E is the total

energy.

• Lorentz factors γ and β [1] :

(6.3) γ=
Ek +E0

E0
β=

s

γ2 −1

γ2

• Momentum compation factor η[1]:

(6.4) η=
1

γ2
−αc

Where αc is defined as the change of relative change in the orbit length due to a momentum

spread.

• From experimental measures the following quantities have been retrieved:

– RF frequency: it is the frequency imposed by the RF cavity;

– Tune;

– Maximum dispersion;

– Closed orbit distortion: it quantifies how much the beam is moved with respect to the

centre of the vacuum chamber due to magnets misalignments or dumps;

– Magnetic rigidity;

From this set of data it is possible to compute the betatron frequency range that has to be

excited using Equation (3.46) and Equation (3.47). Moreover, since there is a direct dependence

on n± q0 the Excel file allows the modification of the tune and thus of the frequencies. Once

the beam energy has been chosen, the amplitude of the frequency sweep is fixed, i.e. the FM

modulation can be performed. As far as the AM modulation is concerned, there is an additional

column in the file that allows the calculation of the differential potential to be imposed between

the kicker plates in order to obtain the required kick (the user can easily modify this value in

the data box of the file). Thus, assuming to perform a parabolic kick ramp-up between ±0.3µrad

and ±0.9µrad, then the user has to insert the values in the provided space and look for the

corresponding voltage, computed from Equation (3.48). Figure 6.19 shows the required data in

order to plan FM and AM experimental sessions. Some of them can be modified by the user,
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FIGURE 6.19. Required input data for planning FM and AM experimental sessions

FIGURE 6.20. Betatron frequencies and kicker voltage for FM and AM

e.g. tune Qx (the decimal part of the tune is automatically computed, thus there is no need to

directly modify it), chromaticity, kick and position of the beam within the vacuum chamber at

the maximum dispersion region (pos s4_11) while others are fixed like the kicker length. The

frequency limitation cell has been added after the studies on the hardware in order to highlight

which is the maximum generation frequency of the RF signal due to a limitation (that can be

solved) of the LLRF component. Figure 6.20 shows the research gate that the user can handle in

order to look for a particular beam. Since at CNAO the beam is used for patient treatments it is

preferred to look for the Bragg-peak position rather than the beam energy. As output the user

can see the closest lower and upper value available. Then of each n± q0 under investigation it is

possible to observe the maximum and minimum betatron frequencies and their difference. As an

example just the values for 1− q0 and q0 are shown in Figure 6.24. The last column shows the

peak-to-peak voltage of the signal that has to be provided to the kicker’s plates.

The great limitation of the set of simulation that has been described and performed is that the

RF cavity is not part of the analysis. The RF cavity has to be switched on all over the extraction

process because the beam is longitudinally bunched in order to allow the re-acceleration of the

non extracted particles. Therefore, particles see an electric field (or a sinusoidal voltage) while

the synchronous one sees a zero potential difference that keep constant its revolution frequency.

All the other one with a slightly bigger or smaller energy oscillate around the synchronous one,
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FIGURE 6.21. Amplitude growth and synchrotron oscillations

the frequency of these oscillations is called synchrotron frequency. During a RFKO extraction

the beam enters the unstable region by the growth of betatron oscillations amplitude. But it also

happens that particles enter the unstable region because synchrotron oscillations make them

move towards it, as shown in Figure 6.25. The problem directly connected to such a secondary

and unwanted extraction is due to the frequency of these particles. It is of the order of some

≃ kHz and thus it is not matched with the frequency range for medical treatments. The solution

could be to work with an almost zero chromaticity in order to make the relative variation of the

tune linearly independent from the momentum spread.

121





C
H

A
P

T
E

R

7
CONCLUSIONS

A
t the beginning of this work preliminary studies to assess the feasibility of a RFKO ex-

traction had been performed. Now it is possible to say that the hardware implementation

has been completed while the simulation part needs to be compared with experimental

results, thus at present, it is not possible to say if more simulations will be needed.

As far as the hardware implementation is concerned, it has been tested and verified over

a large frequency and voltage range. Moreover, during the in field tests it worked properly. As

reported in Chapter 4, the LLRF-clone shows an important limitation in the maximum frequency

of the RF signal it can generate. Thus it can be useful to re-code it and allow the noise generation

in wider frequency range.

From the set of simulations presented in Chapter 6, it is possible to conclude that good results

have been obtained for a dp/p =−0.0010 with a parabolic ramp-up between ±0.3µrad÷±0.9µrad

and with the machine parameters reported in Table 6.12. For sure additional studies on the

chromaticity have to be performed as well as planning experimental measurements. In fact,

even if a zero chromaticity seems to be better since it should avoid the extraction of particles

at the synchrotron frequency, it is not sure it can be practically reached. Moreover, it could be

interesting to develop a code that evaluates the maximum decrease of the RF voltage in the cavity

that allows the extraction of a small dp/p of the beam. It requires the evaluation of intermediate

quantities that influence each other and thus the need of an iterative procedure. In addition, it

could be useful to add the extraction of particles at the synchrotron frequency in the MAD-X code

in order to have a code that simulates all the fundamental features of the phenomenon. Another

modification could be on the .bat file in order to allow the automatic copy of the kicker ramp in the
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required sub-directories (now this step is performed by the user before running each simulation).

Moreover, in order to allow the use of the Excel file, developed to plan experimental measures,

on a wider range it could be possible to add another research gate where energy selection of the

beam is performed instead of the Bragg-peak position. I will work on this topic for two months

more and I hope to find the experimental verification of the work performed and improve the

code cited before.
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APPENDIX A: DERIVATION OF THE MOTION EQUATIONS IN THE

LONGITUDINAL DIRECTION

In order to compute the motion equation in the longitudinal direction, at first the energy gain per

unit path is computed for the synchronous particle and for those with delay or in advance:

(A.1)
dWs

dz
=

1

dz

³1

2
mv2

s

´

=
1

dt

³

mvs

´

= qEssin(Φs)

Where at the second last passage the following expression has been substituted:

(A.2)
d

dt
=

dz

dt

1

dz
= v

1

dz

The energy gain of a generic particle is expressed as:

(A.3)
d∆E

dz
= qEs

³

sin(Φs +ϕ)− sin(Φs)
´

=
dw

dz

Where w is just the difference between the energy of the particle W and the one of the synchronous

one Ws.

(A.4)
dϕ

dz
=ω

³ dt

dz
−

dts

dz

´

=ωRF

³1

v
−

1

vs

´

Being ϕ the difference between the phase of a particle and the one of the synchronous one. It is

useful to write the explicit form for w:

(A.5) w =
1

2
m(v2 −v2

s )=
1

2
m(v+vs)(v−vs)≈

1

2
m2vs(v−vs)= mvs(v−vs)

So Equation (A.4) can be written as follows using Equation (A.5):

(A.6)
dϕ

dz
=ω

vs −v

v ·vs
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But

v ·vs =
w+mv2

s

m

So at the end it is possible to obtain:

(A.7)
dϕ

dz
=−

ω ·w
mv3

s

Performing the difference between the sinusoidal functions in Equation (A.3):

(A.8) sin(Φs +ϕ)− sin(Φs)= 2cos
³

Φs +ϕ+Φs

2

´

· sin
³

Φs +ϕ−Φs

2

´

= 2cos
³

Φs
ϕ

2

´

·
ϕ

2

Being ϕ defined as:

ϕ=Φ−Φs

Then ϕ<<Φs and Equation (A.8) can be simplified as:

(A.9) sin(Φs +ϕ)− sin(Φs)= 2cos
³

Φs
ϕ

2

´

·
ϕ

2
≈ϕcos(Φs)

A simplified version of Equation (A.3) can be then obtained:

(A.10)
dw

dt
= qEsϕcos(Φs)

By the derivation of Equations (A.6) and it combination with Equation (A.10), it is possible to

obtain:

(A.11)
d2ϕ

dz2
+

ω

mv3
s

³

qEscos(Φs)
´

ϕ= 0

Equation (A.11) can be also written as:

(A.12)
d2ϕ

dz2
+Ω

2ϕ= 0 where Ω
2 =

ω

mv3
s

³

qEscos(Φs)
´

Equation (A.12) has the same form of an harmonic oscillator. In order to find physical solution, a

real solution has to be found, i.e. the coefficient multiplying ϕ has to be positive.

(A.13) Ω
2 =

ω

mv3
s

³

qEscos(Φs)
´

> 0→ cos(Φs)> 0

Giving a graphical representation of the energy gain ∆E versus the phase difference ϕ it is

possible to obtain a circumference that has the synchronous particle at the centre of the reference

system and those with delay or in advance move around it on a circular path. But when the

assumption of ϕ<<Φs is removed then the circumference is deformed and the well known bucket

shape is obtained. As the non linearity induced by sextupoles, it is still possible to see the circular

path near the center of the reference system while moving towards the non linear effects get

more and more important.
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APPENDIX B: POST-PROCESSING CODE ON MATLAB FOR MAD-X

RESULTS

clearvars

close all

clc

%% CHANGE THE DIRECTORY!

cd ..

cd ..

cd(’1-0.5urad’);

mkdir ’RESULTS’%makes dir where saves figures

%% Insert the momentum value of momenta simulated on MAD-X

momenta=[-0.0005,-0.0010,-0.0015];%[-2,-0.1,1.87];

names=[’dp/p=’;’dp/p=’;’dp/p=’];%[’csi x=’;’csi y=’;’ qy= ’];

%% Definition variables and tables TO NOT DELETE

cextr=zeros(length(momenta),1); %# particles lost @ EL septum, i.e. extracted

clost=zeros(length(momenta),1); %# particles lost somewhere else

clostSR=zeros(length(momenta),1); %# particles lost in SR ramp-up at EL septum

celseSR=zeros(length(momenta),1); %# particles lost in SR ramp-up somewhere else

cIn=zeros(length(momenta),1); % initial # of particles generated

cSR=zeros(length(momenta),1); %particles alive after SR ramp-up

%% Colours to be used in the plot

col=[’^b’;’*r’;’sg’;’xy’;’om’]; %all other plots

coltt=[’.-b’;’.-r’;’.-g’;’.-y’;’.-m’]; %for the BIN plot

%next line for the plot evolution of available particles

col1=[[1 0 0];[0 1 0];[1 1 1];[0 0 1];[1 1 0];[0 1 1];[1 0 1];[1 0.4 0.6];[123/255

104/255 238/255];[1 140/255 0];[128/255 0 0]];
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%% START OF THE ROUTINE (it will be done a #of times = # momenta simulated)

for ii=1:length(momenta)

%Go in the subdirectories, furhter specification needed for -0.0010

if (ii==2 || ii==4)

cd(strcat(’deltap_’,num2str(momenta(ii)),’0’));%(’csi_y@’,num2str(momenta(ii)))

else

cd(strcat(’deltap_’,num2str(momenta(ii))));

% elseif ii==1

% cd(strcat(’csi_x@’,num2str(momenta(ii))))

% elseif ii==3

% cd(strcat(’qy@’,num2str(momenta(ii))))

end

%1-INITIAL DISTRIBUTION OF PARTICLES -> part_input_coord.txt

ff=fopen(’part_input_coord.txt’);

line=0;

j=1;

PartIn=zeros(j,6);

while line~=-1

line=fgetl(ff);

if line~=-1

char=[’s’,’t’,’a’,’r’,’x’,’y’,’p’,’;’,’=’];

for k=1:length(char)

line=erase(line,char(k));

end

PartIn(j,:)=str2double(strsplit(line(2:end),’,’));

j=j+1;

end

end

cIn(ii)=length(PartIn);

fclose(ff);

clear ff line j k char

%2-PARTICLES AVAILABLE 4 EXTRACTION AFTER SR RAMP-UP

%’tracksumm1.txt’ copied into ’part_input_coord1.txt’

ff=fopen(’part_input_coord1.txt’);

line=0;

j=1;

PartSR=zeros(j,6);

while line~=-1

line=fgetl(ff);

if line~=-1
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char=[’s’,’t’,’a’,’r’,’x’,’y’,’p’,’;’,’=’];

for k=1:length(char)

line=erase(line,char(k));

end

PartSR(j,:)=str2double(strsplit(line(2:end),’,’));

j=j+1;

end

end

cSR(ii)=length(PartSR);

fclose(ff);

clear ff line j k char

%change directory and start the post-processing of the outputs!

cd(’output’)

%3-PARTICLES LOST DURING SR RAMP-UP

ff=fopen(’trackloss0.txt’);

line=fgetl(ff);

j=1;

PartSRlost=zeros(j,12);

PosSRlost=[];

%Delete first lines of the MAD-X output files that are useless

while (line(1)==’@’ || line(1)==’*’ || line(1)==’$’ || line(1)==’#’)

line=fgetl(ff);

j=j+1;

end

k=1; %Write on a table useful data

while line~=-1

PartSRlost(k,:)=str2double(strsplit(line(1:end-19),’ ’));%data

PosSRlost=[PosSRlost;line(end-18:end)];%position

index=find(PosSRlost(k,:)==’"’);

if PosSRlost(k,index(1)+1:index(2)-1)==’SE_010A_ESP’

clostSR(ii)=clostSR(ii)+1;

else

celseSR(ii)=celseSR(ii)+1;

end

line=fgetl(ff);

k=k+1;

clear index

end

PartSRlost(:,1)=[];

PartSRlost(:,end)=[];

fclose(ff);
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clear ff line j k

%4-PARTICLES LOST DURING KICKER RAMP-UP: possible extracted particles!

ff=fopen(’trackloss1.txt’);

line=fgetl(ff);

j=1;

PartExtr=zeros(j,12);

PosExtr=[];

%Delete first lines of the MAD-X output files that are useless

while (line(1)==’@’ || line(1)==’*’ || line(1)==’$’ || line(1)==’#’)

line=fgetl(ff);

j=j+1;

end

k=1; %Write on a table useful data

while line~=-1

PartExtr(k,:)=str2double(strsplit(line(1:end-19),’ ’));%data

PosExtr=[PosExtr;line(end-18:end)];%position

index=find(PosExtr(k,:)==’"’);

if PosExtr(k,index(1)+1:index(2)-1)==’SE_010A_ESP’

cextr(ii)=cextr(ii)+1;

else

clost(ii)=clost(ii)+1;

PartExtr(k,:)=[];%delete particle if lost somewhere else

end

line=fgetl(ff);

k=k+1;

clear index

end

PartExtr(:,1)=[];

PartExtr(:,end)=[];

fclose(ff);

%evolution in time of the extracted particles

if cextr(ii)~=0

bin=15e3;

int=round(max(PartExtr(:,2)/bin));

for ll=1:int

if ll==1

Part(ll)=length(1:find(PartExtr(:,2)<=bin,1,’last’ ));

else

if ll==int

Part(ll)=length(find(PartExtr(:,2)<=(ll-1)*bin,1,’last’):PartExtr(end:2));

else

Part(ll)=length(find(PartExtr(:,2)<=(ll-1)*bin,1,’last’):find(PartExtr(:,2)<=ll*bin,1,
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end

end

end

clear ff line j k

end

%5-PARTICLES STILL AVAILABLE IN THE MACHINE: not extracted & not lost

ff=fopen(’tracksumm1.txt’);

line=fgetl(ff);

j=1;

AA=zeros(j,11,15);

turns=zeros(1,15);

%Delete first lines of the MAD-X output files that are useless

while (line(1)==’@’ || line(1)==’*’ || line(1)==’$’ || line(1)==’#’)

line=fgetl(ff);

j=j+1;

end

i=1; %Write on a table useful data

while ((line(1)~=’@’ || line(1)~=’*’ || line(1)~=’$’ || line(1)~=’#’) &&

line(1)~=-1)

k=1;

while (line(1)~=’#’ && line(1)~=-1)

AA(k,:,i)=str2double(strsplit(line(1:end),’ ’));%data

turns(i)=AA(1,3,i);

line=fgetl(ff);

k=k+1;

end

i=i+1;

line=fgetl(ff);

end

fclose(ff);

index=find(turns==0);

turns(index(2):end)=[];

AA(:,:,index(2):end)=[];

AA(:,1,:)=[];

clear ff line j k index

%6-TRACKING OF PARTICLES BETWEEN SEPTA

if exist(’tracksumm_setti.txt’,’file’)==2

ff=fopen(’tracksumm_setti.txt’);

line=fgetl(ff);

j=1;

BB=zeros(j,11,2);
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%Delete first lines of the MAD-X output files that are useless

while (line(1)==’@’ || line(1)==’*’ || line(1)==’$’ || line(1)==’#’)

line=fgetl(ff);

j=j+1;

end

i=1; %Write on a table useful data

while ((line(1)~=’@’ || line(1)~=’*’ || line(1)~=’$’ || line(1)~=’#’) &&

line(1)~=-1)

k=1;

while (line(1)~=’#’ && line(1)~=-1)

BB(k,:,i)=str2double(strsplit(line(1:end),’ ’));%data

line=fgetl(ff);

k=k+1;

end

i=i+1;

line=fgetl(ff);

end

fclose(ff);

BB(:,1,:)=[];

clear ff line j k

elseif exist(’tracksumm_setti.txt’,’file’)==0

sprintf(’For the dp/p=%3.2e the track between septa has not been

performed.\n’,momenta(ii));

sprintf(’It is probable that particles have been lost somewhere else rather

than the electrostatic septum.\n’);

sprintf(’Please check the trackloss1.txt file’);

end

cd ..

cd ..

%% figures

cd(’RESULTS’);

%Available particles 4 extraction, 3pict->3mom

h1=figure(ii);

hold on

grid on

box on

for i=1:length(turns)

hold on

title(sprintf(’%s

%3.2e’,names(ii,:),momenta(ii)));%sprintf(’dp/p=%2.1e’,momenta(ii)));

xlabel ’x’

ylabel ’px’

h1=plot(AA(:,3,i),AA(:,4,i),’Marker’,’.’,’LineStyle’,’none’, ...
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’MarkerFaceColor’,col1(i,:),’DisplayName’,sprintf(’turn: %i’,turns(i)));

legend ’-DynamicLegend’

if i==1

if ii==1

gif(’mom-5e-4.gif’,’DelayTime’,0.4,’frame’,gcf);%gif(’csi_x@-2.gif’,’DelayTime’,0.4);

elseif ii==2

gif(’mom-1e-3.gif’,’DelayTime’,0.4,’frame’,gcf);%gif(’csi_y@-01.gif’,’DelayTime’,0.4);%

elseif ii==3

gif(’mom-1,5e-3.gif’,’DelayTime’,0.4,’frame’,gcf);%gif(’qy@-1,87.gif’,’DelayTime’,0.4);%

elseif ii==4

gif(’mom-2e-3.gif’,’DelayTime’,0.4,’frame’,gcf);

elseif ii==5

gif(’mom-2,5e-3.gif’,’DelayTime’,0.4,’frame’,gcf);

end

else

gif;

end

end

hold off

%Histogram extracted particles w. #

h2=figure(10);

hold on

subplot(1,length(momenta),ii)

plot(PartExtr(:,9),PartExtr(:,1),col(ii,:),’DisplayName’,sprintf(’%s

%3.2e’,names(ii,:),momenta(ii)));

title (’Extracted particles’);

legend ’-DynamicLegend’

grid on

box on

xlabel ’s’

ylabel ’particle’

txt=(sprintf(’%i over %i’,cextr(ii),cSR(ii)));

text(0.4,500,txt);

xlim([0, max(PartExtr(:,9)+0.2)]);

hold off

if ii==length(momenta)

maximize(h2);

saveas(h2,’HistogramExtracted’,’jpg’);

end

%Histogram SR lost particles w. #

h3=figure(11);

hold on

subplot(1,length(momenta),ii)
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plot(PartSRlost(:,9),PartSRlost(:,1),col(ii,:),’DisplayName’,sprintf(’%s

%3.2e’,names(ii,:),momenta(ii)));

title (’Particles lost in SR ramp-up’);

legend ’-DynamicLegend’

grid on

box on

xlabel ’s’

ylabel ’particle’

txt=(sprintf(’%i over %i’,clostSR(ii)+celseSR(ii),cIn(ii)));

text(0.4,500,txt);

xlim([0, max(PartSRlost(:,9)+0.2)]);

hold off

if ii==length(momenta)

maximize(h3);

saveas(h3,’HistogramLostSR’,’jpg’);

end

%Time evolution extr particles (bin=15e3)

if cextr(ii)~=0

h4=figure(12);

hold on

title ’Distribution of extracted particles vs turns’

plot(1:bin:bin*int,Part,coltt(ii,:),’DisplayName’, sprintf(’%s

%3.2e’,names(ii,:),momenta(ii)));

legend (’-DynamicLegend’);

xlabel ’# turns’

ylabel ’# particles’

hold off

saveas(h4,’TimeEvolutionExtracted’,’jpg’);

end

%Transport between septa SUPERIMPOSED

if exist(’tracksumm_setti.txt’,’file’)==2

h5=figure(13);

hold on

plot(BB(:,3,1),BB(:,4,1),col(ii,:));

txt=’Before septum’;

text(0.035,2.5e-3,txt);

plot(BB(:,3,2),BB(:,4,2),col(ii,:));

txt=’After septum’;

text(0.06,2.5e-3,txt);

line([0.04945, 0.04945], [-0.5e-3,4e-3], ’LineWidth’, 2, ’Color’, ’k’);

title (sprintf(’Transport through septum’));

xlim([0.03 0.065]);

xlabel ’x’
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ylabel ’px’

grid on

hold off

saveas(h5,’Transport_Septa_SuperimposedMom’,’jpg’);

end

%Superimposed triangles after SR ramp-up

h6=figure(14);

hold on

plot(PartSR(:,1),PartSR(:,2),col(ii,:),’DisplayName’,sprintf(’%s

%3.2e’,names(ii,:),momenta(ii)));

grid on

xlabel ’x’

ylabel ’px’

legend ’-DynamicLegend’

title(’Initial p. distribution’);

hold off

saveas(h6,’Triangles@SR’,’jpg’);

% if ii==1

% cd ..

% cd ..

% cd ’Variables’

% save([’bin_’,dir,’.mat’],’bin’);

% save([’particles_’,dir,’.mat’],’Part’);

% end

cd ..

clear PartIn PartSR PartSRlost PosSRlost PartExtr PosExtr AA turns BB Part

end
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APPENDIX C: MATLAB CODE FOR KICKER RAMP-UP

%ATTENTION MAD-X and this code MUST BE in the same folder when you try to

%make MatLab run!

tic

clearvars

close all

clc

found=zeros(1,2);

%% It automatically gets the # of turns written in MAD-X

ff=fopen(’extraction_makethin_v3.madx’);

ll=fgetl(ff); %take the first line

while (found(1)==0 || found(2)==0)

if (isempty(ll)==1 || ll(1)==’!’ || ll(1)==’ ’ || ll(1)==’a’ || ll(1)==’o’ ||

ll(1)==’T’)

ll=fgetl(ff);

else

iitemp=find(ll==’=’);

jjtemp=find(ll==’;’);

if strcmp(ll(1:iitemp-1),’Nturns’)==1

found(1,1)=1;

Nturns=str2double(ll(iitemp+1:jjtemp(1)-1)); %tot # turns

elseif strcmp(ll(1:iitemp-1),’Nturns0’)==1

found(1,2)=1;

Nturns0=str2double(ll(iitemp+1:jjtemp(1)-1)); %# turns no kicker, yes SR

end

ll=fgetl(ff);
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end

end

fclose(ff);

%% Format output file

s1=’@ TYPE %05s "TWISS"’;

s2=’@ TITLE %09s "CNAO SYNC"’;

s3=’@ ORIGIN %18s "5.03.04 Windows 64"’;

s4=’@ DATE %08s "11/09/17"’;

s5=’@ TIME %08s "16.08.31"’;

s6=’* K0L’;

s7=’$ %le’;

f1=fopen(’input_kick0.txt’,’w’);

fprintf(f1,’%s \r\n%s \r\n%s \r\n%s \r\n%s \r\n%s \r\n%s \r\n’,s1,s2,s3,s4,s5,s6,s7);

f2=fopen(’input_kick1.txt’,’w’);

fprintf(f2,’%s \r\n%s \r\n%s \r\n%s \r\n%s \r\n%s \r\n%s \r\n’,s1,s2,s3,s4,s5,s6,s7);

%% Values of k

%Nturns=1e6;

%Nturns0=6e3;

kk=ones(1,Nturns);

kmax=0.9e-6;

kmin=0.3e-6;

i=1;

%% Type of kick ramp-up

%% Constant @k=kmin

%%Impose index=0

%% Parabola: index=1

a=(kmax-kmin)/(Nturns^2-2*Nturns*Nturns0+Nturns0^2);

b=-2*a*Nturns0;

c=kmin+a*Nturns0^2;

funct=@(a,b,c,i) (a*i.^2+b*i+c);

%% Exponential: index=2

d=1/Nturns*log(kmax/kmin);

funct1=@(d,i) (kmin*exp(d*i));

%% Chose the function

index=1; %Choose the function

%% Code

for i=1:Nturns

if i<=Nturns0

kk(i)=0;

fprintf(f1,’%-i. \r\n’,kk(i));

else

if index==0

yy=-kmin+2*kmin*rand();
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elseif index==1

yy=-funct(a,b,c,i)+2*funct(a,b,c,i)*rand();

elseif index==2

yy=-funct1(d,i)+2*funct1(d,i)*rand();

end

flag=0;

while flag==0

if index==0

if (yy<kmin && yy>-kmin)

kk(i)=yy;

flag=1;

fprintf(f2,’%-9.8E \r\n’,kk(i));

else

yy=-kmin+2*kmin*rand();

end

elseif index==1

if (yy<funct(a,b,c,i) && yy>-funct(a,b,c,i))

kk(i)=yy;

flag=1;

fprintf(f2,’%-9.8E \r\n’,kk(i));

else

yy=-funct(a,b,c,i)+2*funct(a,b,c,i)*rand();

end

elseif index==2

if (yy<funct1(d,i) && yy>-funct1(d,i))

kk(i)=yy;

flag=1;

fprintf(f2,’%-9.8E \r\n’,kk(i));

else

yy=-funct1(d,i)+2*funct1(d,i)*rand();

end

end

end

end

end

fclose(f1);

fclose(f2);

toc

figure

hold on

plot(1:100:Nturns,kk(1:100:end),’.r’);

if index==0

plot([1 Nturns],[kmin kmin],’-k’);
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plot([1 Nturns],[-kmin -kmin],’-k’);

elseif index==1

plot(1:200:Nturns,funct(a,b,c,1:200:Nturns),’.k’);

plot(1:200:Nturns,-funct(a,b,c,1:200:Nturns),’.k’);

elseif index==2

plot(1:200:Nturns,funct1(d,1:200:Nturns),’.k’);

plot(1:200:Nturns,-funct1(d,1:200:Nturns),’.k’);

end

xlabel ’#turns’

ylabel ’kick’

hold off
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APPENDIX D: MAD-X CODE FOR PARTICLE TRACKING AT THE LAST

THREE TURNS BEFORE THE EXTRACTION

system,"mkdir output";

assign, echo=output\results.out;

call, FILE="Elements-I_APERTURE.txt";

call, FILE="k_quads_a_mano.txt";

call, FILE="sextupole.txt";

call, FILE="linea-ESE.txt";!name seq:CNAO3ESE

beam;

use, SEQUENCE=CNAO3ESE;

SELECT, FLAG=TWISS, RANGE=#s/#e,

column=name,parent,s,betx,bety,alfx,alfy,dx,dy,dpx,dpy,mux,muy;

TWISS, SEQUENCE=CNAO3ESE, FILE="output\twiss.txt";

CNAO3turns: LINE=(3*CNAO3ESE);

use, SEQUENCE=CNAO3turns;

SELECT, FLAG=TWISS, RANGE=#s/#e,

column=name,parent,s,betx,bety,alfx,alfy,dx,dy,dpx,dpy,mux,muy;

TWISS, SEQUENCE=CNAO3turns, FILE="output\twiss_checknewline.txt";

assign, echo=output\results.out;
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TURNS BEFORE THE EXTRACTION

bxES=16.50118429; !da sim precedente

byES=7.209367591;

x0=0.0350039448;

px0=0.000360475927;

SELECT, FLAG=TWISS, RANGE=#s/#e,

column=name,parent,s,x,px,betx,bety,alfx,alfy,dx,dy,dpx,dpy,mux,muy;

TWISS, LINE=CNAO3turns, betx=bxES,bety=byES,x=x0,px=px0,

FILE="output\twiss_IC0005.txt";

/*SENSITIVITY ANALYSIS PARTICLE*/

x0=0.03500080537;

px0=0.0002818268497;

SELECT, FLAG=TWISS, RANGE=#s/#e,

column=name,parent,s,x,px,betx,bety,alfx,alfy,dx,dy,dpx,dpy,mux,muy;

TWISS, LINE=CNAO3turns, betx=bxES,bety=byES,x=x0,px=px0,

FILE="output\twiss_SensAnalysis_csi-2.txt";

/*

x0=0.03500298439;

px0=0.0006971642493;

SELECT, FLAG=TWISS, RANGE=#s/#e,

column=name,parent,s,x,px,betx,bety,alfx,alfy,dx,dy,dpx,dpy,mux,muy;

TWISS, LINE=CNAO3turns, betx=bxES,bety=byES,x=x0,px=px0,

FILE="output\twiss_IC0010.txt";

x0=0.03500082978;

px0=0.00103967663;

SELECT, FLAG=TWISS, RANGE=#s/#e,

column=name,parent,s,x,px,betx,bety,alfx,alfy,dx,dy,dpx,dpy,mux,muy;

TWISS, LINE=CNAO3turns, betx=bxES,bety=byES,x=x0,px=px0,

FILE="output\twiss_IC0015.txt";

*/
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APPENDIX E: MATLAB CODE FOR POST-PROCESS MAD-X RESULTS

FOR THE LAST THREE TURNS ANALYSIS

%Remember to change the index according to the analysis you wanna perform

%1:3 if 1 part for each dp/p to study

%1:1 if sensitivity analysis has to be done

clearvars

close all

clc

cd ..

cd(’!Last3Twiss’);

cd(’output’);

% Load 3files for the 3 mom for the closest p to septum

% mom=[’0005’;’0010’;’0015’];

col=[’.b’;’.r’;’.g’];

for i=1:1

% ff=fopen(strcat(’twiss_IC’,mom(i,:),’.txt’));

ff=fopen(’twiss_SensAnalysis_csi-2.txt’);

%delete first lines written by MAD-X

j=1;

line=fgetl(ff);

while (line(1)==’@’ || line(1)==’*’ || line(1)==’$’ || line(1)==’#’)

line=fgetl(ff);

j=j+1;

end

k=1;
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THE LAST THREE TURNS ANALYSIS

part=zeros(1172,3);

while (line(1)~=’#’ && line(1)~=-1)

temp=str2double(strsplit(line(1:end),’ ’));%data

part(k,1)=temp(4);%save s

part(k,2:3)=temp(end-1:end);%save x and px

line=fgetl(ff);

k=k+1;

clear temp

end

figure(1)

hold on

plot(part(:,1),part(:,2),col(i,:));

xlabel ’s’

ylabel ’x’

title ’Closest p. to septum’

hold off

clear part

end

fclose(’all’);

cd ..

%% To draw APERTURES

ff=fopen(’linea_ingrombri.txt’,’r’);

line=fgetl(ff);

i=1;

while line~=-1

ind=find(line==’,’);

ind1=find(line==’;’);

if i~=1

if length(line(1:ind(1)-1))<length(pos(1,:))

temp=zeros(1,length(pos(1,:))-length(line(1:ind(1)-1)));

pos(i,:)=[temp line(1:ind(1)-1)];

else

pos(i,:)=line(1:ind(1)-1);

end

else

pos(i,:)=line(1:ind(1)-1);

end

ESE(i,1)=str2double(line(ind(1)+1:ind(2)-1));

ESE(i,2)=str2double(line(ind(2)+1:ind(3)-1));

ESE(i,3)=str2double(line(ind(3)+1:ind1-1));

negESE(i,1)=str2double(line(ind(1)+1:ind(2)-1));

negESE(i,2)=-str2double(line(ind(2)+1:ind(3)-1));
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negESE(i,3)=-str2double(line(ind(3)+1:ind1-1));

if pos(i,:)==’SE_010A_ESP’

ESE(i,2)=0.035;

negESE(i,2)=-0.07;

end

if pos(i,:)==’S0_016A_MSP’

ESE(i,2)=0.0289;

negESE(i,2)=-0.07;

end

if pos(i,:)==’S0_023A_ESP’

ESE(i,2)=0.07;

negESE(i,2)=-0.0424;

end

if pos(i,:)==’SC_023A_DPH’

negESE(i,2)=-0.059;

ESE(i,2)=0.0325;

end

i=i+1;

line=fgetl(ff);

end

ll=cumsum([ESE(:,1);ESE(:,1);ESE(:,1)]);

ESE=[ESE;ESE;ESE];

negESE=[negESE;negESE;negESE];

h1=figure(1);

hold on

for i=1:length(ll)

if i==1

plot([ll(i),ll(i)],[0.07,ESE(i,2)],’-k’);

plot([0,ll(i)],[ESE(i,2),ESE(i,2)],’-k’);

plot([0,ll(i)],[-0.07,negESE(i,2)],’-b’);

plot([0,ll(i)],[-0.07,negESE(i,2)],’-b’);

elseif i~=length(ll)

plot([ll(i-1),ll(i)],[ESE(i,2),ESE(i,2)],’-k’);

plot([ll(i),ll(i)],[ESE(i,2),ESE(i+1,2)],’-k’);

plot([ll(i-1),ll(i)],[negESE(i,2),negESE(i,2)],’-b’);

plot([ll(i),ll(i)],[negESE(i,2),negESE(i+1,2)],’-b’);

else

plot([ll(i-1),ll(end)],[ESE(i,2),ESE(i,2)],’-k’);

plot([ll(end),ll(end)],[ESE(i,2),ESE(i,2)],’-k’);

plot([ll(i-1),ll(end)],[negESE(i,2),negESE(i,2)],’-b’);

plot([ll(end),ll(end)],[negESE(i,2),negESE(i,2)],’-b’);

end
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end

ylim([-0.1 0.1]);

grid on

hold off

saveas(h1,’Last3p_Last3turns’,’jpg’);

cd ..
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