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Abstract

This work was done in cooperation with the wind energy group at the De-
partment of Experimental Fluid Mechanics of TU Berlin, led by Prof. Dr.
Christian Oliver Paschereit. They have developed a software, QBlade, an
open-source wind turbine calculation software, distributed under the GNU
General Public License. The software is integrated into XFOIL, an aerofoil
design and analysis tool1. Its purpose is the design and aerodynamic simula-
tion of wind turbines. The integration in XFOIL allows for the user to rapidly
design custom aerofoils and compute their performance curves, extrapolating
the performance data to a range of 360° angle of attack, and directly integrate
them into a wind turbine rotor simulation. The idea was to integrate a �oating
platform model into QBlade, to make it able to simulate also �oating o�shore
wind turbines, creating a graphical interface to make the user able to choose
a particular wave and change some parameters, such as the characteristics of
the mooring lines and the initial position of the system, obtaining results in
the post-processing tool of the software.

The thesis is organized in such a way to provide a view of the mathematical
models used to create the Floater Module and the one used to model the
wind turbine by the external software, together with the procedure followed to
integrate the Floater Module in QBlade. After the integration, some test cases
are carried on simulating the behaviour of the system under di�erent operating
and not operating conditions, to verify a correct coupling between the two
software, and a comparison between the o�shore and onshore installations is
done. For this reason, a �oating o�shore wind turbine system is presented,
together with the characteristics which are useful to simulate its behaviour in
the �oater module.

1http://web.mit.edu/drela/Public/web/xfoil/
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Introduction

In our world, climate changes are leading to new challenges for the energy
sector. As stated by the Climate Science Special Report [1], many lines of ev-
idence demonstrate that human activities, especially emissions of greenhouse
gases, are primarily responsible for the observed climate changes in the indus-
trial era, especially over the last six decades.

Figure 1: Earth's thermal balance

The temperature of the Earth system is determined by the amounts of
incoming (short-wavelength) and outgoing (both short- and long-wavelength)
radiation.
In the modern era, radiative �uxes are measured by means of satellites. About
a third (29.4%) of incoming, short-wavelength energy from the sun is re�ected
back to space, and the remainder is absorbed by Earth's system, as illustrated
in Figure 1. The fraction of sunlight scattered back to space is determined
by the re�ectivity (albedo) of clouds, land surfaces (including snow and ice),
oceans, and particles in the atmosphere. The amount and albedo of clouds,
snow and ice covers are particularly strong determinants of the amount of
sunlight re�ected back to space because their albedo are much higher than
that of land and oceans. In addition to re�ected sunlight, Earth loses energy
through infrared (long-wavelength) radiation from the surface and the atmo-
sphere. Absorption by greenhouse gases (GHGs) of infrared energy radiated
from the surface leads to warming of the surface and atmosphere, decreasing
the thermal �ux from the Earth to Space. One of the main consequences is
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the rising of the Global Surface Temperature: Earth's temperature is generally
variable, due to natural phenomena, but in the last decades the human in�u-
ence has started to be the most important driving force for the temperature
rising, as shown in Figure 2. Evidence continues to mount for an expansion
of the tropics over the past several decades, with a poleward expansion of
the Hadley cell and an associated poleward shift of the subtropical dry zones
and storm tracks in each hemisphere. The rate of expansion is uncertain and
depends on the metrics and data sources that are used. Recent estimates of
the widening of the global tropics for the period 1979�2009 range between
1° and 3° latitude (between about 70 and 200 miles) in each hemisphere, an
average trend of approximately 0.5° and 1.0° per decade. While the roles of
increasing greenhouse gases in both hemispheres, stratospheric ozone deple-
tion in the Southern Hemisphere, and anthropogenic aerosols in the Northern
Hemisphere, have been implicated as contributors to the observed expansion,
there is uncertainty in the relative contributions of natural and anthropogenic
factors, and natural variability may currently be dominating.

Figure 2: Contributions to the
rise of Global Surface Temperature

However, changes in precipitation are
one of the most important potential out-
comes of a warming world because pre-
cipitation is integral to the very nature
of society and ecosystems. These sys-
tems have developed and adapted to the
past envelope of precipitation variations.
Any large changes beyond the histori-
cal envelope may have profound societal
and ecological impacts. Climate changes
in Alaska and across the Arctic continue
to outpace changes occurring across the
globe. The Arctic, de�ned as the area
north of the Arctic Circle, is a vulnerable
and complex system integral to Earth's
climate. The vulnerability stems in part
from the extensive cover of ice and snow,
where the freezing point marks a critical
threshold that when crossed has the po-
tential to transform the region. Because
of its high sensitivity to radiative forcing
and its role in amplifying warming, the
arctic cryosphere is a key indicator of the
global climate state. Accelerated melting
of multiyear sea ice, mass loss from the Greenland Ice Sheet, reduction of ter-
restrial snow cover, and permafrost degradation are stark examples of the rapid
Arctic-wide response to global warming. These local arctic changes in�uence
global sea level, ocean salinity, the carbon cycle, and potentially atmospheric
and oceanic circulation patterns. Arctic climate change has altered the global
climate in the past and will in�uence climate in the future.



Due to all these reasons, and many others, humanity has to start going in a
di�erent direction, trying to decarbonize its activities, and in particular the
power generation sector, that continues to be based on fossil fuels. The chal-
lenge that our generation has to a�ord is probably the biggest humanity has
ever seen: unfortunately, capitalism continue to in�uence all human activities,
and often a cheaper solution is preferred instead of a more e�cient, cleaner
one. But as we continue speaking about the changes that our planet is un-
dergoing, a lot of us continue acting like the only day to live is today. Future
generations will have to deal with problems that seem to be far, but tomorrow
will became more and more serious. Our task is to try to help them, starting
to introduce a new mentality, based on the respect of all we can �nd above and
under our heads. Our mission is to build a new world, a new society, a new
kind of humanity. No matter if our task is di�cult, no matter if it will take a
lot of time, no matter if we have to use all our mental and physical forces; all
these e�orts will, one day, be repaid.

I hope that these wishes will, in future, become the wishes of all.





Chapter 1

O�shore Wind Power

1.1 Brief History and Economical Aspects

The �rst o�shore wind farm was realized in Denmark in 1991 and was known
as the Vindeby O�shore Wind Farm. Consisting of eleven 450 kW turbines,
was built at a near-shore site. This and the projects that followed last century
generally used concrete foundations and small turbines, similar to the ones used
by the onshore installations. In 2002 the �rst utility-scale o�shore wind farm,
with a capacity of 160 MW (80 turbines of 2 MW each), was grid-connected
at Horns Rev, o� the coast of Denmark. Starting from that point to the end
of 2015, global operating capacity grew from 0,26 GW to 12,7 GW.

Figure 1.1: Global annual installed capacity and operating capacity of
o�shore wind, 2001-2015. Taken from [2]

This growth was driven by enabling policies and attractive incentives to
improve energy security of supply and build an industry [2], coupled with
the growing interest of the constructors in producing new types of machines.
Early projects were funded primarily by large utility companies, supported by
attractive public incentives in the form of �xed, regulated prices. Towards
the end of this period, more projects were funded by third-party debt, with
lower levels of public �nancial support. From 2001 through 2015, on average,
projects moved to sites farther from shore, in deeper waters and with higher
wind speeds. The rated power of turbines increased and manufacturers de-
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veloped new wind turbines speci�cally for the o�shore market. Installation
methods and o�shore structures became more cheaper and functional. Costly,
specialised components gradually were replaced by more a�ordable standard
components, produced in series.

Figure 1.2: LCOE reduction by
technology element for projects
commissioned in 2001-2015. Each bar
represents the impact of innovations in
a given element. Taken from [2]

Generally, water depths, dis-
tances to ports and project sizes in-
creased as the industry moved from
early commercial projects mainly in
UK waters to a wider geographical
spread of projects. Installation in
German waters accelerated these in-
creases towards the end of the period.

The LCOE of a typical o�shore
wind farm commissioned in 2015 is
about 170 USD/MWh on average,
while in 2001 it was about 240 US-
D/MWh. In Figure 1.2 is represented
the LCOE's reduction thanks to in-
novations in development, turbines,
foundations, installation, OMS and
other non-technology factors. The
most important innovation was the
introduction of a new generation of wind turbines, with very large rotors, and
a range of innovations in foundations construction. "Other" changes in cost
came from �nancing costs and other non-technological issues, such as project
life, competition, exchange rates and commodity prices. The composition of
the LCOE in 2015 can be seen in Figure 1.3. Nearly half of the cost is at-
tributable to �nancing, related to the interests on the debt and the rate of
return on the equity needed to fund these projects: this means that a very
important objective is the reduction of the risk associated to the technology.

Figure 1.3: Contribution of each element to cost of energy for typical
project commissioned, end-2015. Taken from [2]

The industry of the FOWTs has seen a great acceleration in the last years,
thanks to huge investments, but the LCOE of this kind of systems is still below



the one of the bottom-�xed wind turbines. Carbon Trust [4] estimates that the
potential for competitiveness of �oating turbines is 130 e/MWh for commercial
deployments, and as low as 110 e/MWh for leading concepts. Actually, the
bottom-�xed commercial projects in the UK are on track with the 2020 target
of 130 e/MWh, but to be able to compete with this kind of systems, the
FOWTs must have a steeper curve of improvement. The main focus now is
trying to de-risk , via better design tools and prototype deployments.

Actually, as stated by [4], the o�shore wind market is dominated by coun-
tries with shallow water depths (<50m), that permit to install �xed-bottom
structures. However, there is extensive wind resource in deep waters (50-
200m), with a signi�cant potential for growth in a great number of European
countries, mainly in the North of Europe, o� the coast of Scotland and Eng-
land. EU targets for o�shore wind of 40GW by 2020 and 150GW by 2030 seems
to be achievable using prevalently �xed-bottom foundations. In all the cases,
accessing deeper water sites could permit to reach 460GW of installed power
by 2050. It is noticeable that, while cost data for �xed-bottom foundations
are numerous, the same can't be said for �oating foundations: cost for new
and innovative technologies tends to increase during conception, while, during
the Optimisation and Industrialisation phases it tends to decrease reaching an
asymptotical value, as shown in Figure 1.4.

Figure 1.4: Technology cost evolution through time

It is also interesting to compare the actual LCOE of FOWTs, with the
LCOE of other conventional and unconventional energy sources Figure 1.5.

It can be noticed that the LCOE of FOWTs (around 130 e/MWh) is
competitive with other unconventional energy sources, such as Solar Thermal
Towers and Fuel Cells.



Figure 1.5: LCOE comparison for di�erent conventional and
unconventional energy sources. Taken from [5]

1.2 Technology Readiness

Technology Readiness Level (TRL) is a key indicator for how advanced a tech-
nology is, considering as �nal objective its commercialisation, as reported by
[4]. The indicator can assume seven di�erent values, reported in

Currently several concepts have already reached the level of scaled tests in
wave tanks or o�shore sites (TRL 4-5) and are moving towards the full scale
demonstration.

0. Unproven concept Idea/preliminary study/patent
1. Proven concept Desk-based basic design assessment/proof of con-

cept
2. Validated concept Detailed numerical modelling/structural assess-

ment
3. Prototype tested scaled testing (<1 MW demonstration)
4. Environment tested O�shore demonstration 1-5 MW turbine
5. System tested Full-scale demonstration with >5 MW turbine
6. System installed Full-scale demonstration with >5 MW turbine with

>1 year operation
7. Field proven Commercial project

Table 1.1: TRL and meaning of each level



Figure 1.6: Archetypes of �oating foundations adopted by the wind energy
industry. From left to right: spar buoy, semi-submersible platform and
tension-leg platform.

1.2.1 Floater types

The �oating foundation types adopted by the wind energy sector can mainly
be described as one of the following types [3]:

� Spar buoy types : the center of mass is moved far below the center of buoy-
ancy, creating a strong restoring moment when the structure is pushed
out of equilibrium. The simple structure of the spar-buoy is tipically
fairy easy to fabricate, providing good stability. However, the large draft
requirement can create logistical challenges during assembly, transporta-
tion and installation, constraining deployment in waters with a depth
greater than 100m.

� Semi-submersible Platform (Semi-Sub): uses the hydrostatic sti�ness of
substructures piercing the water plane area in positions o�set from the
center-axis of the tower. This provides the restoring sti�ness needed for
the overall stability. Often requires a large and heavy structure to main-
tain a good stability, but a low draft allow for more �exible application
and simpler installation.

� Tension-Leg Platform (TLP)/Tension-Leg Buoy(TLB): utilize the moor-
ing in actively keeping the structure upright: this kind of structure is
inherently unstable, because the center of gravity is above the center of
buoyancy. so the mooring provides the righting moment by being con-
nected to o�-axis fairleads, and hereby transfers the wind turbine loads
into the anchors below. The shallow draft and tension stability allows
for a smaller and lighter structure, but this design increases stresses on
the tendons and anchors system.



1.2.2 Mooring and anchoring systems

Each type of �oater uses a particular mooring/anchoring system. Here are
summarized the main characteristic of each one of it.

Taut-leg Catenary Semi-taut

Material Synthetic �-
bres/wires which
use the buoyancy
to maintain high
tension

Long steel chain-
s/wires whose
weight and
shape holds the
platform in place

Synthetic �-
bres/wires incor-
porated with a
turret system.
A single point
on the �oater
is connected to
a turret with
several semi-taut
mooring lines

Loading at an-
choring point

Vertical loading Horizontal load-
ing

45° loading

Loading on the
anchors

Large loads Long mooring
lines reduce
loads on anchors

Medium loads

Horizontal
movements

Very limited Some degree Limited, the full
structure can
swivel around
the turret con-
nection

Wave-induced
motion

High tension
limits motion
(pitch/rol-
l/heave)

Weight of moor-
ing lines limits
�oater motion,
greater freedom
than taut leg

Susceptible, due
to the presence
of the single con-
nection point

Installation Challenging Simple Simple

Table 1.2: Mooring and anchoring systems

Regarding the anchor choice , it depends on the particular site considered
for the installation. The choice is among the following types:

� Drag-embedded: suited to not too sti�, cohesive sediments, the type of
loading is horizontal. The installation is quite easy, and the anchor can



be recovered during decommissioning.

� Driven Pile: applicable in a wide range of seabed conditions, the load-
ing can be horizontal/vertical. Regarding the installation, it requires
hammer piling.

� Suction Pile: not suited in loose sandy soils or sti� soils, where the
penetration is di�cult. The load applied can be vertical or horizontal.
Its installation is simple and less invasive than other methods. It permits
an easy removal during decommissioning.

� Gravity Anchor: requires medium to hard soil conditions, usually is ver-
tically loaded. Due to its large size and weight it can increase the instal-
lation cost, and is di�cult to remove during decommissioning.





Chapter 2

Floater Module Mathematical

Model

2.1 Reference frames and degrees of freedom

To describe the movements of a FOWT, generally two right-handed reference
frames are employed (see Figure 2.1):

� the LSA (Local System Axes), with origin the center of gravity of the
whole structure, the x axis being aligned with the reference incoming
wave direction and the z axis pointing upwards along the symmetry axis
of the tower;

� the FRA (Fixed Reference Axes), with origin the intersection between
the tower symmetry axis and the still water level line, the axes being
parallel, when the system is at rest, with the ones of the LSA. This
frame is �xed, and thus represents an inertial reference frame.

The system is modelled as a rigid body, and, to describe its kinematics, the
motion of the LSA are described in the FRA by the vector of the three trans-
lations and rotations:

~x = (x, y, z, rx, ry, rz) (2.1)

In this work, all six degrees of freedom are taken into account:

� x: surge, longitudinal translation, positive backwards

� y: sway, lateral translation, positive to starboard side

� z: heave, vertical translation, positive upwards

� rx: roll, rotation around the x axis, positive right turning

� ry: pitch, rotation around the y axis, positive right turning

� rz: yaw, rotation around the z axis, positive right turning
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Figure 2.1: Typical FOWT reference frame

2.2 Floater

In this section, the mathematical model by which waves and hydrodynamic
forces that they produce on the �oater can obtained is described.

2.2.1 Waves

They are the source of excitation for the �oating platform, together with wind.
There are three main mathematical models to describe waves:

� the simplest possible model is the one of the regular waves, in which
waves are modelled with a unique frequency and amplitude as sinusoidal
functions;

� the second order Stokes waves, a potential �ow solution expanded at
the second order;

� the irregular waves, a superposition of in�nite regular waves moving
in di�erent directions.

In this work only irregular waves are considered.

Modelling of irregular waves

Real waves are the result of the wind blowing on the water surface. Swells are
long-crested nearly unidirectional sinusoidal waves, because they were gener-
ated by the wind in a previous space and time, but local winds still a�ect the



sea surface, producing short-crested multidirectional highly-irregular waves.
For this reason, the sea surface can be seen as a superposition of theoretically
in�nite regular waves components with di�erent height, frequency, wavelength
and random phase using a Fourier series (Equation 2.3). For a single direction,
we can write:

η(x, t) =
N∑
n=1

ansin(ωt− knx+ ϕn) (2.2)

where the subscripts n indicates that the wave parameters are relative to
the n-th component of the summation. The summation is considered to be
�nite because the contribution of the n-th wave becomes less signi�cant for
increasing frequencies. A wave spectral density function Sη(ωn), calculated as
the variance function of the waves amplitudes an, carries information about
the signi�cance of each wave component identi�ed by the n-th frequency ωn,
as can be seen in Figure 2.2. A narrower curve represents waves close to be
regular.

Figure 2.2: Example of wave spectrum

Figure 2.3: Superposition of di�erent regular waves

An irregular wave is modelled using some statistical parameters:

� Signi�cant Wave Height H 1
3

= Hs: average height of the highest one
third of the individual trough to crest heights in a wave record;



� Average wave period T1;

� Average zero-crossing wave period T2 = Tz: average zero up-crossing of
crests or throughs period;

� Average wave height H;

� Peak Wave Period Tp: period corresponding to the frequency ωp of the
maximum value of the wave spectrum.

Standard wave spectra

Several standard-form description of wave spectra may be found in literature,
but the most used are the JONSWAP and the Pierson-Moskowitz spectra,
based on the signi�cant wave height Hs and a reference wave period T that
can be chosen between T1, T2 or Tp.

The JONSWAP (Joint North Sea Wave Project)spectrum [6], developed
for the North Sea coastal wind-generated waves:

Sη(ω) = 320H2
s

T 4
p
ω−5γAe

−1950

T4
p

ω−4

with:

γ = 3.3 peak enhancement factor

A = exp

[
−
( ω

ωp
−1

σ
√

2

)2
]

ωp = 2π
Tp

σ =

{
0.07 ω ≥ ωp
0.09 ω < ωp

The Pierson-Moskowitz or Bretscheider spectrum, well-suited for long-
crested waves in open sea:

Sη(ω) = 173H2
s

T 4
1
ω−5e

− 692

T4
1
ω−4

The two spectra are compared in Figure 2.4 for di�erent peak periods Tp
and same wave height Hs. It's worth noting that the JONSWAP spectrum
has a more narrow distribution around the peak, whereas the Bretscheider
spectrum is more distributed.

Transformation to time series

The greatest part of marine technology works in time domain. So, the sta-
tistical description of the wave using the spectra has to be transformed into
a deterministic time history of wave elevation, avoiding to lose the statistical
original properties. This can be done �lling in all the constant of Equation
2.2, that are the amplitude an, the wave number kn and the phase ϕn for
each frequency component ωn, chosen at evenly-spaced intervals ∆ωn along
the frequency axis.



Figure 2.4: JONSWAP and Bretschneider spectra

� an is determined considering that the �nite area under the relative ∆ωn
interval of the spectrum Sη(ω)∆ω represents the variance of the n-th
wave component:

an =
√

2
√
Sη(ω)∆ω (2.3)

� The wave numbers kn are obtained from the given frequency ωn using
the dispersion relation:

ω2 = kng tanh(knh) (2.4)

being g the gravity acceleration and h the water depth. For deep water,
this expression simpli�es to

ω2 = kng (2.5)

� The phase angles, ϕn, are discarded when the wave spectrum Sη(ω) is
generated from the irregular wave history, so these are randomly selected
on the range 0 ≤ ϕn ≤ 2π during the transformation to time record. The
exact value of the phase angle correlated to the given frequency does not
in�uence the statistics of the newly generated time history, therefore the
new random set of ϕn values produce an instantaneously di�erent but
statistically and energetically equivalent time record (see Figure 2.5).



Figure 2.5: Wave time record analysis (left) and regeneration (right).
Taken from [7]

2.2.2 Hydrodynamic forces

A �oating body interacts with the �uid through di�erent phenomena. To
obtain an accurate modelling of the system dynamics, all must be taken into
account. In this section, each source of loading is discussed.

Hydrostatic restoring force

As Archimede's principle says, "any object, wholly or partially immersed in a
�uid, is buoyed up by a force equal to the weight of the �uid displaced by the
object". This force is nothing but the vertical component of the hydrostatic
force. In reality, the body receives both hydrostatic forces and moments:

~Fhs =

∫
S0

phs~ndS (2.6)

~Mhs =

∫
S0

phs(~r × ~n)dS (2.7)

where phs = −ρgz is the hydrostatic pressure acting at depth z below the sea
surface, ~n is the unit vector pointing outwards normally to the �oater surface,
~r is the position vector of a point on the surface with respect to the center
of gravity (COG) and S0 is the �oater's wetted surface. When the body is
in its hydrostatic equilibrium position, hydrostatic forces and moments are
compensated by the forces and moments exerted by the distributed gravity
force.

When the body moves, surge, sway and yaw motions takes the body to a
new equilibrium position, conversely, roll and pitch motions induce moments
around the center of gravity, so, the behaviour of the �oating body changes
depending if the equilibrium position is stable, neutral or unstable. Heave
motion does not perturb the equilibrium condition.

Considering an overall motion around a mean equilibrium �oating position,
buoyancy load is balanced by the weight of the body, and the remaining actions
are a product of the displacements z, rx and ry:



� change in load caused by the change of the submerged volume of the
body as it heaves, rolls and pitches, called waterplane area e�ects ;

� change of the moment caused by movements of the COG and COB (Cen-
ter of Buoyancy), the so called moment arm e�ects. Adopting the small
amplitude hypothesis, the wetted surface and the displaced volume of
�uid can be considered constants and equal to the ones at rest position,
so, waterplane area e�ects can be neglected, while moment arm e�ects
can be described by a linear relation.

Under this assumptions, the hydrostatic restoring force can be mathematically
expressed through the following relation:

~Fhsr = −K̄~x (2.8)

Being ~x the vector containing the displacements of the �oater COG relatively
to the FRA and K̄ the hydrostatic sti�ness matrix :

K̄ =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 K33 K34 K35 0
0 0 K43 K44 K45 K46

0 0 K33 K33 K33 K56

0 0 0 0 0 0


Due to the small amplitude approximation, the coe�cients contained inside K̄
are all constant and moreover:

� the rotating blades and the nacelle have negligible masses and their centre
of mass is very close to the z axis, so, being xz and yz symmetry planes,
K34 = K35 = K45 = 0;

� in the small amplitude approximation the centre of buoyancy and the
centre of gravity stay vertically aligned, so K46 = K56 = 0.

Froude-Krylov force

Is the resultant force caused by the unsteady pressure �eld generated by the
undisturbed incident wave pressure �eld:

~FFK = −
∫
S0

pI~ndS (2.9)

Where pI is the incoming wave pressure �eld.

Di�raction force

Is caused by waves created during the interaction between the incident wave
and the body.

~FD = −
∫
S0

pD~ndS (2.10)



Where pD is the unsteady pressure �eld associated with the di�racted wave
�eld, and can be expressed using the di�raction forces impulse response func-
tion matrix K̄D:

~FD = −
∫
S0

K̄D(t− τ)η(τ)dτ (2.11)

Radiation force

Due to its movements, the �oater generates radiated waves, having a pressure
�eld pR. The resultant force is

~FR = −
∫
S0

pR~ndS (2.12)

The radiation force can be written through the formulation of Cummins [8]:

~FR(t) = −Ā∞~̈x−
∫ t

0

K̄R(t− τ)~̇x(τ)dτ (2.13)

Where Ā∞ is a frequency-independent term, the constant and positive de�nite
added mass matrix, that takes into account the water mass carried by the
�oater in its motion. The integral term is a convolution integral over speed
~̇x(t) representing a source of damping. K̄R is called memory function matrix.

Drag Force

Drag force takes into account the damping e�ect caused by �uid viscosity
and �ows detaching from the �oater. Due to the fact that is a non-linear
phenomenon, it can't be calculated through linear codes such as the one utilized
in this work (see Section 2.2.3). For this reason, a model of quadratic drag
force is implemented for each degree of freedom:

Fdrag,i = −1

2
ρCd,iAi|ẋi|ẋi = −βd,i|ẋi|ẋi (2.14)

Where Cd,i is the drag coe�cient, Ai is the body cross sectional area and
βd,i = 1

2
ρCd,iAi is the condensed drag coe�cient.

In the present work, for surge and sway motion a coe�cient of drag in the
form Cd,i is used with values suggested by Ghosh, Islam and Ali [9] for an
hexagonal cilinder, while, for heave, roll, pitch and yaw motions a condensed
coe�cient of drag is used performing an hydrodynamic scaling with values
taken from the hydrodynamic modelling of the DeepCwind �oating wind sys-
tem for phase II of the O�shore Code Comparison Collaboration Continuation
(OC4, see [10]). The scaling is based on the Froude-Krylov scaling factor :

�oater wetted surface

reference �oater wetted surface
=
ASFw
ADCw

= κ = 1.342



Cd,x 0.95

Cd,y 0.80

βd,z 5.21 · 106

βd,rx 4.97 · 1010

βd,ry 4.97 · 1010

βd,rz 5.48 · 109

Table 2.1: Drag Coe�cients

where the superscripts "DC" and "SF" denote DeepCWind and Sea�ower,
respectively. The scaling is done, for the i -th degree of freedom according to

βSFd,i = κ · βDCd,i (2.15)

The adopted drag coe�cients are shown in the Table 2.2.2.



2.2.3 Boundary Element Method analysis

The hydrodynamic analysis of the system is performed with a linear Boundary
Element Method (BEM), one of the most extensively used models thanks to its
numerical e�ciency and accuracy. For this work, the software ANSYS Aqwa
[11], running an implementation of the linear BEM through panel method
(representation of the structure through di�raction panels) is used.

The base assumptions are, calling ~v(x, y, z, t) the �ow velocity �eld and
Φ(x, y, z, t) the velocity potential:

(i) irrotational �ow ↪→ ~∇× ~v = 0

(ii) incompressible �uid, for which the continuity equation can be expressed

as ~∇ · ~v = 0

Thanks to this base assumptions, the �ow can be modelled as a potential �ow,
been guaranteed the existence of a potential function:

~v(x, y, z, t) = ~∇Φ(x, y, z, t) (2.16)

under the above hypothesis, Φ(x, y, z, t) is nothing but the solution of the
Laplace Equation

∇2Φ = 0 (2.17)

Therefore, the problem is closed, and the boundary value problem (BVP) is:

∇2Φ = 0 P ∈ V Laplace Equation

∂Φ

∂n
= ~v · ~n P ∈ S0(t) slip condition on the body surface

∂Φ

∂n
= 0 P ∈ Sbed slip condition on the seabed surface

~v −→ 0 P −→∞ una�ected far �eld velocity condition

∂η

∂t
+ ~∇η · ~∇Φ P ∈ Sfs kinematic free surface condition

∂Φ

∂t
+ gη +

1

2
‖~∇Φ‖2 = 0 P ∈ Sfs dynamic free surface condition

(2.18)
Aqwa makes additional assumptions in order to linearise the problem:

(iv) small wave steepness H
λ

(v) small amplitude motions

This means that the �oater wetted surface S0(t) is considered constant with
time and equal to the mean wetted surface S0. Thus, the last two equations



of the previous system are replaced by a unique equation:

∇2Φ = 0 P ∈ V Laplace Equation

∂Φ

∂n
= ~v · ~n P ∈ S0 slip condition on the body surface

∂Φ

∂n
= 0 P ∈ Sbed slip condition on the seabed surface

~v −→ 0 P −→∞ una�ected far �eld velocity condition

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 z = 0 dynamic free surface condition

(2.19)

The linear BVP expressed by the system of equations 2.19 is solved by Aqwa
using the Green's function in frequency domain, obtaining the potential �ow
function ϕ(x, y, z). Due to the linearity of 2.19, the total �ow potential can be
seen as a superposition of di�erent �ow potentials:

ϕ(x, y, z)e−jωt =

(
ϕI + ϕD +

6∑
i=1

ϕR,ixi

)
e−jωt (2.20)

with: ϕI , ϕD, ϕR,i, referring to the incident, di�racted and radiated �ow
potentials.

The term ϕR,i depends on the body motions, and thus the summation
expresses the scalar product ~ϕR · ~x.

Once the potentials are determined, the �rst order hydrodynamic pressure
can be calculated using the linearised Bernoulli's equation:

p(x, y, z, t) = −ρ∂Φ(x, y, z, t)

∂t
= jωρϕ(x, y, z)e−jωt (2.21)

By integrating the pressure distribution over the wetted surface of the �oater,
the di�erent hydrodynamic forces and moments (see Section 2.2.2) can be
obtained:

~fe−jωt = −
∫
S0

p(x, y, z, t)~ndS (2.22)

From Equation 2.22, taking into account Equations 2.20 and 2.21, each com-
ponent of the total force ~f = ~fi + ~fD + f̄r~x = ~fI + ~fD + ~fR is be calculated:

~fI = −jωρ
∫
S

ϕI(x, y, z)~ndS Froude-Krylov force

~fD = −jωρ
∫
S

ϕD(x, y, z)~ndS Di�raction force

f̄R = −jωρ
∫
S

ϕ̄R(x, y, z)~ndS Radiation force

(2.23)

It's important to notice that f̄R is a 6×6 matrix espressing the relation between
the ith unit amplitude body rigid motion xi (columns) and the hth generalized
radiation force component fRh = f̄Rh · ~x (rows).



The radiation force matrix f̄R can be divided into real and imaginary part:

f̄R = −jωρ
∫
S0

[Re(ϕ̄R) + jIm(ϕ̄R)]~ndS = ω2Ā(ω) + jωB̄(ω) (2.24)

Where

Ā(ω) =
ρ

ω

∫
S0

Im(ϕ̄R)~ndS (2.25)

is the Added Mass Matrix, and

B̄(ω) = −ρ
∫
S0

Re(ϕ̄R)~ndS (2.26)

is the Radiation-Damping Matrix.
For this work, the coupling between DOFs consists of surge with pitch and

sway with roll, because both xz and yz planes are simmetry planes:

Ā(ω) =


A11(ω) 0 0 0 A15(ω) 0

0 A22(ω) 0 A24(ω) 0 0
0 0 A33(ω) 0 0 0
0 A42(ω) 0 A44(ω) 0 0

A51(ω) 0 0 0 A55(ω) 0
0 0 0 0 0 A66(ω)



B̄(ω) =


B11(ω) 0 0 0 B15(ω) 0

0 B22(ω) 0 B24(ω) 0 0
0 0 B33(ω) 0 0 0
0 B42(ω) 0 B44(ω) 0 0

B51(ω) 0 0 0 B55(ω) 0
0 0 0 0 0 B66(ω)


2.2.4 Hydrodynamic model in the frequency domain

For a �oating body, the II law of motion is

M̄~̈x = ~Fhsr + ~FFK + ~FD + ~FR + ~Fdrag + ~Fm + ~FWT (2.27)

While the regular incoming wave, considered on the vertical axis z can be
written as

η(t) = ae−jωt

because the model is linear, also the excitation force has the same form: it is
associated with the di�raction and Froude-Krylov forces:

~Fexc(t) = ~FFK + ~FD = a|~f(ω)|e−j(ωt+6 ~f(ω)) (2.28)

Where ~f(ω) carries the Froude-Krylov coe�cients: excitation force amplitude
and phase with respect to that of the incident wave, respectively as real and
complex part. So, the excitation force can be written in the frequency domain
as

~Fexc(ω) = a~f(ω) (2.29)



Assuming small amplitude motions around the mean equilibrium �oating po-
sition, neglecting also non-linear terms, for what illustrated in the previous
sections the equation of motion in the frequency domain is

[−ω2(M̄ + Ā(ω)) + jωB̄(ω) + K̄]~x(ω) = ~Fexc(ω) (2.30)

The added mass matrix Ā(ω), the radiation-damping matrix B̄(ω), the hy-

drodynamic sti�ness matrix K̄ and the Froude-Krylov coe�cient array ~f(ω)
are extrapolated from the analysis performed with ANSYS Aqwa, for a given
direction of the incident wave.

2.2.5 Hydrodynamic model in the time domain

The representation of the equation of motion for a �oating body in time domain
is due to Cummins [8]:

(M̄ + Ā∞)~̈x+

∫ t

0

K̄R(t− τ)~̇x(τ)dτ + K̄~x(t) = ~Fexc(t) (2.31)

There's also a relationship, discovered by Ogilvie [12], between time and fre-
quency representations, obtained using the Fourier Transform on Equation
2.30:

Ā(ω) = Ā∞ −
1

ω

∫ ∞
0

K̄R(t) sin(ωt)dt (2.32)

B̄(ω) =

∫ ∞
0

K̄R(t) cos(ωt)dt (2.33)

It can be shown that the added mass matrix Ā(ω) can be obtained as

Ā∞ = limω→∞ Ā(ω)

While the retardation function K̄R can be written respectively in time and
frequency domain as

K̄R(t) =
2

π

∫ ∞
0

B̄(ω) cos(ωt) (2.34)

K̄R(jω) =

∫ ∞
0

K̄R(t)e−jωtdω = B̄(ω) + jω[Ā(ω)− Ā∞] (2.35)

The implementation of Equation 2.31 is highly time and memory-demanding
because of the presence of the convolution integral associated with the radia-
tion damping. For this reason, the approximation proposed by Perez [14][15]
and based on a linear and time invariant State Space Model is used, solving
instead of the convolution integral a set of linear ordinary di�erential equations
for each degree of freedom:

~µ(t) =

∫ t

0

K̄R(t− τ)xi(τ)dτ ≈

{
~̇u(t) = Āss~u(t) + B̄ss

~̇x(t)

~µ(t) = C̄ss~u(t)
(2.36)

Where ~x(t) is the input vector, ~µ(t) the output vector, and ~u(t) the state space
vector of the state space model. Āss, B̄ss and C̄ss are to be estimated through
model identi�cation.



2.2.6 Frequency Domain Analysis

To obtain all the parameters needed to run the hydrodynamic time-domain
model of the system, a simulation using the software ANSYS Aqwa is started.
The software needs a CAD model of the �oating body, realized using the com-
mercial CAD/CAE software SolidWorks by Dassault Systèmes and the geomet-
rical data, provided by Fincantieri and representative of the whole structure
(wind turbine + �oating platform + moorings). ANSYS Aqwa "provides a
toolset for investigating the e�ects of environmental loads on �oating and �xed
o�shore and marine structures, [...]�oating production and o�oading systems,
spars, semi-submersibles, renewable energy systems, and ships. [...][Aqwa] can
perform frequency domain statistical analysis and real-time motion of a �oat-
ing body or bodies while operating in regular or irregular waves, [...] in which
nonlinear Froude-Krylov and hydrostatic forces are estimated under instanta-
neous incident wave surface; [...] Wind and current loading can also be applied
to the bodies, as well as external forces"[11].

Figure 2.6: CAD model used to perform the analysis

In this case is employed the "Hydrodynamic Di�raction" tool. The �rst
step of the simulation is the geometry import. Once done it, the solid is
repositioned coherently with the FRA reference frame, the xy plane being
coincident with the still water plane. The solid must be reduced to boundary
surfaces with zero thickness and normal vector pointing outwards, splitted at
the water line and all structures originated grouped into a unique part. After,
a point mass is added in the position of the center of gravity of the whole
system, de�ning for it the mass and rotational inertia properties in terms of
radii of gyration or mass moments of inertia. The environmental properties
are de�ned, modelling the sea as a 1000m× 1000m× 1000m cube, with water
density ρw = 1025kg/m3. The gravity acceleration is set to 9.80665m/s2.

The analysis is performed for a range of incoming wave directions spanning



the round angle from -180° (x direction) to 180° (x direction) with intervals of
10°, to obtain a su�cient precision in the interpolation of force values in the
waves block (see Section 2.2.7). The regular wave period range is from 2.5s
to 40s with intermediate values every 0.5s, so to cover the typical spectrum of
periods of oceanic waves. The highest period (lowest frequency) is limited by
the water depth chosen and the lowest period (highest frequency) by the mesh
size [11]. This limitation is mathematically formulated as:

Lmax ≤
1

6
λw =

2π

6k

where Lmax is the maximum panel size and λw the wavelength. The above
formulation can be rearranged, considering that we are dealing with regular
waves and deep water (d/λw > 0.5, meaning that k = ω2/g, from the dispersion
relation 2.4)

Lmax ≤
2πg

6ω2
→ T ≥

√
12πLmax

g

For the present work, a mesh size of 1.3m is chosen, with a defeaturing tolerance
of 0.75m. For the convergence analysis, see [13].

Once the analysis is accomplished, all parameters needed to run the sim-
ulation, including the hydrostatic sti�ness matrix K̄, the Froude-Krylov coef-
�cients array ~f(ω), the added mass matrix Ā(ω) and the radiation-damping
matrix B̄(ω) are extrapolated.

2.2.7 Implementation of di�raction and Froude-Krylov

Forces in Simulink

Allowing a variable incoming wave direction creates an issue: when the wave
direction changes, also the wave-generated forces change. For this reason,
there's the need to discretize the round angle computing the wave forces for
each direction. In this work, the round angle is discretized in 36 di�erent
directions, with intervals of 10°, and, for each timestep ti, forces for all the
directions and the degrees of freedom are computed: if m is the number of
time intervals of the record, and m is the number of directions analysed, then
the wave forces will be stored inside an m×n× 6 tridimensional matrix in the
following way

F̄k =



F (t1, θ1) F (t1, θ2) · · · F (t1, θj) · · · F (t1, θn)
F (t2, θ1) F (t2, θ2) · · · F (t2, θj) · · · F (t2, θn)

...
...

...
...

...
...

F (ti, θ1) F (ti, θ2) · · · F (ti, θj) · · · F (ti, θn)
...

...
...

...
...

...
F (tm, θ1) F (tm, θ2) · · · F (tm, θj) · · · F (tm, θn)


(2.37)

Another critical point is that the wave force record is generated using a di�erent
time step with respect to the one used by the simulation, generally. For an



example, if the simulation is at time tα, there's the possibility that at that time
there is no waveforce record available, being the same reasoning valid also for
the incoming wave direction. For this reason, the various ti and θj in which
the record is discretized are stored inside two arrays:

~t =



t1
t2
...
ti
...
tm


(2.38)

~θ =



θ1
θ2
...
θi
...
θn


(2.39)

When the simulation goes on, the block implementing the wave forces receives
the simulation time τ and compares it with the elements stored in ~t, obtaining
the index kt of the interval (ti, ti+1) in which τ is and the normalized position
ft of it inside the interval. The same happens with the wave direction imposed,
γ, obtaining the index kθ and the normalized position fθ. Once the indexes and
the normalized positions are obtained, the model linearly interpolates between
the values stored inside the matrix F̄ , obtaining the value of the wave force.

Figure 2.7: Di�raction and Froude-Krylov Forces implementation



2.2.8 State-Space model and Stability Analysis

The State-Space matrices are obtained starting from added mass matrix Ā(ω)
and radiation-damping matrix B̄(ω), using the Matlab© tool provided by [16].
The approximation problem expressed by Equation 2.36 can be rearranged as

K̄(jω) ≈ K̂(s) = C̄ss(jωĪ − Āss)−1B̄ss (2.40)

where K̂(jω) is matrix rational transfer function with entries

K̂ij(s) =
Pij(s)

Qij(s)
=
prs

r + pr−1s
r−1 + ...+ p0

sn + qn−1sn−1 + ...+ q0

(2.41)

Figure 2.8: Linear Time Invariant State Space Model proposed by [14]

this means that, by estimating the transfer functions K̂ik(s) (see [16]) one
can obtain the matrices of the State Space model, that may not necessarily
be stable, because stability is not enforced as a constraint. This means that,
before feeding the State Space matrix into the time domain model, a stability
veri�cation must be done.

Recalling that a Linear Time Invariant system is

� Simply stable if it responds to a limited input with a limited output;

� Asimptotically stable if it responds with an output that tends to zero as
t→∞;

� Unstable if it responds with an unlimited output to a limited input;

and that stability of a system doesn't depend on the input signal, but only on
its transfer function f(s), is possible to obtain informations about the stability
of a system knowing poles (roots of the denominator polynomial) and zeroes
(roots of the numerator polynomial) of f(s) using the General Stability Crite-
rion, that relates the position of zero and poles of a certain transfer function
on the Gaussian plane with its dynamical behaviour. It says that a system is:

(i) simply stable if and only if all the poles of its transfer function have
negative real part;

(ii) asimptotically stable if and only if all the poles of its transfer function
have negative or null real part, at least one has null real part, and all
poles with null real part are simple;



a) b) c)

Figure 2.9: a) Simply Stable system b) Asimptotycally stable system c)
Unstable system

(iii) unstable if and only if at least one pole of its transfer function has positive
real part or its multiple;

In the case of the LTI SSM (Linear Time-Invariant State Space Model) de-
scribed in this work, the transfer function has the form of the matrix K̂(s) of
equation 2.40, and is a function of the State Space Matrices Āss, B̄ss, C̄ss.

The analysis is done through the Matlab© tool pzplot, obtaining 10
pole-zero maps, one for each coupling, that can be found in Appendix A.

2.3 Moorings

2.3.1 Elastic Model

In this work, an elastic model of the mooring lines is implemented, with the
following hypothesis:

(i) dynamic actions are neglected;

(ii) the only e�ect of mass is considered to be the weight force;

(iii) all sorts of damping sources coming from the mooring lines are neglected,
including hydrodynamic resistance, friction with the seabed, ropes inner
friction and friction at the connection points;

(iv) a purely elastic behaviour of all elements composing the mooring lines is
considered;

(v) the chain segments are modelled as continous bodies, and the lines are
considered to be directly connected to the platform and to the anchors,
with no intermediate parts. Fairleads are dimensionless, and located at
each vertex of the hexagonal base of the �oater;

(vi) the anchors at the seabed are considered as �xed.



2.3.2 Moorings Dynamics modelling

Modelling the mooring lines as linear springs makes necessary to calculate,
at every instant, the length of the polyester rope and the relative distance
between the anchor and the fairlead for each line.

Waves induces motions of the �oater, and the connection points Ci move in
the space, determining a change of the length of the lines and in the tension.
So, is necessary to compute the position of the connection points in the FRA
reference frame at every instant.

The generic movement of the �oater is a roto-translation (see Figure 2.10)
being ~t = (∆x,∆y,∆z) the translations vector and ~r = (∆rx,∆ry,∆rz) the
rotations vector. The motion of the connection point Ci is thus the composition
of a translation of the center of mass and a rotation of the whole structure
around G, the center of gravity. This results in the change in length of the
mooring line from ‖ ~OC‖ to ‖ ~OC ′‖. At rest, the center of mass G coordinates
in the FRA reference frame are:

~xG = (0, 0, zG)

When the body translates, the center of mass will occupy a new position in
the FRA:

~x′G = (∆x,∆y, zG + ∆z) = ~t

Consequently, the new coordinates of the connection point Ci, considering only
the translation contribution will be:

~x′Ci,t
= ~x′G = ~t

The rotation of Ci around the center of mass G is given by the composition of
the three left-handed rotations around the three axes of the FRA:

R̄x =

1 0 0
0 cos(rx) − sin(rx)
0 sin(rx) cos(rx)

 (2.42)

R̄y =

cos(ry) 0 sin(ry)
0 1 0
0 sin(rx) cos(rx)

 (2.43)

R̄z =

cos(rz) − sin(rz) 0
sin(rz) cos(rz) 0

0 0 1

 (2.44)

Being the complete rotation represented by their matrix multiplication

R̄xyz = R̄xR̄yR̄z (2.45)

By multiplying this matrix with the position vector ~xC,LSA of the connection
point in the LSA reference frame, the rotation contribution to the global move-
ment is

~x′C,r = R̄xyz~xC,LSA (2.46)



Then, the position vector of the connection point after a generic motion of the
�oater is

~x′C = ~x′C,r + ~x′C,t (2.47)

Once the position vector ~x′C is known, the forces and moments exerted by the

mooring system can be calculated. The tension ~Tc at the connection point lies
on the straight line passing through the anchor point and the connection point
C, and its magnitude can be described by a piecewise function:

Tc =

{
T0 + k(L′ − L) L′ > L

0 L′ ≤ L
(2.48)

Where k is the line sti�ness, L its unstretched length, L′ = ‖ ~OC ′‖ the instan-
taneous stretched length and T0 the pre-tension value. The tension vector is
thus:

~TC = Tc
~OC ′

‖ ~OC ′‖
(2.49)

This force produces also moments on the structure, expressed by

~Mc = ~x′C,r × ~TC (2.50)

Figure 2.10: Generic motion of the �oater and change in mooring line
length. Taken from [13]



2.4 Wind Turbine

The wind turbine is simulated externally from the �oater module, using the
software QBlade, an open source software developed by the Hermann Föt-
tinger Institute of the TU Berlin1. It implements a Non Linear Lifting Line
Free Vortex Wake Method, belonging to the big family of the Vortex Methods,
that, in terms of accurate modelling of the physics and computational cost
are on the mid-way between the Blade Element Momentum (BEM) methods
and the Computational Fluid Dynamics. One large advantage of the vortex
methods, compared to the BEM methods, is that due to the sound modelling
of the macroscopic physics, only very few empirical assumptions related to the
microscopic �uid dynamics, where boundary layers e�ects play an important
role, such as dynamic stall or stall delay need to be added [17]. It's impor-
tant to remark that this method is not only able to provide results concerning
the rotor performances and blade loads, but also to provide a solution for the
unsteady velocity �eld around the rotor, and the wake.

In this section, the mathematical model on which the method is based is
exposed, however, some basic concepts of aerodynamics are recalled.

2.4.1 Aerofoils

Figure 2.11: Geometrical characteristics of an aerofoil.

The cross section of a wind turbine blade is an aerofoil. In Figure 2.11 can
be identi�ed:

1. rotor plane;

2. leading edge;

3. nose circle;

4. section of maximum thickness

5. camber, the maximum distance between the chord and the camber line;

1http://www.q-blade.org/

http://www.q-blade.org/


6. upper surface;

7. trailing edge;

8. camber line, the line joining the trailing and the leading edges being the
upper and the lower surfaces of the aerofoil always at the same distance
from it;

9. lower surface

The chord, c, is de�ned as the line joining the leading and the trailing edges, the
angle of attack α as the angle between the relative wind speed (in Figure 2.11
identi�ed by Wx), while the pitch angle is the angle between the rotor plane
and the chord line. The forces acting on the aerofoil are usually considered
as applied at the quarter chord, as can be seen in Figure 2.12: the resultant
force Fris can be decomposed into two components, lift and drag, that are
respectively the force acting perpendicularly to the relative wind speed and
the force acting parallel to it, plus a moment, M .

Figure 2.12: Generic aerofoil and forces acting on it.

Then, three non-dimensional quantities, respectively the lift, drag and mo-
ment coe�cient can be introduced:

CL =
L

0.5ρU2
0 c

(2.51)

CD =
D

0.5ρU2
0 c

(2.52)

CM =
M

0.5ρU2
0 c

2
(2.53)



2.4.2 Vortex Dynamics

The governing set of equations for an incompressible �uid �owing are the
Navier-Stokes equations:

∂~u

∂t
+ ~u · ~∇ · ~u = −1

ρ
∇p+ µ∇2~u (2.54)

where ~u = (u, v, w) is the velocity vector, ρ the �uid density and µ the �uid
viscosity. That, together with the continuity equation for an incompressible
�ow

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= ∇~u = 0 (2.55)

Permit, in principle, to obtain the �uid velocity and the pressure �eld. How-
ever, these equation cannot be solved analytically, and, when solved numeri-
cally, the problem of very high computational cost arises.

However, �ow �elds can be described using di�erent mathematical tools,
presented in this subsection. When an incompressible �uid element moves in
a �ow �eld, it experiences a translation, and a distorsion, this last one being
composed by rotation and shear, in turn caused by the viscosity of the �uid.
The instantaneous rate of rotation of a �uid element is given, in the three
dimensions, by the vorticity vector, de�ned as

~Ω = (ξ, η, ς) =

(
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
(2.56)

Vorticity is solenoidal:

∇ · ~Ω =
∂ξ

∂x
+
∂η

∂y
+
∂ς

∂z
= 0 (2.57)

Considering an irrotational �ow, the vorticity ~Ω must be equal to zero every-
where in the �ow domain and the velocity vector must satisfy ∇ × ~u = 0,
implying the existence of a potential function

~u = (u, v, w) =

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
(2.58)

Using this property, together with the irrotational �ow assumption and the
continuity equation for a tridimensional �ow expressed by Equation 2.55, the
linear Laplace's Equation can be obtained:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= ∇2ϕ = 0 (2.59)

While Equation 2.56 can be inverted to give the velocity �eld as an integral
over the vorticity �eld [18]

~u = ~uΩ +∇ϕ (2.60)



Where ~uΩ is given by the integral over the �ow domain

~uΩ =
1

4π

∫
V

~Ω× ~r
r3

(2.61)

and ϕ can be determined solving the potential �ow problem related to the
�ow around a body, and is called the disturbance potential. It is given by two
contributions:

ϕ = ϕ∞ + ϕσ (2.62)

Where ϕ∞ is the contribution related to the undisturbed �uid �owing around
the body, and ϕσ is related to the distribution of point sources, a point at which
the �uid is appearing at a uniform rate σ[m3/s] placed around the body to
model the �ow. This description of the �ow �eld could result more convenient,
because if the �uid is barotropic and external forces are conservative, then the
vorticity satis�es the Helmholtz theorems:

1. The strength of a vortex �lament is constant along its length, which must
be either closed or end at the boundary of the �uid∫

S

~Ω · ~n =

∮
C

~u · ~tds = Γ (2.63)

The quantity Γ is called the circulation, and is nothing but the �ux of
the vorticity vector through a surface of area A. It is called also vorticity
strength.

2. The vortex strength is constant in time

d

dt

∫
S

~Ω · ~ndS = 0 (2.64)

2.4.3 Lifting Line Free Vortex Wake Method

The mathematical model on which QBlade is based, described in this subsec-
tion, is basically the one provided by van Garrel [19] and is here summarized.
The �ow �eld around the body is represented through a distribution of sources
of strength σ, required to satisfy �ow tangency on the surface (thickness e�ect)
and vortices ~ω, that are used to satisfy the Kutta Condition: the �ow must
leave the aerofoil smoothly from the trailing edge. The �uid velocity is then
given by the vectorial summation of the undisturbed velocity and the velocity
"induced" by the distribution of vortices and sources

~u = ~u∞ + ~uσ + ~uΩ (2.65)

where

~uσ =
1

4π

∫
V

σ~r

r3
dV (2.66)

is the velocity induced by the point sources in the �ow domain, and

~uΩ =
1

4π

∫
V

~Ω× ~r
r3

(2.67)



Figure 2.13: Point Source.

is the velocity induced by the vortices at the evaluation point ~xp (see Fig-
ure 2.13), being ~r = ~xp − ~x and r its norm.

All viscosity e�ects are taken into account using relationships between the
angle of attack and lift, drag and pitching moment coe�cients and the local
�ow velocity is supposed to be much smaller than the speed of sound: for
this reason, the incompressible �ow assumption holds. Also thickness and
displacements e�ects are neglected, so sources have not to be modelled.

The momentum equation for an inviscid �uid can be written as

∂~u

∂t
+ ~u · ~∇ · ~u = −1

ρ
∇p+

~f

ρ
(2.68)

Where ~f is the total external applied force in [N/m3]. Using the identity

~u · ~∇ · ~u = (∇× ~u)× ~u+
1

2
∇~u2 = (~Ω× ~u) +

1

2
∇~u2 (2.69)

its expression becomes

∂~u

∂t
+ (~Ω× ~u) = −∇

(p
ρ

+
~u2

2

)
+
~f

ρ
(2.70)

Taking the integral over the volume de�ned by the �ow domain and applying
the Gauss Theorem:∫

V

∂~u

∂t
dV +

∫
V

(~Ω× ~u)dV = −
∫
S

(p
ρ

+
~u2

2

)
· ~ndS +

∫
V

~f

ρ
dV (2.71)

This equation expresses the equilibrium of the total pressure force acting over
the surface of V together with the external force and the vortex force, an equiv-
alent body force. If no external force acts outside V , and the total pressure

pt =
p

ρ
+
~u2

2
is constant over the boundary (actually true if the boundary is

a stream surface) then the external force acting on the �ow domain can be
calculated as

~F =

∫
V

ρ(~u× ~Ω)dV (2.72)



Figure 2.14: Blade and wake modelling in the lifting line free vortex wake
algorithm. Taken from [17]

The vorticity ~Ω inside the �ow domain, surrounding the aerofoil can be con-
centrated into vortex lines, acting on the quarter chord of the aerofoil section.
Considering then a vortex line element with oriented length ~dl,Equation 2.72
can be rewritten as, considering the positive vortex line direction the one of
the lumped volume vorticity distribution

d~L = ρ(~u× ~Γ)dl = ρΓ(~u× d~l) (2.73)

while the velocity "induced" by the distribution of vortices is expressed by
Equation 2.67, and can be rearranged, using the Biot-Savart law, as

~uΓ(~xp) = − 1

4π

∫
Γ
~r × d~l
r3

(2.74)

for a straight line element, with constant circulation Γ, Equation 2.74 has an
analytical expression

~uΓ(~xp) =
Γ

4π

(r1 + r2)(~r1 × ~r2)

r1r2(r1r2 + ~r1 · ~r2)
(2.75)

The problem of is that if the evaluation point approaches the vortex line,
Equation behaves singularly. For this reason, a new parameter, the cut o�
radius, δ, is introduced and Equation 2.4.3 is rewritten as

~uΓ(~xp) =
Γ

4π

(r1 + r2)(~r1 × ~r2)

r1r2(r1r2 + ~r1 · ~r2) + (δl0)2
(2.76)

Where l0 is the length of the vortex line element. The cut-o� radius has a
strong in�uence in the proximity of the vortex line element.

Vortex Wake

The blade geometry is modelled using one or more strips carrying a vortex ring
whose bound vortex are located at the quarter chord, and at the trailing edge.



Figure 2.15: Blade Strip.

This vorticity, which vortex strength Γ has to be determined, is convected
downstream as time goes by, creating the wake: at each timestep ∆t vortex
rings are shed from the trailing edge, joined with the older vortex rings and
replaced. This convection mechanism is determined by the onset wind velocity
and by the induced vorticity velocity in two steps:

∆~x = ~uwind∆t (2.77)

∆~x = ~uΓ∆t (2.78)

Vortex-Line Strength Computation

The vortex line strength, Γ, is determined matching the lift force as expressed
by Equation 2.73 with the lift force associated with the local �ow direction.
This can be obtained from the aerodynamic tables, relating the local angle of
attack α to the lift coe�cient CL:

dL =
1

2
CL(α)ρU2dA (2.79)

Being U the strip (spanwise element of blade) onset velocity magnitude and
dA the strip area. But the vortex line problem is non-linear: the lift for
each strip depends, as stated by the above equation, on the local �ow velocity
direction and magnitude. This lift in turn in�uences the strip vortex, as stated
by Equation 2.73. The strip vortex in�uences the �ow �eld according to 2.76,
and therefore the lift of each strip. Matching this two expressions is done at the
cross-section plane de�ned by the unit vectors in the chordwise and normal
direction, respectively ~a1 and ~a3 (see Figure 2.15). At the quarter cord, as
stated by Equation 2.76, we have:

dLΓ = ρΓ

√(
(~ucp × d~l) · ~a1

)2

+
(

(~ucp × d~l) · ~a3

)2

(2.80)



being ~ucp the total onset velocity at the control point ~xcp, given by the wind,
motion of the rotor and vorticity contributions of all the lifting line and wake
elements

~ucp = ~uwind + ~umotion + ~uΓ (2.81)

The wind o�set velocity is considered to be a function of time, known at each
timestep. The motion-related speed is computed using the current and the
previous position of the control point:

~umotion = −~xcp,n − ~xcp,n−1

∆t
(2.82)

where ~xcp,n is the position of the control point at the n-th timestep and ~xcp,n−1

its position at the (n-1)-th timestep.
Then the lift force is calculated as

dLα =
1

2
CL(αcp)ρ

(
(~ucp · ~a1)2 + (~ucp · ~a3)2

)
dA (2.83)

being αcp the angle of attack at the control point, de�ned as

αcp = arctan
~ucp · ~a1

~ucp · ~a3

(2.84)

Equating the two expression of the lift force, the vortex strength Γ can be
obtained as

Γ =
CL(αcp)

2

(~ucp · ~a1)2 + (~ucp · ~a3)2dA√(
(~ucp × d~l) · ~a1

)2

+
(

(~ucp × d~l) · ~a3

)2
(2.85)

The lift of each strip depends by the local �ow velocity direction and mag-
nitude, as stated by Equation Equation 2.83. This lift in turn �xes the strip
vortex strength through Equation 2.73. The strip vortex ring with this strength
acts on the complete �ow �eld according to Equation 2.76, in�uencing the lift
of each strip. So, the solution of Equation 2.85 requires an iterative procedure
described in Figure 2.16.

Himmelskamp e�ect

The e�ects of rotation on the rotating blade was introduced by Himmelskamp
[20]: for a given angle of attack, this tri-dimensional e�ect enhances the coef-
�cient of lift compared to the one given by the two-dimensional aerofoil data,
and stall is delayed. The Coriolis force, acting in the chordwise direction,
causes a favourable pressure gradient that delays the �ow separation, while
the centrifugal force, acting in the spanwise directions, causes the boundary
layer thinning. Because of the global increase of the lift coe�cient, more pro-
nounced near the root of the blade (regions of higher c/r ratio), the power
output of the wind turbine will be enhanced. In QBlade a correction to take
into account this e�ect is implemented:

CL,3D = CL,2D +
3.1λ2

1 + λ2
g
(c
r

)2(dCl
dα

(α− α0)− CL,2D
)

(2.86)



Figure 2.16: Flowchart of the implemented lifting line algorithm

being λ the tip speed ratio, g the gravity acceleration, CL,3D the corrected
coe�cient of lift, CL,2D the lift coe�cient given by the aerofoil data, α the
angle of attack for rotating blades and α0 the static angle of attack.

2.4.4 Unsteady Aerodynamics Model

One of the basic assumptions of the lifting line theory is that it is valid only for
steady �ows. That is, considering a �xed reference frame, the wing/blade is
�xed and the wind �eld doesn't vary in speed and direction. This assumption
can be easily violated for a wind turbine: the blades are rotating, and are
usually subject to torsional deformations. Moreover, they experience added
mass e�ects accelerating the �uid around them, �ow separation, that is typical
for real �uid characterized by viscosity, and rotational e�ects. In QBlade an
unsteady areodynamics model is implemented and coupled with the lifting line
free vortex wake module. This model consists of two parts, an attached �ow
model, and a Beddoes-Leishman dynamic stall model.



Attached �ow model

The attached �ow model takes into account the irrotational added mass e�ects.
The fully attached contribution to the lift force is given by the lift generated
on the aerofoil if it operates in fully-attached �ow conditions at every angle of
attack. The lift force is decomposed in three components:

� irrotational lift : is the lift force that arises in a irrotational �ow as a
reaction from the �uid accelerated by the aerofoil motion. The coe�cient
of lift for this component is expressed as

CNC
L = π

bhc
U0

α̇str (2.87)

being bhc the half-chord length, U0 the mean wind speed and α̇str the
torsion rate of the aerofoil.

� quasi-steady rotational lift : corresponds to the lift force that would act
on the aerofoil if the current motions are held constant for an in�nite
time. This is the steady lift generated by the aerofoil at the current
angle of attack computed from the relative aerofoil motion, but without
the in�uence of shed vorticity.

CQS
L = Catt

L (αqs) (2.88)

� wake memory e�ect : accounts for the in�uence of the shed vorticity in
the wake on the quasi-steady angle of attack. In contrast to the classical
formulation in BEM codes (the wake memory e�ect is modelled with an
e�ective angle of attack, computed via step responses) the e�ective angle
of attack is directly obtained from the free vortex wake formulation:

Ccirc
L = Catt

L (αeff ) (2.89)

To obtain the quasi-steady angle of attack, �rst the in�uence of the shed
vorticity on the angle of attack must be calculated considering the induction of
the total shed vorticity in the vicinity of the blade, up to 8 chord lengths away
from the trailing edge. This limitation is necessary to exclude the in�uence of
the shed vorticity. Once obtained αshed, it is used to compute the quasi-steady
angle of attack:

αqs = αeff − αshed (2.90)

This extra manipulation is necessary, because the common unsteady aerody-
namics models are formulated for BEM codes, that uses indicial functions
which are replaced by the free vortex wake model.

Dynamic Stall Model

Dynamic stall is a non-linear unsteady aerodynamics e�ect that occurs when
aerofoils rapidly change the angle of attack: this causes the lift coe�cient to
follow an hysteresis loop, as reported in �gure. This causes:



α
Figure 2.17: Dynamic Stall Hysteresis cycle

1. delay in the separation of the boundary layer;

2. shedding of a vortex from the leading edge of the aerofoil;

3. the vortex, that travel backwards above the wing containing high-velocity
air�ows, brie�y increases the lift produced by the wing;

4. as it is convected behind the trailing edge, the lift reduces dramatically,
and the wing is in normal stall;

5. the boundary layer shows a delay in the reattachment.

In QBlade, a Beddoes-Leishman dynamic stall model is implemented: the
dynamic stall e�ect is modelled by means of three contributions:

1. lagging potential �ow lift : the total lift computed through the potential
�ow theory (including rotational and irrotational contributions) is lagged
through a �rst order low-pass �lter with time constant τP , also referred
to as pressure time constant :

dC lag
L

dt
= − U0

bhcτP
C lag
L +

U0

bhcτP
Cpot
L (2.91)

2. intermediate separation function: models the dynamic circulatory lift
and includes the separation point time lag:

Ccirc,dyn
L = Catt

L (αeff )f
dyn + Csep

L (αeff )(1− fdyn) (2.92)

where fdyn can be determined by solving
dfdyn
dt

= − U0

bhcτf
fdyn +

U0

bhcτf
f st(α∗)

α∗ =
Clag
∂CL
∂α

+ α0
(2.93)

permitting to assign a weight between the separated lift coe�cient and
the attached lift coe�cient. α0 is the angle of attack that returns a null
linear steady lift and τf is the boundary layer time constant, that de�nes
A low-pass �lter for the separation function.



3. then the vortex lift contribution models the lift overshoot from the lead-
ing edge vortex, formed at the leading edge and convected over the aero-
foil 

U0

bhcτv

dCL,vort
dt

+ CL =
dCv
dt

Cv = Ccirc,dyn
L

(
1− (1 +

√
fdyn)2

4

)
(2.94)

Where τv is another low-pass �lter time constant, the vortex time decay con-
stant. Then the total lift, including attached and separated contribution is
equal to

CL,dyn = Ccirc,dyn
L + Cnc

L + CL,vort (2.95)

The dynamic drag is evaluated from three contributions:

1. the steady drag at the e�ective angle of attack

Ceff
D = CD(αeff ) (2.96)

2. the drag induced by the shed wake vorticity, using the quasi-steady angle
of attack

Cd,ind = Ccirc,dyn
L · (αqs − αeff ) (2.97)

and the drag change induced by the separation delay:

Cf
d,ind = (Ceff

D − CD(α0))

[
(1−

√
fdyn)2

4
−

(1 +
√
f st)2

4

]
(2.98)

Then the total drag is computed as:

CD = Ceff
D + CD,ind + Cf

D,ind (2.99)

2.4.5 Tower Shadow

The model of tower shadow implemented in QBlade is an adaptation of the
tower shadow model employed by AeroDyn2: is based on a superposition of
the analytical solution for potential �ow around a cylinder and a downwind
wake model using a tower drag coe�cient. The tower shadow model a�ects
only velocity components in the x and y directions of the LSA frame, while
the other components, perpendicular to tower cross section, remain unaltered.

2.4.6 Terrestrial boundary layer

The e�ect of the terrestrial boundary layer is modelled through the Hellmann
power law:

U(z) = Uhub

( z

zhub

)α
(2.100)

2https://nwtc.nrel.gov/AeroDyn

https://nwtc.nrel.gov/AeroDyn


Chapter 3

Integration of the PoliTO �oater

model with QBlade

3.1 C++ library creation

3.1.1 Simulink model modi�cation

To create an interface between the �oater model andQBlade, the Simulink©(reported
in Appendix B) model must be translated into C++ language, creating a
�oater module for QBlade. Before moving on to the code-generation phase,
some modi�cations to the original Simulink© model are done:

� The array containing the positions, velocities and accelerations exiting
from the hull block is sent to an output;

� Forces and moments exerted by the wind turbine come from an input;

� The initial conditions for the velocity to position integrator come from an
input and must be set at each time step from the external environment;

� The instantaneous wave direction comes from an input;

� Froude-Krylov/di�raction forces, mooring forces, drag forces, radiation
forces and hydrostatic forces are sent to �ve di�erent outputs to be read
by the QBlade post-processor.

After the code generation (see Section 3.1.2), these parameters will be accessi-
ble and modi�able, however, Simulink© doesn't allow some parameters to be
external inputs. This problem regards:

� Tables containing the wave forces with varying wave direction and time
and their relative size;

� Wave direction lookup table array and its relative size;

� Wave record time lookup table array and its relative size;

� Simulation time step;

� Sti�ness, weight force and length of the mooring lines.
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So, the generated code in principle is valid only for a particular wave, and the
moorings' parameters are not modi�able. This is obviously a big limit that
can be solved by modifying the produced code, with the objective to make it
as �exible as possible. To do this, the open-source version of Qt Creator 1, a
cross-platform integrated development environment was chosen.

Figure 3.1: Modi�ed Simulink model for code generation

3.1.2 Code generation and modi�cation

Matlab© Simulink© Coder permits to choose various options for the code
generation, the ones chosen are summarized in the following table:

System target �le ert.tlc

Language C++

Toolchain MinGW64 | gmake (64bit Windows)

Build Con�guration Faster Runs

Regarding the interface between the external environment:

Code replacement library None

Shared Code placement Auto

Support �oating point numbers
non-�nite numbers
complex numbers
absolute time
continous time

Code Interface Packaging C++ class

1Downloadable at https://www.qt.io/download

https://www.qt.io/download


The code generated by the Simulink© Coder has a modular structure:
polito_floater.cpp is the core of the �oater module, while large variables
are stored inside a separate source code, polito_floater_data.cpp. The
headers contains the de�nition of functions, variables, classes and structures
involved.

Model Files polito_floater.cpp
polito_floater.h
polito_floater_private.h
polito_floater_types.h

Data Files polito_floater_data.cpp

Utility Files All Matlab© libraries source codes
and headers needed to run the model

Table 3.1: Files generated during
the code generation phase

Some of these �les need a further elaboration. In particular, all the tables con-
taining the wave force records are stored inside the polito_floater_data.cpp
�le, as well as the arrays used in the prelookup tables. Also the time step of
the simulation is �xed, when it should instead come from QBlade. These issues
make the generated code not �exible, not having the possibility to simulate
the behaviour of the system with di�erent wave forces and di�erent mooring
lines parameters. To eliminate these problems, the code has been modi�ed.

The main part of the code is the source �le polito_floater.cpp, that
contains all the mathematical operations performed by the model translated
into C++ code, in form of di�erent member functions ("the methods") con-
tained inside a C++ class called polito_floater_ModelClass: in partic-
ular two of these functions, void initialize() and void step() need
to be modi�ed in the de�nition, as well as in the declaration. The �rst is the
initialization entry point of the code, and is useful to set all the simulation
parameters that will be �xed during run-time, while the second is the output
entry point, that contains the instructions to e�ectively run the model, pro-
ducing all the results at each time-step. There's also another function, void
terminate() that contains the destructor, a member function that is called
whenever the run has to be interrupted or terminated. Its main purpose is to
free the resources (memory allocations, open �les, etc...) which were acquired
by the object "�oater" during its life and/or deregister from other entities
which may keep references to it.

The above functions have storage class public, meaning that they can be
accessed from anywhere within the class or outside the class. Other functions
contained inside the code and declared as private: they can be accessed only
by the functions inside the class and are not useful to interface with the code.
Also the input and output parameters are declared as public and grouped
together inside polito_floater_ModelClass.



In a few words, the declared class is the bridge between the object "�oater"
and the external world, that can see only the public members of the class, once
all the headers are included, basically ignoring how they are internally com-
posed. The details about the modi�cation of the produced code are furnished
in Appendix C.

3.1.3 DLL Creation

A Dynamic-Link Library (DLL) is a software library that is loaded dynamically
by a software at run-time, without being statically connected to the executable
during the compilation phase. The main advantages of using such libraries is
that they are loaded (linked) by the software only if they are needed, and
that, in case of new versions or bug-�xes, the software that uses the DLL
can be upgraded by simply replacing the �le, paying attention if the functions
inside the DLL are changed in their declaration or de�nition. A Dynamic-Link
Library is loaded by the operative system (OS) in the memory space of the
process that requires it, ensuring performances that are practically the same
of the software which uses it, and can be thought as a collection of functions
that are exported to the DLL during the building process.

The link against the executable is done, in this work, implicitly, meaning
that it's managed directly by the linker during the compilation phase of the
executable, assuming that the DLL is always present inside the system. Each
time, from the source code of QBlade, a function contained inside the DLL
is called, the linker links the call to the function to a �ctitious stub function.
Inside the executable, there is a table containing the stubs to all the DLL func-
tions: during the executable loading, the OS automatically loads the needed
DLL mapping the stubs to the entry point of the relative DLL function. To
make a function available inside a DLL, it must be exported to it, specifying
the storage class adding the keyword __declspec(dllexport) after the
type of the function and before its name.

The open source version of Qt Creator gives only the possibility to develop
32-bit applications or libraries, due to the presence of 32-bit debugger and
compiler. So, before starting creating the DLL, a new 64-bit compiling envi-
ronment (compiler-debugger) must be installed, besides a 64-bit version of the
Make build automation tool used by Qt, qmake.exe2.

After the installation, a new Kit must be con�gured in Qt Options panel
manually adding the new compiler, the new debugger and the new Qt Version
(qmake). After these operations, a new Qt Creator project is started, with
the template "Library/C++ Library". The DLL developed in this work is
called Floaty. At the beginning only a few �les are present: one source �le,
floaty.cpp, and two header �les, floaty.h and floaty_global.h.
In the Floaty.pro �les all the source codes and the headers generated by
Matlab© are added specifying the directory and the name of the �le, together

2The complete package used for this work is qt-5.5.0-x64-mingw510r0-seh-rev0, down-

loadable from https://sourceforge.net/projects/qt64ng/. It includes 64-bit

versions of qmake.exe, and MinGW, a complete compiling environment.

https://sourceforge.net/projects/qt64ng/


with the needed Matlab© libraries.
All this elements are included in the �oaty main directory in form of sub-

directories only for convenience.

Project Template C++ library

Chosen Kit MinGW x64

C Compiler executable gcc.exe

C++ compiler executable g++.exe

Debugger executable gdb.exe

Required Qt Modules QtCore

Class Name �oaty

Header File �oaty.h

Source File �oaty.cpp

Table 3.2: Main Settings for the
DLL creation with Qt

If polito_floater_ModelClass represents a bridge to the external world
for the �oater module, floaty.cpp, the source �le of the library, is the road
on which informations travel. It must give to the user access to all vari-
ables/structures produced as outputs during the execution of the code, func-
tions needed to run the code during the execution, together with the possibility
to set all available parameters before starting simulating. Practically, it acts
like a control panel for the �oater module. This is done by de�ning three
functions to be exported to the DLL:

� initialize_floater, useful to initialize the parameters of the sim-
ulation such as the time step, the moorings' sti�ness, length and weight
force, the number of timesteps and the number of directions considered
to discretize the round angle (that receives as arguments), and to call the
initialize function contained inside the C++ class polito_floater_ModelClass pass-
ing all the matrices containing the wave forces, the directions considered
and the time array of the wave records;

� platform, that collects the results produced after that the simulation
goes on by a time step and calls the step function of the C++ class
polito_floater_ModelClass. In particular, when called, function
platform collects all the results inside a structure of type fromModel
that can be used to access the platform kinematics and dynamics as
sub-�elds. It must be called passing as arguments the wave direction,
forces and moments exerted by the wind turbine on COG of the complete
structure and the initial conditions for the speed-to-position integrator.



� close_floater, that calls the destructor from the C++ class
polito_floater_ModelClass when the simulation �nishes or is
stopped. It doesn't receive any argument.

Naturally, these functions and variables must be declared in the header �le
floaty.h. For coding details, the full source code of �oaty is provided in
Appendix 3.1.2.

initialize_floater

Set Simulation Timestep
Set Number of Directions
Set Number of wave timesteps
Set Mooring lines Weight Force
Set Mooring lines Sti�ness
Set Mooring lines length
Set Mooring lines pre-tensioning
Set integrator initial conditions

platform

Platform kinematics
Mooring Forces
Wave Forces
Drag Forces
Radiation Forces
Hydrostatic Forces
Send WT forces/moments to �oater

close_floater Calls the Destructor

Table 3.3: DLL functions

Once the interface is created, the DLL is ready to be build in Release mode.
The product of the build is a .dll �le, Floaty.dll, ready for the integration in
QBlade.



3.2 Interfacing with QBlade

3.2.1 De�ning a coherent reference frame

Figure 3.2: Reference frames de�ned in QBlade

To interface correctly with QBlade, there's the need to introduce both the
FRA and the LSA frames on it. The reference frame de�ned in Qblade is
right-handed and by the default, is set to have its origin at the base of the
wind turbine, the "X Global" axis pointing downwind and the "Z Global"
axis pointing along the wind turbine's tower. The Global reference frame of
QBlade is inertial, being its axes �xed, so, to interface with Floaty, the wind
turbine base is shifted upwards by a quantity equal to the distance, measured
in the FRA frame, between the still water level line and the turbine base,
making the Global reference frame coincident with the FRA reference frame
and so the X Global - Y Global plane corresponding to the still water plane.
When the �oater module is active, the wind turbine base automatically shifts
upwards if the SWL-WT base distance is greater than 0. QBlade evaluates
the Thrust vector in the Global reference frame: then moments exerted by the
wind turbine on the COG of the �oater are calculated in the LSA frame taking
into account the distance between the �oater's COG and the wind turbine base,
and the rotations/translations of the LSA frame.



3.2.2 Setting up the interface

All the headers related to �oaty are moved into a unique folder src/floaty
, into the project directory of QBlade, together with the .dll �le of the library.
After it, Floaty.dll is included in qblade_v09.pro �le, together with the
related headers. To access the function declared in the header floaty.h, that
are the ones exported to the DLL, from a particular source �le (.cpp) contained
inside the QBlade source code it's su�cient to use the preprocessor instruction
#include "floaty/floaty.h". This is done at the beginning of the
source �le QLLTSimulation.cpp. Once done it, all the DLL's function
are normally accessible by simply typing their name. In the QBlade header
�le QLLTSimulation.h, the structure fromModel floater is declared
to import all the variables from the �oater module.

A new member function, OnLoadFloaterParameters() is created: it
opens a directory (pre-speci�ed by the user, see Section 3.2.3) and loads the
�les:

� surge.dat
sway.dat
heave.dat
roll.dat
pitch.dat
yaw.dat
containing the wave force matrices,

� time.dat containing the time array of the wave force record,

� deg.dat containing the directions array.

After initializes the �oater module calling the function initialize_floater:

1 initialize_floater(getTimeStep(), num_deg, num_wave, m_moorW,
m_moorK, m_moorL, preT, time, deg, surge_force, sway_force,
heave_force, roll_force, pitch_force, yaw_force);

where

� geTimeStep() is the time step used by QBlade

� num_deg is the number of directions used to discretize the round angle;

� num_wave is the number of elements contained in the wave force records;

� m_moorW is the single mooring line weight force;

� m_moorK is the mooring lines sti�ness;

� m_moorL is the mooring lines length;

� preT is the mooring lines pre-tensioning;



� time is the time array of the wave force record;

� deg is the directions array;

� surge_force
sway_force
heave_force
roll_force
pitch_force
yaw_force
are, respectively, the matrices containing the wave forces and moments
in the di�erent directions.

In the member function onStartAnalysis() an if condition is added: if the
�oater module is active, �rst the function OnLoadWaveForces() is called
and data are acquired. Then QBlade proceeds in its operations, calling another
member function, calcHAWTresults(). Again, if the �oater module is
active, the moments exerted by the wind turbine on the COG of the structure
are calculated:

Mrx = −TLSAy tAPz

Mry = TLSAz |tAPx |+ TLSAx |tAPz |

Mrz = −TLSAy |tAPx |+ TLSAx tAPy

Where

� Mrx = mx.last();
Mry = my.last();
Mrz = mz.last()
are the moments exerted by the wind turbine on the COG of the �oater;

� TLSAx = ThrustLSAx.last(),
TLSAy = ThrustLSAy.last(),
TLSAz = ThrustLSAz.last()
are the thrust components respectively in the x, y and z directions of
the LSA frame;

� tAPx = m_ThrustActingPoint.data()->x;
tAPy = m_ThrustActingPoint.data()->y;
tAPz = m_ThrustActingPoint.data()->z
are the coordinates of the thrust acting point respectively on the x and
z directions, in the LSA frame.

Note that the thrust components in the LSA are obtained inside the member
function CalcHAWTResults() taking the thrust vector thrustfloaty in
the FRA, and rotating it using the rotation matrices implemented in QBlade.
The x, y, z components are then stored inside ThrustLSAx, ThrustLSAy,
ThrustLSAz.



1 ...

3 //thrust in the LSA frame
if(active_floater)

5 {
thrustfloaty.RotX(m_PlatformRollAngleX*PI/180);

7 thrustfloaty.RotY(m_PlatformPitchAngleY*PI/180);
thrustfloaty.RotZ(m_PlatformYawAngleZ*PI/180);

9 ThrustLSAx.append(thrustfloaty.x);
ThrustLSAy.append(thrustfloaty.y);

11 ThrustLSAz.append(thrustfloaty.z);
}

13

...

then, the platform function is called assigning the returning values to the
structure floater

...
2

floater = platform(wave_direction, m_ThrustX.last(), m_ThrustY.
last(), m_ThrustZ.last(), mx.last(), my.last(), mz.last(),

4 m_PlatformTranslation.x, m_PlatformTranslation.y, swl_cog_floaty,
m_PlatformRollAngleX*PI/180, m_PlatformPitchAngleY*PI/180,
m_PlatformYawAngleZ*PI/180);

6 ...

Where

� m_PlatformTranslation.x,
m_PlatformTranslation.y,
swl_cog_floaty
are the instantaneous coordinates (x, y, z) of the �oater COG in the FRA,

� m_PlatformRollAngleX*PI/180,
m_PlatformRollAngleX*PI/180,
m_PlatformRollAngleX*PI/180
are the rotations rx, ry, rz, in radians, around the axes of the FRA.

once the function is called, floater contains all the dynamic and kinematic
variables. Qblade provides, besides a graphical 3D rendering of the wind tur-
bine, also the possibility to plot the variables present in the class that is in
use. For this reason, for each variable that exits from the �oater module, a
new array in the class QLLTSimulation is created to be visible to all the
member functions, and after the function platform is called, the values con-
tained in floater, at each time step, are memorized in the last position
of each of these arrays. The member function PrepareOutputVectors()



will give the possibility to create plots and export them as .csv �les (commma-
separated values) for the following dynamic and kinematic variables coming
from the �oater module:

� instantaneous COG coordinates in the FRA and �oater rotations, (an-
gular) speed and (angular) acceleration (angular) in all the directions,

� hydrodynamic drag forces and moments in all the directions,

� mooring forces and moments in all the directions,

� hydrostatic forces and moments in all the directions,

� di�raction and Froude-Krylov Forces in all the directions,

� radiation forces in all the directions,

� thrust force in LSA frame,

� moments exerted by the wind on the turbine in the LSA. Together with
the variables already present in the standard version of QBlade.

3.2.3 Graphical User Interface

To make the user able to change the �oater module input parameters, a graph-
ical user interface is created inside the QLLT Simulation module of Qblade, in
form of a control panel called "Floater Settings" where the user can:

� activate or deactivate the �oater module through a radio button;

� choose the directory containing the wave force matrices, the wave record
time array and the directions array in form of .dat �les;

� set the initial conditions for the �oater module, that is:

� COG x, y, z coordinates in the FRA in m

� Floater rotations around the FRA axes in deg

� insert the COG-turbine base distance in m

� edit the number of time steps composing the wave force records

� edit the number of directions considered

� set the incoming wave direction in deg

� set the moorings Sti�ness in N/m

� set the moorings Weight Force in N

� set the moorings length in m

� set the moorings pre-tensioning in N



The creation of that interface (see Figure 3.3) makes the user able to simulate a
very large range of conditions for the FOWT, giving the possibility to perform
free-decay analysis by simply using, in this �rst version of the DLL, 0-�lled
matrices for the wave force records. To enable the �oater settings control
panel to communicate with the QLLT Simulation module, the declaration of
the member function QLLTSimulation is modi�ed to receive as arguments
all the parameters set by the user.

Figure 3.3: "Floater Settings" control panel



Chapter 4

System

The system object of the coupled simulations QBlade-�oater module is com-
posed by four main elements, as shown in Figure 4.1:

� NREL 5 MW wind turbine

� Fincantieri Sea�ower �oater

� Mooring lines

� Surrounding Environment

Figure 4.1: Isometric representation of the system

4.1 Sea�ower �oating platform

The �oater, designed by Fincantieri[22] "consists of a hexagonal submerged
platform acting as main buoyant body and damper and six semi-submerged
columns at the corners that full�ll the static and dynamic lateral stability re-
quirements while ensuring high transparency to wave motions". The main
scope of this project is to overcome the high costs of bottom-�xed foundations
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Platform diameter 63m

Platform height 4.5m

Columns diameter 10.3m

Central column base diameter 14.5m

Columns height 18m

Floater mass 15,400t

Floater density 600 kg/m3

Table 4.1: Characteristics of the Sea�ower Floater.

construction and installation when dealing with high sea depths (50-200 m)
and to endure the challenging waves and winds of highly energetic sites such
as the North Sea. Fincantieri's choice of marine concrete as material, without
any bracing, makes the Sea Flower earn cost e�ectiveness and durability, strik-
ingly critical in the aggressive marine environment. The essential data about
the �oater are reported in the following table:

Figure 4.2: Internal structure of the Sea�ower �oating platform

4.2 NREL 5 MW

The U.S. Department of Energy's National Renewable Energy Laboratory's
(NREL) Wind department has developed a standardized wind turbine for us-
age in di�erent investigations, named o�shore 5-MW baseline wind turbine
[23]. Since the �oater is designed for a wind turbine of 5 MW nominal power
and NREL5MW is completely and publicly de�ned, this was the best choice.



Rated Power 5MW

Rotor Orientation upwind

Rotor Diameter 126m

Hub Diameter 3m

Cut in wind speed 3m/s

Rated wind speed 11.4m/s

Cut out wind speed 25m/s

Rotor Overhang 5m

Shaft Tilt 5°

Precone 2.5°

Rotor mass 110t

Nacelle mass 240t

Hub inertia about rotor axis 115.926 kgm2

Tower height 87.6m

Distance nacelle base/rotor axis 77.6m

Hub Height 90m

Table 4.2: NREL o�shore 5MW baseline wind turbine speci�cations

4.2.1 Wind Turbine Speci�cations

The wind turbine is designed with a power rating of 5MW, resulting from con-
siderations on o�shore �oater feasibility and state of the art for wind turbines
at the time it was initiated. The design is the result of speci�cations from sev-
eral di�erent precious prototypes, such as MultibridM5000 and REPower 5M,
and studies, such as WindPACT, RECOFF and DOWEC. The rotor radius
is 63m, while the hub height was chosen to be 90 m, which is quite low with
respect to the rotor diameter(126 m): however, this minimizes the overturning
moment generated by the thrust acting in the rotor ensuring a 15 m clearance
between the blade tips at their lowest point and an estimated extreme 50-year
wave height of 30m. The remaining speci�cations are summarized below in
Table 4.2.

4.2.2 Blades Modelling

In QBlade, using the Aerofoil desing and the HAWT Rotorblade Design mod-
ules, there's the possibility to design, starting from zero, the rotor of a wind
turbine. Using the publicly-de�ned speci�cations provided by Jonkman [23],
each aerofoil is imported in QBlade using the foil �le format (.dat) specifying
the foil coordinates, and then the structure of the NREL5MW baseline wind



Y(m) Chord β[°] Aerofoil

1,5 3,2 13,08 DU99W350LM

2,86 3,54 13,08 DU97W300LM

5,6 3,85 13,08 DU91W2250LM

8,33 4,17 13,08 DU91W2250LM

11,75 4,55 13,08 DU93W210LM

15,85 4,65 11,48 DU93W210LM

19,95 4,46 10,16 NACA64618

24,05 4,25 9,01 NACA64618

28,15 4,01 7,80 NACA64618

32,25 3,75 6,54 NACA64618

36,35 3,50 5,36 NACA64618

40,45 3,26 4,19 NACA64618

44,55 3,01 3,13 NACA64618

48,65 2,76 2,32 NACA64618

52,75 2,52 1,53 NACA64618

56,17 5,31 0,86 NACA64618

58,90 2,09 0,37 NACA64618

61,63 1,40 0,16 NACA64618

63,00 0,7 0 NACA64618

Table 4.3: Geometrical properties and aerofoils used to model the rotorblade
in QBlade

turbine rotor is modelled using 19 radial substations, the characteristics of
each one given in Table 4.3, where Y refers to the coordinate of the nth radial
substation measured from the hub center and β to the twist angle, the angle by
which the aerofoil is rotated around the Y axis of that particular substation.
The 3D view of the blade model can be seen in Figure 4.3



Figure 4.3: NREL5MW rotorblade, with type of aerofoil used and
coordinates for each radial substation

4.3 Moorings

The mooring system is designed in order to prevent the system from drift-
ing under the action of waves, current and wind, and to increase rotational
stability. The solution implemented by Fincantieri is a spread inert catenary
mooring system consisting of a set of six pre-tensioned lines evolving radially
from each vertex of the hexagonal �oater, uniformly distributed on the 360° of
the water plane, to keep the �oater in position. Two di�erent sea depths are
taken into account by Fincantieri (50 and 200 m).

The single lines are composed by three segments. Starting from the anchor
at the seabed, these sections are:

1. Metal Chain

2. Polyester rope (section of higher length)

3. Metal chain

This solution gives a good sti�ness while guaranteeing light lines: its proper-
ties are summarized in Table 4.4. To use the elastic model described in Section
2.3.1, the sti�ness of each line has to be calculated. Observing that the seg-
ments composing the mooring lines can be considered as a series of springs,
the equivalent sti�ness is:

1

keq
=

1

kc1
+

1

kcr
+

1

kc2

where, in this work, kc1 = kc2 = 6690 kN/m is the sti�ness of the two, identical
chains and kr = 12.7 kN/m is the sti�ness of the polyester rope. The line



Number of mooring lines 6

Angle between adjacent lines 60°

Seabed depth 50 m, 200 m

Mooring leg composition rope-chain-rope

Unstretched lengths (50 m depth) 100-500-100 m

Unstretched lengths (200 m depth) 100-700-30 m

Pre-tensioning 190 kN

Chain

type studlink, R3
diameter 90 mm
mass per unit length 182 kg/m
minimum breaking load 6647 kN
axial sti�ness 699 MN

Rope

type polyester
diameter 160 mm
mass per unit length 16.8 kg/m
minimum breaking load 7112 kN
axial sti�ness 59.3 MN

Table 4.4: Mooring system properties

equivalent sti�ness is keq = 12.65 kN/m, very close to the sti�ness of the rope
alone.

The line weight is considered constant and, for each line, equal to that of
a single 100m chain. In the computation, the mooring lines are considered to
be rectilinear in every instant: the rope segment of the line is predominant
in length and is tensioned by the two chain segments, sti�er and heavier.
The angle between lines and seabed is so low that the catenary curves are
close to the linearity, and, due to the large length of the mooring lines, their
con�guration is considered to be �xed, considering the typical motions of the
�oater.

Thanks to the linearity assumption, the moorings can be considered as
linear springs with the bottom end �xed at the anchor points and the top end
connected to the �oater.



4.4 Complete System

The �xed reference axes frame Oxyz (FRA), dashed line, in Figure 4.4, is
de�ned as a right-handed reference frame with the origin O identi�ed as the
intersection between the system vertical axis of "simmetry" at rest and the
mean water plane, the z axis pointing upwards and the x axis pointing back-
wards, downwind. This frame is �xed in space and thus represents an inertial
reference. The local structure axes frame Gxyz (LSA), continous line in Figure
4.4, has its origin in the system center of gravity G and its axes, at the starting
position, are parallel to those of the FRA. The LSA is used to describe the
motions of the system in the FRA.

Mass 16000 t
Displacement 15608 m3

Draft 12 m
Center of gravity from SWL 2.33 m
Roll radius of gyration 21.91 m
Pitch radius of gyration 21.90
Roll radius of gyration 20.38

Table 4.5: Characteristics of the complete system.

Figure 4.4: Fixed Reference frame Oxyz (dashed line) and local structure
axes Gxyz (continous line)





Chapter 5

Results of the coupling

5.1 Onshore-O�shore Comparison

In this section, the di�erences between an onshore and an o�shore installation
are examined. Two simulations are performed:

� onshore case: the �oater module is deactivated, and the simulation is
carried on with a value for the wind speed at the hub center Uhub =
17m/s.

� o�shore case: the �oater module is active and the simulation is carried
on for a value of incoming wave direction θ = 0°, with Uhub = 17m/s,
Hs = 3.28m and Te = 10.54s. The e�ect of the terrestrial boundary layer
is taken into account by means of the Hellmann exponent α = 0.16, and
the incoming wind direction γ is the same of the incoming wave direction.

In the �gures, the red curves refer to the onshore case, while the blue curves
to the o�shore case.

5.1.1 E�ects on the wake

As the �oater moves, it in�uences actively the wake produced by the wind
turbine, changing its shape and modifying the �ow �eld in a determinant
manner. In Figure 5.1 is presented the �ow �eld on a plane coincident with
the xz plane of the FRA, in the onshore case, while in Figure 5.2 in two planes,
one parallel to the xy plane and shifted by a quantity zhub = 90m on the z
axis, and on the xz plane. The wake has a uniform aspect, being the zone
of largest magnitude of the velocity vector the ones in�uenced by the wing
tips and the blade roots, where vortex strength rapidly increases to model the
trailing vorticity. The �ow �eld, being decelerated by the power extraction
operated by the wind turbine, cause the wake to decelerate far from the rotor.
It shrinks due to the modelled terrestrial boundary layer: the parts of the
wake at an higher altitude tend to be convected faster with respect to the
parts closer to the soil. In the o�shore case, see Figure 5.3, the wake presents
a much larger turbulence with respect to the onshore case and for this reason
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tends to maintain the same shape far from the rotor, and the trailing vortices
tend to be deformed. It's worth noting how the wake tilts upwards, due to the
e�ect of the pitch angle.

Figure 5.1: Wake in the onshore case, xz cut plane

Figure 5.2: Wake in the onshore case, perspective view



Figure 5.3: Wake in the o�shore case, xz cut plane

Figure 5.4: Wake in the o�shore case, perspective view

5.1.2 E�ects on the aerodynamics

Power Coe�cient

Figure 5.5: Power coe�cient as a function of time, in the onshore/o�shore
cases, �rst 100s

The fact that the FOWT is moving under the action of waves and wind



in�uences di�erent parameters. The mean power coe�cient decreases: the
instantaneous power coe�cient for the o�shore case is below the one for the
onshore installation for great part of the simulation time (see Figure 5.5),
showing also a much more �uctuating behaviour, due to the fact that the
�oater's motions cause the wind turbine to work at an e�ciency lower than
the nominal one.

Lift to Drag ratio

The lift to drag ratio CL/CD (Figure 5.6), in the o�shore case, starts to have
a di�erent behaviour with respect to the onshore case, showing di�erent peaks
reaching values close to double the corresponding one for the onshore case.
The e�ect should be further investigated: it is surely caused by the newly-
introduced �oater dynamics, and is always associated with a decrease of the
angle of attack.

Figure 5.6: Lift to drag ratio and angle of attack for blade 1 as a function
of time, in the onshore/o�shore cases, �rst 100s

Velocity Induced from Tower

Figure 5.7: Velocity induced from tower as a function of time, in the
onshore/o�shore cases, �rst 100s

Velocity induced from tower (Figure 5.9) in the o�shore case shows an
important rise, that can be related to the acceleration, induced by the �oater's
motion, of the �uid around it.



Figure 5.8: Loads causing the root bending moments.

Root Bending Moments

The root bending moments, Mf andMe (�ap-wise and edge-wise components)
caused by the loads imposed by the wind in the edgewise and �apwise direc-
tions, shows larger oscillations in the o�shore case,especially for the �apwise
component. This can led to stronger oscillations of the wind turbine blades,
causing larger fatigue stresses.

Figure 5.9: Out of Plane (Flapwise) and In-Plane (Edgewise) root bending
moments for blade 3 as a function of time, in the onshore/o�shore cases,
�rst 100s

5.1.3 Normal and Tangential Loads on the Blades

Normal and tangential loads on the blades starts to have a much more irregular
behaviour, and the tangential force decreases, as can be seen in Figure 5.10.

Thrust

The �oater dynamics a�ects the thrust in all the directions (Figure 5.11).
In particular, the x component decreases, followed by an increase in the y



Figure 5.10: Normal and tangential loads for blade 1, �rst 100s

Figure 5.11: Thrust in the x, y and z directions of the FRA frame as a
function of time, in the onshore/o�shore cases, �rst 100s

component and a decrease in the z component. This last one can be considered
as a source of damping for the system, indeed it tends to push downward the
center of gravity of the structure. However, the behaviour of the total Thrust
(Figure 5.12) is much more oscillated in the o�shore case.

Figure 5.12: Total thrust as a function of time, in the onshore/o�shore
cases, �rst 100s



5.2 Test Cases

In this section the behaviour of the system is examined for di�erent test cases,
with di�erent values of wind speed, wave height and period, examining its
behaviour on its operative range, when the wind turbine is actively producing
power, and when the turbine is o�, that is, when the environmental conditions
are such that the system must be shut down to avoid damages. This test cases
should be considered as a preliminar investigation of the behaviour of the
system and a veri�cation of the correct coupling between Floaty and QBlade.
In each test case, a unique value of Hs, Tp and wind speed at the hub, Uhub is
used, while the wave and wind directions, respectively θ and γ varies covering
the right angle from 0° to 90° with no relative angle. A uniform wind �eld
is considered, with the presence of an atmospheric boundary layer, which is
taken into account by means of the Hellman power law.

Fτ and Fn denote, respectively, the tangential and the normal loads on the
blades. Notice that in all the graphs, instead of the instantaneous coordinate
of the COG in z direction of the FRA, is reported the instantaneous z coordi-
nate of the turbine base in the FRA. The two representations are equivalent,
being the COG z coordinate obtainable by subtracting the distance between
the COG and the turbine base, equal to 12.83m.

θ Colour

°

Case 1 0 Red

Case 2 22.5 Green

Case 3 45 Blue

Case 4 67.5 Black

Case 5 90 Magenta

Table 5.1: Colours Legend

5.2.1 Normal Operating Conditions

In this test case, the system is considered as subject to both aerodynamic and
hydrodynamic loads, with values under the normal operating conditions of the
FOWT. The Hellman's power law exponent is α = 0.16 (neutral air above �at,
open coast) with reference height zhub = 100.5m, that is the hub height in the
FRA reference frame.

The values of Hs = 3.28m, Te = 10.54s and Uhub = 17m/s are chosen
to be inside the normal operating conditions of the system, as speci�ed by
Fincantieri.



Figure 5.13: Translations, normal operating conditions

Figure 5.14: Rotations, normal operating conditions

Kinematics As expected, surge and sway show an opposite trend: when
θ = 0°, sway motions are negligible, whereas surge is clearly dominant. By
increasing θ, sway becomes more and more relevant, until the situation is
reversed when the incoming wave/wind direction is parallel to the y axis. An
equilibrium condition is reached when θ = 45°, when both surge and sway
has a comparable trend. Di�erences arise mainly due to the di�erent values
of added mass and drag coe�cients for the two directions. In particular, as
can be seen in Figure 5.15, the instantaneous values of the hydrodynamic drag
forces are di�erent, also if comparable. A similar situation is present also for
pitch and roll. Heave is insensible to the variation of θ: this is due to the



fact that both aerodynamic and hydrodynamic loadings in this direction do
not depend on the incoming wave/wind direction, and heave itself does not
depend on other �oater motions.

While surge, sway, roll and pitch reaches their maximum values at the
extremes of the interval [0°,90°], yaw reaches its peak value for θ = 45°, mainly
thanks to the contribution of the aerodynamic yaw moment (Figure 5.17) that
has a negative mean value, maximum for this value of θ.

Figure 5.15: Hydrodynamic drag force in surge and sway

Aerodynamics and Blade Loads As already stated in Section 5.1, intro-
ducing the �oater dynamics impacts on the aerodynamic parameters, on the
power coe�cient and on the blade loads. Aerodynamic variables starts to have
a much more irregular behaviour, and the power coe�cient reduces. What it's
important to notice is that changing the wave/wind direction produces a very
small impact: neglecting local oscillations curves are very similar, being prac-
tically superposed. A comparison between the maximum and mean values of
the aerodynamic parameters in the Normal Operating Conditions and at the
Upper Threshold of operating conditions can be found in Tables 5.3 and 5.4.



Figure 5.16: Peak and mean values of �oater's motions, normal operating
conditions

Figure 5.17: Aerodynamic Yaw moment in the LSA frame, normal
operating conditions

5.2.2 Upper Threshold of operating conditions

In this test case, the system is considered as subject to both aerodynamic and
hydrodynamic loads, with values set on the upper threshold of the operating
conditions of the FOWT. The Hellman's power law exponent is α = 0.16



Figure 5.18: Power coe�cient, CL/CD ratio, angle of attack and velocity
induced from tower, normal operating conditions, �rst 100s.

Figure 5.19: Blade loads in normal operating conditions, �rst 100s.

(neutral air above �at, open coast) with reference height zhub = 100.5m.

The values of Hs = 6.5m, Te = 10s and Uhub = 25m/s are chosen to be at
the upper threshold of the operating conditions, as speci�ed by Fincantieri.

Kinematics Also in this case surge and sway, as well as pitch and roll,
assume their largest values respectively for θ = 0° and θ = 90°, with the
di�erence that the magnitude of the �oater's motions is much larger than the
previous case. Heave and yaw are decoupled from the other DOFs. The curves



Figure 5.20: Translations, upper threshold of operating conditions

Figure 5.21: Rotations, upper threshold of operating conditions

show similar trends.

Aerodynamics and Blade Loads As already discussed in Section 5.2.1,
the only e�ect on the aerodynamic parameters and on the blade loads caused
by the �oater is the drastic modi�cation of the shape of the curves, that,
varying the wave/wind incoming direction, remains practically equal. In this
case, the power coe�cient shows a much more important decrease, and blade
loads ampli�es. A comparison between the maximum and mean values of
the aerodynamic parameters in the Normal Operating Conditions and at the



Figure 5.22: Peak and mean values of �oater's motions, upper threshold of
operating conditions

Upper Threshold of Operating Conditions can be found in Tables 5.3 and 5.4.
It is noticeable that both the maximum and mean values of the angle of attack
α are lower in Normal Operating Conditions than at the Upper Threshold: the
probability of stall is thus larger in the last case, and the CL/CD ratio reduces
dramatically.



Figure 5.23: Power coe�cient, CL/CD ratio, angle of attack and velocity
induced from tower, upper threshold of operating conditions, �rst 100s.

Figure 5.24: Blade loads in upper threshold of operating conditions, �rst
100s.

5.2.3 Extreme wave conditions

In this case, that is the one of a 50 years return period storm, the wind turbine
is inactive due to the the fact that a wind speed equal to Uhub = 40m/s, well
above the cut-o� wind speed of the generator, is chosen. Waves with signi�cant
wave height Hs = 13m and period Te = 13.4s lash the �oater. This time the
nacelle yaw is considered to be �xed and equal to 0°, while wind/wave direction
varies in the range [0°,90°] with no relative angle, as in the previous cases.



Kinematics Even if the �oater's motions are not so much di�erent than
the case of normal operating conditions, the fundamental di�erence is on the
accelerations, that, in this case, are much larger: in Table 5.2 are reported the
maximum values, in absolute value, of the �oater's accelerations in the two
cases.

Aerodynamics and blade loads Being the nacelle yaw �xed, loads on
the blades show a larger variability with respect to the previous case. Both
the edgewise and the �apwise components of the root bending moment are
maximum when the incoming wind/wave direction is equal to θ = 67.5°, while
all loads are minimum when θ = 90°, due to the fact that the nacelle yaw is
�xed to the θ = 0° direction: so, the surface that the wind "sees" drastically
reduces. The tangential force exerted on the blade shows the largest values for
θ = 67.5°. Mean and maximum values of loads on the blades as a function of
the incoming wave/wind direction, for this case, can be found in Table 5.5.

Figure 5.25: Translations, extreme wave conditions

Normal Operating Conditions Extreme Wave Conditions

θ x y z rx ry rz x y z rx ry rz
° m/s2 m/s2 m/s2

°/s2
°/s2

°/s2 m/s2 m/s2 m/s2
°/s2

°/s2
°/s2

0 0.52 0 0.54 0.02 1.15 0 1.83 0 1.65 0 4.06 0
22.5 0.48 0.20 0.54 0.46 1.08 0.14 1.70 0.79 1.65 1.69 3.79 0.30
45 0.37 0.35 0.54 0.82 0.84 0.21 1.27 1.49 1.65 2.88 3.01 0.38
67.5 0.19 0.46 0.54 1.07 0.47 0.15 0.72 1.92 1.65 3.75 1.64 0.29
90 0 0.51 0.54 1.17 0.03 0 0 2.05 1.65 4.08 0.02 0

Table 5.2: Acceleration in Normal Operating Conditions and in Extreme
Wave Condtions



Figure 5.26: Rotations, extreme wave conditions

Mean Values Cp Cl/Cd α Fτ FN Mf Me

- - ° N N Nm Nm
Normal Operating Conditions 0.32 98,85 8,27 7,62e4 3,53e5 1,50e7 3,00e6
Upper Threshold of O.C. 0.13 21.54 13,21 9,51e4 4,08e5 1,74e7 3,90e6

Table 5.3: Mean values of aerodynamic parameters and loads on the blades
in normal operating conditions and at the upper threshold of operating
conditions

Max Values Cp Cl/Cd α Fτ FN Mf Mf

- - ° N N Nm Nm
Normal Operating Conditions 0.41 172,76 11,36 1,31e5 5,13e5 2,04e7 4,74e6
Upper Threshold of O.C. 0.19 101,11 19,83 2,70e5 8,39e5 3,37e7 9,65e6

Table 5.4: Maximum values of aerodynamic parameters and loads on the
blades in normal operating conditions and at the upper threshold of operating
conditions

θ Fτ FN Me Mf

0 4,05e+04 2,56e+05 8,19e+06 1,06e+06
22.5 3,51e+04 2,61e+05 8,41e+06 1,03e+06
45 2,33e+04 2,20e+05 7,21e+06 8,27e+05
67.5 6,03e+04 2,56e+05 8,48e+06 2,18e+06
90 -2,25e+04 -5,86e+04 -1,03e+06 -2,29e+05

Table 5.5: Mean values of load on the blades in extreme waves as a function
of θ



Figure 5.27: Peak and mean values of �oater's motions, extreme wave
conditions

theta Fτ FN Mf Me

0 6,16e+04 3,97e+05 1,31e+07 1,64e+06
22.5 5,32e+04 3,97e+05 1,31e+07 1,58e+06
45 3,60e+04 3,35e+05 1,13e+07 1,27e+06
67.5 9,24e+04 3,82e+05 1,29e+07 3,30e+06
90 -3,45e+04 -8,80e+04 -1,59e+06 -3,61e+05

Table 5.6: Maximum values of load on the blades in extreme waves as a
function of θ

5.2.4 Misalignment

Often, in the normal operations of a �oating system, wind and wave directions
can be misaligned: this phenomenon is always present in all atmospheric con-
ditions. In this test case, the incoming wave direction θ is �xed to 0°, while the
wind direction γ varies assuming the values 20°, 40°, 60°, that are qualitatively
the most probables in the technical report [25], in the case of unstable atmo-



Figure 5.28: Blade loads in extreme wave conditions, �rst 100s.

sphere, modelled with an Hellmann exponent α = 0.11. The misalignment
angle is de�ned as

misalignment = γ − θ (5.1)

Wind speed at hub height Uhub, wave height Hs and period Tp are the same of
the Normal Operating Conditions Case (Section 5.2.1), while the nacelle yaw
angle is always equal to the incoming wind direction γ.

Misalignment Colour

°

Case 1 20 Red

Case 2 40 Green

Case 3 60 Blue

Table 5.7: Colours Legend for the misalignment case

Kinematics Due to the fact that wind loads are dominant with respect to
wave loads, all six degrees of freedom are unlocked in the three cases. Surge de-
creases as misalignment increases, and conversely sway increases.This regular
behaviour cannot be found for the other DOFs. Heave, as in the previous cases,
is una�ected by incoming wave/wind direction, and so by the misalignment.



Figure 5.29: Translations in case of misalignment.

Figure 5.30: Rotations in case of misalignment.



Figure 5.31: Peak and mean values of �oater's motions as a function of the
misalignment



Chapter 6

Final Remarks

6.1 Conclusions

The 6DOFs model has proven to furnish results which are coherent with the
expectations. In particular, when wave and wind direction is the one of the
positive x axis, sway, yaw and roll are practically locked, and the system
behaviour can be accurately described using a 3DOFs model. The variation of
the incoming direction of wave and wind unlocks the other degrees of freedom,
and for an incoming direction of the loads coincident with the positive y axis,
the DOFs locked are surge, pitch and yaw.

The �oater's dynamics a�ects the performances of the wind turbine, in
terms of coe�cient of power, angle of attack and lift to drag ratio, and in
particular cases enhances the probability of stall.

Also blade loads are greatly a�ected, being the newly-introduced dynamics
responsible of cyclic variations much more pronounced than in the onshore
case, leading to much more large fatigue stresses.

The coupling between Floaty and QBlade can be considered as fully accom-
plished. The two codes communicate well, and the dynamics introduced by
the �oater module has shown to actively in�uence the behaviour of the wind
turbine, in terms of loads on the blades, thrust on the rotor and aerodynamic
parameters such as the angle of attack, the drag and the lift coe�cients of the
blades. Also the development of the wake has shown to be highly dependent
on it.

The two codes now form a unique software, having the user the possibility
to directly control the �oating platform model from QBlade, varying the wave
to which the platform is subject, the initial position of the system, the mooring
parameters and the duration of the simulation. The discretization in terms of
direction and time of the wave records can be changed by properly feed the
correct �les.

The �oater results to perform well in the main situations to which the test
cases refer, considering that the non-linear lifting line module does not actually
implement a control logic for the wind turbine.
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6.2 Further Investigations

A catenary mooring line model should be implemented: it could characterize
better the �oater's dynamics, considering that the catenary characteristic is
more than proportional. Also coe�cients of drag should be revised, getting
them through identi�cation from CFD codes or experimental tests.

By revising the source code of Floaty, a functionality to change the �oating
platform can be easily implemented: in this case, all the �oater-characterizing
parameters, such as the State-Space Matrices, the hydrodynamic sti�ness ma-
trix, the �oater mass and inertia properties should be written into �les, and
then given as inputs to the �oater module. The same is valid for mooring
lines' connection points on the �oater and at the seabed (in substance, the
polito_floater_data.cpp source �le should be completely removed).

A validation using a reference �oater, such as the Floating System for Phase
IV of OC3 should be accomplished using validated codes, such as FAST, once
the structural dynamics is introduced in the model.

Another code to calculate Froude-Krylov and di�raction forces in real time,
as the simulation goes on, should be created and integrated with Floaty. The
linearity assumptions made in the hydrodynamic model should be gradually
replaced by more realistic modelling.



Appendices

103





Appendix A

Results of the stability analysis

In the following pages are reported the results of the stability analysis. In
the �gures, the x represents the poles of the transfer function, while the o
represents its zeros.
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Appendix B

Simulink© Model

In this Appendix the Simulink models used for the mooring lines and the hull
are reported.
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B.1 Moorings





B.2 Hull



Appendix C

Coding Details

C.1 Modi�cation of the code produced by Matlab©

void initialize() initializes all the variables and blocks needed to run
the model, including solver's parameters. First of all, a new structure is de-
clared inside polito_floater.h header:

...
2 //simulation parameters
typedef struct {

4 real_T dt;
uint32_T num_wave_el;

6 uint32_T num_deg_el;
real_T moorW;

8 real_T moorK;
real_T moorL;

10 real_T moor_pre_tensioning;
} simulation_par;

12 ...

It contains, in order, the simulation time step, the number of elements con-
tained in the directions and time lookup table arrays, the mooring lines weight
force, sti�ness and length. Another structure is added, always in polito_floater.h
containing all the pointers to the wave force matrix:

...
2 //WAVEFORCE MATRIXES
typedef struct {

4 // Expression: FORCEMATRIX(:,:,1)
// Referenced by: ’<S2>/surge_force’

6

real_T *Prelookup_BreakpointsData;
8

// Expression: FORCEMATRIX(:,:,1)
10 // Referenced by: ’<S2>/surge_force’

12 real_T *surge_force_Value;

14 // Expression: FORCEMATRIX(:,:,2)
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// Referenced by: ’<S2>/sway_force’
16

real_T *sway_force_Value;
18

// Expression: FORCEMATRIX(:,:,3)
20 // Referenced by: ’<S2>/heave_force’

22 real_T *heave_force_Value;

24 // Expression: FORCEMATRIX(:,:,4)
// Referenced by: ’<S2>/roll_force’

26

real_T *roll_force_Value;
28

// Expression: FORCEMATRIX(:,:,5)
30 // Referenced by: ’<S2>/pitch_force’

32 real_T *pitch_force_Value;

34 // Expression: FORCEMATRIX(:,:,6)
// Referenced by: ’<S2>/yaw_force’

36

real_T *yaw_force_Value;
38

// Expression: -180:10:180
40 // Referenced by: ’<S2>/Prelookup1’

42 real_T *Prelookup1_BreakpointsData;

44 } wavef;
...

Once this two new structures are added, the declaration and the de�nition
of the initialize function is changed. Here is reported the modi�cation to the
source code polito_floater.cpp to receive from an external environment
all the wave forces. This is done inside the function void initialize().

1 ...
// Model initialize function

3 void polito_floater_ModelClass::initialize(double time[], double
deg[], double surgeforce[], double swayforce[], double
heaveforce[], double rollforce[], double pitchforce[], double
yawforce[])

{
5

//initialize pointers to waveforces matrixes
7 waveforces.surge_force_Value = surgeforce;

waveforces.sway_force_Value = swayforce;
9 waveforces.heave_force_Value = heaveforce;

waveforces.roll_force_Value = rollforce;
11 waveforces.pitch_force_Value = pitchforce;

waveforces.yaw_force_Value = yawforce;
13 waveforces.Prelookup_BreakpointsData = time;

waveforces.Prelookup1_BreakpointsData = deg;



15

...

Code in void step() is modi�ed to receive the time step:

...
2 rtmSetTPtr(getRTM(), &(&polito_floater_M)->Timing.tArray[0]);

(&polito_floater_M)->Timing.stepSize0 = par.dt;
4 ...

Code in void step() is modi�ed to receive the parameters related to the
prelookup tables:

...
2 // PreLookup: ’<S2>/Prelookup’

rtb_Prelookup_o1 = plook_linx(rtb_InterpolationUsingPreloo_hr,
4 waveforces.Prelookup_BreakpointsData, par.num_wave_el - 1U,

&rtb_InterpolationUsingPreloo_hr);
6

// Saturate: ’<S2>/Saturation’ incorporates:
8 // Inport: ’<Root>/wave_dir’

10 if (polito_floater_U.wave_dir > 180.0) {
rtb_Sum = 180.0;

12 } else if (polito_floater_U.wave_dir < (-180.0)) {
rtb_Sum = (-180.0);

14 } else {
rtb_Sum = polito_floater_U.wave_dir;

16 }

18 // End of Saturate: ’<S2>/Saturation’

20 // PreLookup: ’<S2>/Prelookup1’
rtb_Prelookup1_o1 = plook_binx(rtb_Sum,

22 waveforces.Prelookup1_BreakpointsData, par.num_deg_el - 1U, &
rtb_Sum);

24 // Interpolation_n-D: ’<S2>/Interpolation Using Prelookup2’
incorporates:

// Constant: ’<S2>/surge_force’
26

frac[0] = rtb_InterpolationUsingPreloo_hr;
28 frac[1] = rtb_Sum;

bpIndex[0] = rtb_Prelookup_o1;
30 bpIndex[1] = rtb_Prelookup1_o1;

rtb_InterpolationUsingPrelookup = intrp2d_l_pw(bpIndex, frac,
32 waveforces.surge_force_Value, par.num_wave_el);

34 // Interpolation_n-D: ’<S2>/Interpolation Using Prelookup1’
incorporates:

// Constant: ’<S2>/sway_force’
36

frac_0[0] = rtb_InterpolationUsingPreloo_hr;



38 frac_0[1] = rtb_Sum;
bpIndex_0[0] = rtb_Prelookup_o1;

40 bpIndex_0[1] = rtb_Prelookup1_o1;
rtb_InterpolationUsingPrelook_f = intrp2d_l_pw(bpIndex_0, frac_0
,

42 waveforces.sway_force_Value, par.num_wave_el);

44 // Interpolation_n-D: ’<S2>/Interpolation Using Prelookup6’
incorporates:

// Constant: ’<S2>/heave_force’
46

frac_1[0] = rtb_InterpolationUsingPreloo_hr;
48 frac_1[1] = rtb_Sum;

bpIndex_1[0] = rtb_Prelookup_o1;
50 bpIndex_1[1] = rtb_Prelookup1_o1;

rtb_InterpolationUsingPreloo_bm = intrp2d_l_pw(bpIndex_1, frac_1
,

52 waveforces.heave_force_Value, par.num_wave_el);

54 // Interpolation_n-D: ’<S2>/Interpolation Using Prelookup7’
incorporates:

// Constant: ’<S2>/roll_force’
56

frac_2[0] = rtb_InterpolationUsingPreloo_hr;
58 frac_2[1] = rtb_Sum;

bpIndex_2[0] = rtb_Prelookup_o1;
60 bpIndex_2[1] = rtb_Prelookup1_o1;

rtb_InterpolationUsingPrelook_h = intrp2d_l_pw(bpIndex_2, frac_2
,

62 waveforces.roll_force_Value, par.num_wave_el);

64 // Interpolation_n-D: ’<S2>/Interpolation Using Prelookup8’
incorporates:

// Constant: ’<S2>/pitch_force’
66

frac_3[0] = rtb_InterpolationUsingPreloo_hr;
68 frac_3[1] = rtb_Sum;

bpIndex_3[0] = rtb_Prelookup_o1;
70 bpIndex_3[1] = rtb_Prelookup1_o1;

rtb_InterpolationUsingPrelook_m = intrp2d_l_pw(bpIndex_3, frac_3
,

72 waveforces.pitch_force_Value, par.num_wave_el);

74 // Interpolation_n-D: ’<S2>/Interpolation Using Prelookup9’
incorporates:

// Constant: ’<S2>/yaw_force’
76

frac_4[0] = rtb_InterpolationUsingPreloo_hr;
78 frac_4[1] = rtb_Sum;

bpIndex_4[0] = rtb_Prelookup_o1;
80 bpIndex_4[1] = rtb_Prelookup1_o1;

rtb_InterpolationUsingPreloo_hr = intrp2d_l_pw(bpIndex_4, frac_4
,

82 waveforces.yaw_force_Value, par.num_wave_el);
...



Code in void step() is modi�ed to receive the parameters related to the
mooring lines (the procedure is reported for only one mooring line):

1 ...
// Fcn: ’<S7>/Fcn1’

3

rtb_T_C_a = rtb_T_Ccat_b - par.moorL;
5 ...

// Gain: ’<S7>/Gain2’
7 rtb_sincos_o2_idx_0 = par.moorK * rtb_T_C_a + par.

moor_pre_tensioning;
...

9 // Sum: ’<S7>/Sum4’ incorporates:
// Constant: ’<S7>/Constant6’

11 // Fcn: ’<S7>/Fcn1’
// Product: ’<S7>/Divide’

13 // Product: ’<S7>/Divide1’

15 rtb_sincos_o1_idx_0 = rtb_sincos_o1_idx_0 / rtb_T_Ccat_b *
rtb_sincos_o2_idx_0
+ 0.0;

17 rtb_sincos_o1_idx_1 = rtb_sincos_o1_idx_1 / rtb_T_Ccat_b *
rtb_sincos_o2_idx_0
+ 0.0;

19 rtb_sincos_o1_idx_2 = rtb_sincos_o1_idx_2 / rtb_T_Ccat_b *
rtb_sincos_o2_idx_0
+ par.moorW;

21 ...

C.2 DLL creation

Once the code is modi�ed, a new Qt Creator project is started to create a
C++ library. First, all headers and source codes needed to run the simulation
are included in the .pro �le, considering also that to run the Simulink© model
in the form of C++ code all Matlab© libraries must be inserted:

1 TARGET = Floaty
TEMPLATE = lib

3 CONFIG += dll
CONFIG += build64bit

5 DEFINES += FLOATY_LIBRARY
QT += widgets

7

9 INCLUDEPATH += Floaty\MATLAB_Include \
Floaty\polito_floater_ert_rtw

11

13 SOURCES += floaty.cpp\



polito_floater_ert_rtw/polito_floater.cpp\
15 polito_floater_ert_rtw/polito_floater_data.cpp\

polito_floater_ert_rtw/rt_nonfinite.cpp\
17 polito_floater_ert_rtw/rtGetInf.cpp\

polito_floater_ert_rtw/rtGetNaN.cpp
19

21 HEADERS += floaty.h\
floaty_global.h\

23 MATLAB_Include/solver_zc.h \
MATLAB_Include/rtw_continuous.h \

25 MATLAB_Include/rtw_extmode.h \
MATLAB_Include/rtw_matlogging.h \

27 MATLAB_Include/rtw_solver.h \
MATLAB_Include/simstruc_types.h \

29 MATLAB_Include/solver_zc.h \
MATLAB_Include/sysran_types.h \

31 MATLAB_Include/tmwtypes.h \
MATLAB_Include/rtw_continous.h \

33 MATLAB_Include/rtw_solver.h \
polito_floater_ert_rtw/polito_floater_private.h \

35 polito_floater_ert_rtw/polito_floater_types.h \
polito_floater_ert_rtw/polito_floater.h \

37 polito_floater_ert_rtw/rtwtypes.h \
polito_floater_ert_rtw/rt_nonfinite.h \

39 polito_floater_ert_rtw/rtGetInf.h \
polito_floater_ert_rtw/rtGetNaN.h

The interface of the library is created inside the floaty.cpp �le. The inter-
face between the code and the external environment is done through a C++
class, declared in the �rst rows of the source code:

#include "floaty.h"
2 #include "floaty_global.h"
#include "polito_floater_ert_rtw/rtGetInf.h"

4 #include "polito_floater_ert_rtw/rtGetNaN.h"
#include "polito_floater_ert_rtw/rt_nonfinite.h"

6 #include "polito_floater_ert_rtw/polito_floater.h"
#include <iostream>

8 #include <stdlib.h>
#include <QVector>

10

static polito_floater_ModelClass Floater;
12 fromModel import;

The structure fromModel groups all the outputs of the model and is de�ned
as

struct fromModel
2 {
struct kinematics kin;

4 struct moor_forces Fm;
struct wave_forces Fw;



6 struct diff_forces Fdiff;
struct drag_forces Fd;

8 struct hs_forces Fhs;
};

Then, all the functions needed to run the library are declared and de�ned:

Initialize Function

1 int FirstUse = 1;

3 extern "C" void __declspec(dllexport) initialize_floater(double
delta_t, unsigned int deg_el, unsigned int wave_el, double
moorW, double moorK, double moorL, double preT, double time[],
double deg[], double surge_table[], double sway_table[], double
heave_table[], double roll_table[], double pitch_table[],

double yaw_table[])
{

5

if(FirstUse == 1)
7 {

Floater.par.dt = delta_t;
9 Floater.par.num_deg_el = deg_el;

Floater.par.num_wave_el = wave_el;
11 Floater.par.moorW = moorW;

Floater.par.moorK = moorK;
13 Floater.par.moorL = moorL;

Floater.par.moor_pre_tensioning = preT;
15 Floater.initialize(time, deg, surge_table, sway_table,

heave_table, roll_table, pitch_table, yaw_table);
FirstUse = 0;

17 };

19 return;
}

This function initializes all the arrays containing the wave forces and sets the
time step for the simulation. It requires as inputs:

� Simulation time step delta_t

� Number of elements in the directions array deg_el

� Number of elements contained in the wave time array wave_el

� Array containing the time at which each value of the wave forces is
computed time

� Array containing the directions at which each value of the wave forces is
computed deg

� Array containing the wave force in the surge direction surge_table



� Array containing the wave force in the sway direction sway_table

� Array containing the wave force in the heave direction heave_table

� Array containing the wave force in the roll direction roll_table

� Array containing the wave force in the pitch direction pitch_table

� Array containing the wave force in the yaw direction yaw_table

The initialize �oater function must be called exactly once, before calling the
step function.

Step Function

extern "C" struct fromModel __declspec(dllexport) platform(double
wavedir, double Fx, double Fy, double Fz, double Mrx, double
Mry, double Mrz, double x0, double y0, double z0, double roll0,
double pitch0, double yaw0){

2

//forces exerted by the WT
4 Floater.polito_floater_U.Fx = Fx;

Floater.polito_floater_U.Fy = Fy;
6 Floater.polito_floater_U.Fz = Fz;

//moments exerted by the WT
8 Floater.polito_floater_U.Mrx = Mrx;

Floater.polito_floater_U.Mry = Mry;
10 Floater.polito_floater_U.Mrz = Mrz;

12 //initial conditions (COG coordinates on the fixed reference
frame)
Floater.polito_floater_U.x0 = x0;

14 Floater.polito_floater_U.y0 = y0;
Floater.polito_floater_U.z0 = z0;

16 Floater.polito_floater_U.rx0 = roll0;
Floater.polito_floater_U.ry0 = pitch0;

18 Floater.polito_floater_U.rz0 = yaw0;

20 //wave direction
Floater.polito_floater_U.wave_dir = wavedir;

22

Floater.step();

When this function is called, the simulation goes on by a time step. It requires
in input:

� Instantaneous wave direction double wavedir

� Force exerted by the wind turbine in the x direction double Fx

� Force exerted by the wind turbine in the y direction double Fy

� Force exerted by the wind turbine in the z direction double Fz

� Moment exerted by the wind turbine in the rx direction double Mrx



� Moment exerted by the wind turbine in the ry direction double Mry

� Moment exerted by the wind turbine in the rz direction double Mrz

� Initial condition for the speed/position integrator in the x direction
double x0

� Initial condition for the speed/position integrator in the y direction
double y0

� Initial condition for the speed/position integrator in the z direction
double z0

� Initial condition for the speed/position integrator in the rx direction
double rx0

� Initial condition for the speed/position integrator in the ry direction
double ry0

� Initial condition for the speed/position integrator in the rz direction
double rz0

Structures to import data from the model

1 //import kinematics variables from the floater model
import.kin.x = Floater.polito_floater_Y.vett[0];

3 import.kin.y = Floater.polito_floater_Y.vett[1];
import.kin.z = Floater.polito_floater_Y.vett[2];

5 import.kin.rx = Floater.polito_floater_Y.vett[3];
import.kin.ry = Floater.polito_floater_Y.vett[4];

7 import.kin.rz = Floater.polito_floater_Y.vett[5];
import.kin.xdot = Floater.polito_floater_Y.vett[6];

9 import.kin.ydot = Floater.polito_floater_Y.vett[7];
import.kin.zdot = Floater.polito_floater_Y.vett[8];

11 import.kin.rxdot = Floater.polito_floater_Y.vett[9];
import.kin.rydot = Floater.polito_floater_Y.vett[10];

13 import.kin.rzdot = Floater.polito_floater_Y.vett[11];
import.kin.xdotdot = Floater.polito_floater_Y.vett[12];

15 import.kin.ydotdot = Floater.polito_floater_Y.vett[13];
import.kin.zdotdot = Floater.polito_floater_Y.vett[14];

17 import.kin.rxdotdot = Floater.polito_floater_Y.vett[15];
import.kin.rydotdot = Floater.polito_floater_Y.vett[16];

19 import.kin.rzdotdot = Floater.polito_floater_Y.vett[17];

21 //IMPORT MOORING FORCES
import.Fm.Fx = Floater.polito_floater_Y.Fm[0];

23 import.Fm.Fy = Floater.polito_floater_Y.Fm[1];
import.Fm.Fz = Floater.polito_floater_Y.Fm[2];

25 import.Fm.Mx = Floater.polito_floater_Y.Fm[3];
import.Fm.My = Floater.polito_floater_Y.Fm[4];

27 import.Fm.Mz = Floater.polito_floater_Y.Fm[5];

29 //IMPORT WAVE FORCES
import.Fw.Fx = Floater.polito_floater_Y.Fw[0];

31 import.Fw.Fy = Floater.polito_floater_Y.Fw[1];
import.Fw.Fz = Floater.polito_floater_Y.Fw[2];



33 import.Fw.Mx = Floater.polito_floater_Y.Fw[3];
import.Fw.My = Floater.polito_floater_Y.Fw[4];

35 import.Fw.Mz = Floater.polito_floater_Y.Fw[5];

37 //IMPORT DRAG FORCES
import.Fd.Fx = Floater.polito_floater_Y.Fd[0];

39 import.Fd.Fy = Floater.polito_floater_Y.Fd[1];
import.Fd.Fz = Floater.polito_floater_Y.Fd[2];

41 import.Fd.Mx = Floater.polito_floater_Y.Fd[3];
import.Fd.My = Floater.polito_floater_Y.Fd[4];

43 import.Fd.Mz = Floater.polito_floater_Y.Fd[5];

45 //IMPORT DIFFRACTION FORCES
import.Fdiff.Fx = Floater.polito_floater_Y.Fdiff[0];

47 import.Fdiff.Fy = Floater.polito_floater_Y.Fdiff[1];
import.Fdiff.Fz = Floater.polito_floater_Y.Fdiff[2];

49 import.Fdiff.Mx = Floater.polito_floater_Y.Fdiff[3];
import.Fdiff.My = Floater.polito_floater_Y.Fdiff[4];

51 import.Fdiff.Mz = Floater.polito_floater_Y.Fdiff[5];

53 //IMPORT HYDROSTATIC FORCES
import.Fhs.Fx = Floater.polito_floater_Y.Fhs[0];

55 import.Fhs.Fy = Floater.polito_floater_Y.Fhs[1];
import.Fhs.Fz = Floater.polito_floater_Y.Fhs[2];

57 import.Fhs.Mx = Floater.polito_floater_Y.Fhs[3];
import.Fhs.My = Floater.polito_floater_Y.Fhs[4];

59 import.Fhs.Mz = Floater.polito_floater_Y.Fhs[5];

61 return import;
}

Close Function

This function closes the �oater model and calls the destructor, it must be
called at the end of the simulation.

extern "C" void __declspec(dllexport) close_floater()
2 {

Floater.terminate();
4 Floater.~polito_floater_ModelClass();

FirstUse = 1;
6 return;
}

Naturally, all the function and variables declarations are reported in the header
�le floaty.h. Once all the modi�cations are done, the library is ready to be
implemented in an external software that uses it.



C.3 Interfacing with QBlade

C.3.1 Import the waves

To import the waves, a new member function is added to the class QLLTSimulation.
It basically receives the directory chosen by the user in the GUI and loads all
the data, stored in form of .dat �les.

1 //POLITO FLOATER
void QLLTSimulation::onLoadFloaterParameters()

3 {
unsigned int cont = 0;

5

//********************IMPORT SIMULATION PARAMETERS

********************//
7 QString line;
QFile import_wave;

9 unsigned int matrixsize = num_wave*num_deg;

11 //***WAVEFORCE ARRAYS DEFINITIONS***//

13 surge_force = new double[matrixsize];
sway_force = new double[matrixsize];

15 heave_force = new double[matrixsize];
roll_force = new double[matrixsize];

17 pitch_force = new double[matrixsize];
yaw_force = new double[matrixsize];

19

//***LOADING DIRECTIONS AND TIME ARRAY FOR PRELOOKUP TABLE***//
21 deg = new double[num_deg];

time = new double[num_wave];
23

//***LOADING THE DIRECTIONS OF THE PRELOOKUP TABLE***//
25 cont = 0;

import_wave.setFileName(wave_dir + "/deg.dat");
27

if(!import_wave.open(QIODevice::ReadOnly))
29 {

AbortSimulation();
31 }

33 while(cont < num_deg)
{

35 line = import_wave.readLine();
deg[cont] = line.toDouble();

37 cont ++;
}

39

fputs("Directions array acquired correctly\n", stdout);
41 cont = 0;

import_wave.close();
43

//***IMPORT THE WAVE FORCE TIMESET***//
45

import_wave.setFileName(wave_dir + "/time.dat");



47 if(!import_wave.open(QIODevice::ReadOnly))
{

49 AbortSimulation();
}

51

while(cont < num_wave)
53 {

line = import_wave.readLine();
55 time[cont] = line.toDouble();

cont ++;
57 }

59 fputs("Time array acquired correctly\n", stdout);
cont = 0;

61 import_wave.close();

63 //********************IMPORT WAVE FORCES********************//
//***SURGE FORCE***//

65 if(!import_wave.open(QIODevice::ReadOnly))
{

67 AbortSimulation();
}

69

while(cont < matrixsize)
71 {

line = import_wave.readLine();
73 surge_force[cont] = line.toDouble();

cont ++;
75 }

77 fputs("Surge forces array acquired correctly\n", stdout);
cont = 0;

79 import_wave.close();

81

//***SWAY FORCE***//
83 import_wave.setFileName(wave_dir + "/sway.dat");

if(!import_wave.open(QIODevice::ReadOnly))
85 {

AbortSimulation();
87 }

89 while(cont < matrixsize)
{

91 line = import_wave.readLine();
sway_force[cont] = line.toDouble();

93 cont ++;
}

95

fputs("Sway forces array acquired correctly\n", stdout);
97 cont = 0;

import_wave.close();
99

//***HEAVE FORCE***//
101 import_wave.setFileName(wave_dir + "/heave.dat");

if(!import_wave.open(QIODevice::ReadOnly))



103 {
AbortSimulation();

105 }

107 while(cont < matrixsize)
{

109 line = import_wave.readLine();
heave_force[cont] = line.toDouble();

111 cont ++;
}

113

fputs("Heave forces array acquired correctly\n", stdout);
115 cont = 0;

import_wave.close();
117

//***ROLL FORCES***//
119 import_wave.setFileName(wave_dir + "/roll.dat");

if(!import_wave.open(QIODevice::ReadOnly))
121 {

AbortSimulation();
123 }

125 while(cont < matrixsize)
{

127 line = import_wave.readLine();
roll_force[cont] = line.toDouble();

129 cont ++;
}

131

fputs("Roll forces array acquired correctly\n", stdout);
133 cont = 0;

import_wave.close();
135

137 //***PITCH FORCES***//
import_wave.setFileName(wave_dir+ "/pitch.dat");

139 if(!import_wave.open(QIODevice::ReadOnly))
{

141 AbortSimulation();
}

143

while(cont < matrixsize)
145 {

line = import_wave.readLine();
147 pitch_force[cont] = line.toDouble();

cont ++;
149 }

151 fputs("Pitch forces array acquired correctly\n", stdout);
cont = 0;

153 import_wave.close();

155 //***YAW FORCES***//
import_wave.setFileName(wave_dir + "/yaw.dat");

157 if(!import_wave.open(QIODevice::ReadOnly))
{



159 AbortSimulation();
}

161

while(cont < matrixsize)
163 {

line = import_wave.readLine();
165 yaw_force[cont] = line.toDouble();

cont ++;
167 }

169 fputs("Yaw forces array acquired correctly\n", stdout);
cont = 0;

171 import_wave.close();

173 initialize_floater(getTimeStep(), num_deg, num_wave, m_moorW,
m_moorK, m_moorL, preT, time, deg, surge_force, sway_force,
heave_force, roll_force, pitch_force, yaw_force);

175 import_wave.close();
}

C.3.2 Call the platform function

It is added inside the member function calcHAWTresults

...
2

//****load waves if floater is active****//
4 if(active_floater & !m_bContinue){

onLoadFloaterParameters();
6 }

8 for (; m_currentTimeStep <= m_numTimesteps; ++
m_currentTimeStep) {

10 emit updateProgress(m_currentTimeStep);

12 qDebug() << "start calculation for timestep:" <<
m_currentTimeStep << "Input Type"<<m_windInputType<< "Azi Pos
Blade 1"<<m_currentAzimuthalPosition;

14 SetBoundaryConditions();

16 UpdateRotorGeometry();

18 if (m_currentTimeStep == m_Nth_WakeStep){
//start first wake timestep

20 AddFirstWake();
KuttaCondition();

22 }
else if(m_currentTimeStep > m_Nth_WakeStep && (

m_currentTimeStep)%m_Nth_WakeStep == 0){
24 //start sucessive wake timesteps



TruncateWake();
26 LumpWake(); m_t_overhead +=

timer.restart();
ConvectWake(); m_t_induction+=

timer.restart();
28 AddNewWake();

KuttaCondition();
30 }

32 //iteration for wing circulation distribution
m_t_overhead+=

timer.restart();
34 GammaBoundFixedPointIteration(); m_t_induction+=

timer.restart();

36 if(active_floater){

38 /calculation of moments exerted by the wind turbine on the COG of
the floater.

mx.append(-ThrustLSAy.last()*fabs(m_ThrustActingPoint.data()->z));
40 my.append(ThrustLSAz.last()*fabs(m_ThrustActingPoint.data()->x) +

ThrustLSAx.last()*fabs(m_ThrustActingPoint.data()->z));
mz.append(-ThrustLSAy.last()*fabs(m_ThrustActingPoint.data()->x));

42

floater = platform(wave_direction, m_ThrustX.last(), m_ThrustY.
last(), m_ThrustZ.last(), mx.last(), my.last(), mz.last(),

44 m_PlatformTranslation.x, m_PlatformTranslation.y, swl_cog_floaty,
m_PlatformRollAngleX*PI/180, m_PlatformPitchAngleY*PI/180,
m_PlatformYawAngleZ*PI/180);

46 swl_cog_floaty = floater.kin.z;
swl_bt = swl_cog_floaty + cog_b;

48 m_PlatformTranslation.x = floater.kin.x;
m_PlatformTranslation.y = floater.kin.y;

50 m_PlatformTranslation.z = swl_bt;
m_PlatformYawAngleZ = floater.kin.rz*180/PI;

52 m_PlatformRollAngleX = floater.kin.rx*180/PI;
m_PlatformPitchAngleY = floater.kin.ry*180/PI;

54

...

C.3.3 Store the results inside arrays

Once the results are acquired from the structure floater, they are stored
inside vectors that are all members of the class QLLTSimulation. They are
all declared inside the header QLLTSimulation.h.

1 ...

3 //******START IMPORTING THE RESULTS TO QBLADE******//
//KINEMATICS

5 //SPEED
xdot.append(floater.kin.xdot);



7 ydot.append(floater.kin.ydot);
zdot.append(floater.kin.zdot);

9 rxdot.append(floater.kin.rxdot*180/PI);
rydot.append(floater.kin.rydot*180/PI);

11 rzdot.append(floater.kin.rzdot*180/PI);
//ACCELERATIONS

13 xdotdot.append(floater.kin.xdotdot);
ydotdot.append(floater.kin.ydotdot);

15 zdotdot.append(floater.kin.zdotdot);
rxdotdot.append(floater.kin.rxdotdot*180/PI);

17 rydotdot.append(floater.kin.rydotdot*180/PI);
rzdotdot.append(floater.kin.rzdotdot*180/PI);

19 //DRAG_FORCES
drag_Fx.append(floater.Fd.Fx);

21 drag_Fy.append(floater.Fd.Fy);
drag_Fz.append(floater.Fd.Fz);

23 drag_Mrx.append(floater.Fd.Mx);
drag_Mry.append(floater.Fd.My);

25 drag_Mrz.append(floater.Fd.Mz);
//MOORING FORCES

27 moor_Fx.append(floater.Fm.Fx);
moor_Fy.append(floater.Fm.Fy);

29 moor_Fz.append(floater.Fm.Fz);
moor_Mrx.append(floater.Fm.Mx);

31 moor_Mry.append(floater.Fm.My);
moor_Mrz.append(floater.Fm.Mz);

33 //WAVE FORCES
wave_Fx.append(floater.Fw.Fx);

35 wave_Fy.append(floater.Fw.Fy);
wave_Fz.append(floater.Fw.Fz);

37 wave_Mrx.append(floater.Fw.Mx);
wave_Mry.append(floater.Fw.My);

39 wave_Mrz.append(floater.Fw.Mz);
//RADIATION FORCES

41 rad_Fx.append(floater.Fdiff.Fx);
rad_Fy.append(floater.Fdiff.Fy);

43 rad_Fz.append(floater.Fdiff.Fz);
rad_Mrx.append(floater.Fdiff.Mx);

45 rad_Mry.append(floater.Fdiff.My);
rad_Mrz.append(floater.Fdiff.Mz);

47 //HYDROSTATIC FORCES
HS_Fx.append(floater.Fhs.Fx);

49 HS_Fy.append(floater.Fhs.Fy);
HS_Fz.append(floater.Fhs.Fz);

51 HS_Mrx.append(floater.Fhs.Mx);
HS_Mry.append(floater.Fhs.My);

53 HS_Mrz.append(floater.Fhs.Mz);

55 ...



C.3.4 Send the arrays to the Plot Creator

To permit the user to plot the variables coming from the Floate Module, the
member function PrepareOutputVectors inside the class QLLTSimulation
is edited:

1 ...

3 if(active_floater)
{

5 //KINEMATICS
m_availableVariables.append("Platform Pitch speed [deg/s]");

7 m_results.append(&rydot);
m_availableVariables.append("Platform Roll speed [deg/s]");

9 m_results.append(&rxdot);
m_availableVariables.append("Platform Yaw speed [deg/s]");

11 m_results.append(&rzdot);
m_availableVariables.append("Platform X speed [m/s]");

13 m_results.append(&xdot);
m_availableVariables.append("Platform Y speed [m/s]");

15 m_results.append(&ydot);
m_availableVariables.append("Platform Z speed [m/s]");

17 m_results.append(&zdot);
m_availableVariables.append("Platform Pitch acceleration [deg/s^2]

");
19 m_results.append(&rydotdot);

m_availableVariables.append("Platform Roll acceleration [deg/s^2]"
);

21 m_results.append(&rxdotdot);
m_availableVariables.append("Platform Yaw acceleration [deg/s^2]")

;
23 m_results.append(&rzdotdot);

m_availableVariables.append("Platform X acceleration [deg/s]");
25 m_results.append(&xdotdot);

m_availableVariables.append("Platform Y acceleration [deg/s]");
27 m_results.append(&ydotdot);

m_availableVariables.append("Platform Z acceleration [deg/s]");
29 m_results.append(&zdotdot);

//DRAG FORCES
31 m_availableVariables.append("HydroDrag X force [N]");

m_results.append(&drag_Fx);
33 m_availableVariables.append("HydroDrag Y force [N]");

m_results.append(&drag_Fy);
35 m_availableVariables.append("HydroDrag Z force [N]");

m_results.append(&drag_Fz);
37 m_availableVariables.append("HydroDrag roll moment [Nm]");

m_results.append(&drag_Mrx);
39 m_availableVariables.append("HydroDrag pitch moment [Nm]");

m_results.append(&drag_Mry);
41 m_availableVariables.append("HydroDrag yaw moment [Nm]");

m_results.append(&drag_Mrz);
43 //MOORING FORCES

m_availableVariables.append("Moorings X force [N]");
45 m_results.append(&moor_Fx);m_availableVariables.append("Moorings Y

force [N]");
m_results.append(&moor_Fy);



47 m_availableVariables.append("Moorings Z force [N]");
m_results.append(&moor_Fz);

49 m_availableVariables.append("Moorings roll moment [Nm]");
m_results.append(&moor_Mrx);

51 m_availableVariables.append("Moorings pitch moment [Nm]");
m_results.append(&moor_Mry);

53 m_availableVariables.append("Moorings yaw moment [Nm]");
m_results.append(&moor_Mrz);

55 //HYDROSTATIC FORCES
m_availableVariables.append("Hydrostatic X force [N]");

57 m_results.append(&HS_Fx);
m_availableVariables.append("Hydrostatic Y force [N]");

59 m_results.append(&HS_Fy);
m_availableVariables.append("Hydrostatic Z force [N]");

61 m_results.append(&HS_Fz);
m_availableVariables.append("Hydrostatic roll moment [Nm]");

63 m_results.append(&HS_Mrx);
m_availableVariables.append("Hydrostatic pitch moment [Nm]");

65 m_results.append(&HS_Mry);
m_availableVariables.append("Hydrostatic yaw moment [Nm]");

67 m_results.append(&HS_Mrz);
//RADIATION FORCES

69 m_availableVariables.append("Radiation X force [N]");
m_results.append(&rad_Fx);

71 m_availableVariables.append("Radiation Y force [N]");
m_results.append(&rad_Fy);

73 m_availableVariables.append("Radiation Z force [N]");
m_results.append(&rad_Fz);

75 m_availableVariables.append("Radiation roll moment [Nm]");
m_results.append(&rad_Mrx);

77 m_availableVariables.append("Radiation pitch moment [Nm]");
m_results.append(&rad_Mry);

79 m_availableVariables.append("Radiation yaw moment [Nm]");
m_results.append(&rad_Mrz);

81 //WAVE FORCES
m_availableVariables.append("Wave X force [N]");

83 m_results.append(&wave_Fx);
m_availableVariables.append("Wave Y force [N]");

85 m_results.append(&wave_Fy);
m_availableVariables.append("Wave Z force [N]");

87 m_results.append(&wave_Fz);
m_availableVariables.append("Wave roll moment [Nm]");

89 m_results.append(&wave_Mrx);
m_availableVariables.append("Wave pitch moment [Nm]");

91 m_results.append(&wave_Mry);
m_availableVariables.append("Wave yaw moment [Nm]");

93 m_results.append(&wave_Mrz);
//thrust in the LSA FRAME

95 m_availableVariables.append("Thrust LSA X [N]");
m_results.append(&ThrustLSAx);

97 m_availableVariables.append("Thrust LSA Y [N]");
m_results.append(&ThrustLSAy);

99 m_availableVariables.append("Thrust LSA Z [N]");
m_results.append(&ThrustLSAz);

101 //moment in the COG
m_availableVariables.append("Moment LSA X [Nm]");



103 m_results.append(&mx);
m_availableVariables.append("Moment LSA Y [Nm]");

105 m_results.append(&my);
m_availableVariables.append("Moment LSA Z [Nm]");

107 m_results.append(&mz);
};

109

...

C.4 Export Floaty results to the .wpa project

�le

All the output variables from the �oater module are stored, at each time step,
inside the simulation output �le, including in the serialize member func-
tion the following code:

...
2 //POLITO FLOATER
//KINEMATICS

4 g_serializer.readOrWriteDoubleVector1D(&rydot);
g_serializer.readOrWriteDoubleVector1D(&rxdot);

6 g_serializer.readOrWriteDoubleVector1D(&rzdot);
g_serializer.readOrWriteDoubleVector1D(&xdot);

8 g_serializer.readOrWriteDoubleVector1D(&ydot);
g_serializer.readOrWriteDoubleVector1D(&zdot);

10 g_serializer.readOrWriteDoubleVector1D(&rydotdot);
g_serializer.readOrWriteDoubleVector1D(&rxdotdot);

12 g_serializer.readOrWriteDoubleVector1D(&rzdotdot);
g_serializer.readOrWriteDoubleVector1D(&xdotdot);

14 g_serializer.readOrWriteDoubleVector1D(&ydotdot);
g_serializer.readOrWriteDoubleVector1D(&zdotdot);

16 //DRAG FORCES
g_serializer.readOrWriteDoubleVector1D(&drag_Fx);

18 g_serializer.readOrWriteDoubleVector1D(&drag_Fy);
g_serializer.readOrWriteDoubleVector1D(&drag_Fz);

20 g_serializer.readOrWriteDoubleVector1D(&drag_Mrx);
g_serializer.readOrWriteDoubleVector1D(&drag_Mry);

22 g_serializer.readOrWriteDoubleVector1D(&drag_Mrz);
//MOORING FORCES

24 g_serializer.readOrWriteDoubleVector1D(&moor_Fx);
g_serializer.readOrWriteDoubleVector1D(&moor_Fy);

26 g_serializer.readOrWriteDoubleVector1D(&moor_Fz);
g_serializer.readOrWriteDoubleVector1D(&moor_Mrx);

28 g_serializer.readOrWriteDoubleVector1D(&moor_Mry);
g_serializer.readOrWriteDoubleVector1D(&moor_Mrz);

30 //HYDROSTATIC FORCES
g_serializer.readOrWriteDoubleVector1D(&HS_Fx);

32 g_serializer.readOrWriteDoubleVector1D(&HS_Fy);
g_serializer.readOrWriteDoubleVector1D(&HS_Fz);

34 g_serializer.readOrWriteDoubleVector1D(&HS_Mrx);
g_serializer.readOrWriteDoubleVector1D(&HS_Mry);



36 g_serializer.readOrWriteDoubleVector1D(&HS_Mrz);
//RADIATION FORCES

38 g_serializer.readOrWriteDoubleVector1D(&rad_Fx);
g_serializer.readOrWriteDoubleVector1D(&rad_Fy);

40 g_serializer.readOrWriteDoubleVector1D(&rad_Fz);
g_serializer.readOrWriteDoubleVector1D(&rad_Mrx);

42 g_serializer.readOrWriteDoubleVector1D(&rad_Mry);
g_serializer.readOrWriteDoubleVector1D(&rad_Mrz);

44 //WAVE FORCES
g_serializer.readOrWriteDoubleVector1D(&wave_Fx);

46 g_serializer.readOrWriteDoubleVector1D(&wave_Fy);g_serializer.
readOrWriteDoubleVector1D(&wave_Fz);

g_serializer.readOrWriteDoubleVector1D(&wave_Mrx);
48 g_serializer.readOrWriteDoubleVector1D(&wave_Mry);

g_serializer.readOrWriteDoubleVector1D(&wave_Mrz);
50 //thrust in the LSA FRAME

g_serializer.readOrWriteDoubleVector1D(&ThrustLSAx);
52 g_serializer.readOrWriteDoubleVector1D(&ThrustLSAy);

g_serializer.readOrWriteDoubleVector1D(&ThrustLSAz);
54 //moment in the COG

g_serializer.readOrWriteDoubleVector1D(&mx);
56 g_serializer.readOrWriteDoubleVector1D(&my);

g_serializer.readOrWriteDoubleVector1D(&mz);
58 ...

C.5 Graphical User Interface

To create the user interface, the source �le QLLTCreatorDialog.cpp is
modi�ed.

Floater Settings tab

In the member function QLLTCreatorDialog, a new control panel called
Floater Settings is created:

/*the poliTO floater tab*/
2

QWidget *floaty_widget = new QWidget ();
4 tabWidget->addTab(floaty_widget, "Floater Settings");
QHBoxLayout *hBox_floaty = new QHBoxLayout ();

6 floaty_widget->setLayout(hBox_floaty);
QVBoxLayout *vBox_floaty = new QVBoxLayout;

8 hBox_floaty->addLayout(vBox_floaty);

10 QGroupBox *groupBox_floaty = new QGroupBox (tr("Settings "));
vBox_floaty->addWidget(groupBox_floaty);

12 QGridLayout *grid_floaty = new QGridLayout ();
groupBox_floaty->setLayout(grid_floaty);

14 int gridRowCount = 0;



Floater module ON/OFF

A radio button is added to activate or deactivate the �oater module is added.
It is connected to a variable, active_floater, that manages a series of if
statements.

QLabel *label_floaty = new QLabel (tr("Floater: "));
2 grid_floaty->addWidget (label_floaty, gridRowCount, 0);
QHBoxLayout *miniHBox_floaty = new QHBoxLayout ();

4 grid_floaty->addLayout(miniHBox_floaty, gridRowCount++, 1);
m_active_floaty = new QButtonGroup(miniHBox_floaty);

6 QRadioButton *radiobutton_floaty = new QRadioButton ("On");
m_active_floaty->addButton(radiobutton_floaty, 0);

8 miniHBox_floaty->addWidget(radiobutton_floaty);

Change the Wave

The push button that opens the window that permits to choose the directory
where the wave forces record, the directions array and the array containing
the wave record time array is added:

label_floaty = new QLabel (tr("Wave Record Directory: "));
2 grid_floaty->addWidget (label_floaty, gridRowCount, 0);
miniHBox_floaty = new QHBoxLayout ();

4 grid_floaty->addLayout(miniHBox_floaty, gridRowCount++, 1);
QPushButton *pushbutton_wave = new QPushButton ("Browse");

6 miniHBox_floaty->addWidget(pushbutton_wave);
miniHBox_floaty->addStretch(0);

8 connect(pushbutton_wave, SIGNAL(clicked(bool)), this, SLOT(
loadwavedir()));

when the push button is clicked, a SIGNAL is emitted. This signal arrives into
a slot, that is the member function loadwavedir:

//polito floater
2 void QLLTCreatorDialog::loadwavedir(){

4 QMessageBox start;
start.setText("Select a directory containing the waveforce
records");

6 start.exec();

8 wavedir_creator = QFileDialog::getExistingDirectory(nullptr, "
Directory containing Waveforce Records", "/home" ,QFileDialog::
ShowDirsOnly | QFileDialog::DontResolveSymlinks);

}



Initial Conditions

Some Number Edit boxes are added to set the coordinates of the COG in
the FRA frame, the rotations of the �oater around the FRA axes and the
COG-turbine base distance:

1 label_floaty = new QLabel (tr("COG x position [m] "));
grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

3

floaty_x = new NumberEdit ();
5 floaty_x->setMaximumWidth(EditWidth);
floaty_x->setMinimumWidth(EditWidth);

7 miniHBox_floaty = new QHBoxLayout ();
miniHBox_floaty->addStretch();

9 miniHBox_floaty->addWidget(floaty_x);
grid_floaty->addWidget(floaty_x);

11

label_floaty = new QLabel (tr("COG y position [m] "));
13 grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

15 floaty_y = new NumberEdit ();
floaty_y->setMaximumWidth(EditWidth);

17 floaty_y->setMinimumWidth(EditWidth);
miniHBox_floaty = new QHBoxLayout ();

19 miniHBox_floaty->addStretch();
miniHBox_floaty->addWidget(floaty_y);

21 grid_floaty->addWidget(floaty_y);

23 label_floaty = new QLabel (tr("COG z position (wrt SWL) [m] "));
grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

25

floaty_z = new NumberEdit ();
27 floaty_z->setMaximumWidth(EditWidth);

floaty_z->setMinimumWidth(EditWidth);
29 miniHBox_floaty = new QHBoxLayout ();

miniHBox_floaty->addStretch();
31 +miniHBox_floaty->addWidget(floaty_z);

grid_floaty->addWidget(floaty_z);
33

label_floaty = new QLabel (tr("COG rx position [deg] "));
35 grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

37 floaty_roll = new NumberEdit ();
floaty_roll->setMaximumWidth(EditWidth);

39 floaty_roll->setMinimumWidth(EditWidth);
miniHBox_floaty = new QHBoxLayout ();

41 miniHBox_floaty->addStretch();
miniHBox_floaty->addWidget(floaty_roll);

43 grid_floaty->addWidget(floaty_roll);

45 label_floaty = new QLabel (tr("COG ry position [deg] "));
grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

47

floaty_pitch = new NumberEdit ();
49 floaty_pitch->setMaximumWidth(EditWidth);

floaty_pitch->setMinimumWidth(EditWidth);



51 miniHBox_floaty = new QHBoxLayout ();
miniHBox_floaty->addStretch();

53 miniHBox_floaty->addWidget(floaty_pitch);
grid_floaty->addWidget(floaty_pitch);

55

label_floaty = new QLabel (tr("COG rz position [deg]"));
57 grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

59 floaty_yaw = new NumberEdit ();
floaty_yaw->setMaximumWidth(EditWidth);

61 floaty_yaw->setMinimumWidth(EditWidth);
miniHBox_floaty = new QHBoxLayout ();

63 miniHBox_floaty->addStretch();
miniHBox_floaty->addWidget(floaty_yaw);

65 grid_floaty->addWidget(floaty_yaw);

67 label_floaty = new QLabel (tr("COG-Turbine Base Distance [m] "));
grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

69

floaty_COG = new NumberEdit ();
71 floaty_COG->setMaximumWidth(EditWidth);

floaty_COG->setMinimumWidth(EditWidth);
73 miniHBox_floaty = new QHBoxLayout ();

miniHBox_floaty->addStretch();
75 miniHBox_floaty->addWidget(floaty_COG);

grid_floaty->addWidget(floaty_COG);

"Wave time steps" and number of directions

The Number Edit boxes that permits to set the number of time steps by which
the wave force record is composed and the number of directions considered are
added:

label_floaty = new QLabel (tr("Number of timesteps "));
2 grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

4 floaty_nt = new NumberEdit ();
floaty_nt->setMaximumWidth(EditWidth);

6 floaty_nt->setMinimumWidth(EditWidth);
miniHBox_floaty = new QHBoxLayout ();

8 miniHBox_floaty->addStretch();
miniHBox_floaty->addWidget(floaty_nt);

10 grid_floaty->addWidget(floaty_nt);

12 label_floaty = new QLabel (tr("Number of directions "));
grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

14

floaty_ndir = new NumberEdit ();
16 floaty_ndir->setMaximumWidth(EditWidth);

floaty_ndir->setMinimumWidth(EditWidth);
18 miniHBox_floaty = new QHBoxLayout ();

miniHBox_floaty->addStretch();
20 miniHBox_floaty->addWidget(floaty_ndir);



grid_floaty->addWidget(floaty_ndir);

Incoming wave direction

A Number Edit box that permits to choose the direction of the incoming wave
is added:

1 label_floaty = new QLabel (tr("Incoming Wave Direction [deg] "));
grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

3

floaty_incoming = new NumberEdit ();
5 floaty_incoming->setMaximumWidth(EditWidth);
floaty_incoming->setMinimumWidth(EditWidth);

7 miniHBox_floaty = new QHBoxLayout ();
miniHBox_floaty->addStretch();

9 miniHBox_floaty->addWidget(floaty_incoming);
grid_floaty->addWidget(floaty_incoming);

Mooring Lines Controls

Some Number Edit boxes that permit to edit the mooring lines-related param-
eters are added:

label_floaty = new QLabel (tr("Moorings Stiffness [N/m]"));
2 grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

4 floatymoor_K = new NumberEdit ();
floatymoor_K->setMaximumWidth(EditWidth);

6 floatymoor_K->setMinimumWidth(EditWidth);
miniHBox_floaty = new QHBoxLayout ();

8 miniHBox_floaty->addStretch();
miniHBox_floaty->addWidget(floatymoor_K);

10 grid_floaty->addWidget(floatymoor_K);

12

label_floaty = new QLabel (tr("Moorings Weight Force [N]"));
14 grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

16 floatymoor_W = new NumberEdit ();
floatymoor_W->setMaximumWidth(EditWidth);

18 floatymoor_W->setMinimumWidth(EditWidth);
miniHBox_floaty = new QHBoxLayout ();

20 miniHBox_floaty->addStretch();
miniHBox_floaty->addWidget(floatymoor_W);

22 grid_floaty->addWidget(floatymoor_W);

24 label_floaty = new QLabel (tr("Moorings length [m]"));
grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

26

floatymoor_L = new NumberEdit ();
28 floatymoor_L->setMaximumWidth(EditWidth);



floatymoor_L->setMinimumWidth(EditWidth);
30 miniHBox_floaty = new QHBoxLayout ();

miniHBox_floaty->addStretch();
32 miniHBox_floaty->addWidget(floatymoor_L);

grid_floaty->addWidget(floatymoor_L);
34

label_floaty = new QLabel (tr("Moorings pre-tensioning [N]"));
36 grid_floaty->addWidget(label_floaty, gridRowCount++, 0);

38 floatymoor_preT = new NumberEdit ();
floatymoor_preT->setMaximumWidth(EditWidth);

40 floatymoor_preT->setMinimumWidth(EditWidth);
miniHBox_floaty = new QHBoxLayout ();

42 miniHBox_floaty->addStretch();
miniHBox_floaty->addWidget(floatymoor_preT);

44 grid_floaty->addWidget(floatymoor_preT);





Appendix D

Aerofoils Aerodynamic Tables

Figure D.1: DU91W2250LM Aerodynamic Tables
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Figure D.2: DU93W210LM Aerodynamic Tables

Figure 6.3: DU97W300LM Aerodynamic Tables



Figure 6.4: DU99W350LM Aerodynamic Tables

Figure 6.5: DU99W405LM Aerodynamic Tables



Figure 6.6: NACA64618 Aerodynamic Tables
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