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Introduction

The aim of this thesis is to investigate the feasibility of texture analysis on metastases of
patients affected by metastatic differentiated thyroid carcinoma (MDTC). These patients
are usually treated with surgery and since their metastases cells are still thyroid cells,
their treatment usually involves high activity of radioiodine. The use of radioiodine (131I)
constitutes a consolidated therapeutic approach in Nuclear Medicine Department at A.O.
Mauriziano Hospital in Turin, where the study was carried out in cooperation with the
Medical Physics Department from April 2018 to March 2019.

Therefore the starting point of this thesis is to demonstrate the feasibility of the
method on 131I phantom SPECT images and to evaluate the prognostic impact of texture
analysis on patients SPECT images.

Chapter 1 shows the State of the Art: a deep research analysis of the main studies
which assert the importance of lesion dosimetry and publications of project works which
managed with texture analysis in medical imaging.

Chapter 2 describes iodine and its radioactive isotopes, in particular 131I and its
radiometabolic therapy. In conclusion a brief description of SPECT/CT systems for
diagnosis is shown.

Chapter 3 introduces lesion dosimetry: it explains the MIRD method used to compute
the mean absorbed dose to lesions which are assumed spherical, describes the SPECT/CT
calibration which is needed to compute the activity values starting from the amount
of counts per seconds recorded by the system. Then, a dosimetric protocol applied to
patients at A.O. Mauriziano Hospital is introduced.

Chapter 4 shows Radiomics recent developments in quantitative imaging and its
capability of quantitative feature extraction from high-quality tomographic images useful
in the decision support process. Texture analysis methodology is then illustrated and all
features used are described. Features analysis is performed with a free software (LIFEx,
CEA 2017) which is able to compute and extract first, second and higher-order features
deeply described.



Chapter 5 describes a preliminary feasibility study which was performed using a
NEMA PET IQ Phantom to validate a procedure which was following applied to patients
and to understand features significance and behavior. First, a discretization analysis in
performed on features computation, then, a features analysis is developed to understand
the percentage variation of each feature during all the acquisition times.

Chapter 6 lists the patients lesions included in our dataset, on which features analysis
was performed. Then, a statistical analysis is carried out through ROC curve analysis
and box plot.

Chapter 7 summarises the most significant results obtained in this thesis work.
Chapter 8 expounds the main conclusions resulted from this study.
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1

State of the art

1.1 The importance of lesion dosimetry

Many papers in literature deal with radioiodine therapy which constitutes the most
common treatment of differentiated thyroid cancer following a total thyroidectomy. 131I
is a beta-particle emitter, but it also has penetrating gamma radiation, which makes it
traceable in vivo through medical imaging. The amount of radiopharmaceutical to be
administered to patients is a crucial topic and the activity can be established with two
different approaches:

1. empirically fixed, based on disease characteristics and patient age;

2. dosimetry-based prescribed.

The first approach is characterized by a relatively lower cost and ease of administration;
however, recent analyses have suggested that this method can lead to an over-treatment
with the risk of exceeding maximum tolerable absorbed dose to blood [32].

Over the last decade, the use of the positron-emitting 124I PET/CT imaging has become
more frequent in pre-therapeutic dosimetry to predict the absorbed dose in iodine-positive
lesions and organs at risk. This allows treatment personalization: optimal administered
activity can be chosen to deliver the maximum dose to target while keeping organs at
risks safe [48]. The pre-treatment administration involves significantly smaller activities
than therapy and it is usually performed one week before the therapeutic treatment.

Since the American Thyroid Association guideline declared that there are not sufficient
evidence in literature to recommend a preferred approach in activity definition, in 2016
a double experimentation was carried out at Goustave Roussy in Villejuif (France) and
at Memorial Sloan Kettering Cancer Center (MSKCC) of New York (USA). The aim of
the study was to compare the overall survival in the two groups of patients affected by a



differentiated thyroid cancer. The difference between the two procedures was the method
to determine the administered activity: at Goustave Roussy an empirically fixed activity
of 3.7 GBq was imposed, while the MSKCC of New York computed a personalized activity
based on whole body/blood clearance dosimetry. All data were statistically analyzed
with Chi-square and Mann-Whitney-Wilcoxon tests (t and U tests). Results recorded by
MSKCC did not provide any significant advantages and clinical benefits with respect to
the empirical approach, however, for what regard the amount of activity, higher values
resulted to be more efficient comparing to lower fractionated activity. 124I PET lesion 3D
dosimetry can be suggested in order to predict the absorbed dose and compute the safest
and most effective 131I activity to be administered. A SPECT/CT procedure can allow to
calculate the absorbed dose in other organs and in metastases, but a significant limit of
the study was the not availability of safety data [17].

Many papers [32, 22, 7] suggested the importance of dosimetry in order to determine the
optimal activity administration. Lesions were evaluated through a dosimetric study related
to the therapy response. The European Association of Nuclear Medicine (EANM) Therapy
Committee discussed the general issue of the usefulness of dosimetry in radionuclide
treatment that is also part of patients’ radiation protection. Moreover, pre-treatment
dosimetry is the basis for a treatment planning, but also an important source of scientific
information: the introduction of a dosimetry aided treatment planning can aim to increase
the success rate and a consequent reduction of the number of repeated treatments in order
to avoid useless treatments. Both these possibilities would improve the patient survival
and its quality of life.

On the base of Council Directive 2013/59/EURATOM the treatment procedures to
deal with the differentiated thyroid carcinoma were drown up by AIFM (Associazione
Italiana di Fisica Medica) and AIMN (Associazione Italiana di Medicina Nucleare).
Patients with distant metastases are subjected to problems related to the therapeutic
efficiency: they suggested that dosimetry can improve this aspect. The few published
papers where dosimetry was applied agree with the fact that the evaluation of the absorbed
dose to lesions improved the management of metastatic differentiated thyroid carcinoma
treatments [5, 12].

1.2 Texture Analysis

Malignant tumors often show high intra-tumor heterogeneity on a microscopic level
which can be quantified with texture analysis algorithms. Morphologic imaging has been
recently used to evaluate tumor heterogeneity [9]. Several publications [26, 42, 38, 16]
show the importance of texture analysis. The use of texture analysis has been widespread
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Fig. 1.1: Simplified illustration of dosimetry approaches to determine the administered radionu-
clide activity

[41]

in MR and CT imaging since the early 1990s [29]. In CT, imaging tumor heterogeneity
results to be an important predictive factor of the metastatic renal cell cancer treatment
response; in MR imaging heterogeneity of liver lesions was index of chemotherapy response
and using this imaging technique, texture analysis was also used to distinguish tumor
from non-tumor tissues in prostate.

In the end of 2000s [29], PET has been used to assess intra-tumor heterogeneity
characterization which is referred to the radio-tracer uptake spatial distribution: it has
the ability to directly visualize functional information and, depending on the radio-tracer
used it can provide useful information about cell metabolism. Compared to CT or MR,
PET images seemed not to be useful for texture analysis because of their relatively low
spatial resolution, that represents its major drawback, but the development of PET/CT
systems improved their accuracy.

Many recent publications [20, 55, 14] show that heterogeneity measurement on PET
images provides important information on prognosis and therapy effects in oncologic
patients and in addition, it has a potential use in tissue classification [62]. Texture analysis
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is one of the approaches used to quantify the heterogeneity of image voxel intensities: it
involves a complex work-flow with numerous steps and a very large number of parameters
to be computed which make this process tricky and a comparison of results between
studies difficult.
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2

Nuclear Medicine in metastatic
thyroid carcinoma treatment

2.1 Iodine and its radioactive isotopes

Iodine has been discovered in 1811 by Bernard Courtois. Its atomic number is 53 and
it belongs to the halogen section of the periodic table. It is solid at room temperature
and it is the least reactive element of its class. Iodine has more than 30 isotopes; among
them only 127I is stable and abundant in nature.

131I is the most common artificial radioisotope which appears in two main processes
[59]:

1. Uranium-235 (n,f) fission reactions: heavy nuclei absorb thermal neutrons and
the fission process produces some radionuclides, including 131I. Figure 2.1(a) shows
U-235 fission yield fragments as a function of mass, the second peak represents the
131I production;

2. Tellurium-130 (n,γ) neutron irradiation in a nuclear reactor: target nucleus captures
one thermal neutron and it emits γ-rays producing an isotope of the same element,
as shown in Figure 2.1(b).



(a) U-235 [3] (b) Te-130

Fig. 2.1: 131I production process

Radioiodine is mostly used in medical and pharmaceutical fields: it has an half-life of
about 8 days and primary it is a β-emitting isotope as shown in Figure 2.2.

Fig. 2.2: Nuclear decay scheme for I-131
[59]
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131I nucleus decays emitting β particles which penetrate biological tissues for 0.6-2.0
mm. β particles medium energy is 192 keV [59] while an abundance of 89.6% is emitted
at 606 keV, The β emission is also followed by energetic γ rays (mainly 364 keV) that can
be used to image the biodistribution.

A.O. Mauriziano Hospital usually requires Sodium Iodide (131I) in the form of capsules
(THERACAP 37-5550 MBq) which are produced by GE HealthCare Buchler GmbH &
Co. KG in Braunschweig (Germany) [Agenzia Italiana del Farmaco].

2.2 Radiometabolic therapy with 131I

Cancer has been treated with radiopharmaceuticals since the 1940s [3]. The radionu-
clide originally used, including 131I and 32P, for thyroid and leukemia treatments are still
in use. In particular, for both malign and benign thyroid diseases, the use of radionuclide
therapy is one of the most common and consolidated therapeutic option.

During the last decades the occurrence of thyroid cancer has been steeply increasing
[37]: the most prevalent kinds (90-95%) are originated from papillary and follicular cells
[31] and they are distinguished as differentiated thyroid cancers (DTCs). This carcinoma
typology is called differentiated because it is constituted by thyroid cells maintaining the
capacity of uptaking iodine.

The DTC is the most common malignancy of the endocrine system: in the initial stage
its treatment requires a total thyroidectomy which consists on the global eradication of
the thyroid gland and, if necessary, lymph nodes dissection; and finally, a nuclear medicine
therapy with 131I in order to completely remove the residual thyroid tissues after surgery
[39, 15].

Physiologically the thyroid cells accumulate the stable isotope 127I. Since thyroid cells
are not able to distinguish between stable and radioactive isotopes, the administration of
131I to patients leads to an accumulation of the radionuclide in the thyroid gland, exactly
where it is expected. The nuclear medicine therapy consists of either oral administration
of 131I carried out in gelatin capsules or intravenous injection.

This therapy with 131I is quite empiric: it consists in the administration of fixed
activities to patients within a range between 28-3700 MBq. For the ablation of post-
operative residual thyroid tissues, the usually activity administration is 1850 MBq (50
mCi) [Dosimetria durante terapia di carcinoma differenziato della tiroide metastatico -
Protocollo dosimetrico].

Local recurrence and distant metastases can occur approximately in 10-20% of cases
in 10 years after the initial surgery [31]. The most frequent thyroid carcinoma metastases
are bones, vertebral and cerebral ones. Since the metastases cells are still thyroid cells,
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they are characterized by iodine avidity and their treatment usually involves further and
higher administration of radioiodine.

Metastases therapy could be carried on with another RAI (Radioactive Iodine) therapy,
a metastasectomy or an external beam radiotherapy [30]. The presence of metastases leads
to an increase in terms of therapeutic administered activity that is usually in the range
between 3700-5550 MBq (100-150 mCi) [24]. In only one-third of the patients a complete
response is achieved [31]. The remaining patients usually become radioiodine-refractory
(RR-DTC) and they require a change in the disease medical management since they lose
the ability to be iodine-avid; hence, the probability to be cured by further 131I therapies
becomes very low and adverse effects may increase [8, 47].

As a matter of facts, the risk of cell dedifferentiation can occur in case of an under-
treatment in further administration that can lead to a decrease in the iodine avidity of
the tumor. In addition, patients may be considered radioiodine-refractory if they have
already received a RAI activity of more than 600 mCi [51]; patients with local advanced
or end-stage disease that are not manageable with surgery are considered as RR-DTCs
since radioactive iodine activity, when thyroid is not removed, is not effective [31].

β and γ emissions generated from the administration of the radioactive isotope 131I,
that is absorbed by all the iodine-avid cells, are able to treat the thyroid diseases.

Hence, the radionuclide therapy has a double effect: the diagnostic and the therapeutical
one. Radioiodine is rapidly absorbed and then distributed within the body extracellular
fluid towards the thyroid tissues where it is accumulated. Beta emissions coming from the
radioiodine can selectively harm or kill DTC cells; they can also be imaged in gamma
cameras through the detection of γ-rays simultaneously emitted by 131I, in order to
visualize any residual thyroid tissues after the surgery or some possible metastatic lesions.

In this perspective, the beneficial effects of 131I administration consist in the detection
of thyroid cells metabolic activity of which suggests the localization of undiagnosed regional
or distant metastatic lesions and then, in addition, the destruction of the thyroidal tissues
through its beta emissions [36].

2.3 Diagnosis with SPECT-CT

Gamma camera is one of the main nuclear medicine imaging devices. It is a planar
device which detects γ-rays emitted by the radiotracer distributed in the patient body
and it consists of two main components:

1. the collimator;

2. the radiation detector.
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The collimator is a critical component able to select the direction of the γ-rays entering
the device. It is made of a highly absorbing material slab, ordinarily of lead, which is
penetrated by many fine holes through which only the rays with a selected direction
pass, while the others are absorbed. Each radionuclide requires a specific collimator as
represented in Figure 2.3 and, since 131I emits high energy γ-rays, the ones needed in our
analysis are HEAP (High Energy All Purpose) or HEGP (High Energy General Purpose).

Fig. 2.3: All possible collimators which can be required and mounted on for any acquisition

Next to the collimator, the detector is placed. It is composed by a single large area
(50 cm × 40 cm) [3] and it involves the following components, as it is shown in Figure 2.4:

• the scintillation counter ;

• photomultiplier tubes;

• electronics and computer systems.
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Fig. 2.4: Schematic of a gamma camera for detecting single protons

The scintillation counter is an inorganic crystal usually made of Sodium Iodide doped
with Tallium NaI(Tl). The mechanism which allows the radiation detection is based on
the electronic structure with bands of the NaI(Tl). The NaI has two electronic bands:
the valence and the conduction one, separated by an energy gap. The doping with
Tallium impurities leads to the generation of energetic levels between the two bands. This
mechanism converts the ionizing radiation of incident rays into low intensity visible light:
the incident γ-ray leads to an excitation of an electron of the crystal that moves to the
conduction band and then, the de-excitation at ground state generates an about 3 eV
photon emission which corresponds to the visible spectrum.
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Fig. 2.5: Inorganic scintillators mechanism

The light signal coming out from the scintillator needs to be converted in electric
signal and amplified. Photomultiplier tubes (PMTs) are constituted by vacuum tubes
with a photo-cathode, releasing electrons by photoelectric effect, which is coupled with an
electron multiplier producing an electric signal proportional to the photon energy incident
on the scintillation crystals.

Fig. 2.6: Photomultiplier tube scheme

The energy determination during scintillation counting has associated an uncertainty
according to the fact that photons generated in the scintillator eject electrons into
photomultiplier tubes with a probability of success of 1

5 [3].
The system efficiency can be defined in two different ways, in absolute or intrinsic

term.

Ôabs = # pulses recorded

# photons emitted by the source

that takes into account the source attenuation, while
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Ôint = # pulses recorded

# photons incident on the detector

considers the capability of the detector to interact with the radiation and it depends
on its material and dimensions.

Fig. 2.7: HEAP collimators mounted up with detectors on gamma camera head

Complex electronics and computers systems handle with the estimation of energy and
position of the received signal producing 2-D planar images from the acquired data in
terms of number of counted photons.

The gamma camera head is connected to the gantry system that supports and moves
the device around the patient bed as shown in Figure 2.8. In this way single-photon
emission computed tomography (SPECT) performs a circular acquisition, providing a
sequence of 2-D projections from multiple different angles around the object of interest.
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Fig. 2.8: Gamma camera connection to gantry system

Fig. 2.9: Circular SPECT acquisitions scheme

The SPECT system has a radius of 33 cm and, moving around the patient, it records
64 views with a 20 s/view acquisition time. It provides very little anatomical information,
making it difficult the localization of regions where an abnormal tracer accumulation
occurs. In order to face up to this problem, an high resolution anatomic imaging (CT)
is combined. The CT system has 130 kV voltage, 0.8 s rotation time and it acquires
and reconstruct defines 3 mm thickness slices. A computed tomography is used for
attenuation correction, it is necessary to obtain anatomical information and it affects
SPECT quantification in order to develop a dosimetric analysis at voxel level.

Combined SPECT-CT systems provide combined anatomical and functional 3-D
imaging data which have to be spatially co-registered, in order to provide information
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about the disease localization and to improve diagnostic performance with respect to an
analysis with separate procedures. In this perspective, this combined system provides an
higher resolution with a more accurate quantification of all the lesions, especially for the
very small ones.

The SPECT subsystem is located next to the CT one and acquisitions are realized
sequentially. Usually, after the patient positioning on the couch, a SPECT acquisition is
performed followed by a CT one. The total examination time depends on the number of
different body regions to be examined and it ranges between 20 minutes and one hour.

Each kind of detector system, according to its physical properties and since it records
discrete events, needs to take into account time, energy and position resolutions, strongly
coupled with the statistics of phenomena in interest.

A critical issue is the response time of the detector which is the time, after the detection
of one radiation quantum, during which the detector is not able to detect other radiations.
This concept is better understood with the definition of a parameter called dead time τ

which is the minimum time separating two pulses such that they are recorded separately.
This system does not consider radiation energies far from the one of interest: the ability

to distinguish two peaks at different energies is the energy resolution R of the system.
Assuming a Poissonian distribution of the counting of pulses, the energy resolution is
defined as

R = FWHM

E0

where FWHM is the Full Width at Half Maximum (Figure 2.10).
The energy resolution value is a dimensionless number and for scintillators it is in the

interval range 5-10% of the energy considered.

Fig. 2.10: Energetic resolution in gamma spectrometry
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Spatial resolution is defined as the Full Width at Half Maximum of the response of
the system at a point source. It defines the minimum distance at which the SPECT-CT
is able to differentiate two different sources. In SPECT-CT systems it is on the order of
5-25 mm.

The final image will record all the counts describing a peak, whose rise value depends
on photon energies, crystal width, number of photo-multipliers and electronic systems.
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3

Lesion dosimetry

The activity used in radioiodine therapy still remains subject of discussion. As
explained in Paragraph 1.1, usually patients are treated with standard empirically chosen
activities. The decision depends on the physician’s rating of the highest safe or adequate
dosage or else it is determined by a pre-therapeutic dosimetry performed to estimate the
absorbed dose in lesions and organs at risk in order to choose the optimal activity value.

The choice of empiric standard activity can lead to a risk of either under-dosing the
patient or exceeding common safety limits, in addition not to consider the individuality of
the patient [58, 57] because it is not able to determine the minimal radioiodine activity
that will lead to the maximum allowable reasonably safe absorbed dose [34]. Therefore, it
could be useful a dosimetry-based approach: it can contribute to an effective management
of differentiated thyroid carcinoma and it is essential to optimize the administered activity.
This approach takes into account the minimum effective absorbed dose and the maximum
tolerated value, in order to replace the conventional fixed activity regimen by a modern
setting, allowing the increase of the administered therapeutic activity avoiding undesired
side effects. Furthermore, dosimetric analysis is helpful in developing a personalized
diagnostic and a therapeutic plan: it is possible to predict the treatment response of each
lesion, but some metastases might not respond completely to the therapy and then they
may require an additional personalized treatment in order to eradicate them.

3.1 MIRD method

A standard regulation for internal dosimetry computation in nuclear medicine was
developed in 1968 by the Medical Internal Radiation Dosimetry Committee of the Society
of Nuclear Medicine in USA, generally known as the MIRD System of internal absorbed
dose calculation.



Fig. 3.1: MIRD Phamphlet No. 16

The aim of this formalism is to provide a standard calculation of the mean absorbed
dose to internal organs due to nuclear radioactive sources.

After radionuclide introduction, the organs inside the body are defined into three main
categories:

• source organs, which accumulate the amount of radionuclide;

• target organs, or organs object of the treatment, which receive the radiation;

• organs at risk, or the healthy organs, that may record an important leading to
toxicity.

The MIRD method takes into account the geometries of source and target organs and
the attenuation properties of the body tissues in order to estimate the radiation dose to
targets due to source radioactivity.

Radiation originating from decays within one or more source organs is responsible for
the energy deposition in a target organ. In case of 131I treatment, for instance, the thyroid
and the iodine-avid metastases are at the same time source and target organs.
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Fig. 3.2: Thyroid as source and target organ

The application of MIRD method assumes that the radioactive concentration of the
substance within source organs has an uniform distribution and the estimation of the
mean absorbed dose can be predictive of biological effects [18].

The estimation of the mean absorbed dose to a target organ can be computed using
the following quantities:

• cumulated activity Ã (Bq · s) of the administered radio-pharmaceutical, which
represents the total number of nuclear transformations in the source organ;

Fig. 3.3: cumulated activity
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• residence time τ

• fraction of energy released from the source that is absorbed in the considered target
organ, φ;

The absorbed dose is computed as the product of the time-integrated activity and the
S factor.

D = Ã · S [3]

D is defined as the quantity of radiation energy deposited in a target organ per unit
tissue mass (J/kg)

D = dE

dm

and its unit is called Gray (Gy), while the S (Snyder) factor (or Dose Factor) shows the
link between the activity and the absorbed dose rate and it is measured in mGy

MBq·s [53].
The source and the target organs have to be well defined in terms of volumes: the

source region is denoted as rS, while rT identifies the target one.

D(rT ) = Ã(rS) · S(rT ← rS)

The S factor represents the mean dose per unit cumulated activity and it is equal to the
product of the absorbed dose and the absorbed fraction. The absorbed fraction φ, as
shown in Equation 3.4, is the ratio between the amount of energy emitted from the source
and the one absorbed in the target organ.

φ = Eem(S → T )
Eab(T ← S) (3.1)

so that
S(rT ← rS) = Eφ

M(rT )
The absorbed fraction values, that are in the range between 0 and 1, depend on:

• the type and energy of radiation;

• the medium between source and target;

• the size, shape, mass and composition of source and target organs.

φ(rT ← rS, Ei)
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Fig. 3.4: Absorbed fraction

This factor can be defined as the absorbed dose in rT per nuclear transformation that
occurs in rS.

For radionuclides that decay emitting β radiations, like 131I, since they are non-
penetrating, the absorbed fraction is assumed equal to 1 for self-irradiation and zero for
other organs irradiation.

S values for human phantoms are built with OLINDA/EXM (Organ Level INternal
Dose Assessment code with an EXponential Modeling function) software as a function
of mass and they are listed in tables, as reported in Table 3.5. This software includes
values for most radionuclides and computes the absorbed dose to different organs in the
body. Human phantoms do not include tumors: a sphere model carries out values related
to spheres with masses ranging from 0.01 to 6000 g [3]. For radionuclides with multiple
radiation emissions, internal dose computation can be quite time-consuming and, to face
up to this complication, the MIRD Committee published tables reporting S factors that
include combinations of more than 100 different radionuclides and 20 pairs of sources
and target organs [13]: these computations are performed with standard Monte Carlo
radiation transport simulations.
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Fig. 3.5: S factor values

The cumulated activity Ã(rS, TD) stands for time-integrated activity in rS over TD

and it is defined as the product of the number of decays (Bq) that take place in a certain
source region and its residence time (s) in the source organ. It is a significant quantity
because, in order to estimate the dose delivered to target organs, it is necessary to consider
both the amount of radioactivity in the source organ and the time frame during which it
is cumulated.

D(rt, TD) = Ã(rS, TD) · S(rT ← rS) [18]

where
Ã = A0 · τ

with A0 that corresponds to the administered activity.
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3.2 SPECT-CT Calibration

As already explained, the MIRD method needs cumulated activity as input. Unfortu-
nately, SPECT system does not provide any information about the activity within volume
of interest, only a measure of how many counts-per-second (cps) are recorded by detectors.
It is therefore necessary a calibration of the system in order to convert cps into activity.
The calibration system has to be carried out for every radionuclide used.

The SPECT-CT used in this study is a Siemens Intevo installed with High Energy High
Resolution (HEHR) collimators dedicated to 131I imaging at A. O. Ordine Mauriziano
Umberto I Hospital. The tomographic emission images are characterized by 256×256
matrices with 2.4×2.4×2.4 mm3 voxel size, equivalent to a 61 cm Field Of View (FOV).

The SPECT system calibration is performed using a phantom filled with known
activities: in order to standardize the procedure the international NEMA PET-CT spheres
phantom is used. It is composed by a body phantom made of water, a cylindrical lung
insert (volume of 130 cc) and an insert with six spheres of various sizes (inner diameter
10, 13, 17, 22, 28 and 37 mm, equivalent to 0.5, 1.1, 2.6, 5.6, 11.5, 26.5 cc) filled with a
liquid homogeneous mixture of 131I.

Fig. 3.6: NEMA PET-CT phantom

The spheres of 1.1, 5.6, 11.5 cc and the cylinder of 130 cc were filled with 131I known
activities, 13 MBq/cc, on the contrary the remaining spheres and the body phantom
were filled with water. Several acquisition parameters affect the calibration, but the most
important are:

• distance between gamma camera head and patient: this parameter depends mainly
from the radius of acquisition. Changing in radius leads to changing in sensitivity,
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resolution and cps. For this reason the SPECT system was calibrated at 3 different
radius: 25 cm, 28 cm, 33 cm;

• size of volume: the partial volume effect recovery coefficient needs to be evaluated.
It is defined as the ratio between the measured activity and its real value measured
in the same region of interest PV ERC = Ameasured

Atrue
;

• the dead time index

Fig. 3.7: Dead time indices

whose values are computed by the medical device and, since it can be relevant, it is
important to take it into account in order to obtain the real value of counts-per-
second:

cpstrue = cpsmeasured
100

100−%deadtime

The calibration factor CF is calculated as the ratio between the known activity,
corrected for decay, and the cpstrue. The CF obtained is 4.0·10-5 MBq

cts
: it defines a relation

between the number of counts recorded and the activity, in order to obtain the amount of
MBq delivered to each lesion starting from the counts collected into them. Finally, the
activity value can be reached through the correction for the dead time, the partial volume
effect and the calibration factor.

Activity = cpstrue ·
CF

PV E ·RC

The protocol was validated, but lesions with volume smaller than 2.6 cc are not
adequate for dosimetry with SPECT-CT system.

In Figure 3.8 the SPECT reconstruction procedure is represented.
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Fig. 3.8: SPECT reconstruction procedure

Figure 3.9 shows how the sphere phantom appears in SPECT acquisition.

Fig. 3.9: SPECT acquisition of the spheres
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3.3 Dosimetric protocol on the patient

The administered therapeutic activity is defined according to an optimization criterion
that requires a minimization of the radiation dose to not-target organs respecting the
toxicity limits and the maximization of the administered activity to the lesions.

According to these assumptions the internal dosimetry protocol limits the absorbed
dose to blood as a surrogate for red marrow at 2 Gy maximum value [Dosimetria durante
terapia di carcinoma differenziato della tiroide metastatico - Protocollo dosimetrico]. For
what regards metastases, the absorbed dose value to reach a complete remission probability
of 53% must be greater than 100 Gy [19].

One of the purposes of the dosimetry analysis is the estimation of the dose delivered
to each metastases and the evaluation of their therapeutic response. In order to evaluate
the individual biokinetics parameters, before treatment, a dosimetric study is performed;
a small tracer amount of radio-pharmaceutical is injected and biokinetics parameters
are derived from the activity-time curves built starting from activity measurements at
different times.

The dosimetric protocol adopted at Mauriziano Hospital provides a pre-treatment
radio-pharmaceutical administration of about 15 MBq one week before the hospitalization.
The patient affected by metastatic thyroid carcinoma is usually hospitalized on Monday:
late in the morning a therapeutic activity of 3.7-11.2 GBq, higher with respect to the
previsional one to be effective for tumor treatment, is orally administered through capsule
containing 131I.

In nuclear medicine, many processes involve a changing in the radiopharmaceutical
distribution within the patient body. In order to determine the proceeding of the radiation
concentration, the iodine collimators are installed and then, four SPECT acquisitions are
performed.

The uptake of Iodine in the thyroid tissues reaches its maximum in 24-48h, counting the
50% of its maximum peak after 5h. This value is affected by several factors such as patient
age and thyroid volume [24]. After four hours, the patient whole body measurement is
performed with a gamma camera which detects the γ-rays emitted from the body itself:
the activity remains in the patient after the radio-pharmaceutical administration, hence
to understand the location of the metastases. The patient on the couch is located between
detectors horizontally orientated in order to obtain a two-dimensional screen of the body.
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Fig. 3.10: SPECT/CT system

The location of the couch must be specified in order to maintain the same patient
positioning during all the following acquisitions. Once physicists and radiologist technicians
observe the location of the most captant regions in the patient body, the first SPECT
and CT scans are performed. In the case of sparse lesions, different scans are required
because of the limited dimensions of the detectors. The following SPECT acquisitions are
performed on Tuesday, Thursday and Friday respectively.
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4

Radiomics in SPECT-CT imaging of
Iodine captants lesions

In the past decade, the medical image analysis field has been developed exponentially
[25]. The term radiomics describes a practice consisting in the extraction of quantitative
features from high-quality medical tomographic image into exploitable high-dimensional
data, useful in the decision support process.

Radiomics is an emerging discipline in quantitative imaging and it offers a wide
potential to develop precision medicine approaches: it involves statistical data combined
with patient characteristics in order to develop models which may potentially improve
diagnostic and predictive accuracy.

At the beginning radiomics has been developed in oncological fields, but it is potentially
applicable to a wide number of conditions.

The process involves six main steps:

1. acquisition of high-quality medical images;

2. identification of the volume of interest (VOI);

3. segmentation of the volume;

4. extraction and qualification of the evaluated features;

5. implementation of a database;

6. development of a model in order to predict outcomes.



The following figure shows the use of radiomics in decision support.

Fig. 4.1: Radiomics process
[33]

The use of coupling of non-invasive medical images such that a single photon emission
computed tomography with a computed tomography (SPECT-CT), is frequently used to
evaluate tumor and anatomical tissue properties in high resolution.

Following the acquisition of high-quality tomographic images, the identification of the
volume of interest, where the tumor or a suspected entity should be, is the core of the
procedure. The segmentation represents the most critical step since all the feature data are
generated from the segmented volumes and many tumors have not clearly defined borders.
The quantitative image features extracted using advanced mathematical algorithms are
defined into two categories:

1. semantic features;

2. agnostic features.

The first category includes the shape-based features that are focused on location, volume
and size of the tumor and they offer information on the phenotype and micro-environment
of the tumor. The agnostic features aim instead, to understand the lesion heterogeneity
through quantitative descriptors and they are divided into first-, second- and higher order
statistical outputs.

Fig. 4.2: Feature extraction
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First-order statistical features are based on the histogram of global-scale radio-tracer
uptake intensity distribution. These features reduce the volume of interest to single voxels
scale in order to study the asymmetry and flatness of the histogram values, since each
medical image is recognized as a gray-scale array. The histogram of an image is the count
of how many pixels are characterized by the same gray-level value. These features can be
used to quantify phenotypic characters such as tumor density or intensity.

Fig. 4.3: Digital image. (a) Image with 5x5 pixels, with grey-level values in a range from 0
(white) and 7 (black). (b) Numerical representation of the image.

[10]

Fig. 4.4: Histogram of the image
[10]
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The second order statistical descriptors are also called texture features, they are based
on grey-tone spatial dependencies, paying attention on the similarity or dissimilarity in
terms of contrast between voxels. The concept of tone is based on the varying shades of
gray of resolution cells in an image, while texture is concerned with the spatial distribution
of grey tones [27]. This concept is crucial since radiomics has the potential to allow
quantitative measurement of intra- and inter-tumoral heterogeneity.

The higher-order statistical methods apply filter grids on the image in order to extract
patterns that appear to be repetitive or not.

These features, in conjunction with other information, can be correlated with clinical
outcomes data and used for evidence-based clinical decision support process; as a matter
of facts this procedure can potentially aid to cancer detection and diagnosis, predict the
treatment response and differentiate benign and malignant tumors.

4.1 Texture Analysis methodology: features used

The term texture defines the visible quality of an object and it looks at a single element
that can be reproduced several times within the object surface.

Fig. 4.5: Example of texture

The texture analysis in medical imaging refers to the appearance, structure and
arrangement of pixels if the medical image is two-dimensional, or voxels whether it is
three-dimensional. It is focused on elements that provide a representative pattern in
tumor morphology. The texture analysis is a technique for evaluating the pixels position
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and intensity of signal feature such as their gray-level intensity. Texture features involve
mathematical parameters computed from pixel distributions which reflect the structure
and texture of the image.

The texture analysis methods are categorized as:

• model-based methods:they involve sophisticated mathematical models for the estima-
tion of the parameters;

• statistical approaches that focus on the relationship between grey-levels of the image:
they reach an higher discrimination of the indices with respect to the following two
methods;

• structural methods that provide a good symbolic description of the image since it is
focused on the structure and the border of the object;

• transform methods that analyze the texture properties of the image in different
frequency or scale space.

In the following table, all feature classes are listed:

Tab. 4.1: Features used

Features

1st order Shape
Histogram

2nd order GLCM

higher order GLRLM
GLZLM

The first-order features are divided into two different groups: indices from shape and
indices from histogram. As the name suggest the shape features describe the shape and
size of the volume of interest and they are here listed:

• sphericity;

• compacity;

• volume;

while the histogram features indices are connected to the bin size:

• skewness, that describes the asymmetry of the gray-level distribution;

• kurtosis, that reflects the shape of the gray level distribution, describing how it is
peaked or flatted;
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• entropy, that reflects the randomness of the distribution;

• energy, that describes the uniformity of the distribution.

Three main categories of matrices reveal the spatial distribution of the radionuclide
uptake computed in a single ROI for each layer of image series and for all the voxels
involved and they are used to compute texture features.

The second-order Gray-level co-occurrence matrix (GLCM) values take into
account the distribution of pairs of pixels to extract textural indices. This matrix is of size
N×N, where N is the number of gray levels, is constructed along 13 different directions in
a 3-D space. A count of number of pixel pairs that have a given distribution of gray-level
values is then carried out. Defining a certain distance x between pixels, the element (0,
10) for instance, corresponds to a number of pixel pairs in the image that have intensity
values 0 and 10 respectively and that are separated by a x-pixel distance in a chosen
direction. There are many co-occurrence matrices for a single image, one for each distance
and direction. Since this matrix reflects the gray-level distribution of pairs of pixels, it is
also known as the second-order histogram.

Fig. 4.6: Co-occurrence within two-pixels distance in the horizontal direction computed for the
image of Figure 4.3

[10]
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Using GLCM values these following features are extracted:

• homogeneity, that is inversely proportional to contrast and energy [45];

• energy, that expresses the repetition of pixel pairs of an image;

• contrast, that refers to how much difference there is between grey-level values of
different objects in the image: higher values indicate large local variations. The
image is well contrasted if different areas are clearly visible. [45];

• entropy, that is a measure the disorder or randomness of the image, reflecting the
complexity within a medical image;

• dissimilarity.

The higher-order Grey-level run length matrix (GLRLM) values are focused on
the spatial distribution of voxel intensities. This is a way of looking at the image across
different directions: each element of the matrix represents the size of homogeneous runs
of pixels for each gray-level. The matrix has a fixed number of lines corresponding to the
number of gray levels and a dynamic number of columns, determined by the size of the
largest area. In this sense the matrix counts for each gray-level value, how many times
there are two, three, four consecutive pixels with the same value, and so on. Different
run-length matrices are calculated along 13 different directions in 3-D.

The GLRLM values involves many indices:

• short-run emphasis (SRE);

• long-run emphasis (LRE);

• low gray level run emphasis (LGRE);

• high gray level run emphasis (HGRE);

• run percentage (RP).
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Fig. 4.7: Example of horizontal and diagonal run-length matrices for the image shown in Figure
4.3

[10]
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The Grey-level zone length matrix (GLZLM) values provide information on the
size of homogeneous zones for each gray level in three dimensions.

GLZLM values involves many indices:

• short-zone emphasis (SZE);

• long-zone emphasis (LZE);

• low gray level zone emphasis (LGZE);

• high gray level zone emphasis (HGZE);

• zone percentage (ZP).

High gray level zone emphasis and low gray level zone emphasis are mostly sensitive
to the average uptake rather than to the uptake local heterogeneity [43].

4.2 LifeX software

The identification of volume of interests, the segmentation and the features extraction
are carried out with a free software called LifeX.

Fig. 4.8: LifeX icon

Many protocols are implemented in this software: in this thesis study the Texture one
is selected as shown in Figure 4.9.
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Fig. 4.9: Starter window: ’texture’ selection

LifeX user interface software is organized into three sub-parts that require all the
following inputs:

• the spatial resampling that are set with the dimension (x, y, z) of voxels composing
the image, since all the texture index values are sensitive to voxel size [43];

• the intensity resampling absolute or relative, providing the minimum and the
maximum values inside the region of interest;

• the intensity discretization that consists in the number of grey levels used to resample
the region of interest (ROI) content, that can typically be 2n with n in the range
from 1 to 7 (suggested to 64 by default) and the width of the bin, that is computed
starting from the number of grey levels.
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Fig. 4.10: Screenshot reporting the requiring inputs of the software LifeX

The textural indices and conventional parameters computation procedure is described
by the following steps:

• reading of the DICOM image for which the indices need to be computed;

• definition of the input parameters;

• drawing the region of interest;

• running the software;

• analyzing the Excel file in which all the resulting parameters are saved and listed.

LifeX software usually works on PET images and it is not designed to SPECT
acquisitions. We wrote and tested a Matlab code, reported in Appendix A, in order to
use LifeX on SPECT images too.
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Fig. 4.11: Workflow for exploiting radiomic biomarkers
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Fig. 4.12: LifeX screenshot
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5

Validation of the method through
phantom analysis

The analysis procedure developed in this study is first validated on the sphere phantom
presented in Paragraph 3.2 in order to understand the significance and the behavior of the
feature. First, a discretization analysis is necessary in order to set all the input parameter
of the software.

5.1 Discretization analysis of the features

The first analysis is focused on the evaluation of the dependence on discretization (i.e.
resampling image intensity values) of the features extracted from digital medical images
with LifeX software. The discretization step is necessary to generate occurrence/probability
matrices, whose sizes highly impact a computation process. The discretization indices
choice affects the quality of the image (e.g. the image noise) and it generates a constant
intensity resolution, so that textural features from different patients could be comparable.

Texture features computation is clearly affected by the bin size of the image: using a
small bin size (i.e. greater discretization), results tend to be more accurate [55]. Then, the
voxel size modification and the intensity discretization, influence the feature reproducibility.
Discretization reduces the infinite possible number of intensity values into a finite set
and it effectively decreases the image noise [35]. According to this, the range of intensity
values of an image needs to be reduced and limited for an efficient radiomic features
computation.

Based on cylinder and spheres real volumes, through the software, a 3D segmentation
of the volume of interests, based on thresholds, is realized.



Fig. 5.1: Volume values

First, a wide region of interest which has to include the real volume is defined. Then,
for each volume, a certain threshold is selected in order to find the one that is nearer the
real volume value. This procedure is the same adopted in patient lesions analysis.

Tab. 5.1: Volumes inside the phantom and thresholds related to

Volume (cc) Threshold
Cilinder 130.0 35 %

Sphere #1 11.5 36 %
Sphere #2 5.6 42 %
Sphere #3 2.6 55 %
Sphere #4 1.1 70 %
Sphere #5 0.5 85 %

The software intensity discretization input that is computed as 2n (i.e. 2n number
of bins), is considered varying n in the range from 1 to 7. The data given in output
computed at the defined thresholds are analyzed in order to understand how features
varies in relation to discretization values.

Shape features (Sphericity, Compacity and Volume) do not show any variation de-
pending on discretization and the same behavior occurs in the Skewness and Kurtosis
Histogram features.

The Histogram Entropy feature values strongly increase for low values of discretization:
a percentage variation is computed in order to show the convergence of values increasing
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the discretization, as reported in Figure 5.2.

Fig. 5.2: Percentage difference between entropy values coming out from different discretizations

Second and higher order statistical features are not defined for the smallest sphere.
Sphere 5, because of its small volume, results to be not valid for the parameters computation
through LifeX software. It is possible to assert that volumes smaller than 1.1 are not valid
for features evaluation.

GLCM Entropy values, as reported in the following graph, are strongly influenced by the
number of discrete values imposed: a convergence is reached increasing the discretization
adopted.

Fig. 5.3: Percentage difference between entropy values coming out from different discretizations
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The same convergence trend is reached and shown as follows, for GLRLM SRE, LRE
and RP features.

Fig. 5.4: Percentage difference between values coming out from different discretizations

At least n=5 (i.e. 25 = 32 discrete values) is required to properly quantify tumor
heterogeneity with radiomic features [44]. In addition, resampling values over 64 (n > 6),
does not provide any additional prognostic information [28]: the discretization analysis
consolidates literature data, so that the minimum resampling value for features computa-
tion is set to 64. Then, the voxel intensity range is defined starting from the discretization
index, into equally spaced bins with a fixed bin width: this strategy is more appropriate
for clinical case studies [35].

5.2 Features analysis

Since patients lesions are analyzed through MIRD sphere model, only the spheres are
considered and their features computed: the cylinder in this section is not taken into
account.

Features analysis is developed computing for each volume of interest, the percentage
variation of feature values with respect to the second acquisition according to the procedure
adopted for patients. The reason of this procedure will be better explained later.

All volumes considered inside the phantom are guaranteed to be perfectly spherical,
so that shape feature Sphericity is expected to be constant. The sphere number 5, the
smallest one, does not appear in the following diagrams because the software is not able
to compute Shape features in VOIs smaller than a certain value. According to this, it is
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possible to understand, looking at values relating to sphere 4, how features computed on
small volumes are affected to high variations.

Fig. 5.5: Percentage variation of Sphericity and Compacity values

Since volumes smaller than 2.6 cc, according to our calculation, are not adequate for
lesion dosimetry, the sphere 4 can be neglected in the these estimations although is it not
excluded from the following diagrams in order to show its huge variation is due to the
small volume.

According to Table 5.2 the mean value of sphericity for the sphere phantom is equal
to µ = 1.123 with a standard deviation of σ = 3.01%. Starting from this estimation, in
patients analysis if sphericity value is in the range of µ± 2σ, the lesion can be considered
spherical.
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Tab. 5.2: Sphericity values

Spheres Volume (mL) Sphericity Mean value σ

Sphere #1 11.5

1.084

1.085 0.0081.094
1.076
1.087

Sphere #2 5.6

1.107

1.107 0.0031.105
1.105
1.112

Sphere #3 2.6

1.160

1.135 0.0181.125
1.118
1.135

The second class features are analyzed: similarly, the smallest sphere is included in the
graph to emphasize its anomalous trend. Figure 5.6 and Figure 5.7 show the percentage
variation of all four acquisition values, except for the smallest spheres, the trends seem to
be constant: Skewness and Kurkosis value vary in a range of ±5% and ±2% respectively.
Energy and entropy values are in the range of ±1% and ±5%.

Fig. 5.6: HISTO-Skewness, Kurtosis values
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Fig. 5.7: HISTO-Entropy and Energy values

Trends of all volumes suggest that the computation is not reliable for volumes smaller
than 1.1 cc.

For higher order features computation, the smallest sphere (the number 5) is not
reported in the graphs because it results to be not valid for LifeX software.

Fig. 5.8: GLCM-Homogeneity, Energy, Contrast values
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Fig. 5.9: GLCM-Entropy, Dissimilarity values

According to the dosimetric limit, neglecting the sphere 4, it is possible to define
the variation range at ±6% for the Homogeneity and, ±15% for Energy and Contrast.
Entropy and Dissimilarity show a percentage variation of ±1% and ±6% respectively.

In GLRLM analysis, the sphere 4 shows a similar trend with respect to the other
volumes. Even if its volume is under the dosimetric limit, the software has a good response
in terms of GLRLM values except for LGRE feature.

Fig. 5.10: GLRLM-SRE, LRE values

SRE and LRE values vary in a range of ±0.8% and ±3%.
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Fig. 5.11: GLRLM-LGRE, HGRE and RP values

LGRE is affected by a huge percentage variation for volumes smaller than 5.6 cc,
focusing on sphere 1 and 2 only, values are in the range of ±10%, while HGRE and RP
vary in a range of ±4% and ±1%.

Fig. 5.12: GLZLM-SZE and LZE

These two features have a good result for all four spheres, it is not affected by the
small volume of the sphere 4 that is under the dosimetric volume limit.

Similar behavior appears in HGZE and ZP that vary in the range ±14% and ±8%
respectively, while LGZE, as in the case of LGRE shows a remarkable dependence on
volumes.
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Fig. 5.13: GLZLM-LGZE, HGZE and ZP values

In Table 5.3, all the features values computed are reported.
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Tab. 5.3: Features values related to the sphere phantom

Features Mean value µ σ σ%

Shape Sphericity 1.12 0.033 3 %
Compacity 1.54 0.43 28 %

Histogram

Skewness 0.62 0.08 13 %
Kurtosis 2.40 0.13 5 %
Entropy 1.65 0.07 4 %
Energy 0.026 0.004 16 %

GLCM

Homogeneity 0.14 0.03 19 %
Energy 0.005 0.004 82 %
Contrast 274 142 52 %
Entropy 2.5 0.4 14 %

Dissimilarity 13.3 3.5 26 %

GLRLM

SRE 0.99 0.01 0.6 %
LRE 1.06 0.02 2.3 %
LGRE 0.06 0.01 18.4 %
HGRE 770 70 9 %
RP 0.98 0.01 0.8 %

GLZLM

SZE 0.82 0.07 8.7 %
LZE 2.2 0.71 32 %
LGZE 0.06 0.01 20 %
HGZE 754 92 12 %
ZP 0.77 0.08 11 %
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6

Patients analysis

6.1 Dataset

Eight patients affected by metastatic differentiated thyroid carcinoma have been
included in our study. The inclusion criteria involve a total thyroidectomy before the
Radioiodine treatment.

Tab. 6.1: Dataset

Pt M/F Age1 PTMN, Typology Treatment Activity Data Lesion type
# (MBq) Bone Visceral

#1 F 78 pT1a Nx M1, F2 I 5566 26/11/18 3 -

#2 F 70 pT2(m)pNx, F I 5500 25/07/16 1 -
II 9250 29/05/17 1 -

#3 F 58 -, F I 3700 19/12/16 7 -
II 7224 28/06/17 6 -

#4 M 72 -, P3 I 4449 19/11/18 - 5

#5 F 22 pT1a(m)pN1bpM1, P I 3700 24/10/16 - 8
II 9250 29/05/17 - 1

#6 F 66 pT2 N0 cM1, F I 5550 03/12/18 3 -
#7 F 63 pT3 Nx M1, P I 5590 13/03/17 5 -

#8 M 54 -, F I 5595 18/06/18 6 -
II 7221 17/12/18 5 -

Table 6.1 shows all patients characteristics whose data have been analyzed, six women
and two men: their age at diagnosis is in the range between 22 and 78 and they present a
maximum of 8 visceral and 7 bone metastases. Radioiodine treatments were performed
from July 2016 to December 2018.



Patient #1

Activity = 5566.0 MBq
Date: 26/11/2018

Lesion # Volume (cm3) Dose (Gy)
L1 17.83 1.54
L2 5.14 7.0
L3 8.63 39.6

Patient #2

Activity = 9286.6 MBq
Date: 29/05/2017

Lesion # Volume (cm3) Dose (Gy)
L1 27.06 85.43

Patient #3

Activity = 3716 MBq
Date: 19/12/2016

Lesion # Volume (cm3) Dose (Gy)
L1 7.79 177.49
L2 5.74 44.65
L3 9.45 81.81
L4 4.27 105.39
L5 4.07 105.25
L6 4.32 337.17
L7 4.82 69.97
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Patient #4

Activity = 4449 MBq
Date: 19/11/2018

Lesion # Volume (cm3) Dose (Gy)
L1 4.73 113.4
L2 11.83 62.35
L3 50.17 137.0
L4 69.04 105.96
L5 3.45 82.93

Patient #5

Activity = 5552 MBq
Date: 24/10/2016

Lesion # Volume (cm3) Dose (Gy)
L1 6.17 159.84
L2 7.27 115.27
L3 5.20 56.27
L4 5.55 76.74
L5 18.41 45.47
L6 5.79 81.43
L7 7.82 80.56
L8 7.94 12.68

Patient #6

Activity = 5550.0 MBq
Date: 03/12/2018

Lesion # Volume (cm3) Dose (Gy)
L1 25.42 693.6
L2 7.66 81.93
L3 11.19 5.8
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Patient #7

Activity = 5596.0 MBq
Date: 13/03/2017

Lesion # Volume (cm3) Dose (Gy)
L1 5.42 103.0
L2 6.63 26.5
L3 85.33 121.0
L4 11.22 129.8
L5 195.43 40.7

Patient #8

Activity = 7220.8 MBq
Date: 17/12/2018

Lesion # Volume (cm3) Dose (Gy)
L1 9.07 73.7
L2 10.62 13.03
L3 6.25 24.3
L4 6.25 2.7
L5 10.23 18.65
L6 9.88 14.06

6.2 Features extraction

Through LifeX software, all the tomographic images acquired are loaded. A total
number of 21 features for each SPECT acquisition are extracted and then analyzed.
Considering all the treatments these eight patients were subjected to, a total number of
51 lesions are analyzed, and more than 4000 features values are collected and evaluated.

6.2.1 Shape feature analysis

The first feature extracted and analyzed is the Shape feature called Sphericity.
As explained in Paragraph 3.1, since Dose values are computed on the base of the

MIRD method which assumes spheric lesions, the first step of this work has been checking
sphericity values of each lesion. In Table 6.2 sphericity values of each metastases are
reported and compared with sphere phantom values in order to evaluate if they really
can be considered spheric and whether the MIRD method assumptions constitute a good
approximation.
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In Paragraph 5.2 the sphere phantom sphericity value is defined as µ±σ with µ = 1.123
and σ = 0.030.

Sphericity = 1.123± 0.030

Table 6.2 checks whether lesions sphericity values are included in both µ± σ or µ± 2σ

ranges in order to understand the uncertainty upon which a lesion can be approximated
to a sphere or not.

Fig. 6.1: Gaussian Distribution
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Tab. 6.2: Sphericity values

Patients Lesions # Sphericity sigma 2 sigma
T1 T2 T1 T2 T1 T2

Patient #1
L1 1.059 no ok
L2 1.088 no ok
L3 1.085 no ok

Patient #2 L1 1.044 1.030 no no no no

Patient #3

L1 1.061 no ok
L2 1.097 ok ok
L3 1.080 no ok
L4 1.107 ok ok
L5 1.108 ok ok
L6 1.108 ok ok
L7 1.102 ok ok

Patient #4

L1 1.077 no ok
L2 1.068 no ok
L3 0.910 no no
L4 0.833 no no
L5 1.104 ok ok

Patient #5

L1 1.103 ok ok
L2 1.034 no no
L3 1.051 1.013 no no no no
L4 1.084 no ok
L5 0.887 no no
L6 1.099 ok ok
L7 1.003 no no
L8 1.049 no no

Patient #6 4 L1 1.070 no ok

Patient #7

L1 1.106 ok ok
L2 1.082 no ok
L3 0.985 no no
L4 1.082 no ok
L5 0.948 no no

Patient #8

L1 1.085 1.058 no no ok ok
L2 1.034 1.071 no no no ok
L3 1.087 1.062 no no ok ok
L4 1.062 no ok
L5 1.088 1.086 no no ok ok
L6 1.078 1.088 no no ok ok
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On 51 lesions, only 9 are included in the range µ ± σ so that, it is assumed more
accurate to consider spheric, lesions whose feature values are included in µ± 2σ. In this
perspective the 60% of analyzed metastases can be assumed spherical and MIRD method
can correctly compute the absorption Dose values.

6.3 Statistical Analysis

Following data computation and evaluation, it can be interesting to analyze all features
values in relation with the clinical treatment response of each metastases. A nuclear
medicine specialist, analyzing patients’ whole-body planar scintigraphies during the second
treatment, has been able to define all lesions responses as follows:

• progressive disease (PD);

• stable disease (SD);

• partial response (PR);

• complete response (CR).

This response is obtained comparing the metastases iodine avidity between first and
second treatment acquisitions.

Hence, in this section, only patients subjected to two treatments are taken into account:
from our dataset reported in Table 6.1 four patients, who have satisfied this requirement,
are included in this analysis.

1. Patient #2;

2. Patient #3 5;

3. Patient #5;

4. Patient #8;

In Figure 6.2 the diagram shows the classification of all lesions into the four response
classes.

5 Table 6.2 does not report values related to the second treatment because dosimetric analysis has not
been done, so that we had no acquisition to perform features analysis
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Fig. 6.2: Lesion clinical response

The aim of this statistical analysis is to analyze the 21 features computed on all 29
lesions in relation with their clinical treatment response in order to evaluate their possibly
prognostic meaning.

6.3.1 Wilcoxon-Mann-Whitney test and Box-and-whisker Plot

Since we cannot assume that all features extracted from SPECT images are normally
distributed, a Wilcoxon-Mann-Whitney test is performed. This statistical test, also
called U test, is performed through MedCalc Statistical Software (MedCalc Software
bvba, Ostend, Belgium; https://www.medcalc.org; 2015, version 15.8) and it is applied in
order to evaluate the significance of the difference between two independent populations.
Wilcoxon-Mann-Whitney test is a non-parametric test of the null hypothesis defined as a
general statement which provides no relationship between two analyzed samples.

The most meaningful parameter which comes out from Wilcoxon-Mann-Whitney test
is the p (probability)-value or asymptotic significance which is the probability, for a given
statistical model that, assumed the null hypothesis verified, the statistical summary results
equal or greater then the actual observed results. The p-value is used in order to quantify
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the idea of statistical significance of the result: if the obtained value is small (p<0.05) it
means that two populations can be considered statistically separated.

All features that resulted to have a significant p-value are graphical represented: box
plots are produced in order to show the statistical distribution of features data.

The box-and-whisker plot displays a graphical statistical summary of a variable: it is
constituted by a central box which represents values from the lower (25%) to the upper
(75%) quartile, with a middle line within which represents the median as shown in Figure
6.3.

Fig. 6.3: Box Plot example

Since this test is used to analyze two independent populations, in our study, all lesions
are distinguished into two groups as a function of their treatment response. Here, the
discrimination criteria defined in collaboration with a nuclear medicine specialist:

• not responding, which includes progressive disease and stable disease;

• responding, which includes partial response and complete response;

6.3.2 ROC curve analysis

All features are also evaluated using Receiver Operating Characteristic (ROC) curve
analysis which is also performed by MedCalc Statistical Software. When we compare
two samples, one with a disease and the other without, rarely we can observe a perfect
separation between them: the distribution of test results is represented in Figure 6.4.
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Fig. 6.4: Distribution of the test results

In Figure 6.4 the criterion value (cut-off) is represented: it is the threshold value
which discriminates the two samples, but, in addition to the group that correctly results
to have a positive test outcome (TP=True Positive fraction), it also includes a fraction
of population which actually have negative result (FP=False Positive fraction). The
same occurs for negative test outcome: there are some cases without disease which are
correctly classified (TN=True Negative fraction) with some other cases which actually
have a disease (FN=False Negative fraction).

In our study this test is performed in order to discriminate lesions response to treatment:
ROC curve analysis provides a distinction into the same two classes displayed in Sub-
paragraph 6.3.1.

According to this subdivision and the aim of this analysis, in Table 6.3 the meaning of
all fractions is represented.

Tab. 6.3: Different fractions (TP, FP, TN, FN) representation

Test Response TotalResponding n Not Responding n
Positive True Positive (TP) a False Positive (FP) c a + c
Negative False Negative (FN) b True Negative (TN) d b + d
Total a + b c + d

Two main coefficients are computed and evaluated in this analysis:

• Sensitivity: the probability which provides the test result positive and the lesion
classified as ’Responding’

Sensitivity = a

a + b
;

• Specificity: the probability which provides the test result negative when lesions
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are classified as ’Not Responding’

Specificity = d

c + d

ROC curves show Sensitivity as a function of Specificity and they are computed for
different cut-off points. A test with a very good discrimination has a ROC curve that
passes very close to the upper left corner which corresponds to the highest test accuracy
as shown in Figure 6.5.

Fig. 6.5: Example of the perfect discrimination test ROC curve

In addition to Sensitivity and Specificity, MedCalc software gives as output also a
value related to the Area Under the Curve (AUC value). The physical meaning of this
value is here explained: an AUC value, for instance, equal to 0.8, means that, if we select
randomly a case from the positive group, it will have a test value larger than the 80%
of the negative group [63]. An AUC value equal to 0.5 means that there is no difference
between the two distributions. To have a perfect separation we want the area under the
ROC curve equal to 1.

All ROC curves which are shown in Chapter 7 are related to the maximum AUC value
obtainable.
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7

Results

Wilcoxon-Mann-Whitney test and ROC curves analysis were performed on 21 features
computed for all 29 lesions of patients which were included in the statistical analysis: a
total number of 609 data were collected and the analysis was performed.

Both analysis were carried out through two different collection data approaches:

1. computation of features absolute values recorded at the second acquisition time
which is assumed to be the most meaningful;

2. computation of features percentage variation between the last acquisition and the
second one.

7.1 Statistical analysis results: first approach

First, Wilcoxon-Mann-Whitney test was performed and then Box Plots were produced.
21 p-values, one for each feature, were evaluated: if we consider statistically acceptable
p-values smaller than 0.05, the best statistical result is the one related to the GLZLM
feature HGZE (p-value = 0.034). Generally, in medical field, a p-value<0.1 can be also
considered statistically relevant: in this perspective also HISTO features called Skewness,
Kurtosis, Entropy and GLRLM feature HGRE could be taken into account. Results are
displayed through box plots and reported in Figures 7.1 and 7.2.



Fig. 7.1: Box Plot GLZLM-HGZE

Figure 7.1 represents the feature values distribution of the two samples (NR-R):
responding median value is much higher than the not responding 75 percentile and these
two distributions can be considered distinct.

Figure 7.2 displays box plots related to Skewness, Kurtosis and Entropy features,
where this distinction seems to be less pronounced (0.05<p<0.10).
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(a) BoxPlotSkewness (b) BoxPlotKurtosis

(c) BoxPlotEntropy (d) BoxPlotHGRE

Fig. 7.2: Box Plots

Then, ROC curves analysis is performed: 21 ROC curves, one for each feature, were
plotted and the corresponding 42 Sensitivity and Specificity values were evaluated.

First, we focused on Specificity values: we noticed that, Histo features Skewness and
Kurtosis are characterized by a 100% Specificity and 36.4% Sensitivity; plots are reported
in Figure 7.3.
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Fig. 7.3: HISTO Skewness, Kurtosis ROC curves
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Using Skewness value to predict treatment response is therefore possible: if the
Skewness value related to a lesion is found <=0.57 we can suggest that the lesion will
positively respond to the treatment. However, a Sensitivity of 36.4% means that only one
third of the responding lesions will be detected by this criterion. The same conclusions
are drawn for Kurtosis, with an associated criterion <=2.32. Then, looking at these
values, we can suggest that, lesions with Skewness and Kurtosis values which respect their
criterion, can be classified as responding and probably will not need a second radioiodine
treatment.

Focusing on AUC values, the highest result is the one obtained with to GLZLM feature
HGZE (AUC=0.72), even though it does not show high Specificity and Sensibility values
as shown in Figure 7.4. If HGZE values >701.2 half of the responding lesions are detected,
but in addition it encloses also 11% of the not responding ones.

Fig. 7.4: HGZE ROC curve

ROC curves related to other features evaluated, are shown in Appendix D: they shown
a Specificity not so high; a large Sensitivity value means that, the associated criterion
includes a large number of responding lesions, but, if the Specificity is not 100% in addition,
also some non responding lesions are counted.

According to these analysis we can assert that results obtained are consistent. The U
test results have been confirmed with ROC curves analysis.
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7.2 Statistical analysis results: second approach

The second analysis approach provides the computation of the percentage variation
between the fourth and the second acquisitions feature values.

Wilcoxon-Mann-Whitney test was performed: among all 21 p-values evaluated, the
one related to Histo Skewness resulted to be acceptable (p<10%). Figure 7.5 displays
Histo Skewness box plot: the responding median value is higher than the not responding
75 percentile which makes a relevant separation between two samples. All the other box
plots are reported in Appendix E.

Fig. 7.5: Box Plot HISTO Skewness

With the same procedure previously adopted, also ROC curves analysis was performed
on all features. Looking at Specificity values, Contrast and Dissimilarity features resulted
to be significant: due to these features evaluations, we can be able to immediately
recognize lesions which are characterized by a good treatment response. Figure 7.6 shows
the relatives ROC curves: both Contrast and Dissimilarity were defined by a 36.4 %
Sensitivity and 100% Specificity. According to these results, Contrast and Dissimilarity
features are able to detect one third of responding lesions without considering any case
which have no good treatment response. When features trends are evaluated and the
percentage variation between the last and the second acquisition is computed, if the lesion
is defined by a variation of Contrast <=-8.1% or a Dissimilarity <=-3.8% it can be
classified as responding and it will not need further treatments.
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Fig. 7.6: Contrast and Dissimilarity ROC curves
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The same evaluation was drown in GLRLM HGRE feature whose Sensitivity and
Specificity values are 45.5% and 100% respectively. If the percentage variation of HGRE
values results to be <=-8.2%, almost half responding lesions are counted and all not
responding ones are excluded. HGRE relative ROC curve is shown in Figure 7.7.

Fig. 7.7: GLRLM HGRE ROC curves

7.3 Statistical analysis results: mean absorbed Dose

Statistical analysis was also performed on the mean lesion absorbed Dose values.Each
lesion is characterized by a single Dose value which is computed through MIRD method
defined in Paragraph 3.1.

Wilcoxon-Mann-Whitney test did not give as output a statistical significance since
p-vale resulted to be much higher than 0.05 and the relative box plot is reported in Figure
7.8. Dose box plot is consistent with Wilcoxon-Mann-Whitney test: the non significant
p-value is also reflected in a not distinct samples.
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Fig. 7.8: Lesion absorbed Dose box plot

Then, the ROC curve analysis was performed and the relative plot is displayed in
Figure 7.9.
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Fig. 7.9: Lesion absorbed Dose ROC curve

The relative AUC value results to be equal to 0.60; the Sensitivity and Specificity are
54.5% and 72.2% respectively. The absorbed Dose associated criterion which discriminates
the two samples in terms of treatment response is about 81 Gy.
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8

Conclusions

This thesis work has been developed on patients affected by a metastatic differentiated
thyroid carcinoma (MDTC). These patients are treated with radioiodine (131I): the
administered activity is usually empirically fixed, but, this approach does not provide
an optimization and a personalization of the therapeutic plan since it does not take into
account patient-related activity distribution. A dosimetric protocol has been adopted at
A.O. Ordine Mauriziano Umberto I Hospital [Dosimetria durante terapia di carcinoma
differenziato della tiroide metastatico - Protocollo dosimetrico] to evaluate patient specific
radioiodine distribution and absorbed dose to organs (target and organs at risk). Moreover,
lesion dosimetry is useful to determine the maximum tolerable activity, which is the
maximum activity value to be delivered to the patient keeping risk of side effects acceptable.
According to the MIRD method, a standard regulation for internal dosimetry, the mean
absorbed dose values have been computed. It assumes an uniform radioactive concentration
of the radionuclide within organs suggesting that, the estimation of the mean absorbed
dose can be predictive of biological effects. One of the purposes of dosimetric analysis has
been the estimation of the dose delivedered to each metastases and the evaluation of their
therapeutic response.

All MDTC patients treated with 131I at A.O. Mauriziano Hospotal follow a dosimetric
protocol: four SPECT/CT acquisitions are acquired 4, 24, 48, 96 hours after radionuclide
administration (activity: 3.7-11.2 GBq); lesions are contoured by a nuclear medicine
physician and doses are evaluated according to MIRD method.

Aim of this thesis work has been to test the feasibility of texture analysis and features
evaluation performed on the four SPECT images acquired following the dosimetric protocol.
In order to fulfill this aim, the local image feature extraction software LifeX has been
used. The first issue we met has been the LifeX software management since it works on
PET images and it is not designed to SPECT acquisitions. A Matlab code, reported in
Appendix A, has been written and tested in order to use LifeX on SPECT images too.



A preliminary study has been performed on a NEMA PET-CT sphere phantom in
order to test and evaluate the feasibility of this analysis approach. First, a discretization
analysis have been performed, and resampling with 64 bins has been confirmed to be the
best one to use, as reported in literature [28]. Phantom features extraction has shown that,
volumes smaller than 1.1 cc, cannot be examinated with the proposed features evaluation.
Then, features analysis has been performed in order to understand the variation range
under which features can be considered constant. This analysis has been conducted on
the Shape feature Sphericity, since, obviously, all spheres contained in the phantom are
spherical: the range was evaluated as standard deviation of the outcome and it has been
resulted to be 3%.

Then, the presented procedure has been applied on all patients included in this thesis
work. Treatment responses (whether patients are responding or not to therapy) of each
lesion have been evaluated by a nuclear medicine specialist.

Texture analysis and features evaluation have been performed on the four SPECT
images acquired following the dosimetric protocol. 21 features have been evaluated on
all four acquisitions of 8 patients, considering a total number of 51 lesion which have
produced 34272 data, however, since statistical analysis was due only on patients treated
at least twice, our dataset has been still reduced to 4 patients for a total number of 29
lesions which have produced a data collection of 9744 values.

A statistical analysis has been developed on two datasets: first, considering the
features values computed at the second acquisition time, second, the percentage variation
of features values between the forth and the second acquisitions. Two statistical analysis
methodologies have been applied: Wilcoxon-Mann-Whitney test which have produced box
plots and ROC curve analysis. Both approaches have given consistent results: features
with a statistical relevance (p-value<0.05) have shown distinct samples in box plots and
have produced good Specificity values in ROC curves analysis.

Nowadays, as reported in literature, dose value is the best parameter to discriminate
responding from not responding lesions. Lesion absorbed dose values of completely
responding metastases have been found significantly higher compared to the ones computed
on not responding lesions. The threshold absorbed dose generally adopted in order to
discriminate responding to not responding lesions is 85 Gy. ROC curve analysis have
shown AUC values higher than 0.5 for lesion volumes not too small [60].

The associated criterion computed in ROC curve analysis is 81 Gy, very close to the
one reported in literature. In terms of AUC, Sensitivity and Specificity, from our analysis,
texture feature HGZE, HGRE and Skewness, Kurtosis, Contrast and Dissimilarity show
better values (HGZE: AUC=0.72, HGRE: 45.5% Sensitivity and 100% Specificity, Skewness,
Kurtosis, Contrast, Dissimilarity: 36.4% Sensitivity and 100% Specificity).
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The main limit of our study has been the low number of patients.
We can assert that further patients inclusion in our dataset is necessary to increase

the statistical power of this study.
Follow up of patients subjected to radioiodine treatment continues for months; the

possibility to predict tumor response within the first week after treatment could be useful
in patient management: based on prediction, further and more personalized treatments
could be evaluated.

Abstract based on this thesis results was presented at the XIV Congresso Nazionale
Associazione Italiana di Medicina Nucleare (AIMN) 2019 and it was accepted as "walking
poster": it is reported in AppendixC.
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Appendix A

Matlab script

dd=dir(C:...SPECTimages);
NN=length(dd);
infoPET=dicominfo(infoPET.IMA);
for ii=1:NN
XX=[C:...SPECTimages dd(ii).name];
spect3d(: , : , :)=dicomread(XX);
MM=size(spect3d,3);
dirname=[dd(ii).name new];
mkdir(dirname);
for jj=1:MM
infoSPECT=dicominfo(XX);
infoPET.PatientWeight=10;
infoPET.SliceThickness=infoSPECT.SliceThickness;
infoPET.Rows=infoSPECT.Rows;
infoPET.Columns=infoSPECT.Columns;
infoPET.SliceThickness=infoSPECT.SliceThickness;
infoPET.PixelSpacing=infoSPECT.PixelSpacing;
infoPET.Width=infoSPECT.Width;
infoPET.Height=infoSPECT.Height;
infoPET.NumberOfSlices=infoSPECT.NumberOfSlices;
infoPET.PatientName=infoSPECT.PatientName;
infoPET.MediaStorageSOPClassUID=1.2.840.10008.5.1.4.1.1.2;
infoPET.SOPClassUID=1.2.840.10008.5.1.4.1.1.2;
infoPET.ImagePositionPatient(1)=0;
infoPET.ImagePositionPatient(2)=0;
infoPET.ImagePositionPatient(3)=jj*infoSPECT.SliceThickness;



infoPET.SliceLocation=jj*infoSPECT.SliceThickness;
dicomwrite(spect3d(: , : , jj),[dirname infoSPECT.PatientName.FamilyName
num2str(ii-2) fetta num2str(jj) .IMA], infoPET);
end
clear spect3d
end
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Appendix B

Wilcoxon-Mann-Whitney test:
probability values

B.1 p-values: first approach

Features p values Sensitivity (%) Specificity (%) Cut-off AUC
HGZE 0.03 54.5 88.9 >701.2 0.72
HGRE 0.09 45.5 88.9 >716.4 0.68

Skewness 0.12 36.4 100 <=0.57 0.67
Kurtosis 0.12 36.4 100 <=2.32 0.67
Entropy 0.12 81.8 55.6 >1.68 0.67
Sphericity 0.55 100 27.8 >1.01 0.57
Compacity 0.43 81.8 44.4 <=1.97 0.59
Energy 0.25 72.7 50 <=0.25 0.63

Homogeneity 0.24 81.8 50 <=0.18 0.63
Contrast 0.25 45.5 83.3 >190.3 0.63

Dissimilarity 0.17 54.5 77.8 >11.3 0.65
SRE 0.44 54.5 83.3 >0.98 0.59
LRE 0.46 54.5 83.3 <=1.07 0.59
RP 0.46 54.5 77.8 >0.98 0.59
SZE 0.62 54.5 77.8 >0.79 0.56
LZE 0.43 54.5 83.8 <=2.3 0.60
LGZE 0.39 63.6 66.7 <=0.06 0.60
ZP 0.46 54.5 83.3 >0.74 0.59

GLCM Energy 0.93 27.3 88.9 <=0.01 0.51
GLCM Entropy 0.90 36.4 88.9 <=2.6 0.52

LGRE 0.93 45.5 72.2 <=0.07 0.51



B.2 p-values: second approach

Features p values Sensitivity (%) Specificity (%) Cut-off (%) AUC
Skewness 0.10 54.5 88.2 >10.9 0.64
Contrast 0.61 36.4 100 <=-8.11 0.59

Dissimilarity 0.42 36.4 100 <=-3.8 0.60
HGRE 0.33 45.5 100 <=-8.2 0.66

Sphericity 0.72 55.6 94.1 >0.43 0.68
Kurtosis 0.14 54.6 94.1 >10.9 0.66

Comapacity 0.54 81.8 52.9 >-0.56 0.67
GLCM Energy 0.24 45.5 94.1 >9.6 0.60
GLCM Entropy 0.42 45.5 94.1 <=-1.16 0.57

Entropy 0.26 63.6 82.4 <=1.01 0.63
Homogeneity 0.33 72.7 70.6 >0.96 0.68

SRE 0.48 63.6 64.7 <=-0.2 0.58
LRE 0.54 54.5 70.6 <=-0.3 0.55
LGRE 0.54 54.5 76.5 >15.9 0.60
RP 0.54 54.5 70.6 <=-0.3 0.55
SZE 0.45 45.5 82.4 <=-5.6 0.58
LZE 0.58 63.6 70.6 >12.2 0.60
LGZE 0.51 72.7 52.9 >-4.9 0.56
HGZE 0.96 63.6 82.4 <=-2.8 0.65
ZP 0.48 63.6 70.7 <=-4.8 0.58
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Appendix C

Abstract presented at XIV
Congresso Nazionale Associazione
Italiana di Medicina Nucleare
(AIMN) 2019

Feasibility and prognostic impact of features analysis on 131I SPECT-CT
images in metastatic thyroid patients treated with radioiodine

Matteo Poli(1), Claudia Cutaia(1), Alessandra Pecora(1), Elisa Richetta(1), Viviana
Garbaccio(2), Désirée Deandreis(3), Riccardo Pellerito(2), Michele Stasi(1)

(1) Nuclear Medicine Dept. AO Ordine Mauriziano, Turin (2) Medical Physics Dept.
AO Ordine Mauriziano, Turin (3) Nuclear Medicine Dept., Turin

Introduzione
In metastatic differentiated thyroid cancer (MDTC) the radioiodine treatment is a

consolidated approach. The effectiveness of the therapy can be verified on post adminis-
tration imaging where tomography represents the most accurate option. Aim of this study
is to evaluate the feasibility and prognostic impact of 131I SPECT-CT images features
analysis (FA) performed on metastatic lesion in MDTC patients.

Materiali
FA is performed on SPECT-CT images with a free software (LIFEx, CEA 2017) taking

into account texture features (TF) and first-order features (FF). TF include Gray-Level
Occurrence Matrix GLCM (e.g. homogeneity, contrast) and Gray-Level Zone Length
Matrix GLZLM (e.g. HGZE); FF include histograms indices (e.g. skewness, kurtosis and
entropy). On a spheres phantom (NEMA PET IEC) filled with liquid 131I (13 MBq/ml),
SPECT-CT images (at 3,120,160,216 h after preparation) were acquired. Five volume of
interests (VOIs) were contoured on phantom images, one for each sphere. VOIs were made



by a 3D segmentation tool choosing a threshold value to obtain a volume the most similar
to the real one. Then, we performed TF and FF analysis using six different discretization
levels (4, 8, 16, 32, 64, 128) on every single VOI. As results, the best discretization level
to use and the minimum VOI volume that should be evaluated with this method were
defined.

Risultati
For 6 MDTC patients (inclusion criteria: thyroidectomy, iodine remnant ablation) TF

and FF analysis were computed on 4 SPECT-CT images (Siemens IntevoT2, 256x256,
ITSCAC) acquired at 4,24,48,96 h after administration. Mean doses to lesion (MIRD
sphere model) were also evaluated. 22 lesions (14 bone, 8 visceral) were contoured by
a nuclear medicine specialist using a 3D segmentation tool and TF and FF analysis
were computed. Treatment outcome was classified as responding (complete and partial
response) or not responding (stable and progressive disease). FA was therefore correlated
to 131I treatment response through ROC analysis (AUC, sensitivity (SS) and specificity
(SP)).

In phantom analysis the minimal assessable volume was found equal to 1.2 cc and
the optimal discretization level was found equal to 64, as suggested by literature: those
results were therefore applied in patients analysis. In patients, mean dose ROC analysis
showed an AUC equal to 0.62 (SS 75, SP 64). Similar results were found on GLCM
features (homogeneity AUC 0.62, SS 63, SP 71 and contrast AUC 0.61, SS 38, SP 93).
Higher effectiveness to discriminate the patient treatment response was shown by some
FF features (skewness and kurtosis AUC 0.72, SS 50, SP 100, entropy AUC 72, SS 63,
SP79) as well by TF Gray-Level Zone Length Matrix (HGZE AUC 0.76, SS 75, SP 93).

Conclusioni
In MDTC patients features analysis on 131I SPECT-CT images is feasible. Phantom

analysis points out methods limits, allowing a standardization. Many features were
evaluated in order to investigate their influence in the patient response discrimination. A
positive prognostic capability was shown. These results should be integrated with the
standard dose-response evaluation, giving to the physician a powerful tool in MDTC
patients treatment management. However, the small sample involved does not allow
clinical results yet: additional patients involved would consolidate the prognostic and
predictive role of FA on 131I treatment response.
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Appendix D

ROC curve analysis

D.1 ROC curve analysis: first approach

D.2 ROC curve analysis: second approach
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Appendix E

Box and whisker plots

E.1 Box plot: first approach

E.2 Box plot: second approach
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