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Summary

Networks describe complex systems composed by a multitude of agents and tan-
gled interactions. An economic system is an example of an interaction network: a
set of economic entities, such as banks or production companies, are linked by a
network of interdependencies. The network could works as a filter that propagates
and expands microeconomic shocks until they become potentially destructive for
the whole macroeconomic system. In this thesis we provide a way of characterizing
the aggregate level through the use of local measures such as the Katz-Bonacich
centrality. We first introduce two theoretical models of shocks over economic net-
work, describing how agents interact on a network and how the aggregate level is
affected by the microeconomic states. Then, we examine how Katz-Bonacich cen-
trality and other network’s statistics resume the effects of shocks over the macro
state of the economy. We show these results using two particular economies and
we analyze some optimization problems. This last part allows us to comparing
different networks topologies and enables us to rank economic structures in terms
of their macroeconomic state.
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Chapter 1

Introduction

Today’s interlinked world has bring the public attention to describe the complex
connectedness of modern society. The key argument of this revolution is the idea
of network: a mathematical model of interconnections between a set of entities. In
the most basic sense, a network is any collection of objects in which some pairs of
these objects are connected by links.

The first and most known example of network is the society. The sum of all
human relations are called the social networks and originally described “the core
of the society and determines the spread of knowledge, goods and resources” [4].
Nowadays, due to technological advances, the term social network defines all the
revolutionary technologies, as Facebook or Twitter, that makes the spread of in-
formation even faster than in the past, facilitating distant travel, global commu-
nication and digital interaction. Networks also refer to artificial systems. It is the
case of our economic system that has become dependent on networks of enormous
complexity. An economic network is a a set of economic entities, such as banks
or production companies, that are linked by a network of interdependencies. Con-
sider for example production firms, each of which producing different outputs that
could be used both from consumers and as input from other units. The tangled
nature of interactions has made the economic networks susceptible to disruptions
that spread through the underlying network structures, sometimes turning local
shocks into cascading failures or financial crises.

With the current thesis we want to analyze economic networks and a problem
that arises considering interdependencies between firms: the systemic failure and
the amplification of shocks. Differently from social networks where sciences try
to understand some hidden natural law, the contradiction of economic networks is
that they are systems constructed by humans but not understood at all. A brilliant
explanation for the starting challenge of economic networks is given in article [20]:
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1 – Introduction

Figure 1.1. A sample of the international financial network, where the nodes rep-
resent major financial institutions and the links are both directed and weighted and
represent the strongest existing relations among them. Node colors express dif-
ferent geographical areas: European Union members (red), North America (blue),
other countries (green) [20].

We need, therefore, an approach that stresses the systemic complexity
of economic networks and that can be used to revise and extend estab-
lished paradigms in economic theory. This will facilitate the design of
policies that reduce conflicts between individual interests and global ef-
ficiency, as well as reduce the risk of global failure by making economic
networks more robust.

Economy reflects the problem of a large number of interacting agents who
influence each other. The resulting aggregate behavior, i.e. the totality of the
micro levels, often shows consequences that are hard to predict, as illustrated by
the 2008 crisis, which cannot only be explained by the failure of a few major
agents. Economic networks are subject to amplifications that may result from the
redistribution of agent’s failure. In this contest, connections could act as channels
of amplification and propagation of shocks: if a single node fails, it may force other
nodes to fail as well; this may eventually lead to failure cascades and the breakdown
of the system, denoted as systemic risk. However, it is not well understood how
the underlying interaction network affects the chance of a systemic failure.
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The staring point of the thesis is the article “Networks, Shocks, and Systemic
Risk” [2]; this paper joined with “The Network origins of Aggregate Fluctuations”
[1] and “From Micro to Macro via Production Networks” [9] constitute a complete
survey on the field of shocks over economic networks with a specific attention spent
on production systems based on the Cobb-Douglas production technologies. The
main purpose of these papers is to formalize a general theory of how idiosyncratic
shocks shape the economic outcome. Formally, shocks are represented as stochastic
variables and the adjective idiosyncratic means that they are independent and
identically distributed.

Our aim in this thesis is to complete the analysis done in [2] spending more
attention on the role of network measures. Instead of studying a general model we
have considered two macroeconomic state: the total activity and the total welfare.
The first focuses on the sum of players’ actions while the second studies the sum of
utilities. In the thesis we have focused on the analysis of Katz-Bonacich centrality
measure, a concept that emerged in social science but now used also in economic
networks. In fact, this term represents both the social importance of an agent in a
network of information than the economic power of a firm in network of production.
Compared to the analysis of idiosyncratic shocks, we consider more complicated
shock natures. Both from a deterministic and stochastic point of view our goal is
to characterize the worst possible shock for a given network. The theoretical part
is flanked by a part of simulation in which the results obtained are verified. The
networks taken into account were those extensively studied by graph theory, which,
even if simpler than the real ones, manage to summarize some patterns present in
reality.

The rest of the thesis is organized as follows. Chapter 2 presents basic facts
about graph theory and network measures of agents’ centrality; in this chapter are
described all the instruments to understand further chapters. In Chapter 3, we
provide our two models of economic networks flanked by the general framework
presented in [2]. In Chapter 4 we explain the ex-post analysis focusing on which
measures are useful to describe the macro states. Chapter 5 describes the ex-ante
analysis of our models reflecting on optimizations problems that arise considering
extremum values of the macro state of the economy. Chapter 6 concludes.
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Chapter 2

Networks

The fundamental mathematical concept to describe a network is that of a graph. In
this chapter we introduces some of the basic ideas behind graph theory, the study
of network structure. This will allow us to formulate basic network properties in
a unifying language, independently from the applications. A single mathematical
model is than used for many real objects of extremely heterogeneous nature.

Firstly, we introduce graph theory explaining basic facts and definitions, that
are necessary to understand economic networks. We also introduce a particular
class of graphs to give easy and understandable examples. In the second part, we
describe centrality measures explaining how could be used to summaries networks
properties. In this part we define the Katz-Bonacich centrality, the most important
parameter to describe agents’ importance. In the last part we focus on the Leontief
matrix; this matrix demonstrates how goods from one industry are consumed in
other industries but it is also a good approach to describe interdependences.

2.1 Graphs
The skeleton of networks are graphs: a graph is a mathematical model that specifies
the relationships among a collection of items. A graph consists of a set of nodes
V which represent the units participating in the network. Nodes are also called
vertices, agents, or players, depending on the context. The set of links, or edges,
E ⊆ V × V expresses the interaction between units, that is, between pairs of nodes.
The weight of interaction between agents i and j is captured by Wij ≥ 0 that is
equal to 0 only when there is no interaction between agents.

Formally, we define a graph as a triple (V, E , W), where V is the set of nodes,
E is the set of links, and W ∈ ❘V×V

+ is the weight matrix [13]. W is a nonnegative
square matrix that expresses the strength of each interaction, and whose entries
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2 – Networks

are Wij . If Wij ∈ {0,1} for all nodes i, j in the graph, then we call this matrix
adjacency matrix.

A graph G = (V, E , W) is called:

• unweighted if W is the adjacency matrix. In this case we could construct a
graph from matrix W and vice-versa;

• undirected if WÛ = W, where WÛ means the transpose matrix of W. Link
between agent i and agent j exists if and only if exists also the link of the same
strength in the opposite direction. We express undirected links as unordered
pairs {i, j}. In term of network, it is when an agent i could interacts with
agent j only if also the other wants (ex. network of friendship relationships
is an undirected network, but network of web pages is not);

• simple if it is unweighted, undirected, and does not contain self loops, Wii =
0.

Given a simple graph G we define the degree wi of the node i ∈ V as the number
of links connected to him, i.e wi =

q
j∈V Wij that in compact notation becomes

w = W✶,

where ✶ is the column vector of all 1 of the order of the number of nodes.
We say that two nodes are neighbors if they are connected by an edge; the degree

of a node also expresses the number of neighbors, and we define the neighborhood
of node i ∈ V as Ni = {j ∈ V|{i, j} ∈ E}. In a simple graph G with n nodes we
define the average degree as w = 1

n

q
i∈V wi, and consequently we call G regular if

all its nodes have the same degree w.
The notion that defines the concept of connectivity between units of a network

is that of walk. A walk from node i to node j is a finite sequence of nodes γ =
(i0, i1, ..., il) such that i0 = i, il = j and (ih−1, ih) ∈ E for all h = 1, ..., l. The
length of a walk is l, and we say that a node j is reachable from node i if there
exists a walk from i to j.

When there is a walk between any two nodes i, j of the graph G, we say that
the graph is strongly connected.

2.1.1 Linear Algebra of Graphs
Given that a graph is described by its matrices, graph theory intends to under-
stands property of graphs using linear algebra. Given a graph G = (V, E), the
powers of adjacency matrix contain interesting information on the walks over G.

Remark. For every l ≥ 0, the number of length-l walks from node i to a node j
in a graph G = (V, E) is equal to the (i, j)-entry of the matrix power Wl [13].

6



2.1 – Graphs

Another important matrix associated to the graph is the normalized weight
matrix P, also called simple random walk SRW, defined as

P = D−1W, D = diag(w),
where D is an invertible diagonal matrix which entries are the degrees. All the
entries of matrix P are nonnegative and moreover each row sums up to 1, i.e.
P✶ = ✶ where ✶. Matrices that satisfy these properties are called stochastic.

Considering a simple graph G, another important property is that of its eigen-
values and eigenvectors. The spectrum of G is the spectrum of its associated ma-
trices, that is its set of eigenvalues together with their multiplicities. Since G is
simple, adjacency matrix is nonnegative and symmetric; important informations
about these kind of matrix are declared by spectral theorem, that here is presented
and whose proof can be found in [22].
Theorem 1 (Spectral theorem). Let W ∈ ❘n×n be a nonnegative and symmetric
matrix. Then there are n real numbers λ1, ..., λn and n orthonormal real vectors
x1, ..., xn such that xi is an eigenvector of λi.

One of the main result on nonnegative matrices is expressed by a theory stated
by Perron and Frobenius. The main result states that largest-in-module eigenvalue
λW of a nonnegative matrix W is a nonnegative real number with a corresponding
eigenvector with nonnegative entries. Moreover, any other eigenvalues µ of W is
smaller in absolute value, |µ| ≤ λW . The largest eigenvalue of a graph is also
known as spectral radius or dominant eigenvalue.

These results have important consequences on the normalized weight matrix P
which are resumed by the proposition below and that are proved in [13].
Proposition 1. Let G = (V, E , W) be a simple graph and let P = D−1W be its
normalized weight matrix. Then

1. the dominant eigenvalue is equal to 1, λP = 1;

2. there exist a nonnegative vector π such that πÛ✶ = 1 and PÛπ = π;

3. the degree vector w is an eigenvector of PÛ relative to λP ;

4. the ones vector ✶ is an eigenvector of PÛ relative to λP if G is regular;

5. if G is strongly connected, then λP = 1 is geometrically and algebraically
simple and there exist x > 0 such that PÛx = x.

2.1.2 Examples
The following simple graphs are basic examples which frequently recur in the the-
ory and its applications; these graphs will be used in next chapters as academic
representations of simple networks. Here, every graph is described and represented,
and later also some spectrum are calculated.
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2 – Networks

Figure 2.1. Barbell graph with n1 = 7 and n2 = 6

Complete graph

The complete graph Kn is a graph consisting of n nodes, each connected to every
other node. Defining m as the number of undirected links in the graph, for Kn this
results m = n(n − 1)/2. The complete graph is regular and the average degree,
common to all the nodes, is w = n − 1.

Barbell graph

The barbell graph Bn1,n2 is obtained by connecting two distinct complete graphs,
respectively with n1 and n2, with only one link, called bridge, between one node
in each side. The resulting number of undirected links is m = 1 + [n1(n1 − 1) +
n2(n2 − 1)]/2.

Ring graph

The ring graph Cn, also called cycle graph, is formed by n nodes all of which
of degree 2; consequently the cycle graph is a 2-regular graph. The number of
undirected links is simply m = n.

Star graph

The star graph Sn is a graph where a central node, called hub, is connected with
all the other n marginal nodes and the marginal nodes are connected only with
the hub; the hub has degree n − 1 while the marginal nodes have all degree 1. The
number of undirected links is m = n − 1.

8



2.2 – Cayley graphs

Figure 2.2. Star graph with 8 marginal nodes

Product of graphs

Let Gi = (Vi, E i) for i = 1,2, be two simple graphs. The Cartesian product of
graphs Gi is a graph H such that:

• the vertex set of H is the Cartesian product V1 × V2;

• any two vertices (v1, v2) and (w1, w2) are connected by and edge in H if and
only if either ;

v1 = w1, (v2, w2) ∈ E2

v2 = w2, (v1, w1) ∈ E1

The number of nodes of H is n = |V1| |V2|, and the number of edges results
m = |E1| |V2| + |E2| |V1|.

2.2 Cayley graphs
A generalization of regular graphs is described by a large class of graph that origi-
nate from groups. Recall that a group (Γ, ∗) is defined by a set Γ and an operation
∗ that satisfy these following properties:

• the operation ∗ is associative;

• for all ∀x, y ∈ Γ, also x ∗ y is an element of Γ;

• there exists an element 1Γ, called identity or neutral element, such that ∀x ∈
Γ, 1Γ ∗ x = x ∗ 1Γ = x;

• for any element x ∈ Γ there exists an inverse element x−1 ∈ Γ, such that
x ∗ x−1 = x−1 ∗ x = 1Γ.
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2 – Networks

Moreover, if the operation ∗ is also commutative, the group (Γ, ∗) is called Abelian.
From now on we will use additive notation: the group operation is denoted by +,
the neutral element is denoted by 0, and the inverse element is denoted by −1 [16].
Let (Γ, +) be a finite Abelian group of order |Γ| = N , and let S be a subset of Γ
with the property that if x ∈ S, then −x ∈ S and 0 /∈ S; such a subset is called
symmetric. The subset S is also called the generating set of an Abelian group
Γ if every element x ∈ Γ could be expressed as the combination of finitely many
elements of the subset. If the subset S has only one element, we say that the group
Γ is cyclic [21].

Suppose that n is a positive integer. We say that two integers x, y are congruent
modulo n, and writes x ≡ y (modn), if x − y is divisible by n. This relation is an
equivalence relation and gives rise to n equivalence classes, that are called the
residues and are denoted by 0,1, ..., n − 1. Fix now n ≥ 2 and consider the set ❩n
of all residues modulo n, with the operation +. Then (❩n, +) is an Abelian group
and is a cyclic group generated by 1, since any element x (modn) is a sum of x
ones.

Cayley graphs on finite Abelian groups are an useful tool to describe regular
graphs. In particular we will consider Cayley graphs on the additive group Γ = ❩n

with edge generating set S.

Definition 1. Let Γ be an Abelian group and let S ⊂ Γ be a symmetric subset of
Γ. The Cayley graph G(Γ, S) is the graph whose nodes set is Γ and edges set is

E = {(x, y) ∈ Γ × Γ : y − x ∈ S}

Notice that a Cayely graph generated by the subset S is simple. The graph
is undirected because the existence of link (x, y) implies also (y, x); it contains no
self-loops because 0 /∈ S, and is obviously unweighted.

Before giving some examples, we introduce some notions on group characters
that will be used to calculate eigenvalues and eigenvectors of Cayley graphs.

Definition 2. Let Γ be a finite Abelian group of order N , and let ❈Û be the
multiplicative group of the nonzero complex numbers. A character on Γ is a group
homomorphism χ : Γ → ❈Û, namely a map χ from Γ to ❈Û such that χ(g + h) =
χ(g)χ(h) for all g, h ∈ Γ.

Since we have that χ(g)N = χ(Ng) = χ(0) = 1 for any g ∈ Γ, it follows that χ
takes values on the N th-roots of unity [8]. The character that maps all the elements
of a group in 1 is called the trivial character χ0. Given a group Γ, the set of all
characters of the group forms an Abelian group Γ̂ with respect to the point-wise
multiplication. The unit of the group is the trivial character χ0, and the inverse of
a character is the point-wise conjugate of the character. Moreover, Γ̂ is isomorphic
to Γ and its cardinality is N [8].
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2.2 – Cayley graphs

Consider the cyclic group Γ = ❩N , and suppose r, x ∈ Γ. We define

er(x) := e2πirx/N , (2.1)

for every r ∈ {0,1, ..., N − 1} [21]. Each such a function is clearly a character
because:

• is a group homomorphism from the additive group Γ to the multiplicative
group of nonzero complex number, er : Γ → ❈Û;

• maps 0 into trivial character 1, and the er(−x) is the multiplicative inverse
of er(x);

• er(x + y modn) = e2πirx/N · e2πiry/N ;

• moreover, maps into N -th roots of unity.

For every r we have different values of er(1), so it follows that for the cyclic
group we have N different characters. Defining the inner product of two functions
f1, f2 : Γ → ❈ as

éf1, f2ê :=
Ø
g∈Γ

f1(g)fÛ
2 (g).

it is possible to prove that the N characters of Γ are orthogonal respect to the inner
product, i.e. this means that they are linearly independents [21]. This property is
valid for any set of characters from a finite group Γ to ❈ [22].

Now that we have stated a lot of properties about characters, we could use them
for calculating eigenvalues of Cayley graphs. The orthogonality of the characters
seems to be equal to the orthogonality of eigenvector and, in fact, there is a nice
identity between characters of Abelian groups and eigenvectors and eigenvalue of
adjacency matrix associated to a regular graph.

Consider the Cayley graph G = (❩N , S) defined above, and its adjacency matrix
W. If we construct a vector xr ∈ ❈N such that its elements are er(s), s ∈ Γ, is
possible to prove that

Wxr =
AØ
s∈S

e2πirs/N

B
xr, (2.2)

that is, xr is the r-th right eigenvector of matrix W associated to the eigenvalue!q
s∈S er(s)

"
[22]. Than, if we want to obtain the spectrum of a Cayley graph

with N nodes, we do not have to compute the characteristic polynomial of matrix
W, but we just need to compute some exponential sums.

11



2 – Networks

2.2.1 Eigenvalues of regular graphs

Using the shortcut of eigenvector and eigenvalues of Cayley graphs we now express
the spectrum of regular graphs introduced in the previous paragraph 2.1.2. We are
interested in eigenvalues of normalized weighted matrix P, that, in case of regular
graphs, has a particular linkage with adjacency matrix.

Remark. Consider a regular graph with n nodes, and its adjacency matrix W and
normalized weight matrix P. Eigenvalues of these two matrices are connected by
the relationship

λ ∈ ρ(W) ⇒ λ

w
∈ ρ(P), λ ∈ ρ(P) ⇒ wλ ∈ ρ(W),

where ρ(W) indicates the spectrum of W, and ρ(P) the spectrum of P.

Complete graph

Let G = ❩n and consider the symmetric set S = ❩n\{0}; it follows that every two
distinct elements x, y ∈ ❩n are connected by an edge. The resulting Cayley graph
is the complete graph with n nodes Kn.

Figure 2.3. Complete graph with 9 nodes

For every k ∈ {0,1, ..., n − 1}, the eigenvalue λk of the Adjacency matrix is
simply the summation of the characters

λk =
Ø
s∈S

χk(s) =
Ø
s∈S

exp
3

2π

n
iks

4
,

12



2.2 – Cayley graphs

that results

λk =


cos(πk) + 2

n
2 −1Ø
s=1

cos
3

2π

n
ks

4
for n even

2
n−1

2Ø
s=1

cos
3

2π

n
ks

4
for n odd.

Assuming λ0 as the dominant eigenvalue of W, is easy to see that its value is n−1
and that all the others λk, k = 1, ..., n − 1 are −1. The resulting eigenvalues of P
are derived from the above remark:

λ ∈ ρ(W) ⇒ µ = λ

n − 1 ∈ ρ(P) ⇒ ρ(P) =
;

1, − 1
n − 1 , ..., − 1

n − 1

<
.

Cycle graph

Let G = ❩n and consider the symmetric set S = {+1, −1}. Each node k =
0,1, ..., n − 1 has two neighbors. For example, 0 has the neighbors 1 and n − 1.
Thus, the resulting Cayely graph is the n-cycle graph Cn.

Figure 2.4. Cycle graph with 9 nodes

As done before, we calculate the eigenvalues of the adjacency matrix λk ∈
σ(W), k ∈ {0,1, ..., n − 1} as

λk =
Ø
s=±1

χk(s) = exp
3

−2π

n
ik

4
+ exp

3
+2π

n
ik

4
= 2 cos

3
2π

n
k

4
.

Given that the cycle graph is 2-regular, spectrum of matrix P could be defined as

ρ(P) =
;

cos
3

2π

n
k

4
, k = 0, ..., n − 1

<
.
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2 – Networks

Toroidal graph

The toroidal graph is a d-dimensional extension of the cycle graph. More formally,
toroidal graph T

(d)
n is a product graph of d cycle graph where each one has n nodes:

T
(d)
n = Cn × Cn × ... × Cn, d times.
We have seen before that the cycle graph could be rewritten as a Cayley graph

G(❩n, {+1, −1}). Let G = ❩dn = ❩n × ... ×❩n, that consists of d-tuples (x1, ..., xd)
of residues modulo n, that is, each xi is 0, ..., n − 1. Let S consist of all elements
(x1, ..., xd) such that only one xi is equal to 1 or -1 and all others are 0. Then the
resulting graph G(❩dn, S) is a d-dimensional toroidal graph.

Eigenvalues of product graphs have a particular form, expressed by this remark
[13]:

Remark. Be λ an eigenvalue of adjacency matrix W of G = (V, E), and µ an
eigenvalue of adjacency matrix V of GÍ = (V Í, E Í), each one with all diagonal
elements equal to 0. Then λ + µ is an eigenvalue of adjacency matrix S of product
graph H = G × GÍ.

Remembering that the spectrum of cycle graph is ρ(WCn
) = {2 cos(2πk/n), k =

0,1, ..., n − 1} it is possible to calculate the spectrum of T
(d)
n as

ρ(W) =
I

λk1...kd
=

dØ
i=1

2 cos
3

2π

n
ki

4
, (k1, ..., kd) ∈ {0,1, ..., n − 1}d

J
.

Therefore, noting that the graph is d-regular, the spectrum of P is

ρ(P) =
;

µk1...kd
= λk1...kd

d
, (k1, ..., kd) ∈ {0,1, ..., n − 1}d

<
.

2.3 Centrality measures
Consider a network represented by a graph. In many cases, we might be interested
in micro measures that allow us to compare nodes and to describe which role a
given node has related to the entire network. The centrality of a node resumes this
ideas and somehow captures the importance of node’s position.

Measures of centrality differentiate depending on the types of statistics on which
they are based, for example degree centrality or closeness centrality. We will focus
only on neighborhood centrality, that determines the importance of a node as a
function of how important its neighbors are. This concept go beyond the number
of neighbors and accounts for the fact that a node is more central if is connected
with other important nodes. Being chosen by a popular individual should add
more to one’s popularity. Being nominated as powerful by someone seen by others

14



2.3 – Centrality measures

as powerful should contribute more to one’s perceived power. Having power over
someone who in turn has power over others makes one more powerful [10].

The difficulty is that such a definition is recursive because define the centrality
of a node as function of the centrality of its neighbors, and so forth.

2.3.1 Eigenvector centrality
Let G = (V, E) be a simple graph with n nodes, and W the associated adjacency
matrix. The eigenvector centrality ei of a vertex i is proportional to the sum of
the centralities of the vertices which is connected

λei =
nØ
j=1

Wjiei,

where λ is a proportional factor. Above equation written in matrix form better
explain the name of the measure

λe = We, (2.3)

where e ∈ ❘n is the centrality vector [5]. Thus, e is an eigenvector of W and λ is its
corresponding eigenvalue. Given that we look for nonnegative measures, the largest
eigenvalue is usually the preferred one because, as mentioned in section 2.1.1,
Perron-Frobenius theorem ensures the existence of a nonnegative vector associated
to it.

2.3.2 Katz prestige
Katz prestige is defined by its author as:

A new method of computing status, taking into account not only the
number of direct "votes" received by each individual but, also, the status
of each individual who chooses the first, the status of each who chooses
these in turn, etc. Thus, the proposed new index allows for who chooses
as well as how many choose [18].

Rephrasing, the prestige of a node, i.e. the centrality, is a weighted sum of its
connections. A link of length 1 weight α, a walk of length 2 weight α2, and so
on. Formally, the parameter α is a decay factor that reduces the weight of longer
paths.

Let G = (V, E) be again a simple graph with n nodes, and W the associated
adjacency matrix. As seen in the remark 2.1.1, the (i, j) entry of k-th power of W
expresses the number of indirect walks from node i to node j of length k. Given a
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2 – Networks

scalar 0 ≤ α < 1, we define the vector t ∈ ❘n of prestige of nodes as

t(α) = αW✶+ α2W2
✶+ α3W3

✶+ ...

=
!
■+ αW + α2W2 + ...

"
αW✶

=
A ∞Ø
i=0

αiWi

B
αW✶.

A sufficient condition for the above series to be finite is that α be smaller than 1 over
the norm of the largest eigenvalue of W, that is, 0 ≤ α < 1/(n − 1) [12] [10]. For
an α that satisfy this condition, and using the Neuman series of a matrix [19],the
prestige vector could be rewritten as

t(α) = (■− αW)−1
αW✶. (2.4)

This values of α also ensure that (■− αW)−1 exists and is nonnegative.

2.3.3 Bonacich centrality
Let P be the normalized weighted matrix of the simple graph G = (V, E), and
consider the transpose PÛ in order to consider a column-stochastic matrix. Given
that the largest eigenvalue of P is equal to 1, we could rewrite equation (2.3) as

e = PÛe. (2.5)

Finding the unit eigenvector of P, namely calculating the eigenvector associated to
the largest eigenvalue, is equal to calculating the Bonacich eigenvector centrality.
If G is strongly connected than the Bonacich eigenvector centrality vector is unique
up to normalization. In this case e is also known as invariant distribution for P,
that has a crucial role in flow dynamics on graph.

Note that, this measure is equal to the eigenvector centrality when we consider
a weighted matrix instead of the adjacency matrix.

Bonacich has also defined another centrality measure, that could be thought
as an extension of the Katz prestige. This last measure introduce “a parameter β
that reflects the degree to which an individual’s status is a function of the statuses
of those to whom he or she is connected” [5].

Considering the graph G defined before, the Bonacich centrality vector is

c(γ, β) = (■− βW)−1
γW✶, (2.6)

where γ, β ∈ ❘ are positive scalar and β is sufficiently small so that the above
equation is well defined, as seen before. There is an important relation between
the Katz prestige, or Bonacich centrality with γ = β, and eigenvector centrality;
in fact, c(γ, β) usually approaches e as β approaches its extreme values, i.e. the
reciprocal of the largest eigenvalue of W.
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2.3 – Centrality measures

2.3.4 Katz-Bonacich centrality
We now define Katz-Bonacich centrality, an affine transformation of the original
Bonacich and Katz centralities that will be used later on in describing economic
networks. Given a scalar α ≥ 0, a simple graph G = (V, E), and the associated
SRW P, we define the Leontief matrix

L(α) = (■− αP)−1
. (2.7)

Once again, this equation is well defined when α < 1, i.e. smaller than the inverse
of the largest eigenvalue of P. The entry üij captures the direct and indirect
connections between agents i and j.
Definition 3. Consider a network with a normalized weighted matrix P and a
scalar α such that the Leontief matrix L(α) is well defined and nonnegative. The
Bonacich centrality vector v(α) of parameter α is

v(α) = LÛ
✶. (2.8)

The centrality of agent i is vi =
qn
j=1 üji, that is, the total influence of i on

the rest of the agents of the network.
The Katz-Bonacich centrality is obtained from Bonacich’s measure by an affine

transformation [3]. Remembering the previous measures, but changing W with
PÛ we find that

v(α) = ✶+ t(α)

= ✶+ α
!
■− αPÛ"−1 PÛ

✶

=
!
■+ αPÛ + α2(PÛ)2 + ...

"
✶

=
!
■− αPÛ"−1

✶.

A recursive definition of the Katz-Bonacich centrality is

v(α) = ✶+ αPÛv(α), (2.9)

which help us to understand how the interconnectivity of the network is a funda-
mental actor in the analysis. This point of view defines Katz-Bonacich centrality
as a fixed point, the unique solution of the above equation [10]. This expression
shows that i has a higher centrality if it is connected with agents that are them-
selves central

vi(α) = 1 + α

nØ
j=1

Pjivj(α) = 1 + α

nØ
j∈Ni

Pjivj(α)

In a network of n agents the sum of all agents’ Bonacich centrality not sum to
1 but to n/(1 − α), α ∈ [0,1). From now on we will call Katz-Bonacich centrality
simply KB centrality, and we will omit the fact that v(α) depends on α writing v.
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Regular,Star and Barbell graphs

Consider the complete graph, the star graph, and the barbell graph all with n
nodes; our aim is to compare Bonacich centrality and the KB centrality in this
different cases.

Complete graph and star graph represent opposite topology. In the first, each
node has clearly the same importance because is connected with all the others.
We recall that any agent in a regular graph have the same KB centrality; hence,
following results could be used for any k-regular graph.

Interest for the star graph is motivated by the presence of the hub; this par-
ticular agent seems to play a more important role than the marginal ones due to
its central position. Here, we want to quantify the consequences of this inequality
between agents’ centrality.

The curiosity for barbell graph is given by the existence of the bridge. Even
if it is similar to two separated complete graphs we want to understand if the
additional link generates sensible difference in KB centralities. In all the thesis we
will consider a barbell graph formed by two complete graph of the same quantity
of agent, i.e. Bn/2.

In section 2.3.3, we have seen that the Bonacich centralities vector for simple
graph simply is the degree vector divided by the total number of links in the
graph. For regular graph, as the complete graph, the Bonacich centrality vector is
a constant vector where each element is one divided by the number of nodes. For
the star graph, except for the central node, all the others have the same Bonacich
centrality. In the barbell graph bridge agents have a different Bonacich centrality
than other agents.

Precisely, we define the Bonacich centrality vectors of these graphs as

eKn
= 1

n
✶, eSn

= 1
2(n − 1)


n − 1

1
...
1

 , eBn/2 = 1
n(n − 2) + 4


n
n

n − 1
...

n − 1

 .

Calculating the KB centrality means to understand the behavior of Leontief
matrix. Instead of finding the inverse of (■−αP) we could use the Newmann series
to define L as

q∞
i=0 αiPi and rewrite equation (2.8) as

v = ■✶+ αPÛ
✶+ α2(PÛ)2

✶+ α3(PÛ)3
✶+ ... . (2.10)

Given that the complete graph is regular, matrix PKn
results doubly stochastic,

i.e. both rows and columns sum to one, and the resulting KB centralities vector is
a constant vector dependents only on the value of alpha

vKn
= ✶+ α✶+ α2

✶+ α3
✶+ ... = 1

1 − α
✶ (2.11)
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For the star graph is not possible to proceed in the same way because the matrix
PSn

is not symmetric. Fortunately the powers of the SRW are particularly easy
because the matrices with odd powers are all equal to Podd and with even powers
are all equal to Peven, where

Podd =


0 1

n−1 . . . 1
n−1

1 0 . . . 0
... . . .
1 0 . . . 0

 Peven =


1 0 . . . 0
0 1

n−1 . . . 1
n−1

... . . .
0 1

n−1 . . . 1
n−1

 .

This particular behavior allows us to write the Leontief matrix as

LSn
= ■+ (α + α3 + . . . )Podd + (α2 + α4 + . . . )Peven

= ■+ α

1 − α2 Podd + α2

1 − α2 Peven.

Considering that Peven is symmetric and stochastic, and PÛ
odd✶ has an easy result

we rewrite equation (2.10) as

vSn = ■✶+ α

1 − α2 PÛ
odd✶+ α2

1 − α2 PÛ
even✶

= 1
1 − α2✶+ α

1 − α2


n − 1

1
n−1
...
1

n−1

 .

Given this last results we conclude that the star graph has two different values of
KB centrality, one for the hub and one for marginal nodes

vSn =


vi = (n − 1)α + 1

(1 − α2) , i = hub

vj = (n − 1) + α

(n − 1)(1 − α2) , ∀j /= i

(2.12)

The easiest way for calculating the KB centrality vector for the barbell graph
is the recursive method. We could write the recursive system where we consider
the two typologies of centralities

vi = 1 + α

5
vj + 1

n/2vi

6
, i = bridge

vj = 1 + α

5
(n/2 − 2)
(n/2 − 1)vj + 1

n/2vi

6
, ∀j /= i

.
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Node i ei Bonacich eigenvector vi, α = 0.1 vi, α = 0.5 vi, α = 0.9
hub 0.5000 0.1727 0.3667 0.4788

marginal 0.0556 0.0919 0.0704 0.0579

Table 2.1. Comparison of centrality measures in a star graph with n = 10 nodes

The solution of previous system is
vi = n

(1 + α vj)
(n/2 − α) , i = bridge

vj = n(n − 2)
(1 − α)(n2 − 2n + 4α) ∀j /= i

,

that for n → ∞ becomes

vj = 1
(1 − α) , vbridge = 1

(1 − α) . (2.13)

This result highlight that the added link does not influence the vector of KB
centralities.

We now illustrate these results considering a complete network and a star net-
work, both with n = 10 nodes. Comparing the KB centrality with the Bonacich
one is possible if we make the first sum to 1, and this could be done multiplying
the vector v for the inverse of its sum (1 − α)/n.

As Bonacich states in the article [5], the parameter α “ reflects the degree to
which authority or communication is transmitted locally or to the structure as a
whole”. In the case of star graph is perfectly clear that the central agent plays a
predominant role in the network: it is the authority.

Table 2.1 resumes the comparison between Bonacich eigenvector and KB cen-
tralities vector of the star graph when both sum to 1. Katz-Bonacich values repre-
sent the portion of total influence, and as α → 1 they equal Bonacich eigenvector
values. As α → 1 the sum of centralities is divided into two parts: one for the
hub and the other half for all the marginal nodes. KB centrality and the Bonacich
centrality of regular graph are equal, because equation (2.11) becomes vKn = n−1✶
when we make the first sum to 1. The interpretation is clear: any agent plays an
equal role in the network because each agent has the same amount of neighbors
and the weight of all connections is the same. There is not an authority and each
node has the same influence.

Figure 2.5 presents the behavior of Katz-Bonacich centrality in a regular net-
work and in a star network.
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Figure 2.5. Katz-Bonacich centrality values of hub and marginal nodes of the
star, and of any node belonging to a regular graph.

2.4 Input-Output matrix
Wassily Leontief published a pair of articles that laid the groundwork for input-
output economics. He formulated a set of mathematical equations based on the
interdependence of the different parts of an economy and defined this new kind
of table, the input-output matrix, followed by an empirical implementation of the
mathematical model.

“This table records all transactions taking place in the economy in a specific pe-
riod of time. The capacity to absorb a substantial level of detail, and the conceptual
simplicity and transparency of the framework, make the input-output table and
the models that manipulate it well suited to evaluating strategies for sustainable
development.” [11]

The input-output matrix has n rows and n columns, and the (i, j)-th entry
represents the amount of product from industry i delivered to industry j in a
particular time. Dividing that quantity by the total output of industry j we obtain
a coefficient measuring input per unit of output. In this way the input-output
matrix of coefficients is column stochastic, and the j-th column represents all the
inputs needed to produce one unit of output of industry j.

In the previous section we have used the SRW matrix P as the input-output
matrix. We just have said that the sum of columns of the input-output matrix
represent the output degree. The authors intended to have a row stochastic matrix
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and that the sum of each column expresses the out-degree of agents. Hence, the
SRW is defined as P̃ = WD−1. For our study, this SRW is simply the transpose
of the old one because we consider simple graph with symmetric adjacency matrix.
P̃ is a column stochastic matrix and the rows sum are given by the out-degree.
Considering the P̃Û we obtain what authors of article [2] want. For the sake of
exposure we will always denote with P this last matrix P̃Û; therefore, the direct
edge from vertex j to vertex i is represented by Pij > 0 and remarks that the state
of agent i is directly affected by the state of agent j.

As we have seen before, the Leontief matrix derived from the input-output
matrix and is defined as stated in equation (2.7). It is useful to to link the properties
of the SRW to the Leontief matrix. All properties or facts that we now enunciate
will be used in the next chapters. When the network is regular, both SRW matrix
than Leontief matrix are symmetric. In the general case the Leontief matrix is not
always symmetric. A factorization that links the Leontief matrix to its spectral
properties is the singular value decomposition (SVD). Formally, a SVD of a matrix
A ∈ ❘n×m is defined to be a tuple (V, Γ, U) satisfying

A = V Γ UÛ, (2.14)

where

• Γ ∈ ❘n×m is a diagonal matrix with nonnegative real number γ on the
diagonal called singular values; these non-zero elements are the square roots
of the non-zero eigenvalues of AÛA or A AÛ;

• V ∈ ❘n×n is an orthonormal matrix whose columns are eigenvector of A AÛ

(a matrix U is orthonormal if UÛU = ■);

• U ∈ ❘m×m is an orthonormal matrix whose columns are eigenvector of AÛA.

Columns of V are called left-hand singular vectors of A and columns of U are
called right-hand singular vectors. If we think of the columns of A as n data points
we can define the first principal component of A as a “fictitious vector that best
summarizes the data set of A” [14]. Is a fact that principal components coincide
with left singular vectors.

Recalling that Bonacich centrality e is defined as the eigenvector of PÛ associ-
ated to 1, is easy to see that it is also an eigenvector of LÛ associated to eigenvalue
1/(1 − α). When the SRW matrix is symmetric, the SVD of P coincides with the
eigenvalues decomposition. In this special case, the SVD of M is simply given by1
■− αVΛ VÛ

2
, where Λ is the diagonal matrix of eigenvalues of P. The resulting

columns of V are the eigenvector of P and, as a conclusion, Bonacich centrality
coincide with the first principal component. We know that when the network is
symmetric, Bonacich centrality e is equal to KB centrality; unfortunately we also
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2.4 – Input-Output matrix

know that for not symmetric P this is true only when α → 1. However, when
we will consider the first principal component of a Leontief matrix we have to
remember that it is something similar to KB centralities vector.
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Chapter 3

Shocks in Economic
Networks

In this chapter we introduce the economic model on networks.
Agents are the active parts of the system. Representing an agent means to

define how it interprets its interactions within the network: “player’s well-being
depends on own action as well as on the actions taken by his or her neighbors” [15].
Any agent is represented by his/her state that resumes his/her choice of action or
some other economic or social variable of interest. The totality of all agents’ state
defines the aggregate level of the system. Considering the alteration of the status of
some agent we would like to understand how the network and the agents influence
the shape of whole system. The study of modeling agents’ actions on network
belongs to the theory of network games, that captures a wide variety of problems,
from economic and finance networks to criminal or educational ones [15] [14] [6] [17].
When we talk about studying shocks on economic network, illustrative examples
are:

• a production network where agents are competitive sectors each of which
producing a distinct product [9];

• a financial market where agents are financial institutions which are linked via
debt contracts.

This chapter is organized as follows. In the first part, we introduce the two
economic models that we will use during the thesis; we describe which are the
measures of interest and the ways to analyze the whole network or the importance
of its agents. Given that our models derive from a more general theory, in the
second part we describe the general model defined by Acemoglu, et. all in [2], for
the study of shocks over economic networks.
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3.1 Economic networks models
Consider a system in which n economic agents are interacting. The connections
between a finite set of agents V = {1, ..., n} are described by a fixed network. This
network is represented by a graph G = {V, E , W}, where the set of nodes represents
the set of agents, and the set of links represents the interaction between agents.
The matrix that describes the graph is the adjacency matrix.

Each network’s entity i is represented by its state xi ∈ ❘ which captures the
agent’s choice of action or other economic variable of interest. The vector of all
states is denoted x = (x1, ..., xn)Û ∈ ❘n . In a network the states of different
agents are interconnected; the extent of interaction between agent j and agent i
is captured by the SRW matrix P of the graph. The state of any given agent i
depends on the states of its neighbors and on a stochastic variable Si ∈ ❘ that
represents the shock that hits agent i. The multivariate vector of all stochastic
shocks is denoted S = (S1, ..., Sn)Û ∈ ❘n, while a realization of shocks is denoted
s = (s1, ..., sn)Û ∈ ❘n. A parameter α ≥ 0, also known as state of the world [23],
gives the magnitude of the effect of agents’ actions on their neighbors.

Formally, we define an economy of n agents as a triple En(α, P, S) using a
parameter α, the matrix of interactions P, and the vector of shocks S.

3.1.1 Agents’ state
To explicitly model the behavior of individuals we refer to network games. Agent
i chooses an action xi simultaneously with others; let xNi

denote the profile of
actions taken by the neighbors of agent i. Payoffs of agent i depend on his/her
own action xi, others’ actions xNi

, a realization of shocks s, matrix of interactions
P, and the parameter α:

ui(xi, xNi
; α, P, s) = αsixi − 1

2x2
i + αxi

Ø
j∈N

Pijxj (3.1)

Quadratic payoffs are highly used in many papers that talk about network games
[23] [17] [6]. The payoff function has two parts. The first two terms describe
the individual part where the marginal benefits are given by sixi. The last term
of the function describes the local-aggregate effect of interactions since the state
of agent i is weighted by the sum of efforts of its neighbors. We only consider
games of strategic complements, that is, where the increase in the actions of other
players leads also to an increase of the action of a given player. This specificity is
underlined by the fact that the parameter α is positive.

Each agent chooses his/her action to maximize individual payoffs. Let xi =
fi(xNi ; α, P, s) be the best reply of agent i to other agents’ action given α, P, and
a realization of shocks s. The first-order necessary condition for each agents i’s
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choice of action to maximize his/her payoff is

∂ui(xi, xNi ; α, P, s)
∂xi

= α

Ø
j∈Ni

Pijxj + si

− xi = 0. (3.2)

A Nash equilibrium is a vector x∗ = (x∗
1, ..., x∗

n) that satisfies the system of best
replies. The above condition leads to

x∗
i = α

 nØ
j=1

Pijx
∗
j + si

 , ∀i, (3.3)

that written in matrix notation results

x∗ = α (P x∗ + s) . (3.4)

The uniqueness of Nash equilibrium of the game is characterized by the follow-
ing proposition.

Proposition 2. Let En(α, P, s) be an economy defined by a network of interactions
P, parameter α and a realization of shocks s. Then, a unique Nash equilibrium
exists if α < 1, and the equilibrium states are determined by

x∗ = α L s, (3.5)

where L = (■− αP)−1 is the Leontief matrix of the economy.

As showed in [7], the equilibrium depends on the largest in module eigenvalue
of interactions matrix P. The main result states that when |α λmax(P)| < 1, there
is a unique Nash equilibrium. In fact, the Nash equilibrium is simply a solution to
the system of linear equations defined by (3.4) and a unique equilibrium exists if
det(■−α P) /= 0, that is, if the Leontief matrix is invertible. Given that the largest
eigenvalue of a stochastic matrix P is 1, we conclude that α < 1.

The same condition on the spectral radius of α P ensures that this equilibrium
is asymptotically stable according to the standard conditions for the stability of
a system of linear differential equations [6]. The stability condition imposes a
joint restriction on the parameter α and the network structure P, which jointly
give what is called the network effects. The equilibrium is stable only when these
network effects are small enough.

We have seen that this matrix collects information of direct and indirect in-
teractions. Defining the equilibrium of agents’ states with the Leontief matrix of
the economy means to consider all its interactions as factors of the equilibrium.
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Suppose that one shock affects only agent j, how much an agent i /= j is also in-
fluenced? Considering only the i-th agent, we rewrite equation (3.9) emphasizing
all the connections as

x∗
i = α Lijsj

= α sj

A
α Pij + α 2

nØ
k=1

PikPkj + ...

B
,

where Lij ∈ ❘ is the (i, j) entry of matrix L. Even if the two agents, i and j,
are not directly connected, the right side of the second equation states that the
shock to agent j propagate to the agent i. The term α turns out to be a parameter
that weighs the level of interconnections, that is, it gives less importance to longer
walks.

3.1.2 Macro states
Aggregation of whole agents’ states define the macro state y of the system. This
variable represents some macroeconomic outcome of interest that is obtained by
aggregating the individual states of all agents; it is also an observable measure that
help us to classify networks’ structure in terms of how the macro level consider
the micro ones. The economic theory behind this vision derives on the idea of
Nobel price winner Robert Lucas. His theory is based on a new classical approach
to macroeconomics that argued how macroeconomic model have to be built as
aggregated version of microeconomic model.

We define two different models, each of which exhibit a nonlinearity on agents’
state. Formally, we could think the macro state as the output of the economy whose
input requirement is the equilibrium vector of state, i.e. y = Ψ(x∗), Ψ : ❘n → ❘.
Given that the macro state works on the equilibrium vector, from now on we will
simply use the term x indeed x∗ to indicate the equilibrium configuration.

• The first macro state aims to emphasize the total utility, also called the
total welfare [14], at the equilibrium. Using the fact that equilibrium actions
satisfy (3.3), two times the sum of the utilities y = 2

qn
i=1 ui becomes

yW =
nØ
i=1

x2
i = xÛx. (3.6)

During the thesis we will refer to this macro state as the total welfare.

• The second macro state is defined as the square of equilibrium states’ sum

yA =
A

nØ
i=1

xi

B2

=
!
✶

Ûx
"2

, (3.7)
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This summation represents the aggregate level of activity and for this reason
will be called total activity.

The relation between micro, macro, and stochastic shocks defines two different
analysis. The ex-post analysis study the behavior of the network from a determin-
istic point of view. The vector of shocks s is considered an observable quantities.
The equilibrium definition is then an ex-post equilibrium notion that enables to
study how the equilibrium varies as a function of the shock realizations. The first
analysis mainly focuses on the role that different agents have in shaping the macro
state. Since we know a particular realization of shocks, our study will focus on who
the central agents are. This problem, in network games theory, is called the key
players problem. The article [23] gives a definition of key player negative-problem
referring to a network of criminals: “ a key player is the individual (criminal) to
be removed from the network so that total crime is minimized”.

The ex-ante analysis aims to study the expected value of the macro state,
❊[y]. As the previous investigation, this study highlights the differences between
structure of networks but also depends on the nature of shocks. Given that S is a
multivariate random vector is important to understand the behavior of the macro
state in terms of this vector.

3.2 Networks, Shocks, and Systemic Risk
Our work belongs to a more general framework described in the article “Networks,
Shocks, and Systemic Risk” [2]. In this paper, the authors consider general func-
tions both for the agents’ state and the macro economic state. Their goal is to
develop a general theory that could explain how idiosyncratic shocks model dif-
ferent networks of interactions. In the article are always considered idiosyncratic
shocks, that is, shocks that are independent and identically distributed (IID); a
lot of examples are described, from production and financial networks to networks
games.

Using the same notation of our thesis, the starting point of their article are two
functions. The collection of agents’ states is described by the relation

x = f (P x + s) ,

where f : ❘n → ❘n is a continuous and increasing function called economy’s
interaction function: it describes the nature of interaction between agents. Given
that shocks are idiosyncratic, the multivariate variable S has also a simple form
of variance-covariance matrix, i.e. Ω = σ2■. The element Pij still represents the
influence that agent j has on agent i, and the matrix P ∈ ❘n×n

s has the same
characteristic than our interaction matrix.
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Following the same definition of equilibrium (3.3), the set of equilibria depends
on the economy’s network and on the properties of the interaction function; what
follows establish the existence and generic uniqueness of the equilibrium.

Theorem 2. Suppose that there exists β ≤ 1 such that |f(z) − f(z̃)| ≤ β|z − z̃| for
all z, z̃ ∈ ❘. Furthermore, if β = 1, then there exists δ > 0 such that |f(z)| < δ
for all z ∈ ❘. Then, an equilibrium always exists and is generically unique [2].

The macro state of the economy is defined as

y = g (h(x1) + · · · + h(xn)) , (3.8)

where g, h : ❘ → ❘. The function g is called the economy’s aggregation function
[2]. The nature of the three functions f, g, and h defines the details of the economy
and plays a key role in how the network translates microeconomic shocks into
macroeconomic outcomes. The assumption f(0) = h(0) = g(0) = 0 ensures that in
the absence of shocks the equilibrium state of all agents and the economy’s macro
state are equal to zero.

The main purpose of the article is to define an explicit dependence of the
macro state y of the economy on idiosyncratic shocks and on the curvatures of the
functions. To simplify the analysis, it is assumed that the economy is smooth, in the
sense that the functions f, g, and h are at least twice differentiable and the agent-
level shocks are small. These assumptions allows to develop an approximation of
the equilibrium state of each agent to the first and second order of their Taylor
expansions.

Starting from the interaction function, it results that the equilibrium states,
around the point of null shocks, can be linearly approximated as

x = f Í(0)L s, (3.9)

where L = L (f Í(0)) ∈ ❘n×n is the Leontief matrix of the economy with parameter
f Í(0). The same consideration are done for our case.

The linear approximation of the macro state of the economy, as a function of
its underlying structure and the agent level shocks, results

y1st = f Í(0)gÍ(0)hÍ(0)vÛs, (3.10)

where the vector v ∈ ❘n represents the KB centrality; it summarizes how shocks
shape the macro state of the economy given a first-order approximation. The last
equation means that if a shock impacts the most central node, from a KB point
of view, then the impact on the macro state will be more pronounced. Therefore,
Leontief matrix of a network and its associated KB centralities resume the tangled
nature of interconnections and the role of each agent in the whole economy.
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Unfortunately, the equilibrium approximated only to the first term is not in-
formative from an ex-ante point of view. The expected value of the macro state
is clearly equal to 0 because is linearly dependent on s, that has mean equal to
0. In this case, the macro state shows a certainty equivalence, that is, ❊[y1st] = 0
regardless of the underlying network of the economy.

Given that the goal is to compare and evaluate economies from an ex-ante point
of view, also the second-order approximation has to be defined. In order to consider
a more detailed analysis, taking the second-order effects into account provides a
more refined characterization of how agent-level shocks shape the macro state of
the economy.

As done for the approximation to the first term, it is possible to write the macro
state of the economy using second-order approximation. The following theorem
summarizes the most important result of article [2].

Theorem 3. Suppose that f Í(0) < 1. Then, the second-order approximation to
the macro state of the economy is given by

y2nd = f Í(0)gÍ(0)hÍ(0) vÛs+

+ 1
2gÍÍ(0)

!
f Í(0)hÍ(0) vÛs

"2 +

+ 1
2gÍ(0)sÛ

1
hÍ(0)f ÍÍ(0)LÛV L + (f Í(0))2

hÍÍ(0)LÛL
2

s,

(3.11)

where L is the Leontief matrix with parameter f Í(0), v is the corresponding KB
centrality, and V = diag(v) is a square diagonal matrix which entries are described
by the vector v. [2].

The first term of the equation simply is the first-order approximation; it ex-
presses the dependences of the macro state to the KB centralities. The second
term represents some curvature in the aggregation function, while the third one
describes the non-linearity of the interaction function and h. It is due to these
last two terms that the expected value of y is not equal to 0. In fact, are non-
linearities that ensure an expected value different to 0. Therefore, if we want to
understand the role of microeconomic shocks in different economies, we have to
consider functions of the economy that are at least quadratics.

Clearly, our two macro states are part of this equation; however, it should be
noted that even if losing a bit of generality, only considering some parts of this
aggregate state is more explanatory as well as easier to read.
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Chapter 4

Ex-Post analysis

We now propose the ex-post analysis for both the economic models. Recall that
this point of view tries to understand the behavior of the macroeconomic output
after a realization of shocks. We focus our attention on the agents’ role and we
define who is the most systematically important agent within each structure. The
macro states are quadratic functions of the equilibrium vector x; therefore, sample
variance of network measures results a useful statistic to describe both aggregate
levels.

Macro states depend both on network structure and on a realization of shocks;
as a first description of the economies, we provide a characterization in terms of
the Leontief matrix and KB centralities. After this introduction, we describe two
classes of optimization problems. The first help us to understand which is the
worst shock that could affects a network, interpreted as the one that maximizes y;
the second aims to find which is the best structure that minimizes the worst shock.

As a result of this representation we rank the structures defined in the first
chapter in terms of their macroeconomic output. The most important results of
this chapter are the Theorems 4 and 5 and following propositions; these statements
resume how to compare different networks in terms of both macro states.

4.1 Total Welfare

Referring to equation (3.6), the ex-post value of yW depends on the nature of
interactions matrix and on a realization of shocks; we make this relationship explicit
by writing yW = ΨW (P, s). Given the equilibrium vector defined in Proposition
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4 – Ex-Post analysis

3.5, the total welfare results

yW =
nØ
i=1

(xi)2

= α2
nØ
j=1

nØ
k=1

sjsk

A
nØ
i=1

LijLik

B
.

Using matrix notation becomes

yW = α2sÛLÛL s. (4.1)

We first consider the special case when just one agent is affected by the shock.
We are interested in finding which is the most important agent in the network
following the definition below.

Definition 4. Agent i is said to be systemically more important than agent j if
y(i) > y(j), where y(i) denotes the macro state of the economy when only agent i is
hit with a shock.

We analyze agents’ systemically importance in both the aggregate level. Higher
is the macro state of the economy when a shock affects agent i and more the agent
i is considered systemically important. We expect that this parameter is strictly
related to a centrality measure.

To this aim we take s = sei, where ei is the vector with all zeros but a 1 in
position i, and we elaborate on the previous equation:

y
(i)
W = (α s)2eÛ

i LÛL ei

= (α s)2
nØ
j=1

L2
ji.

(4.2)

This equation captures the value of the macroeconomic outcome when a shock
affects only the agent i. Comparing the role of each agent means to focus the
analysis on the last parameter

qn
j=1 L2

ji. In fact, we say that agent i is systemically
more important than agent k if

nØ
j=1

L2
ji >

nØ
j=1

L2
jk.

Using the definition of population variance1of a finite population of size n the
term

qn
j=1 L2

ji results
nØ
j=1

L2
ji = nVar(L1i, ..., Lni) + v2

i

n
. (4.3)
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Figure 4.1. Concentration centrality of most significant agents in each networks
when the parameter α varies in its interval of values.

This summation essentially measures the variation in the extent to which agent
i influences other agents in the economy. The standard deviation of the i-th column
of Leontief matrix is called concentration centrality and expresses “how evenly the
agent i influence is distributed across the rest of the agents” [2].

The above equation states that KB centrality is different from systemically im-
portance. In fact, they represent the one-norm and the euclidean norm of Leontief
matrix columns. An interesting consequence concerns regular networks where all
the agents have the same KB centrality. For example, consider the undirected com-
plete network and the undirected ring. Even if they are both regular economies,
agents in the first network uniformly distribute their influence over a larger number
of agents than in the latter. As a result, the concentration centrality of an agent
in the cycle graph is higher than the one of an agent in the complete graph.

Figure 4.1 represents the concentration centralities of distinctive nodes in differ-
ent networks of 20 agents. The hub is the central node in the star graph, the bridge
is the node of barbell graph that links the two complete graph, cycle is any node
of the ring graph, and complete is any node of the complete graph. The higher

1 Var(X) = 1
n

qn

i=1 x
2
i − µ2

x where µx = 1
n

qn

i=1 xi is the sample mean of the population.
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Figure 4.2. Systemically importance of most significant agents in each networks
when the parameter α varies in its interval of values.

values of concentration centrality are present in networks where agents’ influence
is less distributed, that is, the cycle and the barbell graph.

The parameter α expresses how much important the interactions are. The
concentration centrality in the complete network does not show a dependence on
α. In cycle and barbell graph, higher α makes the influence of agent i propagates
stronger in the whole network, also arriving to opposite agents. Then, the influence
of i varies from agent to agent making its variance growing. Only the concentration
centrality of the hub is descending in α. When α grows the influence of the hub
on marginal nodes becomes equal to the one that it has on itself.

Even if the variance of agent’s interactions is useful to understand differences
between regular economies, it is not clear how much the systemically importance
depends on it and on KB centrality. Therefore, it is interesting to rewrite equation
(4.3) using the max-norm and the one-norm

nØ
j=1

L2
ji ≤ (maxjLji)

 nØ
j=1

Lji

 = (maxjLji) vi. (4.4)

Even if this equation defines an upper bound, it is clear that the KB centrality
plays again a key role in the definition of systemically importance.

Figure 4.2 represents the systemically importance of previous nodes in networks
of 20 agents. In contrast to the previous figure, the hub of the star is clearly more
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4.1 – Total Welfare

systemically important than any other node. This means that equation (4.3) is
informative if we aims to study agents with the same KB centralities. Instead,
when we compare nodes with very different KB centralities it is better to consider
(4.4).

We now consider the case when all the agents are affected by a shock. Consider-
ing the macro state (4.1), it is useful to rewrite Leontief matrix using the singular
value decomposition (SVD) defined in Section 2.4. In this way it is possible to
relate the macro state yW to eigenvalues of LÛL, that is, to singular values of L.

The singular value decomposition of the Leontief matrix is defined as a tuple
(V, Γ, U) satisfying

L = V Γ UÛ, U, V, Γ ∈ ❘n×n, (4.5)

where matrices U, V are orthonormal and Γ is a diagonal matrix whose entries
are called singular values.

Using the SVD, the outcome of yW becomes

yW = α2 [L s]Û [L s]

= α2
è
V Γ UÛs

éÛ è
V Γ UÛs

é
= α2

è
sÛU Γ VÛ

é è
V Γ UÛs

é
= α2sÛU Γ2UÛs.

Summarizing, the output of the economy results

yW = α2
nØ
i=1

γi
!
sÛu·i

"2
, (4.6)

where u·i ∈ ❘n is the i-th right-hand singular vector. Columns of U are orthonor-
mal and generate the vector space ❘n; given a vector of shocks belonging to ❘n
we are interested in finding an upper bound for the macro state of the economy
yW .

Theorem 4. Let En be an economy described by its associated interactions matrix
P and the parameter α. For every vector of shocks s ∈ ❘n, we have that

yW ≤ γmax(α ësë)2, (4.7)

where γmax indicates the highest singular value of the Leontief matrix L.

Proof. Using Schwartz inequality we write an upper bound for equation (4.1):

α sÛLÛL s ≤ α ëL së2.
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4 – Ex-Post analysis

Using the definition of matrix norm2follows that

ëL së ≤ ëLëësë, ∀ s ∈ ❘n.

The matrix norm induced by the euclidean vector norm is

ëLë =
ñ

ρ(LÛL),

where ρ(·) denote the spectral radius. In that case, the spectral radius is equal to
largest singular value γmax of L. Hence, we have found that

yW ≤ α2(ëL së)2

≤ α2(ëLëësë)2

= γmax(α ësë)2.

Given that our goal is to classify networks in terms of their macroeconomic
state, we analyze which is the nature of shock that gives back the highest value
of yW . We assume that the vector s has a bounded norm, and we define the
maximization problem

Ψ∗
W (P) = max

ësë≤1,∈❘n
ΨW (P, s). (4.8)

Proposition 3. Let En be an economy described by its associated interactions
matrix P and the parameter α. Assuming a fixed norm for the vector of shocks,
the maximum value of the macro state yW , defined by problem (4.8), is

y∗
W = α2γmax, (4.9)

where γmax indicates the largest singular value of the Leontief matrix L. This
maximum is achieved if and only if the vector of shocks is proportional to column
u·max ∈ U associated to γmax.

Proposition 3 says that when the vector of shock is restricted to have a fixed
norm, the highest in singular value is the resuming parameter of the Leontief matrix
of an economy. Therefore, we could classify networks’ structure just using singular
value. The maximum is an extreme value for categorizing the macro states but
give us an idea of how large are the fluctuations of the aggregate level.

2A vector norm ëxë ∈ ❘n induces a matrix norm on ❘n×n by settingëAë = max
x/=0

ëA xë
ëxë =

max
ëxë=1

ëA xë, A ∈ ❘n×n.
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4.1 – Total Welfare

Proof. From Theorem 4 immediately follows that yW ≤ α2γmax; we have to un-
derstand when the equality holds and for which kind of vector s. We assume a
non-increasing order of singular values, that is γmax = γ1 ≥ γ2 ≥ ... ≥ γn ≥ 0.

(If) Not considering parameter α, Schwartz inequality ensures that equation
(4.6) could be written as

nØ
i=1

γi
!
sÛu·i

"2 = γ1(sÛu·1)2 +
nØ
i=2

γi(sÛu·i)2

≤ γ1 (ësëëu·1ë)2 +
nØ
i=2

γi
!
sÛu·i

"2
≤ γmax +

nØ
i=2

γi
!
sÛu·i

"2
.

If the vector of shocks is proportional to vector u·max then we have that the
equation holds for the last inequality. Moreover, s has to be orthogonal to all the
other columns of u·j , j /= 1, due to the orthonormality of matrix U. This ensures
that the summation of the last inequality is equal to 0 and therefore we have that
y∗
W = α2γmax.

(Only if) Considering equation (4.6), we have to prove that the only possible
solution for

γmax =
nØ
i=1

γi(sÛu·i)

is when s is proportional to u·max. Given that the Leontief matrix is invertible its
rank is n. Hence, all its eigenvalues are different from 0; as a direct consequence,
also its singular values are different from 0. As a conclusion, the only terms in the
summation that have to be null are the scalar products. This happens when the
vector s is orthogonal to all columns except for the one associated to γmax; given
that the columns of U generate ❘n the only possible solution in ❘n is that s is
proportional to u·max.

We have found that the singular value is the resuming value when we consider
the worst shock (intended as the one that generates the highest yW ). Now we focus
on which is the network’s structure that minimizes the worst shock, that is, we want
to minimize the highest singular value. Formally we define a minimization problem
on all fully connected networks described by a positive row-stochastic matrix P

min
P ∈❘n×n

Ψ∗
W (P), (4.10)

where Ψ∗
W (P) is defined by (4.8).
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4 – Ex-Post analysis

Proposition 4. Consider the economic networks En described by their interactions
matrix P and the parameter α. Then,

Ψ∗
W (P) ≥

3
α

1 − α

42
, (4.11)

and the equality holds if and only if matrix P is symmetric.

Proof. (If) We start considering networks that have a symmetric P, for example
regular and undirected networks such as the complete graph. If the SRW matrix
is symmetric also L is symmetric too. As a direct consequence, the product LÛL
is the square of the Leontief matrix and the singular values coincide with squared
eigenvalues. When the matrix P is symmetric, square root of the largest singular
value of L is equal to its largest eigenvalue and columns of matrix U are equal to
its eigenvectors. Then, equation (4.9) becomes

y∗
W = α2λ2

max,

where λmax indicates the largest in module eigenvalue. Remembering that the
largest eigenvalue of P is 1, we obtain the new form

y∗
W =

3
α

1 − α

42
.

Now we have to prove that if we consider a not symmetric P we always obtain an
higher value of γmax.

When the Leontief matrix is not symmetric the square root of its largest eigen-
value is different from largest singular value, and the eigenvector u·1 is different
from the eigenvector centrality. Even if is not possible to explicitly define the
largest singular value it is possible to prove that it is always greater than any
eigenvalue of L. The largest in module eigenvalue of L could be written

|λmax| = ëλmaxxë2,

where x is the eigenvector with norm 1 that is associated to λmax. Using the
definitions of eigenvalue the above equation becomes

|λmax| = ëL xë2.

Using again the definition of matrix norm we have that

|λmax| ≤ √
γmax,

and, consequently, a network with a symmetric P always has a lower or equal value
of y∗

W than any other network.

40



4.1 – Total Welfare

0 0.2 0.4 0.6 0.8 1
10 -4

10 -2

10 0

10 2

10 4

y
W*

barbell

komplete

star

Figure 4.3. Values of y∗
W when the number of agents is fixed to n = 20 and α is

in [0,1). The y-axis is plotted in a logarithmic base 10 scale.

(Only if) From the equation Ψ∗
W (P) = [α/(1 − α)]2 we easily obtain that γmax

has to be equal to 1/(1 − α)2. In this case the above inequality becames an
equality and therefore γmax = λ2

max. When eigenvalues and the square root of
singular values coincide it means that the SVD is equivalent to the eigenvalue
decomposition and that matrix L is symmetric. Finally, if L is symmetric also P
has to be too.

There are two important facts to note from the last proposition. The first is
that the lower bound of y∗

W does not depend on the number of nodes; it is not
important the number of agents that forms the network rather than the parameter
α. The second fact is that symmetric matrices P represent regular and undirected
networks, such as the complete and ring graphs that we have considered in the
examples. We have seen that when L is symmetric, its first principal component
represents the eigenvector Bonacich centrality that is equal to the constant vector;
this proposition highlights that having all agents with the same importance brings
to lower values of y∗

W .
Figure 4.3 represents y∗

W in a semi-log plot with the change in α for different
networks with n = 20 agents. We have considered simple network as underlying
structures of the economies and therefore we have plotted the complete graph as
representative of undirected and regular networks. Complete and barbell networks
result almost equal showing that the bridge link does not work as a bottleneck if it
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has almost the same weight of all the other links. Star network clearly dominates
all the others due to the difference between its agents’ importance.

4.2 Total Activity
Consider now the total activity of an economy. We recall that yA is defined as
the square of the sum of agents’ state (3.7). As the previous macro state we could
consider yA as a quadratic function that for a fixed value of α depends on the
nature of the network and on the nature of shocks yA = ΨA(P, s). In this way
we can proceed as done for yW ; after a brief analysis on which are the important
variables we classify networks in terms of the macro state yA or some measures
directly connected to it.

Given the equilibrium configuration (3.5) the ex-post value of yA is defined as

yA =
A

nØ
i=1

xi

B2

=
A

α

nØ
i=1

vjsj

B2

,

that written in matrix notation becomes

yA =
!
α sÛv

"2
. (4.12)

Thus, instead of considering the entire matrix L, we could describe the macro state
yA only with the vector of KB centralities. The role of each agent in the economy
is described by vi and makes easy to understand how a shock to distinct agents
differently shapes the aggregate level.

We now identify which is the systemically most important agent in each econ-
omy. We first consider the special case when just one agent is affected by the shock;
as for yW we take s = sei, where ei is the vector with all zeros but a 1 in position
i, and we elaborate on the previous equation

y
(i)
A =

!
α s eÛ

i v
"2

= (α s vi)2
.

(4.13)

This equation states that a node with higher KB centrality has higher importance
in shaping the macroeconomic output. In fact agent i is systemically more impor-
tant than agent j if

vi > vj

and, as a result, a shock will propagate more if it affects a central node. In the
star network the hub has an higher KB centrality than marginal nodes; hence, if a
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shock affects the central agent rather than a marginal one the macro state yA will
be higher. In any regular network, where each agent has the same centrality, the
macro state has the same values and it does not matter which agent is affected.

We now consider the case of a whole shock, that is we assume that each agent
is affected by a shock of intensity si, ∀i. Considering any fully connected economic
network we aim to find an upper bound for yA given a vector of shock s ∈ ❘n.

Theorem 5. Let En be an economy represented by its interactions matrix P and
the parameter α. For every realization of shocks s ∈ ❘n, we have that

yA ≤ (αësëëvë)2
, (4.14)

where v ∈ ❘n represents the vector of Katz-Bonacich centralities of the economy.

We do not prove the theorem that immediately follows from equation (4.12)
simply using the Schwartz inequality. Now consider the maximization problem

Ψ∗
A(P) = max

ësë≤1,∈❘n
ΨA(P, s). (4.15)

Proposition 5. Let En be an economy represented by its interactions matrix P
and the parameter α. Then, the maximum value of problem (4.15) is

y∗
A = α2ëvë2 (4.16)

and is reached if and only if the vector of shocks is proportional to the vector of
Katz-Bonacich centralities.

This proposition directly follows from Theorem 5 imposing the norm of the
vector of shocks to 1. Given that the upper bound is yv ≤ α2ëvë2, is clear that
the only vector of shocks that satisfies the equation has the form s = v/ëvë. As
for Proposition 3, the worst shock is the one that hit agents proportionally to their
importance; in this case the importance is defined by the KB vector.

The economic network that manifests the lower value of ëvë is the one where
all the agents have the same KB centrality. Defining the minimization problem

min
P∈❘n×n

Ψ∗
A(P), (4.17)

where Ψ∗
A is defined in (4.15), the following proposition states which are optimum

economic networks.

Proposition 6. Consider economic networks En described by their interactions
matrix P and the parameter α. Then,

Ψ∗
A(P) ≥ n

3
α

1 − α

42
, (4.18)

and the equality holds if and only if matrix P is doubly stochastic.
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Differently from the previous macro state, in this case y∗
A linearly depends on

the size of the network. When the vector of shocks has a fixed norm, the two
cases have in common the fact that regular and undirected networks are the ones
with lower values of both macro states. When agents have the same importance
the location of the shocks is not significant; this result is intuitive because agents
appear equal to a shock that has to decide who to hit.

Proof. Using the definition of sample variance we can rewrite the squared norm of
vector v as

ëvë2 = nVar(v1, ..., vn) + n

(1 − α)2 .

(If) When the SRW matrix of the network is doubly stochastic it means that
the KB centralities vector is the constant vector 1/(1 − α)✶; therefore, the term
Var(v1, ..., vn) is null and y∗

A results equal to the second term of the above equation.
(Only if) When Ψ∗

A(P) = n [α/(1 − α)]2 we have that ëvë2 = n/(1 − α)2 and
hence the term Var(v1, ..., vn) has to be null. The variance of a vector is null if
and only if all the element of the vector are equal; as a consequence, when all the
agents have the same KB centrality we find that vi = 1/(1 − α), i = 1, ..., n. Using
the definition of v in terms of L we find that

v = LÛ
✶ ⇐⇒ 1

(1 − α)✶ = LÛ
✶

⇐⇒
!
■− αPÛ"

✶ = (1 − α)✶
⇐⇒ PÛ

✶ = ✶.

Thus, when the KB centralities vector is constant the matrix P is doubly stochastic.

Figure 4.4 represents y∗
A in a semi-log plot with the change in α for different

networks with n = 20 agents. We have considered simple network as underlying
structures of the economies and therefore we have plotted the complete graph
as representative of undirected and regular networks. Again, the barbell networks
result almost equal to a undirected and regular networks showing that the centrality
of the two agents of the bridge does not create a visible difference. Star network
clearly dominates all the others due to centrality of the hub.
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Figure 4.4. Values of y∗
A when the number of agents is fixed to n = 20 and α is

in [0,1). The y-axis is plotted in a logarithmic base 10 scale.
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Chapter 5

Ex-Ante analysis

This chapter is devoted to the ex-ante analysis of the aggregate effects of shocks in
economic networks. In particular, we shall study the dependence of the expected
macro-states of the network as a function of the jointly distribution of the shocks

In oder to emphasize the effects of shocks on both macro states we have divided
the chapter in two parts: one for the total activity and one for the total welfare.
Differently from what is done in article [2], we define the shocks column vector S
as a random variable allowing for possible correlation. The case of idiosyncratic
shocks is defined as a special case.

Analogously to the previous chapter, we aim to characterizing the worst possi-
ble shock distribution for a given network. We then consider the network design
problem for the network structure that can optimally react to the worst shock.
The final result that we want to achieve is to have simple macroeconomic measures
with which it is easy to evaluate the performance of a network. This conclusions
are stated in Theorem 8 for yW and in Theorems 6 and 7 for yA.

Formally we define the shocks vector

S = (S1 . . . Sn)Û
, ∈ ❘n

and we assume the normalization that expected value is ❊[S] = 0. Given that
we consider squared functions of S the most important statistic is the variance-
covariance matrix Ω.
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5 – Ex-Ante analysis

5.1 Total Activity
We recall that the macro state yA is equal to

!
✶Ûx

"2. The performance measure
is found by taking the expected value of yA:

❊[yA] = α2
❊
#
(SÛv)2$

= α2
❊

è
vÛ(S SÛ)v

é
= α2

1
vÛ
❊[S SÛ]v

2
.

In other words,
❊[yA] = α2vÛΩ v, (5.1)

therefore, as in the ex-post analysis, KB centrality vector v plays key role in shaping
the macro state. From now on we will denote ❊[yA] with µA = ΦA(P, S), where
ΦA : ❘n → ❘ expresses the dependence on the stochastic vector and on the nature
of the network.

As a first analysis we consider idiosyncratic shocks. If shocks are assumed to
be independent and identically distributed (i.i.d) with expected value zero and
variance σ2, then Ω is a diagonal matrix equal to σ2■.

Reformulating the performance metric, we state the following result:

Proposition 7. Let En be an economy defined by the interactions matrix P, the
parameter α, and the vector of stochastic shocks S. Suppose that shocks are inde-
pendent and identically distributed with mean 0 and finite variance σ2.

Then, the ex-ante performance of the macro state yA is

µA = (ασ)2
nØ
i=1

v2
i . (5.2)

Proposition 7 states that when shocks are i.i.d. the performance metric µA
does not show a dependency on which agent is affected. Everything is captured by
the squared norm of v that resumes the topological properties of a network.

We have already seen that
qn
i=1 v2

i could be rewritten using the definition of
population variance:

nØ
i=1

v2
i = nVar(v1, ..., vn) + n

(1 − α)2 .

The term Var(v1, ..., vn) focus on the distribution of KB centralities. When shocks
are i.i.d., population variance of Bonacich centralities is what makes µA changes.

The term ❊[y] is a function of the structure and is used as a measure of per-
formance, giving us the possibility of classifying economies. Formally:
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5.1 – Total Activity

Definition 5. An economy outperforms another if ❊[y] is larger in the former
than the latter.

Using this definition we could state that network in which agents play dispro-
portional role outperform regular networks that have an equal distribution of KB
centralities.

The effects of a shock spread homogeneously if the network is regular. It is
not important which agent is affected because each one has the same role. At the
aggregate level this results in a more efficient way of washing out the shock [2].

On the other end, a network with agents that play disproportional roles will
result in a higher value of Var(v1, ..., vn), and consequently in an higher value of the
expected value of total activity. The effects of a shock are no more equal because
ones on central node plays a more relevant impact on the performance metric.

For example, consider a regular network and a star network, both with n nodes.
In a regular network, where each agent has the same Bonacich centrality v =
1/(1 − α), the term Var(v1, ..., vn) is null and the expect value of yA becomes

[µA]regular = nσ2
3

α

1 − α

42
.

In the star network we have the opposite situation. The term Var(v1, ..., vn)
is not null due to the difference between marginal agents and the hub. In this
economy the expected value of yA is

[µA]star = α2σ2

I
[nα + (1 − α)]2

(1 − α2)2 + [n − (1 − α)]2

(n − 1)(1 − α2)2

J
.

We now focus on µA in large scale networks, that is, when the number of
agents is large. As n → ∞, the expected total activity clearly scales as the squared
Euclidean norm of v. Then, the distribution of KB centralities is what shape
the behavior of aggregate performance. Given that the sum of vi depends on n,
when n → ∞ also ëvë2 will tend too. Thus, the differences between structures is
captured by the rate of divergence.

Consider the above example of regular and star network. It is clear that the
limits of these two ex-ante performance, when n → ∞ and α is fixed, are:

[µA]star ∼
!
n2/(1 − α)2"

[µA]regular ∼
!
n/(1 − α)2" .

Figure 5.1 compares the expected values of these opposite structure when shocks
are i.i.d. and follow a standard normal distribution. The number of agents changes
between 10 and 104 and we have fixed the parameter α = 0.8.
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Figure 5.1. Expected total activity µA when shocks are i.i.d. as a standard normal
distribution. A logarithmic (base 10) scale is used for the Y-axis.

We have also considered the barbell network for understanding if the bridge
is relevant in shaping the expected performance. As we have seen in the ex-post
analysis, the expected value of the macro state is not conditioned by the existence
of the bridge between the two complete networks. When the number of agents
tends to infinity, KB centralities of barbell network, defined in 2.3.4, tends to
1/(1 − α), the same of regular networks.

The same results were found in the article [1] where the macro state is given
by y = SÛv and the focus was on the aggregate volatility, defined as

νA = [Var(y)]1/2 =

öõõô nØ
i=1

σ2
i v2
i . (5.3)

In fact it is clear that the aggregate volatility scales with the Euclidean norm of v.
The only difference with our analysis is that the vector of KB centralities sum

up to 1 instead to n/(1 − α). Therefore, the resulting limits are equal up to some
transformations. Consider again the example of regular and star network, now
with a vector v = v(1 − α)/n. The resulting aggregate volatilities when n → ∞
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are

[νA]star ∼ α

(1 + α)

[νA]regular ∼ 1√
n

.

In light of these last results is also easier to understand the behavior of µA
when the networks are large. In regular networks the aggregate volatility vanishes
when n → ∞ and precisely decays with a rate 1/

√
n. While this statement is clear

for complete network because a shock on an agent is shared with all the other, is
interesting for the ring network that is often classified as unstable. The aggregate
volatility of the star network does not vanish even if the network is large. Given
that this volatility is different to 0 is also called systemic volatility because a shock
creates system wide co-movement.

5.1.1 Non-idiosyncratic shocks
The previous analysis focus on the role of KB centrality vector because the co-
variance matrix has the simple nature σ2■. Suppose now that the n shocks are
not i.i.d. . The covariance matrix is a symmetric positive semidefinite1(PSD) ma-
trix. Its entry σij represents the covariance between shock i and shock j. The set
of symmetric positive semidefinite matrix of order n is a subset of ❘n×n and is
denoted with S+.

We now focus on the role of shocks; we are interested in finding which is the
best covariance matrix that maximizes the expected value of yA. Formally, we
want to study the maximization problem defined as follows:

Φ∗
A(P) = max

Ω ∈ S+
ΦA(P, S)

s.t.
nØ
i=1

Ωii = 1.
(5.4)

Theorem 6. Consider an economy En described by the interactions matrix P
and the parameter α. Let v ∈ ❘n be the vector of Katz-Bonacich centralities and
Ω ∈ S+ is the covariance matrix of stochastic shocks.

Then, the maximum of the problem (5.4) is

α2
nØ
k=1

v2
k, (5.5)

1 We recall that a matrix is said to be PSD if the associated quadratic form is nonnegative,
i.e. xÛΩ x ≥ 0, ∀x ∈ ❘n.
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and is reached if and only if the covariance matrix Ω∗ has the form

Ω∗
ij = vi vjqn

k=1 v2
k

∀ i, j. (5.6)

The theorem says that the squared Euclidean norm of KB centralities vector is
the maximum reachable value when the sum of the variance of the shocks is fixed.
The extremum point is given by the matrix Ω∗ of perfectly correlated shocks. Two
shocks X, Y are perfectly correlated if cov(X, Y ) = σXσY . Calling σ = (σ1, ..., σn)
the vector of standard deviations, the optimal covariance matrix results Ω∗ = σσÛ,
where σ = v/ëvë; the normalization is due to the constraint on the total amount
of variance.

Proof. Given that the covariance matrix Ω is real and symmetric it is diago-
nalizable by real orthonormal matrices. Hence, we rewrite Ω as Ω = U Λ UÛ,
where U is an orthonormal matrix which columns are the eigenvector of Ω, and
Λ = diag(λ1, ..., λn) is a diagonal matrix holding corresponding eigenvalues.

Then, we could reformulate the optimization problem as

max
Λ,U

vÛU Λ UÛv

s.t.
nØ
i=1

λi = 1.
(5.7)

Calling u·i the i-th column of matrix U, we could find an upper bound for the
objective function as follow:

Φ∗
A(P) = max

Λ,U
λ1(vÛu·1)2 + ... + λn(vÛu·n)2

≤
nØ
i=1

λj(ëvëëu·ië)2

= ëvë2.

(5.8)

(If) We have to prove that: if the matrix is defined as in (5.6) then the maximum
ëvë2 is reached. Defining the vector of standard deviations σ = v/ëvë we could
obtain the optimal matrix as an outer product Ω∗ = σ σÛ. This matrix has rank
1 and there is only one eigenvalue, λj , different from 0 and equal to 1.

The eigenvector associated to eigenvalue 1 is equal to the vector of standard
deviations. The above inequality holds true as an equality because the two vectors
are proportional. As a conclusion we obtain that the maximum is

Φ∗
A(P) = α2

nØ
k=1

v2
k.
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(Only if) We have to prove that: if the maximum ëvë2 is reached then the
optimal matrix is equal to (5.6). The equality Φ∗

A(P) = ëvë2 holds if v is pro-
portional to all the columns of U or if there is a column u·max associated with
the eigenvalue λmax = 1. Given that U is orthonormal, its columns are a basis in
❘n and therefore if v is proportional to one of them is also orthogonal to all the
others.

The resulting matrix Ω∗ that solves problem (5.4) has only an eigenvalue differ-
ent from zero and equal to 1, whose associated eigenvector is v/ëvë. Summarizing,
the optimum matrix results

Ω∗ = v vÛ

ëvë2 .

We now considering a particular nature of Ω. Consider the case of not corre-
lated shocks. The covariance matrix becomes a diagonal matrix whose (i, i) entry
represents the variance of the i-th shock. We could reformulate the problem (5.4)
as

max
σ2∈❘n

α2
nØ
i=1

(vi σi)2

s.t.
nØ
i=1

σ2
i = 1.

(5.9)

When shocks have this special nature this proposition holds.

Proposition 8. Assume that shocks that affect a network are all uncorrelated.
Then, the maximum of problem (5.9) is

α2 v2
max, (5.10)

i.e. the highest values of the vector v of KB centralities. The maximum is reached
if the optimal vector of variances (σ2)∗ distributes the total amount of variances
only on the nodes that have the KB centrality equal to vmax.

Proof. The objective function is a weighted sum of centralities, and the weights
are the variances of shocks 0 ≤ σ2

i ≤ 1, ∀ i. Then:

max
ëσë=1

nØ
i=1

v2
i σ2

i ≤ max
ëσë=1

v2
max

nØ
i=1

σ2
i

= v2
max.

Satisfying the equality constraint in the first line means to have the diagonal of Ω
that distributes the sum of variances on the positions of agents with KB centrality
equal to vmax.
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Summarizing, when shocks are not correlated, the highest value of µA is reached
when the total effect of shocks is focused on the node with the highest centrality.

5.1.2 Planner’s Intervention
Suppose that a planner, an external entity, wants that the network of n agents
reaches a goal and has the power to intervene changing individuals’ state. In
the previous section we have talked about maximizing the expected value of yA.
Actually, the real goal of the planner is to minimize the aggregate volatility because
we wish to have a stable network that varies slightly its expected macro state.
Therefore, the planner of this section will minimize the maximum of the expected
value of yA acting indirectly on the variance of the shocks, using a finite budget.
The new question is: how does the planner allocate the budget?

Compared to the previous problem, we add a vector of weights q ∈ ❘n+ which
represents the intensity qi of the intervention on the variance of shock i. Then, the
optimization problem is formulated as follow:

min
q∈❘+:

qn

i=1
qi=1

max
Ω

α2 vÛΩ v

s.t.
nØ
i=1

Ωii qi = 1.
(5.11)

Given a vector of KB centralities, we will call the extremum value best worst case
bwc(v) because the planner has to reduce the highest impact of shocks over µA.

Theorem 7. Consider an economy En described by the interactions matrix P and
the parameter α. Let v ∈ ❘n+ be the vector of Katz-Bonacich centralities, and
Ω ∈ Sn+ the covariance matrix of stochastic shocks.

Then, the best worst case of problem (5.11) isA
α

nØ
k=1

vk

B2

. (5.12)

The optimum is achieved when the covariance matrix Ω∗ has the form

Ω∗
ij = φ

vivj
qiqj

, φ =
A

nØ
k=1

v2
k

qk

B−1

, ∀ i, j, (5.13)

and the asset of optimum weights is

q∗ = vqn
k=1 vk

. (5.14)
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The interesting fact about the proposition is that the bwc(v) is equal for all the
networks independently from the topology of interactions. The amount of budget
given to an agent has to be proportional to its KB centrality. The proposition states
that the best worst case is founded when shocks are perfectly correlated and the
planner allocates the budget proportionally to the magnitude of KB centralities.
Using the asset of perfect weights the optimal matrix defined in (5.13) simply
becomes Ω∗ = ✶✶

Û. In both cases, when there is an external planner or not,
perfectly correlated shocks brings the expected value of yA to reach its maximum
value. Therefore, we have highlight that role of the planner is to keep this maximum
value lower as possible.

Proof. Given that the covariance matrix is symmetric, it has real eigenvalues
and orthonormal eigenvectors. We can therefore represent it as Ω = U Λ UÛ,
where U is an orthonormal matrix whose columns are eigenvectors of Ω and
Λ = diag(λ1, ..., λn) is a diagonal matrix holding corresponding eigenvalues. We
will denote with u·i the i-th column of U. For the sake of exposure, we call
V ∈ ❘n×n the outer product v vÛ and Q = diag(q) ∈ ❘n×n the diagonal matrix
of weights.

Firstly we have to find the optimal vector of shocks that maximize µA, con-
sidering the asset of weights fixed. Formally we define the optimization problem:

Φ∗
A(P, q) =max

U,Λ

nØ
i=1

λi(vÛu·i)2,

s.t.
nØ
i=1

λi uÛ
·iQ u·i = 1.

(5.15)

Defining the Lagrange function as

L(Λ, U, η) =
nØ
i=1

λi(vÛu·i)2 − η

A
nØ
i=1

λi uÛ
·iQ u·i − 1

B
,

we want to find the extremum point using the method of Lagrange multipliers.
Deriving the above equation with respect to λi and u·i we find that

∂L(Λ, U, η)
∂λi

= 0 ⇐⇒ uÛ
·iV u·i = η uÛ

·iQ u·i, ∀i, (5.16)

∂L(Λ, U, η)
∂u·i

= 0 ⇐⇒ λi (V u·i − η Q u·i) = 0, ∀i, (5.17)

Re-elaborating the first equation we found that the objective function is
nØ
i=1

λi(vÛu·i)2 = η

nØ
i=1

λi uÛ
·iQ u·i = η,
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that is, it is equal to the value of Lagrange multiplier.
Assuming Q non-singular we call Π = Q−1V. The term inside the brackets of

equation (5.17) becomes the standard eigenvalues problem

Π u·i = η u·i.

Therefore, the Lagrange multiplier is one of the eigenvalues of Π. The matrix
Π has rank, then the Lagrange multiplier is equal to

η∗ =
nØ
i=1

v2
i

qi
,

a weighted sum of squared KB centralities.
Considering the new value of the Lagrange multiplier we have now to prove

that equation (5.17) holds for all eigenvalues and associated eigenvector. We split
the analysis in two cases.

• When the vector u·i is the eigenvector associated with eigenvalue η∗ the
term inside the brackets is equal to 0 and then the equation is satisfied.
The resultant eigenvector associated to this eigenvalue is founded from the
eigenvalue problem and is equal to

u∗ = Q−1v
ëQ−1vë

. (5.18)

• When the vector u·i is another eigenvector we have to prove that the null
term is λi. We start with the analysis of V u·i. The matrix V has rank one
and rank-nullity theorem ensures that the null space has dimension n − 1.
Given that

V u∗ = η∗ v
ëQ−1vë

(5.19)

is different from zero, u∗ does not belong to the kernel of V but belongs to
the the row space of V. It is possible to demonstrate that a vector x lies
in the kernel of matrix A if and only if is orthogonal to every vector in the
row space of A. In this case the row space has dimension 1 and is composed
by u∗. Given that the column vectors of matrix U are orthogonal, all the
other n − 1 columns of U belongs to the kernel of V; thus, we conclude that
V u·i = 0 for all columns different from u∗.
We have proved that the first term in the brackets is equal to 0. Demon-
strating that the latter is different from 0 is easier. Matrix Q is assumed
non-singular and given that is diagonal each entries must be different from
0. The orthonormal vector u·i must have at least one entry different to zero
because it has norm 1. Therefore, the term Q u·i is always different from
zero.
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Summarizing, we have proved that the resultant vector in the brackets of equa-
tion (5.17) is different from 0 when the eigenvector is not u∗. We conclude that
λi = 0 for all the component different from the ∗ one.

Using the constraint, we find the value of the only eigenvalue different from 0

λ∗ = ëQ−1vë2

vÛQ−1v . (5.20)

Then, the covariance matrix of shocks that solves (5.15) is equal to

Ω∗ = λ∗
1
u∗ u∗Û

2
. (5.21)

Now that we have found the optimal matrix we have to solve the second problem

Φ∗
A(P) = min

q∈❘n
Φ∗
A(P, q),

s.t.
nØ
i=1

qi = 1.
(5.22)

Defining another Lagrange function

L(q, δ) =
nØ
i=1

v2
i

qi
− δ

A
nØ
i=1

qi − 1
B

,

we equal its derivative, respect to vector q, to 0 for finding the optimal weight
vector

∂L(q, δ)
∂qi

= −
3

vi
qi

42
− δ = 0.

In this situation, the planner has to do not create unbalanced ratio. Suppose
that there is a ratio strictly higher than the others and imagine that there is an
enemy planner that decide where the shocks variance will be allocated. Obviously,
the enemy planner will choose the higher ratio, because in that way the maximum
feedback is reached.

To do not create a positive situation for the enemy planner, the good one has
to make all the ratio equal. So the magnitude of planner intervention qi has to
be proportional to vi and all the ratios have to be equal. The resulting vector of
weight is

q∗
i = viqn

i=1 vi
, ∀i,

and the best worst case results the square of the sum of KB centralities

bwc(v) =
A

α

nØ
i=1

vi

B2

.

57



5 – Ex-Ante analysis

We now consider the special case of uncorrelated shocks. When shocks are not
correlated we recall that the covariance matrix is Ω = diag(σ2

1 , ..., σ2
n) and each

element represents the variance of shock. With σ ∈ ❘n we indicate the vector of
standard deviation. The problem is formulated as follows:

min
q∈❘+:

qn

i=1
qi=1

max
σ

α2
nØ
i=1

σ2
i v2
i

s.t.
nØ
i=1

σ2
i qi = 1.

(5.23)

The following proposition defines the solution.

Proposition 9. Assume that shocks that affect a network of n agents are all not
correlated. Then, the bwc(v) of problem (5.23) is

α2
nØ
k=1

v2
k, (5.24)

and the asset of weights that solves the problem is

qi = v2
iqn

k=1 v2
k

, ∀ i. (5.25)

Proof. First of all, we consider a fixed q and find the worst, maximum, case of µA.
Defining the Lagrange function defined as

L(σ, η) =
nØ
i=1

σ2
i v2
i − η

A
nØ
i=1

σ2
i qi − 1

B
,

we want to find the extremum point using the method of Lagrange multipliers.
Taking the derivative with respect to σi and setting the derivative equal to 0

we find that
∂L(σ, η)

∂σi
= 2v2

i σi − 2ηqiσi = 0, ∀i ⇐⇒ v2
i σi = ηqiσi, ∀i,

and hence, the maximum of the objective function becomes

max
i

v2
i

qi
. (5.26)

The maximum implies that the worst case of the macro state is defined by the
highest ratio of centralities and weights, and not only depends on the topology of
the network. In fact, also where the budget is allocated is relevant.
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Now, the planner has to decide how to distribute the weights to minimize the
maximum ratio, that is,

min
q∈❘+,

qn

i=1
qi=1

max
j

v2
j

qj

In this situation, the planner has to do not create unbalanced ratio. The magnitude
of weight to allocate on agent i has to be proportional to the square of its KB
centrality, and has to make the ratio equal for all the agents:

qi ∝ v2
i , and v2

i

qi
= k, ∀i.

Using these devices and the constraint on the sum of the weights, we find that

qi = v2
iqn

i=1 v2
i

, ∀i.

The resultant best worst case of µA is the squared Euclidean norm of KB centrality
vector

bwc(v) = α2
nØ
i=1

v2
i .

An interesting comparison between the two asset of weights could be done by
inverting the nature of the shocks in the respective problems. Imagine that the
planner prepares her/his network to receive not correlated shocks, i.e. she/he set
the vector of weights to qi = v2

i /
!qn

k=1 v2
k

"
∀i; we indicate with q0 this asset of

weights. Unfortunately, once the network is prepared, a set of correlated shocks
affects the economy. How much would the bwc(v) change from (

qn
k=1 vk)2? Sub-

stituting the vector of weights in
qn
k=1(v2

k/qk) we find that the difference between
the old maximum (5.12) and the new value is

∆q0,ρ=1 = n α2
nØ
k=1

v2
k −

A
α

nØ
k=1

vk

B2

= n α2

A
nØ
k=1

v2
k − n

(1 − α)2

B
= (n α)2Var(v1, ..., vn).

(5.27)

The difference between the two maximum increases as the variance of centrali-
ties. A regular network that has no differences between agents does not show any

59



5 – Ex-Ante analysis

changing in the best worst case; this result is obvious because vi/
qn
k=1 vk is equal

to v2
i /
qn
k=1 v2

k when KB centrality is vregular = 1/(1 − α). The divergence ∆ρ=1
is no more equal to 0 when hubs are present in the network. The existence of
hubs and marginal agents increases the variance of centralities and therefore the
∆q0,ρ=1. Disproportional networks show an higher decline of the maximum of µA
when shocks are perfectly correlated and weights are not set as ?? says.

Moreover this difference is quadratic in the size of the network; if the number
of agents n → ∞ then the cost for having set the asset of weights wrong will tends
to infinity too.

Consider now the opposite case. The planner prepares the network to receive
perfectly correlated shocks, i.e. qi = vi/ (

qn
k=1 vk) ∀i but the ones that affect the

network are not correlated; we indicate with q1 this asset of weight. Substituting
the vector of weights in the problem (5.26) we find that

max
i

v2
i

qi
= max

i
vi

nØ
k=1

vk.

Hence, the difference between the old maximum (5.24) and the new one is

∆q1,ρ=0 = α2

A
vmax

nØ
k=1

vk −
nØ
k=1

v2
k

B
. (5.28)

The three norm of KB centralities vector are related by the following inequality

vmaxëvë1 ≥ ëvë2
2.

Then, we conclude that also in this case the deviance between the two term
is not null. If we imagine that the difference between the two terms is a cost to
be paid then a network with almost equal centralities results in no cost at all.
Unfortunately it is not so clear the amount of deviance between the two term.
The behavior of ∆q1,ρ=0 suggests again that a disproportional network has higher
decline when the weights are not set as Proposition 9 says.

5.2 Total Welfare
We recall that the macro state yW is formulated as

!
xÛx

"
. The performance

measure is founded by taking the expected value of yW :

❊[yW ] = α2
❊
#
SÛ !LÛL

"
S
$

= α2
❊
#
Tr
!
L S SÛLÛ"$

= α2 Tr
!
L❊

#
SSÛ$LÛ" .
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In other words,
❊[yW ] = α2Tr

!
L Ω LÛ" , (5.29)

that is, the Leontief matrix is the most important instrument that defines how the
shocks shape the macro state. From now on we will denote ❊[yW ] with µW =
ΦW (P, S), where ΦW : ❘n → ❘ expresses the dependence of the macro state on
the nature of interactions matrix and on stochastic shocks.

Another way of describing µW is by the SVD of the Leontief matrix 2.4. Using
the SVD, the output of the economy could be rewritten as

µW = α2
❊
#
SÛ !U ΓÛΓ UÛ"S

$
= α2

❊

è
Tr
1
Γ UÛS SÛU ΓÛ

2é
,

that using the SVD basis Ω = UÛΩ U becomes

µW = Tr
!
Γ Ω ΓÛ" . (5.30)

We will use both equations interchangeably; in fact, even if equation (5.29) is
easier to interpret, the above one is useful when we have to describe the optimiza-
tion problems in a compact form.

As for µV , we now start from idiosyncratic shocks. When S describes a vector
of i.i.d. shocks with null mean and variance σ2, Ω is equal to σ2■. The following
result resumes how µW is conditioned by the Leontief matrix:

Proposition 10. Let En be an economy defined by the interactions matrix P,
the parameter α and the vector of stochastic shocks S. Suppose that shocks are
independent and identically distributed with expected value 0 and finite variance
σ2. We denote with γi the i-th singular value of Leontief matrix L ∈ ❘n×n.

Then, the ex-ante performance of the macro state yW is

µV = (ασ)2
nØ
i=1

nØ
j=1

L2
ji (5.31)

or equally

µV = (ασ)2
nØ
i=1

γi. (5.32)

The proposition says that the performance measure µW is increasing in the
norm of the columns of L, or equally, in the sum of the singular values. In fact, the
trace of L LÛ is equal to the sum of its eigenvalues, that in this case corresponds
to the sum of singular values of L.

From en ex-ante point of view it is not important which agent is affected when
idiosyncratic shocks affect the network. Assuming a finite variance of the shocks,
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5 – Ex-Ante analysis

values of the performance metric depends on the trace of L LÛ. Hence, classifying
the expected macro state of different networks means understanding how much the
sum of singular values is high. Here we want to express µW as a function of the
number of agents and understand its behavior when n tends to infinity.

When the network is regular the Leontief matrix is symmetric and the square
root of singular values are equal to eigenvalues of L. Calling λ the eigenvalues of
matrix P associated to a regular network, equation (5.32) becomes

µW = (ασ)2
nØ
i=1

1
(1 − αλi)2 . (5.33)

When the network is not regular the only way to calculate the sum of singular
values is through the direct calculus of Leontief matrix. Once that the L is found,
it is possible to find L LÛ and after calculate the trace as the sum of diagonal
elements. What follows are example of the behavior of µW in academic networks,
also considered in previous chapters. We refer to Section 2.2.1 where the calculus
of eigenvalues of regular graph was already done.

Complete graph Kn. Consider a complete network with n agents. The complete
graph is (n − 1)-regular, hence the spectrum of P = 1

n−1W is

σ(P) =
;

1, − 1
n − 1 , ..., − 1

n − 1

<
.

Given the equation (5.33), the trace of L2 results

Tr
!
L2" = 1

(1 − α)2 + (n − 1)3

[(n − 1) + α]2 .

Considering the large scale limit, i.e. when n → ∞, we want to express the
above equation as function of n and of Cα, a parameter that depends on a fixed α.
Then, we find that

lim
n→∞

Tr
!
L2" = n Cα, where Cα = 1, (5.34)

namely, given n tending towards ∞ the dependence of the trace is simply linear in
n.

Barbell graph Bn/2. Consider now the Barbell graph Bn/2 composed by two inde-
pendent complete graphs each of which has n/2 agents. For the sake of simplicity
consider an even number of agents; this simplification becomes irrelevant when
n → ∞. Resulting adjacency matrix is similar to a block diagonal matrix with
exception of two values, that represent the link between the two components.
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The barbell graph is not regular and so we can not calculate eigenvalues as
the sum of characters. Instead of using properties of Cayley graphs we have to
explicitly calculate the Leontief matrix using the recursive definition.

We have already demonstrated that |α λi| < 1 for all the eigenvalues. Given
that this assumption holds, matrix α P → 0 when the exponent of the Neumann
series tends to infinity. Therefore we could approximate the Leontief matrix with

L Ä ■+ α P + α2P2 [19].

For the sake of exposition we also use another assumption; it is not a restriction
to consider all the element of P equal, in fact 1/(n − 1) Ä 1/n, when n → ∞.

The explicit formula is not here reported due to its complicate algebraic form.
On the other hand, the result for n → ∞ is equal to the one of the complete graph:

lim
n→∞

Tr
!
L LÛ" = nCα, where Cα = 1. (5.35)

Once again it seems that the bridge between the two components does not give
any noticeable variation on the performance of the macro state.

Cycle graph Cn. Considering that the cycle is a 2-regular graph, the spectrum of
P associated to the network is

σ(P) =
;

λk = cos
3

2π

n
k

4
, k = 0,1, ..., n − 1

<
.

Therefore, the trace of L2 results

Tr
!
L2" =

n−1Ø
k=0

5
1 − α cos

3
2π

n
k

46−2
.

Since α < 1, the function f(x) = (1 − α cos(x))−2 is a continuous function
over the domain [0,2π]. The definite integral of a continuous function f over
the interval [a, b] is the limit of a Riemann sum as the number of subdivisions
approaches infinity. That is,Ú b

a

f(x) dx = lim
n→∞

nØ
i=1

∆xf(xi), where ∆x = b − a

n
, xi = a + ∆x i.

Using the above definition the summation of L2 becomes

lim
n→∞

2π

n

n−1Ø
k=0

5
1 − α cos

3
2π

n
k

46−2
Ä
Ú 2π

0
[1 − α cos(x)]−2

dx,
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and the resulting value of the trace when the number of agents tends to infinity
results

lim
n→∞

Tr
!
L2" = n Cα, where Cα = 1

2π

Ú 2π

0
[1 − α cos(x)]−2

dx. (5.36)

The trace results again linear in n but the role of parameter α is also relevant.
An upper bound for Cα is 1/(1 − α)2; hence, differently from the complete graph,
when α is near to 1 the value of the trace shift the straight line to an higher
intercept.

We have previously seen that a product of d > 1, ∈ ◆ cycle graphs generates a
toroidal graph. Recalling that the spectrum of P of a toroidal graph is

σ(Ptor) =
I

λk1,...,kd
= 2

dØ
i=1

cos
3

2π

n
ki

4
, (k1, ..., kd) ∈ {0,1, ..., n − 1}d

J
,

the trace of L2 results

Tr
!
L2
tor

"
=

n−1Ø
k1=0

n−1Ø
k2=0

· · ·
n−1Ø
kd=0

A
1 − 2α

d

dØ
i=0

cos
3

2π

n
ki

4B−2

.

When n → ∞ we could replace summations with Riemann integrals doing same
substitutions as in the cycle graph. The behavior of Tr

!
L2" when n → ∞ becomes

lim
n→∞

Tr
!
L2
tor

"
Ä ndCα (5.37)

where

Cα = 1
(2π)d

ÚÚ
· · ·
Ú 2π

0

C
1 − 2α

d

dØ
i=0

cos(xi)
D−2

dx1dx2...dxd.

Even if the parameter Cα is not informative, we could state that the trace
increases again proportionally to the dimension of graph, i.e. to the number of
nodes, as in previous cases.

Star graph Sn. Consider now the star graph Sn with n nodes. Instead of consid-
ering the inverse of (■− αP), the Leontief matrix is founded using

q∞
i=0 αiPi. As

considered in the second chapter, matrices with odd powers are all equal to Podd

and ones with even powers are all equal to Peven.
Given that, Leontief matrix is

L = ■+ (α + α3 + . . . )Podd + (α2 + α4 + . . . )Peven

= ■+ α

1 − α2 Podd + α2

1 − α2 Peven,
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the trace of L LÛ results

Tr
!
L LÛ" =

n2α2 + (n − 1)(1 − α2)
#
n(1 − α2) + 2α2$

(n − 1)(1 − α2)2 .

Considering the large scale limit, i.e. when n grows and α is fixed, the trace of
L LÛ results

lim
n→∞

Tr
!
L LÛ" = nCα, where Cα = 1

(1 − α2)2 . (5.38)

Like in the others graphs the dependence of Tr
!
L LÛ" is linear in n but the

parameter Cα makes great differences with others topologies. It is clear that when
α takes higher values, parameter Cα explodes.

We now return on the comparison between µW in different topologies. We
discuss which network outperforms others and which one has worst performance,
classifying different topologies that we have considered till now. We will compare
only one-dimensional networks, i.e. we do not consider toroidal graph. Given the
results of Tr

!
L LÛ", these are the expected values of yW when n → ∞:

Complete graph µW (Kn) = n (α σ)2

Barbell graph µW (Bk) = n (α σ)2

Cycle graph µW (Cn) = n
(α σ)2

2π

Ú 2π

0
[1 − α cos(x)]−2

dx

Star graph µW (Sn) = n

3
α σ

1 − α2

42
.

(5.39)

In the performance metric µW it is Cα that makes an economy better than the
others. We recall that the parameter α represents the state of the world known
to all the agents; formally, it is considered as a parameter that weights direct and
indirect interconnections between agents.

Figure 5.2 shows an exponential growth for Cα of star and cycle network when
α varies in its domain. This figure explains that when α approaches 1 the order
of difference between µW in a complete network and in a star or cycle network is
approximately of one order of magnitude. Notable difference in Cα starts approxi-
mately when α = 0.8.

Again, the not intuitive result concerns the cycle network. When longer paths
are mainly taken into account the effects of shocks are spread all over the ring,
reaching also opposite agents. In complete and barbell networks, where every node
is highly interlinked, shock that affects a particular agent is immediately shared
with almost all the other agents, which in turn will again share the intensity of the
shock. This effect explains why these networks has lower values of µW .
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Figure 5.2. How parameter Cα changes in different networks when α
grows in its domain.

Consider i.i.d. shocks with variance σ2 = 1. How the performance metric µW
changes when n → ∞ is depicted in Figure 5.3. In light of the previous figure we
have set α = 0.8 just for noticing differences n µW .

As a conclusion we state that when the number of agents grows to infinity the
star network outperforms ring and complete network. Once again, if the goal is
to reach higher values of the expected value of the macro state, the presence of an
hub makes the star network be the topology to prefer.

5.2.1 Non-idiosyncratic shocks

The previous analysis focus the attention on the role of the trace of L LÛ because
the covariance matrix has a simple nature σ2■. Suppose now that the n shocks are
not i.i.d.; in this case, Ω gives a more intricate contribute to µW .

We are interested in finding which is the best covariance matrix that maximize
the expected value of yW when it is known the Leontief matrix of the system.
Under the assumption of not idiosyncratic shocks, we will study the maximization
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Figure 5.3. How the performance metric µW changes in different net-
works when n → ∞.

problem defined as follows:

Φ∗
W (P) = max

Ω ∈ Sn×n
+

Tr
!
L Ω LÛ"

s.t.
nØ
i=1

Ωii = 1.
(5.40)

Theorem 8. Consider an economy En described by the its interactions matrix P
and the parameter α. Let L ∈ ❘n×n be the Leontief matrix of the economy, γi its
singular values, and Ω ∈ S+ the covariance matrix of stochastic shocks.

Then, the maximum of the problem (5.40) is

α2γmax, (5.41)

and is achieved if the matrix is Ω∗ = σ∗(σ∗)Û, where σ∗ is a column vector pro-
portional to the first principal component of L.

As in the previous chapter, we have that the solution is not explicative con-
sidering the measures taken into account up to now. The highest singular value
and the first principal component associated are good summaries just because the
singular value decomposition is in itself a good algebraic procedure. Unfortunately,
the efficiency problem of calculating them when the number of agents is large is a
well known numeric problem.
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As in the previous chapter, this theorem states that the highest singular value
of Leontief matrix of an economy resumes the highest possible value reached from
µW . Moreover, it states that this value is reached when the vector of standard
deviations is proportional to the first principal component, that is, in special cases,
something similar to the eigenvector Bonacich centrality.

Proof. First of all, we have to find the maximum of problem (5.40). Instead of con-
sidering the standard problem we prefer to use the SVD form (5.30). In particular,
we focus on the sum of diagonal element of Ω = UÛΩ U, that is

nØ
i=1

Ωii =
nØ
i=1

 nØ
k=1

uki

 nØ
j=1

Ωjkuji


=

nØ
k=1

 nØ
j=1

Ωjk

A
nØ
i=1

ukiuji

B
=

nØ
k=1

Ωkk,

where the last equation derives from the orthonormality of rows of matrix U.
Therefore, also the sum of diagonal elements of Ω is equal to 1.

Now we move back to the optimization function; we could rewrite yW as

yW =
nØ
i=1

Ωiiγi.

We have already encountered a similar form. To find the optimum we could
observe that

Φ∗
W (P) = maxqn

i=1
Ω

ii
=1

nØ
i=1

Ωiiγi

≤ γmax

nØ
i=1

Ωii

= γmax.

(5.42)

(If) We have to prove that if the matrix is Ω∗ then the maximum γmax is
reached. The theorem states that this matrix is formed by a vector σ∗ proportional
to the first principal component, that we indicate with u·1. Consider the element
Ω∗

11:

Ω∗
11 =

nØ
k=1

uk1σ∗
k

 nØ
j=1

uj1σ∗
j

 .
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Given that the vector σ is proportional to the first principal component we
find that Ω∗

11 = 1. Therefore all the others diagonal elements of Ω∗ are null. As
a consequence, the above inequality (5.42) becomes an equality and results that
Φ∗
W (P) = γmax.
The only if condition is true only when the matrix P is symmetric. In fact, we

have to prove that if the maximum γmax is reached then the optimal matrix is Ω∗.
That is, we have to prove that γmax has multiplicity 1 and that Ω11 = 1 while all
the others elements of Ω are null.

Proposition 1 ensures that if the graph is strongly connected, the highest eigen-
value of P has multiplicity 1. As a consequence, also the highest eigenvalue of L has
multiplicity 1. If the matrix L is symmetric, for example for regular networks, also
γmax has multiplicity 1 because the highest singular value is equal to the square of
the highest eigenvalue of L. In this case γmax is reached only when the diagonal
element Ω11 = 1 and all the others are null. This happens when the covariance
matrix is defined by the outer product of the first principal component, that is,
the matrix is defined as Ω∗ = σ∗ (σ∗)Û, with σ∗ a vector of standard deviations
proportional to u·1.

If the matrix L is not symmetric we could not conclude that the multiplicity
of γmax is 1. As a consequence, Ω∗ = σ∗ (σ∗)Û, with σ∗ a vector of standard
deviations proportional to the first principal component of L, could not be the
unique solution for the problem.

As for the performance metric µV , we now start the analysis of two particular
nature of Ω: one that represents perfectly correlated shocks, and the other that
describes not correlated shocks.

Consider the case of uncorrelated shocks. The covariance matrix becomes a
diagonal matrix whose (i, i) entry represents the variance of the i-th shock. We
could reformulate the problem (5.40) as

max
σ2∈❘n

nØ
i=1

nØ
j=1

L2
ji σ2

i

s.t.
nØ
i=1

σ2
i = 1.

(5.43)

When shocks are not correlated this proposition holds.

Proposition 11. Assume that shocks that affect a network of n agents are all not
correlated. Then, the maximum of problem (5.43) is

α2
nØ
j=1

L2
jmax. (5.44)
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The maximum is reached if the optimal vector of variances (σ2)∗ distributes the to-
tal amount of variances only on the nodes that have

qn
j=1 L2

j· equal to
qn
j=1 L2

jmax.

As for Proposition 8 all the variance of shocks has to be addressed to the
agent i that has higher value of

qn
j=1 Lji; this value represents the variation of

overall influence of agent i and we have previously used it in the ex-post analysis.
Therefore, we conclude that the variance is allocated to the most systemically
important agent, as defined in the previous chapter. Figure ?? clearly indicates
that the star graph outperforms cycle, complete, and barbell graph.

Proof. The objective function of problem (5.43) is a weighted sum of z where
weights are the variances of shocks. Then:

max
ëσë=1

nØ
i=1

nØ
j=1

L2
ji σ2

i ≤
nØ
j=1

L2
jmax

nØ
i=1

σ2
i

=
nØ
j=1

L2
jmax.

Satisfying the equality constraint in the first line means to have the diagonal of
Ω that distributes the sum of variances on the positions of agents with

qn
j=1 L2

ji

equal to
qn
j=1 L2

jmax.
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Chapter 6

Conclusion

The thesis presented the role of network’s structure within economic models with a
particular attention spent on Katz-Bonacich centrality and on the Leontief matrix.
Our main contribute on the general analysis made in the article [2] was to gave
direct explanation of macroeconomic outcomes as function of these network prop-
erties. Starting from the assumption of idiosyncratic shocks we have developed the
study considering even more general forms, highlighting the role of different type
of shocks in shaping the macro state of the system.

As expected, the quantities that come out as being important have connections
with ones studied in the economic network literature. For instance, we have found
that, in our squared models, the Katz-Bonacich centralities vector and singular
values of Leontief matrix are simple measures that could summarize network’s
structure properties. The problems of optimization on one of the macro states
have highlighted that the euclidean and the maximum norm of Katz-Bonacich
centralities vector are the fundamental quantities that explain reachable maximum
of the aggregate level.

This conclusion makes us think that in real networks, the importance/power
of a system, considered as a macro economic force, is concentrated in the hands
of few agents. Once again, the power-law distribution explain the behavior of real
network; the existence of nodes much larger than the average are the heart of
the network. This concept reflects very well what has been found; in economic
networks, if there is an agent much more central than the others, will make the
difference at the aggregate level.

Clearly these results should be tested with real data; in the thesis, only academic
cases were considered. Even if these examples could reflect some patterns of real
networks a more truthful simulation could demonstrate the obtained results. A
first analysis that could be done in a real simulation, in direct continuity with
what has been found, is to understand how many hubs are necessary to weaken
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their power. In other words, it could be interesting to understand when an hub
stop being such.

Given that the thesis aimed to understand the functionalities of networks struc-
ture, our model did not describe shocks dynamic. The first direction will be to
modify the starting model for the diffusion of shocks in the economic context. For
example, the SIS or SIR epidemic models could describe shocks as infections and
study the fluctuations of the macroeconomic outcome, that is, a macro measure
that represents the behavior of the collectivity. As a result, this will allow us to
study how shocks to financial or production institutions can propagate throughout
the whole system, potentially generating a systemic crisis.

Agents in networks are alive, that is, they constantly change their way of acting.
Consider economic systems means to models agents’ behavior with games theory.
For example, the point of view of the article ‘“Networks,Shocks, and Systemic
Risk” [2] is mainly focused on analyzing a system in which agents’ interactions
are simple, that is, in which agents are strategic complements and information
is complete. Formally, information is complete when knowledge about agents’
characteristics is available to all members, and agents are strategic complements
when players’ utilities are positively correlated. Another interesting approach could
be to consider games with incomplete information, in which agents are not aware
of the general state, but have their own global vision.

A second direction will be based on the dynamic of networks topology. The
structure of the network plays a fundamental role in translating microeconomic
shocks into macroeconomic outcomes. The starting point for analyze real systems is
to consider networks that evolve on time. Within a system, each agent continuously
changes its interactions, adding some and eliminating others: these transformations
lead to vary the structure of the network. Suppose now that a shock damages a
particular agent, what will be the most probably structure adopted by agents to
make the shock “innocuous”?

A very interesting and curious approach on these problems is the one adopted
in the section of planner intervention. Assuming that outside the network exists
a planner that can shape incentives in order to optimize the macro state of the
system, being limited by constraints, a lot of empirical situation can be modeled.
Using this vision, we could analyze the two cases mentioned above: assuming that
there is a planner who has a finite number of edges to place to maximize the macro
state, where should she/he put them? If the planner has to choose the agent to
give a positive shock, who should she/he target to get the maximum macro status?

As a final conclusion, we state that this thesis was an introduction to the theory
of shocks on economic networks; many questions arise to better understand the
reality of these systems, that, even if created by human beings, are not predictable.
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