
An application data fusion technique in indoor

flight of drones

Tianfang Sun

August 28, 2018



Abstract

In order to measure the position of an indoor unmanned aerial vehicle
(UAV), A combined position estimate system is designed and tested in this
thesis. Two sensors, an optical flow sensor (Px4flow) and a ultrasonic sensor
(Marvelmind), are employed to provide the raw measurement data. The ex-
tended Kalman filter (EKF) is used as the main data fusion method and some
algorithms are built based on this, including the attitude estimation, angu-
lar rate compensation and the position estimation. A single board computer
(Raspberry Pi) is employed and plays a role as the central controller. Matlab,
C language and Python are used to produce all the programs. Some simulation
and on-board tests are performed and will be discussed in the thesis as well.

By analysing the test result it can be proved that this system is capable
of providing an accurate position estimate (with standard deviation of 0.0275
meter) at a high update frequency (100 Hz).
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Chapter 1

Introduction

1.1 Motivation and background

As the development of electronic technology, algorithms need heavy com-
pute capability which used to performed on a professional workstation can now
be carried out on a compact embedded system. This encourages lots applica-
tions to be minimized in order to fit some special usages. Among these, the
indoor Unmanned Aerial Vehicle (UAV) is one of the most investigated area
in the past decade. Nowadays indoor UAV is not only the high-tech toys, but
also employed in civilian or military field, such as delivery, search and rescue,
explore and investigate, etc.

Evolve from traditional unmanned aerial vehicles, the indoor UAV can use
the navigation mechanism inherited from those studied well in the traditional
ones. However, the complex working environment of the indoor UAV requires
a much higher navigation accuracy and update frequency. Compare to the out
door UAV, which relies heavily on Global Navigation Satellite System (GNSS)
signal to perform a locating, the indoor UAV suffers from the attenuation of
signal[14]. Moreover, the accuracy of GNSS, which is around several meters,
can not satisfy the high obstacle density of an indoor environment. A naviga-
tion method, with an accuracy of several centimetres should be used for the
indoor UAV. Many studies on high accuracy indoor-navigations based on differ-
ent sensors have been carried out these years, as we will see shortly in section
1.2.

The purpose of this thesis is to build a data fusion system, which employs
several navigation sensors and merge their outputs together, in order to produce
a position estimate with high accuracy and output frequency. Two sensors, an
ultrasonic beacon sensor called Marvelmind and an optical-flow sensor called
Px4flow are used in this project. The data from these two sensors will be fused
together using the extended Kalman filter (EKF). The capability of this system
will be examined by comparing the position estimate from the data fusion system
to the original output from the two sensors.
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1.2 Summary of UAV

The history of Unmanned Aerial Vehicle can trace back to the World War
I. In 1916, the Ruston Proctor Aerial Target, using radio control techniques,
is recorded as the first non-pilot aircraft[17]. During the period of World War
II, UAV has been considerably well studied since the ability of remote control
makes it the idea weapon for attacking important targets. For instance, the
Fritz X, which is a German guided glide bomb, can also be considered as a
UAV, although they are one-time used and not designed to be recoverable.
However the majority usage of the UAV in this period is used as the dummy
target. Radioplane OQ-2, manufactured by the Radioplane Company in the
United States, was a massive produced UAV during World War II. It is used by
the army to train the pilot’s shooting skills and over 9,400 of them have been
built in the war.

However the UAV in nowadays is much different with their early parents.
The UAV in modern days is capable of delivery, search, news reporter and many
other usages. And they are not only remote controlled, but also autonomous.
In [4], UAV is classified by four criterion: size, mean take off weight (MTOW),
operation altitude and autonomy. Figure 1.1 shows a brief category of this. On

Figure 1.1: Classification of UAV

the other hand, the UAV can also be classified into fixed-wing and rotary-wing
by their flying principles[6]. Generally speaking, the fixed-wing UAV has simpler
structure, longer flight duration and higher speed compare to the rotary-wing
UAV. In contrast, the rotary-wing UAV is capable of performing complex flight
actions such as hovering, high-G rotation, vertical takeoff and landing (VTOL),
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etc.
Following above classifications, the indoor UAV could usually be catego-

rized into a small sized, micro to small MTOW, very low altitude UAV, and
usually is developed into a specific subclass of the rotary-wing UAV, the quad-
rotor helicopter or quadrotor for short. However the problems we are facing
to develop a small sized UAV do not minimized together with the size. In
contrast, indoor UAV faced some special challenges due to the complex flight
environment.

1.2.1 Quadrotor architecture and indoor challenges

Two majority problems on developing a indoor UAV is the controlling and
the navigation. Firstly, the flight principle of a quadrotor UAV is much different
with the traditional fixed-wing vehicle or helicopter. The quadrotor has four
motors with propellers as its driver, which is shown in figure 1.2.[16] The lift
force from propeller and the torque from motor are both used as a parameter
to control the speed and attitude of the UAV, so there are total of eight control
parameters in a quadrotor. As a consequence, the mathematical model for the
control system, such as a PID controller, will be complex and requires heavy
computation payload.

Figure 1.2: Illustration of Quadrotor

Secondly, since the indoor UAV usually working in a environment of high
obstacle density, together with some unexpectable situations such as human
activities, other UAV movement, occasionally open/close of the door and win-
dows, the requirement of the navigation system is essential. The GPS signal,
which is a common locating method appears in outdoor UAV, can hardly fulfil
such requirements. This is because, first, the indoor environment will usually
cause an attenuation of the GPS signal. This attenuation is caused by the se-
vere multi-path effect due to the walls or roofs (20-30 dB compared to outdoor
situation).[13] Second, the accuracy of the GPS, which is about several meters,
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is not accurate enough for the indoor environment. In a practical application,
an accuracy of several centimetres is usually expected. As a result, it is obligate
to find an accurate and high update frequency navigation architecture which
suitable for the complex flight environment of the indoor UAV.

1.2.2 Navigation sensor investigation

In the past several years, lots of studies have been performed on the indoor
navigation area. Table 1.2 shows a brief summary of the past five years.[12]
Based on the measurement method, the navigation sensors used in 1.2 can be
catalogued into four classes: ultrasonic, inertial, optical flow, and Lidar. If
we consider the estimate principle, then these sensors can be classified into
two types: position estimation and velocity estimation. Here we shall give a
comparison between them.

We will begin with the catalogue on the measurement method. The ultra-
sonic sensor sends ultrasonic pulse towards a specific direction and measure the
reflected pulse. By compare the time interval between the sending and receiving
beams, this type of sensor can estimate the distance of an obstacle before it.
Some ultrasonic sensors compare the phase shift between the two pulses and by
employ the Doppler effect they can estimate the target velocity at the direc-
tion of the ultrasonic beams. However in the indoor UAV area, most ultrasonic
sensors are the former type, which is directly measure the absolute distance
between the sensor and an obstacle. The advantages of this kind of sensor are
light-weighted (10g), low power consumption (∼ 50mW ) and low costs. On the
other hand, the working range of ultrasonic sensors is typically small. The min-
imum measuring range is about 30cm and the maximum range is usually several
tens of meters. This minimum range rises a restriction when using the ultrasonic
sensors to measure the altitude of the UAV since a main feature of the indoor
quadrotor UAV is their VTOL capability and the limitation of this minimum
measurement range makes the ultrasonic sensor useless in this scenario.

The majority used inertial sensor in the UAV area is the Inertial Mea-
surement Unit (IMU), which is also a very widely used type of sensor in the
aero/navy/satellites fields. The IMU employs the accelerometer and gyroscope
to measure the acceleration and angular rate. Some IMUs also integrates a mag-
netometer (compass) in order to measure the heading of the sensor, although a
compass does not follow the word ”inertial”. The advantage of the IMU is the
measurement does not reply on any outside input (despite of the compass), and
they typically have a high output frequency. However, the IMU is mostly used
to estimate the attitude of the UAV, rather than using it to measure a posi-
tion. In order to measure a position, we have to double integral the acceleration
measured by the IMU, which will cause a significant drift error. So in practical,
the IMU is used together with some other types of sensors, which require an
attitude data for position estimate.

Next we take a look at the optical flow sensor. The optical flow sensor can
be regarded as a low pixel digital camera, which keeps taking images from the
direction of it’s facing. By comparing the difference between the images, the
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Team Institution Navigation Architecture Year

Sungsik
Huh

KAIST IMU/Camera/Laser scanner 2013

Nils Gageik
University of

Würzburg
IMU/Infrared/Optical

flow(ADNS3080)
2013

Korbinian
Schmid

DLR
IMU (Analog Devices ADIS16407)
/Stereo Camera (PointGrey Firefly

FMVU-03MTM)
2014

Jin Q. Cui
National

University of
Singapore

IMU/Lidar (UTM-30LX&URG-04LX)
/Camera

2015

Dong Ki
Kim

Cornell
University

IMU/Ultrasonic altimeter/Optical
flow/Camera (Parrot Bebop)

2015

Shaima Al
Habsi

UAE
University

IMU/Ultrasonic altimeter/Vicon
Mo-cap

2015

Chong
Shen

North
University of

China

IMU (MPU6050) /Optical flow +
Ultrasonic (PX4Flow)/Magnetometer

(HMC3883L)
2016

Yu Zhang NUAA, China
IMU/Optical flow + Ultrasonic

(PX4Flow) /Camera (UI-1221LE)
2016

Kang Li
Chinese

Academy of
Sciences

IMU/UBW (DW1000) /laser scanner 2016

Aiden
Morrison

Norwegian
Defence

IMU (MPU9250/Mti-100) /Optical
flow + Ultrasonic (PX4Flow) /Vision

(Sony IMX250)
2017

Kimberly
McGuire

TU Delft IMU/Optical flow /Stereo camera 2017

Elena
López

Alcalá
University

IMU/Scanner/Monocular camera 2017

Zhou Qiang
Shanghai Jiao

Tong
University

IMU/Ultrasound/Stereo
camera/Motion Tracking

2018

Mattew A
Copper

Air Force
Institute of
Technology

IMU/Scanner/motion tracking 2018

Table 1.2: Recent research on indoor UAV navigation architecture
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sensor output how much pixels flow-by during the time interval between two
images, which is called ”optical flow”. Combining some distance measurement
sensor, this optical flow data can be converted into the ground velocity. The
most common example of an optical flow sensor is the optical mouse which is
used as an input device for computer. Some modern optical flow sensor employs
a 3D reconstruction algorithm so the sensor can also provide an estimate in the
azimuth direction.[10] The optical flow sensor attracts much research attentions
in recent years but it has some disadvantages for now. Firstly the algorithm used
to compute the optical flow data, either 2D or 3D, requires a high computational
capabilities. This usually leads to a high power consumption and higher unit
costs. Secondly as the optical flow sensor based on the digital camera, the
working environment should be illuminated well. Although some recent research
employs more sensitive camera which reduces the illumination requirement[9],
the limitation still exists.

The Lidar sensor, or Light Detection and Ranging sensor, use laser beams
to measure the distance between the sensor and surrounding obstacles, which
follows similar mechanism as the ultrasonic sensor. In the indoor UAV area,
since a laser emitter usually comes with a large size, the infra-red (IR) focused
LED emitter is often employed. Focused IR LED can produced a highly di-
rectional IR beam which fulfils the accuracy requirement of the indoor UAV
and keeps the size of the sensor sufficiently small. Lidar sensor used in the
indoor UAV area an be divided into two types: rangefinder and scanner. The
rangefinder type is usually used as an advanced replacement for the ultrasonic
sensor, since they have better working range (up to 100m) and higher accuracy.
The scanner type place the Lidar sensor on a wheel which driven by a motor.
While the wheel is rotating, the sensor keeps scan the surrounding environment
and produces a 2D/3D point cloud data. This data can be used as a map for the
indoor UAV to avoid the obstacles in its flight path. However the scanner type
sensor is expensive than the rangefinder, which could cost from server thou-
sands euro up to 30, 000AC. As a conclusion, table 1.4 shows a brief comparison
between different sensors.

Before we leaving this section, another comparison between the position
estimation and the velocity estimation should be made. A position estimation
sensor, such as the ultrasonic sensor, provide a straight forward estimate for po-
sition. However this usually requires the interact with surrounding environment,
e.g. the ultrasonic pulse need to reflect on the obstacle surface and propagate
back to the sensor. Any interference between the sensor and the obstacle will
introduce a noise to the final estimation. So the absolute position estimation is
usually ”jamming”, the output data could jump from one value to a distanced
one. As a contrast, the velocity estimation sensors, e.g. the optical flow sensor,
integral the velocity data to get a position estimation. This requires additional
processing on the data but will usually provide a ”smooth” result. However,
since an integral must be done for this kind of sensor, the drift error rises. The
goal for this thesis is trying to merge a position estimation sensor with a velocity
estimation one, in order to produce an overall better estimate result.
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ultrasonic inertial optical flow Lidar

pros
low cost,
small size

high output
frequency,
do not rely
on outside

inputs

high output
frequency

high
accuracy

cons
low

working
range

drift error

high com-
putational
payloads,

requires il-
lumination

expensive

Table 1.4: Comparison between varies sensors for indoor navigation

1.3 Data fusion methods

The term ”data fusion” is a very generalized and widespread concept. It
can be expressed as a very low-level signal processing method such as a digital
filter, but also as a high-level conceptual treatment, for example a classification
algorithm or a decision strategy. There are many definitions for data fusion from
different research fields. Here we use a well known one, which also appropriately
fits the theme of this thesis, that is[7]:

data fusion techniques combine data from multiple sensors and re-
lated information from associated databases to achieve improved ac-
curacy and more specific inferences than could be achieved by the use
of a single sensor alone.

Following this definition, our purpose to employ a data fusion method is to
provide a better information, given the data from multiple sensors. The word
”better” here shall not simply be expressed as ”more accurate”, ”faster” or
so. It can be expressed by any feature that the designer expects it to have.
For example, a 3D recorder typically use two ordinary cameras taking images
simultaneously and provide a three dimensional movie. In this scenario, it can
hardly say either the result movie is more ”accurate” of ”faster” than the images
from both cameras. But the 3D movie will be still regarded as a ”better” one
since it provides the feature of 3D vision that the designer wish it to have.

There are many ways to classify the available data fusion techniques. From
[3], the classification methods have been summarized into five types:

• following the relations of the input data sources.

• classified by the input/output data types.

• depending on an abstraction level of the employed data.
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• based on the different data fusion levels defined by the Joint Directors of
Laboratories (JDL)

• according to the architecture type

Since this thesis will focus on one data fusion method, rather than comparing
the different data fusion types, we will not provide a comprehensive review on
all the classification methods. Here we just discuss the classification method
following the relations of the input data sources.

According to [5], the data fusion techniques can be divided into three types
according to the relations of the data sources:

complementary sensors provide information from different aspects of a target,
then combine together and provide a generalized view of the target.

redundant sensors measure the same information of a target, by merging the
data, the final information will be more confident than either sensors.

cooperative the information from different sensors is processed into a new type
of information, which will be typically more complex than the original
data.

To give a clearer illustration, here are some examples for each type. For the
complementary data fusion type, suppose we have a three-axis accelerometer
which can measure the direction of the earth gravity, and a three-axis compass
which can measure the earth magnetic field. If we put the two sensors on a
UAV, then the accelerometer can provide the pitch and roll angles by comparing
the gravity on each of its axis. However the accelerometer cannot provide any
information about the yaw angle since no matter how the UAV changes its
heading at the yaw angle, the earth gravity will remain the same value at all
the three axis of the accelerometer. Therefore we need another data source to
provide the information about the yaw angle, i.e. the compass. Combining the
data from accelerometer and compass, a comprehensive attitude information on
pitch, roll and yaw angles will be provided. This the so called complementary
data fusion.

For the redundant type, we will directly use the main content in this the-
sis as an example. Suppose we have an ultrasonic sensor and an optical flow
sensor which are discussed in section 1.2. The ultrasonic sensor will directly
measure the position of a UAV while the optical flow sensor will measure the
velocity. However, in this example, we would integral the data from the optical
flow sensor, so the optical flow sensor by its own will also provide a position
information of the UAV. In this case, two sensors will both provide data about
the position of the vehicle. By some data fusion algorithm, we can merge the
two data together and produce an overall more accurate position estimate than
each of the single sensor. In this specific example, the redundant information
of the position improves our confidence of the position estimate.

As an simple example for the cooperative type, we consider the 3D recorder
example again. Each of the ordinary camera in the 3D recorder will just produce
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a 2D image. But by processing the images from different cameras, a 3D vision
has been provided. This result is much different from any of the images since it
contains information of an extra dimension. And this result cannot be achieved
by any of the single ordinary camera. Two cameras must ”cooperatively” work
together to produce the final 3D vision.

We will see in the following chapters that, the data fusion type we choose
in this thesis, i.e. the Kalman filter, is a redundant data fusion method. From
the point of view of the Kalman filter, which will be discussed in section 3.3.1,
one data source will be regarded as an ”estimator” and the other one is the ”ob-
server”. The estimator will keeps estimating a target information, and whenever
the data from the observer is available, the data from the estimator will be cor-
rected by the data from observer.

1.4 Outline of this thesis

As the last section of the introduction, the outline of this thesis will be
drawn here. This thesis illustrates a combined position estimate system, which
employs a ultrasonic sensor Marvelmind and a optical flow sensor Px4flow. The
extended Kalman filter is used as the main data fusion algorithm and all the
computing is performed on a single-board computer Raspberry Pi. The goal of
this system is to improve the overall position estimate accuracy by fusion the
data from two sensors. Figure 1.3 shows a simplified general structure of the
system.

Figure 1.3: Simplified structure of the combined position estimate system

A comprehensive introduction to all the hardware used in the system will be
presented in chapter 2, including the electronic characteristics, communication
protocol, noise performance etc.

The algorithm used in the system will be illustrated in chapter 3. This
chapter will introduce not only the Kalman filter itself, but also some pre-
process algorithm used before feeding the data into the filter, i.e. the attitude
compensation and the angular rate compensation for the optical flow sensor.
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In chapter 4, the details on how to realize the algorithm on the Raspberry
Pi are introduced. After that, the on-board test of all the algorithm will be
included and discussed.

At last, a general conclusion and some discussion on the future works will
be presented in chapter 5.
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Chapter 2

Hardware

2.1 Overall Hardware set-up

As it is said in 1.4, the combined position estimate system employs two
sensors: the Marvelmind, which is an ultrasonic sensor; and the Px4flow, which
is an optical flow sensor. The Kalman filter is used to merge the data from
two sensors together. The single board computer Raspberry Pi is in charge of
performing all the algorithm. This system is under a redundant data fusion
structure, which means we expect the two sensors to measure the position indi-
vidually before we feed their data into the Raspberry Pi to perform the Kalman
filter process. The Kalman filter is designed based on the system model, so it is
essential to fully understand the mechanisms of the sensors. So in the chapter,
we will focus on the hardware characteristic and working principle of the two
sensors.

The Marvelmind ultrasonic sensor, unlike other type of ultrasonic sensors,
is used to estimate a position coordinate, rather than just providing the distance
from the sensor to an obstacle. A Marvelmind measurement system consists of
three or four stationary beacons and one moving unit which is called hedge-
hog. The distance from the hedgehog to each of the stationary beacons will
be measured, and the coordinate of the hedgehog will be estimated based on
the distance information. More details on Marvelmind will be illustrated in
section 2.2. Even though the working principle of the Marvelmind is complex,
the usage of Marvelmind sensor is straight forward: it can directly provide a
position estimation so we do not need to modify anything about the data from
Marvelmind before we sent it into the filter.

The Px4flow sensor, on the other hand, provide a velocity measurement.
In fact, the Px4flow measures the angular rate of a point in its point of view
(POV), which we will discuss at length in section 2.3. A distance from the sensor
to the ground is required to produce a velocity measurement. In this system,
the distance information is also acquired from the Marvelmind. In order to get a
position estimate from Px4flow, we need to integral its data before fusion its data
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with Marvelmind. Further more, beside the integration, some other processions
are also needed to apply to the data from Px4flow. Since the Px4flow measures
the velocity, the direction of the velocity it is measuring is also required. After
that, the angular rate of the sensor itself will influence its velocity output. As a
result, the attitude and angular rate of the Px4flow sensor are needed in order to
provide an accurate velocity estimate, which finally yields a position estimation.
These processes are called the pre-process of the Px4flow and the algorithms of
the pre-processes will be comprehensively discussed in 3. For now we just need
to know that, to produce the position estimation from the Px4flow, an IMU
is also needed. Fortunately there is an IMU integrated inside the Marvelmind
which we can employ.

After all, figure 2.1 shows an overall structure of the system. Notice that
in the figure, a box with bold text means it is a hardware while a box with
italics text means it is an algorithm. The text with normal type above an arrow
stands for a data. Some data have brackets following them, the contents in the
brackets indicate the communication protocol they are using.

Figure 2.1: Overall structure of the combined position estimate system

2.2 Marvelmind

Marvelmind is an indoor navigation system. The high accuracy (±2cm),
low power consumption (0.4W ) and compact size (55 × 55 × 65mm) make it
suitable for all kinds of indoor applications. It employs the ultrasonic (31kHz)
to perform the measurement and support varies communication protocols such
as USB, SPI and UART. The location update rate is about 8Hz, however this
frequency may change depending on the operating environment. The measure-
ment range is around 1000m2 and all the components in the Marvelmind system
can be powered by a 5V power supply. The developer states that the Marvel-
mind sensor is an indoor GPS system since it can directly output fake GPS
format data. So any system requires a GPS format information can integrate
with the Marvelmind sensor without much configurations. Moreover, the Mar-
velmind also has an integrated IMU which can be used to perform attitude
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estimations. In this section, the working principle and communication protocol,
together with other technical details will be introduced in detail.

2.2.1 Working mechanism

A complete Marvelmind system consists three components: stationary bea-
cons, hedgehog and a router. Their functions are listed below:

Beacon The beacons are mounted stationary on the walls or roofs. A navi-
gation system requires three or four beacons to perform the position es-
timate. Beacons will send ultrasonic pulses to the hedgehog and record
the time point of sending the pulse. The time point of sending the pulse
will be transmitted to the router and compare with the time point the
pulse received by the hedgehog. By this, the distance from each beacon to
the hedgehog will be estimated. This method of distance measurement is
called Time-Of-Flight (TOF) method. Figure 2.2 shows a picture of the
beacon.

Hedgehog Technically speaking, the hedgehog and the beacon is identical on
hardware. The only difference is their functions. A hedgehog is mounted
on the target whose position is desired to be measured. Its duty is to
receive the ultrasonic pulses from beacons and measure the time point
when a pulse arrives. The time point of receiving the pulse will then
be sent to the router and compare with the time point of sending of the
same pulse. Since the hardware of a hedgehog and a beacon is the same,
their functions can be changed on a PC through a set-up software called
dashboard. This means any beacon can be configured into a hedgehog
and vice versa.

Router The router plays a central controller role in the Marvelmind system.
The time point measured by the beacons and the hedgehog will be sent
to the router. The router then compares the interval between the time
points and provides a distance estimate from the hedgehog to each of
the beacons. Moreover, the router will also perform a calculation that
produce a location of the hedgehog in a Cartesian coordinate. The origin
point the of coordinate can be freely changed through the set-up software.
Notice that although changing the configurations of the system requires
connecting the router to a PC through a USB cable, the position estimate
itself does not involving any help from the PC. The router will perform all
the computation for the position estimate. Thus means one can power the
router through an adapter or even a USB power bank and the Marvelmind
system will perform its measurement without any problem. Figure 2.2
shows a picture of the router.
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(a) Beacon/Hedgehog (b) Router

Figure 2.2: Components of the Marvelmind system

Figure 2.2 shows a image of the beacon/hedgehog and the router. It can be
observed that there are five ultrasonic receiver(RX)/transmitter(TX)s on each
beacon/hedgehog. Ideally all the RX/TX will be used to perform the measure-
ment. However, if in practical one of the RX/TX is blocked by come component,
e.g. the shell of the UAV, this specific RX/TX can be disabled in the set-up
software. This will ensure the data from the blocked RX/TX will not influence
the measurement.

To successful perform a measurement, a Marvelmind system should con-
tains one router, one hedgehog and three or four beacons. A typical set up of
the system will be shown in figure 2.3. The maximum distance between the
beacons is 50m and it is recommended not to mount the beacons over than
30m with each other. Again, the PC is just used for configuration purpose, the
measurement does not rely on the presence of a PC.

Figure 2.3: An example of a 4-beacon set up of Marvelmind system

After the router finishes the position estimate, the result will be transmitted
to the hedgehog. Then the position can be acquired from the hedgehog via varies
communication protocols. The details about the protocol will be demonstrated
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in the appendix. It is worth to mention that the packet structure shows in
the appendix is used in all the protocol supported by Marvelmind, i.e. UART,
USB and SPI. However in this thesis, we employs the USB protocol only. The
reason to choose USB is not only by it is more easy to use, but also by some
hardware restrictions of the Raspberry Pi. We will continue the discussion on
this in section 2.4.

2.2.2 Inertial measurement unit

As it is discussed in section 2.1, the estimation of Px4flow requires an
attitude information to perform. Luckily there is an inertial measurement unit
(IMU) embedded inside the beacon/hedgehog of the Marvelmind system so we
do not need any additional device to measure the attitude.

IMU is widely used in guidance and navigation applications. Typically
an IMU consists of an accelerometer and a gyroscope. Both the two sensors
performs the measurement based on the inertial property itself, without any
interaction with surrounding environment. That is where the term ”inertial”
comes from. When performing the attitude estimation, the accelerometer will
in charge of measure the direction of earth gravity while the gyroscope keeps
measuring the angular velocity on all the three axis. However the direction
of gravity can only provide information on the pitch and roll axis. Figure 2.4
shows a orientation of the three rotation axis. From the figure we can find that
no matter how the sensor rotates around the yaw direction, the partial of the
gravity on the three axis will remain the same. This means only the gyroscope
will be used to measure the rotation on the yaw axis, which introduce a drift
error. To solve this, many modern IMU have a compass integrated inside. By
the help from the compass, the rotation around the yaw axis can be estimated
accurately.

For a better understanding of the structure for the IMU inside the Marvel-
mind beacon, figure 2.5 shows a brief construction.

Since the IMU is embedded inside the Marvelmind, it also follows the same
communication protocol as the Marvelmind. The difference is the IMU using a
different payload field from the Marvelmind. More details of the IMU commu-
nication protocol can be found in the appendix.

IMU calibration
By analysing the data from IMU, we find all the IMU sensors have sorts of
bias outputs. This means the output is not centred at zeros. For example, if
we put the Marvelmind at a fixed position without any movement, the output
from gyroscope is not zero as we expect. So it is essential to calibrate the
bias and cancel them out before any further processing. For the accelerometer
and the compass, we can calibrate the bias by the following routine (for clear
demonstration the figure 2.6 is used as a reference): For accelerometer:

1. Face the A side of the Marvelmind to the ground, record the data in X
axis of accelerometer.
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Figure 2.4: Gravity cannot help measuring the change in yaw axis

Figure 2.5: The structure of IMU inside Marvelmind beacon
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2. Face the B side of the Marvelmind to the ground, record the data in X
axis of accelerometer.

3. The mean of the two records is regarded as the bias in the X axis of the
accelerometer.

4. Repeat the same routine on C, D sides and top, bottom sides to get the
bias in the Y and Z axis.

For compass:

1. Put the Marvelmind at a fixed point, make sure there’s no metal objects
or high frequency electromagnetic field surrounded.

2. Record the data in X and Y axis of the compass.

3. Turn the Marvelmind 180◦ around Z axis, record the data in X and Y axis
of the compass.

4. The mean of the two records is regarded as the bias in the X and Y axis
of the compass.

5. The bias of the Z axis of the compass can be measured using the same
method as the Z axis of the accelerometer.

(a) (b)

(c)

Figure 2.6: Calibrate the bias of accelerometer and compass

The gyroscope, on the other hand, has a different bias each time the sensor
starts working. So we cannot calibrate the gyroscope once and use the bias we
measured in another time. The bias of the gyroscope should be measured every
time the Marvelmind is powered up. Each time we startup the Marvelmind, the
system should be kept stationary without any movement for 20 to 30 seconds
and the output from the gyroscope is recorded. After that, the mean value
during this period is regarded as the bias of the gyroscope.
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2.3 Px4flow

Px4flow is an optical flow sensor which provides velocity estimation. The
difference between Px4flow with other optical flow sensors is it has a much higher
resolution image sensor. The MT9V034 CMOS image sensor used in Px4flow has
a resolution of 752 × 480 pixels, which makes the Px4flow capable of working
without high illumination environment. A 168 MHz Cortex M4F CPU is in
charge of performing the optical flow computation on-board at a frequency of
400Hz. A 16mm M12 lens is used which has a 21◦ field of view (FOV). The lens
is also equipped with an IR filter to reduce the interference from infrared. The
compact size (45.5mm × 35mm) and low power consumption (about 575mW )
makes the Px4flow suitable for the indoor UAV applications. Figure 2.7 shows a
picture of the Px4flow sensor. Notice the column object besides the camera is an
ultrasonic sensor, it suppose to be used for providing the distance information
to the Px4flow. However in the current firmware version of the Px4flow sensor,
it has been disabled due to some technical issues. In this thesis, the distance
information will be provided by the Marvelmind sensor instead. In this section,
the Px4flow sensor will be introduced in detail.

Figure 2.7: An overview of the Px4flow sensor

2.3.1 Working principle

When measuring, Px4flow sensor keeps taking image by its CMOS image
sensor at a frequency of 400Hz. If the Px4flow moves its camera against some
reference plane (such as tiles on the ground, or texture of the ceiling), then
two images taken at the adjacent time points will be generally identical, with
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a small amount of displacement. This slightly differences can be used to jus-
tify the velocity of the camera moving against the reference plane. An image
comparison algorithm will comparing the difference between two images and
estimate who much the displacement is. This is so called the ”optical flow”,
which basically means how many pixels fly by during the time interval of the
two images. Figure 2.8 shows a roughly image of this measuring mechanism.
Notice that in real situation, the time interval between two images is very short
(2.5ms) so the according displacement between them is typically small.

Figure 2.8: The working mechanism of Px4flow

After the optical flow is measured, an angular rate of the target moving
inside the FOV of the camera can be computed. For a better demonstration,
figure 2.9 shows a image of the light path between the lens and the CMOS image
sensor. A reference target is expressed using a star and its image on the CMOS
sensor is presented by the dashed star. Suppose the target moving from location
A to location B as shown in the figure, its image will move from location A’ to
B’ on the CMOS sensor. The displacement is the optical flow as we discussed
above. Then divide the displacement with the focus length of the lens, we can
get the angle θ. Then simply divide θ by the time interval between two images,
the angular velocity of the target moving inside the FOV of the camera can be
computed. Since the θ is typically small, we can employ the approximation as:

θ ≈ tan θ ≈ D

F
(2.1)

where

• D is the displacement of the image, or equally says the ”optical flow”.

• F is the focus length of the lens.

Notice the size of one pixel of the camera in Px4flow is 6µm and the comparison
algorithm using a four binning image process. This means one unit of optical
flow corresponds to 6× 4µm. The focus length of the lens is 12mm.
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Figure 2.9: The light path inside the camera

As we discussed above, the Px4flow actually providing an estimation of
the angular rate of the vehicle. Thus means to convert angular rate to velocity
regards to the reference plane, it requires a distance information. In this thesis,
this information is gathered from Marvelmind since the Marvelmind can esti-
mate the target position, which also include the altitude information. In our
design we will face the Px4flow sensor’s camera to the ground, then the altitude,
which is the distance between the UAV and the ground, yields the value we need
to compute the velocity from the angular rate.

2.3.2 Attitude compensation

In subsection 2.3.1, we have seen that the Px4flow provides an estimate of
the vehicle velocity. Then the position can be calculated by integral the velocity.
However before merging the position estimated by Px4flow and by Marvelmind,
we must put two position estimations in the same coordinate system. Thus, the
attitude of the vehicle should be considered.

For a clear illustration, figure 2.11 shows a situation that two UAV has
different attitude in a same reference coordinate system. Assuming two identical
UAVs mounting the Px4flow sensor, and their position is also measured by the
Marvelmind sensor in a Cartesian coordinate system. UAV 1 moves along the
Y axis and the UAV 2 moves along the 45◦ direction between X and Y axis.
Suppose they are moving with the same velocity, i.e. v1 = v2. If we directly
integral the velocity measured by the Px4flow to estimate their position, then
the two UAVs will have the same position offset. This kind of position estimate is
obviously useless for us since we would like to know the position in a coordinate
frame as the Marvelmind do.

Moreover, the attitude of the UAV also influence the distance from the
camera of Px4flow to the reference plane. Since we are going to employs the
altitude data from Marvelmind as the distance from Px4flow to the ground.
Suppose the UAV flying with a non-horizontal attitude. Then the real distance
to the reference is larger than the altitude of the UAV. We can employ figure 2.10
illustrate this mechanism more clearly. In figure 2.10a, A stands for the altitude
of the UAV and R stands for the displacement of the vehicle. If we assume the θ
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is small, the we can use the following approximate to estimate the displacement:

R = A tan θ ≈ A · θ (2.2)

Now we consider the situation in figure 2.10b, obviously Eq. 2.2 is not applicable
any more. The distance from the Px4flow to the reference D should be firstly
computed by:

D = A cosφ (2.3)

where φ is introduced by the attitude of the UAV.

(a)

(b)

Figure 2.10: Attitude influences the displacement estimation

As a result, an attitude information is required so we will know not only
how fast the vehicle is moving, but also which direction it is moving towards.
In this thesis, we will use the quaternion and direction cosine matrix (DCM)
method to estimate the attitude information from the data of IMU. The detailed
explanation of the algorithm will be discussed in chapter 3.

2.3.3 Angular rate compensation

We have already seen how the attitude of the UAV can influence the position
estimation from Px4flow. In this subsection, we would like to discuss another
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Figure 2.11: Attitude influences the position in the coordinate system

kind of interaction comes from the angular rate of the vehicle.
In subsection 2.3.1 we have seen how the Px4flow measuring the angle

change of a target in figure 2.8. However this is the the perfect situation we
can imagine. In practical, the sensor will encounter the rotations which will
introduce an error to the result.

Figure 2.12: Measurement error caused by rotation

Figure 2.12 shows an example. In the figure, θ′ + θ is the angle that the
sensor measures and the θ′ part is caused by the rotation of the sensor which
we want to cancel out. This rotation may occur in any body axis so the angular
rate around each body axis of the UAV (can be measured by the gyroscope)
is coupled together. This means, for example, the angular rate around x axis
ωx will not only influence the output of the sensor in y axis, but also affect the
output in x axis. To compensate the extra angle introduced by the rotation,
the angular rate must be measured. And the quaternion and direction cosine
matrix method will be used. Again, the detailed explanation of the algorithm
will be discussed in chapter 3.
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2.3.4 Illumination effect

The Px4flow employs a 752×480 CMOS image sensor to take images. This
image sensor is much more sensitive comparing to other optical sensors, e.g. the
sensors in an optical mouse, so it does not heavily rely on illumination sources.
However the lighting situation does affect the noise characteristic of the output
from px4flow. So it is recommended to test the noise variance in the specific
illumination environment and adjust the parameters in Kalman filter according
to the test.

One situation that need to pay enough attention is, when using Fluorescent
lamp as the illumination source, the output from Px4flow could be disastrous.
This is due to the fact that the Fluorescent lamp keeps blinking at a specific
frequency. The traditional type of Fluorescent tube blinks at the same frequency
as the grid power, which is 50Hz or 60Hz in most of the countries. Some modern
technique Fluorescent tubes work in a higher frequency such as 500 - 2000 Hz.
The Px4flow processes the images at a frequency of up to 400 Hz. Because
we cannot guarantee the Px4flow and the Fluorescent lamp are synchronize, so
even we assume the Fluorescent lamp we are using as lighting source is working
at 2000 Hz, it still has the possibility that the sampled images in Px4flow have
different brightness. Figure 2.13 shows a test result of Px4flow under different
illumination situations. The test is done by locating the Px4flow at a fixed
position and facing the lens to the ground. The blue dots indicate the data
collected under the natural sunlight while the red ones are under the Fluorescent
lamp. The enormous difference can be observed easily and table 2.1 gives some
numerical results. Notice that the Fluorescent lighting not only increases the
standard variance by over 10 times as the sunlight, but also introduces a bias
of about 0.0134rad. As a comparison the output under sunlight has a mean
value of 1.4875E − 04rad, which can be approximately regarded as a unbiased
output, while the output under Fluorescent is obviously biased. Another thing
for the test is, the test of the output under Fluorescent is done in the daytime.
This means it still has the sunlight at the background. If it is in an environment
without any natural light, the result could be even worse.

Standard variance
(Unit:rad)

Mean
(Unit:rad)

Under sunlight 0.0022 1.4875E-04

Under Fluorescent 0.0308 0.0134

Table 2.1: Noise characteristic of outputs from Px4flow

So as a conclusion in this subsection, it is suggested that avoiding Fluores-
cent lamps as the lighting source. If this cannot avoid, then the noise charac-
teristic must be measured carefully and the bias of the output should be also
considered.

Before we leaving this section, one thing needs to note is the Px4flow sensor
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Figure 2.13: Output from Px4flow in different illumination situations

supports three types of communication protocol: UART, USB and I2C. However
the USB protocol in Px4flow is mainly used for configuration purpose. Besides
the optical flow data, the image taken by the camera will also be transmitted in
USB protocol. The image can be used to adjust the focus of the lens. However
it will also reduce the update rate of the optical flow data since it has to leave
sufficient space for the image transmission. In the thesis, I2C protocol is used
to connect the Raspberry Pi with the Px4flow. Choosing I2C over UART is
due to some special restrictions of the Raspberry Pi, which will be discussed in
section 2.4. More details of the communication protocol of the Px4flow will be
introduced in the appendix.

2.4 Raspberry Pi

Raspberry Pi is a low cost single board computer. It is designed to be a
cheap, compact PC/develop board, but still rather powerful comparing to its
size. Its capability and compact size (85.60mm × 53.98mm × 17mm) makes
it very popular since its born. The first generation of Raspberry Pi is released
in 2012 and sold out nearly 15 million in 2017. It directly runs Linux as its
operating system, which makes it easily to expand with customized programs.
Figure 2.14 shows a picture of a Raspberry Pi 3 B+ model.

Raspberry Pi is widely used as multiple roles in many applications, such
as Internet of Things (IoT), smart-home, robotics, etc. Armed with a monitor,
a keyboard and a mouse, the Raspberry Pi can be used as a normal PC which
even capable of running some 3D video games. In the mean while, the 40-pin
GPIO header makes it ideally for embedded developing purpose. In this thesis,
the Raspberry Pi 3 B+ is employed as the main controller, which will be briefly
introduced in this chapter.
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Figure 2.14: A Raspberry Pi 3 B+

2.4.1 Brief introduction

The hardware specifications of Raspberry Pi 3 B+ are listed below:

• main processor: Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit
SOC, 1.4GHz

• 1GB LPDDR2 SDRAM

• 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2,
BLE

• Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)

• Extended 40-pin GPIO header

• Full-size HDMI

• 4 USB 2.0 ports

• CSI camera port for connecting a Raspberry Pi camera

• DSI display port for connecting a Raspberry Pi touchscreen display

• 4-pole stereo output and composite video port

• Micro SD port for loading your operating system and storing data

• 5V/2.5A DC power input

• Power-over-Ethernet (PoE) support (requires separate PoE HAT)

The power consumption of Raspberry Pi will be vary depending on what kind
of tasks its running with. However a typical power usage when it is booted up
without any further operation is about 2 watt.
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Since the Raspberry Pi uses the Linux as its operating system, developers
can use almost any program language to expand its function such as C/C++,
Java, Python, etc. This is very convenient comparing to other embedded pro-
cessors, which only support assembly language or C/C++ to program. However
this convenience also comes with a drawback. The utilization of Linux means
the Raspberry Pi is not a real-time processor. The kernel of standard Linux will
judge which task will be processed first, not the developer. Although some Linux
patch (such as Linux RT) makes the system running in a ”quasi-realtime” way,
it is still hardly to perform some specific tasks with high realtime processing
requirement. For example, even though there are 40 GPIO pins in a Raspberry
Pi, developers can not use any pin they want as a standard UART serial port.
In contrast, a developer using the Arduino Uno can declare any GPIO pins for
serial transmissions.

As it is said above, the Raspberry Pi support a wide range of programming
language. In this thesis we are using the Python to build the ”logic parts” of our
algorithm. Logic parts here means all the tasks excluding the filter algorithms,
such as opening a serial/I2C port, changing the unit of the data, reading/saving
results to a file, etc. Python is an interpreted high-level programming language.
It is object-oriented and easy to read. Using Python at the logic parts will
save lots of time dealing with miscellaneous treatment (the data type, function
pointer, . . . ).

On the other hand, the C language will be used to process the actual
algorithm in this thesis, including the attitude estimation, angular rate com-
pensation, Kalman filter. Since these algorithm involves many mathematical
computation, especially some matrix calculations and float computation, using
the C language will provide a faster computation on such tasks.

2.4.2 Communication restricts of Raspberry Pi

The Raspberry Pi support varies communication protocols to transmit data
with peripheral devices, such as I2C, SPI, UART, USB. However there are
some restrictions in the UART port of Raspberry Pi. Table 2.2 shows an overall
situation about the available communication protocols in a Raspberry Pi. Notice
that the SPI port in Raspberry Pi has two chip select pins, which makes it able
to connect two devices.

Protocol Available ports

I2C 2

SPI 1

UART 1 standard + 1 mini

USB 4

Table 2.2: Supported communication protocol in Raspberry Pi
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As we have discussed in subsection 2.4.1, not all the GPIO pins can be
used as the serial port since the Linux is not a realtime system. The Raspberry
Pi uses the serial port integrated inside the BCM2837B0 processor to perform
UART communication tasks. As a result, there is only one standard UART
port inside the Raspberry Pi and it is connected to the bluetooth module by
default. This means we have to disable the bluetooth module if we want to use
the standard UART port. However the Raspberry Pi do have another UART
port which is called a mini-UART, and is used for console output by default.
But the mini-UART lacks the functions such as parity check, making the use
of mini-UART highly restricted. What make things even worse is the standard
UART and the mini-UART share the same GPIO pin through a multiplexer,
this means we can only reach to one of them at the same time. As a result, we
are trying to avoid using a UART protocol in this thesis. The USB protocol is
used to connect with the Marvelmind and the I2C protocol is used to connect
with the Px4flow.
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Chapter 3

Data fusion algorithm

3.1 Introduction

As we have already introduced, the combined position estimate system in
this thesis employs the Kalman filter as the main data fusion method. The
essential factor to build a proper Kalman filter is the system modelling. Our
system consists of three main part: the attitude estimation for the UAV, the
angular rate compensation for the Px4flow, and finally the position estimate
combining the data from Px4flow and Marvelmind. Mathematical models for
these three parts should be carefully built before the Kalman filter processing.

So in this chapter, we will first introduce two important tools which is used
in the attitude estimate and the angular rate algorithm. They are the concepts
of quaternion and direction cosine matrix (DCM). Then we should focus on the
mathematical modelling for our system, including the attitude estimate, angular
rate compensate and the position estimate. At last, the details of the Kalman
filter will be discussed.

3.2 System modelling

There are three main algorithms for the combined position estimate system:
attitude estimation, angular rate compensation and the position estimation. In
this section, their mathematical models will be introduced. However, before
that, two mathematical tools which is used to present an attitude of the object
will be introduced.

3.2.1 Attitude mechanism

There are many ways to express a rotation of an object. Three majority
methods used in the UAV field is: Euler angle, direction cosine matrix and
quaternion. The Euler angle express an object attitude using the angle between
the body axis and the fixed reference axis, which is typically denoted by ϕ, θ,
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ψ. However, there is not a uniform definition on which denotion corresponding
to which axis. Further more, different sequences of the rotation also produce
different attitude, so it is essential to determine a specific rotation order before
using the Euler angle to express a rotation. Another problem of the Euler angle
is the gimbal lock, that is, in some specific situation, the expression of Euler
angle will lost one degree of freedom, so different attitudes may refer to the
same Euler angle sets. A detail discussion of gimbal lock can be found in [8].

The other two method, direction cosine matrix and quaternion avoid the
problem of gimbal lock, and have a well defined orientation, so people do not
need to clarify their coordinate set-up before employs this two methods. More-
over, since the two methods are mathematically equivalent, so the expression in
one of the methods can be easily converted to another. In this section, we will
first introduce the direction cosine matrix method, then follows the quaternion
theory. At last, the relationship between them will also be introduced.

Direction cosine matrix

In this section, we will use x̂1,x̂2,x̂3 indicate the three unit vectors along
the axis of the reference frame and ê1, ê2, ê3 for unit vectors along the axis
of the body frame. The body frame will rotate together with the object while
the reference frame is a fixed frame. We will also use θij represents the angle
between the i-th axis in the body frame with the j-th axis in the reference frame.
Notice here θij and θji are two different angles, for example θ12 means the angle
between ê1 and x̂2 while θ21 means the angle between ê2 and x̂1. We also
suppose the origin point of the two frame is same. Figure 3.1 shows a general
idea of this set up.

Suppose at beginning, the reference frame and the body frame coincide
together. Then the body frame rotates to a new position which results the
situation in figure 3.1. Following the above definitions, we can write out the
relationship between the unit vectors in the two frames.

ê1 = cos(θ11)x̂1 + cos(θ12)x̂2 + cos(θ13)x̂3 = a11x̂1 + a12x̂2 + a13x̂3 (3.1)

ê2 = cos(θ21)x̂1 + cos(θ22)x̂2 + cos(θ23)x̂3 = a21x̂1 + a22x̂2 + a23x̂3 (3.2)

ê3 = cos(θ31)x̂1 + cos(θ32)x̂2 + cos(θ33)x̂3 = a31x̂1 + a32x̂2 + a33x̂3 (3.3)

Since the cosine function is used to express the direction of the vectors, this
relationship is called directional cosine. We can also write Eq. 3.1, Eq. 3.2,
Eq. 3.3 into a compact way as:

C =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (3.4)

Eq. 3.4 is called the direction cosine matrix DCM with regard to the object
attitude in figure 3.1.
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Figure 3.1: Reference frame and body frame

Now we assume a vector presented in the body frame as

~r = e1ê1 + e2ê2 + e3ê3 (3.5)

we can calculate it’s corresponding presentation ~x in the reference frame by
substituting êi using equation Eq. 3.1, Eq. 3.2 and Eq. 3.3 which leads to the
following results:

x1 = a11e1 + a21e2 + a31e3 (3.6)

x2 = a12e1 + a22e2 + a32e3 (3.7)

x3 = a13e1 + a23e2 + a33e3 (3.8)

or in a more compact way:[
x1 x2 x3

]
=
[
e1 e2 e3

]
C (3.9)

It can be proved that C is a rotation matrix[1], this means its transpose is its
inverse: CCT = CC−1 = I. So we can also write equation Eq. 3.9 in another
form:

~r = C~x (3.10)

Here in Eq. 3.10, ~x =
[
x1 x2 x3

]T
and ~r =

[
e1 e2 e3

]T
which follows a

more common expression for the vector.
By now we have a convenient method to represent a rotation: each rotation

of the body frame has a corresponding direction cosine matrix (DCM), and we
can use the DCM to transform any arbitrary vector presented by the coordinate
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in one frame to the other. So our problem now is: given the angular rate on
all three body frame axis (which can be measured by a 3-axis gyroscope), how
to decide the corresponding DCM? A differential equation can be employed to
answer this[1]:

Ċ = C[ω×] (3.11)

where [ω×] is a skew symmetric matrix as this:

[ω×] =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3.12)

the ω in Eq. 3.12 indicates angular velocity of a right hand rotation around
the axis presented by the subscript. Eq. 3.12 is actually a set of 9 differential
equations and by solving it, we can get the DCM which relates to the rotation
caused by the angular rates in Eq. 3.11.

Now we have a fully defined method DCM to represent a rotation, together
with the kinetic differential function to calculate it. In subsection 3.2.1 we
will introduce another method called quaternion, and discuss the relationship
between quaternion and DCM.

Quaternion

Basic definitions of quaternion
Quaternion is a IR4 vector in the form:

q =


q1
q2
q3
q4

 (3.13)

or in an extended complex number form as:

q = q1 + q2i+ q3j + q4k (3.14)

The definition of i, j, k follows the normal complex number as:

i× i = j × j = k × k = −1 (3.15)

and the relation ship between the imagine vectors is:

i× j = k; j × k = i; k × i = j; (3.16)

However the quaternion has some special properties differ from a normal vector
or complex number. The most important one is the quaternion is not commu-
tative. So the inverted relationship of Eq. 3.16 is:

j × i = −k; k × j = −i; i× k = −j; (3.17)
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The sum and product of the quaternions is similar as two vectors, suppose we
have q = (q1, q2, q3, q4)T and p = (p1, p2, p3, p4)T , then:

q + p =


q1 + p1
q2 + p2
q3 + p3
q4 + p4

 (3.18)

and

q× p =


q1p1 − q2p2 − q3p3 − q4p4
q2p1 + q1p2 − q4p3 + q3p4
q3p1 + q4p2 + q1p3 − q2p4
q4p1 − q3p2 + q2p3 + q1p4

 (3.19)

The conjugate q∗ of q is:

q∗ =


q1
−q2
−q3
−q4

 (3.20)

We should also define the length of a quaternion as:

|q| =
√

q× q∗ =
√
q21 + q22 + q23 + q24 (3.21)

and the inverse:

q−1 =
q∗

|q|2
(3.22)

The unit quaternion means the length of the quaternion is unity, which has the
form:

q =

(
cos θ/2

u sin(θ/2)

)
(3.23)

where

• θ is a rotation angle.

• u is a 3-dimensional unit vector stands for the image part of a quaternion.

Expression rotation using quaternion
In order to express a rotation in quaternion, the first thing is to convert a regular
vector into a ”pure” quaternion. Suppose we are going to express a rotation of

a vector ~n =
[
x1 x2 x3

]T
, the corresponding pure quaternion with regards

to the ~n is:
~nq =

[
0 x1i x2j x3k

]T
(3.24)

Note the ~nq indicates its the quaternion version expression of the original vector
~n. Basically to expression a vector in a quaternion way, simply writes the
coordinates of the vector in the imaginary part of the quaternion, and the real
part of this quaternion is zero.
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Now assuming a rotation applies to ~nq, which can be expressed by a unit
quaternion q:

q =


q1
q2
q3
q4

 (3.25)

Suppose we rotate the vector ~nq in a fixed reference coordinate, which means
the vector is rotating and the coordinate remains stationary. The vector after
the rotation can then be represented as:

~n′q = q~nqq
∗ (3.26)

It can be proved that ~n′q is also a pure quaternion as the ~nq[18]. Then the
imaginary part in ~n′q is the coordinates we want for the rotated vector.

A convenient feature for the quaternion is, if we know a quaternion pre-
senting a rotation, then it is very straight forward to find out the rotating axis
and angle for this rotation. Remember the quaternion which express a rotation
is a unit quaternion, back to the definition of the unit quaternion Eq. 3.23, the
rotation axis is simply presented by the vector u in the imaginary. Meanwhile,
the θ stands for how much angle the object rotates.

By now we have know how to express a rotation in a quaternion way.
However we also need to know the kinetic differential equation which link the
quaternion with the angular rate on all three body frame axis, which is:

q̇ = Fq(ω)q (3.27)

where

Fq(ω) =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (3.28)

Eq. 3.27 is actually a four differential equations set.

Relationship between DCM and quaternion
Mathematically speaking, the DCM and quaternion expression for a rotation is
equivalent. So if we know a rotation expressed in quaternion q, we can directly
write out the corresponding DCM. Here we should consider two situations of
rotation. First one is, we have a fixed reference coordinate, and there is a vector

~n inside it. By applying a rotation q =
(
q1 q2 q3 q4

)T
, the vector ~n′q after

the rotation, which is expressed in the reference coordinate can be represented
as:

~n′ = C~n (3.29)

where

C =

(q21 + q22 − q23 − q24) 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) (q21 − q22 + q23 − q24) 2(q3q4 − q1q2)
2(q2q4 − q1q3) 2(q3q4 + q1q2) (q21 − q22 − q23 + q24)

 (3.30)
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This rotation can be expressed in figure 3.2a.
There is another kind of rotation, that is, suppose we have a fixed vector ~n

which is expressed in a rotation body coordinate. At the beginning, the rotation
body coordinate is coincide with the fixed reference coordinate. Now a rotation
q applied to the body coordinate but vector ~n and the reference coordinate
remain stationary. We want to know the expression of ~n in the rotated body
coordinate. This can be done by:

~n′ = C ′~n (3.31)

where

C ′ =

(q21 + q22 − q23 − q24) 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) (q21 − q22 + q23 − q24) 2(q3q4 + q1q2)
2(q2q4 + q1q3) 2(q3q4 − q1q2) (q21 − q22 − q23 + q24)

 (3.32)

This rotation can be expressed in figure 3.2b

(a) Rotate a vector in a fixed co-
ordinate

(b) Rotate the coordinate when
the vector remains fixed

Figure 3.2: Comparison between two rotations

As a conclusion, we have discussed two method for representing the rota-
tions, they are DCM and quaternion. The relationship between them are also
discussed. Notice that there are two types of rotation introduced in this section,
the rotation of a vector in a fixed coordinate and the rotation of the coordinate
when the vector remains the same.

Comparing the DCM and quaternion, we found that, DCM is more suitable
to interact with a vector, since to rotate a vector, we simply multiply the DCM
with it. On the other hand, quaternion uses less parameters to express a rotation
(four parameters comparing to nine in DCM). Moreover, given a quaternion, it
is intuitive to point out the rotation angle and rotation axis. When talking
about the kinetics for the two methods, to get a DCM we need to solve a nine
differential equations set, while to get a quaternion we only need to solve a
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four equations set. So generally speaking, quaternion is more easy to compute
and DCM is more suitable to use with a vector. In this thesis, we employs
the quaternion method to estimate the attitude of the UAV, then convert the
quaternion into DCM, and use the DCM method to apply the attitude to the
data from Px4flow.

3.2.2 Attitude estimate model

In this thesis, we are going to estimate the attitude using the quaternion
method mentioned in subsection 3.2.1. The input of the algorithm is the data
from IMU sensors, e.g. the data from gyroscope, accelerometer and compass.
The output will be the quaternion which indicates the rotation. Notice here
the attitude output is not an ”absolute” value to indicate the attitude, such as
a specific set of Euler angle. Choosing the quaternion as the attitude output
makes it very adaptable when combine the estimated attitude information with
other data. We will shortly see this later in this subsection.

The gyroscope will be used as the primary estimator and the accelerometer
and the compass will be used as two observers. Here for convenience, we write
again the kinetic differential equation for the quaternion as:

q̇ = Fq(ω)q (3.33)

where

Fq(ω) =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (3.34)

So the data from gyroscope will be put into Eq. 3.34. Then Eq. 3.33 is used to
estimate the quaternion with regards to the attitude.

On the other hand, for the observers, at the very beginning time t0, we as-

sume the data output from accelerometer and the compass are ~na =
[
a1 a2 a3

]T
and ~nc =

[
c1 c2 c3

]T
. Suppose the system rotates to a new attitude at time

t1, and we calculate the quaternion qg =
[
q1 q2 q3 q4

]T
using the data

from gyroscope. Using the relationship between the quaternion and DCM from
subsection 3.2.1, the according DCM can be expressed as:

C =

(q21 + q22 − q23 − q24) 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) (q21 − q22 + q23 − q24) 2(q3q4 + q1q2)
2(q2q4 + q1q3) 2(q3q4 − q1q2) (q21 − q22 − q23 + q24)

 (3.35)

Notice here we are using the DCM which stands for the coordinate rotation.
Then the initial output from accelerometer ~na and the compass ~nc should

be rotated into the following vectors:

~n′A = C~nA

~n′C = C~nC
(3.36)
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We can also write this in a more compact way:

V ′ =
[
a′1 a′2 a′3 c′1 c′2 c′3

]T
= [C C]V (3.37)

where
V =

[
a1 a2 a3 c1 c2 c3

]T
(3.38)

Compare the calculated vector V’ to the output from the accelerometer and
the compass at time t1, we will get a difference between the estimator (gyro-
scope) and the observers (accelerometer and compass). This difference can be
processed by a Kalman filter, which will produce a overall better estimation for
the attitude. The according Kalman filter process will be illustrated in detail
in section 3.3.

Suppose we have an estimation for the attitude, we need to combine this at-
titude information with the output from Px4flow. Now we use Vp =

(
Vpx Vpy Vpz

)
stands for the output velocity data from Px4flow, Vtrue =

(
Vtruex Vtruey Vtruez

)
stands for the ”true” velocity after combining the attitude information, and us-
ing figure 3.3 as a reference. The combination can be done by the following
routine.

Step 1 At the very beginning when the whole system is booting up. Set a
”pointer” vector P =

(
Px Py Pz

)
, where Px = 1, Py = 0, Pz = 0. This

pointer vector P is used as a reference vector to indicate the initial attitude
of the object. Since a quaternion stands for a rotation with regards to the
initial attitude, we can rotate the pointer vector P using the quaternion
so the current attitude can be expressed.

Step 2 Each time there is an available attitude data, rotates the pointer vector
P by the according DCM C as P ′ =

(
P ′x P ′y P ′z

)
= CP . P ′ stands for

the current attitude of the system. Notice that the original P should
maintain unchanged for further usage.

Step 3 Vtrue can be computed as:

Vtruex = Vpx × P ′x + Vpy × P ′y
Vtruey = −Vpx × P ′y + Vpy × P ′x

(3.39)

3.2.3 Angular rate compensate model

In this subsection, we will use x̂, ŷ, ẑ represent the axis for reference frame
and use x̂B , ŷB , ẑB for the body frame. The ẑB is set as the direction that the
camera of Px4flow facing to (which means the camera “looks” toward the ẑB
direction). We also put a test vector ~r locates in reference frame along the ẑ
axis, and another test vector ~rB in the body frame along the ẑB axis. So the
~rB will rotate together with the sensor while the~r remains fixed in the reference
frame.
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Figure 3.3: Combining output from Px4flow with attitude

Figure 3.4: Body frame of the sensor rotates to another attitude at t1
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At the initial state t0, we regard that the body frame and the reference
frame is coincide. Now suppose the sensor rotates to a new state at time t1.
Figure 3.4 shows this set up.

Here we want to know the relationship between these two frames. Following
the method introduce in subsection 3.2.2, we collect the gyro data from the IMU.
Here we make the assumption that the angular rate of the sensor is constant in
this period, so we get the information about the angular rate around the body
axis: ωxB , ωyB , ωzB . After this, recall the kinetic differential equation of the
quaternion:

q̇ = Fq(ω)q (3.40)

the attitude of the sensor can be computed. Then convert the quaternion into
the corresponding DCM as:

C =

(q21 + q22 − q23 − q24) 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) (q21 − q22 + q23 − q24) 2(q3q4 + q1q2)
2(q2q4 + q1q3) 2(q3q4 − q1q2) (q21 − q22 − q23 + q24)

 (3.41)

Notice the DCM here presents the rotation of the coordinate for a fixed vector,
as discussed in subsection 3.2.1. Now We can represent the test vector ~rB from
body frame into the reference frame:

~rR = C~rB (3.42)

Here ~rR stands for the same vector as ~rB but presented in the reference frame.
Now by subtract ~r with ~rR, we get the difference vector ~d.

~d = ~r − ~rR (3.43)

The difference vector ~d is the extra flow caused by the rotation of the sensor,
which is desired to remove from the sensor outputs. The partial component of
the ~d in x̂ axis (~dx) introduces an error into the optical sensor in x̂ direction,

and similar for ~dy. By dividing the ~dx with the magnitude of the test vector |~r|,
the according extra angle caused by the rotation of the sensor is obtained. So
the actual length of the test vector ~r is not essential to this algorithm. Notice
the ~dx introduce the angle error around the ŷ axis so it needs to subtract to the
ωy, vice versa for ~dy.

As a conclusion, we summarize the compensation procedure in three steps:

Step 1 Collect angular rate data from the sensor, calculate the direction cosine
matrix C using Eq. 3.40 and Eq. 3.41.

Step 2 Compute the difference vector ~d by Eq. 3.42 and Eq. 3.43.

Step 3 Subtract ~dx and ~dy part of the ~d to the output of the optical sensor.

3.2.4 Position estimate model

The position estimate model can be divided into two parts: the estimator
model for the Px4flow, and the observer model for the Marvelmind. We will
discuss them sequentially.
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Px4flow estimator model
To model this Px4flow estimator, we use x and y indicate the position of the
UAV in X and Y axis. Then we have:

ẋ = (ωfy − ωcompensate y) · z + ufy

ẏ = (ωfx − ωcompensate x) · z + ufx
(3.44)

where

• ωfy is the angular rate measured by Px4flow, unit: rad/s

• ωcompensate y is the compensate part, unit: rad/s

• z is the distance from Px4flow to the ground, measured by Marvelmind,
unit: m

• ufy is the measurement error of the Px4flow, unit: m/s

ωfy indicates the angular rate of a point moving in the FOV of Px4flow. As we
have discussed in 2.3, multiplying ωfy by the distance from the system to the
ground z gives the ground speed.

The power spectral density (PSD) of measurement error ufy is shown in
figure 3.5. It can be observed that the power of the error is quite uniform along
the frequency domain, so it will be regarded as a white noise in this thesis.

Figure 3.5: PSD of the measurement error from px4flow

ωcompensate y is the angular rate caused by the rotation of the system which
is calculated by the method in subsection 3.2.3. We assume the Px4flow sensor

is facing into the Z axis direction. We take a test vector
[
0 0 1

]T
which is

the unit vector along the Z axis and let this test vector rotates around together
with the system’s body axis when the system is rotating. Now we suppose the
Px4flow has an arbitrary rotation and the corresponding DCM is indicated by
C. So the difference between the test vector before and after this rotation can
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be expressed as:

~d = C

0
0
1

−
0

0
1

 (3.45)

In 3.2.3, we employs the quaternion method to calculate the DCM matrix,
however, here we would like to directly use the kinetic equation for the DCM
to express the relationship between the DCM and the gyroscope data:

Ċ = C[ω×] (3.46)

where [ω×] is a skew symmetric matrix as this:

[ω×] =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3.47)

This is a set of 9 differential equations where ωx, ωy, ωz are the angular rates
around the body axis of the system (measured by the gyroscope). In the follow-
ing parts we will use Cij indicates elements of C on the i-th row and the j-th

column. A good news is, since we only need to know the components of ~d on
X and Y axis, according to Eq. 3.45, only the C13 and C23 are needed. All the
equations in Eq. 3.47 associate with C13 and C23 are listed below:

C11 = C12ωz − C13ωy + uz − uy
C12 = C13ωx − C11ωz + ux − uz
C13 = C11ωy − C12ωx + uy − ux
C21 = C22ωz − C23ωy + uz − uy
C22 = C23ωx − C21ωz + ux − uz
C23 = C21ωy − C22ωx + uy − ux

(3.48)

The ux, uy, uz in the equations above are the measurement error of the gy-
roscope and they are also regarded as white noises (with unit of rad/s). The
figure 3.6 shows the PSD for the gyroscope. By solving Eq. 3.48, the C13 and
C23 are computed and according to Eq. 3.45, they are the compensate parts
ωcompensate y and ωcompensate x in Eq. 3.44. So we can rewrite these two equa-
tions as the following:

ẋ = (ωfy − C13) · z + ufy

ẏ = (ωfx − C23) · z + ufx
(3.49)

Equations Eq. 3.49 and Eq. 3.48 are all the equations related to the Px4flow,
which describes our estimator. They can be written in a more compact way:

Ẋ = F ·X +G ·W (3.50)

where

X =
[
x y ωfx ωfy C11 C12 C13 C21 C22 C23

]T
(3.51)
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Figure 3.6: PSD for the data from gyroscope

G =



z 0 0 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


(3.52)

and

W =
[
ufy ufx 0 0 uz − uy ux − uz uy − ux uz − uy ux − uz uy − ux

]T
(3.53)

We call F as our system matrix and it is shown as:

F =



0 0 0 z 0 0 −z 0 0 0
0 0 z 0 0 0 0 0 0 −z
0 0 0 0 0 ωz −ωy 0 0 0
0 0 0 0 −ωz 0 ωx 0 0 0
0 0 0 0 ωy −ωx 0 0 0 0
0 0 0 0 0 0 0 0 ωz −ωy

0 0 0 0 0 0 0 −ωz 0 ωx

0 0 0 0 0 0 0 ωy −ωx 0


(3.54)

The G matrix in Eq. 3.50 is used to modify the noise vector W . It introduces a
relationship between the noise of the Px4flow ufx, ufy with the altitude z. So
the velocity estimated by the Px4flow will become more noisy when the altitude
of the vehicle increases.

Before ending this paragraph, we want to discuss the reason we choose
the DCM method in the system model. As we have seen in subsection 3.2.3,
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the angular rate compensation algorithm is based on the quaternion method to
estimate the attitude. The system model we built in this paragraph is used by
the Kalman filter and the Kalman filter expects a linear system model. However,
from Eq. 3.27, the rotation relationship between the quaternion and the vector is
non-linear. This can surely be solved by using a linearised approximation which
we will shortly see in next paragraph. But there is a more simple approach.
Recalling the DCM and quaternion is mathematically equivalent, employs the
DCM method to replace the quaternion will not actually change the system
model. But from Eq. 3.10, the DCM method provides a linear relationship for
rotating the vector. This means we can void the non-linear problem using the
DCM method, while still keeps the noise characteristic of our system unchanged.

Marvelmind observer model
Now we want to model the observer model for Marvelmind. The measurement
from Marvelmind is straight forward: it outputs the distance of the hedgehog to
the three fixed beacons. The coordinates of the fixed beacons are indicated as[
a1 b1 c1

]T
,
[
a2 b2 c2

]T
and

[
a3 b3 c3

]T
. So the distance to the three

beacons D1, D2, D3 are:

D1 =
√

(x− a1)2 + (y − b1)2 + (z − c1)2 + ub1

D2 =
√

(x− a2)2 + (y − b2)2 + (z − c2)2 + ub2

D3 =
√

(x− a3)2 + (y − b3)2 + (z − c3)2 + ub3

(3.55)

ub1 to ub3 are the measurement errors of the Marvelmind and, again, are re-
garded as white noises (unit:m). Their PSD can be found in figure 3.7. Eq. 3.55

Figure 3.7: PSD of measurement error from Marvelmind

is obviously non-linear. In order to apply the Kalman filter, a linearised form
of these equations are required. We employ the Taylor series expansion and the
first order expansions of Eq. 3.55 are:

∆D = J ·∆X + V (3.56)
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where ∆ indicates it is the “increment” part of the original element. The J in
Eq. 3.56 is the Jacobian matrix:

J =


∂D1

∂x
∂D1

∂y 0 0 0 0 0 0 0 0
∂D2

∂x
∂D2

∂y 0 0 0 0 0 0 0 0
∂D3

∂x
∂D3

∂y 0 0 0 0 0 0 0 0

 (3.57)

And the V in Eq. 3.56 is the measurement error matrix for Marvelmind:

V =
[
ub1 ub2 ub3

]
(3.58)

Now we have the whole mathematical model for our combined position
estimate system. Finally we can begin building the Kalman filter for our system.

3.3 Extended Kalman filter algorithm

In this combined position estimate system, there exists two Kalman fil-
ter. One is used to estimate the attitude using the data from IMU, i.e. the
accelerometer, compass and gyroscope; The other one is used to fusion the po-
sition estimate from Px4flow and Marvelmind. In this section, we will first
introduce the mathematical background of the Kalman filter. After that, the
Kalman filter for the attitude estimation will be illustrated, since the attitude
information is required by the position estimate. At last, we will discuss the
filter for the position estimate.

3.3.1 Background of the Kalman filter

Kalman filter is named after Rudolf E. Kalman, who published the article
about this algorithm on prediction problems in 1960. However a similar algo-
rithm, developed by Thorvald N. Thiele and Peter Swerling, was introduced
earlier in 1958. [11] The Kalman filter follows the step of Wiener filter, which
uses the minimum mean-square error methods to find a best estimate of a noisy
signal. However Kalman filter employs the state space model to analysis the
system and solves the problem in discrete time domain. These features make the
Kalman filter very adaptable to the computer technology. One of the very first
applications of the Kalman filter is the Apollo program [15] in 1960s. After that,
the Kalman filter is widely used in guidance and navigation systems. Further
more, many algorithms, e.g. extended Kalman filter, particle filter, unscented
Kalman filter, based on the Kalman filter are developed to expand its capability
in varies fields.

The Kalman filter is a recursive algorithm. We first consider a system
process can be modelled into the following discrete state space form:

xk+1 = Φkxk + wk (3.59)

where
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• xk is a n× 1 vector stands for the process state vector at time tk.

• Φk is a n × n matrix stands for the state transition matrix that evolutes
the xk to xk+1

• wk is a n× 1 vector stands for a white noise sequence whose covariance is
known.

We also suppose there is an observation of the system measuring the system
states at discrete time points, which can be expressed as:

zk = Hkxk + vk (3.60)

where

• zk is a m× 1 vector stands for the observation of the system at time tk

• Hk is a m× n matrix relates the system state xk to the observation zk at
time tk

• vk is a m × 1 vector stands for the observation error whose covariance is
known and has zero cross-correlation with the wk

The covariance matrix for wk and vk are expressed in Qk and Rk as:

E[wkw
T
i ] =

{
Qk, i = k

0, i 6= k
(3.61)

E[vkv
T
i ] =

{
Rk, i = k

0, i 6= k
(3.62)

E[wkv
T
i ] = 0, for all k and i (3.63)

Now if we use x̂−k stands for an estimation of system state and define the esti-
mation error as:

e−k = xk − x̂−k (3.64)

where the hat symbol ’̂ ’ in x̂ indicates that this is an estimate value of x. The
’−’ superscript means this estimation is based on all the knowledge before time
tk, and we will shortly see how this estimation can combine with the information
presented at time tk. With the estimation error defined, we can write the error
covariance matrix as:

P−k = E[e−k e
−T
k ] = E[(xk − x̂−k )(xk − x̂−k )T ] (3.65)

For now, we have an estimation x̂−k for the system state at time tk, and this
estimate is based on the information before tk, so it is called a prior estimate.
We are seeking a method to use the observation zk to correct x̂−k . This can be
done by:

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (3.66)

where
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• x̂k is a n × 1 vector stands for the corrected estimation of the system
states.

• Kk is a weight factor needs to be determined

Suppose we have found a weight factor Kk to correct the system estimation,
then the error covariance matrix after the correction is:

Pk = E[eke
T
k ] = E[(xk − x̂k)(xk − x̂k)T ] (3.67)

Notice in Pk there is no ’−’ superscript any more, since the estimation x̂k also
contains the information from observation zk at time tk. Since we are trying
to find the MMSE solution of x̂k, this is equally to say that at time tk, find
an weight factor Kk that minimize the Pk. As it is shown in [2], the optimized
weight factor for the MMSE solution can be expressed as:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1 (3.68)

This optimized weight factor is called the Kalman gain. Substitute Eq. (3.66)
and Eq. (3.68) into Eq. (3.67), with some rearrangement, the updated error
covariance matrix can be expressed in a compact form as [2]:

Pk = (I −KkHk)P−k (3.69)

This updated covariance matrix can be used as a prior error matrix in the
following time step tk+1. Now we can summarize the Kalman filter routine into
the following four steps:

Step 1 Compute the Kalman gain for the current time step:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1 (3.70)

Step 2 Update estimation for the current time step:

x̂k = x̂−k +Kk(zk −HkX̂k
−

) (3.71)

Step 3 Update error covariance for the current time step:

Pk = (I −KkHk)P−k (3.72)

Step 4 Project ahead estimations and error matrix for the next time step:

x̂k+1 = Φkx̂k (3.73)

P−k+1 = ΦkPkΦ
T
k +Qk (3.74)

This routine is also shown in figure 3.8. However in practical, the state space
model and observation model of a system are not always linear as Eq. (3.59)
and Eq. (3.60). Some non-linear method should be used combining with the
Kalman filter routine. A straight forward method is called an Extended Kalman
filter (EKF) which employs the Jacobian matrix and Taylor series expansion to
linearise the system near a specific point. This EKF algorithm is used in this
thesis and the detail will be discussed in the following.
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Figure 3.8: Kalman filter routine

3.3.2 Kalman filter for attitude estimate

As we have already discussed in section 3.3.1, the Kalman filter is based
on the discrete space state model. From section 3.2.2, we have already build
a continuous space state model to estimate the attitude. Recall the attitude
estimator model is:

q̇ = Fq(ω)q (3.75)

where

Fq(ω) =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (3.76)

We need to build a discrete model according to this. As describes in [19], this
can be done by the Van Loan method as:

Step 1 construct the matrix A:

A =

[
−Fq P

0 FT
q

]
·∆t (3.77)

where P is the power spectral density matrix associate with W and ∆t is
the time interval between two discrete samples.

Step 2 construct the matrix B from A:

B = expm(A) =

[
· · · Φ−1Q
0 ΦT

]
(3.78)

where expm(A) is the matrix exponential function of A.

Step 3 From Eq. 3.78, Φ is the transpose of the lower right part of B. After
we gather the Φ, multiplying it’s inverse to the upper right part gives the
Q. The · · · in Eq. 3.78 just means the upper left part of the matrix is not
used in our method so we do not care its value.
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So the discrete space model according to Eq. 3.75 is:

qk+1 = Φk · qk +Wk (3.79)

where

• qk is a 4× 1 vector stands for the sampled quaternion at time point tk.

• Wk is a 4×1 vector stands for the gyroscope error at time point tk, whose
covariance matrix is defined as:

Qk = E[Wk ·WT
k ] (3.80)

Besides the estimator, we also need a discrete version model for the observer.
Recall the space model for the observer in section 3.2.2 is:

V = [C C]V ′ (3.81)

where

C =

(q21 + q22 − q23 − q24) 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) (q21 − q22 + q23 − q24) 2(q3q4 + q1q2)
2(q2q4 + q1q3) 2(q3q4 − q1q2) (q21 − q22 − q23 + q24)

 (3.82)

and
V =

[
a1 a2 a3 c1 c2 c3

]T
(3.83)

However, in our Kalman filter, we regard the quaternion q as the state vector.
According to Eq.3.81, the observer model is a non-linear model with regards to
q. So we will linearise Eq. 3.81 using the first order Taylor series expansion.
The linearised observer takes the form as:

Vk = Hkqk +Nk (3.84)

where

• Vk is a 6 × 1 vector, it is the observe vector stands for the data from
accelerometer and compass at time point tk

• qk is a 4 × 1 vector, it is the system vector stands for the quaternion
estimated by gyroscope at time point tk

• Nk is a 6 × 1 vector stands for the observer error for the accelerometer
and compass, the covariance matrix for Nk is:

Rk = E[Nk ·NT
k ] (3.85)

• Hk is a 6× 4 matrix, used to relate the system vector qk with the observe
vector Vk. It is the Jacobian matrix for V = CV ′ with regards to q:

Hk =
∂V ′

∂q
=


∂V1

∂q1
∂V1

∂q2
∂V1

∂q3
∂V1

∂q4
∂V2

∂q1
· · · · · · ∂V2

∂q4
...

...
...

...
∂V6

∂q1
∂V6

∂q2
∂V6

∂q3
∂V6

∂q4

 (3.86)

Vi in Eq. 3.86 stands for the i-th row in vector V
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Eq. 3.79 and Eq. 3.84 form the discrete model for the attitude estimate system.
And now we can begin the Kalman filter routine on this discrete model:

Step 1 At time tk, read data from gyroscope, calculate the quaternion q̂k using
Eq. 3.75. Read data from accelerometer and compass, build the observer
vector Vk.

Step 2 Substrate q̂k with the quaternion estimate from last time point q̂k−1
to get the increment of the attitude:

∆q̂k = q̂k − q̂k−1 (3.87)

. Substrate Vk with the observer vector from last time point Vk−1 to get
the increment of the observation:

∆Vk = Vk − Vk−1 (3.88)

Step 3 Compute the Kalman gain:

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1 (3.89)

Step 4 Update estimation for the increment of the quaternion:

∆q̂k = ∆q̂−k +Kk(∆Vk −Hk∆q̂k
−) (3.90)

Step 5 Add the updated estimation ∆q̂k back to qk−1 to get the total estima-
tion for the quaternion q̂k = ∆q̂k + qk−1

Step 6 Update error covariance for the current time step:

Pk = (I −KkHk)P−k (3.91)

Step 7 Project ahead estimations and error matrix for the next time step:

q̂k+1 = Φkq̂k (3.92)

P−k+1 = ΦkPkΦ
T
k +Qk (3.93)

In step 1,The quaternion q̂k estimated from gyroscope is the estimator input of
the Kalman filter. The vector Vk built by the accelerometer and compass data
is the observer input. The total estimation for the quaternion q̂k in step 5 is
the desired filtered attitude estimation at tk, which is our system output. Note
that the matrix Φk should be evaluated at each time point tk using the Van
Loan method introduced above.

54



3.3.3 Kalman filter for position estimate

As same as we have discussed in section 3.3.2, a discrete model with regards
to the position estimate model shall be built before the Kalman filter routine.
For convenience, we rewrite the position estimate model in section 3.2.4:

Ẋ = F ·X +W (3.94)

To build the discrete model, we employs the Van Loan method in section 3.3.2
again. And the corresponding discrete model for the position estimation is:

Xk+1 = Φk ·Xk +Wk (3.95)

where

• Xk is a 10 × 1 vector stands for the system vector we get from Px4flow
and gyroscope in Eq. 3.51 at time tk.

• Φk is a 10× 10 matrix stands for the discrete system model with regards
to matrix F .

• Wk is a 10 × 1 vector stands for the Px4flow error at time tk, whose
covariance matrix is defined as:

Qk = E[Wk ·WT
k ] (3.96)

The discrete observer model for the Marvelmind is also required. According to
Eq. 3.56, the model is:

Dk = Jk ·Xk + Zk (3.97)

where

• Dk is a 3× 1 vector stands for the distance from hedgehog to each beacon
measured by Marvelmind at time tk

• Zk is a 3× 1 vector stands for the Marvelmind error and the covariances
matrix of it is:

Rk = E[Zk · ZT
k ] (3.98)

• Jk is a 3×10 matrix used to relate the system vector Xk with the observe
vector Dk. It is a Jacobian matrix as:

J =


∂D1

∂x
∂D1

∂y 0 0 0 0 0 0 0 0
∂D2

∂x
∂D2

∂y 0 0 0 0 0 0 0 0
∂D3

∂x
∂D3

∂y 0 0 0 0 0 0 0 0

 (3.99)

Eq. 3.95 and Eq. 3.97 form the discrete model for the position estimation system.
Now we can begin the Kalman filter routine:
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Step 1 At time tk, read data from Px4flow, calculate the system vector X̂k

using Eq. 3.48 and Eq. 3.49. Read data from accelerometer and compass,
build the observer vector Dk.

Step 2 Substrate X̂k with the position estimate from last time point X̂k−1 to
get the increment of the attitude:

∆X̂k = X̂k − X̂k−1 (3.100)

. Substrate Dk with the observer vector from last time point Dk−1 to get
the increment of the observation:

∆Dk = Dk −Dk−1 (3.101)

Step 3 Compute the Kalman gain:

Kk = P−k J
T
k (JkP

−
k J

T
k +Rk)−1 (3.102)

Step 4 Update estimation for the increment of the position:

∆X̂k = ∆X̂−k +Kk(∆Dk − Jk∆X̂−k ) (3.103)

Step 5 Add the updated estimation ∆X̂k back to Xk−1 to get the total esti-
mation for the position X̂k = ∆X̂k +Xk−1

Step 6 Update error covariance for the current time step:

Pk = (I −KkJk)P−k (3.104)

Step 7 Project ahead estimations and error matrix for the next time step:

∆ ˆXk+1 = Φk∆X̂k (3.105)

P−k+1 = ΦkPkΦ
T
k +Qk (3.106)

In step 1, the system vector Xk is gathered by the data from Px4flow, and it
is the estimator input for the Kalman filter. The Dk is gathered by the data
from Marvelmind, which is the observer input. Again, the matrix Φk should be
evaluated at each time point tk using the Van Loan method introduced above.

3.4 Simulation of the Kalman filter for position
estimation

In this section, a simulation of the Kalman filter for the position estimation
will be discussed. This simulation is performed using Simulink under the Matlab
environment. All the data used in the simulation is generated by software, rather
than the real data gather from the sensors. We will first introduce the structure
of the Kalman filter and then proceed to the simulation results.
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3.4.1 Kalman filter structure

One thing that we need to notice is the Kalman filter is an algorithm
designed on the time domain. Its design procedure is quite different as the tra-
ditional filter (e.g. a low-pass filter) which analyses the system on the frequency
domain, produces a transfer function and converts it back to the time domain.
We design the Kalman filter by analysing the noise characteristic of its input.
So in order to implement the Kalman filter, it is essential to figure out the filter
structure and make it clear what are the input and output of the filter.

Figure 3.9: Data flows of the Kalman filter

The structure of our filter is shown in figure 3.9. It is a close loop feedback
structure. The outputs from Px4flow and Marvelmind both contains the true
information of the position, but also contains the measurement errors. The two
outputs first subtract with each other so now we cancel out the true information
contains in the two outputs. This means our Kalman filter will only deal with
the errors from Px4flow and Marvelmind. After the filtering, the error from
Px4flow will be extracted out and the subtract back to the original output
of the Px4flow. The feedback is the estimated error for next sample, which
is subtract to the Px4flow’s output on the next sample time. In this way the
output from Px4flow is corrected a little before comparing with the Marvelmind.
The reason we employ this structure is, in the measurement model we made in
section 3.3, only the first order Taylor series expansion is used to linearise the
measurement model. If the difference between the Px4flow and Marvelmind is
too large, then the approximation of the first order Taylor expansion can be
bad. The feedback structure can reduce the difference between the two sensors
and somehow improves the accuracy of the linearisation.

Another question of our filter structure maybe: why we take the combina-
tion of two errors as input of the Kalman filter, instead of directly sending the
outputs from Px4flow and Marvelmind into the filter. This is also because we
are using the Taylor expansion to linearise the model, and the Taylor expansion
takes the increment part of the data as input. By subtracting the two sensor’s
outputs, the output from Px4flow can be regard as a base trajectory and the
system model approximately works linearly in a very small increment interval
around this base trajectory.
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3.4.2 Simulation results

In order to verify the Kalman filter we build for the position estimate,
a simulation is established in Simulink. In this simulation, all the data are
generated in the software follows the system model we discussed in section 3.2.
Figure 3.10 shows the noise model used in the simulation. In the noise model
of Px4flow, the optical flow data first adds a white noise which stands for the
measurement error of Px4flow. Then the attitude and angular rate compensate
algorithm apple to the optical flow data. The noise of IMU is considered in this
operation. After that, multiply the distance to ground and integral over time,
the simulated position estimate of Px4flow is produced.

On the other hand, the simulated Marvelmind data is more easy to produce.
We first begin with a position of the hedgehog and compute its distance to
each of the beacons. Then a white noise is added as the measurement error
of Marvelmind, thus provides the simulated distance data measured by the
Marvelmind.

The power of the noise for both sensor (Px4flow and Marvelmind) are set
to be equal and the position of hedgehog is set to be [0.127,-0.95]. Figure 3.11
shows the overall Simulink model of the simulation. In this simulation we assume
the UAV remains fixed without any rotation or movement. So it simulates the
stationary situation of the Kalman filter. The simulation time is 600 seconds
and figure 3.12 shows the position output on X axis with regard to time. The
situation on Y axis is similar so it is not shown here to avoid redundant.
From figure 3.12 it can be observed that the output from Kalman filter gives
an overall better estimate than the other sensors. The drift error from Px4flow
has be eliminated and the result is much more smooth than the output from
Marvelmind.

Figure 3.13 gives a position output from the three sources in a Cartesian
coordinate. In this figure, the drift phenomena of the Px4flow is even more
obvious. Further more, the output range from the Kalman filter and Marvelmind
is similar (within a range of 1cm2), but the output from Kalman filter is more
smooth, which means the outputs are more close to each other so they can
build up a continuous line. Table 3.1 shows the standard deviation from the

Data source Px4flow Marvelmind
Kalman

filter

Standard deviation
(unit: meter)

0.0099 0.0013 0.0010

Table 3.1: Simulated standard deviation of different sources

two sensors and the filter, notice that the standard deviation of the Px4flow will
keep growing with time and the value in the table is just the standard deviation
when the test length is 10 minutes.

As a conclusion, the Kalman filter gives an overall better result than Px4flow
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(a) Noise model of Marvelmind

(b) Noise model of Px4flow

Figure 3.10: Noise models used in simulation

Figure 3.11: Simulink model
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Figure 3.12: Simulated position output on X axis

Figure 3.13: Simulated position output from different sources
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and Marvelmind in this simulation. The deviation improvement with regard to
Px4flow is notable while it is not that obvious compare to the Marvelmind.
However if we also consider the output on the time domain, then the Kalman
filter gives a more smooth result than Marvelmind. However, the noise power
from Px4flow and Marvelmind are set to be equal in this simulation while prac-
tical this is not true. In section 4.3 we will test the Kalman filter on-board and
compare the result with the simulation one shown in this section.
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Chapter 4

Implementation

4.1 Introduction

In the previous chapters, we have introduce the hardware used in the com-
bined position estimate system. We also build the system models for our system,
together with the Kalman filter based on the modelling. Now it is time to im-
plement all the algorithms on the central controller in our system, which is
the Raspberry Pi single board computer. The program structure will firstly
be introduced in section 4.2, then some on-board tests for all the algorithms,
including the angular compensate, the attitude compensate and the position
estimate, are performed and discussed in section 4.3. All the codes, including
the C language and Python, will be included in the appendix.

4.2 Realization of data fusion algorithm on Rasp-
berry Pi

4.2.1 Code generation

We have discussed in section 2.4 that, for computing efficiency purpose,
the C language will be employed to implement the mathematical parts for our
algorithm. However we will first implement the algorithm as a function in
Matlab since the Matlab performs an advanced environment for testing and
debug. After the code is tested in the Matlab, we employs an automatic code
generation method to build the C functions. This automatic method is an
application called ”Matlab Coder” provided by MathWorks.

The Matlab Coder can generate the C source code, the static library and the
dynamic-link library for variety types of platforms, such as Intel, ARM, Atmel,
AMD, etc. However when generates the static library or dynamic library, the
Matlab Coder can only generate the library files for the operation system the
Matlab is currently running on. This means if we are using Matlab in Windows
system at a X86 platform, then the Matlab Coder can only generate the .lib or
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.dll files, which cannot be used in Linux on Raspberry Pi. So in this thesis, we
decide to generate the C source code using Matlab Coder and compile it directly
in the Linux system on Raspberry Pi. Figure 4.1 briefly shows the idea of how
the C code is generated.

Figure 4.1: Generate C function from Matlab code

4.2.2 Overall program structure

To build the main logic part of the combined measurement system, which
means the program that deals with the Input/Output transmission, file Read-
ing/Writing, converting the unit of the data, etc, we decide to use the Python.
This is because, comparing to the C, the Python is an Object-oriented program
language, which is more user-friendly and easy to read. Remember the angular
compensation and Kalman filter algorithm is written in C, so we need to find
a way to use them in Python. Luckily the Python provide a C API which can
handle this. By using the C API we just need to write an entry function for
Python so we can use these two C program in Python as a normal function call.

The C API for Python is actually a package of C functions, which can be
used to build a entry function. This entry function is in charge of converting
the Python objects into the C data types. When a Python program calls the C
function, it will first push its arguments into a stack, and pass the stack pointer
to the entry function. The entry function pops the stack sequentially and assert
each object to a specific C data types, then calls the actual C function using
these converted arguments. The C function will process these converted data
and then send the data back to the entry function again. Then entry function
converts the data back to the desired Python object and store them in the stack.
Finally the Python program reads the processed return value by popping the
stack. When building the entry function, the developer should arrange the data
types for each object carefully or a memory overflow may occur.
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To sum up, figure 4.2 shows the structure of the programs. The dashed
box in the figure stands for the program and the language used is indicated in
the parentheses, while the solid box stands for a hardware. The output of the
system can be either write into a file, to the console screen, or to other devices
through any protocol supported by the Raspberry Pi.

Figure 4.2: Program structure

Figure 4.3 shows a flow chart for the main Python program. After the
system boots up, the program will first initialise the system, including configure
the USB and I2C protocol, setting initial values used by the algorithms, creating
files which will be used to store the filtered results, etc. Then the program goes
into the following loop:

Step 1 The main program reads a packet from Marvelmind, examines whether
its an IMU packet or a position packet. If it is an IMU packet, the program
goes into step 2, otherwise it goes into step 6.

Step 2 The main program calls the attitude Kalman filter function to calculate
the attitude of the UAV, based on the IMU data, then goes to step 3.

Step 3 The main program reads data from Px4flow, then goes to step 4.

Step 4 The main program calls the angular rate compensate function to counter
the measurement error caused by the rotation of the UAV, then goes to
step 5.

Step 5 The main program estimate the position from the processed Px4flow
data, save the data into a global variable, then goes back to step 1.
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Step 6 The main program reads the processed position estimation from the
Px4flow, then goes to step 7.

Step 7 The main program calls the position Kalman filter function to fusion
the data from Px4flow and Marvelmind, then goes to step 8.

Step 8 The main program post-process the fusioned position estimation (chang-
ing the units, arrange the data type, etc.), then output the result to
file/screen/other devices based on the requirement. After this, the pro-
gram goes back to step 1.

Figure 4.3: Main program flow chart

As a brief conclusion, in this section, the combined position estimate system
have been implemented onto the Raspberry Pi. Some on-board tests have been
made for this system and we will discuss their result in the following section.

4.3 Test result and analysis

In this section, some tests of the algorithms we discussed in chapter 3 will
be provided. All the tests are on-board tests which means the algorithms are
performed directly on the Raspberry Pi and then record the results. The results
then are post-processed in Matlab on the PC to produce a readable image or
compute the numerical features such as variance.
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4.3.1 Angular rate compensate test

The algorithm tested in this subsection is the angular rate compensate test.
Firstly a stationary test is performed for the algorithm which means we will test
the performance when the Px4flow stays at a fixed location and rotates around
its diagonal. Figure 4.4 shows the rotation axis of the test. During the test,
Px4flow rotates around the diagonal from −15◦ to +15◦ at a frequency of about
1 Hz.

Figure 4.4: Px4flow rotates around its diagonal

Figure 4.5 shows the result for the test discussed above. To avoid re-
dundant, the figure only shows the output on X axis of Px4flow since the the
situations on both axis are similar. The red data in figure 4.5 shows the angular
rate calculated from the IMU of Marvelmind while the blue data is the output
of the Px4flow. Yellow data is the output of the compensate algorithm. Notice
the data is sampled at 50 Hz so the maximum frequency in the power spectrum
image is 25 Hz. From the power spectrum image it can be observed that the
rotation of the sensor has been attenuated for about 17dB. However from the
image of time domain, we can find there still some periodic output remains af-
ter the compensation, which relates to the rotation. This phenomenon will be
discussed later in this subsection.

We have also tested the performance of the algorithm while the Px4flow
is moving, thus, the Px4flow does not only perform the same rotation as the
stationary test, but also move along its diagonal as in figure 4.4. The test is
made by moving the sensor along a roughly straight path and the rotation is
performed manually. Figure 4.6 shows the test results. Notice that in this test,
the altitude measured by the Marvelmind is used so the output is the position
estimate from Px4flow. From the results, the improvement of the compensate
algorithm can be observed easily. Further more, we can still find some remaining
rotation phenomenon as we saw in the stationary test.
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Figure 4.5: Stationary test of angular rate compensate

(a)

(b)

Figure 4.6: Angular rate compensate test while Px4flow is moving
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As a conclusion, the angular rate compensate algorithm does provide a
decent attenuation on the sensor rotations. However it can not perfectly remove
all the influences introduced by the rotation. This is partially caused by the
sensor noises from both Px4flow and IMU. On the other hand, since rotation
of the system is guaranteed to centre at the Px4flow, the Px4flow does have
a small movement with regards to the rotation centre of the system, which
is shown in figure 4.7. In the figure, suppose the system rotate around the

Figure 4.7: Distance between Px4flow and rotation centre causes extra error

position of the IMU (Marvelmind), angle θ will be compensated by the angular
rate compensate algorithm we discussed above. However the displacement D
in the figure is caused by the distance between the two sensors so it can not
be compensate by our method. Furthermore, this displacement will increase
along with the distance between the Px4flow and the centre. So in practical,
it is suggested that the Px4flow should be installed as close as possible to the
rotation centre of the UAV.

4.3.2 Attitude estimate test

In this subsection we will show some tests for the Kalman filter of attitude
estimate introduced in section 3.3.2. In order to reduce influence from external
electromagnetic (EM) field, we connect the Marvelmind with Raspberry Pi with
a long USB cable (1 metre). Furthermore, since the Px4flow does not provide
any data in this algorithm, we did not connect the Px4flow to the Raspberry Pi
in the tests. All the unnecessary metal objects (knives, keys, rulers, etc.) have
been kept away from Marvelmind.

The first test is a stationary test which the Marvelmind is located at a fixed
position without any movement or rotation. The Euler angle of a test vector is
computed separately by the data from compass, from gyroscope and from the
Kalman filter. Figure 4.8 shows the orientation of the test vector and the result
is shown in figure 4.9.

The actual test last for 1800 seconds and only the first 100 seconds is shown
here for a brief view. From the result it can be found that the output from the
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Figure 4.8: Orientation of the test vector

Figure 4.9: Stationary test for the attitude estimation
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compass keeps jumping between −52◦ to −55◦. This may be caused by the
electromagnetic field inside the Marvelmind. It can be also observed that the
output from Kalman filter is much more steady than the compass. The output
from gyroscope, however shows a significant drift error.

The second test is done by put the Marvelmind at a horizontal plan and
rotate the system manually around the vertical axis by 90◦ in about 5 seconds.
The rotation angle in the X-Y plan is estimated by the data from different
sources. The result is shown in figure 4.10. It can be observed that even in
a relatively short time interval (5 seconds), the drift error from the gyroscope
can not be ignored. The output from Kalman filter shows an overall better
estimation in both stationary and rotation tests.

Figure 4.10: Euler angle estimate when the system rotates 90◦

The standard deviation of the different data sources is shown in table 4.1.
The output from the gyroscope is not counted in the table because the drift error
of the gyroscope will keeps increasing as the time goes by without boundary,
so it is meaningless to measure the standard deviation of the unbounded error.
The performance of the compass and accelerometer is similar. In contrast, the
Kalman filter provides a improvement of the accuracy for around 55%. As a
conclusion, the Kalman filter designed for the attitude estimation in this thesis
is efficient.
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Compass Accelerometer Kalman filter

Standard
deviation

0.8532◦ 0.7503◦ 0.3522◦

Table 4.1: Standard deviation for the estimated Euler angle from different
sources

4.3.3 Position estimate test

In order to test the position estimate algorithm, all the components are
settled at a bench. The Marvelmind and Px4flow coincide vertically to reduce
the rotation compensate error caused by the distance between two sensors, as we
discussed in section 4.3.1. At the location of the Px4flow, there is a hole on the
bench so the camera can record images through it. Figure 4.11 shows the test
system. Notice that there is a component called Ardupilot in the test system.
Originally Ardupilot is an open-sourced control module for UAV. However in
this implementation, it is only used as a power splitter. In our experiment, the
Raspberry Pi is not capable to provide a stable power to the Marvelmind, so
we use the Ardupilot to split the power from the regulator and power up the
Raspberry Pi and Marvelmind separately. On the other hand, the Px4flow can
work without any problem by powering from Raspberry Pi so it does not require
a separate power line.
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(a)

(b)

Figure 4.11: Position estimate test system

The first test will be shown is a qualitative analysis, which means this test
is not by the meaning of ”accurate”. The test is done by manually moving
the test system around a roughly square path. Figure 4.12 shows the position
estimate from different sources in a Cartesian coordinate. The arrows at the
corners indicate the test system rotate 90◦ clockwise. It can be observed that
the drift error of the Px4flow is dramatic. At some position the estimation from
Marvelmind will ”jump” out of the path. This is because the ultrasonic beam
is blocked by the body of human who is holding the system. From the output
of the Kalman filter we can tell that the drift error has been eliminated well.
When the estimate from Marvelmind jumps out of the path, the Kalman filter
will firstly be influenced by the Marvelmind and then converge back to the path
as soon as the Marvelmind provides a normal estimation.
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Figure 4.12: Manually position estimate test

If we take a close view of the ”Area A” in figure 4.12, which is shown
in figure 4.13, it can be found that the Kalman filter provides a much higher
update frequency than the Marvelmind. This is because the Kalman filter will
estimate the position from both the Px4flow and Marvelmind. The Px4flow
provides a position estimation at the update frequency of the IMU, which is 100
Hz. Comparing to the Marvelmind, which update its estimation at 8 Hz, the
Kalman filter has a 8 times update rate.
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Figure 4.13: A close look of the manually test

The test result is also plotted in the time domain as shown in figure 4.14,
together with a close look between 8-12 seconds. Again, the drift phenomenon
for the Px4flow is significant. In the close look figure, the data from Marvelmind
acts as a ”stair”. As we have discussed above, this is because the Marvelmind
only as an 8 Hz update rate so it will remains the same during two samples.
Thanks to the high frequency of the Px4flow, the Kalman filter can provide a
more continuous position estimation.
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(a)

(b) a close look of area B in (a)

Figure 4.14: Manually position estimate test in time domain
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(a) (b)

Figure 4.15: An automatic car is used to test the system

In order to accurately test the system, the test bench is located at a au-
tomatic car, which is shown in figure 4.15 and the car will follows a path on
the ground. However in this system set-up, the Px4flow will be too close to the
ground. Since the Px4flow estimate the velocity by comparing the images, the
texture on the ground will be too uniform to compare. One solution is to facing
the camera of the Px4flow towards the ceiling and a net will be hung over the
test ground as shown in figure 4.16. So the net will be used as the reference
plane for the Px4flow.

Figure 4.16: A net is used as the reference plane for Px4flow

Another problem with this system set-up is, as shown in figure 4.17, the
Marvelmind and Px4flow do not coincide vertically any more. Suppose the sys-
tem rotates around the Marvelmind, the estimate from Px4flow will be a circle
centred at Marvelmind with a radius equal to the distance between the two sen-
sors, while the position estimated from Marvelmind will be a single point. The
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Figure 4.17: Two sensors are not coincide when Px4flow facing up

mechanism of this problem is very similar as the angular rate compensate error
which we discussed in section 4.3.1. This kind of conflict between the estima-
tion from two sensors is not considered when we design the Kalman filter. As
a solution, in the following test with the Px4flow facing towards the ceiling, we
simply not rotate the system and only test the performance while the autonomic
car moves along a straight line. The speed of the car has been tuned to 0.1m/s.

Figure 4.18 shows the test result. Notice that for a better view of the data,
we removes the estimation between two Marvelmind samples, so in this figure
the update rates from different sources are all 8 Hz. The green solid line in the
figure indicates the true path of the test. The drift error of the Px4flow is still
obvious even though the test length is only 30 seconds. On the other hand, the
estimations from Kalman filter and the Marvelmind are similar. A numerical
results of this test is shown in table 4.2. Notice that the variance of the Px4flow
will keep growing as the time goes by. The value shows in the table is only the
situation for 30 seconds. By comparing the performance, we can tell that the
drift error of the Px4flow has been removed well by the Kalman filter, and the
improvement with regards to the Marvelmind is limited: the improvement of
the standard deviation comparing to the Marvelmind is about 15%.
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Figure 4.18: System test performs on the autonomic car

Data source Px4flow Marvelmind
Kalman

filter

Standard deviation
(Unit: meter)

0.0420 0.0319 0.0275

Maximum error
(Unit: meter)

0.1406 0.0703 0.0815

Table 4.2: Position estimate performance from different sources

As a comparison with the simulation result in section 3.3.3, a stationary
on-board test is also performed. This test is done by put the system at a fixed
position without any movement or rotation for 600 seconds. The result is shown
in figure 4.19.

Note that in figure 4.19 the estimation from Px4flow is not shown com-
pletely. Since the drift error of Px4flow is dramatic, its estimation of position
goes far beyond the scale of the figure and shows the position up to 0.6 meter
to keep the figure clear. The result of the on-board test is very similar as the
simulation result we have seen in section 3.3.3. One difference is the output
of Kalman filter is not as smooth as in the simulation. The reason is in prac-
tical, the noise of Px4flow is much higher than we assume in the simulation.
As a result, the Kalman gain calculated by the algorithm will be more close
to one, which means the Kalman filter ”trusts” the Marvelmind more than the
Px4flow. This also explains why the improvement of variance from the Kalman
filter comparing to the Marvelmind is limited.
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Figure 4.19: Stationary on-board test for the position estimate system

As a conclusion, the combined position estimate system we designed in this
thesis is functional. It suppresses the drift error of the Px4flow. Comparing
to the Marvelmind, it only provides a limited improvement by the means of
variance, due to the high measurement noise from Px4flow. However, keep in
mind that by employing the Px4flow, the update rate of the combined position
estimate system is much higher than the Marvelmind.
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Chapter 5

Conclusion and future
works

5.1 Conclusion on combined position estimate
system

A combined position estimate system has been designed and tested in this
thesis. By combining the Px4flow optical flow sensor and the Marvelmind ultra-
sonic sensor, the system provides a synthesized position estimation. The system
contains three main algorithm: the angular rate compensate for Px4flow, the
attitude estimation from IMU and finally the position estimate algorithm. We
will discuss their performance one by one in this section.

Conclusion on angular rate compensate algorithm
The angular rate compensate algorithm introduced in this thesis is used to
counter the extra optical flow caused by the rotation of the UAV. According
to the test in section 4.3.1, it provide a good suppression on the rotations: the
optical flow caused by the rotation is reduced by about 17 dB. However this
algorithm assumes the rotation is centred around the Px4flow. The error of this
compensate algorithm will increase with the distance between Px4flow and the
rotation centre.

Conclusion on attitude estimate algorithm
The attitude estimate algorithm is a Kalman filter which is used to fusion the
data from IMU for providing an accurate and stable attitude measurement. The
test shown in section 4.3.2 shows that this algorithm is highly efficient. Com-
paring to the attitude measured by the raw data from IMU sensors alone, this
Kalman filter provides a more accurate estimation. If we consider the standard
deviation as an accuracy factor, the improvement of the Kalman filter is about
55% comparing to the non-filtered data. In the meanwhile, this algorithm has
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an update rate of 100 Hz, which we will shortly see plays an essential part in
the position estimate algorithm.

Conclusion on position estimate algorithm
The position estimate algorithm employs the Kalman filter to fusion the position
measurement from Px4flow and Marvelmind. The drift error in the estimation
of Px4flow has been fully suppressed by the Kalman filter. Comparing to the
Marvelmind, the Kalman filter only improves the standard deviation for about
15%, which is not a huge improvement comparing to the Kalman filter in the
attitude estimation algorithm (55%). However, the Kalman filter also provides
a much higher update frequency (100 Hz) while the Marvelmind measures the
position at 8 Hz. The whole system can be regarded as a redundant measure-
ment system: the Px4flow is used as the main estimator at an update rate of
100 Hz and the Marvelmind is used as an observer provides a correction at 8
Hz. So the whole system benefits from both sensors: it provides estimation as
accurate as the Marvelmind and as fast as the Px4flow.

5.2 Future works

At the end of this report, some recommendations for future works are pro-
posed here.

Firstly, the system built in this thesis assumes two sensors are installed
as close as possible. Moreover they should be near to the rotation centre of
the UAV. In practical this will not always be possible. An algorithm, which is
capable of compensating the error caused by the distance between two sensors,
as well as the distance between the sensor and the rotation centre, should be
built in the future. This will extend the flexibility of the system.

Secondly, in the thesis the attitude of the system employs the compass
as one of the data sources. For an indoor UAV, the working environment is
usually complex. The metals, other electronic devices, electromagnetic field
will introduce unexpected error for the compass. One solution for this is using
the ”paired” Marvelmind hedgehogs: two hedgehogs are mounted to the UAV
simultaneously and the distance between them are known. By processing the
position of the two hedgehogs, the attitude in the yaw axis can be measured,
which can be used to replace the compass. However, recall that one main
feature of our position estimate system is its high update rate thanks to the
high frequency output of IMU, if we employs the paired Marvelmind hedgehogs
to measure the attitude of the system, the overall update rate of the system will
reduce to the same level of the Marvelmind. Some data fusion method could
be employed here to merge the attitudes measured from the IMU and from the
paired Marvelmind.

Thirdly, in the system introduced in this thesis, the Marvelmind is the
only data source for the altitude measurement. So actually our system is a
2-dimensional position estimate system. The position in the Z axis is fully
relies on the Marvelmind. In the future, some other sensors, such as a Lidar
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sensor or even a 3D optical sensor can be used to measure the altitude of the
UAV. And again, data fusion method could be employed to merge the altitude
measurement from different sources.

Last but not the least, the position estimate system introduced in this
thesis is a stand alone system. In an indoor UAV, there will be lots of other
components such as the PID controller, aircraft flight control system, wireless
communication unit, etc. The consistency of the data from different sources is
essential in such a complex system. Thus, the data synchronization problem
should be carefully considered before mounting the combined position estimate
system.
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Appendix A

Hardware communication
protocol

A.1 Communication protocol of Marvelmind

The Marvelmind supports USB, UART and SPI protocol for data transmis-
sion. In this thesis, the USB protocol is employed. The hedgehog will register
itself as a ”virtual serial” device under USB protocol. That is, when the USB
is used to connect the hedgehog to an upper controller (a PC or a Raspberry
Pi), we can read data from the USB port just as from a common serial port.
The only difference is we do not need to take care the normal parameters of the
serial port (baud, number of bits, parity, etc.), because the USB protocol will
handle the transmitting.

Since we gather the data just as from a serial port, it also need to know
the actual meanings of each byte we get. A ”soft” protocol which designed
by the developers of Marvelmind is used to describe the data structure. In
this protocol, the data is transmitted in ”packet”. Each packet begins with a
start byte 0xFF , and ends with two CRC-16 check bytes. Table A.1 shows the
general structure of all the packets in Marvelmind. Note the type of packet 0x47
indicates the packet is transmitting the sensor data from Marvelmind.

The payload field in table A.1 is determined by which kind of information
is carried in that packet. In our case, the packet of the raw distance between
the hedgehog to each beacons is used. The data structure of the payload field
for the raw distance packet is shown in table A.2.
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Offset
Size

(bytes)
Type Description Value

0 1 uint8 Destination address 0xFF

1 1 uint8 Type of packet 0x47

2 2 uint16 Code of data in packet See detail

4 1 uint8
Number of bytes of data

transmitting
N

5 N N bytes
Payload data according to code

of data field

5+N 2 uint16 CRC-16

Table A.1: General structure of the packet in Marvelmind

Offset
Size

(bytes)
Type Description

0 1 uint8 Address of hedgehog

1 6 Distance item for beacon 1

7 6 Distance item for beacon 2

13 6 Distance item for beacon 3

19 6 Distance item for beacon 4

25 7 uint8 reserved

Table A.2: Payload field of the raw distance packet

And the distance item field has the structure as shown in table A.3.

Offset
Size

(bytes)
Type Description

0 1 uint8
Address of beacon (0 if item

not filled)

1 4 uint32 Distance to the beacon, mm

5 1 uint8 Reserved (0)

Table A.3: Payload field of the raw distance packet
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A.2 Communication protocol of Px4flow

Since the IMU is embedded inside the Marvelmind, it also follows the same
communication protocol as the Marvelmind. The difference is the IMU using a
different payload field from the Marvelmind. The according payload field of the
packet of raw IMU sensors data can be found in table A.4. Note that for the
compass, the precision in the Z axis is different with the X and Y axis.

Offset
Size

(bytes)
Type Description

0 2 int16 Accelerometer, X axis, 1 mg/LSB

2 2 int16 Accelerometer, Y axis, 1 mg/LSB

4 2 int16 Accelerometer, Z axis, 1 mg/LSB

6 2 int16 Gyroscope, X axis, 0.0175 dps/LSB

8 2 int16 Gyroscope, Y axis, 0.0175 dps/LSB

10 2 int16 Gyroscope, Z axis, 0.0175 dps/LSB

12 2 int16 Compass, X axis, 1100 LSB/Gauss

14 2 int16 Compass, Y axis, 1100 LSB/Gauss

16 2 int16 Compass, Z axis, 980 LSB/Gauss

18 6 Reserved

24 4 int32 Timestamp, ms

28 4 int8 reserved

Table A.4: Payload field of the raw distance packet

A.3 Communication protocol of Px4flow

Even though we will only use the I2C protocol of Px4flow in this thesis,
the UART protocol will still be illustrated to keep integrity of the introduction.
We will first demonstrate the UART protocol, then follows the I2C.

MAVLink protocol

MAVLink is an open-source protocol for communications between unmanned
vehicle and the ground control station. It is very light-weighted and designed
as a header-only message marshalling library. MAVLink arrange the data into
packet with length of 8 to 263 bytes. The first 6 bytes and last 2 bytes of a
packet is demanded and has reserved usages for each packet while all the rest
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bytes will depend on what kind of message it is actually carrying. Figure A.1
shows an anatomy of the packet structure and table A.5 shows a detailed expla-
nation for each byte in the packet. Notice the start sign is different for varies
versions of MAVLink protocol and in Px4flow the 1.0 version is used.

Figure A.1: Standard MAVLink packet

As we can see from table A.5, the payload in a packet is defined by the mes-
sage ID. In Px4flow, the sensor sends optical flow data in OPTICAL FLOW RAD
message (message ID: 106). The payload structure in the massage is shown in
table A.6.

One important thing that is worth to mention is the order of the fields in
these tables is not the actually data sequence in the MAVLink packet. The
MAVLink will reorder these fields according to their data size. In the actual
packet, the reordering follows the following rules:

• Fields are sorted according to their native data size, first (u)int64 t and
double, then (u)int32 t, float, (u)int16 t, (u)int8 t

• If two fields have the same length, their order is preserved as it was present
before the data field size ordering

• Arrays are handled based on the data type they use, not based on the
total array size

• The CRC field is calculated after the reordering

I2C protocol
The default 7-bit I2C address of the PX4FLOW is 0x42. However it can be
selected from 0x42 to 0x49 by soldering the jumpers on the sensor board. The
order of the I2C frame is shown in table A.7. Some of the fields is ellipsis because
they are following the same structure as MAVLink protocol in table A.6 so it
will not be repeated here.
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Byte Index Content Value Explanation

0
Packet start

sign
v1.0: 0xFE
(v0.9: 0x55)

Indicates the start of a new
packet.

1 Payload length 0 - 255
Indicates length of the

following payload.

2
Packet

sequence
0 - 255

Each component counts up
his send sequence. Allows

to detect packet loss.

3 System ID 1 - 255

ID of the sending system.
Allows to differentiate

different components on
the same network.

4 Component ID 0 - 255

ID of the sending
component. Allows to
differentiate different

components of the same
system.

5 Message ID 0 - 255

ID of the message - the id
defines what the payload
means and how it should

be correctly decoded.

6 to (n+6) Data 0 - 255
Data of the message,

depends on the message id.

(n+7) to (n+8) Checksum 0 - 255
ITU X.25/SAE AS-4 hash,
excluding packet start sign,

Table A.5: Data structure in a MAVLink packet
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Field Name Type Description

time usec uint64
Timestamp (microseconds, synced to

UNIX time or since system boot)
(Units: us)

sensor id uint8 Sensor ID

integration time us uint32

Integration time in microseconds.
Divide integrated x and integrated y

by the integration time to obtain
average flow. The integration time also

indicates the. (Units: us)

integrated x float

Flow in radians around X axis (Sensor
right-hand rotation about the X axis
induces a positive flow. Sensor linear

motion along the positive Y axis
induces a negative flow.) (Units: rad)

integrated y float

Flow in radians around Y axis (Sensor
right-hand rotation about the Y axis
induces a positive flow. Sensor linear

motion along the positive X axis
induces a positive flow.) (Units: rad)

integrated xgyro float
RH rotation around X axis (rad)

(Units: rad)

integrated ygyro float
RH rotation around Y axis (rad)

(Units: rad)

integrated zgyro float
RH rotation around Z axis (rad)

(Units: rad)

temperature int16
Temperature * 100 in centi-degrees

Celsius (Units: cdegC)

quality int8
Optical flow quality. 0: no valid flow,

255: maximum quality

time delta distance us int32
Time in microseconds since the

distance was sampled. (Units: us)

distance float

Distance to the centre of the flow field
in meters. Positive value (including

zero): distance known. Negative value:
Unknown distance. (Units: m)

Table A.6: Payload structure in OPTICAL FLOW RAD message
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Field Name Description

0x00 Framecounter lower byte

0x01 Framecounter upper byte

0x02 latest Flow*10 in x direction lower byte

0x03 latest Flow*10 in x direction upper byte

. . . . . .

0x13 Sonar Timestamp

0x14 Ground distance lower byte

0x15 Ground distance upper byte

0x16 Framecounter since last I2C readout lower byte

0x17 Framecounter since last I2C readout upper byte

0x18
Accumulated flow in radians*10000 around x axis since

last I2C readout lower byte

0x19
Accumulated flow in radians*10000 around x axis since

last I2C readout upper byte

. . . . . .

0x22
Accumulation timespan in microseconds since last I2C

readout byte 0

0x23
Accumulation timespan in microseconds since last I2C

readout byte 1

0x24
Accumulation timespan in microseconds since last I2C

readout byte 2

0x25
Accumulation timespan in microseconds since last I2C

readout byte 3

. . . . . .

0x2A Ground distance in meters*1000 lower byte

0x2B Ground distance in meters*1000 upper byte

0x2C Temperature in Degree Celsius*100 lower byte

0x2D Temperature in Degree Celsius*100 upper byte

0x2E Averaged quality of accumulated flow values

Table A.7: I2C frame in Px4flow
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Appendix B

Program code

B.1 Main program

The main program is listed here.

PositionEstimate.py

1 from thread ing import Thread
2 import smbus
3 import s e r i a l
4 from Pix4f lowDr iver import Pix4 f lowDriver
5 from MarvelmindDriver import MarvelmindDriver
6 from Kalman import k a lman f i l t e r
7 from Angular compen import ag cmp
8 from At t i t ud e c a l c u l a t i o n import a t t i t u d e c a l c u l a t i o n
9 from Marvelmindprotocol import Package f inder

10 from math import p i
11
12
13 c l a s s KalmanPositionEstimate (Thread ) :
14
15 de f i n i t ( s e l f , w r i t e f i l e=False , p r i n t r e s u l t=False ,

r e s u l t ou tpu t=False , i 2cbus=1, s e r i a l b u s=’COM5’ ) :
16 Thread . i n i t ( s e l f )
17 s e l f .m = [ 1 . 0 , 0 . 0 , 0 . 0 ]
18 s e l f . wf = w r i t e f i l e
19 s e l f . pt = p r i n t r e s u l t
20 s e l f . s e r i a l b u s = s e r i a l b u s
21 s e l f . i 2cbus = i2cbus
22 s e l f . ro = r e su l t ou tpu t
23 s e l f .mavX = 0.0
24 s e l f .mavY = 0.0
25 s e l f .mavZ = 0 .0
26 s e l f . i n i t i a l ( )
27
28
29 de f i n i t i a l ( s e l f ) :
30 s e l f . x l a s t = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

1 . 0 , 0 . 0 ]
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31 s e l f . p l a s t = [ 0 . 0 ] ∗ 100
32 s e l f . terminate = False
33 s e l f . px4 handler = None
34 s e l f . marve l handler = None
35 s e l f . p o s i t i o n ou t = [ ]
36 s e l f . marvel x = [ ]
37 s e l f . marvel y = [ ]
38 s e l f . marve l z = [ ]
39 s e l f . timestamp = [ ]
40 s e l f . b po s i t i o n = [ 0 . 0 , 0 . 0 , 1 . 850 , 0 . 0 , 3 . 562 , 1 . 850 ,

1 . 950 , 2 . 132 , 1 . 8 5 0 ]
41 s e l f . px pos i = [ ]
42 s e l f . r e s u l t o u t = [ ]
43
44 whi l e s e l f . px4 handler i s None :
45 t ry :
46 s e l f . px4 handler = smbus .SMBus( s e l f . i 2cbus )
47 s e l f . px4 = Pix4 f lowDr iver ( s e l f . px4 handler , 0x42

)
48 except Exception :
49 pass
50 whi l e s e l f . marve l handler i s None :
51 t ry :
52 s e l f . marve l handler = s e r i a l . S e r i a l ( s e l f .

s e r i a l bu s , t imeout=3)
53 s e l f . marvel = MarvelmindDriver ( s e l f .

marvel handler , )
54 s e l f . f i n d e r = Package f inder ( s e l f . marve l handler )
55 except Exception :
56 pass
57 s e l f . marve l handler . r e s e t i n p u t b u f f e r ( )
58 s e l f . marvel . r e f r e s h c o r ( )
59 s e l f . marvel . r e f r e s h d i s t ( )
60 s e l f . px4 . r e f r e s h o p t i c a l f l ow r a d ( )
61 s e l f . p o s i t i o n i n = [ s e l f . marvel . r e tu rn x ( ) / 1000 .0 ,

s e l f . marvel . r e tu rn y ( ) / 1000 . 0 ]
62 s e l f . marve l handler . r e s e t i n p u t b u f f e r ( )
63 s e l f . px4 . r e f r e s h o p t i c a l f l ow r a d ( )
64 s e l f . marvel . r e f r e s h c o r ( )
65 s e l f . marvel . r e f r e s h d i s t ( )
66 s e l f . marvel tstamp = s e l f . marvel . return t imestamp ( ) /

1000 .0
67 s e l f . x l a s t [ 0 ] = s e l f . p o s i t i o n i n [ 0 ]
68 s e l f . x l a s t [ 1 ] = s e l f . p o s i t i o n i n [ 1 ]
69 s e l f . px po = [ s e l f . x l a s t [ 0 ] , s e l f . x l a s t [ 1 ] ]
70 s e l f . mav data = [ s e l f . marvel . r e t u rn d i s t b e a c on 1 ( ) /

1000 .0 , s e l f . marvel . r e t u rn d i s t b e a c on 2 ( ) / 1000 .0 ,
71 s e l f . marvel . r e t u rn d i s t b e a c on 3 ( ) /

1000 .0 , s e l f . marvel . r e tu rn z ( ) /
1000 . 0 ]

72 s e l f . px4 delT = 0 .0
73 s e l f . px4 data = 0 .0
74 s e l f . px4 cmp = 0.0
75 s e l f . mav data new = 0.0
76 s e l f . mav delT = 0 .0
77 s e l f . marvel . r e f re sh rawimu ( )
78 s e l f . imu tstamp = s e l f . marvel . return r imu timestamp ( ) /
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1000 .0
79 s e l f . q = [ 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]
80 s e l f . quat out = s e l f . q
81 s e l f . imu p = [ 0 . 0 ] ∗ 16
82 s e l f . gy ro b ia sx = −70.0
83 s e l f . gy ro b ia sy = 12 .0
84 s e l f . g y r o b i a s z = 130 .0
85 s e l f . a c c b i a sx = 22.3461
86 s e l f . a c c b i a sy = −7.2230
87 s e l f . a c c b i a s z = 19.5191
88 s e l f . compass biasx = −100.7691
89 s e l f . compass biasy = −435.6860
90 s e l f . compass b iasz = −111.2812
91 s e l f . imu x = [ ( s e l f . marvel . r e tu rn accx ( ) + s e l f .

a c c b i a sx ) ,
92 ( s e l f . marvel . r e tu rn accy ( ) + s e l f .

a c c b i a sy ) ,
93 ( s e l f . marvel . r e tu rn ac c z ( ) + s e l f .

a c c b i a s z ) ,
94 ( s e l f . marvel . return compassx ( ) + s e l f .

compass biasx ) ,
95 ( s e l f . marvel . return compassy ( ) + s e l f .

compass biasy ) ,
96 ( s e l f . marvel . return compassz ( ) + s e l f .

compass b iasz ) ∗ (1100 / 980) ]
97 s e l f . imu x in i = s e l f . imu x
98
99 de f run ( s e l f ) :

100 whi l e s e l f . te rminate i s Fa l se :
101 try :
102 whi l e s e l f . px4 handler i s None :
103 try :
104 pass
105 s e l f . px4 handler = smbus .SMBus( s e l f .

i 2cbus )
106 # s e l f . px4 handler = s e r i a l . S e r i a l ( ’COM4

’ , 9600 , t imeout=3)
107 s e l f . px4 = Pix4 f lowDr iver ( s e l f .

px4 handler , 0x42 )
108 except Exception :
109 pass
110 whi l e s e l f . marve l handler i s None :
111 try :
112 s e l f . marve l handler = s e r i a l . S e r i a l ( s e l f

. s e r i a l bu s , t imeout=3)
113 s e l f . marvel = MarvelmindDriver ( s e l f .

marvel handler , )
114 s e l f . f i n d e r = Package f inder ( s e l f .

marve l handler )
115 except Exception :
116 pass
117
118 msgid = s e l f . f i n d e r . f i nd ( )
119 i f msgid == ’ \x11 ’ :
120 s e l f . P o s i t i o nF i l t e r ( )
121 s e l f . marve l handler . r e s e t i n p u t b u f f e r ( )
122 e l i f msgid == ’ \x03 ’ :
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123 s e l f . A t t i t ud eF i l t e r ( )
124 s e l f . Px4Estimate ( )
125 except OSError :
126 pass
127 s e l f . marve l handler . c l o s e ( )
128 s e l f . marve l handler = None
129 s e l f . px4 handler = None
130
131 de f Wri teFi l e ( s e l f , f i l ename=”kalman output . txt ” ) :
132 i f s e l f . wf i s Fa l se :
133 re turn None
134 with open ( f i l ename , ’ a ’ ) as f :
135 f o r i in range (0 , min ( l en ( s e l f . p o s i t i o n ou t ) , l en (

s e l f . marvel x ) , l en ( s e l f . timestamp ) ) ) :
136 f . wr i t e ( ”%+15.3 f \ t ” % s e l f . timestamp [ i ] + ”

%+15.3 f \ t ” % s e l f . p o s i t i o n ou t [ i ] [ 0 ] +
137 ”%+15.3 f \ t ” % s e l f . p o s i t i o n ou t [ i ] [ 1 ] +

”%+15.3 f \ t ” % s e l f . marvel x [ i ] +
138 ”%+15.3 f \ t ” % s e l f . marvel y [ i ] + ”%+15.3

f \ t ” % s e l f . marve l z [ i ] +
139 ”%+15.3 f \ t ” % s e l f . px pos i [ i ] [ 0 ] + ”

%+15.3 f \ t ” % s e l f . px pos i [ i ] [ 1 ] + ”\
n” )

140 de l s e l f . timestamp [ : ]
141 de l s e l f . p o s i t i o n ou t [ : ]
142 de l s e l f . marvel x [ : ]
143 de l s e l f . marvel y [ : ]
144 de l s e l f . marve l z [ : ]
145 de l s e l f . px pos i [ : ]
146
147 de f GetResult ( s e l f ) :
148 temp = s e l f . r e s u l t o u t [ : ]
149 de l s e l f . r e s u l t o u t [ : ]
150 re turn temp
151
152 de f A t t i t ud eF i l t e r ( s e l f ) :
153 i f s e l f . marvel . readpackage rawimu ( ) == ’ package e r ro r ’ :
154 re turn None
155 delT = s e l f . marvel . return r imu timestamp ( ) / 1000 .0 −

s e l f . imu tstamp
156 s e l f . imu tstamp = s e l f . marvel . return r imu timestamp ( ) /

1000 .0
157 gyro = [ ( s e l f . marvel . r e turn gyrox ( ) + s e l f . gy ro b ia sx ) ∗

(0 . 0175 ∗ pi / 180) ,
158 ( s e l f . marvel . r e turn gyroy ( ) + s e l f . gy ro b ia sy ) ∗

(0 . 0175 ∗ pi / 180) ,
159 ( s e l f . marvel . r e tu rn gy roz ( ) + s e l f . g y r o b i a s z ) ∗

(0 . 0175 ∗ pi / 180) ]
160 acc = [ ( s e l f . marvel . r e tu rn accx ( ) + s e l f . a c c b i a sx ) ,
161 ( s e l f . marvel . r e tu rn accy ( ) + s e l f . a c c b i a sy ) ,
162 ( s e l f . marvel . r e tu rn ac c z ( ) + s e l f . a c c b i a s z ) ]
163 compass = [ ( s e l f . marvel . return compassx ( ) + s e l f .

compass biasx ) ,
164 ( s e l f . marvel . return compassy ( ) + s e l f .

compass biasy ) ,
165 ( s e l f . marvel . return compassz ( ) + s e l f .

compass b iasz ) ∗ (1100 / 980) ]
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166 [ s e l f . quat out , s e l f . imu x , s e l f . q , s e l f . imu p ] =
a t t i t u d e c a l c u l a t i o n ( gyro , acc , compass , s e l f .
quat out , s e l f . imu x , s e l f . q , s e l f . imu p , delT , s e l f
. imu x in i )

167 s e l f . quat out = l i s t ( s e l f . quat out )
168 s e l f . imu x = l i s t ( s e l f . imu x )
169 s e l f . q = l i s t ( s e l f . q )
170 s e l f . imu p = l i s t ( s e l f . imu p )
171 re turn None
172
173 de f Px4Estimate ( s e l f ) :
174 s e l f . px4 . r e f r e s h o p t i c a l f l ow r a d ( )
175 s e l f . px4 delT = s e l f . px4 . r e t u r n i n t e g r a t i o n t ime u s ( ) /

1000000.0
176 s e l f . px4 data = [− s e l f . px4 . r e t u r n i n t e g r a t e d x ( ) /

10000 .0 , − s e l f . px4 . r e t u r n i n t e g r a t e d y ( ) / 10000 .0 ,
177 − s e l f . px4 . r e t u rn i n t e g r a t ed xgy r o ( ) /

10000 .0 , − s e l f . px4 .
r e t u rn i n t e g r a t ed ygy r o ( ) /
10000 .0 ,

178 s e l f . px4 . r e t u rn i n t e g r a t ed z gy r o ( ) /
10000 . 0 ]

179 s e l f . px4 cmp = ag cmp ( [ s e l f . px4 data , s e l f . px4 delT ] )
180 s e l f . px4 data [ 0 : 2 ] = s e l f . px4 cmp [ 0 : 2 ]
181 n = s e l f . r o t a t e ( s e l f . quat out , s e l f .m)
182 t rue x = ( s e l f . px4 data [ 1 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 0 ] +

( s e l f . px4 data [ 0 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 1 ]
183 t rue y = ( s e l f . px4 data [ 0 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 0 ] −

( s e l f . px4 data [ 1 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 1 ]
184 s e l f . p o s i t i o n i n = [ s e l f . p o s i t i o n i n [ 0 ] + true x ,
185 s e l f . p o s i t i o n i n [ 1 ] + t rue y ]
186 timenow = s e l f . imu tstamp
187 s e l f . px po = [ s e l f . px po [ 0 ] + true x ,
188 s e l f . px po [ 1 ] + t rue y ]
189 i f s e l f . wf i s True :
190 s e l f . p o s i t i o n ou t . append ( s e l f . p o s i t i o n i n )
191 s e l f . timestamp . append ( timenow )
192 s e l f . marvel x . append ( s e l f .mavX)
193 s e l f . marvel y . append ( s e l f .mavY)
194 s e l f . marve l z . append ( s e l f .mavZ)
195 s e l f . px pos i . append ( s e l f . px po )
196
197 de f P o s i t i o nF i l t e r ( s e l f ) :
198 i f s e l f . marvel . r eadpackage cor ( ) == ’ package e r ro r ’ :
199 re turn None
200 i f s e l f . marvel . r e f r e s h d i s t ( ) == ’ package e r ro r ’ :
201 re turn None
202 s e l f . px4 . r e f r e s h o p t i c a l f l ow r a d ( )
203 s e l f . px4 delT = s e l f . px4 . r e t u r n i n t e g r a t i o n t ime u s ( ) /

1000000.0
204 s e l f . px4 data = [− s e l f . px4 . r e t u r n i n t e g r a t e d x ( ) /

10000 .0 , − s e l f . px4 . r e t u r n i n t e g r a t e d y ( ) / 10000 .0 ,
205 − s e l f . px4 . r e t u rn i n t e g r a t ed xgy r o ( ) /

10000 .0 , − s e l f . px4 .
r e t u rn i n t e g r a t ed ygy r o ( ) /
10000 .0 ,

206 s e l f . px4 . r e t u rn i n t e g r a t ed z gy r o ( ) /
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10000 . 0 ]
207 s e l f . px4 cmp = ag cmp ( [ s e l f . px4 data , s e l f . px4 delT ] )
208 s e l f . px4 data [ 0 : 2 ] = s e l f . px4 cmp [ 0 : 2 ]
209 s e l f . mav data new = [ s e l f . marvel . r e t u rn d i s t b e a c on 1 ( )

/ 1000 .0 , s e l f . marvel . r e t u rn d i s t b e a c on 2 ( ) /
1000 .0 ,

210 s e l f . marvel . r e t u rn d i s t b e a c on 3 ( )
/ 1000 .0 , s e l f . marvel . r e tu rn z
( ) / 1000 . 0 ]

211 i f abs ( s e l f . mav data new [ 0 ] − s e l f . mav data [ 0 ] ) > 1 or
abs ( s e l f . mav data new [ 1 ] − s e l f . mav data [ 1 ] ) > 1 or
\

212 abs ( s e l f . mav data new [ 2 ] − s e l f . mav data [ 2 ] ) > 1
or abs ( s e l f . mav data new [ 3 ] − s e l f . mav data

[ 3 ] ) > 1 :
213 s e l f . mav data = s e l f . mav data
214 e l s e :
215 s e l f . mav data = s e l f . mav data new
216 n = s e l f . r o t a t e ( s e l f . quat out , s e l f .m)
217 t rue x = ( s e l f . px4 data [ 1 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 0 ] +

( s e l f . px4 data [ 0 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 1 ]
218 t rue y = ( s e l f . px4 data [ 0 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 0 ] −

( s e l f . px4 data [ 1 ] ∗ s e l f . mav data [ 3 ] ) ∗ n [ 1 ]
219 s e l f . p o s i t i o n i n = [ s e l f . p o s i t i o n i n [ 0 ] + true x ,
220 s e l f . p o s i t i o n i n [ 1 ] + t rue y ]
221 s e l f . mav delT = s e l f . marvel . return t imestamp ( ) / 1000 .0

− s e l f . marvel tstamp
222 s e l f . marvel tstamp = s e l f . marvel . return t imestamp ( ) /

1000 .0
223 [ s e l f . p o s i t i o n i n , s e l f . x l a s t , s e l f . p l a s t ] =

ka lman f i l t e r ( s e l f . mav data , s e l f . px4 data , s e l f .
p o s i t i o n i n , s e l f . x l a s t , s e l f . p l a s t , s e l f . mav delT
, s e l f . b po s i t i o n )

224 s e l f . p o s i t i o n i n = l i s t ( s e l f . p o s i t i o n i n )
225 s e l f . x l a s t = l i s t ( s e l f . x l a s t )
226 s e l f . p l a s t = l i s t ( s e l f . p l a s t )
227 timenow = s e l f . marvel . return t imestamp ( )
228 s e l f . px po = [ s e l f . px po [ 0 ] + true x ,
229 s e l f . px po [ 1 ] + t rue y ]
230 s e l f .mavX = s e l f . marvel . r e tu rn x ( ) / 1000 .0
231 s e l f .mavY = s e l f . marvel . r e tu rn y ( ) / 1000 .0
232 s e l f .mavZ = s e l f . marvel . r e tu rn z ( ) / 1000 .0
233 i f s e l f . wf i s True :
234 s e l f . p o s i t i o n ou t . append ( s e l f . p o s i t i o n i n )
235 s e l f . marvel x . append ( s e l f .mavX)
236 s e l f . marvel y . append ( s e l f .mavY)
237 s e l f . marve l z . append ( s e l f .mavZ)
238 s e l f . timestamp . append ( timenow / 1000 .0 )
239 s e l f . px pos i . append ( s e l f . px po )
240 i f s e l f . pt i s True :
241 p r i n t ( ”\n” )
242 p r i n t ( ”%+15s \ t ” % ”Time” + ”%+15s \ t ” % ”Pos i t i on X”

+ ”%+15s \ t ” % ”Pos i t i on Y” + ”\n” )
243 p r i n t ( ”%+15.3 f \ t ” % timenow + ”%+15.3 f \ t ” % s e l f .

p o s i t i o n i n [ 0 ] + ”%+15.3 f \ t ” % s e l f . p o s i t i o n i n
[ 1 ] + ”\n” )

244 p r i n t ( ”\n” )
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245 p r i n t ( ”=” ∗ 100)
246 i f s e l f . ro i s True :
247 temp = s e l f . p o s i t i o n i n [ : ]
248 temp . i n s e r t (0 , timenow )
249 s e l f . r e s u l t o u t . append ( temp)
250 re turn None
251
252 de f stop ( s e l f ) :
253 s e l f . te rminate = True
254 p r i n t ”Programme terminated ”
255
256 de f r o t a t e ( s e l f , quat , r ) :
257 q1 = quat [ 0 ]
258 q2 = quat [ 1 ]
259 q3 = quat [ 2 ]
260 q4 = quat [ 3 ]
261 L = ( q1 ∗∗ 2 .0 + q2 ∗∗ 2 .0 + q3 ∗∗ 2 .0 + q4 ∗∗ 2 . 0 ) ∗∗

0 .5
262 q1 = q1 / L
263 q2 = q2 / L
264 q3 = q3 / L
265 q4 = q4 / L
266 C = [ ( q1 ∗∗ 2 + q2 ∗∗ 2 − q3 ∗∗ 2 − q4 ∗∗ 2) , 2 ∗ ( q2 ∗

q3 + q1 ∗ q4 ) , 2 ∗ ( q2 ∗ q4 − q1 ∗ q3 ) ,
267 2 ∗ ( q2 ∗ q3 − q1 ∗ q4 ) , ( q1 ∗∗ 2 − q2 ∗∗ 2 + q3 ∗∗

2 − q4 ∗∗ 2) , 2 ∗ ( q3 ∗ q4 + q1 ∗ q2 ) ,
268 2 ∗ ( q2 ∗ q4 + q1 ∗ q3 ) , 2 ∗ ( q3 ∗ q4 − q1 ∗ q2 ) , (

q1 ∗∗ 2 − q2 ∗∗ 2 − q3 ∗∗ 2 + q4 ∗∗ 2) ]
269 n1 = C[ 0 ] ∗ r [ 0 ] + C[ 1 ] ∗ r [ 1 ] + C[ 2 ] ∗ r [ 2 ]
270 n2 = C[ 3 ] ∗ r [ 0 ] + C[ 4 ] ∗ r [ 1 ] + C[ 5 ] ∗ r [ 2 ]
271 n3 = C[ 6 ] ∗ r [ 0 ] + C[ 7 ] ∗ r [ 1 ] + C[ 8 ] ∗ r [ 2 ]
272 re turn [ n1 , n2 , n3 ]
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B.2 Description of the main program

The PositionEstimate package contains one class called KalmanPositionEstimate

and four methods in it: start, WriteFile, GetResult and stop. A brief intro-
duction for them is listed below:

KalmanPositionEstimate This is the only class in the package. It inherits from
the Thread class from the threading package. It has five arguments:

write file A bool type argument used to choose either write the output
of the Kalman filter to a file or not. If this argument is True, the user
can call the WriteFile method to write the filtered result to a file,
the file name can be designated in WriteFile. If this argument is
False then the WriteFile will just return a None. For more details
about method WriteFile, see the corresponding description below.

print result A bool type argument used to choose either print the out-
put of the Kalman filter to the console screen or not. If this argu-
ment is True, the position estimate in X and Y axis will be printed
on screen.

result output A bool type argument used to choose either return the
output of the Kalman filter or not. If this argument is True, the user
can call the GetResult method to return the filter output. For more
details about method GetResult, see the corresponding description
below.

i2cbus A integer argument used to indicate the which I2C bus the Px4flow
is connected with. In raspberry there are two I2C buses: I2C 0 and
I2C 1. Set ’0’ or ’1’ in this argument corresponding to the I2C bus
the Px4flow is in. If not assigned, the I2C 1 will be used as default.

serialbus A string argument used to indicate which serial bus the Mar-
velmind is connected with. If not assigned, the ’/dev/ttyACM0’ will
be used as default.

start() This method is inherit from the Thread class. It is used to start
the Kalman filter process. For example, if we generate an object of class
KalmanPositionEstimate called test, then call the method test.start()

will start the filtering. The filtered result can be gathered using other
methods as WriteFile or GetResult. It will also continuously print the
result on the screen if the print result is set to True.

WriteFile(filename) This method is used to write the result from Kalman
filter to a file. The file name can be specific in the argument filename,
which is a string argument. If not assigned, the "kalman output.txt"

will be used as default. During the processing of the Kalman filter, all the
results will be temporarily stored in a cache if the argument write file is
set to True. When the WriteFile(filename) method is called, the data
in the cache will be write to the file and then the cache will be cleaned
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up. This means the user can periodically call this method and it will write
the data output from Kalman filter between the two method calls to the
specific file. In this way the cache will only store limited amount of data
to avoid memory overflow.

GetResult() This method is used to combine the system with other applica-
tions. Similar to the WriteFile method, if the argument result output

is set to True, all the results from Kalman filter will be stored in a cache.
When the GetResult() is called, it will return a N × 3 list. The N is the
amount of the data group. For each data group, it contains three float
values. They are: the timestamp for the data (Unit: second), the position
estimation in X axis (Unit: meter) and the position estimation in Y axis
(Unit: meter).

stop() This method is used to stop the system. After is method is called, the
I2C bus and serial bus will be closed, all the caches will be cleaned up and
the process of the Kalman filter will be terminated.
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B.3 Marvelmind communication protocol

The program used to read data using the Marvelmind protocol is listed
here.

Marvelmindprotocol.py

1 import s t r u c t
2 from crcmod import p r ede f i n ed
3
4 INIT = 0
5 TOPDTCT = 1
6 CODDTCT = 2
7 REVDTCT = 3
8 NOBDTCT = 4
9 MSGDTCT = 5

10 CRCDTCT = 6
11 END = 7
12
13 c l a s s Package f inder :
14 de f i n i t ( s e l f , handler ) :
15 s e l f . handler = handler
16
17 de f f i nd ( s e l f ) :
18 i f s e l f . handler . i s open i s Fa l se :
19 s e l f . handler . open ( )
20 s t a t e = INIT
21 msgid = ’NOPACKAGE’
22 whi l e s t a t e != END:
23 byt e in = s e l f . handler . read ( )
24 i f s t a t e == INIT :
25 i f by t e in == ’ \xFF ’ :
26 s t a t e = TOPDTCT
27 e l i f s t a t e == TOPDTCT:
28 i f by t e in == ’ \x47 ’ :
29 s t a t e = CODDTCT
30 e l s e :
31 s t a t e = INIT
32 e l i f s t a t e == CODDTCT:
33 msgid = byte in
34 s t a t e = END
35 return msgid
36
37
38 c l a s s Marvelmindprotocol :
39 de f i n i t ( s e l f , handler=None , msgid=’ \x04 ’ ) :
40 s e l f . handler = handler
41 s e l f . msgid = msgid
42 s e l f . msg = [ ]
43 s e l f . msglen = 0
44 s e l f . c rc16 = prede f i n ed .mkCrcFun( ’modbus ’ )
45
46 de f readpackage ( s e l f ) :
47 i f s e l f . handler . i s open i s Fa l se :
48 s e l f . handler . open ( )
49 s t a t e = REVDTCT
50 length = 0
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51 s e l f . msg = [ ]
52 s e l f . msglen = 0
53 whi l e s t a t e != END:
54 byt e in = s e l f . handler . read ( )
55 i f s t a t e == REVDTCT:
56 s t a t e = NOBDTCT
57 e l i f s t a t e == NOBDTCT:
58 l ength = byte in
59 s e l f . msglen = s t r u c t . unpack ( ’B ’ , l ength ) [ 0 ]
60 s t a t e = MSGDTCT
61 e l i f s t a t e == MSGDTCT:
62 i f l en ( s e l f . msg) < s e l f . msglen :
63 s e l f . msg . append ( by t e in )
64 e l s e :
65 c r c l o = byte in
66 s t a t e = CRCDTCT
67 e l i f s t a t e == CRCDTCT:
68 msg = b ’ ’ . j o i n ( s e l f . msg)
69 i f s e l f . c rc16 ( ’ \xFF\x47 ’ + s e l f . msgid + ’ \x00 ’ +

length + msg + c r c l o + byte in ) != 0 :
70 s e l f . msg = [ ]
71 s e l f . msglen = 0
72 return ’ package e r ro r ’
73 e l s e :
74 s t a t e = END
75 return None
76
77 de f r e f r e s h ( s e l f ) :
78 i f s e l f . handler . i s open i s Fa l se :
79 s e l f . handler . open ( )
80 s t a t e = INIT
81 length = 0
82 s e l f . msg = [ ]
83 s e l f . msglen = 0
84 whi l e s t a t e != END:
85 byt e in = s e l f . handler . read ( )
86 i f s t a t e == INIT :
87 i f by t e in == ’ \xFF ’ :
88 s t a t e = TOPDTCT
89 e l i f s t a t e == TOPDTCT:
90 i f by t e in == ’ \x47 ’ :
91 s t a t e = CODDTCT
92 e l s e :
93 s t a t e = INIT
94 e l i f s t a t e == CODDTCT:
95 i f by t e in == s e l f . msgid :
96 s t a t e = REVDTCT
97 e l s e :
98 s t a t e = INIT
99 e l i f s t a t e == REVDTCT:

100 s t a t e = NOBDTCT
101 e l i f s t a t e == NOBDTCT:
102 l ength = byte in
103 s e l f . msglen = s t r u c t . unpack ( ’B ’ , l ength ) [ 0 ]
104 s t a t e = MSGDTCT
105 e l i f s t a t e == MSGDTCT:
106 i f l en ( s e l f . msg) < s e l f . msglen :
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107 s e l f . msg . append ( by t e in )
108 e l s e :
109 c r c l o = byte in
110 s t a t e = CRCDTCT
111 e l i f s t a t e == CRCDTCT:
112 msg = b ’ ’ . j o i n ( s e l f . msg)
113 # no in spec t i on PyTypeChecker
114 check = ’ \xFF\x47 ’ + s e l f . msgid + ’ \x00 ’ +

length + msg + c r c l o + byte in
115 i f s e l f . c rc16 ( check ) != 0 :
116 s e l f . msg = [ ]
117 s e l f . msglen = 0
118 return ’ package e r ro r ’
119 e l s e :
120 s t a t e = END
121 return None
122
123 de f ge tva lue ( s e l f , fmt=’ ’ , l o =0, h i=0) :
124 msg = b ’ ’ . j o i n ( s e l f . msg)
125 re turn s t r u c t . unpack ( fmt , msg [ l o : h i ] )
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B.4 Marvelmind data convert

This program is used to convert the binary stream reads from Marvelmind
into the specific data type required by other programs.

Marvelmindprotocol.py

1 import s t r u c t
2 from crcmod import p r ede f i n ed
3
4 INIT = 0
5 TOPDTCT = 1
6 CODDTCT = 2
7 REVDTCT = 3
8 NOBDTCT = 4
9 MSGDTCT = 5

10 CRCDTCT = 6
11 END = 7
12
13 c l a s s Package f inder :
14 de f i n i t ( s e l f , handler ) :
15 s e l f . handler = handler
16
17 de f f i nd ( s e l f ) :
18 i f s e l f . handler . i s open i s Fa l se :
19 s e l f . handler . open ( )
20 s t a t e = INIT
21 msgid = ’NOPACKAGE’
22 whi l e s t a t e != END:
23 byt e in = s e l f . handler . read ( )
24 i f s t a t e == INIT :
25 i f by t e in == ’ \xFF ’ :
26 s t a t e = TOPDTCT
27 e l i f s t a t e == TOPDTCT:
28 i f by t e in == ’ \x47 ’ :
29 s t a t e = CODDTCT
30 e l s e :
31 s t a t e = INIT
32 e l i f s t a t e == CODDTCT:
33 msgid = byte in
34 s t a t e = END
35 return msgid
36
37
38 c l a s s Marvelmindprotocol :
39 de f i n i t ( s e l f , handler=None , msgid=’ \x04 ’ ) :
40 s e l f . handler = handler
41 s e l f . msgid = msgid
42 s e l f . msg = [ ]
43 s e l f . msglen = 0
44 s e l f . c rc16 = prede f i n ed .mkCrcFun( ’modbus ’ )
45
46 de f readpackage ( s e l f ) :
47 i f s e l f . handler . i s open i s Fa l se :
48 s e l f . handler . open ( )
49 s t a t e = REVDTCT
50 length = 0
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51 s e l f . msg = [ ]
52 s e l f . msglen = 0
53 whi l e s t a t e != END:
54 byt e in = s e l f . handler . read ( )
55 i f s t a t e == REVDTCT:
56 s t a t e = NOBDTCT
57 e l i f s t a t e == NOBDTCT:
58 l ength = byte in
59 s e l f . msglen = s t r u c t . unpack ( ’B ’ , l ength ) [ 0 ]
60 s t a t e = MSGDTCT
61 e l i f s t a t e == MSGDTCT:
62 i f l en ( s e l f . msg) < s e l f . msglen :
63 s e l f . msg . append ( by t e in )
64 e l s e :
65 c r c l o = byte in
66 s t a t e = CRCDTCT
67 e l i f s t a t e == CRCDTCT:
68 msg = b ’ ’ . j o i n ( s e l f . msg)
69 i f s e l f . c rc16 ( ’ \xFF\x47 ’ + s e l f . msgid + ’ \x00 ’ +

length + msg + c r c l o + byte in ) != 0 :
70 s e l f . msg = [ ]
71 s e l f . msglen = 0
72 return ’ package e r ro r ’
73 e l s e :
74 s t a t e = END
75 return None
76
77 de f r e f r e s h ( s e l f ) :
78 i f s e l f . handler . i s open i s Fa l se :
79 s e l f . handler . open ( )
80 s t a t e = INIT
81 length = 0
82 s e l f . msg = [ ]
83 s e l f . msglen = 0
84 whi l e s t a t e != END:
85 byt e in = s e l f . handler . read ( )
86 i f s t a t e == INIT :
87 i f by t e in == ’ \xFF ’ :
88 s t a t e = TOPDTCT
89 e l i f s t a t e == TOPDTCT:
90 i f by t e in == ’ \x47 ’ :
91 s t a t e = CODDTCT
92 e l s e :
93 s t a t e = INIT
94 e l i f s t a t e == CODDTCT:
95 i f by t e in == s e l f . msgid :
96 s t a t e = REVDTCT
97 e l s e :
98 s t a t e = INIT
99 e l i f s t a t e == REVDTCT:

100 s t a t e = NOBDTCT
101 e l i f s t a t e == NOBDTCT:
102 l ength = byte in
103 s e l f . msglen = s t r u c t . unpack ( ’B ’ , l ength ) [ 0 ]
104 s t a t e = MSGDTCT
105 e l i f s t a t e == MSGDTCT:
106 i f l en ( s e l f . msg) < s e l f . msglen :
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107 s e l f . msg . append ( by t e in )
108 e l s e :
109 c r c l o = byte in
110 s t a t e = CRCDTCT
111 e l i f s t a t e == CRCDTCT:
112 msg = b ’ ’ . j o i n ( s e l f . msg)
113 # no in spec t i on PyTypeChecker
114 check = ’ \xFF\x47 ’ + s e l f . msgid + ’ \x00 ’ +

length + msg + c r c l o + byte in
115 i f s e l f . c rc16 ( check ) != 0 :
116 s e l f . msg = [ ]
117 s e l f . msglen = 0
118 return ’ package e r ro r ’
119 e l s e :
120 s t a t e = END
121 return None
122
123 de f ge tva lue ( s e l f , fmt=’ ’ , l o =0, h i=0) :
124 msg = b ’ ’ . j o i n ( s e l f . msg)
125 re turn s t r u c t . unpack ( fmt , msg [ l o : h i ] )
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B.5 Px4flow data convert

This program is used to convert the binary stream reads from Px4flow into
the specific data type required by other programs.

Pix4flowDriver.py

1 import i 2 c p r o t o c o l
2
3 c l a s s Pix4 f lowDr iver :
4 de f i n i t ( s e l f , handler , addr , f l owrad id=0x16 ) :
5 s e l f . handler = handler
6 s e l f . o p t i c a l f l ow r ad hand l e r = i 2 c p r o t o c o l . i 2 c p r o t o c o l (

s e l f . handler , addr , f l owrad id )
7
8 de f r e f r e s h o p t i c a l f l ow r a d ( s e l f ) :
9 s e l f . o p t i c a l f l ow r ad hand l e r . r e f r e s h ( )

10
11 de f r e t u r n i n t e g r a t e d x ( s e l f ) :
12 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’h ’ , 2 , 4 )

[ 0 ]
13
14 de f r e t u r n i n t e g r a t e d y ( s e l f ) :
15 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’h ’ , 4 , 6 )

[ 0 ]
16
17 de f r e t u rn i n t e g r a t ed xgy r o ( s e l f ) :
18 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’h ’ , 6 , 8 )

[ 0 ]
19
20 de f r e t u rn i n t e g r a t ed ygy r o ( s e l f ) :
21 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’h ’ , 8 , 10 )

[ 0 ]
22
23 de f r e t u r n i n t e g r a t ed z gy r o ( s e l f ) :
24 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’h ’ , 10 ,12)

[ 0 ]
25
26 de f r e t u r n i n t e g r a t i o n t ime u s ( s e l f ) :
27 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’ I ’ , 12 ,16)

[ 0 ]
28
29 de f r e tu rn t ime u s e c r ad ( s e l f ) :
30 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’ I ’ , 16 ,20)

[ 0 ]
31
32 de f r e t u rn d i s t an c e ( s e l f ) :
33 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’h ’ , 20 ,22)

[ 0 ]
34
35 de f re turn temperature ( s e l f ) :
36 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’h ’ , 22 ,24)

[ 0 ]
37
38 de f r e t u r n qua l i t y ( s e l f ) :
39 re turn s e l f . o p t i c a l f l ow r ad hand l e r . ge tva lue ( ’B ’ ,24 ,25)

[ 0 ]
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B.6 Angular rate compensate algorithm

This program is the Matlab function used to perform the angular rate
compensate algorithm.

angular compen.m

1 func t i on comp = angular compen ( rad , timestamp )
2 ag = rad ( 3 : 5 ) . / timestamp ;
3 g = [ 0 , 0 ] ;
4 y l a s t = [ 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ] ;
5 C = der f cn ( ag , timestamp , y l a s t ) ;
6 p = (C∗ [ 0 ; 0 ; 1 ] − [ 0 ; 0 ; 1 ] ) . ’ ;
7 g (1 ) = −p (2) . / timestamp ;
8 g (2 ) = p (1) . / timestamp ;
9 comp = rad ( 1 : 2 ) − g .∗ timestamp ;

10 end
11
12 func t i on y s o l v e = der f cn ( ag , timestamp , y l a s t )
13 y0 = y l a s t ;
14 agx = ag (1 ) ;
15 agy = ag (2 ) ;
16 agz = ag (3) ;
17 tspan = [ 0 , timestamp ] ;
18
19 [ t , y ] = ode45 (@( t , y ) odefcn ( t , y , agx , agy , agz ) , tspan , y0 . ’ ) ;
20 y s o l v e = [ y ( end , 1 ) , y ( end , 2 ) , y ( end , 3 ) ; y ( end , 4 ) , y ( end , 5 ) , y ( end , 6 )

; y ( end , 7 ) , y ( end , 8 ) , y ( end , 9 ) ] ;
21 end
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B.7 Kalman filter for attitude estimate

This program is the Matlab function used to perform the attitude estimate
algorithm.

attitude calculation.m

1 func t i on [ quat out , x next , q next , p next ] = a t t i t u d e c a l c u l a t i o n (
gyro , acc , compass , quat in , x l a s t , q l a s t , p l a s t , delT , x i n i )

2
3 %no i s e matrix
4 W = [4 . 5 270 e−05 ,0 ,0 ,0 ;0 ,4 .5270 e−05 ,0 ,0 ;0 ,0 ,4 .5270 e

−05 ,0 ;0 ,0 ,0 ,4 .5270 e−05] ;
5 R = [3 . 3 004 e−05 ,0 ,0 ,0 ,0 ,0 ;
6 0 ,3 .3004 e−05 ,0 ,0 ,0 ,0 ;
7 0 ,0 ,3 . 3004 e−05 ,0 ,0 ,0 ;
8 0 ,0 , 0 , 1 . 0049 e−04 ,0 ,0 ;
9 0 , 0 , 0 , 0 , 1 . 0049 e−04 ,0;

10 0 , 0 , 0 , 0 , 0 , 1 . 0049 e−04] ;
11 Z = [ acc , compass ] . ’− x l a s t ;
12 %System matrix c a l c u l a t e
13 F = [0 ,− gyro (1 ) ,−gyro (2 ) ,−gyro (3 ) ; gyro (1 ) ,0 , gyro (3 ) ,−gyro

(2 ) ; gyro (2 ) ,−gyro (3 ) ,0 , gyro (1 ) ; gyro (3 ) , gyro (2 ) ,−gyro (1 )
, 0 ] . ∗ 0 . 5 ;

14 G = eye (4 ) ;
15 A = [−F,G∗W∗(G. ’ ) ; z e r o s (4 , 4 ) , (F . ’ ) ] . ∗ delT ;
16 B = expm(A) ;
17 phi = B( 5 : 8 , 5 : 8 ) . ’ ;
18 Q = phi ∗ B( 1 : 4 , 5 : 8 ) ;
19 quat = quat in ;
20 L = sq r t ( quat (1 )ˆ2+quat (2 )ˆ2+quat (3 )ˆ2+quat (4 ) ˆ2) ;
21 quat = quat . /L ;
22 %Measurement matrix c a l c u l a t e
23 h11 = 2∗quat (1 ) ∗ x i n i (1 )+2∗quat (4 ) ∗ x i n i (2 )−2∗quat (3 ) ∗ x i n i

(3 ) ;
24 h12 = 2∗quat (2 ) ∗ x i n i (1 )+2∗quat (3 ) ∗ x i n i (2 )+2∗quat (4 ) ∗ x i n i

(3 ) ;
25 h13 = −2∗quat (3 ) ∗ x i n i (1 )+2∗quat (2 ) ∗ x i n i (2 )−2∗quat (1 ) ∗

x i n i (3 ) ;
26 h14 = −2∗quat (4 ) ∗ x i n i (1 )+2∗quat (1 ) ∗ x i n i (2 )+2∗quat (2 ) ∗

x i n i (3 ) ;
27
28 h21 = −2∗quat (4 ) ∗ x i n i (1 )+2∗quat (1 ) ∗ x i n i (2 )+2∗quat (2 ) ∗

x i n i (3 ) ;
29 h22 = 2∗quat (3 ) ∗ x i n i (1 )−2∗quat (2 ) ∗ x i n i (2 )+2∗quat (1 ) ∗ x i n i

(3 ) ;
30 h23 = 2∗quat (2 ) ∗ x i n i (1 )+2∗quat (3 ) ∗ x i n i (2 )+2∗quat (4 ) ∗ x i n i

(3 ) ;
31 h24 = −2∗quat (1 ) ∗ x i n i (1 )−2∗quat (4 ) ∗ x i n i (2 )+2∗quat (3 ) ∗

x i n i (3 ) ;
32
33 h31 = 2∗quat (3 ) ∗ x i n i (1 )−2∗quat (2 ) ∗ x i n i (2 )+2∗quat (1 ) ∗ x i n i

(3 ) ;
34 h32 = 2∗quat (4 ) ∗ x i n i (1 )−2∗quat (1 ) ∗ x i n i (2 )−2∗quat (2 ) ∗ x i n i

(3 ) ;
35 h33 = 2∗quat (1 ) ∗ x i n i (1 )+2∗quat (4 ) ∗ x i n i (2 )−2∗quat (3 ) ∗ x i n i

(3 ) ;
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36 h34 = 2∗quat (2 ) ∗ x i n i (1 )+2∗quat (3 ) ∗ x i n i (2 )+2∗quat (4 ) ∗ x i n i
(3 ) ;

37
38 h41 = 2∗quat (1 ) ∗ x i n i (4 )+2∗quat (4 ) ∗ x i n i (5 )−2∗quat (3 ) ∗ x i n i

(6 ) ;
39 h42 = 2∗quat (2 ) ∗ x i n i (4 )+2∗quat (3 ) ∗ x i n i (5 )+2∗quat (4 ) ∗ x i n i

(6 ) ;
40 h43 = −2∗quat (3 ) ∗ x i n i (4 )+2∗quat (2 ) ∗ x i n i (5 )−2∗quat (1 ) ∗

x i n i (6 ) ;
41 h44 = −2∗quat (4 ) ∗ x i n i (4 )+2∗quat (1 ) ∗ x i n i (5 )+2∗quat (2 ) ∗

x i n i (6 ) ;
42
43 h51 = −2∗quat (4 ) ∗ x i n i (4 )+2∗quat (1 ) ∗ x i n i (5 )+2∗quat (2 ) ∗

x i n i (6 ) ;
44 h52 = 2∗quat (3 ) ∗ x i n i (4 )−2∗quat (2 ) ∗ x i n i (5 )+2∗quat (1 ) ∗ x i n i

(6 ) ;
45 h53 = 2∗quat (2 ) ∗ x i n i (4 )+2∗quat (3 ) ∗ x i n i (5 )+2∗quat (4 ) ∗ x i n i

(6 ) ;
46 h54 = −2∗quat (1 ) ∗ x i n i (4 )−2∗quat (4 ) ∗ x i n i (5 )+2∗quat (3 ) ∗

x i n i (6 ) ;
47
48 h61 = 2∗quat (3 ) ∗ x i n i (4 )−2∗quat (2 ) ∗ x i n i (5 )+2∗quat (1 ) ∗ x i n i

(6 ) ;
49 h62 = 2∗quat (4 ) ∗ x i n i (4 )−2∗quat (1 ) ∗ x i n i (5 )−2∗quat (2 ) ∗ x i n i

(6 ) ;
50 h63 = 2∗quat (1 ) ∗ x i n i (4 )+2∗quat (4 ) ∗ x i n i (5 )−2∗quat (3 ) ∗ x i n i

(6 ) ;
51 h64 = 2∗quat (2 ) ∗ x i n i (4 )+2∗quat (3 ) ∗ x i n i (5 )+2∗quat (4 ) ∗ x i n i

(6 ) ;
52
53 H = [ h11 , h12 , h13 , h14 ;
54 h21 , h22 , h23 , h24 ;
55 h31 , h32 , h33 , h34 ;
56 h41 , h42 , h43 , h44 ;
57 h51 , h52 , h53 , h54 ;
58 h61 , h62 , h63 , h64 ] ;
59
60 %Kalman gain c a l c u l a t e
61 K = p l a s t ∗(H. ’ ) /(H∗ p l a s t ∗(H. ’ ) + R) ;
62 %Update es t imate
63 de lq = q l a s t − quat ;
64 q new = q l a s t + K∗(Z−H∗ de lq ) ;
65 %Update e r r o r
66 p new = ( eye (4 )−K∗H) ∗ p l a s t ;
67 %Pred i c t s t a t e
68 q next = phi ∗q new ;
69 %pr ed i c t e r r o r
70 p next = phi ∗p new ∗( phi . ’ )+Q;
71
72 quat out = q new . ’ ;
73 x next = [ quatro ( q new . ’ , x i n i ( 1 : 3 ) . ’ ) , quatro ( q new . ’ , x i n i

( 4 : 6 ) . ’ ) ] . ’ ;
74
75 end
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B.8 Kalman filter for position estimate

This program is the Matlab function used to perform the position estimate
algorithm.

kalman filter.m

1 func t i on [ po s i t i on ou t , x next , p next ] = ka lman f i l t e r (mav , px4 ,
delT , p o s i t i o n i n , x l a s t , p l a s t , b po s i t i o n )

2 X la s t = x l a s t ;
3 P l a s t = p l a s t ;
4 %beacon po s i t i o n
5 b1 = b po s i t i o n ( : , 1 ) ;
6 b2 = b po s i t i o n ( : , 2 ) ;
7 b3 = b po s i t i o n ( : , 3 ) ;
8 %sample time
9 t = delT ;

10 %he ight o f the beacon
11 %l = b1 (3) ;
12 %f low v e l o c i t y from px4
13 vx = px4 (2) ;
14 vy = px4 (1) ;
15 %angular ra t e from px4
16 omegax = px4 (3 ) ;
17 omegay = px4 (4 ) ;
18 omegaz = px4 (5) ;
19 p o s i t i o n x = po s i t i o n i n (1 ) ;
20 p o s i t i o n y = po s i t i o n i n (2 ) ;
21 %he ight update
22 p o s i t i o n z = mav(4) ;
23 %no i s e matrix
24 W = [7 . 4 756 e−05, z e r o s (1 , 9 ) ; 0 , 7 . 7 235E−05, z e r o s (1 , 8 ) ; z e r o s

(1 , 10 ) ; z e r o s (1 , 10 ) ; z e r o s (1 , 4 ) , 1 .3965 e−07, z e r o s (1 , 5 ) ;
z e r o s (1 , 5 ) , 8 .7105 e−08, z e r o s (1 , 4 ) ;

25 z e ro s (1 , 6 ) , 1 .3279 e−07, z e r o s (1 , 3 ) ; z e r o s (1 , 7 ) , 1 .3965 e−07,
z e r o s (1 , 2 ) ; z e r o s (1 , 8 ) , 8 .7105 e−08 ,0; z e r o s (1 , 9 )
, 1 .3279 e−07] ;

26 %R = [2 . 9 524 e−05 ,0 ,0 ;0 ,2 .6953 e−05 ,0 ;0 ,0 ,1 .1116 e−05] ;
27 R = [3 . 5 458 e−04 ,0 ,0 ;0 ,3 .0458 e−04 ,0 ;0 ,0 ,4 .1225 e−04] ;
28 hx = [ sq r t ( ( po s i t i on x−b1 (1) ) ˆ2+( po s i t i on y−b1 (2) ) ˆ2+(

po s i t i o n z−b1 (3) ) ˆ2) ;
29 sq r t ( ( po s i t i on x−b2 (1) ) ˆ2+( po s i t i on y−b2 (2) ) ˆ2+(

po s i t i o n z−b2 (3) ) ˆ2) ;
30 sq r t ( ( po s i t i on x−b3 (1) ) ˆ2+( po s i t i on y−b3 (2) ) ˆ2+(

po s i t i o n z−b3 (3) ) ˆ2) ] ;
31 Z = [mav(1)−hx (1 ) ;mav(2 )−hx (2 ) ;mav(3 )−hx (3 ) ] ;
32 %System matrix c a l c u l a t e
33 omegaM = [0 ,−omegaz , omegay ; omegaz ,0 ,−omegax;−omegay , omegax

, 0 ] ;
34 F = [0 , 0 , 0 , p o s i t i o n z ,0 ,0 ,− po s i t i o n z , 0 , 0 , 0 ; 0 , 0 , p o s i t i on z

,0 ,0 ,0 ,0 ,0 ,0 , − p o s i t i o n z ; z e r o s (1 , 10 ) ; z e r o s (1 , 10 ) ; z e r o s
(3 , 4 ) ,−omegaM, z e ro s (3 , 3 ) ; z e r o s (3 , 7 ) ,−omegaM ] ;

35 G = eye (10) ;
36 A = [−F,G∗W∗(G. ’ ) ; z e r o s (10 ,10) , (F . ’ ) ] . ∗ t ;
37 B = expm(A) ;
38 phi = B(11 : 2 0 , 1 1 : 2 0 ) . ’ ;
39 Q = phi ∗ B(1 : 1 0 , 1 1 : 2 0 ) ;
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40 %Measurement matrix c a l c u l a t e
41 h1 = ( po s i t i o n x − b1 (1) ) / sq r t ( ( po s i t i on x−b1 (1) ) ˆ2+(

po s i t i on y−b1 (2) ) ˆ2+( po s i t i o n z−b1 (3) ) ˆ2) ;
42 h2 = ( po s i t i o n y − b1 (2) ) / sq r t ( ( po s i t i on x−b1 (1) ) ˆ2+(

po s i t i on y−b1 (2) ) ˆ2+( po s i t i o n z−b1 (3) ) ˆ2) ;
43 h3 = ( po s i t i o n x − b2 (1) ) / sq r t ( ( po s i t i on x−b2 (1) ) ˆ2+(

po s i t i on y−b2 (2) ) ˆ2+( po s i t i o n z−b2 (3) ) ˆ2) ;
44 h4 = ( po s i t i o n y − b2 (2) ) / sq r t ( ( po s i t i on x−b2 (1) ) ˆ2+(

po s i t i on y−b2 (2) ) ˆ2+( po s i t i o n z−b2 (3) ) ˆ2) ;
45 h5 = ( po s i t i o n x − b3 (1) ) / sq r t ( ( po s i t i on x−b3 (1) ) ˆ2+(

po s i t i on y−b3 (2) ) ˆ2+( po s i t i o n z−b3 (3) ) ˆ2) ;
46 h6 = ( po s i t i o n y − b3 (2) ) / sq r t ( ( po s i t i on x−b3 (1) ) ˆ2+(

po s i t i on y−b3 (2) ) ˆ2+( po s i t i o n z−b3 (3) ) ˆ2) ;
47 H = [ h1 , h2 , z e r o s (1 , 8 ) ; h3 , h4 , z e r o s (1 , 8 ) ; h5 , h6 , z e r o s (1 , 8 ) ] ;
48 %Kalman gain c a l c u l a t e
49 K = P la s t ∗(H. ’ ) /(H∗P la s t ∗(H. ’ ) + R) ;
50 %Update es t imate
51 delX = X las t − [ p o s i t i o n x ; p o s i t i o n y ; z e r o s (8 , 1 ) ] ;
52 x new temp = X las t + K∗(Z−H∗delX ) ;
53 %Update e r r o r
54 P new = ( eye (10)−K∗H) ∗P la s t ;
55 %Pred i c t s t a t e
56 x next temp = phi ∗x new temp ;
57 %x next temp (1) = x next temp (1) + vy ∗ p o s i t i o n z ;
58 %x next temp (2) = x next temp (2) + vx ∗ p o s i t i o n z ;
59 x next temp (3) = vx ;
60 x next temp (4) = vy ;
61 %pr ed i c t e r r o r
62 p next temp = phi ∗P new∗( phi . ’ )+Q;
63 po s i t i o n ou t = [ x new temp (1) ; x new temp (2) ] ;
64 p next = p next temp ;
65 x next = x next temp ;
66 end
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