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Abstract

Optimization is the main process thanks to which it is possible to make something, such as a de-
sign, a system, or a decision, as good as possible. In particular in the scientific field of expertise
it refers to the mathematical procedures which allow to achieve this perfect result. Specifically
optimising means getting the best variables values, among the available ones, evaluated under a
set of constraints and according to a specific optimisation objective function.

Orbit propagation concerns the determination of the motion of any sort of body which can
be found into space. The motion of a body, in accordance with Newton’s laws, can be obtained
starting from its initial state, which means its position and velocity in space at known time epoch,
and considering forces which act on it. During the years, starting from Kepler to present day
scientists, many mathematicians have tried, successfully in most cases, to discover and develop
new mathematical, analytic, semi-analytic and numerical techniques involved with bodies’ or-
bital trajectories.

SARROTO, Station Acquisition, Relocation and Re-Orbiting TOol, is the project developed
during this training. Its main aim is performing an optimisation procedure related to manoeuvre
events. This process is computed in order to reach the target final body state at certain epoch
considering the best combination of velocity manoeuvre components and its epoch of occur-
rence.
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Chapter 1

Introduction

Optimisation and bodies’ orbit propagation can be considered two fundamental problems among
the scientific community.
In fact, firstly focusing on optimisation, it has to be said that achieving the perfection, in all
fields of expertise, has always been one of the main objectives. In particular this research has
been conducted in an exhaustive way in all the scientific fields of discovery, from the scientific
and engineering ones, to business decision-making and general industry, where the optimisation
approach is largely required.

So, this work has born to became part of this scenario, fitting in the context which concerns
spacecraft’s flight dynamics field of development. The main objective of this project has been
the development of a prototype for spacecraft’s manoeuvres optimisation. This tool takes the
name of SARROTO which stands for Station Acquisition, Relocation and Re-Orbiting TOol. It
consists in a software fully implemented in Fortran 90. Focusing on its general description, there
are two main parts that have to be considered

• the software architecture, which consists in analysing the tool general design from the
computational point of view;

• the program interface with users which allows to define the inputs/outputs procedure.

Starting from the first aspect, basically this program implements an orbital propagation fol-
lowed by an optimisation process which concerns the manoeuvre event. This means that the
principal feature which has to be taken into account when executing this tool is the orbit to be
propagated which involves manoeuvre events to be optimised.
This software leads to the intent of putting together the propagation and optimisation phases.
The introduction of subprograms in the main tool allows to achieve these two purposes. In
particular the word subprograms refers to specific propagators and optimisers. Therefore SAR-
ROTO consists in a collection of these tools. Before starting with its general description, it is
necessary to introduce some preliminaries about flight dynamics subject. A generic manoeuvre
event can be described through two variables:

− Velocity vector increment, ∆V , which is the definition of manoeuvre itself. It is defined as
a set of three components.
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CHAPTER 1. INTRODUCTION

− Epoch at which this event happens.

Within this thesis it will be assumed the RSW as coordinate system for the satellite’s motion
along the orbit. Its representation can be seen in Fig. 1.1. In this system velocity is composed of
three components: Radial, Along-Track and Cross-Track. The radial component always points
from the Earth’s centre to the satellite following the radius vector. The along-track is orthogonal
to the radius vector and its direction is the one indicated by the velocity vector. The S axis, as
appears in Fig 1.1, results aligned with the velocity vector only for circular orbits or at apogee
and perigee of elliptical orbits. The cross-track is normal to the orbital plan. More information
about orbital manoeuvres can be found in appendix section B.

Figure 1.1: RSW satellite coordinate system representation.

The optimisation phase consists in looking for the best value for the previous mentioned
variables: the three components of velocity and epoch of each manoeuvre. The optimising
working process depends on the selected optimiser. Within the optimisation process it has to be
introduced the orbit propagation. Propagating an orbit, in the aerospace field of interest, means
predicting the position of one desired body during time. To compute this position at certain
epoch it is necessary to know some fundamentals parameters. These ones are the body initial
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CHAPTER 1. INTRODUCTION

state, composed of the state vector parameters, and forces which act on it. State vector parame-
ters refer to a wide collection of coordinates system, as illustrated in appendix section A.2.
In SARROTO, users have to introduce this initial state as input. A final epoch of propagation and
desired parameters types have to be selected. The set of these last parameters will correspond to
the target state vector. The combination of manoeuvre events have to be considered inside this
propagation.
Once that first propagation has been computed, optimisation takes place considering the cost
function. This last one lies in a mathematical equation which brings together the final state
vector obtained with propagation and the target one. The expected result which should come
up from this relation is its minimum value, obtained with the best combination of manoeuvre
parameters mentioned above. This process will be examined in greater detail in related section
2.2.

Propagation and optimisation are the basis of this software. For this reason their general
characteristics will be explained below.
Today it is possible to find a wide variety of optimisation algorithms, in particular in this project
it has been implemented the differential evolution optimiser, and the parametric analysis opti-
miser. The first is one of the evolutionary algorithms created in 1995, while the second is a tool
developed during this internship. Their operating method will be illustrated in next chapters.
These two optimisers are the main features through which it is possible to compute the best
body trajectory among all the considered solutions.

As yet introduced, orbit propagation is what defines the motion of a general body along is
trajectory. Before starting scientifically defining what is an orbit propagation it has to be men-
tioned why this last said aspect is of particularly significance.
Since humans rolled their eyes to the sky, they have been interested in looking up at the stars,
planets and other celestial bodies, both for desire of knowledge and for religious reasons. As-
tronomy, as general field of expertise, has always been one of the most studied and age-old
subject.
Theoretical basis at the mathematical astronomy, so as it is known today, can be referred to
Kepler followed by Newton and other seventeenth century mathematicians such as Laplace,
Legendre, Cowell an others. Their interest involved planetary motion, developing mathematics
theories describing their movement.
Today thanks to these scientists initial attempts all these features are known. In addition to the
very purely physical interest enriched during years of study, the motion of planets, and of gen-
eral objects which are into space is pursued due to the satellite business.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Spacecrafts orbiting around Earth.

It has to be taken into account that, with the advance of technology, the space has begun to
be populated not only with spacecraft but also with their ”dead components”, referring to what is
nowadays called space debris. These last are part of the monitoring activity which is performed
in order to avoid possible collision between spacecraft and objects. Fig. 1.3 shows the increment
along time of the objects orbiting around Earth.

Figure 1.3: Number of objects orbiting around Earth.
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Propagation is involved in this context since it plays a fundamental role in calculating these
objects orbit so as evaluating collision risk could be possible.
Once approached to the pragmatic aspect of the aerospace business related to propagating orbital
bodies, it is possible to deal with its mathematical and theoretical aspect. The objective of
propagators developed during past years is computing the best possible solution in terms of
bodies future positions and velocity. The efficiency of a propagator depends on the way it is
implemented. In particular during this project readers will face three types of propagators:

I Analytic: this type of propagator is considering a low fidelity one, only based on mathe-
matical formulae. Despite their low efficiency, computationally these ones are the fastest
and can provide a first approximate solution. GOLEM is the geostationary analytic prop-
agator entirely developed during this internship.

I Semi-Analytic: this propagators family is in a middle way between the completely ana-
lytic and the numerical one. They are based on analytic formulae but, in addition, incorpo-
rate some numerical techniques to improve results precision. SAPO is the semi-analytic
propagator developed in recent years in GMV’s FDO section.

I Numerical: it consists in a propagator which numerically integrates the equation of mo-
tion. PROPAG is the one developed in GMV’s FDO section.

A general overview has been presented in this introduction in order to make the reader more
comfortable within the project thesis presentation. All these aspects which have been mentioned
will be better explained in next chapters and in some cases in greater detail in dedicated appendix
sections.

1.1 Thesis overview

This thesis can be divided in five major parts.

1. The first part is dedicated to mathematical concepts used to develop this project. This
section includes discussion about orbit propagation theories.

2. The second part illustrates the main programme which has been developed during this
internship, the SARROTO programme. Its accurate description, general architecture and
code development can be found in chapter 3.

3. The third is dedicated to results and is described in chapter 4. The main aim of this major
third part will be to show SARROTO working process.

4. The next one is dedicated to SARROTO future improvement and final general remarks
about this project.

5. Last part, the appendix section, illustrates demonstrations, explanation of parameters, vari-
ables, and general mathematics expressions related to orbit. These features are presented
in order to give all the readers the information to understand all the procedures and tech-
niques used in this work.
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This project has born with the intention to develop a code which could be used with different
orbit and conditions. This goal will be achieved thanks to a modular design, which allows using
different propagators and optimisers, as well as a highly flexible configuration to make SAR-
ROTO suitable for many different missions. So, the work done during this internship is only the
beginning of a harmful development. As it will be discussed in chapter 5, many improvements
are planned. These ones will enrich this first SARROTO phase of development.

1.2 Technological facilities and software

In order to come up with this project it has been necessary to use specific computer software,
such as the ones involved in coding and numerical computation.

In particular Fortran 90 ® is the programming language which has been used to develop the
coding part of the project. It is still in operation in aerospace industry even today thanks to its
high reliability, and specifically used in FDO department in GMV company. A better description
about this coding language is presented in appendix section H.

The implementation of this software has been carried out through LINUX operating system.

SARROTO has been integrated into focussuite ® which is the FDO software created in GMV
for flight dynamic satellites mission analysis and operations. The focussuite environment inte-
grates different tools. Some of them have been used within this work. One of these features
is the focussuite graphical interface. This tool, Graphical User Interface abbreviated to the
acronym GUI, comes up from the necessity to give the user the chance to interact with general
program routines. In fact, as it should appear clearer in next chapter, this interface allows client
to make appropriate choices about cases he would like to perform.
With respect to graphs and plots, they have been created using an other of these tools, named
ORBCOMP, developed in FDO Section. Further information related to focussuite are mentioned
in the appropriate appendix section C.

Block diagrams and flow charts have been composed with Visio ®. Bar diagrams have been
created with Excel ®.
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Chapter 2

Mathematical underlying theory

2.1 Propagation Theory

Propagation, together to optimisation, form the basis of this project. Nowadays a wide selection
of methods of propagation exists, which differ in the mathematical framework used to compute
final result. In particular in this project the focus is on the ones based on two-body problem and
semi-analytic theory. Different approaches are used, always starting from the two body problem.
As mentioned in chapter 1, and later explained in Sec. 3.1, different types of propagators have
been used in this project. Two of them have been introduced into SARROTO. A third one has
simply been used to make comparison with the first two.

1. The first propagator introduced is GOLEM. This propagator has been fully developed
during this internship. It is considered quasi-analytic. Indeed it makes usage of analytic
equations but at the same time it involves numerical techniques for dealing manoeuvre
events. Its mathematical background will be discussed in section 2.1.2. Its architecture
can be found in dedicated section 3.1.1.1 of chapter 3. Its graphical interface is explained
in section 3.2.4.1.

2. The second one which has been introduced into SARROTO is SAPO. It is considered
semi-analytic since perturbations effect are involved in two-body problem equation. Dif-
ferently from the previous mentioned propagator, SAPO has been developed in past years
in FDO and fully integrated during this internship in SARROTO.
Theories behind this propagator will be discussed in sec. 3.1.1.2 and a more accurate de-
scription about is mathematical background can be found in appendix F. Its structure and
placement inside focussuite environment can be found respectively in sections 3.1.1.2 and
3.2.4.2.

3. The third and last one one is the propagator belonging to the group of the numerical one,
PROPAG. It uses numerical techniques to get final solution. It is a propagator software
of high reliability, developed in GMV and used in important organisations such as ESA,
European space agency, and for commercial satellites operators such as Eutelsat, Eumel-
sat, Hispasat. Interested readers could find more information about this propagator in
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appendix section E

It has to be said that what it is considered important in a propagator development is the com-
putational speed and the precision and accuracy obtained in the final solution. GOLEM is the
faster between the mentioned one, but it is PROPAG which leads to the better solution. SAPO is
a middle ground between them: expected results are obtained with good precision in not so long
computational time.

2.1.1 SAPO’s mathematical theory

Firstly it has to be mentioned that SAPO mathematical approach refers to the semi-analytic satel-
lite theory as described in [5]. First general overview will be treated in this paragraph, leaving
the mathematical experts and adventurer readers to give a look to appendix F, where the exact
mathematical steps have been faced.

Before discussing about this theory it is necessary to focus on the main definition of mean
and osculating elements. These elements are used to describe the orbit of any astronomical body.
The difference between these two vector of elements is the way of considering perturbations.

• The osculating elements are used to describe the satellite’s motion along an unperturbed
orbit if perturbationsinstantaneously disappear. In absence of perturbations these elements
would not change.

• A perturbed orbit can be described through the mean elements since perturbations always
occur within a real orbit. They can be defined as the set of osculating elements to which
secular and periodic perturbations have been included.

The starting point is the two-body problem equation to whom disturbing functions have to be in-
troduced. In particular the equations presented below, Eq.2.1, represents the Cartesian equation
of motion, and as it will be discussed in the appendix section F, it is a first representation which
has to be translated in terms of averaging generalised equations.

r̈ =
−µ

r3 ~r+~q+∇R (2.1)

where ~q is the contribute to acceleration due to not-conservative forces, while the other one
∇R is the contribution of the conservative disturbing forces. In order to solve this last one it
can be possible referring to the VOP, the Variation of Parameters method, which consists in a
mathematical method used to solve inhomogeneous linear ordinary differential equations. As it
can be found in [14], a good way to solve this problem is to isolate the short periodic disturbances
from the long-periodic and secular contributions in order to propagate the mean element rates.It
has to be reminded that short and long perturbations refer to the same group which is the periodic
perturbation contribution.
On the other hand the secular perturbation have to be introduced in a separate group. An accurate
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description of these perturbed phenomena can be found in appendix section G.
Eq. 2.1 can be rewritten using the solution of the undisturbed problem which can be expresses
as

~r =~x(a,e, i,Ω,ω,M, t) =~x(~c, t) (2.2)

~v = ~̇x(a,e, i,Ω,ω,M, t) = ˙~x(~c, t)x (2.3)

where with~c represent a single vector in which are regrouping all the classical elements. Finally
the no perturbed and perturbed two-body equations result to be

~̈x+
µ~x(~c, t)
x(~c, t)

= 0 (2.4)

~̈x+
µ~x(~c, t)
x(~c, t)

= ~apert (2.5)

In the perturbed problem, differently from the unperturbed one, it has to be considered that the
orbital elements, defined in vector ~c, have to change in time. The variation of these six orbital
elements can be summarised in a differential equation of first order

d~c
dt

= f (~c, t) (2.6)

In order to solve this it is necessary to proceed distinguishing between conservative and not
conservative forces The following parameters rate of change are obtained for the separated cases:

• Contribution to variation due to conservative forces is known as Lagrange planetary
equation, differential equations, better explained in [14]

da
dt

=
2
na

∂R
∂M

de
dt

=
1− e2

na2e
∂R
∂M
−
√

1− e2

na2e
∂R
∂ω

di
dt

=
1

na2
√

1− e2 sin i

(
cos i

∂R
∂ω
− ∂R

∂Ω

)

dω

dt
=

√
1− e2

na2e
∂R
∂e
− cot i

na2
√

1− e2

∂R
∂ i

dΩ

dt
=

1
na2
√

1− e2 sin i

∂R
∂ i

de
dt

=
1− e2

na2e
∂R
∂e
− 2

na
∂R
∂a

(2.7)
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• Contribution due to no-conservative forces, which can be found in [14], and Lagrange
VOP equations are

da
dt

=
2

n
√

1− e2

{
esin f FR +

a(1− e2)

r
FS

}

de
dt

=

√
1− e2

na

{
sin f FR +

(
cos f +

e+ cos f
1+ ecos f

)
FS

}
di
dt

=
r cosu

na2
√

1− e2
FW

dω

dt
=

√
1− e2

nae

{
−cos f FR + sin f

(
1+

r
a(1− e2)FS

)}
+

− r cot isin(ω + f )√
µa(1− e2)

FW

dΩ

dt
=

r sin f +ω

na2
√

1− e2 sin i
FW

dM
dt

=
1

na2e
[(a(1− e2)cos f −2er)FR− (a(1− e2)+ r)sin f FS]

(2.8)

where the components FS, FR, FW represent the specific components force perpendicular
to the radius vector, along this last one and normal to the orbital plan, respectively.

2.1.1.1 Semi-analytic satellite theory and its limitations

The mathematical approach for the development of this propagator makes use of the equinoc-
tial elements representation. This coordinate system has been preferred to others in order to
avoid the singularities which could appear if i→ 0 or e→ 0. In addition, for definition, the
semi-analytic theory makes use of the mean elements, differently from the numerical propagator
which uses the osculating ones.

This theory can be used when short and long term in perturbations group can be separated.
Indeed, this method is based on averaging procedure applied to differential equations of motion
over a fast-moving angular variable. Once these averaged equations have been calculated, the
objective is to use these ones to predict the motion of the slowly varying elements. For this reason
this method does not apply very well to perturbations which do not have averaging operator that
fulfils the required properties. Among these non-averageable variables can be listed

• Atmospheric drag on an asymmetric vehicle

• Solar radiation pressure on an asymmetric vehicle
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• Continuous thrust, with some cases exception, and impulsive thrust. In particular in this
second case, it is possible to consider its effect adding the ∆V components of manoeuvre
to osculating elements just converted in position and velocity components. Then, once
perturbation has been taken into account, reconverting the obtained result into equinoctial
elements in order to obtain the osculating and subsequently the mean elements.

So, summarising the main points, SAPO has been developed on the complete semi-analytic
satellite’s theory introduced by [5] and considers most of the perturbations which act on the
satellite.

2.1.2 GOLEM’s mathematical theory

GOLEM, which stands for Geosynchronous Orbits Linearized Equations propagator with Ma-
noeuvres, is a geosynchronous analytic propagator entirely developed during this internship.
Its main aim is discovering and obtaining a first faster solution instead of using previous propa-
gators. SAPO, PROPAG, for example, although lead to more precise solutions, take up a greater
amount of time for computation, which is especially relevant when propagation is mixed with
optimisation.
Actually, it has to be remarked that some shades of semi-analytic features have been introduced,
as explained in next lines.

At first, a fully analytic version had been developed, with equations which will be shown
later in the paragraph. During its implementation, it has become clear that it would not have
been efficient considering manoeuvres events. Indeed in this first version, the manoeuvre effects
are included in the equations through the presence of the along track velocity component.

At a later stage, the way of considering manoeuvres has been improved by the use of a nu-
merical procedure step. This last one essentially consists in adding the increment of velocity
vector components of manoeuvre to the state vector which results at manoeuvre epoch. The
exact computation procedure will be explained in section 3.1.1.1.

GOLEM has been developed starting from the Kepler’s Equation. This equation appears
for the first time in the Astronomiae Copernicanae, the first astronomy textbook based on the
Copernican model written by Kepler himself, which for this reason gives the name to the equa-
tion. Thanks to this equation, it is possible to calculate time at which a certain position is
reached.

The main parameters used for solving the planetary orbit motion which can be distinguished
into this equation are the mean anomaly and the true anomaly. In particular the true anomaly,
indicated with θ , represents the position of a planet or any other celestial object in its orbit
around the Sun, or other celestial object taken as reference. The true anomaly is the angle
between the direction to the perifocus and the direction to the planet, as seen from the focus of
the orbit. The Mean anomaly can be calculated as follows, where M corresponds to this last
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said, while E is the Eccentric Anomaly

M(t) = E(t)− e · sinE(t) (2.9)

In order to evaluate this value, since this Eq. 2.9 is a transcendental equation, it is necessary to
refer to the classical orbit element as it follows

E = 2 · arctan

√
1− e
1+ e

· tan
θ

2
(2.10)

Eccentric anomaly can be solved through Eq. 2.10 only if orbit elements e, θ are known. If not,
given M, it is necessary to use numerical analysis or expansions series to solve E starting from
¡Eq. 2.9 .
Once defined these two equations, it is possible tracing back to the complete list of equations
used to implement this propagator.
It will be illustrated how perturbations and manoeuvre events are introduced into this analytic
propagator.
In GOLEM perturbations taken into account are the effects of Non-spherical Earth and solar
radiation pressure. These phenomena lead to changes in orbital elements values. Manoeuvres,
by definition, induce variation in the elements values.

• One of the non-spherical Earth effect perturbing a spacecraft is considered through the
second zonal harmonic coefficient J2. Mathematical equations which introduce this term
are the ones related with change of rate of orbital elements: Mean Anomaly, Arg. of
Perigee and Right Ascension.

δM = J2 ·
secday

Torb
·
(
2−3sin2 (i)

)
(a2 · (1− e2)2)

→Mean Anomaly rate computation

δω = J2 ·
secday

Torb
· (4−5sin2 (i))
(a2(1− e2)2)

→ AoP rate computation

δΩ =−2 · J2 ·
secday

Torb
· cos(i))
(a2(1− e2)2)

→ RAAN rate computation

(2.11)

(2.12)

(2.13)

Into the effects of the non-spherical Earth the longitudinal drift has to be included. In
particular this longitudinal variation which affects the spacecraft’s semi-major axis is due
to the equatorial ellipticity of Earth. This deviation can be calculated considering the
tesseral harmonics coefficient J22. Longitudinal value and related acceleration can be
calculated for a GEO orbit using some simplifications. Please refer to [2]. The deviation
in semi major axis due to longitudinal acceleration is calculated as

δa =−2 ·
(
along · (∆T · secday)−∆Valong

)
· Trot

2π
(2.14)

where the variable along represents this mentioned acceleration.
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• Solar radiation pressure acceleration for a satellite in GEO Orbit only affects the two com-
ponents of the eccentricity vector.
Its effect on spacecraft are difficult to predict since surfaces reflectively and properties in
space change from values established in laboratory. However for GEO S/C solar radia-
tion effects can be described through the effective cross-section to mass ratio parameter σ

which depends on the spacecraft mass and geometry.
The variation of eccentricity vector direction depends on the sidereal angle of the Sun. It
can be obtained trough the two equations represented below.

ex(t) = ex0−
1
2

3P
2V
·σ · (sinSSun) ·δT +δex

ey(t) = ey0 +
1
2

3P
2V
·σ · (cosSSun) ·δT +δey

(2.15)

(2.16)

In the above equations SSun indicates the Sun sidereal angle. The last term on the right of
each equation, respectively δex and δey, defines the eccentricity vector rate of change due

to manoeuvre events, as it will be explained in next related paragraph. The term
3Psolar

2V
is

equal to
3P
2V

=
3
2
· 4.56 ·10−6

3.075 ·103 ·86400 = 0.00019 kg/m2/day

where V = 3.075 km/s is the spacecraft’s orbital velocity in GEO and P= 4.56·10−6 N/m2

the solar pressure.

• As can be found in appendix section B, depending on the manoeuvre event type, elements
could vary their value or remain unchanged. As mentioned at the beginning of this section,
two method of considering manoeuvre effect have been taken into account in developing
GOLEM.

1. The first method developed consisted in taking into account the manoeuvre contri-
bution analytically. Indeed the increment of velocity ∆V had been introduced inside
equation. The manoeuvre type allowed with this simplification was the East-West
manoeuvre. The along-track velocity was the only component among the three to be
considered in propagating orbit. This type of manoeuvre affects the eccentricity and
the semi major axis, inducing their rate of change, as it appears in Eq. 2.17 and in
Eq. 2.18 and 2.19

δa =−2 ·
(
along · (∆T · secday)−∆Valong

)
· Trot

2π

δex = 2 ·
∆Valong

Vmean
· cosSbody

δey = 2 ·
∆Valong

Vmean
· sinSbody

(2.17)

(2.18)

(2.19)
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Eq. 2.18 and 2.19 describes the eccentricity vector components rate of change. The
variable Sbody defines the spacecraft’s sidereal angle. In these equations Vmean rep-
resent the mean velocity, which for orbits with small eccentricity (i.e. the circular
orbits) can be calculated as

Vmean = a · 2π

TEarth
(2.20)

where a is the semi-major axis, TEarth defines the Earth orbital period that for a
satellite in GEO orbit is equal to TEarth = 86164.090530 s

2. In order to improve the way of dealing with manoeuvre events, a different approach
is considered in the second method. A numerical technique is used rather than the
analytic formulation. This numerical approach consists in adding the increment of
velocity to the satellite’s state vector reached at the manoeuvre epoch. This process
could be described as

d~xi

dt
=

d~x0

dt
+∆V (2.21)

With this new numerical approach not only along-track, but also the radial and the
cross components will be included in the propagation.
The analytic contribute due to ∆Valong introduced into Eq. 2.17 disappears. The
eccentricity rate of change defined in Eq. 2.18 and 2.19 takes zero value. So, the
equation 2.17 related to SMA rate of change and the ones related to eccentricity
vector Eq. 2.15, 2.16 become

δa =−2 ·
(
along ·∆T · secday

)
· Trot

2π

ex(t) = ex0−
1
2

3P
2V
·σ · (sinSSun) ·δT

ey(t) = ey0 +
1
2

3P
2V
·σ · (cosSSun) ·δT

(2.22)

(2.23)

(2.24)

2.2 Cost Function Mathematical definition

As mentioned in the introduction of this project, optimisation can be computed thanks to a
mathematical equation which relates the final and the target state vector. About these last two
state vectors, recall that the first is obtained through propagation, the second is defined by users.
The value obtained from this mathematical equation is called Cost Function. The main aim of
this function is allowing reducing not only fuel consumption but also achieving the desired final
orbit position. The expected result for an optimum solution is the lowest value that this variable
can assume.
This function can be represented as

Cost Function =Constraints +∑∆V (2.25)
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With Constraints on refers to the following statement
Constraints = ∑Weighti ·

(
Target SVi−Final SVi

Tolerancei

)2
if ||Final SVi−Target SVi||> Tolerancei

Constraints = 0 if ||Final SVi−Target SVi||< Tolerancei
(2.26)

where the subscript i indicates the considered target element. The variables weight and tolerance
have to be introduced as inputs. These last two are related to the target state vector elements that
client would like to obtain as output. The weight is a measure of the element related importance
in achieving the best solution. The tolerance indicates the maximum deviation without penalty
between the final state vector and the target one. It has to be pointed out that the check process
in Eq. 2.26 has to be done for all the elements selected for the target state vector. As it can be
seen in Eq.2.26, the deviation from target state vector appears in a squared term. This is because
a solution which moves away from the target is more significant than one which is near to this
last.
This function works in such a way that the priority is ensuring that through optimisation the
target state vector is achieved. On the other hand fuel consumption is the other parameter which
has to be optimised. This optimisation can be computed trying minimising the ∆V since these
two are correlated. The fuel consumption becomes significant to the cost function computation
when the target takes zero value. When this last is not verified, the cost function results nega-
tively affected by the Constraints contribute in the sum in Eq. 2.25. Indeed, as mentioned at
first, the minimum value of cost function variable is the one which leads to the best optimised
solution.

15



Chapter 3

SARROTO

In this chapter it will be presented the SARROTO program. Its description is divided in two
part:

• SARROTO General Architecture

• SARROTO Users Interface

3.1 Software Architecture

SARROTO, which stands for Station Acquisition, Relocation and Re-Orbiting TOol, is a project
born from the idea to create a manoeuvre’s optimisation software. This SW will be able to use
different type of propagators and optimisers, in order to achieve the client’s necessity and re-
quests.

Since this program has been launched during internship started in July 2017, only few op-
timizers and propagators have been introduced. Some of them preexisting, others have been
created during SARROTO development as mentioned in chapter 1. The main characteristic of
SARROTO is its general coding structure and its high flexibility. This allows implementations
of various GMV developed tools.
The main characteristics of this project can be resumed as follows.

• SARROTO is structured in such a way that it is possible to choose, through the focussuite
interface, discussed in section 1.2 and in appendix C , the solution which best fits the client
requests.

• It has been fully written with Fortran 90. In particular it has been divided in different
modules and subroutines. This modular structure allows to compute specific objective in
different programs and a easier software future enlargement.

• Subroutines and modules developed for other programs and written in Fortran 90 have
been utilised. Among them, coordinates and reference frame conversion, manoeuvres
handling and state vector allocation modules can be mentioned.
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• Possibility to choose, not only different propagators and optimizers, but also the following
features

− A great variety of target state vector elements to obtain as final result after compu-
tation. These elements can be selected from a list which contains a wide selection
of coordinates types. Associated to these elements both their weight inside compu-
tation and tolerance for the wished results can be found.

− Fixed or variable number of manoeuvres. In the first case client defines number
of manoeuvre presents in the propagation. The second option corresponds to the
maximum number of manoeuvre between which looking for the optimum solution.

− Numbers of parameters to be optimised or to be fixed. These ones are the ∆V com-
ponents of velocity (i.e. cross, along-track and radial) and manoeuvre epoch. It has
to be pointed out that client can choose which of these would like to be optimised.

SARROTO, as said before, is structured in different modules. Thanks to its block structure it
is possible to choose different options for optimisation cases. At the top of the main program
there is the Manager, which is the block code that runs all the high-level modules related to the
acquisition of data, computation and representation of results. It can be defined as the module
which runs the main programme.
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Figure 3.1: Block diagram for SARROTO working tool.
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Figure 3.2: SARROTO working flowchart.
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In Fig. 3.1 is represented a block diagram which shows SARROTO general architecture.
Basically the general program execution can be described as follows:

1. Some initial variables have to be introduced as inputs. These ones are the initial state
vector, defined in keplerian coordinates and the related starting epoch. The optimiser has
to be picked between the available ones.

2. Then the target state vector has to be selected. This selection can be made choosing, in a
list of elements, the desired combination of variables that the client would like to obtain
as output. As previously mentioned, weight and tolerance values are associated to each
element.

3. The third step concerns the parameters choice. With parameters on refers to variable which
can be optimised. Actually parameters refers to four quantities: three ∆V increment of
velocity components, respectively radial, along track and cross-track, with the addiction
of the manoeuvre epoch value. This last corresponds to time when manoeuvre will be
performed. These four components are part of manoeuvre data vector: each manoeuvre
has to be defined through these four variables. In appendix section B readers can found
orbital manoeuvre description.
The number of manoeuvre events has to be introduced as input. Different optimization
options can be selected.
Users can select through the interface panel mentioned in section 1.2, the number and
type of abovementioned parameters which have to be kept fixed or to be optimised. For
each optimising parameter selected, user has to introduce the searching interval in which
the value to be optimised has to be looked for. The searching interval will be defined by
means of lower and upper bounds. When fixed option is chosen, a specific value for the
considered parameter has to be given.
Furthermore, it has been introduced the option of optimising the manoeuvres number. In
this case the maximum number of allowed manoeuvres during the propagation has to be
introduced. The optimised result will be found computing propagation with number of
manoeuvre in ascending order, until getting to the N-maximum allowed number previ-
ously defined. Manoeuvre epoch is forced to be one of the parameter to be optimised.
Increment of velocity components can be optimised or kept fixed. The searching interval
will be the same for all the tested manoeuvre both for epoch and ∆V .

4. Made these first choices, next step is defining the propagators options. As anticipated, two
are the propagators introduced at this point in SARROTO: SAPO, a semi-analytic propa-
gator developed during past FDO project and GOLEM, a completely analytic propagator,
subsequently updated with some numerical features
Their options can be different depending on the selected propagator.

– In GOLEM time step for propagation and physical coefficient which consider solar
radiation perturbation effects have to be introduced.

– In SAPO in addition to the ones mentioned in GOLEM, various perturbations op-
tions can be selected.
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5. Once these propagators options have been selected it is possible to choose the optimiser.
Due to the early phase of development of this project, just two optimizers have been
introduced:

• Differential Evolution Optimiser, used in previous FDO project. It has been devel-
oped in 1995 by two mathematicians, as mentioned in [8]. Its complete explanation
can be found in appendix section D and in section 3.1.2.1.

• Parametric Analysis Optimiser, developed during internship. Its working method is
illustrated in dedicated section 3.1.2.2.

6. The FORTRAN code is developed in such a way that at the end of the propagation and
optimisation phases, the best solution will be shown in the focussuite output window. In
particular the expected results are the final state vector obtained with the best optimised
parameters solution and the optimum manoeuvres data.

In Fig. 3.2 it is represented the diagram which shows how the programs works.
In next paragraphs it will be explained the propagation and optimisation phases once that inputs
have been defined.

3.1.1 Propagation Method

Input parameters needed for orbit propagation are different according on the selected propagator.
Common input variables for both the two above mentioned propagators are the initial state vector
with the related epoch and the target epoch. Manoeuvre list may be introduced if required. In
addition to these parameters, each propagator can be configured with its specific option.

3.1.1.1 GOLEM Propagation Process

In addition to the previous mentioned variables, GOLEM needs some specific parameters to be
defined. These parameters are the time step for moving inside the propagation time interval and
the coefficient which describes perturbation due to solar radiation pressure. The propagation
works in this way:

• First of all, number of steps between initial and final epoch are calculated considering the
time step defined as input.

• Propagation starts taking into account initial variables defined as inputs. These variables
are the initial state vector and the target epoch. Since the initial state vector is introduced
as input, only some orbital elements value has to be calculated at first step. In particular
elements’ rate of change due to perturbations has to be evaluated.

• From second steps on, all parameters defined in state vector and the ones necessary to
propagation, such as eccentric anomaly, mean anomaly and others, have to be calculated.
The calculation of element at considered epoch makes usage of element value at previous
step and its related rate of change.
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• Some variables, such as Sun Ephemeris values, Greenwich Mean Sidereal Time, are cal-
culated thanks to functions just existed in focussuite library. Their computation is done
simply calling these preexisting functions.

• It has to be said that it is assumed that there will not be manoeuvre at first propagation (i.e
this requirement is obtained through Fortran code flags).

As mentioned in section 2.1.2, two versions of this propagator have been developed. Readers
can found their explanation in following paragraphs.

3.1.1.1.1 Initial Version At first GOLEM had been born as a geosynchronous completely
analytic propagator. Its propagation worked in such a way that it began at initial epoch, defined
in the main option focussuite panel, and finished at target epoch, introduced as input. In this
first representation just one propagation for epoch interval took place: manoeuvre effects were
considered inside equations, as explained in sec. 2.1.2. This manoeuvre effect can be synthesised
simply considering the ∆V components, actually just the along track component, while other
components will be skipped (i.e. obtained adding flag rule inside the code).
A timeline representation of what happens during GOLEM orbit propagation with manoeuvre
events can be found in Fig. 3.3.

Figure 3.3: Timeline orbit propagation with manoeuvre for first GOLEM version.

3.1.1.1.2 Ultimately propagator Differently from the first version of GOLEM propagator,
this last developed one can not be more considered completely analytic. This difference is due
to the new way of considering manoeuvre event inside orbit propagation. The manoeuvres
are no more taken in account analytically. In this ultimate version the ∆V components are
fully considered, and their contribution is added to the state vector reached at manoeuvre epoch
once converted in cartesian coordinate system. Please remind that initial state vector as to be
introduced in keplerian element, as mentioned in section 3.1
For this reason there is not just one propagation, but the number of propagated orbit depends on
the number of manoeuvres. Their number has to be introduced as inputs, both for fixed selection
of optimised case.
Propagation starts at initial epoch and ends at first manoeuvre epoch, that can be known or
calculated from optimisation. Then once that this first final state vector has been obtained, all
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three velocity components are converted into cartesian coordinate system and added to the state
vector velocity components obtained from propagation. Propagation follows until next epoch
manoeuvre, or in case there are not, until target state vector epoch.
A simply timeline representation of propagated tool can be seen in Fig. 3.4

Figure 3.4: Timeline orbit propagation with manoeuvre for second GOLEM version

3.1.1.2 SAPO Propagation Process

SAPO, one of the GMV’s semi-analytical propagator, is a software developed since 2014. The
same features listed for GOLEM propagators are used for this propagator. Its main characteris-
tics can be summarised in the list present below:

• Structured in modules which in their turn are divided into subroutines or functions, pur-
posely developed for SAPO or belonging to other software libraries.

• Fully written in FORTRAN 90.

• High flexibility which allows the software itself to be adapted to other programs, such as
it happens for SARROTO software.

SAPO working steps can be synthesised as follows

• Initialisation of variables and parameters needing for computation, coming up from client
election, defined in the focussuite panel.

• Integration is performed considering presence of manoeuvre and orbital perturbations.

• Output results processed according with selected panels options.

A flow diagram showing how SAPO works can be found in Fig. 3.5.

23



CHAPTER 3. SARROTO

Figure 3.5: Flow diagram illustrating SAPO propagator at works.

As said before, SAPO, in the same way of GOLEM, has a modular structure, especially
consisting in placing lower modules at the bottom of the architecture design, allowing to avoid
problems like circular dependencies, which can generate failures in compiling Fortran. Relations
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between modules are illustrated in Fig. 3.6.

Figure 3.6: Architecture division of SAPO propagator.

To this general SAPO configuration, some changes have been made. In fact this propagator
was born to be a single software, to be executed alone. Thanks to the flexibility obtained with
its design, it has been possible to introduce this propagator into SARROTO program.
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The SARROTO call to SAPO software happens thanks to the introduction of a new module.
This new module has been developed as general as possible, so as to be introduced in the existed
and future works, such as it happens with SARROTO. Due to its purpose this new module has
been called Interface. It allows the main program to use the propagator without destroying its
initial configuration. A flow diagram showing how this call works is represented in Fig. 3.7.

Figure 3.7: SAPO’s call from SARROTO main program.

As said previously, other modules have been added in this internship to first SAPO version,
due to the necessity to adapt this propagator to SARROTO, and to other general programs when
needing. On the other hand the usage of some modules in SAPO have been hidden. In particular
modules related to state vector election and manoeuvres handling have been overtaken. Indeed
in the standalone use of this propagator these last ones have their own select data panels. These
information are collected through the SARROTO main option panel.
So in next rows all modules will be explained, underlining the ones which are hidden because
overlapped with the ones relevant for client first options election.

• SAPO: general module which is responsible for the manager module call

• Manager: it contains the subroutine and modules related to input data collection and
dedicated to the integration phase; the ones related to collect data are overlapped and
substituted with SARROTO ones

• Integrator: in this modules numerical integration of differential equations, presented in
Eq. 3.1, are performed. These modules are not subject of study during this internship and
for this reason there will be not fully explained. It has to be said that SAPO, differently
from GOLEM, works with equinoctial coordinates, presented in appendix section A.2.3.
For this reason, even if input coordinates system can be selected, a transformation will
always be necessary to pass from one coordinate type to other. Different types of integrator
can be used, more specifically these algorithms of integration which can be implemented
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are Runge-Kutta 4 (fixed step size), and Dormand-Prince 45 and 78 (Variable Step Size).

dai

dt
= n(a)δi6 +∑

α

Ai,α(a,h,k, p,q, t) (3.1)

• Inputs: modules related to data acquisition; initial data overlapped with SARROTO ones,
but information about the satellite whose orbit has to be propagated can be found in this
section.

• Outputs: these modules are hidden. At the end of SARROTO execution just information
about optimised manoeuvre data and state vector will be displayed.

• Force Model, Truncation: the first module manages forces, the second one is about the
limit of expansion according to tolerance defined by user. This last one is a numerical
technique introduced in SAPO in order to increase propagator efficiency. It has not been
used within this work.

• Manoeuvres: in this module all the function related to manoeuvre information are per-
formed. Manoeuvres information is an input for SAPO. Users can pick between consid-
ering these ones as impulsive or long.

• SRP, Drag, Central Body, Third Body: general modules necessary to compute mathe-
matical accelerations for obtaining data about all perturbations types, such as solar pres-
sure, drag, central body, third body.

• PolCalculator, Element Change, Gauss Quadrature, Maths: module containing generic
mathematical function.

• Auxtool: this is part of GMV generic modules and subroutine, there is a wide selection of
functions, from transformation coordinates system, to manoeuvre handling and others.

3.1.1.2.1 Manoeuvre implementation Both impulsive or long manoeuvre can be imple-
mented in SAPO propagator. A clear representation on the timeline of what happens during
propagation when long manoeuvre is performed can be seen in Fig. 3.8. The manoeuvre is
introduced in the general equation in the following way

da
dt

= ~FKepler +~FGauss +~FLagrange +~Fmanouvre (3.2)
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Figure 3.8: SAPO long manoeuvre effect on timeline propagation.

Different approach depending on the impulsive or long manoeuvre has been mentioned.
In case of impulsive manoeuvre the mathematical model which is considered is the one of an
infinite force which is applied during an infinitely short time. In this case there are two possible
approaches. In the first one it is necessary to compute transformation in Cartesian coordinate
system. At the same way discussed for GOLEM manoeuvre effects in section 2.1.2 and 3.1.1.1,
the ∆V has to be added to the state vector obtained at this epoch

dxnext

dt
=

dxprev

dt
+Vcomponents (3.3)

A representation of what happens is found in Fig.3.9.

Figure 3.9: SAPO impulsive manoeuvre effect on timeline propagation: first approach.

The second approach is performed considering the same equation mentioned for the long
manoeuvre through Eq. 3.2, but simply considering a short duration of this manoeuvre, as it can
be seen in Fig. 3.10.
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Figure 3.10: SAPO impulsive manoeuvre effect on timeline propagation: second approach.

3.1.1.3 SAPO vs GOLEM

Both propagators have been used to perform different analysis cases. Differences between the
two propagators are summarised in next lines.
Due to the quasi-analytic definition of GOLEM, it can be considered just a first method to inves-
tigate a propagation. GOLEM, as its name suggests, can be used only for geosynchronous orbits
or orbits near to this one. Differently from SAPO, in GOLEM propagator not all perturbations
are considered and for this reason it can not be executed when accurate results would like to be
obtained. In addiction, some orbit cases, with singularities due to Keplerian coordinates usage
into equations, can not be performed.
Instead, focusing on SAPO perturbation, Equinoctial coordinates have to be used because they
represent the best way to describing perturbations effects and are not affected by orbit singu-
larities. More details about these elements can be found in appendix section A.2.3. Indeed the
presence of forces are the reason why movement can not be considered purely Keplerian. In the
true semi-analytic theory perturbations effects have to be taken into account. These ones are the
same mentioned in SAPO modules section related to Perturbations. Not all the perturbations
have the same importance, which means that their magnitude effects depends on the proximity
to the Earth, more specifically on the height of the ground, i.e. aerodynamic resistance affects
more when closer to ground, on the other hand solar radiation pressure is more significant when
the height of the orbit is greater.
Total list of perturbations is presented below. Once all perturbations have been presented sepa-
rate list for the ones included in SAPO and GOLEM will be drawn up.

• Not-spherical representation of Earth, due to its oblateness caused by rotation around
the polar axis. The effect of this perturbation is described through the zonal harmonics
coefficients for the Earth’s gravitational field.

• Forces caused by the celestial body attraction which act on the satellite, particularly pow-
erful are the ones cause by Sun and Moon, these ones become more important when
distance from Earth increases.
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• Atmospheric force, which among all, represents the most important non-gravitational per-
turbations disturbing low altitude satellites. This force can not be defined precisely at all
due to some problems in obtaining very precise value of density and wind in upper atmo-
sphere, or considering the effects of neutral gas and charged particles which act on the
diverse satellite surfaces. In geosynchronous orbits its contribution can be neglected since
no appreciable atmosphere (i.e. gas molecules) is present.

• Solar radiation pressure perturbation. This force, which is caused by absorption and re-
flection of photons, is considered utilising the apposite numerical constant.

Among these ones, the ones allowed in GOLEM are:

• Solar radiation pressure. The numerical constant which describes this perturbation in-
cludes satellite’s mass and area. It is introduced into equations as a single value.

• Non-spherical Earth. It is considered through the second zonal harmonic J2 and through
longitudinal acceleration which depends on J22. These values are taken into account inside
GOLEM analytic equations as explained in section 2.1.2.

On the other hand in SAPO the perturbation taken into account are:

• Solar radiation pressure.

• Non-spherical Earth. This effect is taken into account by means of zonal harmonics until
the 36th degree and order.

• Sun and Moon gravity perturbations.

• Atmospheric drag.

Other difference between the two propagators is the way to consider the manoeuvre. In fact in
GOLEM just the impulsive manoeuvre is executed. In case of long one, it will be converted
to impulsive. When manoeuvre event happens velocity components are added to state vector at
this epoch in order to obtain the new one after manoeuvre. On the other hand in SAPO, it is
possible to select manoeuvre type, if impulsive or long, and the code is developed in different
way depending on user selection.
Differently from SAPO, which has a wide number of options to be defined, GOLEM features to
be selected just consist in the time interval step size and coefficient for solar radiation pressure
perturbation.

3.1.2 Optimization Procedure

The general architecture of the two mentioned optimizers will be discussed in next sections.
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3.1.2.1 Differential Analysis Optimiser

This module code have been introduced in GMV’s FDO during past project, but got from exter-
nal resource, as it can be appreciated in [19].
In this section a concise description of this optimizer will be given, but interested readers could
find a detailed outline in the appendix section D.
The Differential evolution is an algorithm used in order to solve optimisation problems which
concern continuous domains. Its main characteristics which make it interesting from the compu-
tational point of view are its robustness, speed in obtain good results and its ease way of use. Its
methodology is based on a research performed among NP population variables of D dimensional
parameter vectors for each generation. This research is computed in order to find the best solu-
tion. It implements mathematical formulation in order to generate new solution at each analysed
iteration.
Parameters which have to be considered in this optimizer are:

• Population size, which consists in the numbers of parameters vector for each generation
among which searching the best vector. This value can be chosen randomly.

• Crossover factor is the constant values which defines the crossover step in the main pro-
cedure.

• Strategy is the implemented method. In this Differential evolution code six strategies have
been implemented.

• Number of iterations corresponds to the generations number which have to be analysed in
order to achieve the solution.

3.1.2.2 Parametric Analysis Optimiser

Differently from the previous, this optimizer has been completely developed and coding in For-
tran during this internship. As its name suggests, the inherent module code works with the
parameters variables which have been defined in previous section. Let recall that these variables
are the ones which have to be optimised. The main features of this optimiser, is the ability to
generate all the valid combinations of parameters and have them tested through the cost function
to choose the one which best fits the desired solution.
The codification method has a purely logic aspect which means that there are absolutely not
mathematical equations to consider. In fact logical steps which have been used to perform this
optimiser are listed below

1. The first phase described in the module consists on acquiring as inputs the parameters
which have to be used for parametric computation. These parameters are:

• the number of parameters to be optimised, making distinction between epoch or
general ∆V values

• the lower and upper value of searching interval, which correspond to bounds within
which the best optimised value is looked for
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• the step size value necessary for moving inside the previously defined interval

2. Secondly, all combinations are computed considering each single value in the elected
interval for all parameters, moving from the lower to the upper limit with the step size
thickness

3. It is necessary to pay attention that, in case of manoeuvre epochs to optimise, it is not
allowed to have two manoeuvres at the same time. In addition to that, if multiple manoeu-
vres are required to optimise, not only this first requirement has to be checked but also that
the epochs have to be consecutive in time. It also has to be verified that ∆V module is not
null for any manoeuvre, both the fixed and optimised ones, since it would have no sense
speaking about a manoeuvre with zero ∆V value. If considered combination presents one
of these features it will be skipped and next combination will be evaluated.

4. Once combination has been obtained and checked thanks to logical step, the parameter
which has to be analysed is the cost function. In fact each combination vector is introduced
as input to cost function calculation module, in which this value is calculated. This last
one in turn is given as input to the parametric analysis module which evaluates if the one
obtained with next combination is lower than the previous. If this statement is verified
new cost function value is stored together with the related combination vector.

5. Once all combinations have been tested, the cost function value and the vector which
contains the best optimised parameter is stored, in this way these values will be given as
final result.

A graphical representation of combination process can be seen in box 3.4. On the left they
are shown searching intervals for each parameter to be optimised. Total number of parameters
to be optimised can go from 1 to N. In the represented case it is assumed to have three elements
to be optimised. These last are indicated with x, y, z. The searching interval is delimited by
the lower and upper values given as input. Number of elements inside each vector depends on
the numerical step size given as input in order to move along the interval. On the right they are
represented the combinations obtained after PA execution.

Lower .. U pper

1 [ x1 x2 x3 ] [ x1 y1 z1 ] [ x2 y1 z1 ] [ x3 y1 z1 ]

2 [ y1 y2 ] =⇒ [ x1 y1 z2 ] [ x2 y1 z2 ] [ x3 y1 z2 ]

.. .. [ x1 y2 z1 ] [ x2 y2 z1 ] [ x3 y2 z1 ]

N [z1 z2] [ x1 y2 z2 ] [ x2 y2 z2 ] [ x3 y2 z2 ]

(3.4)

In Fig. 3.11 it is represented the working method used to compute combinations vectors. Squares
box on the left represent the searching interval for each parameter to be optimised. On the right
combinations which result at the end of PA computation. In particular arrows which connect the
box indicate how these combinations are made.
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Figure 3.11: Parametric analysis combination method.

A flow diagram which represents what happens during this optimiser call can be found in
Fig. 3.12.
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Figure 3.12: Parametric analysis working module flow diagram.
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3.1.2.3 Differential Evolution vs Parametric Analysis

The Differential Evolution optimiser has a working method that is completely mathematical
which means that utilises equations, and it has a statistical way of working. On the other hand
the Parametric analysis one has a logical approach.
Between these two it is preferred the second one because more features can be put in practise.
With features in this case on refers to the possibility to select the same time interval for searching
the best optimised values, possibility which can not be considered for the differential analysis
where the research interval has to be defined for each manoeuvre which user would like to
optimise.
In addition, differently from the DE, in the parametric analysis it is possible to choose whether
optimising the number of manoeuvres, and in this case selecting the research time interval which
has to be the same for all the manoeuvres which client wants to test. In DE this option is not
implemented since this this tool can work only with a predefined number of optimised parameter.
On the other hand the big difference, which promotes the differential evolution is the time of
computation for coming up with the best result. In fact the greatest disadvantage associated to
the PA is the time which it takes to test all the possible combinations, since it has to create each
combination and check if it is the best. In the chapter 4 related to result, computational type
spent for DE and PA combination with both propagators will be discussed.

3.2 Program Interface

As mentioned in previous section, SARROTO is integrated in focussuite, FDO tool for flight
dynamics solution. This tool is the interface thanks to which it is possible to select the solution
ones would like to obtain. In Fig. 3.13 it is possible to see a representation of the tool interface,
as it is in reality.
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Figure 3.13: focussuite interface.

In Fig. 3.14 it is possible to see how SARROTO appears in focussuite tool.
The main features which appear in the panel list are the following

• Main Option: input variables are introduced in this tab.

• Parameters: in this panel optimisation options will be present. The number and type of
parameters to be optimised will be chosen at this point.

• Constraints: target state vector elements, their weight and tolerance values have to intro-
duced here. Their choice is left up to users.

• GOLEM Panels: options related to GOLEM configuration.

• SAPO Panels: options related to SAPO propagator can be found in this tab.

• Optimiser: optimizer option are presented just for DE selection. PA does not need inputs
option to be executed.

• Output Control, Database Choice: in these panels general option about output format
can be found.

• List of files: collection of files where output information have to be written, has to be
introduced here.
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• Stdout: It represents the standard output panel, where results are shown at the end of
computation.

As it can bee seen in Fig. 3.14 at the end of the list are present some requests related to output
files which the client would like to obtain as result. In next paragraphs it will be illustrated each
section specifically.

Figure 3.14: SARROTO working list in focussuite FDO tool.

3.2.1 Main Options Panel

In this tool section main options features are selected. As it can be seen in Fig. 3.15 and 3.16,
fundamental inputs refers to this panel. In the first panel, referring on Fig. 3.15, satellite name,
defined as Satellite ID, and propagator choice are inserted.

The Fig. 3.16 shows the input state vector panel. In fact state vector always is defined in
classical orbit coordinates, the Keplerian ones, and as it can be seen, all the six components are
present. In addition to these ones, at the top of the list, the epoch which indicates the begin of
propagation is present. The second option, the one presents in the rectangle box, allows to choose
between getting the state vector from panel, which means activating the followings parameters
boxes, or reading and getting the state vector from out files, which will be introduced in the
List of File option present in Fig. 3.14. Differently from what concerns the target state vector
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elements, the initial ones only can be introduced in keplerian coordinates. There is not a specific
reason why it should be in this way, in fact as it will be illustrated in future work chapter 5, this
is a proposed future improvement.

Figure 3.15: focussuite Main Option panel.

Figure 3.16: focussuite State Vector choice panel.

3.2.2 Parameters

With the word parameters one refers to variable which can be optimised, as explained in section
3.1. The general panel interface can be seen in Fig. 3.17. In this panel users have to pick
between keeping the number of manoeuvre fixed or to be optimised. For each choice a different
tab has to be considered.
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Figure 3.17: focussuite Parameters general panel.

• Fixed number of manoeuvres
Once that fixed number of manoeuvres has been selected, all the rectangular boxes in this
interface will activate. As the Fig. 3.18 shows, the first value which has to be inserted is the
number of manoeuvre that client would like to perform during his satellite’s propagation
orbit. As it can be seen, there is a list of parameters which have to be introduced. For
each manoeuvre the abovementioned four parameters have to be defined. It is possible to
choose the optimisation method for the manoeuvre epoch: it can be introduced a common
searching interval for all the manoeuvres, or each one can be associated to its own interval.

Figure 3.18: focussuite panel for fixed number of manoeuvre.

• Optimized number of manoeuvres
In case of this selection has been made, the user has to define the maximum numbers of
manoeuvres among which he would like to find the best solution (i.e. if the number of
permitted manoeuvre is 3, the results could be 1, 2, or maximum three manoeuvre as best
result).
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A common searching interval for each parameter type is present, defined by lower and
upper bound. Epoch must be optimised. On the other hand components of velocity may
be optimised or kept fixed to a defined value. This configuration can be seen in Fig. 3.19.

Figure 3.19: focussuite panel for optimised number of manoeuvre choice.

3.2.3 Constraints

Panels related to this input section refers to target state vector election and corresponding thresh-
olds. As said in the general overview, it is possible to choose the combination of state vector
parameters in a complete list. In this last all the elements coming from different coordinates sys-
tem, in particular Keplerian, Cartesian, Geodetic and Equinoctial ones are present. In Fig. 3.20
it is possible to see how the panel appears in the focussuite interface. In this list it is possible to
introduce N-numbers of parameters and successively select only the ones of interest. Please note
that the executing program will come up with error message in case that redundant parameter is
introduced.
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Figure 3.20: focussuite Constraints choice panel.

Figure 3.21: Target State Vector list of parameters.
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3.2.4 Propagators

3.2.4.1 GOLEM Panels

In GOLEM panel the only two parameters which have to be introduced are the time step for
moving along the epoch interval and the solar radiation pressure coefficient. As discussed in
3.1.1.3, this last coefficient already includes the satellite’s mass and area contribution. These
values have to be defined by user. In order to be executed this propagator must receive as inputs
the initial state vector with related epoch and the target epoch. These information are introduced
in panels related to Main option and Constraint as it has been possible to note in Fig. 3.16 and
3.20

Figure 3.22: focussuite GOLEM propagator main option panel.

3.2.4.2 SAPO Panels

The SAPO version adapted to SARROTO presents a reduced number of panels with respect to
the SAPO standalone tool. This because most of the inputs are introduced in the main program
rather than in the propagator configuration. Fig.3.23 shows this focussuite panel for input data
acquisition. On the other hand step size, as it happens with GOLEM, can be defined by client as
represented in Fig. 3.24

Figure 3.23: SARROTO’s SAPO satellite election section panel.
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Figure 3.24: SARROTO’s SAPO main option section panel.

Manoeuvre data can be inserted in apposite space list as it is shown in Fig. 3.25. In particular
as it is possible to notice the only input data which can be selected is whether considering
manoeuvre as long or impulsive.

Figure 3.25: SARROTO’s SAPO manouvre section panel.

Information about perturbation can be selected in panels which can be found in SARROTO’s
SAPO section, as it can be seen in Fig. 3.26.
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Figure 3.26: SARROTO’s SAPO perturbation section panel.

3.2.5 Optimiser Interface

3.2.5.1 Differential Evolution Panels

The parameters defined in 3.1.2.1 have to be introduced in panels as input values. They can be
defined by users according to requirements. In Fig. 3.27 the DE input panels is represented.

44



CHAPTER 3. SARROTO

Figure 3.27: focussuite Differential Evolution main panel.

3.2.5.2 Parametric Analysis Panels

Differently from the Differential Evolution, Parametric Analysis does not need specific input
values. As defined in section 3.1.2.2, it receives as input from the main program the number of
parameters to be optimised and the related searching intervals.

3.2.6 Standard Output Panels

As already mentioned, this panel is dedicated to the output results representation. A classical
format in printed output can be seen in Fig. 3.28. The results which appears in this focussuite
window are the same which are written in the output file.
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Figure 3.28: focussuite Standard Output panel.

3.3 Code development and evolution

In this section of the thesis it will be described the evolution of the project along the training.
This work has been developed in different phases, many times getting back to previous steps in
order to introduce new changes as they came up within the coding and implementing procedures.
It has to be said that this project, from the organisational point of view, has combined two main
subjects which are the Fortran 90 software codification and the mathematical research about the
aerospace field of expertise. This means implementing the physical theories about space project
with a computer language.
The two parts have not been considered separately. This is why during the development, further
ideas have come up and improvements made. These last not only in the logical coding steps, but
also in the physical theories applied. So these features have been overlapped during the entire
work.
In adddition to what said above, the first two weeks have been completely devoted to literature
review. A general overview has been carried out on the mathematical theories which would have
been introduced. The main focus has been directed to the acquisition of the Fortran 90 rules of
codification, the ones established by GMV’s FDO department.
In particular, special attention has been dedicated to mathematical equations, took from [2], in
order to implement the GOLEM propagator. These equations have been studied in greater de-
tails within steps of development. Once approached with the Fortran language, coding work
has started. At first it has been necessary to give fundamental basis to the SARROTO structure,
whose map has been illustrated at the beginning of this thesis and could be found in Fig.3.1.
It has meant creating the first program base structure which corresponds to the manager section
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of the program. In this module all the main components of the program, from the initial options
to the final output file results, have been introduced. Once that this first part has been developed,
especially general modules related to each single software routine, it has been possible to focus
on these last.

In order to start doing some first tests, it has been created the GOLEM propagator. Its cod-
ing phase required a detailed study of the two body equation. This development phase has last
roughly two weeks, including the necessary time for its implementation in the coding module.
Meanwhile, it has been introduced the differential evolution optimiser whose Fortran code ex-
isted yet. As mentioned, it has not been developed in this project, but only adapted to SARROTO
main structure. Once a propagator and an optimiser have been associated, it has been possible
doing first tests proving the correct code structure. Parametric analysis optimiser has been de-
veloped in the last two summer weeks related to first training in GMV, and testing only at the
beginning of the internship established with the University. So at the end of the summer train-
ing the entire structure had been developed, the DE optimiser implemented, GOLEM optimiser
tested and the Parametric Analysis developed but not yet introduced.

With the beginning of the internship obtained with the agreement of the UPM, the project
has followed its improvement. In particular the Parametric Analysis has been introduced and its
functionality tested. Furthermore some new requirements have been added. One of these is the
possibility of avoid combination parameter vector whose manoeuvres epoch overlap, or contain
all velocity components equal to zero.
At the same time GOLEM has been improved, too. It has passed from being completely analytic
to take a certain semi-analytic features such as the new way of considering the manoeuvre ∆V .
This is no more contained in the main equations, but a transformation in Cartesian coordinates
and an addiction to the state vector achieved at the considering epoch is required.
Changes in the target state vector have been made consequently. It has been added the possi-
bility to choose among a complete list of parameters, involving most of the coordinates type,
the desired target state vector. In this choice there is no limitation to the number of variable to
introduce. The only requirement is avoiding the redundant choices (i.e it is not possible to have
parameters of the same type).
From the parameters point of view other changes have been performed. It has been introduced
the possibility to optimize the number of manoeuvres, defining their permitted maximum num-
ber in a time interval and imposing the same searching interval for all of them. Even when fixed
manoeuvre number is considered, it has been added the possibility to use a common searching
interval for all manoeuvres epoch.
Clearly considerable part of the time has been spent in solving coding problems, such as the ones
related to memory leak, due to non deallocated variable defined in the Fortran code. This aspect
can not be despised since these issues have caused a partial slowdown in the work activity.
Last step computed, one of the most significant ones, has been the introduction of SAPO prop-
agator into SARROTO. It has taken roughly a month. Indeed not only a new module interface
has been created in SARROTO in order to accommodate this propagator, but also some changes
in SAPO have been required. From the architecture point of view some new modules have been
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introduced in SAPO so as it will be adapted to any possible software which may require its us-
age.
At the end all tests have been performed, as it could be appreciate in next chapter 4 regarding to
results.
It has to be mentioned that associated to the code development it has been performed the cre-
ation of the choices panel in the focussuite environment. Moreover during the main project
development, the documentation, this thesis, has been written.

Figure 3.29: Gantt chart SARROTO timeline planning.
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Chapter 4

Results

This chapter is dedicated to SARROTO output results in terms of comparison between the var-
ious tool options and propagators. Different optimisation cases will be illustrated. Results ob-
tained will be discussed. In particular all possible combinations of propagators and optimisers,
implemented with different constraints and parameters, will be analysed in order to give the
readers a complete background about SARROTO working method.
Within the chapter it will be illustrated tables including the variables and options introduced
through the focussuite interface. Parameters to be optimised will be indicated in table with To
be Optimised statement. On the other hand the ones indicated as Fixed will take a specific value
that will not change during optimisation procedure.

4.1 Orbit propagators comparison

As mentioned in the previous section, many differences can be listed between SAPO and GOLEM.
It could be interested to compare GOLEM obtained orbits with a different propagator. In this
sense a numeric one, such as Propag, is selected for this analysis. PROPAG is the main prop-
agator used in GMV. It is considered flight proven. It has been validated so it can be used as a
real propagation reference.
Readers can find more information about this propagator in appendix section E. In next lines
all the propagators, two-by-two, will be put in comparison. Even though SAPO has not been
developed during this internship, its results will be compared to the PROPAG’s ones in order to
check its reliability in SARROTO optimization process.

All the orbit comparisons have been obtained thanks to another focussuite software tool,
named ORBCOMP, as already mentioned in section 1.2. Its principal function is comparing
orbit files that have been given as inputs. It offers, as results, plots diagram which can be con-
figured with user needs. In these comparison cases it will be set in such a way that on the
horizontal axis the date will be displayed, and on the vertical one the position components, re-
spectively along, cross and in plane. In addition it will be shown the total position, too. It has to
be underlined that plots are based on the numerical difference between the two orbits. For this
reason lower values taken by these components are translated in terms of propagator efficiency,
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CHAPTER 4. RESULTS

compared with PROPAG.

As explained in previous section 3.1.1.3, perturbations are implemented in different ways
in GOLEM and SAPO. Indeed in GOLEM the two perturbations introduced are the ones due to
solar radiation pressure and not-spherical Earth. This last will be represented through the second
zonal harmonic J2 and longitudinal acceleration.
On the contrary PROPAG includes a wide number of perturbations. The complete list can be
seen in Fig. E.2, where the PROPAG focussuite panel concerning perturbations is shown. Infor-
mation about this propagator and its main characteristics are present in appendix section E.
These comparison tests are made taking into account perturbations which can be introduced in
each propagator. Three cases of comparison will be presented:

1. First comparison between GOLEM and PROPAG. This last will be configured with J22
and solar radiation pressure in order to resemble GOLEM. This comparison has been
performed in order to check GOLEM working method implemented in SARROTO.

2. Second comparison between GOLEM and PROPAG. The numerical propagator will be
configured with all its permitted perturbations. In this way a real orbit will be compared
with the GOLEM one. This new case has been computed in order to show propagation
error with respect to a real case.

3. Comparison between SAPO and PROPAG. Both will be configured with all the perturba-
tions defined in each one. With this comparison SAPO’s lack of precision in representing
a perturbed orbit will come up.

In Tab. 4.1 reader can appreciate the constant coefficients which define the main satellite
and the ones which describe perturbations effects such as the solar radiation pressure. These
information has to be introduced since in PROPAG and SAPO solar radiation pressure constant
does not include mass and area contributes. On the contrary in GOLEM, as seen in section
3.1.1.3, satellite’s mass and area have already been taken into account in its computation.

Constant coefficients

Constants Parameters Manoeuvres events

Mass = 123 kg
SRP Area = 10;m2

SRP = 0.114845

Two manoeuvres at following epoch

2017/01/01-03:20:00.500

2017/01/01-03:40:00.500

Table 4.1: Constant coefficients for satellite’s definition in SAPO and PROPAG.

• First Comparison-GOLEM and PROPAG
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In this first case of comparison between orbits it will be analysed an orbit provided with
two manoeuvres events. All the propagated orbit characteristics are shown in Tab. 4.2.

Options case 1

Initial state vector in
Keplerian elements

Initial epoch of
propagation

[UTC]

Final epoch of
propagation

[UTC]
Perturbations

SMA=42134.0 km
e=0.00001
i=0.0000001
Ω-RAAN=0 deg
ω-Arg.Per=0 deg
θ -Tr.Anomaly=0 deg

2017/01/01-
00:00:000

2017/01/02-
00:00:000

SRP,
Non-spherical
Earth effects

Table 4.2: First Comparison Case - Orbit data.

Figure 4.1: Orbit comparison between GOLEM and PROPAG.
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Figure 4.2: Orbit comparison between PROPAG and GOLEM, focusing on the manoeuvres events.

As it can be noticed the difference in terms of position is of the order of kilometres. The
greater difference can be observed in the Cross-Track component difference at manoeuvre
events epoch, as it is possible to see in Fig. 4.1. This phenomenon can be explained
referring to the limitation of analytic theory implemented in GOLEM. Indeed, before
manoeuvre event, differences between orbits depend on GOLEM lack of precision due
to its way to approach perturbations. After first manoeuvre the in-plane component of
GOLEM orbit increases with respect to PROPAG one. The manoeuvre event modifies
eccentricity value in such way that GOLEM theory can be no more considered a valid
method of orbit propagation.
The presence of a second manoeuvre balances the first manoeuvre effects. In this way
propagation between the two orbits gets back to be similar and GOLEM theory can be
considered functional in representing orbit.

• Second Comparison Case - GOLEM and PROPAG
In this second case it has been compared the orbit propagated con GOLEM with the one
obtained with PROPAG considering all the permitted perturbation. The PROPAG panel
configured with these ones is shown in Fig. 4.3. Since the considered orbit is a GEO one,
perturbation effects due to aerodynamic forces, atmospheric gravity, ocean tides would
not be taken into account. The same is for Albedo radiation and other that would not
affect the satellite because of the orbit height.
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Options case 2

Initial state vector in
Keplerian elements

Initial epoch of
propagation

[UTC]

Final epoch of
propagation

[UTC]

Perturbations in
PROPAG

Perturbations in
GOLEM

SMA=42134.0 km
e=0.00001
i=0.0000001
Ω-RAAN=0 deg
ω-Arg.Per=0 deg
θ -Tr.Anomaly=0 deg

2017/01/01-
00:00:000

2017/01/02-
00:00:000

SRP, 30x30 degree
and order of
gravity field,

Moon and Solar
Gravity

perturbation, J2
Moon effects

SRP,
Non-spherical
Earth effects

Table 4.3: Second Comparison Case-Orbit Data.
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Figure 4.3: PROPAG perturbation panel configured with the significant perturbations for second comparison case.

Same remarks for this case can be introduced. Differently from the first comparison, the
difference in along-track and cross-track components of position increase within the orbit
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propagation. This is due to Sun and Moon gravity perturbations which are not taken into
account in GOLEM.

Figure 4.4: Comparison between PROPAG, considering all perturbations effects, and GOLEM.

• Third Comparison Case - SAPO and PROPAG
In this last comparison there will be compared the orbit propagated with SAPO and
PROPAG considering all the SAPO permitted perturbations. The information about or-
bit and perturbations are the ones illustrated in Tab. 4.4.
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Options case 2

Initial state vector in
Keplerian elements

Initial epoch of
propagation

[UTC]

Final epoch of
propagation

[UTC]

Perturbations in
PROPAG

Perturbations in
SAPO

SMA=42134.0 km
e=0.00001
i=0.0000001 deg
Ω-RAAN=0 deg
ω-Arg.Per=0 deg
θ -Tr.Anomaly=0 deg

2017/01/01-
00:00:000

2017/01/02-
00:00:000

SRP, 30x30 degree
and order of
gravity field,

Moon and Solar
Gravity

perturbation, J2
Moon effects

SRP, 30x30 degree
and order of
gravity field,

Moon and Solar
Gravity

perturbation, J2
Moon effects

Table 4.4: Third Comparison Case-Orbit Data.

As it can be seen in Fig. 4.5, the position difference between these two propagation is of
order of less than one kilometres. This is a check of the efficiency of SAPO propagator in
considering perturbations phenomena.

Figure 4.5: Comparison between PROPAG and SAPO, considering all perturbations effects.
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4.2 Computational time comparison

Before testing the SARROTO optimisation process, a comparison between computational time
obtained performing test cases with DE and PA are presented. A single optimised test has been
examined, setting options present in Tab. 4.5. In order to propagate similar orbit, SAPO has
been configured with same perturbations permitted in GOLEM: solar radiation pressure and
non-spherical Earth effects.
In Tab. 4.6 are present computational time elapsed for each combination of propagator and
optimiser. This test has been made in order to make readers aware that this aspect has been
considered in preparing tests cases to show.

Comparision Case Option

One day propagated orbit

Initial Epoch
2017/01/01-00:00:00:000

Final Epoch
2017/01/02-00:00:00:000

Two manoeuvres with
∆V along track

and manoeuvre epochs to be
optimised

First Manoeuvre

∆V1

Cross
Fixed

Along
To Be Optimised

Radial
Fixed

Epoch1
To Be Optimised

Second Manoeuvre

∆V2

Cross
Fixed

Along
To Be Optimised

Radial
Fixed

Epoch2
To Be Optimised

Table 4.5: Analyzed case for comparison tests.
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Comparison between computational times for the same analysed case

Time spent SAPO GOLEM

Differential Evolution 16.06 min 0.108 min

Parametric Analysis 62 min 0.383 min

Table 4.6: Comparison between computational time spent for achieving the best result.

As it can be appreciated, the combination differential evolution and GOLEM propagator is
the one which takes less time to give results as output. On the other hand SAPO and Parametric
analysis is the one which takes most.

4.3 Analyzed optimization case

In next tables there will be presented all the tests made, with the selected requirements and
options. The inputs are the ones concerning initial state vector and target state vector elements
choices. Parameters table shows the manoeuvres information, with parameters to be optimised.
The output is related to final state vector and parameters values coming from the optimisation.
The cases have been performed testing all the tools introduced into the main program, in order
to demonstrate the reliability of this main software. The different combinations concern the
propagators and optimizers different solutions.
Tests have been performed following the steps presented in the below list:

• Defining through the focussuite interface the input values, from the initial state vector to
the desired propagator;

• Selecting the desired target state vector elements, with the respective weight and tolerance;

• Choosing the parameters to be optimised, introducing the searching interval and stepsize;

• Selecting the optimizer and its options;

• Once results have been obtained, the output file has been analysed;

• All combination between propagators and optimziers, when permitted by chosen options,
have been tested;

In order to keep the readers comfortable with the tests which will be illustrated, acronyms have
been used to refer to propagators and optimizers combination case, in particular

• GODE: GOLEM and Differential Evolution

• SADE: SAPO and Differential Evolution
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• GOPA: GOLEM and Parametric Analysis

• SAPA: SAPO and Parametric Analysis

4.3.1 Hohmann transfer calculation

As mentioned during different SARROTO’s modules explanation, there are some limitations
which have affected the way of doing tests. In particular when the choice to optimize both epoch
and ∆V is made, to narrow down the searching interval, it is a reasonable idea to estimate the
components of velocity to be optimised. This last requirement is introduced in order to spend
less computational time to get the correct solution. So, in order to give a first approximated
value for the ∆V along track component of velocity, the Hohmann transfer calculation has been
utilised. In particular equations used to perform calculation can be found in appendix section
B.1. Detailed notions about this transfer process between two orbits can be found in appendix
section B.
As explained in appendix section B, the along track component of velocity is the only, among
the three, taken into account when a circular geostationary orbit would be obtained manoeuvring
from a lower circular orbit to an higher circular one without changing orbit plane. Indeed, even
though radial component may allow this transfer, the manoeuvre with along track is the best in
terms of efficiency. The other components are set to zero value in all test cases.
So in this case, two tangential manoeuvres have been chosen to transfer satellite from the first
circular orbit to the new circular one. Actually this transfer may be performed with greater
number of manoeuvres. The first orbit semi-major axis is indicated with the subscript I, while
the second one with T, which means respectively initial and target.
Actually, as it will be appreciated in next performed cases, the considered orbit is not perfectly
circular, since this case does not exist in reality. For this reason the better case is the one with
eccentricity and inclination case close to zero value. The velocity speed of the satellite related
to the departure point is

∆VTrans f =

√
µEarth

RISV
·
(√

2RT SV

RISV +RT SV
−1
)

where RISV = SMAISV +RE = 42134 km and RT SV = SMAT SV +RE = 42164 km with RE the
Earth radius.
For this calculation it is assumed that eccentricity and inclination are equal to zero. This state-
ment is a reasonable simplification for the considered case. Applying this simple formula it
results that the increment of velocity component, for both manoeuvres, should take value within
∆V = 0.55 m/s. This result will be used as input for the searching interval bounds, and as it will
be illustrated, it will be quite verified from computational calculation.

4.4 Test Phase

Some remarks are necessary in order to focusing on the main points of this program validation
phase and in particular to better understand cases which will be presented.
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As readers will notice within this test section, all tests, except from Test 4 and 5 where different
test option have been required, introduce as target state vector just three elements

• SMA: the semi major axis,

• e: eccentricity,

• λ : longitude

Before discussing about this last assumption, it has to be reminded that, due to the GOLEM
propagator main definition, a geosynchronous orbit has been taken as reference for all calcula-
tions made within this thesis.
So, once this aspect has been clarified, the previous statement can be explained. It has to be
considered that, when speaking about a GEO orbit with inclination and eccentricity equals to
zero value, or really closer to this value, it has no meaning defining the RAAN and the Arg. of
Periapsis. In fact for this type of orbit, a non-inclined circular orbit, Ω and ω are not-defined
and for this reason it is usual to give them zero value in order to refer to the vernal equinox di-
rection. In addition, all the analyzed cases consider a East-West Manoeuvre. As a consequence
inclination has not been introduced in the target state vector, since there are not changes in the
orbit plane.
On the other hand longitude can be very useful in describing spacecraft position for a geosyn-
chronous circular and equatorial orbits, since a satellite orbiting along a GEO one stays in place
over a single longitude, as defined in [18].

4.4.1 TEST 1-Two Manoeuvre with velocity along track component and epoch to
be optimised

This first test has been carried out considering two manoeuvres with both along-track compo-
nent of velocity and epoch to be optimised. It has to be said that in all performed tests, among
the components of velocity, just the along track will be taken into account. It will be the only
velocity component with a no-zero value, both in optimised or fixed analysed case.

It has to be reminded that an along track manoeuvre can be defined in other words as east-
west or longitude manoeuvre in GEO orbit. This manoeuvre type just considers the tangential
thrust to the orbit and it is performed when it is required a change in the orbital semi-major
axis, in the longitude drift rate or in the eccentricity vector. For these reasons this manoeuvre is
commonly implemented when a geostationary orbit is desired.

This is due to the intention of implement an orbit propagation with manoeuvre events which
could simulate the satellite’s transfer from a circular orbit to an higher circular one. The first
circular orbit semi-major axis will be numerically lower than the geostationary orbit height, and
the height of the new one will be equal to this last said. This transfer will be performed through
two manoeuvres, which can be approximated with the Hohmann transfer, as said in 4.3.1.
Actually the considered manoeuvre, in order to be circular and in plane, should have eccentricity
and inclination values equals to zero. This case may introduce problems in performing SAPO
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propagators, due to some limitations in the numeric computation and truncation algorithms. To
avoid this issue carrying on the desired test, very little values have been assigned to these keple-
rian elements, as it can be seen in Tab. 4.7. So as, the first assumption about a transfer between
two circular in plane orbits can be preserved.

In Tab. 4.8 parameters values associated to this first test can be found. It must be underlined
the importance of the tolerance and step size values. The last cited is very important in order
to achieve solution: the secondary problem associated to its choice concerns the computational
time required when small step size is introduced.
In addition to what previously mentioned about tolerances, some comments have to be made.
Many tests have been performed, and clearly not all of them have come up with the expected
solution. In some cases, the selection of very narrow tolerances values has not allowed to get the
correct solution. This has meant not achieving target orbit, even thought only few meters and
degrees of difference have occurred.

It has been chosen to define just three parameters in the target state vector, to better visual-
ising the solution, and it has been preferred to give them the same weight. Parameters affected
by the manoeuvre event, and more specifically by the along-track component of velocity, have
been selected. These parameters are semi-major axis, eccentricity and longitude. Inclination
has not been taken into account since cross-track component of velocity is set to zero. About
manoeuvre events, two manoeuvres have been selected, whose parameters value can be found
in Tab. 4.8. Both epoch and velocity along track component have been introducing as variables
to be optimised, with fixed step size.
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SARROTO Inputs Test 1

Main features Two manoeuvres with epoch and along track velocity
component to be optimized

Initial Epoch
2017/01/01-00:00:00:000

SMA = 42134.0 km

e = 0.00001

i = 0.0000001 deg

Ω = 0 deg

ω = 0 deg

Initial State Vector

θ = 0 deg
Final Epoch

2017/01/02-0:00:00:000

Coordinate
Value

Weight Tolerance

SMA = 42164.0 km 1.0 0.01 km

e = 0.0000000000001 1.0 0.01

Target State Vector

λ = -100.600845364 deg 1.0 0.1 deg

Table 4.7: Inputs Test 1.
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SARROTO Parameters Test 1

Manoeuvre definition Two manoeuvres with both ∆V -along track and epoch to optimize

Radial
0.0 m/s

Searching interval
[0.4, 0.6 ] m/s

Along
To Be Optimized

StepSize
0.001 m/s

First Manoeuvre

Cross
0.0 m/s

Radial
0.0 m/s

Searching interval
[0.5, 0.6 ] m/sAlong

To Be Optimized StepSize
0.001 m/s

∆V components value

Second Manoeuvre

Cross
0.0 m/s

Searching interval
[2017/01/01/-00:00:00.000,
2017/01/01/-12:00:00.000]

First Manoeuvre
Epoch value

To Be Optimized StepSize
600 s

Searching interval
[2017/01/01/-12:00:00.000,
2017/01/02-00:00:00.000 ]

Manoeuvre Epoch

Second Manoeuvre
Epoch value

To Be Optimized
StepSize

600 s

Table 4.8: Parameters Test 1.

. GOPA
It has been checked the combination between the GOLEM propagator and the parametric
analysis optimizer. Inputs value can be reads in Tab. 4.7, where the main characteristics
have been presented.
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SARROTO GOPA Output Test 1

Execution Time =99.7071 min
Output results

Tested combinations = 108184029

SMA = 42164.009827224 km

e = 0.000427042Final State Vector

λ =-100.501470564 deg

Epoch
2017/01/01-05:30:01.000

First Manoeuvre
∆V along
0.594 m/s

Epoch
2017/01/01-12:30:00.000

Optimized values

Second Manoeuvre
∆V along
0.50 m/s

Table 4.9: Output GOPA Test 1.

. SAPA
In this test case, SAPO and Parametric Analysis has not been tested since necessary time
to get the final result was quite great to allow a reasonable computation. In fact number of
combinations to be tested with parameters values detailed in Tab. 4.8 was equal to Ncomb =
108184029 which means a computational time t ≈ 7336 min = 122879 hr ≈ 5.11 days.
SAPA tests will be performed with a reduced number of combinations as illustrated in
next paragraphs.

. GODE
In this second part of Test 1, it will be computed optimization through the differential
evolution optimizer. As explained in dedicated sec. 3.1.2.1, there are some variables
values which have to be defined when this choice is made. These ones can be found in
Tab. 4.10
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DE main option Test 1

Fitness Expected -10000

Population size 10000

Crossover factor 7

Iteration Number 80

Strategy 2

Table 4.10: Differential Evolution Main Option Test 1.

SARROTO GODE Output Test 1

Output results Execution Time = 0.805 min

SMA = 42163.990002913 km

e = 0.000530626Final State Vector

λ =-100.500859070 deg

Epoch
2017/01/01-06:33:48.382

First Manoeuvre
∆V along

0.593166406 m/s
Epoch

2017/01/01-12:00:00.000

Optimized values

Second Manoeuvre
∆V along

0.500033232 m/s

Table 4.11: Output GODE Test 1.

. SADE
Same inputs, parameters and constraints values used for GOLEM have been implemented
in this second phase of test 1. It has just been choosing SAPO propagators as mean of
orbital propagation mixed with the differential evolution analysis. As it can be appreciated
from Tab. 4.12 target is achieved for all elements selected. In this case the total increment
of velocity of the transfer is

∆VTot = |∆V1|+|∆V2|= 0.530450737+0.555343009 = 1.085793746 m/s
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SARROTO SADE Output Test 1

Output results Execution Time = 144.814 min

SMA = 42163.990077067 km

e = 0.000107511Final State Vector

λ =-100.500929115 deg

Epoch
2017/01/01-00:43:14.109

First Manoeuvre
∆V along

0.530450737 m/s
Epoch

2017/01/01-12:00:00.301

Optimized values

Second Manoeuvre
∆V along

0.555343009 m/s

Table 4.12: Output SADE Test 1.

Comments to test 1 First of all, it has to be said that it has not be possible to produce
test with SAPA, due to the large amount of time required for the numerical computation.
In fact, in order to obtain a precise solution with this combination case, not only days, but
in few cases, weeks will be required.
It has not been possible to compare solution between the two propagators, but despite of
this negative aspect, results obtained with GOPA can be evaluated positively since not
only target has been achieved but the manoeuvre velocity component is in the range ex-
pected with Hohmann transfer ∆V calculation.
These expected results for each manoeuvre increment of velocity and total transfer ∆V can
be appreciated looking at Fig. 4.6. In this bars diagram velocity value of each manoeuvre
for analysed combinations cases are represented. As readers may appreciate, the total ∆V
for each combination case is equal for all the tested case, and in addition is the same ob-
tained for the Hohmann transfer. Actually, it cannot be guaranteed that a result which is
equal o similar to the one obtained with Hohmann is the best solution. On the contrary, a
result which significantly diverges from this last can be considered unreliable. However,
as general final comment, it can be said that both propagators meet the expectations.
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Figure 4.6: Comparison between ∆V for combination cases Test 1.

It has to be mentioned that similar values in final state vector are obtained in both cases.
GODE solution results in the achievement of the target state vector, so does SADE. Target
state vector has been reached without exceeding permitted tolerance values defined in Tab.
4.7 to input options. This tolerance range check can be verified in Fig. 4.7, 4.9, 4.8, where
difference between each final and target state vector element is compared to the tolerance
value taken as initial reference. In particular in these diagram bars represent difference
between final and target SV element, the red line represents the tolerance value permitted.
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Figure 4.7: Checking tolerances for Semi-major axis-Test 1.

Figure 4.8: Checking tolerances for Eccentricity-Test 1.
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Figure 4.9: Checking tolerances for Longitude-Test 1.

In Fig. 4.10 a time axis with epochs at which occur manoeuvre events is shown. Readers
could note that second manoeuvre epoch is located roughly on the same point for all the
considered cases. On the other hand, about first manoeuvre epoch, similarities can be
found only for GOLEM propagator cases.

Figure 4.10: Manoeuvre events on propagation timeline Test 1.

In Fig. 4.11 computational time spent for execute SARROTO in each combination case
is represented. It is possible to notice that SAPO is the one which requires major time for
returning results. At second place, GOPA choice is the one which results with a bigger
time elapsed.
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Figure 4.11: SARROTO execution time spent-Test 1.

4.4.2 TEST 2-Two Manoeuvre with epoch and along track component to be op-
timised searching in reduced intervals

In this second case it will be tested a case similar to the first but with searching intervals smaller
than previous one. In addition smaller step size has been introduced. In this way SAPO func-
tionality mixed with PA can be proved.In Tab.4.13 can be found data regarding input values for
this second case test, indeed in Tab. 4.14 parameters variables.
In the SAPA case, it has been selected the option to use common searching interval for both
manoeuvres, setting this last equals to the entire orbit propagation time. On the other hand for
SADE test it has been necessary to split this interval in two sub-ranges since this functionality it
is not implemented for the DE optimiser choice. This difference in the searching interval choice
can be observed in Tab. 4.14 in the field named Manoeuvre Epoch.
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SARROTO Inputs Test 2

Main features Two manoeuvers
∆V along track to be optimized

Initial Epoch
2017/01/01-00:00:00:000

SMA = 42134.0 km

e = 0.00001

Ω=0 deg

ω=0 deg

Initial State Vector

θ =0 deg

Final Epoch
2017/01/02-0:00:00:000

Coordinate
Value

Weight Tolerance

SMA = 42164.0 km 1.0 0.12 km

e = 0.0000000000001 1.0 0.01

Target State Vector

λ = -100.600845364 deg 1.0 0.1 deg

Table 4.13: Inputs Test 2.
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SARROTO Parameters Test 2

Manoeuvre definition Two manoeuvres with both ∆V -along track and epoch to optimize

Radial
0.0 m/s

Searching interval
[ 0.5, 0.6 ] m/s

Along
To Be Optimized

StepSize
0.01 m/s

First Manoeuvre

Cross
0.0 m/s

Radial
0.0 m/s

Searching interval
[ 0.5, 0.6 ] m/sAlong

To Be Optimized StepSize
0.01 m/s

∆V components value

Second Manoeuvre

Cross
0.0 m/s

Searching interval PA
[2017/01/01-00:00:00.000,
2017/01/02-00:00:00.000]

Searching interval DE
[2017/01/01-00:00:00.000,
2017/01/01-12:00:00.000]First Manoeuvre

Epoch value
To Be Optimized

StepSize
900 s

Searching interval PA
[2017/01/01-00:00:00.000,
2017/01/02-00:00:00.000]

Searching interval DE
[2017/01/01-12:00:00.000,
2017/01/02-00:00:00.000]

Manoeuvre Epoch

Second Manoeuvre
Epoch value

To Be Optimized
StepSize

900 s

Table 4.14: Parameters Test 2.
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. SAPA
SAPO and the parametric analysis have been tested as first in this second test. As it can
be noticed in Tab. 4.13 tolerance value for SMA has been increased in order to achieve
target.

SARROTO SAPA Output Test 2

Execution Time = 77.209 min
Output result

Tested combinations = 1138489

SMA = 42164.115831782 km

e = 0.000664015Final State Vector

λ =-100.501287321 deg

Epoch
2017/01/01-09:15:00.000

First Manoeuvre
∆V along

0.590000000 m/s
Epoch

2017/01/01-09:30:00.000

Optimized values

Second Manoeuvre
∆V along

0.500000000 m/s

Table 4.15: Output SAPA Test 2.

. SADE
The differential evolution has been used in this case keeping fixed constraints and pa-
rameters values utilised for parametric analysis computation. The searching interval, as
mentioned at first, has been changed. The Differential evolution have been performed
with main options values represented in Tab. 4.16
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DE main option Test 2

Fitness Expected -10000

Population size 10000

Crossover factor 7

Iteration Number 30

Strategy 2

Table 4.16: Differential Evolution Main Option Test 2.

SARROTO SADE Output Test 2

Output results Execution Time = 41.752 min

SMA = 42163.880091698 km

e = 0.000458195Final State Vector

λ =-100.501726663 deg

Epoch
2017/01/01-05:47:27.462

First Manoeuvre
∆V along

0.580857981 m/s
Epoch

2017/01/01-12:00:00.000

Optimized values

Second Manoeuvre
∆V along

0.500749728 m/s

Table 4.17: Output SADE Test 2.

. GOPA
GOLEM and the parametric analysis have been tested as next step. Same comments made
for SAPO have to be taken in account.
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SARROTO GOPA Output Test 2

Execution Time = 0.502 min
Output result

Tested combinations = 1138489

SMA = 42164.115831782 km

e = 0.000664015

i = 0.000300538 deg
Final State Vector

λ =-100.501287321 deg

Epoch
2017/01/01-09:00:00.000

First Manoeuvre
∆V along

0.590000000 m/s
Epoch

2017/01/01-09:15:00.000

Optimized values

Second Manoeuvre
∆V along

0.500000000 m/s

Table 4.18: Output GOPA Test 2.

. GODE
The Differential evolution have been configured with the same features present in Tab.
4.16.

86



CHAPTER 4. RESULTS

SARROTO GODE Output Test 2

Output results Execution Time = 0.302 min

SMA = 42163.880033069 km

e = 0.000489456Final State Vector

λ =-100.501165853 deg

Epoch
2017/01/01-06:03:07.157

First Manoeuvre
∆V along

0.581494198 m/s
Epoch

2017/01/01-12:06:22.256

Optimized values

Second Manoeuvre
∆V along

0.507703474 m/s

Table 4.19: Output GODE Test 2.

Comments to test 2 In all the combination cases target state vector is achieved. This achieve-
ment is displayed in Fig. 4.12, 4.14, 4.13. Each difference value between target and final element
with its related permitted tolerance is shown.

It is possible to see in Fig. 4.15 that in case of PA choice, manoeuvre events epochs obtained
with both propagators are roughly located in the same time interval for all the considered com-
binations cases. Actually some overlapping epochs are present. About GODE and SADE same
remarks can be made, even if greater separation between first and second manoeuvre occurs.
Thanks to these results GOLEM theory with respect to semi-analytic model is verified and fi-
nally approved.
Difference in obtained epochs between PA and DE execution cases depends on the optimiza-
tion option defined as input. Please remind that the objective of this test has been testing the
PA option of using the same common searching interval for all the manoeuvres. As said at the
beginning of this test, this functionality is not allowed in DE choice.
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Figure 4.12: Checking tolerances for Semi-major axis-Test 2.

Figure 4.13: Checking tolerances for Eccentricity-Test 2.
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Figure 4.14: Checking tolerances for Longitude-Test 2.

Figure 4.15: Manoeuvre events on propagation timeline Test 2.

As regards velocity, optimum results have been obtained in all cases. Indeed as it possible to
see in Fig. 4.16 the results are round the ones predicted with the Hohmann transfer calculation.
In particular GOPA and SAPA come up with same ∆V for both manoeuvres.
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Figure 4.16: Comparison between ∆V for combination cases Test 2.

About the DE options it can be demonstrated, performing similar test but imposing 30 itera-
tions, that results does not change. So it is not necessary to increment the iterations since after a
certain number of generating vector, result presents not significant changes. On the other hand
an other option may be increase the population size to come up with a more precise result.
In Fig. 4.17 comparison between SARROTO execution elapsed time in all cases is presented. As
predicted, SAPA is the case with higher computational time spent. Actually, it is SAPO propa-
gation which causes delays in execution test. Both DE and PA combined with SAPO return high
elapsed time.
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Figure 4.17: SARROTO execution time spent-Test 2.

4.4.3 TEST 3-Number of manoeuvre and velocity along track component to be
optimised

This third case has been carried out using the Parametric analysis since the choice to optimise
the manoeuvres number can be implemented only with this optimiser, as mentioned in section
3.1.2.3. In particular, in addition to epoch which is the forced variable to be optimised, it has
been chosen to looking for the optimum along track component of velocity.
This test has been divided in two part:

• A first execution computed considering two manoeuvres events at most, performed with
both SAPO and GOLEM

• A second test introducing three as maximum number of possible manoeuvre inside orbit
propagation, this test has been executed only with GOLEM.

The inputs values are the ones shown in Tab. 4.20 and they are common for both the test cases
mentioned above. Parameter values for the first case can be found in Tab. 4.21, while the second
ones in Tab. 4.22.
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SARROTO Inputs Test 3

Main features Number of manoeuvres and
∆V along track to be optimized

Initial Epoch
2017/01/01-00:00:00:000

SMA = 42134.0 km

e = 0.00001

i = 0.0000001 deg

Ω=0 deg

ω=0 deg

Initial State Vector

θ = 0 deg

Final Epoch
2017/01/02-0:00:00:000

Coordinate
Value

Weight Tolerance

SMA = 42164.0 km 1.0 0.1 km

e = 0.0000000000001 1.0 0.01

Target State Vector

λ = -106.00845364 deg 1.0 0.1

Table 4.20: Inputs Test 3.
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SARROTO Parameters Test 3.1

Manoeuvre definition Maximum Number of permitted manoeuvres and ∆V -along track to optimize

Radial
0.0 m/s

Searching interval
[ 0.53, 0.56 ] m/s

Along
To Be Optimized

StepSize
0.001 m/s

Cross
0.0 m/s

Searching interval
[2017/01/01-00:00:00.000

-2017/01/02-13:00:00.000 ]

Manoeuvre Epoch General Manoeuvre

Epoch value
To Be Optimized StepSize

900 s

Table 4.21: Parameters Test 3.1.

93



CHAPTER 4. RESULTS

SARROTO Parameters Test 3.2

Manoeuvre definition Maximum Number of permitted manoeuvres and ∆V -along track to optimize

Radial
0.0 m/s

Searching interval
[ 0.2, 0.8 ] m/s

Along
To Be Optimized

StepSize
0.01 m/s

Cross
0.0 m/s

Searching interval
[2017/01/01-07:00:00.000

-2017/01/02-13:00:00.000 ]

Manoeuvre Epoch General Manoeuvre

Epoch value
To Be Optimized StepSize

1800 s

Table 4.22: Parameters Test 3.2.

First Case

As said before in this test it has been checked the functionality of optimising the manoeuvres
number. Two manoeuvres has been imposed as maximum number of events which may be found
in this propagation. In order to avoid larger computational time, searching intervals have been
reduced. These bounds limits have been selected considering previous test results for epoch and
Hohmann transfer calculation for the velocity. In this way convergence to the target state vector
may be achieved easier.

. GOPA
In Tab. 4.23 they are shown results obtained with GOLEM and Parametric analysis. It can
be noticed that target is achieved for all the target elements. In the Output results box the
number of combinations for test with one and two manoeuvres are indicated.
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SARROTO GOPA Output Test 3.1

Execution Time = 1.224 min
Output results

Tested combinations for one manoeuvre =1696
Tested combinations for two manoeuvre = 2876416

SMA = 42163.906688471 km

e = 0.000700178Final State Vector

λ =-100.500995139 deg

Epoch
2017/01/01-09:00:00.000

First Manoeuvre
∆V along

0.56000000 m/s
Epoch

2017/01/01-09:15:00.000

Optimized values

Second Manoeuvre
∆V along

0.530000000 m/s

Table 4.23: Output GOPA Test 3.1.

. SAPA
Output results can be found in Tab. 4.24. Number of combinations corresponds to the
one already defined in GOPA since parameters option have not been changed. Target is
achieved since tolerance value range is fulfilled.
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SARROTO SAPA Output Test 3.1

Execution Time = 182.563 min
Output results

Tested combinations for one manoeuvre =1696
Tested combinations for two manoeuvre = 2876416

SMA = 42163.923690352 km

e = 0.000660865Final State Vector

λ =-100.503185811 deg

Epoch
2017/01/01-09:00:00.000

First Manoeuvre
∆V along

0.553000000 m/s
Epoch

2017/01/01-09:30:00.000

Optimized values

Second Manoeuvre
∆V along

0.530000000 m/s

Table 4.24: Output SAPA Test 3.1.

Second Case

In this second part of Test 3 the number of manoeuvres to be optimised is imposed to
three. Since this computation requires grater amount of time with respect to the other
ones, SAPO choice will not be performed.

. GOPA
Output results related to this computed case can be found in Tab. 4.25. Thanks to this
test it can be appreciated how the program works when this option is selected: at first it
is tested the case with just one manoeuvre, and best results are saved. Then it is checked
the solution with two manoeuvres, and if results are better than previous, this second are
overlapped to the previous and so on until the N-number of selected manoeuvres among
which looked for the best solution that in this case has been set to three.
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SARROTO GOPA Output Test 3.2

Execution Time = 60.276 min
Output results Tested combinations for one manoeuvre = 793

Tested combinations for two manoeuvre = 628849
Tested combinations for three manoeuvre = 498677257

SMA = 42163.906660706 km

e = 0.000699341Final State Vector

λ =-100.501821848 deg

Epoch
2017/01/01-09:00:00.000

First Manoeuvre
∆V along

0.800000000 m/s
Epoch

2017/01/01-09:30:00.000

Optimized values

Second Manoeuvre
∆V along

0.290000000 m/s

Table 4.25: Output GOPA Test 3.2.

Comments to test 3 As it can be seen in Tab. 4.25, when three manoeuvres may be permitted,
the number of total combination to be tested becomes extremely big to allow computing this test
with SAPO. Performing these two test cases, it results that the best solution for this orbital trans-
fer is the one performed with two manoeuvres with along track velocity values approximately
near to the ones established with Hohmann calculation and obtained in previous tests. These ∆V
are illustrated in Fig. 4.18.
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Figure 4.18: Comparison between ∆V for combination cases Test 3.

In all cases it can be noticed that propagators allow the achievment of the target. Results can
be found in Fig. 4.19, 4.21, 4.20.

Figure 4.19: Checking tolerances for Semi-major axis-Test 3.
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Figure 4.20: Checking tolerances for Eccentricity-Test 3.

Figure 4.21: Checking tolerances for Longitude-Test 3.

In GOPA and SAPA performed with two maximum number of permitted manoeuvres, opti-
mised manoeuvre epochs result to be almost coincident, as shown in Fig. 4.22. Actually epochs
obtained with GOPA configured with three as maximum number of possible manoeuvres, indi-
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cated in the timeline with red colour, result to be located round the same values obtained with
the previous two manoeuvres test. This is an excellent result which proves efficiency of PA in
this optimisation option. Please remind that this option can not be chosen in case of DE.

Figure 4.22: Manoeuvre events on propagation timeline Test 3.

Elapsed time for each computation case can be found in Fig. 4.23. Despite GOPA case
configured with three manoeuvres as maximum, SAPO continues to affect execution more than
other selected options with GOLEM as chosen propagator.

Figure 4.23: SARROTO execution time spent-Test 3.
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4.4.4 Test 4-Two manoeuvre with all Keplerian elements as state vector, per-
fomed with GOLEM propagator.

In this test will be shown the possibility to introduce a bigger number of target elements, in
particular it has been chosen to represent some elements of the Keplerian state vector as final
results, even if more and more may be added to prove its functionality. Two manoeuvre will
be tested with ∆V along track and epoch to be optimised. Tests will be performed will all
propagators and optimisers combination.

SARROTO Inputs Test 4

Main features
Two manoeuvres

∆V along track and epoch to be optimized
Keplerian Target elements

Initial Epoch
2017/01/01-00:00:00:000

SMA = 42134.0 km

e = 0.00001

i = 0.0000001 deg

Ω=0 deg

ω=0 deg

Initial State Vector

θ =0

Final Epoch
2017/01/02-0:00:00:000

Coordinate
Value

Weight Tolerance

SMA = 42164.0 km 1.0 0.1 km

e = 0.0000000000001 1.0 0.01

ω = 103.422367683 deg 1.0 0.01 deg

Target State Vector

θ = 257.645382465deg 1.0 0.01 deg

Table 4.26: Inputs Test 4.
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SARROTO Parameters Test 4

Manoeuvre definition Two manoeuvres with both ∆V -along track and epoch to be optimized

Radial
0.0 m/s

Searching interval
[0.3, 0.8 ] m/s

Along
To Be Optimized StepSize

0.01 m/s
First Manoeuvre

Cross
0.0 m/s
Radial
0.0 m/s

Searching interval
[0.3, 0.8 ] m/sAlong

To Be Optimized StepSize
0.01 m/s

∆V components value

Second Manoeuvre

Cross
0.0 m/s

Searching interval
[2017/01/01-00:00:00.000,
2017/01/01-12:00:00.000]

First Manoeuvre
Epoch value

To Be Optimized StepSize
600 s

Searching interval
[2017/01/01-12:00:00.000,
2017/01/02-00:00:00.000]

Manoeuvre Epoch

Second Manoeuvre
Epoch value

OPtimize
StepSize

600 s

Table 4.27: Parameters Test 4.

. GOPA
In order to obtain a first approximation of the expected values at first orbit has been prop-
agated keeping fixed the component of velocity, with values roughly near to the expected,
and then once target state vector has been obtained, new computation has been performed,
allowing both epoch and velocity component optimisation. In this way target state vector
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has been achieved.

SARROTO GOPA Output Test 4

Execution Time = 12.541 min
Output results

Tested combinations = 13860729

SMA = 42163.901772830 km

e = 0.000513294

ω = 103.425564730 deg
Final State Vector

θ = 257.642273435 deg

Epoch
2017/01/01-05:30:01.000

First Manoeuvre
∆V along

0.790000000 m/s
Epoch

2017/01/01-12:10:00.000

Optimized values

Second Manoeuvre
∆V along

0.30000000 m/s

Table 4.28: Output GOPA Test 4.

. GODE
The Differential evolution is configured with the same option which can be find in 4.16
but considering 30 iterations instead of 80.
Output values can be found in Tab. 4.29.
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SARROTO GODE Output Test 4

Output results Execution Time = 0.302 min

SMA = 42163.900249428 km

e = 0.000452967

ω = 103.423448023 deg
Final State Vector

θ = 257.654810951 deg

Epoch
2017/01/01-05:09:13.025

First Manoeuvre
∆V along

0.746434857 m/s
Epoch

2017/01/01-12:32:07.105

Optimized values

Second Manoeuvre
∆V along

0.343529368 m/s

Table 4.29: Output GODE Test 4.

Comments to test 4 Many similarities have been found in this execution between results ob-
tained with PA and DE.
First of all, in both cases the target state vector has been achieved. Tolerance values for each
target element can be found in Fig. 4.24, 4.26, 4.25, 4.27. In addition, focusing on Fig. 4.28, it
appears that optimised velocity component get roughly the same values for both DE and PA. The
total transfer manoeuvre velocity for each combination case takes similar value to the Hohmann
transfer. These results can be taken as an evidence of GOLEM reliability. Manoeuvre events
occur within same epochs for both the optimizers as shown in Fig. 4.29.
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Figure 4.24: Checking tolerances for Semi-major axis-Test 4.

Figure 4.25: Checking tolerances for Eccentricity-Test 4.
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Figure 4.26: Checking tolerances for True Anomaly-Test 4.

Figure 4.27: Checking tolerances for Arg. of Perigee-Test 4.
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Figure 4.28: Comparison between ∆V for combination cases Test 4.

About manoeuvre epochs, it is possible to see in Fig. 4.29 that, except for few minutes of
difference, the manoeuvre events occur at same epoch for both DE and PA choice.

Figure 4.29: Manoeuvre events on propagation timeline Test 4.

As it could be appreciated looking at Fig. 4.30, PA choice return greater elapsed time with
respect to DE solution. Clearly this depends on the different optimisation methodology between
the two optimizers.
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Figure 4.30: SARROTO execution time spent-Test 4.

4.4.5 Test 5-Two manoeuvre with all Keplerian elements as target state vector,
performed with SAPO propagator.

This test has been computed in a similar way with respect to Test 4 but performing propagation
with SAPO. This computation has been considered separately from the one explained previously
since the target state vector elements values are different. New parameters values are illustrated
in Tab. 4.31
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SARROTO Inputs Test 5

Main features Two manoeuvres
∆V along track to be optimized

Initial Epoch
2017/01/01-00:00:00:000

SMA = 42134.0 km

e = 0.00001

i = 0.0000001 deg

Ω=0 deg

ω=0 deg

Initial State Vector

θ =0

Final Epoch
2017/01/02-0:00:00:000

Coordinate
Value

Weight Tolerance

SMA = 42164.0 km 1.0 0.1 km

e = 0.0000000000001 1.0 0.01

ω = 58.789492160 deg 1.0 0.1 deg
Target State Vector

θ = 212.518634984 deg 1.0 0.01 deg

Table 4.30: Inputs Test 5.
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SARROTO Parameters Test 5

Manoeuvre definition Two manoeuvres with both ∆V -along track and epoch to be optimized

Radial
0.0 m/s

Searching interval
[0.53, 0.56 ] m/s

Along
To Be Optimized

StepSize
0.01 m/s

First Manoeuvre

Cross
0.0 m/s

Radial
0.0 m/s

Searching interval
[0.53, 0.56 ] m/sAlong

To Be Optimized StepSize
0.01 m/s

∆V components value

Second Manoeuvre

Cross
0.0 m/s

Searching interval
[2017/01/01/-00:00:00.000,
2017/01/01/-12:00:00.000]

First Manoeuvre
Epoch value

To Be Optimized StepSize
1000 s

Searching interval
[2017/01/01-12:00:00.000,
2017/01/02-00:00:00.000]

Manoeuvre Epoch

Second Manoeuvre
Epoch value

To Be Optimized
StepSize
1000 s

Table 4.31: Parameters Test 5.

. SAPA
Parametric Analysis has been implemented together with SAPO. As it can be seen from
results in Tab. 4.32, time needed for testing all the combinations corresponds to more
than two hour of computation, which considering the achievement of the solution can be
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considered a good result.

SARROTO SAPA Output Test 5

Execution Time = 145.652 min
Output results

Tested combinations = 1149120

SMA = 42163.920671743 km

e = 0.000525891

ω = 58.789047348 deg

Final State Vector

θ = 212.512919417 deg

Epoch
2017/01/01-08:06:41.000

First Manoeuvre
∆V along

0.548000000 m/s
Epoch

2017/01/01-12:33:20.000

Optimized values

Second Manoeuvre
∆V along

0.535000000 m/s

Table 4.32: Output SAPA Test 5.

. SADE
In this phase SAPO will be tested together with Differential Evolution. The DE options
have been kept fixed as the ones illustrated in Tab. 4.16 just changing the number of
iterations to 30.
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SARROTO SADE Output Test 5

Output results Execution Time = 42.886 min

SMA = 42163.972026490 km

e = 0.000574693

ω = 58.794930448 deg
Final State Vector

θ = 212.515824838 deg

Epoch
2017/01/01-08:35:47.167

First Manoeuvre
∆V along

0.550908929 m/s
Epoch

2017/01/01-12:00:00.000

Optimized values

Second Manoeuvre
∆V along

0.533919418 m/s

Table 4.33: Output SADE Test 5.

Comments to test 5 In this test it has been proved the same functionality illustrated in test 4
but considering SAPO as propagator. As it can be appreciated, results are perfectly coincident
with ones obtained with Hohmann transfer, with velocity values roughly equals to the predicted,
for both DE and PA test cases. Increment of velocity of each manoeuvre and total ∆V necessary
for the transfer are represented through bar diagram in Fig. 4.35. Thanks to this diagram it is
possible to appreciate that results obtained for each case meet the expectations when compared
with Hohmann values. Achievements of target elements occurs for both DE and PA execution.
Tolerances for each element are illustrated in Fig. 4.31, 4.32, 4.33. 4.34.
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Figure 4.31: Checking tolerances for Semi-major axis-Test 5.

Figure 4.32: Checking tolerances for Eccentricity-Test 5.
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Figure 4.33: Checking tolerances for True Anomaly-Test 5.

Figure 4.34: Checking tolerances for Arg. of Perigee-Test 5.
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Figure 4.35: Comparison between ∆V for combination cases Test 5.

In Fig. 4.36 manoeuvre epochs distributed along the time axis are represented. It can be
noticed that manoeuvre events occurs roughly at same epochs irrespective of the chosen optimi-
sation method. Both ∆V and epochs results are evidence of PA efficiency, since its optimisation
process comes up with same DE solution.

Figure 4.36: Manoeuvre events on propagation timeline Test 5.
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In Fig. 4.37 elapsed time for SARROTO execution cases with SAPA and SADE options is
illustrated.

Figure 4.37: SARROTO execution time spent-Test 5.

4.5 General results

Actually, as it has been demonstrated in Test 4 and 5 of sections 4.4.4 and 4.4.5, SARROTO
allows the introduction of a wide number of target elements. The choice to define a main target
state vector composed of three main elements is to perform a more realistic orbit propagation.
Despite what said at the beginning of this section, in Test 4 and 5 other keplerian elements, in
addition to the main three defined at initial point, have been taken into account in order to show
the possibility to introduce a variable number and types of state vector parameters. Related to
that, true anomaly and Arg. of Perigee have been used as extra target elements since their values
may change due to manoeuvre events, even if their presence does not affect the optimisation
process. Readers can notice that these elements differ in assumed values depending on GOLEM
or SAPO propagator selection, although both achieve the expected solution. This difference is
due to their way of considering perturbation. In case of RAAN and AOP choices, perturbation
introduces a numerical error which leads to different numerical values. For this reason, when
eccentricity and inclination are closer or equal to zero, it is suggested not to taken into account
these variables value since their reliability can not be proved.
Test performed at the end of this project prove that GOLEM allows to achieve good results when
introduced into the optimisation phase. Despite its quasi-analytic definition, optimum results in
term of total ∆V are achieved in all cases. Even if SAPO leads to results closer to the ones
obtained with Hohmann it has to be underlined the computational time it takes to compute the
solution. SAPO tests, in particular SAPA combination, have been performed introducing bigger
stepsize and narrower searching interval with respect to the ones performed with GOLEM. In
Fig. 4.38 total comparison between time spent for different combinations cases is represented.
It can be seen that SAPO combined with PA or DE, returns greater elapsed time with respect to
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other cases. On the other hand GOLEM return excellent results in shorter computational time.

Figure 4.38: SARROTO execution time spent-General comparison.

So it can be concluded that, even if SAPO comes up with optimum results this is obtained at
the expense of number of tested values. This leads to the following remark: a good solution can
only be obtained with an initial guess value around which looking for.

For what concerns test 3, readers could find interesting the output results obtained with the
selected tool option, consisting in optimising manoeuvres number. As it has been possible to
appreciate, for both two or three as maximum number of manoeuvres permitted, it results that
two events are the best optimised result.Focusing on the optimizer, these tests may prove the
PA reliability compared to DE which is a tested algorithm. Even though optimisation with PA
generally leads to longer spent time, it allows to perform tests cases with particular option, as
the one selected in this test. In addition good results are achieved.

Remarking fundamental points, these tests have been performed in order to prove and com-
pare the PA and DE functionalities. In particular, although the component of the velocity takes
values not exactly equal to the Hohmann ones for the single increment of velocity of each ma-
noeuvre, the total ∆V is roughly equal to the Hohmann one for all tested cases.
In addition the achievement of the target state vector has been obtained in all tests. Indeed this
was the main requirement of this final test phase: the achievement of the target state vector with
an optimised ∆V .
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From SARROTO ground level to
future work

As it has been said throughout this thesis, SARROTO is a software which development has
started in this internship. Its implementation involves a wide number of features, and nowadays
just few of them have been introduced and tested due to the great amount of time that its code
development needs.
Actually, it has to be said that the project has come up from an initial idea which has been put
into practice at the beginning of the 2017 summer internship offered by GMV company. The
SARROTO’s basis created during this first training period can be resumed as follows

. Considering just fixed number of manoeuvres

. Implemented GOLEM analytic propagator with just two type of perturbations:

− Solar pressure perturbation

− Non-spherical Earths effects

. Just along-track manoeuvre are considered, the other ones are skipped

. Only GEO orbit are propagated

. Introducing the Differential evolution optimizer

. State vectors defined in keplerian coordinates

Indeed, at the end of this summer training, a list of possible future working had been composed,
with the main aim of introducing these requirements into SARROTO within the next internship
request, which correspond to this project itself. The list of first features required at the end of
the summer period has been drawn up below.

• Introducing new optimizers (i.e. Parametric Analysis, NLPQLP)

• Introducing new propagators (i.e. SAPO, PROPAG)
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• Introducing new constraints features such as

− Forbidden periods of manoeuvres

− Manoeuvres allowed only outside eclipses

− Manoueuvres allowed only inside stations visibilities

• Optimizing numbers of manoeuvres

• Selecting coordinate system between the listed ones:

− Cartesian coordinates

− Equinoctial coordinates

− Geodetic coordinates

Many progress have been made during these months, and many others have been planned for
next GMV’s development. All the features introduced in these months have been catalogued
below.

X Defining the target state vector in all the possible coordinates type, from keplerian to
geodetic ones.

X Possibility to choose the desired combination of target state vector elements: selecting
their numbers and type among the list which contains most of the existing coordinates.

X Developing and introducing into SARROTO the parametric analysis optimiser.

X Transforming the GOLEM propagator from an analytic to a quasi-analytic propagator.
Considering the manoeuvre effects separately from the first raised equations where these
ones were included inside themselves (i.e please refer to section 2.1.2).

X Introducing SAPO propagator into SARROTO. Firstly it has been necessary to adapt its
main code to general program usage.

X Possibility to optimise, in addiction to other parameters, the manoeuvres number which
can be considered no more just a fixed value.

X Giving the possibility to the client to define just a single searching interval for all the
manoeuvres which it would like to be optimised. This requirement has been introduced
both in case of fixed or variable number of manoeuvres.

Continuing, it is possible to find the ones that are still lacking, indicated with a × symbol.

× Defining the initial state vector in different coordinates systems, at the moment just kep-
lerian ones are implemented.

× Introducing numerical propagators such as Propag propagator, and others.

× Introducing other constraints features such the ones mentioned in previous optional con-
straints list.
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× Introducing NLPQLP optimiser.

× Executing Optimisation cases taking into account SAPO propagation with mean elements.

× Improving and enriching test phase looking for best solution in larger searching interval
with smaller step size.
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Conclusion

From the working point of view, this project has required considerable efforts due to the needing
to mix theoretical knowledge with the computational one. Indeed logic processes of devel-
opment have been used due to the necessity to coding with Fortran 90 language.It has to be
mentioned that each option implemented during the project evolution has came up day-by-day.
It has been a dynamic project, where ideas has been discusses step by step. The first initial plan
has been adapted following requirements coming up from the introduction of other tools, such
as the main propagators and optimizers.
Results show that it is possible, implementing the tool in reasonable way, obtaining the target
state vector with the defined tolerance values. These results can be obtained both using the Para-
metric analysis and Differential evolution optimiser, and their solution are quite equivalent.
Despite these great achievements, it has to be said that at the moment there are some limitations
which have been come up during tests execution. In particular the taken time of computation
when SAPO and Parametric analysis options are selected, which as it can be seen in Tab. 4.6
and appears clearly in Fig. 4.38, is the greater among all the possible choices. Clearly this is
a big disadvantage since SAPO results are the ones which best fit the client’s requirements in
terms of representing real case, considering more perturbations events.
On the other hand, as it has been possible to appreciate within the results chapter 4, GOPA com-
bination comes up with results, although not perfectly accurate, close to the expected. Therefore
a good option to reduce SAPA computational time may be using GOLEM, or other generic an-
alytic propagator, with PA in order to find a first approximate solution. Then the next step may
be executing the same test with SAPA looking for the best solution round the result obtained
with the analytic propagator. An other strategy which could be implemented might consist in
introducing a different optimizer such as NLPQLP, and to give as input to this last one the ap-
proximate results obtained with PA. This in order to avoid great execution time required for
higher optimization level.

SARROTO project is far away from being finished. It is born to be a great project, whose
main aim is involving many existing tools to satisfy every client requests. In fact, nowadays,
many flight dynamics problems requires specific software implementation in order to be re-
solved, tested and compared with similar past problems, producing waste of time and resources.
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Thanks to a project like the SARROTO one, all these different possible solutions could be per-
formed without the needing of moving from a tool to an other, simply selecting the desired
options.

Today SARROTO has not yet been designed to be sold to a specific user. The main aim is
to improve this solution in order to satisfy future real client requirements. This will allow to
make SARROTO a business product at the same level of previous GMV’s FDO products such
as focussuite interface, or propagators like PROPAG. To make it possible, other improvements
will be made and new interfaces will be added, as mentioned in the future work in chapter 5.
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Astrodynamics features

A.1 Two-Body Problem

In this section it will be illustrated the theory which characterises most of the flight dynamics
problems. In particular it is the start point for both the propagators mentioned and described
within this thesis. In fact the two body problem is one of the principal subject of the celestial
mechanics, describing, for example, the behaviour of a satellite orbiting around a planet, or two
stars orbiting each other. Many others similar examples which can be found commonly in nature
(i.e electrons around atomic nucleus) can be described through this theory. This problem is the
one which describes the mutual gravitational attraction between two bodies. These ones are
represented as two point masses, on which acts the mutual force of gravity. In order to solve the
main problem, the motion of these two bodies is considered mathematically equivalent to the
motion of a single body whose mass is obtained with the formula A.1 written below

µ =
m1m2

m1 +m2
(A.1)

The mathematical steps which have to be followed in order to achieve this problem solution
involve the conservation and the Newton’s third and second law usage. The force on the first
body, due to the interaction mentioned before, can be written as

F1,2 =−F1,2r̂ =−G
m1m2

r2 r̂ (A.2)

and recalling the Newton’s third law, it results

F1,2 =−F2,1 (A.3)

Once achieving these results, applying the Newton’s second law, and considering what it has
been written above it becomes

F1,2 = m1R̈1 (A.4)
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Figure A.1: Two body problem representation.

−G
m1m2

r2 r̂ = m1R̈1 (A.5)

and for Eq. A.5
m1R̈1 +m2R̈2 = 0 (A.6)

It has to be noted that Eq. A.5 can be written in the same way for the second body. So, mul-
tiply the Eq. A.5 by m1 and the similar one obtained for the second body by m1, computing
some mathematical steps, it is possible to get the second differential equation which governs the
motion of m2 with respect to m1

r̈ =
µ

r3r (A.7)

where µ is the gravitational parameter which in this case corresponds to

µ = G(m1 +m2) (A.8)

with G the Universal gravitational constant. This equation is solved considering two separated
body problems, with a trivial solution for the first one, while the approach for the second one
regards solving the motion of one particle in an external potential.

A.2 Satellite state representation

In order to define the state of a satellite in space it is necessary to refers to some variables
since a generic orbit needs six elements to be identified. When refers to Cartesian coordinates
type, these elements are position and velocity and theirs three-dimensional components, which
together represent the State Vector. On the other hand the state can be defined with a set of
parameters. The most common and used ones are called orbital, Keplerian or Classic elements of
the orbit. Apart from these, other different element sets have been developed such as equinoctial
and geodetic orbit elements.
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A.2.1 Keplerian orbital elements

To specify the complete motion of a satellite, Keplerian elements known also as osculating or
classic elements, can be utilised. These ones define the orbit in terms of scalar magnitude and
angular representations, called Euler’s angle. The mentioned orbital elements are the following:

• a, Semi-Major Axis, which defines the size of the orbit;

• e, Eccentricity, defining the shape of the orbit;

• i, Inclination, which indicates the orientation of the orbit respect to the Earth’s equator

• Ω, Right Ascension of the Ascending Node, clarifies the location of the ascending and
descending orbit locations with respect to the Earth’s equatorial plane;

• ω, Argument of Perigee, defines where the low point, perigee, of the orbit is with respect
to the Earth’s surface;

• θ, True Anomaly, specifies where the satellite is within the orbit with respect to perigee.

In some cases the semi major axis and the true anomaly can be substituted respectively with
angular momentum, h, and the mean anomaly, M. In Fig. A.2 these elements are shown. An
other element which can be defined when speaking about orbital elements is the mean motion
n, which describes the satellite’s average angular rate of the motion over the orbit, and can be
calculated as follows

n =
d
P

where d is the quantity of time in one day, in seconds, and P, the Earth’s orbital period calculated
as

P = 2π

√
a3

µ

A.2.2 Cartesian State Vector

The Cartesian Coordinates, also known as state vector, describe the position and motion of
satellites using respectively x, y, z andVx,Vy,Vz, which are components of velocity. In addition,
it is noteworthy, that for GMV’s coding library the Arc, which is the total amount of the state
vectors plus related time epoch along the orbit, coming out from the computation, as to be
described in Cartesian Coordinates.

A.2.3 Equinoctial orbital elements

The Equinoctial elements have been developed due to some singularities coming up from the
definition of special orbit cases using classical elements, mentioned above. This type of coor-
dinates uses the Earth’s center as origin and the plane of the satellite’s orbit as reference plane.
These type elements are the following:
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Figure A.2: Classical orbit elements

• a, Semi-major axis, defining the orbit size, same definition of the Keplerian semi-major
axis;

• h, k, two elements which describes the shape of the satellite’s orbit and the position of
perigee, defined as components of the eccentricity vector;

• p, q, specifies the orientation of the satellite’s orbit plane, defined as components of the
ascending node vectors;

• λ, the Mean Longitude, specifies a satellite’s position within its orbit at epoch and equals
the sum of the classical Right Ascension of the Ascending Node, Argument of Perigee,
and Mean Anomaly.

Actually there are two sets of equinoctial orbital elements: the direct set and the retrograde one
which can be applied respectively to direct and retrograde satellites even if, for non-equatorial
satellites, the direct one can be used for retrograde satellites and vice-versa. On the other hand,
for equatorial satellites, the element set has to be accurately chosen in order to avoid singulari-
ties, in fact for equatorial satellites in case of direct elements

lim
i→π

√
p2 +q2 = ∞

while for retrograde ones
lim
i→0

√
p2 +q2 = ∞
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Figure A.3: Geodetic coordinate type system

A.2.4 Geodetic coordinate system

The geodetic coordinate system, also known as geodetic datum, is composed from the following
parameters

• Altitude, measured along an outward normal to the surface of the reference ellipsoid;

• Latitude, which is the angle between the normal to the reference ellipsoid and the equato-
rial plane;

• Longitude, which corresponds to the angle between the projection of the position vector
in the equatorial plane and the prime meridian

Differently from the other coordinate system, components taken into account are just three. In
fact the other three correspond to the rate of change of these parameters but are not considered
in these calculations.

A.3 Coordinates transformations

A.3.1 Conversion from Keplerian elements to Cartesian Coordinates

The algorithm used to convert Keplerian elements in order to obtain the Cartesian State vector
is the following:

1. Compute Mean Anomaly using the mean motion parameter seen before and difference
between epoch and initial time

M = n · (t−T )
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2. Evaluate the Eccentric Anomaly solving the Kepler’s equation with an appropriate method
numerically

M = EA− e · sinEA

3. Calculate true anomaly

tan
θ

2
=

√
1+ e
1− e

tan
EA
2

4. Compute the radius, r, the distance to the central body, using the eccentric anomaly

r = a · (1− ecosEA)

5. Obtain the position and velocity vector, respectively o and ȯ in the orbital frame

o(t) = r

cosθ

sinθ

0

 ȯ(t) =
√

µa
r

 −sinEA√
1− e2 cosEA

0


6. Convert o and ȯ in the orbital frame to the inertial frame, respectively, r and ṙ

r(t) =

 ox(cosω cosΩ− sinω cos isinΩ)−oy(sinω cosΩ+ cosω cos isinΩ)
ox(cosω sinΩ+ sinω cos icosΩ)+oy(−sinω sinΩ+ cosω cos icosΩ)

ox(sinω sin i)+oy(cosω sin i)



ṙ(t) =

 ȯx(cosω cosΩ− sinω cos isinΩ)− ȯy(sinω cosΩ+ cosω cos isinΩ)
ȯx(cosω sinΩ+ sinω cos icosΩ)+ ȯy(−sinω sinΩ+ cosω cos icosΩ)

ȯx(sinω sin i)+oy(cosω sin i)


A.3.2 Conversion from Keplerian elements to Equinoctial Coordinates

As said before, it can be useful to convert Keplerian elements to Equinoctial coordinates type. It
is sufficient to know keplerian elements a, e, i,Ω, ω, θ values in order to execute the analytic
transformation. These quantities can be obtained with the following mathematical expression

h = e · sin ω̃

k = e · cos ω̃

p =

[
tan
(

i
2

)]I

· sin(IΩ)

q =

[
tan
(

i
2

)]I

· cos(IΩ)

Λ = M+ ω̃

where ω̃ = ω + IΩ. The quantity I is called for retrograde factor and has two values

I =
{

+1 for the direct equinoctial elements
−1 for the retrograde equinoctial elements
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A.3.3 Conversion from Keplerian elements to Geodetic Coordinates

Converting keplerian elements to Geodetic ones requires more steps than other transformation
type. In fact an intermediate step which involves Cartesian coordinates it is necessary. The
transformation process is:

Keplerian −→ Cartesian−→ Geodetic

It has to be mentioned that in addition to this it is required a reference frame transformation
from an inertial one to Earth-Fixed. The first transformation from Keplerian to Cartesian has
been mentioned in previous paragraph. So assuming known Cartesian values, the second trans-
formation which interests the conversion between Cartesian and geodetic is cumbersome and
requires different mathematical steps involved computational methods of resolutions. Among
the three variables which are obtained the simplest one to evaluate is the geodetic longitude:

λ = arctan
xG

yG

The other two variables are calculated utilising the Newton’s iteration to obtain the correct result.
At first it is necessary to find the projection of a point h distance away on the reference ellipsoid.
The mathematical steps which have to be evaluated are the following, where pE represents the
distance shows in the simplified meridian ellipse in Fig. A.5.

pE =
√

x2
E + y2

E

zE =
b2

a2 N · sinφ

Through some mathematical steps, which will be not investigated, it is possible to get the system
of nonlinear equations which has as main argument the variable zE , pE .{

f1(pE ,zE) = (pE − pG)HzE +(zE − zG)GpE = 0
f2(pE ,zE) = Gp2

E +Hz2
E −K = 0

This system can be solved using the Newton’s method, which is a iterative process necessary
to obtain solution when a system of nonlinear equation is present. Once calculated these two
values, the second step is calculating the latitude and the height, respectively indicated as φ and
h. The latitude can be obtained from the following equation

tanφ =
a2zE

b2 pE
= H2 zE

pE
(A.9)

and the height is obtained utilising the Euclidean formula which calculates the distance between
two points.

h =
√
(pE − pG)2 +(zE − zG)2 (A.10)

The Eq. A.10 is valid when (pG + |zG|) < (pE + |zE |), if this condition is not verified then
h =−h.
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Figure A.4: Geodetic coordinates for ellipsoid system

Figure A.5: Geodetic conversion for meriadian ellipsoid
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Orbital Manoeuvres Definition

Speaking about geostationary spacecraft it is necessary to discuss about orbit manoeuvres. Within
the thesis, the satellite increment of velocity due to manoeuvre event has been mentioned many
times.
First of all, manoeuvres in GEO orbit are used in different situations:

• to allow the insertion of the satellite in the geostationary orbit. This process is called
station acquisition ;

• to contrast perturbations which act on the satellite during its life and which lead to a non
geostationary orbit, the Station Keeping manoeuvre;

• to manoeuvre the satellite in a orbit fewer kilometres under or above the geostationary one
at the end of its life. This manoeuvre is defining Re-orbiting process.

For a satellite in a geostationary orbit thrusts can be performed both in the orthogonal direction
to orbit plane and in the tangential direction, but it has to be said that thrusts in the radial direc-
tion is rarely used. In Fig.B.1 it is represented how velocity components of spacecraft during a
manoeuvre can be splitted.
In particular the two manoeuvres which commonly take place are the orthogonal and tangential
one. The first one is named inclination or North-South manoeuvre, and it is a out-of-lane thrust.
The other one is known as west-east or longitude manoeuvre, also called along-track thrust. This
is the manouevre type which has been mentioned in this project and to which usually refers when
speaking about transference between two coplanar orbit.
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Figure B.1: Thrust Manoeuvre with velocity components with respect to the orbital plane.

In fact these manoeuvres effects can be resumed as follows:

• The inclination manoeuvre is the one used when a changing in the plane of the orbit
is required. In mathematical terms means that the inclination vector and the keplerian
elements i, Ω can be changed with this manoeuvre type.
A classical representation of this manouevre can be found in Fig. B.2

Figure B.2: North-South Thrust Manoeuvre.

• The East-West Manoeuvre is used when a change in the longitude drift and orbital eccen-
tricity is required. As previously mentioned, this is the type of manoeuvre which is used
when a coplanar orbit would be obtained. This manoeuvre allows changes in semi-major
axis and eccentricity orbital values. In particular combination of two of these, defined as a
multiple in-plane thrust sequence, is performed when drift rate has to be changed without
introducing changes in the eccentricity vector. This multiple sequence is also called two-
burn longitude manoeuvre. Performing subsequently two tangential manoeuvres like the
ones above described allows to obtain a transfer from a circular orbit to an other circular
orbit with major or minor height. This type of multiple set of manoeuvres, as shown in
Fig. B.3 is commonly known as Hohmann transfer, and it will be better explained in next
section.
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Figure B.3: Multiple East-West Thrust Manoeuvres.

B.1 Hohmann transfers

One of the most required mathematical solution is how to transfer from one orbit to an other one
or to a interplanetary trajectory. In order to compute this manoeuvre it is necessary to assume
that spacecraft velocity changes. This is done generating an impulse, assumed to be instanta-
neous, with the spacecraft rockets. The main aim, when performing a manoeuvre, is to achieve
the desired position with the minimum ∆V , so as the better energy efficiency.

In this sense, one of the existing most efficient transferring manoeuvre is the Hohmann trans-
fer, developed by Hohmann in 1925. It is a two-impulse manoeuvre which allows transferring
a spacecraft between two coplanar circular orbit which share a common focus. This can be de-
fined as an elliptical orbit, represented in Fig.B.4 with red color, tangent to both circular orbits.
Actually, it is known that real orbit are not perfectly circular. For this is reason it necessary to
generalize the definition and enrich this last one introducing transfer manoeuvre between ellip-
tical orbits that are coaxiales. This transference works in such a way that starting from an initial
point, defined in Fig. B.4 with 1st burn, it is required an increment of velocity ∆vA to boost the
vehicle in the elliptical trajectory. Once the point defined as 2st burn is achieved, an other veloc-
ity increment ∆vB is required to place the spacecraft in this second orbit. The total ∆v necessary
to perform this transference is obtained added the first ∆vA to the second one.
In case of circular orbit the constant orbital speed can be calculated as follows in Eq. B.1

v =
√

µEarth

Radius
(B.1)

Within this thesis it is assumed that the first orbit has a radius which is inferior to the geostation-
ary orbit height. The radius itself corresponds to the satellite’s initial position represented by the
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Figure B.4: Hohmann transfers model.

semi-major axis value and renamed as RISV

V<geo =

√
µEarth

RISV
(B.2)

where RISV = SMAISV +RE = 42134 km. Computing this calculation it results a velocity equal
to ∆V = 0.55 m/s. It is expected to obtain a value from the optimisation which approximately is
similar to this, and as it can be verified in chapter 4 this requirement is checked.
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focussuite GMV’s software

focussuite can be resumed in few words as the ultimate flight dynamics solution for satellite
operation, as described in [17]. It arises from the GMV’s desired of satisfying customers needs
and requirements as it regards the flight dynamics field of interest. Its functionalities can be
found listened above:

. Keen on obtaining solutions when multi-mission, multi-satellite flight dynamics prob-
lems for flight dynamics satellite control are setted, offering reliability, flexibility and user
friendliness.

. Offering a wide collection of plug-and-play components which give the customer the pos-
sibility to satisfy his requests.

. Providing an opened framework which allows other GMV’s products development and
evolution.

. Coming up with full life-cycle solution in the fields of satellite’s dynamic operations
thanks to its library of proven missions.

focussuite major goals are the ones obtained thanks to the possibility to reuse existing software,
designing with a friendly client architecture, a database driven system, a graphical interface with
high capabilities, portability which translated means different platform (i.e. Windows, UNIX)
implementation and others which can be read in the GMV’s focussuite web page as in [17].
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Differential Evolution Optimiser

Optimization has always been one of the major tasks in the scientific field of expertise. The
main objective pursued by the scientific community is optimising certain properties of a system
by pertinently choosing the system parameters. It is usual representing these parameters in a
vector.
In particular this optimiser has born from the attempt of Ken Price, one of the member of the
International Computer Science Institute, to solve the Chebychev Polynomial fitting Problem.
The first problem to the differential evolution optimiser theory is to define an objective function
which can take into account all the problem constraints. Actually an optimiser, to be called with
such name, has to accomplish some requirements:

X Handling non-differentiable, nonlinear and multimodal cost functions.

X Providing convergence properties

X Easy to use

The DE satisfies all these requests and in particular can be defined as a parallel direct search
method which utilises NP parameter vectors as population for each generation G.

xi,G, i = 1,2, ...,NP−1 (D.1)

Initial population parameters can be selected arbitrary. Indeed the working method of this opti-
miser is based on computing trial parameters vector. These new parameter vectors are generated
by adding a weighted difference vector between two population members to a third member.
This mathematical step is called mutation. This computed vector is compared with the previous
one and if the objective function acquires minor value with respect to the other, this last is over-
lapped with the new one. This process is computed for each generation in order to save the best
vector and check its value absolutely.
A wide number of strategies related to this optimiser algorithm have been developed, but among
all of them the two most promising schemes for this optimiser will be illustrated in next lines in
greater detail.
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. Scheme 1
The new trial vector is generated according to formula (D.2)

~v =~xr1,G +F · (~xr2,G−~xr3,G) (D.2)

where r1,r2,r3 ∈ [0, NP−1] integer and mutually different, with F > 0. F is a real and
constant factor which controls the amplification of the factor difference variation presents
into commas. Once that these values have been calculated, next step takes the name of
crossover. It consists in performing the crossover operation, applying this one to each pair
of the target vector xi,G and its corresponding mutant vector vi,G to generate a trial vector
ui,G. The most known crossover operation is the binomial one, which can be written as

u j
i,G =

{
v j f or j = 〈n〉D,〈n+1〉D...,〈n+L−1〉D
x j

i,G f or all other j ∈ [0,D−1]

where the acute brackets 〈〉D denotes the module function with modulus D.

. Scheme 2
This second scheme works at the same way of the first one but the vector~v is calculating
according to

~v =~xr1,G +λ · (~xbest,G−~xi,G)+F · (~xr2,G−~xr3,G) (D.3)

simply introducing an additional control variable λ . This last mentioned variable is a mean
to take into account the calculated current best vector~xbest,G. The steps which follows this
first are the same of the previous said scheme 1.
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PROPAG satellite’s orbit propagator

Propag is the last generation numerical propagator developed in GMV’s FDO space section. Its
main objective is computing the evolution of an orbit forward and backward in time. Manoeu-
vres can be implemented in this software, both impulsive and long ones. The main time frame
selected for this propagator is J2000.
As said countless time, propagation is one of the basis of all the satellite’s flight dynamics.
In particular propagating an orbit means to solve and integrate the equation of motions. This
propagator implements an 8th-order Adams-Bashforth/Adams-Moulton prediction- correction
method to numerically solve a system of n ordinary first order differential equations with initial
values. The main equations which have to be integrated are the following

dy1

dx
= f1 (x,y1,y2, ....,yn) ; y1(x0) = y1

0 (E.1)

dy2

dx
= f2 (x,y1,y2, ....,yn) ; y2(x0) = y2

0 (E.2)

..... (E.3)
dyn

dx
= f2 (x,y1,y2, ....,yn) ; yn(x0) = yn

0 (E.4)

where xi is the independent variable and yi is the dependent one. In order to ingrate these
equations, which means evaluate yi in successive points, it is necessary to start from an initial
value that in this case is x0. So the system can be rewritten as

dy
dx

= f (x,y, ....) ; y(x0) = y0 (E.5)

The predictor-corrector method previously mentioned is based on the assumption that the value
yi+1 is predicted using the previous 9 points. Then introducing the first 8 points with this last
one in a specific formula the predicted value is corrected, and this process is executed until the
convergence is achieved. The differential equations are integrated using a single-step 8th-order
Runge-Kutta method.
This propagator can implement real cases due to the presence of different perturbation models
which have been introduced during its development. The force models considered are listed
above:
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X Solar radiation pressure

X Atmospheric drag

X Perturbation due to Earth Gravity Field

X Ocean Tides Perturbation

X Solid Tides Perturbation

X J2/Moon Interaction

X Relativistic effects

X Third body gravitational force

In order to clarify readers ideas few words about these ones will be say. Atmospheric drag and
solar pressure radiation are quite known: the first one is produced by the interaction of electro-
magnetic particles on the main vehicle and the second one is due to incident gas molecules on
the satellite. Ocean and solid tides are phenomena which originate due to gravitational attraction
of Moon and Sun. These tidal perturbations can be quite significant, reaching several seconds
and so for precise computation have to be taken into account. The third body gravitational force
is the acceleration on a body vehicle which orbits around the Earth, produced by the presence
of Moon and Sun. The interaction with the Moon can not be studied with the three-body per-
turbation equation due to its proximity to the Earth, and perturbation value could be affected by
the non-spherical mass distribution. Relativistic effects are the ones related to curvature in time
space which can cause heavy body acceleration.
In next lines panels configuration of PROPAG’s propagator will be illustrated.

I PROPAG main option panel
In this section, likely it has been done for SAPO and GOLEM, main options are config-
ured. In Fig. E.1, it is shown how it appears in the GUI tool.
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Figure E.1: PROPAG main options panel.

I PROPAG perturbation parameter panel
This orbiter propagator could be configured so that real cases, with all effects which can
perturb a satellite in space, can be analyzed. A representation of that can be seen in Fig.
E.2. It is possible to see that the non-spherical Earth effects are considering thanks to the
first two options present in the list of Fig. E.2. With the Degree of gravity field and Order
of gravity field refers to the zonal harmonic polynomials used for definition of the Earth
geopotential field.

141



APPENDIX E. PROPAG SATELLITE’S ORBIT PROPAGATOR

Figure E.2: PROPAG perturbations panel. Gravitational field and solar radiation pressure perturbation are just
considering and signed with a check symbol.
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I PROPAG parameters
In this last significant panel, parameters are specified. In particular the initial state vector
with all the perturbations constant which user would like to use, have to be introduced in
this panel.

Figure E.3: PROPAG parameters panel.

143



Appendix F

Semi-analytic satellite theory for SAPO
implementation

In this section of appendices, it will be described in grater detail the semi-analytic theory. A first
approximated description has been made in 2.1.1. In next paragraphs this theory will be anal-
ysed focusing in all the mathematical aspects, from the equations to the operators used, which
leads to the development of SAPO propagator.

F.1 First Aspects

The semi-analytic theory is used to represent the state of a satellite through the usage of the
equinoctial elements, defined in appendix section A.2.3. Among the six, the first five are slowly
varying in time while the last one, which corresponds to mean longitude, varies rapidly. One of
the main characteristics of this theory is the difference between mean and osculating elements.
Osculating elements, as already mentioned, describe the orbit followed by a body when pertur-
bations are suddenly turned off, just leaving the effect of the central body. On the contrary the
mean elements are the ones used to define an orbit which varies in time.
In particular this distinctions is important in order to apply the equation F.1, where the osculating
elements are obtained as the sum of the mean ones plus a fast periodic 2π term which is referred
to the mean longitude component

âi = ai +η(ai,a2, ...,a6, t) (F.1)

The subscript i refers to the six elements defined in the state vector, the term âi refers to the
osculating elements and the terms âi to the mean ones. The behaviour of these last can be
explained using the differential equations written below in Eq. F.2, where letter n indicates the
mean motion, ∂i6 is the Kronecker delta (this quantity can be described as ∂i6 = 0 if i 6= 6 and
in the other case, ∂66, it is equal to 1) and t represents time. The term Ai describes the temporal
changes of the mean elements.

dai

dt
= n∂i6 +Ai(ai,a2, ..a5, t) (F.2)
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The short periodic variations, on the other hand, can be described thanks to the Fourier series

ηi =
∞

∑
j=1

[
B j

i (a1, ..,a6, t)sin jλ +C j
i (a1, ..,a6, t)cos jλ

]
(F.3)

where λ is the mean longitude, as described in appendix section A.2.3.
Among all the possible coordinate system, the equinoctial ones have been selected to develop
this theory since they are nonsingular for all orbits to which the generalised method of averag-
ing, used in this theory, is applied. Clearly, in order to be appreciated in all the coordinates, this
theory can be used making transformation from the equinoctial components to the others.
In appendix section A.3, it has been described transformation process used to convert keplerian
into other coordinates system. These conversions have been necessary to develop the GOLEM
propagator.
In this case, the mathematical steps made to transform the equinoctial will not be discussed.
Interested readers can find more information in [7].
As seen in 2.1.1, the VOP equations, Variation-of-Parameters, are the result of the introduction
of the satellite orbit elements rates of change, obtained as function of themselves. This transfor-
mation has been necessary since this is a requirement of the generalised method of averaging.

F.2 Mathematical Operators

In this section it will be described, in general terms, mathematical operators useful in order to
solve the VOP. As already mentioned in section 2.1.1, this method has been described making
usage of the Cartesian elements, in the form which takes the name of Lagrangian VOP equa-
tions.
As said in the previously cited section 2.1.1, the SAPO propagator uses the equinoctial elements
to compute the desired results. For this reason, the Poisson brackets have to be introduced into
this context, since they are necessary to describe how the variation of the orbital parameters are
obtained.
Clearly, this mathematical operator makes usage of partial derivatives applied to equinoctial el-
ements with respect to position and velocity. The fisrt partial derivatives, the ones with respect
to position can be described as follows
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On the other hand, the ones calculated with respect to velocity are
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n2a
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AB
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(F.5)

where the A, B and C terms present in the equations can be calculated using mathematical
relations written below

A = na2 =
√

µa

B =
√

1−h2− k2

C = 1+ p2 +q2

(F.6)

It has to be mentioned that X and Y are the components which describe the position of the
satellite in the equinoctial reference frame while their derivative, Ẋ and Ẏ , are the components
of the velocity. These ones can be calculated as follows:
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• the position derivative
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• the velocity derivative
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Poisson demonstrated that it is possible to apply the method of variation of the parameters
to the potential contribution of the disturbance using the following expression,

dai

dt
=−

6

∑
j=1

(ai,a j)
∂R
∂a j

(F.9)

The term (ai,a j) is named Poisson brackets. The general expression of this operator is
defined as,

(ai,a j) =
∂ai

∂~r
∂a j

∂~̇r
− ∂ai

∂~̇r
∂a j

∂~r
(F.10)

Poisson brackets are independent of time and it is immediately evident that,

(ai,ai) = 0
(ai,a j) = −(a j,ai)

(F.11)

Therefore, only fifteen Poisson Brackets are independent. Among all the fifteen, four are
equal to zero, while the others acquire specific values:
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At this point it could be useful to introduce the direction cosines, (α,β ,γ), although they can
not be considered as mathematical operators, they will be discussed in this section. They are
commonly used to describe the conservative perturbations and can be calculating as follows

α = zB · f

β = zB ·g
γ = zB ·w

(F.13)

where (f, g, w) are the basis vectors of the equinoctial reference frame and zB is the vector, with
unitary module, whose direction goes from the centre of mass to the third body.
It has to be noticed that these cosines are not independent and in particular their relationship is

α
2 +β

2 + γ
2 = 1 (F.14)

These variables, at the same way of the basis vector, are defined in function of p and q, but in
addition these first depend on time since zB depends on it.
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F.3 Equation of Motion: from Cartesian to VOP

As it has already been mentioned in Sec. 2.1.1 speaking about theory behind the SAPO propa-
gator, the Cartesian equation of motion which describes the movement of a satellite in an inertial
coordinates system is the following

~̈r =
−µ

r3 ~r+~q+∇R (F.15)

In order to find a solution for this problem it is necessary to refer to the generalised method
of averaging, as it will be described in next section. Before computing this step a transforma-
tion has to take place, from the Cartesian equation of motion to VOP, variation of parameters.
The set of equations which come up from this conversion is represented in F.16, where it is
reminded that the terms (a1, ...,a6) = (a,h,k, p,q,λ ) indicate osculating equinoctial elements.
More information about that can be found in [16] and [22].

ȧi = nδi6 +
∂ai

∂~r
~q−

6

∑
j=1

(ai,a j)
∂R

∂a j
(F.16)

This equation is composed from three terms which define the rate of change of this orbital
elements.

• The first term is the one which concerns to the two-body problem

ȧi = nδi6 (F.17)

• The second one refers to the Gaussian or nonconservative contribution to equation

ȧi =
∂ai

∂~r
~q (F.18)

• The third, and last one, the Lagrangian or conservative part which can be written as follows

ȧi =−
6

∑
j=1

(ai,a j)
∂R

∂a j
(F.19)

The mathematical operators which appear in the equations written above are:

◦ The Kronecker delta defined as δi6 whose values are 0 if i 6= 6, and 1 if i = 6.

◦ The partial derivative ∂ai
∂~r

◦ The Poisson brackets (ai,a j), described in previous section.

◦ The term n =
√

µ

a3 represents the Kepler mean motion.

◦ ṙ = dr
dt indicates the velocity vector.
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Focusing on the last of these three terms, the Lagrangian ones, it includes the partial derivatives
of the disturbing function R with respect to p and q. Despite the dependence to these variables,
it is more functional to define these derivatives using the direction cosines, mentioned in section
related to mathematical operators, together with the following terms (a,h,k,λ ). The Chain Rule
is the mean thanks to which it is possible to evaluate the partial derivatives of the disturbing
function R with respect to p and q. It results:
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∂ p
+

∂R

∂γ
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∂ p

(F.20)

where it may be convinient to describe the cross-derivative operator as below

R,αβ = α
∂R

∂β
−β

∂R

∂α
(F.21)

Referring to the variable A,B, C seen in the previous section, all these procedures lead to
the following equation which can be resumes as the Lagrangian part of the VOP equations of
motion
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(F.22)

Similarly, one can obtain the Gauss form of VOP equations.

F.4 Generalized Averaging Equations

The Generalized Method of Averaging is applied to the VOP equations of motion in order to
separate these ones into two parts:

• A short-periodic part which can be integrated analytically,

150



APPENDIX F. SEMI-ANALYTIC SATELLITE THEORY FOR SAPO IMPLEMENTATION

• A slowly-varying part which should be integrated numerically.

A simply overview of this approach will be discussed in these lines, leaving the readers find
more information in [10] and [22]. First of all it has to be assumed that the osculating elements,
indicated as âi, are obtained from the sum of the mean elements ai and a short period variation of
these last ones indicated as ηi. These sum can be represented using the following mathematical
relation

âi = ai +
∞

∑
j=1

ε
j
ηi, j(a,h,k, p,q,λ , t) (F.23)

The quantity ε symbolises a little short periodic variation of order j in element i. The magni-
tude ε is named the small parameter and is the main variational parameter fundamental in order
to obtain the Equations of Averaging.

There are some requirements in defining the short periodic variations, necessary to allow
defining this theory. One of these requirements, is that these variations have to include all of
the high-frequency components in the osculating elements, which means that the mean elements
should vary slowly with time. These demands can be mathematically translated making usage
of the following set of inequalities:

1
n

∣∣∣∣da
dt

∣∣∣∣� a (F.24)

1
n

∣∣∣∣dai

dt
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1
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dt
−n
∣∣∣∣� 1 (F.26)

∆
k+1
∣∣∣∣dk+1a

dtk+1

∣∣∣∣� a (F.27)

∆
k+1
∣∣∣∣dk+1ai

dtk+1

∣∣∣∣� 1 for i = 2,3,4,5,6 (F.28)

The inequalities mentioned above ensure that the second-order effects will be small. The same
will be valid for the integrator errors. Once these preliminaries have been discussed it is possible
to rewrite the VOP equation of motion as presented above

dâi

dt
' n(â)δi6 + ε

[
∂ âi

∂~r
~q−

6

∑
j=1

(âi, â j)
∂R
∂ â j

]
(F.29)

and as follows
dâi

dt
' n(â)δi6 + εFi(â, ĥ, k̂, p̂, q̂, λ̂ , t) (F.30)
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dai

dt
= n(a)δi6 + εAi(a,h,k, p,q, t) (F.31)

F.5 Latest SST comments

More and more can be said about this method. Information about short-periodic variations, con-
versions method, truncation algorithms which are included in the SST, Semi-analytic Satellite
Theory, can be found in [7]. Anyway, it is not of this thesis interest to focus in greater detail on
the mathematical aspects which involves the SST theory. A simple overview has been discussed
to give reader a general idea of how can be complex to implement this satellite propagation
theory and to leave to the braver one the assignment of investigating fully.

152



Appendix G

General Perturbation Theory

Astronomically speaking, perturbation refers to a wide class of phenomena which can be di-
vided in two major group which are the secular perturbations, and on opposite the periodic
ones. General definition of perturbation refers to forces, generated by other massive bodies, or
resistance due to atmosphere, acting on a massive body along is motion. When perturbations are
considered in analyzing a general situation, solutions can be obtained only for two-body prob-
lem. In case of more than two bodies, or body’s irregular shapes, analytic solution does not exist.

Secular contributions refer to perturbation which varies over time continuously. The exact
definition can be described as the cumulative effect on a body moving along an orbit, which
causes the growing or decrease of an orbital elements. Among all, it has to be mentioned the
gravitational attractions of the planets due to whom secular changes in the longitude of the as-
cending node, longitude of perihelion, and times of perihelion passage can occur.

On the other hand periodic perturbations are the ones which repeats over the course of a
time frame of interest, or in other terms that periodically change their direction. These devia-
tions which can occur during the satellite or planet motion on its orbit general do not exceed a
century.
In particular it is possible that these last ones superpose to the secular perturbation as, for ex-
ample, in the case of the perturbation of the longitude of the node. Indeed it is demonstrated by
the fact that the rate of secular regression is not constant in time. An other example of short per-
turbation is the one related to the distributions of continents and oceans, and also to the varying
mass densities in Earth’s mantle. All these phenomena cause a deviation of Earth’s gravitational
force field from the axial symmetry. As consequence short period perturbation of low amplitude
for satellites positioned near Earth may be generated.
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Appendix H

FORTRAN 90

Fortran, which stands for Formula Translation, is a high-level programming language used in
the field of numeric computation and scientific computing. It is used in many fields of expertise.
Among them can be mentioned some such as numerical weather prediction, finite element anal-
ysis, computational fluid dynamics, computational physics, crystallography and computational
chemistry.
The first Fortran compiler has been devolved in 1957 at IBM, International Business Machines
Corporation, a major US company dedicated to informatics and technology. During the years
different versions of this scientific language have been released until the 1990 when the one of
the latest version, inclusive of new features, have been updated. Actually, a revised version for
Fortran 90 called Fortran 95, has been introduced in 1997. It can be considered equal to the
previous one with some resolved issues which affected the 90 version.
It has to be said that Fortran 90 main goals, in opposite to the Fortran 77 version, have been
the introduction of modular structures which make the codification easier and less vulnerable to
data storage, and the creation of pointers which allow manipulation of dynamic structures. In
2003 a significant revisited version has been developed with respect to Fortran 95. Some smaller
changes have been introduced in 2008 and 2015. Fortran main features can be resumed in the
list present above:

X A scientific language easy to learn.

X Simple way to express mathematics functions, even the more complex ones.

X Problem orientated language.

X Possibility to control storage allocation.
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