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Summary

The typical environment of an asteroid in the solar system is simulated by
referring to 433 Eros and the control methods so far developed by the academic
community are studied to calculate soft landing trajectories; the methods of
artificial intelligence are further analyzed, analyzing how these can be integrated
into the solution of the problem. Finally, the application of a deep learning
method not yet used to solve the problem is proposed.
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Introduction

Asteroids are small to medium-sized astral bodies orbiting in the solar system.
The attention that has been placed on them has been in the last decades, and
it is still, in continuous growth, because of a series of motivations that interest
a big number of jobs:

• asteroids represent a testimony of the evolution of the solar system, as
remains of the planetary formation that occurred at the genesis of the solar
system;

• asteroids are rich in raw materials that can be recovered (asteroid mining)
or used as building material directly in space (ISRU);

• asteroids could be vectors of microorganisms or biological precursors;

• asteroids could threaten life on Earth because of the relative high speed, so
a study of their behavior is a must to understand how to behave in the case
of an impact (although the probability is minimal despite being in large
numbers).

Whatever the motivation, landing on asteroids is a subject treated in aerospace
because of its modernity. There are few missions that have successfully ended
with a controlled landing: the following cases are mentioned.

1. NEAR Shoemaker, who landed on the asteroid Eros 433 in 2001. The
mission was not designed to end with a landing, which was however possible
thanks to the efforts of NASA engineers;

2. Hayabusa, the Japanese JAXA probe who successfully landed on the aster-
oid Itokawa;

3. Rosetta, whose lander Philae managed to land on the comet Churyumov-
Gerasimenko (despite some initial rebounds).
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Teodonio Domenico et al. Autonomous landing on asteroids

A further impetus to the study of this matter is the enormous impact that
artificial intelligence algorithms are having on everyday life on Earth. The im-
pact is primarily due to the fact that, thanks to these algorithms, the calculators
are able to make choices independently, without being explicitly programmed
to do so, in order to achieve a specific goal. Particular emphasis was placed on
Reinforcement Learning, a branch of artificial intelligence, and artificial neural
networks.

The rest of the thesis is organized into three main parts:

1. in the first part the methods used to model the dynamics in an asteroidal
environment and the relative numerical implementation will be treated,
which proved to be non-trivial because of the high computational load;

2. in the second part we will focus on the theory of robust control and the
methods derived from this theory able to obtain a controller used for nav-
igation around the body (with implementation and results);

3. the third part will focus on the study of artificial intelligence, dealing with
neural networks, the Markov Decision Process, the applications used in
the state of the art in the Reinforcement Learning field and possible re-
cently developed algorithms able to solve the problem. It is also proposed
an algorithm that is theoretically able to converge to an optimal solution
(exploiting however an enormous computational capacity), derived in turn
from Reinforcement Learning.
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Part I

Asteroidal environment
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Chapter 1

Study of the environment
and environmental models

The main effects that characterize the dynamics of a body around an asteroid
will be discussed in this chapter. The effects discussed are variable according to
the asteroid, its position in the solar system and its inertial conditions; not all
the effects will be implemented, however.

In particular, in the next sections will be treated and studied:

• methods to evaluate the gravity in whichever point around the body

• the solar radiation pressure (SRP)

• the irregularities in the asteroid density that general methods are not able
to catch

• the gravitational perturbation of the Sun, predominant with respect to
other perturbations, and

• the gravitational perturbation of other bodies.

Problems related to systems with more than one body will not be treated. In
fact, some asteroid systems are doubles (a well-known example is that of the
Didymos system 65803, in which a satellite asteroid, informally called Didy-
moon, is orbiting around the main body). Systems of this type could not be
treated roughly with the problem of the three narrow circular bodies: a detailed
analysis would be necessary to capture the effects of the asymmetric fields, but
it would be beyond the scope of this thesis.
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1.1 Gravity of the asteroid
The first effect that affects the dynamics is, of course, gravity. Each asteroid
has its own gravitational field, like any body with mass. While that of the
planets and the Sun can be approximated to that generated by a homogeneous
sphere (in turn approximated to that of a point mass, by symmetry) to which
irregularities can be added, the gravitational field of the asteroids is in itself
extremely irregular due to their mass distribution in space. Their shape is
far from being a sphere, and therefore the well-known Newton’s formula for
calculating the gravity of a point-like mass in space can not be used without
making significant errors.

Figure 1.1: Close-up photo of 433 Eros. One notices the high irregularity of the
body, which all may seem except a sphere. Courtesy: NASA.

The shape of the asteroids in turn is approximated because of the great dis-
tance between telescopes and the body and of the resolution that characterizes
the observation systems, insufficient to obtain a precise shape. For some of
them, however, the form is very detailed due to the fact that some missions
have performed fly-bys, or close observations even more in-depth than a fly-by.
These asteroids will be considered in the subsequent implementation, due to
their detail.

The methods that follow can be classified into low-fidelity methods, which ap-
proximate the shape or derive coefficients to approximate with standard shapes,
and high-fidelity methods, which take advantage of the actual geometry of the
body.

16



1 – Study of the environment and environmental models

1.1.1 First approximation: triaxial ellipsoid
For first approximation studies in which the body shape is not available, it is
possible to approximate the asteroid to a truncated ellipsoid and evaluate the
gravity generated by that body. The method is a quite general low-fidelity and
the data can also be obtained starting from ground observations, albeit with a
large margin of error.

Figure 1.2: Triaxial ellipsoid.

We assume as given the dimensions of the three semi-axes a, b and c, and
the body mass m. These data can be obtained from observations from Earth or
from space telescopes. The gravitational parameter is computed as follows:

µ = mG (1.1)

with G = 6.67 · 10−11 Nm2/kg2. From this parameter it is possible to evaluate
the gravitational potential of a homogeneous triaxial ellipsoid. The calculation
is attributed to [1].

V (x, y, z) = 3
4µ

∞∫
κ0

(
1− x2

a2 − κ
− y2

b2 − κ
− z2

c2 − κ

)
dκ√

(a2 + κ) (b2 + κ) (c2 + κ)
(1.2)

where κ0 è the maximum root of the confocal ellipsoid defined by

C(κ) = x2

a2 + k
+ y2

b2 + k
+ z2

c2 + k
− 1 = 0 (1.3)

To find out more about the origin of the above equations, we quote [2].
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There are current methods that exploit the elliptical integrals of Legendre
(or, more modernly, Carlson) to solve the equations in a more elegant way,
directly deriving the gravity in terms of acceleration rather than potential. For
example, we mention [3], which provides the following set of equations (the
terms in brackets are arguments of the RD function)

gx = −µxRD
(
b2 + κ0 , c

2 + κ0 , a
2 + κ0

)
gy = −µyRD

(
a2 + κ0 , c

2 + κ0 , a
2 + κ0

)
gz = −µzRD

(
a2 + κ0 , b

2 + κ0 , c
2 + κ0

) (1.4)

where RD is the Carlson’s symmetrical form

RD (x, y, z) = 3
2

∞∫
0

dt
(t+ z)

√
(t+ x) (t+ y) (t+ z)

(1.5)

Notice that even if the method is an approximation, it still requires the cal-
culation of an improper integral. This can be calculated numerically or analyt-
ically: there exists an explicit expression of the primitive of this function which
exploits, however, an elliptical integral of the second species of Lagrange. The
fact that the integral is improper, however, makes it impossible for a computer
to use an analytical formula, which leads to the problem having to be integrated
numerically.

An ellipsoidal model, in addition to calculating gravity, also allows to take
into account the tumbling of the asteroid (i.e the irregular rotation of the as-
teroid with variable speed over time due to the rotation on different axes of
inertia). Knowing the moments of inertia on the three axes, it is possible to
evaluate the variation of angular velocity over time (again in reference to [3]).

ωx =
√√√√ 2EIz −M2

Ix (Iz − Ix)cn(τ ; k)

ωy =
√√√√2EIz −M2

Iy (Iz − Iy)sn(τ ; k)

ωz =
√√√√M2 − 2EIx
Iz (Iz − Ix)cn(τ ; k)

(1.6)

where τ is a parameter defined by

τ =

√√√√√(Iz − Iy)
(
M2 − 2EIx

)
IxIyIz

· t (1.7)
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the parameters E and M are respectively the energy of the system and its
angular momentum, which remain constant over time

E = 1
2
(
Ixω

2
x + Iyω

2
y + Izω

2
z

)
(1.8)

M =
√
I2
xω

2
x + I2

yω
2
y + I2

zω
2
z (1.9)

and the functions cn, sn and dn are elliptical functions of Jacobi. These are
defined by other parameters and functions. In particular, define an elliptical
modulus as

k2 = Iy − Ix
Iy − Iz

· M
2 − 2EIz

M2 − 2EIx
(1.10)

and the Jacobi’s theta function ϑ as

ϑ (z; τ) =
∞∑

n=−∞
qn

2
ηn

ϑ01 (z; τ) = ϑ
(
z + 1

2; τ
)

ϑ10 (z; τ) = exp
[
iπ
(
τ

4 + z
)]
ϑ
(
z + 1

2τ ; τ
)

ϑ11 (z; τ) = exp
[
iπ
(
τ

4 + z + 1
2

)]
ϑ
(
z + 1

2τ + 1
2; τ

)
(1.11)

with q = eiπτ ed η = e2iπz. Also setting some variables with

θ = ϑ (0; τ)
θ01 = ϑ01 (0; τ)
θ10 = ϑ10 (0; τ)
θ11 = ϑ11 (0; τ)
u = πθ2z

(1.12)

the elliptic functions of Jacobi (elliptic sine sn, elliptic cosine cn and amplitude
delta dn) are defined by

sn (u; k) = − θϑ11 (z; τ)
θ10ϑ01 (z; τ) (1.13)

cn (u; k) = θ01ϑ10 (z; τ)
θ10ϑ01 (z; τ) (1.14)

dn (u; k) = θ01ϑ (z; τ)
θϑ01 (z; τ) (1.15)
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Note that these functions use as input parameters u and k, but τ is used in the
right-hand side of the equations. It does not match the τ defined in (1.7), but
it is a value that must be found by solving the nonlinear equation

k =
(
θ10

θ

)2
(1.16)

because that is contained inside the variables θ e θ10, setting to 0 the variable z
in ϑ and ϑ10.

Insights into Jacobi’s ϑ functions can be found in [4], on elliptic functions
instead in [5] (references are quite old, but there are many more recent texts
dealing with the topic that can be found easily online).

From the equations (1.6) it is also possible to obtain the angular acceleration
of the body. After calculating the velocity at time t, it can be replaced within

ω̇x = Iy − Iz
Ix

ωyωz

ω̇y = Iz − Ix
Iy

ωxωz

ω̇z = Ix − Iy
Iz

ωxωy

(1.17)

Angular velocities and accelerations are necessary for a correct calculation of
the dynamics in a reference system integral with the body (see next chapter).

Although accurate from a dynamic point of view, the method is inherently
incompatible with the central problem of the thesis, which tries to develop meth-
ods as close to reality as possible: asteroids often can not be approximated to
ellipsoids, presenting concavities that would make the results deriving from the
application of this method that are too conflicting with the real case. Further-
more, tumbling motion

• it mainly affects small asteroids

• it goes to dampen with time, so many asteroids in the solar system are found
to simply rotate around their main axis of inertia (and therefore there is
no tumbling, ie no angular acceleration and angular velocities in the other
null axes) - ref [6]. It follows that, however accurate the dynamic model
may be, it is of lower interest than a realistic representation of gravity.

Because of these reasons, its implementation will be omitted, however an
analytical discussion is a must for completeness of treatment.
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1.1.2 Second approximation: spherical harmonics
A second approach that can be used is to approximate the gravitational potential
by means of spherical harmonics and to derive the acceleration by numerically
deriving this potential in the three directions. This is a low-fidelity method,
albeit of a good approximation.

The equation used in this sense is shown below (quoted by reference [7]).
It is a series expansion of infinite terms that will be truncated to a certain
number of addends (the terms following a certain number represent negligible
approximations).

V (r , φ, λ) = µ

r

[
1 +

∞∑
n=1

((
a

r

)n n∑
m=0

(Pn,m (sinφ) (Cn,m cosmλ+ Sn,m sinmλ))
)]

(1.18)
The terms in the equation are:

• (r , φ, λ) the spherical coordinates of the point in which we want to cal-
culate the potential, respectively distance (from the origin of the reference
system), latitude and longitude. These can be easily evaluated starting
from Cartesian coordinates:

r =
√
x2 + y2 + z2

φ = arctan
(

z√
x2 + y2

)

λ = arctan
(
y

x

) (1.19)

• µ is the gravitational parameter of the asteroid (see eq. (1.1))

• a is a reference radius through which the coefficients are calculated Cn,m
and Sn,m

• Pn,m(x) are the polynomials of Legendre if m = 0 or the associated polyno-
mials of Legendre if m /= 0. The evaluation of the term is not trivial, since
each polynomial is defined by the expression

Pn,m(x) =


2n

n∑
k=0

xk

 n

k

 n+k−1
2
n

 , se m = 0
(
1− x2

)m/2
2nn! · dn+m

dxn+m

(
x2 − 1

)n
, se m > 0

(1.20)

In particular, notice that sinφ is the argument of function Pn,m
21
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• Cn,m ed Sn,m are the harmonic coefficients associated with the equation,
and they depend on the mass distribution of the body.

It is precisely these last coefficients that characterize one body with respect
to another. The same approach, with a slightly different equation, is used to
evaluate the Earth’s gravitational field with a geoid model, the well known
EGM96 (Earth Gravitational Model 96). Each coefficient maps the intensity of
the corresponding spherical harmonic; we can distinguish the zonal harmonics
(m = 0) and the textiles (m /= 0) that identify each part of the reference sphere.

Figure 1.3: Textile and zonal spherical harmonics. Source: TeXExchange.org

The calculation of the harmonic coefficients is not trivial. There are several
scientific publications in this regard, which illustrate different algorithms and
techniques for calculating these coefficients. However, since these calculations
are very expensive, these numbers are usually calculated by research institutes
or government agencies and made available free of charge via the Internet.

In the sequel to this section, we will discuss a method for calculating these
coefficients, derived from [7]. This method is particularly slow: we consider that,
taken a n, there are m− 1 associated coefficients. The convergence speed of the
algorithm is O

(
p2
)
with p the number of parameters, then the convergence
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speed goes with the fourth power of n.
There are also other methods, more recent, that take advantage of a linear

convergence rate with n, but the implementation is more complex (see [8]),
or other algorithms that exploit different techniques (in [9] the algorithm for
calculating the gravity of a polyhedron described in the following section is
implemented to calculate the harmonic coefficients, for example).

We have chosen to treat the classical method instead of more complex meth-
ods for three distinct reasons:

• the spherical harmonics method will not be used in subsequent implemen-
tations due to some problems that will be described later

• as already mentioned, for each astral body of which the form is well known,
it is sufficient to search the internet to find data from different space agen-
cies and research institutes

• implementation requires less optimization work, although it remains a non-
trivial task

The method is then referred to for completeness of treatment.
The two coefficients Cn,m and Sn,m are placed in a matrix and the expression

is set

[
Cn,m
Sn,m

]
= 2− δ0,m

m
· (n−m)!

(n+m)! ·
∫∫∫

corpo

(
r′

a

)n
Pn,m (sinφ′)

[
cosmλ′
sinmλ′

]
dM

(1.21)
where δ0,m the Kronecker’s delta with 0 and m as arguments, a is a reference
radius (usually the radius of the largest sphere inscribed in the body and cen-
tered in the origin is used) and M is the mass of the body. The terms with
the apex (.)′ Indicate the coordinates of the infinitesimal mass dM . The term
integrating is defined with the minuscule coefficients:(

r′

a

)n
Pn,m (sinφ′)

[
cosmλ′
sinmλ′

]
=
[
cn,m
sn,m

]
(1.22)

and, to simplify the treatment, normalized terms are introduced (the integral
terms are normalized but also the integrating coefficients reserve the same treat-
ment) [

C̄n,m
S̄n,m

]
= 1
Nm,n

[
Cn,m
Sn,m

]
(1.23)

P̄n,m(x) = Nm,nPn,m(x) (1.24)
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where Nm,n =
√

(2− δ0,m) (2n+ 1) (n−m)!
(n+m)! . Taking advantage of the recurrences

between Legendre polynomials and associated Legendre polynomials

Pn (sin θ) = (2n− 1) cos θPn−1 (sin θ) (1.25)

Pn,m (sin θ) =2n− 1
n−m

sin θPn−1,m (sin θ) +

− n+m− 1
n−m

Pn−2,m (sin θ)
(1.26)

it is also possible to obtain recurrences on the normalized integrating coefficients.
In particular

• for sectoral harmonics

n = 0→
[
c̄0,0
s̄0,0

]
= 1
M

[
1
0

]
(1.27)

n = 1→
[
c̄1,1
s̄1,1

]
= 1
M
√

3
· 1
a

[
x′

y′

]
(1.28)

n > 1→
[
c̄n,n
s̄n,n

]
= 2n− 1√

2n (2n+ 1)
· 1
a

[
x′ −y′
y′ x′

]
·
[
c̄n−1,n−1
s̄n−1,n−1

]
(1.29)

• for vertical harmonics[
c̄n,m
s̄n,m

]
= (2n− 1)

√√√√ 2n− 1
(2n+ 1) (n+m) (n−m)

z′

a

[
c̄n−1,m
s̄n−1,m

]
+

−

√√√√(2n− 3) (n+m− 1) (n−m− 1)
(2n+ 1) (n+m) (n−m)

(
r′

a

)2 [
c̄n−2,m
s̄n−2,m

] (1.30)

• for subdiagonal harmonics[
c̄n,n−1
s̄n,n−1

]
= 2n− 1√

2n+ 1
z′

a

[
c̄n−1,n−1
s̄n−1,n−1

]
(1.31)

In the equation above, the variables (x′ , y′ , z′ ) are the Cartesian coordinates
of the infinitesimal mass to be integrated. Usually no conversion is required,
as asteroids are often defined in terms of Cartesian coordinates, rather than
spherical.

The equations written so far are then used to evaluate the integral described
by (1.21). The integration has not yet been carried out: to continue, we are
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going to discretize the integration domain from a continuous solid to a series of
point masses. The integral can therefore be written in the following terms:

[
C̄n,m
S̄n,m

]
=

∑
i∈masse puntiformi

[
c̄n,m (x′i , y′i , z′i )
s̄n,m (x′i , y′i , z′i )

]
Mi (1.32)

At this point we simplify the problem with two considerations:

1. the body is a solid of constant density σ

2. the body is approximated by a polyhedron, then composed of an arbitrary
number of triangular-based tetrahedrons. One vertex of the tetrahedron is
the origin, while the other three are the vertices of the triangular face.

The integration method proposed in [10] will be used later. In particular, the
vertices of the tetrahedron will be described by the points ( 0 , 0 , 0 ), (x1 , y1 , z1 ),
(x2 , y2 , z2 ) e (x3 , y3 , z3 ); the single tetrahedron will be the domain of inte-
gration, and the order in which the three vertices are taken is counterclockwise
when viewed from the outside, so that the face normal is outgoing.

Figure 1.4: The polyhedron describing the body is divided into a certain number
of elementary tetrahedra; a change of non-Cartesian variables is carried out
based on the vectors opposite to the origin and the integration on the standard
tetrahedron is easily brought back and easily integrated.

A change of non-Cartesian variable is then introduced, which has as a non-
unitary basis the set of vectors joining the origin with the three points described
by the face. The new coordinates match the vertices to the points ( 1 , 0 , 0 ),
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( 0 , 1 , 0 ) e ( 0 , 0 , 1 ), points that describe the standard tetrahedron. In math-
ematical terms

x′(X, , Y , Z ) = x1X + x2Y + x3Z

y′(X, , Y , Z ) = y1X + y2Y + y3Z

z′(X, , Y , Z ) = z1X + z2Y + z3Z

(1.33)

Before changing variables, the normalized integrand coefficients were polynomi-
als of degree n in (x′ , y′ , z′ ); after the change of variables, these will still be
polynomials of degree n, but this time in terms of the three new coordinates
(X, , Y , Z ). The coefficients that describe these polynomials have their own
writing:[

c̄n,m (x′i , y′i , z′i )
s̄n,m (x′i , y′i , z′i )

]
→

[
c̄n,m (X, , Y , Z )
s̄n,m (X, , Y , Z )

]
=

∑
i+j+k=n

[
ᾱi,j,k
β̄i,j,k

]
X iY jZk

(1.34)
With i+j+k = n the condition has been indicated that the product of the three
new variables raised to the respective exponent gives a polynomial of degree n.
The symbols ᾱi,j,k and β̄i,j,k are the trinomial coefficients of X, Y and Z.

With the change of variables it is necessary to multiply the integrand for the
determinant of the Jacobian matrix in order to respect the differential replace-
ment theorem with multiple variables. This in turn is the determinant of the
Cartesian coordinate matrix of the face of the tetrahedron:

J = ∂ (x′ , y′ , z′ )
∂ (X , Y , Z ) =

 x1 x2 x3
y1 y2 y3
z1 z2 z3

 (1.35)

We then proceed with the integration.[
C̄n,m
S̄n,m

]
=
∫∫∫

corpo

[
c̄n,m
s̄n,m

]
dM =

= σ
∑

tetraedri

 ∫∫∫
tetraedro

[
c̄n,m (x′i , y′i , z′i )
s̄n,m (x′i , y′i , z′i )

]
dx′dy′dz′

 =

= σ
∑

tetraedri

 ∫∫∫
tetraedro std

det J
[
c̄n,m (X , Y , Z )
s̄n,m (X , Y , Z )

]
dXdY dZ

 =

= σ
∑

tetraedri

 ∫∫∫
tetraedro std

det J
 ∑
i+j+k=n

[
ᾱi,j,k
β̄i,j,k

]
X iY jZk

 dXdY dZ
 =

= σ
∑

tetraedri

det J
∑

i+j+k=n

[
ᾱi,j,k
β̄i,j,k

] ∫∫∫
tetraedro std

X iY jZk dXdY dZ
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The triple integral is now a factor of the equation that can easily be calculated
with the following formula attributed to [10]∫∫∫

tetraedro std

X iY jZk dXdY dZ = i!j!k!
(i+ j + k + 3)! (1.36)

but i+ j + k = n. The equation then turns in∫∫∫
tetraedro std

X iY jZk dXdY dZ = i!j!k!
(n+ 3)! (1.37)

The final formula is then obtained:[
C̄n,m
S̄n,m

]
= σ

∑
tetraedri

 det J
(n+ 3)!

∑
i+j+k=n

i!j!k!
[
ᾱi,j,k
β̄i,j,k

] (1.38)

The calculation time is, as already mentioned, proportional to the square of the
number of coefficients to be calculated. It follows that the method can only
be used for low-value truncation approximations of n (the implementation that
followed took a couple of hours and fixed n to 10). Moreover, as is obvious,
as the complexity of the polyhedron (and hence the definition of the asteroid)
increases, the calculation time increases, since the sum in brackets must be
iterated for each face of the polyhedron.

The evaluation of the gravitational field can then be obtained by numerically
deriving (1.18), using the coefficients calculated in preprocessing by the (1.38).

The method is not free from defects. The gravitational field calculated in
this way is variable with the number of actually calculated harmonic coeffi-
cients, and if these are in sufficiently large numbers there will be a fairly precise
approximation. However, the biggest drawback of the method is that it presents
rather marked errors near the surface of the asteroid. In this regard, the work
of Lantoine and Braun [11] is cited as proof of the assumption.

Because of this inherent problem, the method will not be used in subsequent
implementations. Since the key issue is in fact landing, the representation of
the accurate gravitational field near the surface is a prerequisite, in order to
produce consistent results.

An obligatory quote is dedicated to ellipsoidal harmonics. [12] and [18] show
that the application of another equation to calculate the potential, defined with

V (λ1, λ2, λ3) = µ
N∑
n=0

2n+1∑
m=1

αmn
Fm
n (λ1)
Fm
n (a) E

m
n (λ2)Em

n (λ3) (1.39)

can be used to approximate the field with greater accuracy than the spherical
harmonic method: fewer coefficients are needed to describe the results with the
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Figure 1.5: Percentage error in the potential calculated with the spherical har-
monic method for the asteroid Golevka in the xy plane. Source: [11]

same accuracy. Methods for deriving coefficients and instructions on using the
(1.39) can be found in [13].
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1.1.3 High-fidelity method: polyhedron method
The method that is herein discussed is the one that was actually implemented to
calculate the gravity of the asteroid, and the motivations of this choice will come
to light almost naturally: this method is a high-fidelity based on very robust
analytical considerations 1 And its implementation, although it is simpler than
that of other methods using conventional calculation codes, turns out to have
very accurate results.

The method can be found in [14]: it is shown in full in the following pages.
The reference system used is that integral with the asteroid (body axes). The

notation convention can be found in the image below.

Figure 1.6: Reference notation used in the method.

In particular we can find:

• the unit vectors of the orthonormal base î, ĵ e k

• the vector r = ∆x î + ∆y ĵ + ∆z k̂ which indicates the distance between
the field point p = (x , y , z ) and the differential mass dm centered in

1To add a personal opinion, the method uses techniques very similar with those studied in
Politecnico di Torino in these 5 years.
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m = ( ξ , η , ζ ); ∆x, ∆y e ∆z are the relative distances in the three axes.
The following relationships are therefore used

r = m− p (1.40)
∆x = ξ − x
∆y = η − y
∆z = ζ − z

(1.41)

r =
√

∆x2 + ∆y2 + ∆z2 (1.42)

∇r =
(̂

i
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

) (̂
i∆x+ ĵ∆y + k̂∆z

)
= −I (1.43)

where I is the identity matrix of dimension 3.

We start by exploiting Newton’s gravitation equation for an infinitesimal point
mass d m. The gravitational potential developed by this mass is spherical and
proportional to the inverse of the distance from the mass.

dV (p) = −Gdm
|r|

(1.44)

where G = 6.67 · 10−11 Nm2/kg2 is the universal gravitational constant.
The effect of a finite mass distribution M can be modeled by exploiting the

linearity of the gravitational field, integrating over the whole distribution:

V (p) = −G
∫∫∫

M

dm
r

(1.45)

It is hypothesized that the asteroid is of constant density σ, a hypothesis not
perfectly true for each asteroid in the solar system, but considered sufficiently
accurate for the asteroids on which space missions were conducted, namely [12]
and [15]; the first shows that 433 Eros is an asteroid that has a constant density,
while the second shows that Itokawa is an asteroid composed of two main blocks
with very different densities. Any errors due to asymmetric mass distributions
can be modeled by adding singularities within the body and evaluating their
impact, always with overlapping effects, or, as in the case of Itokawa, adding
the effects of the two portions of different density space. These modifications
can be introduced after the application of the method.

∫∫∫
M

dm
r

= σ
∫∫∫

V

dV
r

(1.46)
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Knowing that2

1
2∇ ·

(r
r

)
= 1

2

[
1
r

(
∂

∂ξ
(∆x) + ∂

∂η
(∆y) + ∂

∂ζ
(∆z)

)
+

∆x ∂
∂ξ

(1
r

)
+ ∆y ∂

∂η

(1
r

)
+ ∆z ∂

∂ζ

(1
r

)]
=

= 1
2

[
3
r
− ∆x2

r3 −
∆y2

r3 −
∆z2

r3

]
=

=1
2

[3
r
− 1
r

]
= 1
r

(1.47)

the integral can be modified, and then taking advantage of the Gauss theorem
it can be traced back to a flow integral on the surface that contains the volume
of integration.

σ
∫∫∫

V

dV

r
= 1

2σ
∫∫∫

V
∇ · r

r
dV = 1

2σ
∫∫
S

r̂ · n̂ dS (1.48)

This expression is valid for any numerical set connected by arcs with a closed
surface, continuous and piece-wise differentiable: the polyhedra that approxi-
mate the shape of the asteroids are objects of this type, so we can continue
expressing the integration domain from a 3D body with a polyhedron. The
integral on the outer surface can be decomposed into the sum of integrals on
the individual faces:

V (p) = −1
2σG

∑
f∈faces

∫∫
Sf

n̂f · r̂ dS = −1
2σG

∑
f∈faces

n̂f · rf
∫∫
Sf

dS
r

(1.49)

The constant terms on the single face are also extracted from the integral: we
use a special notation about rf , which represents a vector on any point of the
plane containing the face. The extraction from the integral is possible not taking
advantage of r̂ constant on the face (that is false), as to the fact that the product
scalar between the normal to the face and a vector on any point of that plan
always returns the same value. The integration on the face is simplified in this
way, reducing itself to the potential of a planar region.

Let’s focus our attention on the single face. In particular, a rotation of the
reference system is performed3, by placing itself in a system with xy plane

2The derivation occurs with respect to ξ, η and ζ, since these coordinates agree with the
orthonormal base taken as reference.

3It is not a rotation in the strict sense, there will be no rotation matrix: it is an analytical
rotation useful to simplify the subsequent calculations.
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Figure 1.7: Reference frame rotated with k̂f parallel to normal to the face. The
distance ∆z is fixed for each point on the plane containing the face.

parallel to the plane containing the face, with the same origin of the Cartesian
system but with a k̂f unit vector parallel to the normal outgoing to the face.
In this way, the distances in the new three axes are identified with ∆xf , ∆yf
and ∆zf ; the latter represents the constant scalar product n̂f · rf . Imposing the
following mathematical artifice

∫∫
Sf

dS
r

=
∫∫
Sf

(
1
r

+
∆z2

f

r3

)
dS −

∫∫
Sf

∆z2
f

r3 dS (1.50)

expanding the integrand function of the first addend with

1
r

+
∆z2

f

r3 =
r2 −∆x2

f

r3 +
r2 −∆y2

f

r3 = ∂

∂∆xf
∆xf
r

+ ∂

∂∆yf
∆yf
r

(1.51)

extracting the constant quantity ∆zf from the second integral and noting that

∫∫
Sf

∆zf
r3 dS = ωf (1.52)
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with ωf the solid angle described by the face S on the field point4, the Green
theorem can be applied to the circulation of a conservative field.∫∫

S

dS
r

=
∮
C

[1
r

(∆xfd∆yf −∆yfd∆xf )
]
− n̂f · rf ωf (1.53)

In the case of a polyhedron, the contour integral can be subdivided into the
sum on each component segment of the edge of the face, implicitly taking into
account the direction of the circuitry.∫∫

S

dS
r

=
∑

e∈edges

(∫
s

[1
r

(∆xfd∆yf −∆yfd∆xf )
])
− n̂f · rf ωf (1.54)

Now we are going to reduce the line integral to algebraic expressions, based
on the actual geometry of the face.

Based on the reference system integral with the face previously used to sim-
plify the integrals, we now define edge coordinates ( ∆xs , ∆ys , ∆zf ) of any
point lying on the line containing the edge5.

It is therefore necessary to parameterize by means of a coordinate s which
defines the distance along the line of the edge from the point ( ∆xs , ∆ys , ∆zf ).

∫
e

1
r

(∆xfd∆yf −∆yfd∆xf ) =
∫
e

1
r

[(∆xe + s cosαe) sinαe+

− (∆ye + s sinαe) cosαe] ds =

= (∆xe sinαe −∆ye cosαe)
∫
e

ds
r

=

= n̂fe · rfe
∫
e

ds
r

(1.55)

In the equation we have introduced the term n̂fe which represents the edge
normal, normal relative to the border e and outgoing with respect to the face
f , see figure above. It is in this term that the information on the direction of
the circuitry is contained, as will be shown below. The term rfe represents the
vector joining p to any point on the line containing the edge.

4A brief demonstration of the fact is the calculation equation for the solid angle of a
differential element:

dω = r̂ · n̂dS
r2

where dS
r2 is the solid angle described by a differential element at distance r and r̂ · n̂ is its

modulation with the direction respect to the focus of the angle. Some immediate steps lead
without effort to (1.52).

5Notice that the third cohordinate is ∆zf , fixed for every point on the face
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Figure 1.8: Reference system in the plane of containment of the face, with
references to the vector algebra of the edge.

The integral left in the equation is no longer a line integral but an integral
in a variable. Methods in the literature [16] provide us with an equation to
evaluate the potential of a straight line at any point in space; it is a logarithmic
expression independent of the direction of integration with which the thread has
been taken6

∫
e

ds
r

= λfe = ln a+ b+ e

a+ b− e
(1.56)

where with a e b we define the distances between the field point and the vertices
of the edge and with e the length of the edge.

The integrations have all been reduced to numerical algorithms: we are going

6A different notation was used to indicate this term to have a literal consistency between
the logarithmic edge term and the solid angle described by the face ω; on the original text
they use L instead using λ.
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to put everything together.

V (p) = 1
2Gσ

∑
f∈faces

n̂f · rf
∫∫
Sf

dS
r

=

= 1
2Gσ

∑
f∈faces

n̂f · rf

 ∑
e∈edges

(
n̂fe · rfe λfe

)
− n̂f · rf ωf

 =

= 1
2Gσ

 ∑
f∈faces

∑
e∈edges

rf · n̂f n̂fe · rfe λfe −
∑

f∈faces
rf · n̂f n̂f · rf ωf


(1.57)

The method could be implemented already in this way, but some additional
steps are performed to take into account a couple of tricks:

1. in eq. (1.57) it can be noted that there is in both addends the product
of two scalar products, which obviously produces a scalar. The thing can
be rewritten, algebraically, as the product of two column vectors with a
matrix, as in the equation

(a · b) (c · d) = a ·
(
bcT

)
· d = a ·M · d

where the (i, j)-th element of matrix M is defined with Mi,j = bicj, and
(.)T is the transposition operator.

2. integrating on every edge of every face can be inconvenient in terms of
timing, because if it is true that each edge has two faces, then there will be
two contributions for each edge that can be evaluated directly on the edge
instead of iterating the calculation on each edge of each face.
In particular, with reference to the figure, pay attention to the terms∑
f∈faces

∑
e∈edges

rf · n̂f n̂fe · rfe λfe =

= · · ·+ rA12 · n̂An̂A12 · rA12 λ
A
12 + · · ·+ rB21 · n̂Bn̂B21 · rB21 λ

B
21 + · · · =

= · · ·+ r12 ·
(

n̂An̂A
T

12 + n̂Bn̂B
T

21

)
· r12λ12 + . . .

(1.58)

The algebraic notation described in the first point was used to write the
result in terms of matrices, column vectors and scalar products. In this
way the contribution of the edge can be explicitly evaluated.

Taking advantage of the points just described, we define the edge and face
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Figure 1.9: Edge normals notation. Notice that the direction in which the edge
direction is defined influences the direction of the normal, whether entering or
leaving the face to which it refers.

matrices7:

Ee = n̂An̂A
T

12 + n̂Bn̂B
T

21 (1.59)
Ff = n̂f n̂Tf (1.60)

and consequently we obtain the final equation, which exploits the matrices Ef

and Ff - invariants once a certain system has been taken as reference - to
evaluate the gravitational potential:

V (p) = 1
2Gσ

 ∑
e∈edges

re · Ee · re λe −
∑

f∈faces
rf · Ff · rf ωf

 (1.61)

To conclude, from the equation of potential one can pass to that of accelera-
tion through a series of mathematical steps. In particular, note the following

7In the original text the notation on such matrices is slightly different, since the concept
of dyic tensor, or dyads, is exploited. However, for the case under examination and its
application, it makes no difference to confuse a dyad with a matrix: the difference lies in
the reference system used to calculate them. Dyads are abstract concepts that are invariant
with respect to the reference system, while matrices are numerical, and are - practically -
calculated dyads, referenced to an origin and Cartesian axes. Obviously, the position vector
p and relative position r must be calculated in line with the chosen reference system in order
for the method to give consistent results.
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identities (the first is used in the second, the second uses instead the Green’s
theorem):

∂

∂∆z

(1
r

)
= −∆z

r3 (1.62)

∇
∫∫
S

dS
r

=
(̂

if
∂

∂x
+ ĵf

∂

∂y
+ k̂f

∂

∂z

) ∫∫
S

dS
r

=

=− îf
∫∫
S

∂

∂∆x

(1
r

)
dS − ĵf

∫∫
S

∂

∂∆y

(1
r

)
dS − k̂f

∫∫
S

∂

∂∆z

(1
r

)
dS =

=− îf
∫∫
S

[
∂

∂∆x

(1
r

)
+ ∂

∂∆y (0)
]
dS+

− ĵf
∫∫
S

[
∂

∂∆x (0) + ∂

∂∆y

(1
r

)]
dS + +k̂f

∫∫
S

∆z
r3 dS =

=− îf
∮
C

d∆y
r

+ ĵf
∮
C

d∆x
r

+ k̂fωf
(1.63)

The case is reduced to the discrete one of the polygon, subdividing the circuit
into multiple line integrals

∇
∫∫
S

dS
r

=
∑

e∈edges

[
−̂if

∫
e

d∆y
r

+ ĵf
∫
e

d∆x
r

]
+ k̂fωf =

=
∑

e∈edges

[
−̂if sinαe

∫
e

ds
r

+ ĵf cosαe
∫
e

ds
r

]
+ k̂fωf =

= −
∑

e∈edges
n̂feλfe + n̂fωf

(1.64)

This equation represents the gravitational attraction developed by a single poly-
gon face. We can compare it with (1.54), using the results obtained by (1.55) and
(1.56); turns out that the gradient developed by the solution has the following
value, remembering the equation (1.43):

∇
 ∑
e∈edges

(
n̂fe · rfe λe

)
− n̂frf ωf

 =
∑

e∈edges

(
n̂fe · ∇rfe λe + n̂fe · rfe ∇λe

)
+

− n̂f∇rf ωf − n̂frf ∇ωf =

=
− ∑

e∈edges
n̂feλfe + n̂fωf

+
 ∑
e∈edges

n̂fe · rfe ∇λe − n̂frf ∇ωf


(1.65)
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If we compare equations (1.64) and (1.65) we can furthermore obtain another
identity ∑

e∈edges
n̂fe · rfe ∇λe − n̂frf ∇ωf = 0 (1.66)

and using the following passages

1. multiply (1.66) with rf n̂f

2. add the contributions on every face

3. isolate the contribution of individual edges as in (1.58)

we obtain the identity∑
e∈edges

re · Ee · re∇λe =
∑

f∈faces
rf · Ff · rf ∇ωe (1.67)

This last identity is useful because it will delete terms in the next equation. Ap-
plying the gradient on the result of the potential calculated with the polyhedron
method(1.61) we obtain

g(p) = −∇V (p) =Gσ
 ∑
e∈edges

Ee · re λe −
∑

f∈faces
Ff · rf ωf

+

− 1
2Gσ

 ∑
e∈edges

re · Ee · re∇λe −
∑

f∈faces
rf · Ff · rf ∇ωe


(1.68)

The term in round brackets is null by definition of (1.67).
The definitive equation to calculate the gravitational field of a polyhedron is

g(p) = Gσ

 ∑
e∈edges

Ee · re λe −
∑

f∈faces
Ff · rf ωf

 (1.69)

To sum up, the factors that characterize it are

• the universal gravitation constant G

• the density of the asteroid σ

• the edge matrix Ee associated to edge e

• the face matrix Ff associated to face f

• the distance vector re between the field point p and whichever point on the
line containing the edge e
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• the distance vector rf between the field point p and whichever point on the
plane containing the face f

• a logarithmic term λe function of distance of the field point from edge e’s
vertices and e’s length

• the solid angle ωf described by face f on the field point p

The method also allows to evaluate if the field point is internal or external to the
asteroid: just check that the sum of all the contributions of ωf is 0 to determine
that the point is external to the asteroid; in the opposite case, the sum equals
−4π.

The method just discussed was the one actually implemented in the continu-
ation of the thesis. The implementation and results will be discussed in the next
chapter. Note that the method just discussed is valid for a generic polyhedron,
but small modifications can be made to adapt the solution to a polyhedron
composed only of tetrahedra (the meshes of three-dimensional bodies are usu-
ally represented by triangles, which makes the application very convenient from
an implementation point of view). In particular, it is demonstrated that, for a
triangular faces polyhedron 8,

ωf = 2 arctan det [r1 r2 r3]
r1r2r3 + r1r2 · r3 + r2r1 · r3 + r3r1 · r2

(1.70)

where with ri we indicated the column vectors from the origin to the face vertices
and with ri their moduli, with i = 1,2,3.

8The demonstration is very long and requires a large number of calculations, so the result
is directly reported.
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1.1.4 High-fidelity approximation: method of tetrahe-
dral singularities

The tetrahedral singularity method is an original method that can be used
to approximate the field at a distance from the surface. It differs from the
polyhedron method mainly in computational time, since it is necessary to iterate
the algorithm only on the faces rather than on faces and edges. The result is
approximate due to the fact that the modeled mass distribution is different from
the actual one. The method is a high-fidelity of simple theoretical treatment
and implementation, so it is worth reporting it.

The idea is to condense the mass of the individual tetrahedrons that make up
the polyhedron in their barycentre and to calculate the gravitational field with
overlapping effects. In this way the mass distribution is able to approximate the
actual shape of the body. The tetrahedral singularities were precisely the point
masses concentrated in the center of mass. Si ipotizzi l’asteroide omogeneo. Si
può definire il campo nel punto p come

g(p) = −Gσ
∑

e∈tetrahedra

Ve
|p− re|3

(p− re) (1.71)

where
• G is the universal gravitation constant

• σ the density

• Ve the volume related to the tetrahedron described by the facef

• re the position of the center of mass of the tetrahedron
The implementation is rather straightforward and, unlike the polyhedron method,
it does not require preprocessing for the calculation of edge and face matrices.
In particular, an explicit equation9 for the calculation of the volume of the
tetrahedron is10

Ve = 1
6 det [r1 r2 r3] (1.72)

A preprocessing for the calculation of the individual volumes can be made to
reduce the calculation time with a slightly larger memory load, saving a matrix
determinant at each iteration.

9The equation derives from the calculation of the parallelepiped volume associated to
the vectors using the mixed product r1 · (r2 × r3) which is precisely the determinant of the
aforementioned matrix. Dividing by 6 we obtain the volume of the tetrahedron.

10A further application of the equation is the calculation of the volume of the asteroid,
adding up all the terms of volume.
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1.2 Perturbations

The perturbations that can affect the dynamics of a probe around an asteroid
are of different types. Three main ones are distinguished according to the origin
of the disturbance:

1. SRP (solar radiation pressure) induced by the exchange of momentum with
solar radiation

2. EGD (external gravitational disturbance) induced by the gravitational at-
traction that massive bodies exert on the probe

3. irregularities in the mass distribution of the asteroid

Each of the three can be modeled analytically with simple direct equations,
which do not require the application of complex methods. Since the thesis is
focused on a numerical implementation, long-term analyzes of the individual
effects are not performed; there are some treatises in the literature by professor
Scheeres dealing with the effects on the orbits around strongly perturbed bodies,
respectively[19], [20] e [21]: we refer the study to these publications if the reader
wants to investigate this aspect, which would be beyond the scope of the thesis.

The effects of perturbations have not been modeled in implementations of
the environment, for three reasons:

1. they are of small intensity compared to the strongly variable gravity of an
asteroid

2. a landing maneuver usually lasts a short time (from one to a few hours) so
the effects to which the probe would be subjected would be minimal and
easily corrected by a robust controller

3. a correct modeling of EGD would have required an astrodynamic analysis
of details on the position of the asteroid in the solar system, and a further
thesis could be written about it; a modeling relative to the SRP would
have required instead the definition of a 3D model of the probe, with a
lot of geometric estimates and of the reflective properties of the same; the
irregularities of the asteroid instead require an in-depth analysis on the
mass properties of the single asteroid, which are available on the internet
but which would have required an additional workload that the author
preferred to move on the study of artificial intelligence.
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1.2.1 SRP
Solar radiation represents the energy that the Sun in every second ejects in
space in the form of light. This is intimately composed of quantum particles
known as photons, and although they are massless, a momentum is associated
with them. The interaction between light and a probe mechanically leads to an
exchange of momentum from the photon to the probe itself. At an engineering
level, it is not important to go and see the effect of the single photon; more
interesting is to see the global effect, which can be modeled as a pressure acting
on the surface of a body. In particular, the equation that defines the SRP on
the infinitesimal surface of the probe exposed to the solar beam is

dFSRP = I (r; t)
c

(1 + ρ)
(
ĥ · n̂

)
ĥ dS (1.73)

where

• I (r; t) is the intensity of solar radiation. This is variable depending on
the position of the probe in the solar system and depending on the solar
activity: there is a dependence with the inverse of the square of the distance
from the Sun and a cyclical fluctuation of period about 11 years [22] and
fluctuations shorter period (7-10 days) [24]

• c is the speed of light in a vacuum

• ρ is the reflectivity of the differential surface dS

• ĥ is the direction of the light beam and

• n̂ is the normal vector to dS.

Using a differential approach, the SRP can also produce a moment on the probe,
if the pressure center is displaced with respect to the center of gravity and /
or if the reflectivity has symmetrical properties with respect to it. However,
the effects are truly marginal: even integrating over the entire surface (which
can change over time, assumed an attitude control system) the contribution to
forces and moments of this probe remains a small fraction of the total. Usually
these effects are important only in the long run, and the landing does not fall
into these hypotheses.

A further phenomenon that should be taken into account in the case of ex-
treme detail modeling is the eclipse induced by the asteroid. In the event that
the probe is in the shade, in fact, the effects would be canceled.
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1.2.2 EGD
The EGD can be numerically modeled with the sum of the effects of the bodies
whose effect is to be considered in an inertial reference system, (i.e. with a good
approximation, the solar system)11. After using Newton’s formula to calculate
the gravity induced by external bodies (the most massive ones, like the Sun and
the gaseous giants, or the closest ones, if there were any)

gEGD = −
n∑
i

mi

r3
i

ri (1.74)

one approach is to calculate the acceleration of the asteroid with respect to the
same reference system and with the same method, subtract and report the result
in the body reference system.

1.2.3 Irregularities in mass distribution
The irregularities could be modeled similarly to the method of tetrahedral sin-
gularities. One possible approach is to add mass singularities within the asteroid
and treat them with overlapping effects, evaluating these effects with the New-
ton equation.

Such irregularities would shift the center of mass of the asteroid, so it would
also be necessary to change the reference system (a translation would be suffi-
cient).

11Unless you want to take into account the Sun’s revolutionary motion compared to the
galactic center, in the period ∼26000 years, but the effects would be so small that numerical
errors would dominate.
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Chapter 2

Implementation of
environmental modeling

In this chapter the techniques of implementation of the methods seen in the
previous chapter will be discussed.

In particular, the implementations to be discussed will be three:

1. the polyhedron method

2. the tetrahedral singularities method

3. the code to calculate the harmonic coefficients of the spherical harmonic
model.

The languages used are C and Python. The first is a low-level language that is
particularly suitable for number-crunching because of its execution speed, while
the latter is high-level and more suitable for scripting: it allows to manipulate
data structures more skillfully, and is equipped of the most disparate libraries;
in particular it was used to generate databases able to define the edges starting
from the obj files of the asteroids through the SQLite technology and to evaluate
the harmonic coefficients through Sympy, a library for the symbolic calculation.

A very important part of the codes written in C is the use of CUDA: a
hardware architecture for parallel processing on NVIDIA’s GPUs which also
includes extensions of the C language for an easy use of the architecture.

At the end, the results of the codes will be shown in the form of graphs
using the MATLAB calculation software and possibly of tables, where more
appropriate.
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2.1 Data preprocessing

2.1.1 Data structure and implementation
Before reporting the methods it is appropriate to describe the data that have
been retrieved on the internet to model the asteroids. As anticipated, these are
discretized in the form of triangular faces polyhedra, available in obj files that
can be taken on websites specialized in the topic.

The obj files are used for various engineering applications. Informatically
speaking, they are a list of decimal numbers representing the coordinates of the
asteroid vertices followed by a list of integers representing a connectivity matrix
of vertices at the vertices of the faces.

Figure 2.1: Structure of an obj file representing a 3D polyhedron mesh.The
vertices are accompanied by a letter v and the faces are accompanied by a letter
f: this is literally a connectivity matrix, and it associates the three vertices
defined in it to the three vertices characterizing the face.

The convention used for the vertices of the face is the standard one, which
defines the order of travel of the perimeter in an anti-clockwise direction (the
associated normal is outgoing). Unfortunately there is no convention about the
index of the first summit: some organizations adopt indices starting from 1,
while others start at 0. This was taken into account in the following algorithms,
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however the recognition is not automatic and requires a human intervention
(just set the parameter corresponding to 1 or 0).

The search for data has identified in [17] the most reliable source able to
provide a wide range of models for the asteroid taken as reference, ie 433 Eros.
In the source there are also the pre-calculated spherical harmonic coefficients
for the asteroid which, however, have not been used.

In particular, the following models are available for the asteroid 433 Eros

• 1708 faces

• 7790 faces

• 10152 faces

• 22540 faces

• 89398 faces

• 200700 faces

The more the faces are described by the model, the greater the precision in
describing the gravitational field, but proportionally increases the calculation
time1. It will therefore be necessary to execute a trade-off to choose a model to
use.

The flowchart used to preprocess the data is described in the following.
We used a color code to distinguish the main blocks and the classical sym-

bology of flow charts to indicate instructions, conditional checks and data entry
in the database. The scheme is very concise: only the elements suitable to
represent the key points of the algorithm have been highlighted, the text will
complete the explanation in more detail. The code is present in the attachment.

As indicated in the caption, there is a color code in the flow chart. We
indicate

• with violet the conditional instructions that manage any double databases

• with yellow the insertion of initial data formatted according to the desired
input

• with green the algorithm used to extract the edges from faces and vertices

1In parallel computing architectures the calculation time does not increase linearly, however
it can be stated without reasonable doubt that a greater number of faces corresponds to an
increase in timing.
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Figure 2.2: Flow chart for data preprocessing. The color code indicates the
management of the duplicates in violet, the insertion of the initial data in yellow,
the extraction of the edges from the initial data in green, the evaluation of the
board and face matrixes in red and the storaging in blue. The cylinder indicates
a data entry in the database.

• with red the calculations necessary to evaluate the edge and face matrixes,
and

• with blue the data backup.

The algorithm begins its path taking as input data the name of the obj file
saved on the computer, the integer f to represent the initial index used for the
faces (0 or 1), the scale factor s to rescale all points on the asteroid and the
Boolean o to indicate whether it is necessary to override the existing database.
This last data is used immediately to remove any database copies: SQL would
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give an error if a table is generated on a previous defined one2, however, the
error is managed by terminating the program without causing crashes.

The insertion in the database of input data, read from the file obj, takes place
with an initial formatting dictated by the parameters fed to the algorithm. In
particular:

• each vector characterizing a vertex is rescaled with the scale factor s. This
feature is necessary due to the fact that some asteroids describe the surface
in km instead of m, and rather than go to re-evaluate the matrices later it
was preferred to use the International System directly from the beginning

• each face has associated three indices that define which are the three vertices
that make up the face. In some sources - not mentioned in the thesis since
not used at the end - it is possible that the starting index is 1, and this
would give rise to conflicts with access to the data contained in the arrays.
Therefore, each index is shifted by f to the left: if f is 0 nothing happens,
otherwise it will subtract 1 from each index to reach the same list with
initial index 0. Using other numbers would not make any sense unless that
the starting index of the mesh is not that number (which is highly unlikely
unless some boredom by some bored researcher).

After formatting, data is inserted into two separate tables, ready for use with
typical SQL queries3 (SELECT WHERE, INSERT, DELETE and so on).

Follow a for iteration on every face. In the flowchart we used an index f∗
that starts from 1 for the control of the cycle but in the reality of the code the
for Python loop allows to iterate directly on the single faces ( which for the
sake of reporting are represented as a list of four integers: the index of the face,
which starts from 0, and the three indexes of the vectors that compose the face;

2The tables in SQL are computer structures capable of containing data instances (rows) as
a set of attributes (columns). They can be thought of as large matrices capable of containing
both numbers and texts. Several tables form a database, which is saved on the computer’s
fixed memory, and not stored in the volatile memory. Another feature is the extreme speed
of access of these computer structures, highly optimized in tables.

3SQL and relational databases are IT tools used above all in web programming or, in fact,
in the storage of data by large companies. This technology has not been studied in the course
of studies, since it is actually less similar to the classical calculation codes, much more oriented
towards number crunching. The candidate has learned to use this technology as a self-taught
person, and can not absolutely be considered an expert; however, it recognizes its usefulness
and has used it in this sense, being aware that there were also other ways to solve the problem
without using SQL and databases; we wanted to avoid the use of simple arrays in volatile
memory because it is unknown the number of edges to be calculated from time to time.
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the direction of travel of the perimeter agrees with the normal outgoing, using
the right-hand rule).

On each face, the edges are first extracted (there are three, and each is a pair
of vertex indices, so they are directional edges) saving the indices in a tuple.
The another for loop is performed, this time on the edges just extracted from
the face: in particular, the indexes of the vertices are extracted from the border
and a search is performed on the database, through queries, of faces that present
these indices consecutively, but in reverse order. The reverse order is necessary
because if - by convention - the obj file has counterclockwise faces, then the
common edge seen from a point of view of the face adjacent to the first will be
in the opposite direction. Once the search is performed, if the database has no
inconsistencies there will be only one possible result from the database searches,
and this will be the new face, which will be taken and saved in the list of faces
adjacent to the edge that is being studied. A conditional statement based on
queries checks in the table of edges if there is already a border to which the
same indexes of the current edge match; if so, the result is discarded, otherwise
it is saved inside the database. The internal cycle is iterated 3 times (once for
each edge) while the outer cycle is the number of faces to be analyzed.

At the end, you will have a database with the following data structures:

Table Attributes
Vertices Index vx vy vz
Type int double double double

Faces Index Vertice 1 Vertice 2 Vertice 3
Type int int int int

Edges Index Length Vertice 1 Vertice 2 Face B Face A
Type int double int int int int

Table 2.1: Data structures stored in the database to represent the model of the
asteroid. A color code was used to identify the relationships between the tables.

A couple of particular notes on the edges:

• in addition to finding and storing the edges, it is also calculated the length
by making the norm of the difference of the two vectors that are at the
ends, and it is also saved in the database

• the faces associated with the border are saved in order B and A, relative to
the image 1.9 of the polyedron method: this is because, if the edge is read
counterclockwise relative to a face, then that face will be the B face, and
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not the A. Since the edges are extracted from the counter-clockwise faces,
the first face read will be that B and the saving is done accordingly4.

After saving all the data structures, we can evaluate the edge and face matrix
described in the equations (1.59) and (1.60). For this reason, face normals are
evaluated first with the equation

n̂f = v12 × v23

|v12 × v23|
, ∀f ∈ (0, F ] (2.1)

where the following notation has been used

vij = vj − vi, ∀i, j ∈ [0, 3] (2.2)

Note that the counterclockwise orientation of the obj file has been used, so
a positive sign is assumed. Secondly, the edge normals are evaluated. Here,
special attention is required to the signs and reference should be made to the
figure 1.9: the equations used are

n̂A12e = v12e × n̂Ae
|v12e × n̂Ae|

(2.3)

n̂B21e = − v12e × n̂Be
|v12e × n̂Be|

(2.4)

this is ∀e ∈ (0, E], indicating the edge itself as v12:

v12 = v2 − v1 (2.5)

with v1 and v2 set as in table 2.1 (where we obviously draw the coordinates of
the corresponding vertices).

The data are all there, so the edge and face matrices can be calculated. The
equations (1.59) and (1.60) are used on their intervals, and the matrices are
evaluated.

After the processing phase, some of the newly calculated data are entered
into the database in the form of new tables. On the next page there is a new
table showing how the data has been saved in the database.

The last step that remains to be described is to save the database in an
external txt file, which will then be used by the C code to read the data directly
with fscanf. The formatting of the file follows roughly that of the tables in the
database; the only differences are

4It may have been reversed but this notation was also chosen for later codes and rather
than changing many lines of code it was preferred to document the notation. The bugs that
would have resulted from such a process have been avoided.
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Table Attributes
Face medium points Index mx my mz

Type int double double double

Normal unit vectors Index mx my mz

Type int double double double

Face matrices Index F11 F12 . . . F32 F33
Type int double

Edge matrices Index E11 E12 . . . E32 E33
Type int double

Table 2.2: Vectors and matrices associated with faces and borders stored in the
database. The face and edge matrices have been calculated in preprocessing, and
will then be used by the algorithm to calculate the gravity directly in execution.

• in the file header are the number of vertices, faces and edges, and at the
beginning of each new data structure a comment line indicating the number
of instances and attributes related to the instance

• a letter is added to the beginning of each instance characterizing the object
that is represented in the line:

– v for vertex
– f for face
– e for edge
– m for face midpoint
– n for face normal unit vector
– F for face matrix
– E for edge matrix

Probably the preprocessing is more complex than the code of the polyhedron
method itself, this due to the fact that the edges are not defined in the files obj
and it is necessary to write a method to determine them in a univocal way. The
parallel implementation of the method, however, is more complex and requires
much more information on the framework used (CUDA).
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2.1.2 Testing

The preprocessing can be tested in two ways:

1. going to depict the asteroid plotting only the edges, so as to verify that
these have been well selected

2. going to implement and test the polyhedron method. At the numerical
level, in fact, no face and on-board matrices are available for comparison
neither on the internet nor on the publication of the method author; testing
of the method will evaluate if preprocessing has been performed correctly.

Regarding the first point, the asteroid 433 Eros is depicted plotted only by
representing the segments of the edges, and thus neglecting the faces. The
normals are also plotted: one can easily verify that these are actually outgoing
from the body.

Figure 2.3: Plot of 433 Eros for verification of the correct implementation of
preprocessing. The plot occurred on the edges evaluated with the algorithm,
and the normals are also represented (they were rescaled by a factor of 1000 or
they would not have been visible).
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2.2 Polyhedron method

2.2.1 Implementation
The calculation of the polyhedra method is straightforward. Since the global
contribution is attributed to faces and edges of the polyhedron, just run two
for loop and the implementation is finished.

The first code was written in C, and can be found attached. The algorithm
provides a storage of the data evaluated in preprocessing by means of a specific
reading function. The data relating to vertices, faces, edges and matrices of face
and border are saved in pointers to be used at will in different functions. It is
therefore presumed to have known the following variables

• position is a 3-dimensional array, passed to the function by value

• σ is the density of the asteroid, passed by value

• nf and ne are the number of faces and edges respectively, passed by value

• vertices indicates a matrix (i.e. array of arrays) in which the vertex coor-
dinates are reported, passed by address

• faces is the connectivity matrix of vertices to faces, passed by address

• face_dyads is a matrix containing the face matrices, passed by address

• edges is the connectivity matrix of vertices to edges, passed by address

• edge_dyads is a matrix containing the edge matrices

• gravity is the address of vector where the results will be saved, and

• tmp is an address array in which the temporary results of the processing
are saved, waiting to be added to the gravity array.

Particular attention must be paid to the definition of the edge and vertex ma-
trices, which instead of being passed as true matrices 3x3 are actually vectors
of length 9. The function returns a double, namely ωs = ∑nf

i=0 ωi; these can be
used to define whether the point defined by position is internal or external to
the asteroid.

The pseudocode exploits some simplifications with respect to the final code,
specifically on the vector matrix products, which C does not explicitly imple-
ment. The final code is available as an attachment.

The function will be a key building block in subsequent implementations, as
gravity evaluation is required for both uncontrolled and controlled propagation.
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Algorithm 1 C implementation of the polyhedron method
1: function polyhedron(position, σ, nf , ne, **vertices, **faces,

**face_dyads, **edges, **edge_dyads, *gravity, *tmp)
2: ωs ← 0
3: gravity ← 0
4: for i := 1 to nf − 1 do
5: for j := 0 to 2 do
6: v[j]← vertices [faces [i, j]]
7: r[j]← position− v[j]
8: R[j]← |r[j]|
9: m← 1

3
2∑

n=0
v[n]

10: p← position−m

11: ω ← 2 arctan

 det(r)
2∏

n=0
R[n] +

2∏
n=0

R[n] ∗ (r[(n+ 1)%3] · r[(n+ 2)%3])


12: tmp← ω ∗ face_dyads[i] · p
13: gravity ← gravity + tmp
14: ωs ← ωs + ω

15: ε← 1e− 6
16: for i := 1 to ne − 1 do
17: for j := 0 to 1 do
18: v[j]← vertices [edges [i, j + 1]]
19: r[j]← position− v[j]
20: R[j]← |r[j]|
21: m← 1

2
1∑

n=0
v[n]

22: p← position−m
23: E ← |v[0]− v[1]|
24: . The equation has a singularity near the edges to be controlled
25: if R[0] +R[1]− E < ε then

26: λ← ln
(
R[0] +R[1] + E

R[0] +R[1]− E

)
27: else
28: λ = 0
29: tmp← λ ∗ edge_dyads[i] · p
30: gravity ← gravity − tmp
31: gravity ← gravity ∗G ∗ σ . G is defined via preprocessor
32: return ωs
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The problem that arises, however, is that, like any high fidelity method, it
requires a large number of calculations to be performed: as an example, using
of a 200,000-faced asteroid the number of iterations that must be performed is
about 500 000, since there are about 300,000 corresponding edges. Such a high
number of iterations will require a high calculation time too, despite the fact
that C is a very fast language in execution since it is compiled.5

To solve the problem, it was decided to parallelize the calculation. The
problem lends itself well to this method of improvement, since the iterations are
independent: the contribution of the i face is not influenced in any way by the
contribution of the i+ 1 face, for example, and thus applies to the edges.

There are several approaches to parallelization, and there is no better method
than another: it all depends on the hardware characteristics of one machine
rather than another. For example, parallelizing on a CPU in a 4-core calculator
and a high-performance graphics card is certainly less efficient than a paral-
lelization on GPU; vice versa is the case in a cluster server that has a minimal
GPU, only necessary to have a small graphical interface.

Figure 2.4: Comparison between typical CPU architectures and GPU architec-
tures. Fonte: Mathworks.

The computational characteristics of the machine used by the student fall
into the first category. In particular, there was an NVIDIA GeForce GTX 1060
graphics card with 3 GB of dedicated memory6, frequency of 1506 MHz and

5Compared to other languages not compiled as MATLAB or Python; C is often associated
with Fortran for execution speed.

6In reality at the beginning of the thesis there was not a computer equipped with this GPU
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1152 cores used for parallel computing. The choice fell on an NVIDIA card
because on the graphics cards of this company it is possible to enter quite
simply thanks to the parallel computing architecture CUDA (Compute Unified
Device Architecture). CUDA is a hardware architecture, but is usually also
intended as an extension of the C language7 that, through keywords, libraries
and dedicated compilers, allows easily to perform parallel calculations on the
GPU in a simple way as if these were open architectures like the CPUs: you
can write a function - called kernel - with the classic structured programming
techniques thinking about the behavior of the single thread. The call to the
kernel is then approached to the execution structure in parallel, and CUDA
then thinks about the rest.

CUDA introduces the concept of grid and the concept of blocking. Threads
can be organized by the programmer in blocks, and these in turn can be or-
ganized in a grid. The subdivision exploits the idea of three dimensions to
organize the memory structures. In particular, one-, two- or three-dimensional
execution structures can be defined using a rather simple notation. This would
simplify the calculations for some types of algorithms: for example, using a two-
dimensional grid, as in the image in next page, can be useful if you are working
with matrices.

The maximum number of threads that can be set in the three dimensions is
1024, 1024 and 64 respectively. The grid instead has much larger dimensions
(over 2 billion blocks in the first dimension and 65535 in the second and third).
This is because while the execution of the threads on the blocks occurs mostly
in parallel, the execution of the individual blocks does not take place properly
in parallel: these are loaded on the machine and resolved sequentially (with a
certain number in parallel, however).

A reference to the hardware architecture of CUDA is a must to understand
how the algorithm 1 was modified to fit the GPU and how the threads and
blocks were set to achieve minimum timing.

Discussing the distribution of the work on the single hardware component
of the board would be an electronic engineer’s business, but understanding the
mechanisms at least at a high level is necessary to define the call to the kernel

but took advantage of Black Friday to perform an update.
7There are also extensions for Python, Java, Fortran and MATLAB. Although initially it

was an extension of C, now it is actually an extension of C++ (in turn language derived from
C) and in some cases there may be errors in compiling algorithms written a few years ago.
The technology is quite recent, having been released only in 2007, so it is normal that there
are still some defects of standardization: consider that the language is unified, in fact it can
be performed on different architectures of GPU (Pascal is that used by 1060, but this too is
being replaced by Ampere for commercial applications and by Volta for workstations).
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Figure 2.5: A block is a set of threads organized in a structure that can be
one-dimensional, two-dimensional and three-dimensional, while the grids are
structures of blocks organized in the same way. Image taken from [26].

and minimize execution times. The execution is then entrusted to the graphic
card, but the organization of the workload must be the task of the programmer.
All information shown below is available free of charge from the NVIDIA website
[25] like webinars, documents or tutorials.

Without going into too much detail, the board is divided into SM (mul-
tiprocessor stream), small architectures containing SP (stream processors), au-
tonomous processing units capable of executing different threads of computation
(single kernel execution unit) exploiting the single cores, which produce 1 opera-
tion at each clock cycle of the machine. MS are instead associated with the warp
(group of 32 threads), with a maximum of 24 warp per SM. The SMs group the
execution of the warp with a mechanism called warp scheduling, which does not
produce overhead on the machine: all the threads in a warp execute the same
instruction at the same time; as soon as the instruction of the warp has the
operands ready to be processed, this is considered ready for execution; warps
that are ready to run are executed in a certain order dictated by an internal
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Figure 2.6: Pascal architecture of the graphic card used (GP-106). The numer-
ous computing cores are shown in green, the memories in blue and the process
schedulers in orange. Yellow blocks cover other aspects of the machine.
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policy, and when the execution arrives all the threads in the warp are executed
at the same time, with the same instruction.

It follows a practical consideration: the size of the blocks must be in a multiple
of 32 because the workload is optimized. After some experiments performed by
launching the kernel with different block sizes, it was noticed that actually
executing, for example, blocks of 1000 threads needed an increase in the final
timing compared to the case with 1024 threads of 15%. The differences between
choosing 512 threads per block or 1024 threads per block were minimal (<5%):
in the end we chose 1024 threads per block.

Further information to consider is how to define memory structures.In the
case of the sequential function described by the algorithm 1 array arrays (ma-
trices) have been used since access to the memory cells occurs almost instan-
taneously in an effectively open architecture such as the CPU. In the case of
a GPU, going to access an array of arrays extends the execution time of twice
as it is structured at the hardware level: in this regard, numerous documents
available on the site [25], discussions available on the forum and texts external
to the corporation (for example [27] and [28]) they report that packing arrays
in a one-dimensional data structure (array) is much more efficient than using
an array of arrays (matrices).It follows that the data structures actually used
will be arrays in which the information is sequentially packaged.

Figure 2.7: Differences between CPU and GPU data structures.

Before reporting the algorithm adapted to the parallel calculation it is neces-
sary to mention the fact that, unlike a sequential algorithm, the sum of different
contributions in parallel can not be trivially performed with the instruction

gravity ← gravity + tmp (2.6)

This is a problem of a computer nature: the threads can go to read and write
data on the same variable at the same time, and this would produce undefined
behavior. It follows that this part of the algorithm must be modified with a
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function in its own right, which will be discussed later. The data are temporarily
calculated and saved directly on the graphics card: the various contributions will
then be added to the next function.

The algorithm takes in input-output (everything for address):

• the position vector (field point)

• the number of faces nf and edges ne

• the arrays of vertices, faces and edges compacted as shown in the figure 2.7

• the face and edge matrices in the form of two single arrays (the single
matrix is compacted into an array of size 9 and all the various matrices are
compacted as in the figure 2.7)

• the gravity vectors gravityX, gravityY and gravityZ of size nf + ne, and
the solid angles vector ω of same size, on which to write the results. These
will then be used in the sum in parallel described after.

The algorithm in pseudocode is shown on the next page (the final code is at-
tached). As mentioned previously, CUDA allows to write a single thread using
the functions and variables of a specific library to guarantee the control of the
execution of the threads. In particular, the variables associated with the con-
structed parallel structure are

1. threadIdx indicates the thread index in the single block. This structure
is associated with three index variables, in the three dimensions. In other
words, the individual dimensions can be accessed with

• threadIdx.x

• threadIdx.y

• threadIdx.z

as if we are going to draw the values from a three-dimensional tensor

2. blockIdx is the analog of threadIdx for blocks on a grid

3. blockDim is a structure that indicates the size of the single block, also here
in the three dimensions and accessible as the other two variables.

The three variables can be used in such a way as to be able to access all the
values of the input variables with the instruction

i← threadIdx.x+ blockDim.x ∗ blockIdx.x (2.7)

61



Teodonio Domenico et al. Autonomous landing on asteroids

exploiting a linear CUDA calculation structure. Other structures could have
been used: the choice is arbitrary and a performance study would be necessary
(but the author was satisfied with the final result and no further research was
done). In particular, the following parallel calculation structure has been defined

• 1024 threads per block, on a single dimension

• an arbitrary number of blocks on the first dimension depending on the
number of faces and edges of the asteroid, so as to allow the kernel to access
each memory cell. The equation / instruction to calculate the number of
blocks is

gridDim← (nf + ne + blockDim− 1) /blockDim (2.8)

where with / we have indicated the quotient operator (division with trunca-
tion of the decimal part), which returns an integer. In this way it is possible
to generate threads in a number greater than or equal to the number of
variables to be analyzed, but not less.

As for the calculations of the single contributions, the function on GPU remains
identical to that described in the algorithm 1. To summarize, what changes is
the organization of data structures both in input and output, the method of
access to such structures no longer sequential but in parallel, and the sum of
the different contributions that another algorithm requires.

Particular note: in the following algorithm the data of the single input cells
have been drawn, since these are the arrays that pack matrices. This means that
it is necessary to act also on the matrices v and r with low-level instructions;
where possible, vector instructions will be exploited.

In the kernel defined below all the variables not present in input are declared
locally, and assume different values depending on the thread. Some variables
can be shared between threads (this will be seen later when the contributions
are added), but these are defined on the single thread.

The algorithm is modified by removing the for loop and introducing a condi-
tional control instruction if. In this way the function is called numerous times -
one for each thread, so at least n = nf +ne times - and the behavior is controlled
by the conditions. In particular

• if the thread number i is less than nf the i-th face contribution and the
corresponding solid angle is evaluated by the thread

• if the thread number i is between nf ans n the i− nf -th edge contribution
is evaluated by the thread
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Algorithm 2 CUDA implementation of the polyhedron method, part 1
1: kernel cu_polyhedron(position, nf , ne, vertices, faces, face_dyads,

edges, edge_dyads, gravityX, gravityY, gravityZ, ω)
2: i← threadIdx.x+ blockDim.x ∗ blockIdx.x
3: n← nf + nv
4: ε← 1e− 6
5: The for loop turns into an if in the parallel calculation. This is be-

cause the function is called numerous times and execution is controlled by
conditional statements.

6: if i < nf then . Calculation threads on the faces
7: for j := 0 to 2 do
8: for k := 0 to 2 do
9: v[j][k]← vertices [3 ∗ (int)faces [3 ∗ i+ j] + k]

10: r[j][k]← position[k]− v[j][k]
11: R[j]← |r[j]|
12: m← 1

3
2∑

n=0
v[n]

13: p← position−m

14: ω[i]← 2 arctan

 det(r)
2∏

n=0
R[n] +

2∏
n=0

R[n] ∗ (r[(n+ 1)%3] · r[(n+ 2)%3])


15: for u := 0 to 2 do
16: tmp[u] = 0
17: for u := 0 to 2 do
18: for v := 0 to 2 do
19: tmp[u]← tmp[u] + face_dyads[9 ∗ i+ 3 ∗ u+ v] ∗ p[V ]
20: gravityX[i]← ω[i] ∗ tmp[i]
21: gravityY [i]← ω[i] ∗ tmp[i]
22: gravityZ[i]← ω[i] ∗ tmp[i]
23: . End of the contribution of the faces. Continue in next page
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Algorithm 2 CUDA implementation of the polyhedron method, part 2
24: else if i < n & i ≥ nf then . Calculation thread on the edges
25: for j := 0 to 1 do
26: for k := 0 to 2 do
27: v[j][k]← vertices [3 ∗ (int)edges [2 ∗ (i− nf ) + j] + k]
28: r[j][k]← position[k]− v[j][k]
29: R[j]← |r[j]|
30: m← 1

2
1∑

n=0
v[n]

31: p← position−m
32: E ← |r[0]− r[1]|
33: if R[0] +R[1]− E < ε then . Edge singularities control

34: λ← ln
(
R[0] +R[1] + E

R[0] +R[1]− E

)
35: else
36: λ = 0
37: for u := 0 to 2 do
38: tmp[u] = 0
39: for u := 0 to 2 do
40: for v := 0 to 2 do
41: tmp[u]← tmp[u] + edge_dyads[9 ∗ (i− nf ) + 3 ∗ u+ v] ∗ p[V ]
42: gravityX[i] = −λ ∗ tmp[0]
43: gravityY [i] = −λ ∗ tmp[1]
44: gravityZ[i] = −λ ∗ tmp[2]
45: . End of the contribution of the edges, sum through external

function
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• for values greater than n the thread will not go into any conditional block
and will finish execution in advance.

The rest of the differences between the algorithm 1 and 2 it has already been
discussed in the previous pages. What needs to be defined now is the method
used to sum up the contributions of faces and edges. A parallel programming
technique known as reduction is used. The algorithm derives from [30], and it is
quite general: one of its applications transforms the sum of n elements from an
algorithm of O(n) operations into an algorithm of O(log2 n) operations. This is
possible by taking advantage of the sum (in parallel) of blocks of elements.

Figure 2.8: Reduction algorithm for an array of 9 elements. The blocks in green
are the basic elements, while the blocks in red are the additional elements. The
vector has been chosen of 9 elements to show that it is not necessary that the
number of elements is of a power of 2 or even.

The idea is precisely to add the block addends, dividing the set of addends
into a set of bases and one of addends to the first, and iterate this process until
there is only one element left. As each number of elements is halved at each
iteration, we have 2d ≤ n so the d order is log2 n.

Before showing the complete algorithm it is necessary to adapt it to the re-
sources that CUDA makes available. In particular, it is possible to define shared
variables on threads in the same block by means of the keyword __shared__:
in this way we proceed to reduce the threads contributions in the same block
producing a vector that contains the sum of the contributions on the individual
blocks, then to add again these contributions to obtain the final value, sequen-
tially or in turn through parallel reduction.

In the case in question, since the number of blocks produced is small (at most
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Figure 2.9: Diagram showing how the algorithm in CUDA will be implemented:
first, the contributions on the individual blocks are reduced, then the contribu-
tions of the blocks are added together through a further sum. Source: [30]

hundreds with the asteroids available), to avoid memory allocation problems on
GPUs and undefined behaviors to be debugged it is preferred to reduce the
terms on blocks with a sequential sum8.

The call to the function will appear in the algorithm __synchthreads(): it
is a function built-in provided by the CUDA runtime library to produce a sort
of wall in the threads of the single block that will be exceeded only when all
threads reach a __synchthreads(). This way you avoid undefined behaviors
due to shared memory not updated.

Ultimately, the input - output values to the function are

• gravityX, gravityY , gravityZ and ω the values produced by the kernel
cu_polyhedron

• gravityXblock, gravityY block, gravityZblock and ωblock the reduced values
on the blocksi

• n the dimension of reducing vectors.

The implementation of the algorithm in parallel yielded a speedup of over 3000%
compared to the sequential algorithm.

8In other words "the game was not worth the candle". The speedup that would have been
obtained would have been only a fraction more comparing the two complete algorithms.
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Algorithm 2 CUDA implementation of the polyhedron method, part 3
46: kernel polyhedron_reduction(gravityX, gravityY , gravityZ, ω,

gravityXblock, gravityY block, gravityZblock, ωblock, n =size(gravityX))
47: tid← threadIdx.x . Local thread index, defined in the block
48: i← blockIdx.x ∗ blockDim.x+ threadIdx.x . Global thread index
49: Declaration of shared variables. THR_PER_BLK is 1024
50: __shared__ shared_gX[THR_PER_BLK], shared_gY [THR_PER_BLK],

shared_gZ[THR_PER_BLK], shared_ω[THR_PER_BLK]
51: Allocation of shared memory (remember that each block has its own)
52: if i < n then
53: shared_gX[tid]← gravityX[i]
54: shared_gY [tid]← gravityY [i]
55: shared_gZ[tid]← gravityZ[i]
56: shared_ω[tid]← ω[i]
57: __synchthreads__()
58: Sequential addressing is used in reference to [30]
59: for int s := blockDim.x/2; s > 0; s← s/2 do
60: if tid < s then
61: shared_gX[tid]← shared_gX[tid] + shared_gX[tid+ s]
62: shared_gY [tid]← shared_gY [tid] + shared_gY [tid+ s]
63: shared_gZ[tid]← shared_gZ[tid] + shared_gZ[tid+ s]
64: shared_ω[tid]← shared_ω[tid] + shared_ω[tid+ s]
65: __synchthreads__()
66: Saving data in the external memory, after the reduction
67: if tid = 0 then
68: gravityXblock[blockIdx.x]← shared_gX[0]
69: gravityY block[blockIdx.x]← shared_gY [0]
70: gravityZblock[blockIdx.x]← shared_gZ[0]
71: ωblock[blockIdx.x]← shared_ω[0]
72: Sequential reduction in main.
73: gravity = 0
74: ω = 0
75: for i := 0 to n do
76: gravity[0]← gravity[0] + gravityXblock[i]
77: gravity[1]← gravity[1] + gravityY block[i]
78: gravity[2]← gravity[2] + gravityZblock[i]
79: ω ← ω + ωblock[i]
80: gravity ← gravity ∗G ∗ σ
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2.2.2 Testing

After implementation, it is necessary to test that the function returns accurate
values. To verify this, it is common in engineering to compare the results ob-
tained with methods that are sure that the result is reliable: analytical methods
fall into this category.

In particular, we are going to compare the application of the polyhedron
method to a 20480 test sphere, obtained from the website [31] and its analytical
model, going to define the same density for both models. In particular, for a
sphere of constant density σ the gravitational field can be approximated to that
of a point mass if the field point is outside the surface of the sphere:

gsfera(r) = −Gσ4
3πR

3 r
r3 (2.9)

where G is the constant of universal gravitation, R the sphere radius, r is the
distance vector from the origin and r is its modulus.

The chosen sphere is preprocessed by the method described in the previous
section and rescaled with a factor 6371000 equal to the radius of the Earth. The
method is then applied by varying the distance from the surface, expecting an
inversely quadratic pattern. The number of faces is assumed to be sufficient to
guarantee a good approximation. The density chosen is of 5510 kg/m3.

Figure 2.10: Non-scaled 3D model of the sphere used in the test.
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The relative error is calculated with the equation

err%(r) = 1− gpoly(r)
gsphere(r)

(2.10)

and the results are shown in graphical form. The test is performed by changing
the direction of r̂ in the three Cartesian axes to verify that the error is not
present in different areas of the space. There is a constant error of 0.05%, due
mainly to numerical errors and to the mesh which, as dense as it is, can not
accurately represent a curved body like a sphere. A value for r = R can not be
considered reliable due to the singularities induced by λe and ωf but even for
slightly different values the method still manages to calculate the contributions.

Figure 2.11: Results of the test of the polyhedra method and representation of
the error related to the variation of the distance from the surface and in the
three axes. The curves are actually superimposed.

By testing the polyhedra method, it was concluded that preprocessing was
also implemented correctly.

As for the two different algorithms, both have been implemented and they
produce results identical to the seventh significant digit. However, the method
implemented with CUDA is more than 30 times faster than the classic C-code.
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2.3 Tetrahedral singularities method

2.3.1 Implementation
The implementation of the tetrahedral singularity method is similar to that of
the polyhedra method. The first approach was to evaluate the contributions
sequentially similar to the algorithm 1, following an evaluation of the error that
it generates and a comparison with the polyhedron method, it was decided to
implement the latter in the subsequent phases and therefore it was not pro-
ceeded to implement a method in parallel. However, this implementation would
take the same path as implemented to implement the algorithm 2, as the differ-
ences are only in the calculation method and not in the computer architectures
that can be used. The method allows the calculation of solid angles as in the
polyhedron method, however this feature is not implemented, being interested
only in evaluating the gravity developed by them.

The input-output variables used are the same used in the previous algorithms.
In this case, the face and edge matrices and the edges themselves are missing,
which do not contribute to the way the method is thought.

Algorithm 3 Tetrahedral singularities method implementation
1: function tetrahedron_singularities(position, σ, nf , **vertices,

**faces, *gravity, *tmp)
2: gravity ← 0
3: for i := 1 to nf − 1 do
4: for j := 0 to 2 do
5: v[j]← vertices [faces [i, j]]
6: M ← 1

4
2∑

n=0
v[n] . This vector is the center of mass

7: R← position−M
8: tmp← −detV

6
R

|R|3
9: gravity ← gravity + tmp

10: gravity ← gravity ∗G ∗ σ . G is defined via preprocessing

The function calculates the center of gravity of the tetrahedron by summing
the coordinates of the vertices and dividing by 4 (conscious of the fact that the
fourth vertex of the tetrahedron is the origin of the reference system). Then
the mass of the tetrahedron is concentrated in this point through a product
of volume and density and the gravitational contribution that this singularity
generates is obtained. At the end, it is multiplied by the constants, so as to save
an iteration operation.
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2.3.2 Testing
The data obtained by applying the tetrahedral singularity method on the sphere
shown in the figure 2.10 are shown in the graph below. The same criteria of
representation of the graph was used in the previous method: the error is then
reported with respect to the distance from the surface.

Figure 2.12: Relative error obtained by the tetrahedral singularity method.
Similarly to 2.11, the curves are coincident because of the symmetry of the
body.

There is a greater error near the surface than in the polyhedron method, and
a settling of the major ray error at a slightly higher figure than the polyhedron
method.

2.4 Calculation of spherical harmonic coefficients
As anticipated in the previous chapter, a method for calculating the spherical
harmonic coefficients has been implemented with Python. The sympy library for
the symbolic calculation was used in order to extract the trinomial coefficients
relative to the monomials in X, Y and Z in a computationally efficient way.

The function takes in input

• the database file produced by the asteroid preprocessing algorithm

• the maximum order in n of the harmonic coefficients to be calculated (cho-
sen by default equal to 8)

• the density of the body

• the body mass
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and in output two matrices containing the harmonized coefficients normalized
according to (1.23) relative to the chosen asteroid. The algorithm in pseudocode
is listed later. We use part of the Python language to express the concepts,
which being of high level is much faster and more intuitive than the counterpart
C; however, since these are a pseudocode, it follows that the statements will
not be "corrected" from an execution point of view: the final code is however
included in the annex for comparison. Particular attention should be paid to
the indexes, that while in Python are zero-based and the last number in a range
is not included, in the pseudocode it is not: the last number is included in the
calculations, using a MATLAB convention.

Algorithm 4 Calculation of normalized spherical harmonic coefficients, part 1
1: function evaluate_coefficients(database_file, n, σ, M)
2: The following two statements indicate the extraction of data from the

database
3: vertices← SQLite.eval(’SELECT * FROM Vertices’)
4: faces← SQLite.eval(’SELECT * FROM Faces’)
5: a← max(|vertices[1 : 3, :]|)
6: c, s, C, S ← zeros(n)
7: X, Y, Z ← symbols(′X Y Z ′)
8: for face in faces do
9: x1, y1, z1 ← vertices[face[1]]

10: x2, y2, z2 ← vertices[face[2]]
11: x3, y3, z3 ← vertices[face[3]]
12: detJ ← det([(x1, x2, x3), (y1, y2, y3), (z1, z2, z3)])
13: x← x1X + x2Y + x3Z
14: y ← y1X + y2Y + y3Z
15: z ← z1X + z2Y + z3Z
16: r ←

√
x2 + y2 + z2

17: for i := 0 to n do
18: ci = zeros(i)
19: si = zeros(i)
20: Ci = zeros(i)
21: Si = zeros(i)
22: Continues in next page.

All the equations used are available in the section on method theory.
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Algorithm 4 Calculation of normalized spherical harmonic coefficients, part 2
23: . Still in the for loop started in line 17
24: The next expressions all use the symbolic calculation to evaluate

expressions in terms of X, Y , and Z. The coefficients will be extracted later.
25: if i = 0 then
26: ci,i, si,i ← [1, 0]T
27: else if i ≥ 1 then
28: ci,i−1, si,i−1 ←

2i− 1√
2i+ 1

· z
a

[
ci−1,i−1
si−1,i−1

]
29: if i = 1 then
30: ci,i, si,i = 1

a
√

3

[
x
y

]
31: else
32: ci,i, si,i = 2i− 1

a
√

2i (2i+ 1)

[
x −y
y x

]
·
[
ci−1,i−1
si−1,i−1

]
33: for m := 0 to i− 2 do
34: ci,m, si,m ← (2i−1)

√
2i− 1

(2i+ 1)(i+m)(i−m)
z

a

[
ci−1,m
si−1,m

]
+

−
√√√√(2i− 3)(i+m− 1)(i−m− 1)

(2i+ 1)(i+m)(i−m)

(
r

a

)2 [ ci−2,m
si−2,m

]

35: In the next cycle the coefficients relating to the trinomial
X iY jZk are extracted. We define a set of possible permutations of the
three numbers by removing the duplicates and going to select only those
that actually have i as a sum.

36: for perm in set(permutations([0,1, . . . , i], 3)) do .
Applying a set to a list eliminates the duplicates, while the permutations
operator returns a list of possible permutations of the fed values in groups
of dimension given by the second input, 3 in this case.

37: if ∑(values) for values in perm = i then
38: I, J,K ← perm
39: for m := 0 to i do
40: . The next two statements extract the coefficients
41: α = ci,m.coeff(XIY JZK)
42: β = si,m.coeff(XIY JZK)
43: . Next adds the contribution of the trinomials to

the harmonics
44: Ci,m, Si,m ←

[
Ci,m
Si,m

]
+ I!J !K!

[
α
β

]
45: Continues in next page.
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Algorithm 4 Calculation of normalized spherical harmonic coefficients, part 3
46: The algorithm has terminated the conditional statements defined

by if in line 27, but it’s still in the for loop called in line 17. Here is a
constant term on the various α and β contributions that we have preferred
to impose out of the loop to save some computations.

47: for m := 0 to i do
48: Ci,m, Si,m ←

detJ

(i+ 3)!

[
Ci,m
Si,m

]
49: The algorithm has just come out of all the planned cycles and has cal-

culated the contributions of all the faces on the coefficients. The constant
terms are missing, which are entered only at the end of the calculation, again
to save on calculations.

50: for i := 0 to n do
51: for m := 0 to i do
52: Ci,m, Si,m ←

σ

M

[
Ci,m
Si,m

]
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2.5 Choice of the asteroid model to use

As previously reported, there are several models of 433 Eros that can be used to
assess gravity. Obviously, the more a mesh is thick, the greater the accuracy of
the high-fidelity method; however, the computational cost increases accordingly.
It is therefore necessary to find a compromise.

To find the most suitable model for the case in question we proceed simply
by sampling a multitude of points outside the asteroid defined in a plausibility
cone and evaluating their severity with the different models available, comparing
them one by one with the more precise one (the 200700 faces model).

Following are shown scatterplots related to the results of these models. In
particular, the models from 1708, 10152 and 89398 are evaluated in a set defined
by the starting point (0 ± 500, 10000 ± 500, 0 ± 500) up to the landing point
(defined as the vertex closer to the (0,10000,0) point, relative to the 200700
faces model).

Figure 2.13: Scatterplot of the error related to the 1708 faces model, in the
previously defined cone. In abscissa the distance from the surface.
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Figure 2.14: Scatterplot of the error relative to the model at 10152 faces, in the
previously defined cone. In abscissa the distance from the surface.

Figure 2.15: Scatterplot of the error relative to the model at 89398 faces, in the
previously defined cone. In abscissa the distance from the surface.

Following this analysis is identified in the model with 10000 faces to be used
effectively, since it maintains an acceptable error (less than 1%) saving in com-
putational cost. Other models either have a too high error (up to 3%) or require
longer timings.
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Dynamics and control
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Chapter 3

Theory on dynamics and
control

3.1 Dynamics
By "dynamic" here we mean the possibility of predicting the evolution of the
trajectory of the satellite around the asteroid starting from the accelerations
that are imposed on them.

As the asteroid is rotating, in addition to gravity there will be other accel-
erations in play that must be evaluated in order not to run into major errors.
These are

• Coriolis acceleration

• centripetal acceleration
Tumbling motion1 of the asteroid was not considered for reasons of time and
scopus of the thesis.

The reference system used to analyze the problem is the reference system
set with the asteroid (body fixed frame). Gravity is naturally calculated with
this reference system, and other effects could be traced back to that system
via Bryant, Euler or quaternion rotations. However, since the secondary effects
have not been implemented, the problem does not arise.

The main equation used to describe the dynamics of the body around the
asteroid is as follows

r̈ + ω× (ω× r) + 2ω× ṙ + ω̇× r = G + C (3.1)

1Tumbling represents the rotation of the asteroid around several major inertial axes that
causes couplings and angular velocities with respect to oscillating over time.
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where

• r is the distance vector with respect to the origin of the reference system

• ω̇ is the angular acceleration of the body. In the case of asteroids not sub-
ject to tumbling and in the absence of external events that can change the
angular velocity (YORP effect, precession, nutation, induced gravitational
effects etc) this term can be imposed at 0

• ω is the angular velocity in the three body axes

• G is the sum of the effects of gravity and perturbations, ie G = g + gP ;
obtaining this number is the subject of the first part of the thesis

• C it is the control vector. There are several methods to implement a
controller that will be discussed later.

The interesting case concerning the dynamics is the propagation of the uncon-
trolled trajectory. This problem is useful as a test, to verify that the integration
algorithm is implemented correctly, having reference analytical models available.

In particular, when speaking of pure propagation of the trajectory, the equa-
tion is defined

r̈ + ω× (ω× r) + 2ω× ṙ = g (3.2)

which will be integrated numerically.
The classical method for integrating an equation of the genre will be discussed

below: the use of the state space formulation coupled with a numerical integrator
(an explicit Runge-Kutta integrator will be used, the order will vary according
to the method used, will be compared a couple).
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3.1.1 Integrator
By "integrator" we mean an algorithm used to evaluate the subsequent state of a
dependent variable defined as a differential equation that describes its dynamics
and a starting condition. Among the various integrators that were developed
in numerical analysis we used those of Runge-Kutta because of their simplicity
and reliability. These are iterative methods, which can be defined through a
series of coefficients.

Let f(y; t) be a differential function on the independent variable t and on the
dependent variable y. If the equation is valid

y′(t) = f(t; y(t)) (3.3)

then it is possible to apply the numerical integration method, having also avail-
able a y(t0) = y0. Different differential equations can often be traced back to
the form described in (3.3).

The integrator, defined a certain ∆t, returns a numerical approximation of
y(t0 +∆t); the choice of ∆t affects the accuracy of the approximation in explicit
methods2. Iterating the use of the integrator it is possible to calculate also the
successive values defined b y(t0 + 2∆t), y(t0 + 3∆t) and so on.

RK (Runge-Kutta) methods can basically be represented by a coefficient
table (called Butcher) and by an algorithm for using them. While the algorithm
remains the same for all methods, the coefficients are variable, and it is precisely
these that define the particular method. These coefficients are provided by
numerical analysis experts, or can be found online.

The Butcher tableau is defined with the following notation:

0
b2 c21
b3 c31 c32
... ... . . .
bs cs1 cs2 . . . cs,s−1

b1 a2 . . . as−1 as

where s indicates the number of stages of the method. There is a relationship
of mutual increase between s and precision, but increasing s implies increasing
the number of evaluations of the f function.

2By explicit method we mean a method that uses only the information upstream of the
integration to evaluate the next state, unlike the implicit methods that exploit downstream
information and require the resolution of linear systems or other numerical techniques.
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The integration algorithm for explicit RK methods is defined by the following
equations:

y(t+ ∆t) = y(t) + ∆t
s∑
i=1

aiκi (3.4)

κi = f(t+ bi∆t; y(t) + ∆t
i∑

j=1
cijκj) (3.5)

The method is used iteratively. A function evaluation is required for each s, and
the partial value -calculated via the bi nodes and the RK matrix coefficients cij
- is assigned to the κi variable; these values are then added together with their
weights ai.

The method is quite general and can be used for any system whose dynamics
(i.e. the ODE described by (3.3)) is known. However, it is observed that the
equation characterizing the dynamics of the probe (3.2) is not defined in terms
of (3.3). It will therefore be necessary to bring back the same terms in order to
apply the integration method.

3.1.2 State-space formulation
A formulation that is universally used in these areas is the state-space formula-
tion, which brings the position and velocity back to a vector, called the "state"
of the probe.

s =
[

r
v

]
=



rx
ry
rz
vx
vy
vz


(3.6)

According to this formulation it is possible to bring back the equation in this
way (3.2): ṙ = v

v̇ = r̈ = g−ω× (ω× r)− 2ω× ṙ
(3.7)

having brought the acceleration of Coriolis and centripetal right to the right.
In this way, the function of the six-variable vector described by the equations
above can be defined with f . It follows that writing

ṡ = f(s) (3.8)
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is possible3, so the equation has been traced back to (3.3).

3.1.3 Successive integrations

As already anticipated, the method can be used iteratively to calculate in suc-
cession the states (and therefore the trajectory) of the probe in the successive
instants of a certain initial value.

On a practical level, this means that the trajectory starting from an initial
state can be propagated around the asteroid: numerical integration can not be
modeled by an equation, perhaps only approximate; however, it can be useful
for a variety of reasons

1. Verify that a certain initial state gives stable orbits

2. Check to see if the trajectory ends in a collision on the asteroid or in an
escape trajectory

3. Analysis of the effects of mass distributions in terms of the classical orbital
parameters defined in orbital mechanics

In any case, however, verifying that the propagation is consistent with ana-
lytical models is a necessary step: the controlled trajectories will be obtained by
integrating the states with associated control vectors, and an incorrectly imple-
mented algorithm could lead to results inconsistent with reality ( even if you are
using high-fidelity gravity models). Implementation and test will be discussed
in the next chapter.

3Although the case reported here is vectorial rather than in one dimension the method is
general and can be applied even here.
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3.2 Control
Trajectory control is a very specific branch of aerospace engineering, since the
determination of the control law C is a non-trivial task from a theoretical point
of view.

The methods used in the control field are different. Some mention:

• LQR controller

• sliding mode controller

• PID controller

• fuzzy controller

There are also others, of course, and each of them has some characteristics that
differentiate it from others.

The method that will be implemented is an original method (MSSG: Multiple
Sliding Surface Guidance) developed by Furfaro et al. [32], which makes use of
sliding-mode control theory to develop a high-order nonlinear controller. Other
methods have been analyzed but not implemented; one of these [33] will be
treated to make the discussion more complete: it is an algorithm that exploits
the base of the control systems theories to concatenate three closed rings, each
with features, in order to obtain a soft landing.

The algorithms mentioned here are algorithms useful for navigation only.
Since the probe was not modeled, the implementation of the attitude control
would have been completely inaccurate, so it was decided to neglect it. In
a realistic controller, however, an attitude control must also be implemented.
Some documents are cited, in case the reader wanted to deepen the topic: [34],
[35], [36], [37]. Note in particular that the attitude control problem can also be
solved with the navigation methods, changing the characteristic equations and
specifying the desired orientation as objective.

The controllers described in this chapter fall into the "classical" methods of
control. In recent years, applications have focused on artificial intelligence: the
deepening of these methods is dealt with in the third part of this thesis.
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3.2.1 MSSG
The MSSG approach methodology is based on robust control, a sub-category of
control theory, of which this theory is a basic application. The idea is to control
a variable with a dynamics of the first order, rather than of a higher order: in
this way any oscillations of the control vector are reduced in the last phases of
the landing; moreover, first-order control methods are inherently more robust
than higher-order controllers.

The dynamics described by the equation (3.2) is of the second order, however:
the use of several control surfaces leads to a problem of the first order. The SISO
dynamic system (single-input single-output) can be defined by the equation

dn

dtnx = f(x) + b(x)u (3.9)

where x is the scalar output of the theory, x is the state vector contraining x
and its derivatives until order n − 1, u is the control vector and f and b are
two functions that characterize the uncontrolled dynamics and the gain of the
controller. In theory it is not necessary to know the exact course of f and b,
but only a higher limit value. The controller allows x to follow a desired state
xd via a sliding surface4 defined as

s(x, t) =
(
d
dt + λ

)n−1
x̃ = 0 (3.10)

where with x̃ = x−xd is the error between position and desired one. The surface
thus defined is time-variant, and the system is forced to track s indefinitely. The
reason why the method is called "sliding" is because, once the surface is reached,
the system is free to slip on it without going to apply a control vector; vice versa,
the control is applied in case the system is not on the specified surface. Then
there are conditions that a control law must satisfy so that the surface does not
diverge over time, ie the sliding condition:

1
2
d
dts

2 ≤ −η|s| (3.11)

where η is a positive constant. It is demonstrated that, if (3.11) is satisfied, the
surface decreases exponentially at 0 on all the trajectories undertaken.

The price to pay to keep the system flowing on the surface is a high activity
of the controller, which leads the control vector to oscillate in the vicinity of
the same. The oscillations can lead to chattering, with negative consequences

4Here by "surface" one means one in the state space; it does not represent a physical surface.
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on the probe’s physical control system. One way to eliminate chattering is to
introduce HOSC (High Order Sliding Control); taking advantage of the following
definition

Definition. Consider a system with a soft output defined by the sliding function
s(x, t). If the expressions di

dtis are continuous for i ∈ [0, r] and go to zero for
t→∞, then the motion on the set

{s, ṡ, s̈, . . . , s(r−1)} = {0,0, . . . ,0} (3.12)

is said to exist in a r-sliding mode.

then it is possible to use a two-sliding mode for probe navigation, as the
control is of order two (it is an acceleration). It follows the use of a second-order
HOSC instead of one that simplifies the problem with a high-order surface, as
in (3.10).

The method is developed by adapting the theory to a MIMO system (multiple-
inputs multiple-outputs) in the following way. First define the surface with

s1 = r− rd (3.13)

and its derivative with
ṡ1 = ṡ− ṡd = v− vd (3.14)

The problem consists in making tend to 0 s1 e ṡ1 in a finite time tF . To make
it possible ṡ1 is set as a virtual controller, chosen as follows:

ṡ1 = − Λ · s1

tF − f
(3.15)

where Λ = diag (Λ1, Λ2, Λ3) is a gain matrix. It can be shown that the controller
thus implemented is globally stable, as it satisfies the sliding condition (3.11).
The analysis made by the method author also shows that the Λ gains must
be chosen greater than 1 because the surface and its derivative converge to 0
correctly: values smaller than 1 could make the derivative of the surface diverge.

The controller described in this way is virtual because it is not possible to
control ṡ1 directly since the control vector should be an acceleration. A second
surface is then defined

s2 = ṡ1 + Λ · s1

tF − t
(3.16)

which is relative grade 1 respect to acceleration. In fact, it is noted that

ṡ2 = s̈1 + Λ · ṡ1

tF − f
+ Λ · s1

(tF − f)2 (3.17)
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and refering to (3.7) the second derivative of the first surface can be traced back
to the control vector:

s̈1 = d
dt (v−��vd) = v̇ = r̈ = g + C−ω× (ω× r)− 2ω× ṙ (3.18)

Follows that ṡ2 ∝ C.
The control C is obtained by the direct method of Lyapunov5: defining a

candidate function
V (s2) = 1

2sT2 s2 (3.19)

with the following properties
V (0) = 0 per s2 = 0
V (s2) > 0 ∀ s2 /= 0
V (s2)→∞ per s2 →∞

(3.20)

we can extract esplicitly its derivative with

V̇ (s2) = sT2 ṡ2 = sT2
[
g + C−ω× (ω× r)− 2ω× ṙ + Λ

tF − f
·
(

ṡ1 + s1

tF − f

)]
(3.21)

An equation that may be able to solve the problem is defined with

V̇ (s) = −sT2 ·Φ · sign(s2) (3.22)

withΦ a diagonal matrix of 3 strictly positive coefficients. This equation satisfies
the conditions (3.20), because in this way the derivative of V always remains
negative. Having tied V to s2 with the equation (3.19), a decreasing of V
implies that even s2 decreases, and therefore the solution is globally stable. In
particular, by virtue of Lyapunov’s stability theorem ([38] and [39]), selecting
Φ according to the expression

Φi = |s2i(0)|
t∗F

we have that s2 → 0 for t → t∗F . Obviously we have to choose t∗F ≤ tF ,
so that the controller reaches the surface 2 before the surface 1. Substituting

5We do not go to deepen this method to avoid writing an entire chapter on nonlinear
control and robust control: consider [38] and [39] for further details.
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(3.22) in equation (3.21) and simplifing the term sT2 , we can directly collect the
acceleration signal in the equation that is called MSSG:

C = −
[
g−ω× (ω× r)− 2ω× ṙ + Λ

tF − f
·
(

ṡ1 + s1

tF − f

)
+ Φ · sign (s2)

]
(3.23)

Depending on the value of gains and characteristic times tF and t∗F , the method
can guarantee the following characteristics

• robustness to perturbations, if Φi > |gP |max

• global stability, if Λi > 1

• good execution time (can be used in real time)

• resistance to chattering, if t∗F → tF

• modulated control in analog rather than in digital (respect to the classic
sliding surface method with one surface).

One aspect to keep in mind is the impossibility of the method to generate a
reliable control vector for t ≥ tF because of the singularity in (3.23). However,
due to the landing problem, this consideration does not generate any further
problems, because once the desired state has been reached (the landing point
with the desired landing speed) the landing is completed and the controller does
not need to be further used.
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3.2.2 Constrained control
The control scheme is described in the paper [33]. It is reported below: it has
three distinct loops that interact to evaluate the control vector:

1. an internal loop that uses a linear LQ controller that stabilizes the probe
to a desired position

2. a median loop which, through an observer, reacts against the uncertainties
of the model6

3. an external loop that uses an extended command governor (ECG) at discrete-
time to improve control and constraints of the landing state

. The following notation will be used:

• X = [x, y, z, ẋ, ẏ, ż]T is the state

• X0 = [x0, y0, z0,0,0,0]T is the desired state

• U is the control vector

• U0 is the control vector to keep the equilibrium in state X0

• δX = X −X0 is the error between state and desired state

• δU = U − U0 is the error between control vector and final control vector

The equilibrium time-variant equation - similar to (3.9) in its form - is linearly
defined with the arrays A and B:

δẊ(t) = AδX(t) +BδU(t) (3.24)

Inner ring: linear LQ controller

The first controller used is of type LQ. The expression is in the form

δU(t) = KLQδX(t) (3.25)

that stabilizes 3.24 and minimizes the following cost function

Jc =
∞∫
0

||δX(t)||2Qc + ||δU(t)||2Rc dt (3.26)

6A controller of this type is necessary in the case of low-fidelity models - which is the
case with the author of the control method. Using a high-fidelity model this feature can be
removed.
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whereQc and Rc are weight matrices of state and control, orthogonal and strictly
positive. The notation used has the matrix expression (taken a vector m and a
matrix M)

||m||2M = m ·M ·m
The output in position is also defined with

Y (t) = HδX(t) (3.27)

where H = [I3 0]T , with In identity matrix n× n. Implementing the following
matrix

Γ =
(
H (I6 − A−BKLQ)−1

B
)−1

(3.28)
the following control law can be defined

δU(t) = KLQδX(t) + Γv(t) (3.29)

v(t) is an additional input given to the inner ring: if it is placed as a constant
v, then asymptotically the position tends to

Y (t)→ v per t→∞ (3.30)

Merging equation (3.29) with (3.24), then we can obtain the following expression

δẊ = AcδX(t) +Bcv(t) (3.31)

with Ac = A+BKLQ e Bc = BΓ. Note that v(t) is the command output of the
outer ring.

Middle ring: noise elimination

The second controller is necessary in the case of low-fidelity gravity models or
to counteract any unmodeled perturbations. It is an input observer: consider
the equation (3.24) modified in

δẊ(t) = AδX(t) +B(δU(t) + w(t)) (3.32)

with w(t) the input disturbance to the controller, in terms of forces, calculated as
the difference between the linear model and the actual dynamics. To counteract
this disturbance the control law is changed to

δU(t) = KLQδX(t) + Γv(t)− ŵ(t) (3.33)

where ŵ(t) is a measured estimate of w(t). The controller is formulated as
follows: let z(t) be a speed output defined with

z(t) = HOδX(t) (3.34)
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with HO = [0 I3]T , available via electronic measurements or estimates. We
define an auxiliary variable ζ that obeys the following dynamic equation

ζ̇(t) = γ (ĝ(t) +HOAδX(t) +H0BδU(t)) (3.35)

with γ as the observer gain, tied to z by means the ĝ(t) variable and the equation

ĝ(t) = γz(t)− ζ(t) (3.36)

The following variable is used to evaluate the estimate of the disturbance

ŵ(t) = (HOB)L ĝ(t) (3.37)

where with the apex L the reverse transposed left is indicated, defined with
(taking any M matrix)

ML = (MTM)−1MT

It is shown that if there is a time limit exceeding the time derivative of w(t),
then the error imposed by the estimates w(t)−ŵ(t) converges in a neighborhood
of origin; the size of that interval is dependent on the gain of the observer γ
and can be arbitrarily rendered small if γ is arbitrarily large. In this way, the
observer reacts against external stimuli caused by disturbances not taken into
consideration or modeled in an inaccurate manner.

Outer ring: navigation with ECG

The extended command governor is an addition that can be implemented on
the controllers in order to modify a command on the basis of pre-established
constraints; in this algorithm it is used in order to avoid collisions with the
asteroid and to add constraints on the landing. More information on the ECG
can be found in the survey [43]. The ECG operates at discrete-time every ∆t
seconds (equation (3.38)).

v(t) = v(k∆t) , ∀t ∈ [k∆t, (k + 1)∆t) , ∀k ≥ 0 (3.38)

The predictive model with discrete-time is based on (3.24), with the control law
(3.29) taken in consideration at discrete-time:

δX((k + 1)∆t) = AdδX(k∆t) +Bdv(k∆t) (3.39)

where Ad = eAc∆t e Bd = A−1
c (Ad − I6)Bc.
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At this point it is necessary to add auxiliary variables, states in particular.
Consider therefore x̄((k + j)∆t) ∈ Rn̄ and ρ(k∆t) ∈ R3, with k, j, n̄ ≥ 0. These
evolve with the relations (j ≥ 0)

x̄((k + j + 1)∆t) = Āx̄((k + j)∆t) (3.40)
ρ((k + j)∆t) = ρ(k∆t) (3.41)

where Ā it is a matrix that can be chosen according to particular shifting con-
straints; the author chooses the expression

Ā =


0 I3 0 0 . . .
0 0 I3 0 . . .
0 0 0 I3 . . .
... ... ... ... . . .

 (3.42)

Now consider instead a subset Õ∞ ⊂ O∞, where O∞ is the set of all possible
tuples (δX(k∆t), ρ(k∆t), x̄(k∆t)) such that the closed-loop response defined
by

v((k + j)∆t) = ρ(k + ∆t) + C̄x̄((k + j)∆t) (3.43)

satisfies the constraints imposed ∀t (defined later on in the treatment). C̄ is a
matrix defined as C̄ = [I3 0 0 . . . ].

The fictitious states are evaluated by the ECG; mathematically these consti-
tute the solution of the following equation

argρ,x̄ min
(
||ρ(k∆t)− v̄(k∆t)||2S1 + ||x̄(k∆t)2

S2

)
(3.44)

subject to the constraint in which (δX(k∆t), ρ(k∆t), x̄(k∆t)) ∈ Õ∞. There are
procedures that can obtain this subset, for example [42] in the case of linear
constraints. The matrices S1 and S2 they are orthogonal and positive and the
couple

(
S2, Ā

)
satisfies the discrete-time Lyapunov equation.

At this point it is necessary to impose the constraints to obtain the subset
Õ∞. The imposition of the constraints must be finite but as far forward as
possible, so as to obtain an expected response sufficiently forward in time; what
can also be done is to remove the redundant constraints and to restrict the
constraints even more in the case of states that approach the stationary.

Constraint imposition

The imposition of constraints is arbitrary, based on the problem and the chosen
landing strategy: the one proposed by the author is relatively robust, so instead
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of inventing a new one7 the work is reported in full.
The mission is divided into two main phases:

1. circumnavigation of the asteroid until arriving in view of the chosen landing
point

2. descent and touchdown

The phases differ for the chosen set-point (the desired point to reach, Xd) and for
the constraints imposed on the problem. In particular, some of these constraints
vary dynamically, so they are imposed only for the short term.

The control constraint is imposed with

Umin ≤ U(t) ≤ Umax (3.45)

This is the general formulation that must however be modified to take into
account that the controller behaves more like (3.33) than as (3.29):

Umin − U0 + ŵ(k∆t) ≤ δU((k + j)∆t) ≤ Umax − U0 + ŵ(k∆t) (3.46)

Notice that in this δU is evaluated via equations (3.29) and (3.39). The informa-
tion in j propagates up to j∗, defined in agreement with the subset propagation
Õ∞. The inequalities related to this set are modified directly on board to take
into account changes in the constraints.

1. Circumnavigation of the asteroid
The constraint related to this phase is a non-convex collision avoidance
constraint, which is convexified through the hyperplane method described
in[44] e in [45].
In particular, a triaxial ellipsoid is created, circumscribed to the asteroid;
the set-point is named re and is specified as the lying point on the ellip-
soid closest to the landing point rL, and the linearized equations for the
previously exposed control laws are used. A rotating hyperplane is used on
the surface of the ellipsoid in order to separate the probe from the ellipsoid
itself. This is first defined at the point of the ellipsoid at a distance smaller
than the starting point and ends at re. The rotations occur in discrete time
coherently with the ECG: there will be a finite number of hyperplanes, rel-
ative to the number of discrete-time steps between the departure and the

7Consider also that the implementation focused on the MSSG rather than the method
proposed here, which exploits complex nonlinear control techniques - such as ECG - not
addressed in the course of studies that would require an additional study load.
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arrival. These hyperplanes are defined with nη. At time j∆t the constraint
defined by

ηTj (HX((k + j)∆t)− rj) ≥ 0 per j = 1,2, . . . , nη − 1
ηTj
(
HX((k + j)∆t)− rnη

)
≥ 0 per j ≥ nη

(3.47)

is dynamically generated, where with ηj ∈ R3 we mean the normal to the
outgoing hyperplane with respect to the ellipsoid defined at the time k+ j.
H = [I3 0]T . The various rj that are generated are the points closest to the
probe lying on the hyperplane in the circumnavigation step j.

Figure 3.1: Circumnavigation constraint (graphical representation). Source:
[33].

2. Descent and touchdown
As soon as the controller arrives near re, it goes into the down phase and
changes the set-point with rL.
The descent takes place inside a pyramid, predefined by 4 face normals σA,
σB, σC e σD ∈ R3. The tip of the pyramid does not coincide with the
point rL, but it is at a distance d ∈ R under the point, this to make the
constraint on the landing more relaxed. The constraint imposed by the
pyramid appears to be, mathematically,

σi (HX((k + j)∆t)− rL − d) ≥ 0, i = A,B,C,D, j = 0,1, . . . , j∗
(3.48)

H is defined as usual and σi they are the face normals. In addition to this
constraint, a speed constraint is also imposed to effectively achieve a soft
landing.

||HOδX((k + i)∆t)||∞ ≤ λ||HδX(k∆t)||∞, i ≥ 0 (3.49)

con H = [I3 0]T e HO = [0 I3]T .
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Chapter 4

Implementations of
dynamics and control

4.1 Trajectory propagation

4.1.1 Implementation
To represent the dynamics of a probe in an asteroidal environment the uncon-
trolled propagation of the trajectory was implemented. The concepts used to
define the dynamics are different and can not be defined as unit tests for each
concept: the only way to verify that the implementation has actually been suc-
cessful is to verify at the end that a propagated trajectory is consistent with a
trajectory analytical.

The steps to be taken to propagate a trajectory are

1. define a method to generalize the integration algorithm based on the weights,
the nodes and the RK matrix

2. define the integration algorithm, which takes into account the equations
(3.4) and (3.5), the second to be evaluated with equation (3.2).

All reasoning is implemented in a single function in C. Being iterative, the
method can not be effectively parallelized: speed increments would not be worth
the time spent to implement algorithms in parallel.

As far as the first step is concerned, the values characterizing the method
in an extern txt file are saved. The values will then be read from the code,
initializing a struct which will then no longer be modified. In particular, the
file defines

1. the number of stages s
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2. the weights vector a

3. the nodes vector b

4. the Runge-Kutta matrix c

and these are automatically read by the algorithm, which then generates the
struct with dynamic memory allocation. The methods of integration are avail-
able free on the internet. They were chosen in particular

1. the 6-stage Runge-Kutta-Fehlberg (RKF) method, used in the MATLAB
integrated algorithm ode45 [40]

2. the 4-stage Bogacki-Shampine (BS) method, used in the MATLAB inte-
grated algorithm ode23 [41]

The integration method and the evaluation of the probe dynamics take place
in the already named function. It takes in input

• the current state to be integrated via a pointer, so as to update it directly
in the function

• the struct in which the coefficients of the integration matrix are stored

• all the inputs of the gravity evaluation function (in the device - GPU -
memory)

• the integration step

• auxiliary data for correct implementation (data on CUDA and pointers to
device arrays for gravity)

The algorithm calls a gravity evaluation in the partial steps several times in
execution, namely s times (s is the number of stages of the integrative method),
for each additional step. It follows that while the RKF is more accurate, the BS
is computationally less expensive: the choice varies depending on the number
of calculations that must be made and on the basis of the actual machine time
available.

We can see unorthodox inputs (gravityDaya and cudaData) that are not
actually computer constructs. They represent the set of arrays necessary for
the proper functioning of the function described in the algorithm 2; the imple-
mentation of this algorithm has already been widely described and repeating is
harmful as well as useless in these cases. For more information go to the annex
to analyze the code.
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Algorithm 5 Uncontrolled trajectory propagation
1: function integrate(*state, intgrMethod, dt, gravityData, cudaData)
2: Definition of the partial state, temporary status variables on which to

evaluate f and partial supplementary contribution.
3: partial[stateN]← 0, tmp[stateN]← 0, dState[stateN]← 0 . stateN

is 6, preprocessed variable
4: κ← (malloc(s),malloc(stateN)) . In reality, this is only

a simplified notation to allow an easy reading of the pseudocode: in C the
dynamic allocation of the memory of a matrix is different. See the attached
code for correct implementation.

5: for int i := 0 to s− 1 do
6: partial← 0
7: for int j := 0 to i− 1 do
8: partial← partial + intgrMethod.c[:, j] ·K[j, :]
9: tmp← state+ dt ∗ partial

10: cu_polyhedron(tmp[0 : 2], gravityData, cudaData) . The concept
of calling the gravity evaluation function is simple but the implementation
involves several lines of code, in C. For reference to the use of the function
consult the algorithm 2.

11: κ[i,0 : 2] = tmp[3 : 5]
12: κ[i,3 : 5] = ω̄ × (ω̄ × tmp[0 : 2]) + 2ω̄ × tmp[3 : 5] + gravity
13: dState← dState+ intgrMethod.ai ∗ κ[i, :]
14: state← state+ dt ∗ dState
15: free(K)

The algorithm in pseudocode is present at the top. In particular, it is noted
that it is necessary to define an iteration on the stages to evaluate the contri-
bution of each of them. The loop in line 7-8 implements the summation defined
in (3.5), necessary to evaluate the temporary state (through the κj|j < i pre-
viously evaluated) which is then used to evaluate the dynamic function. Lines
11 and 12 define a MATLAB notation for the evaluation of the κi; then these
(relative to the i stage) are added with their weights to the summation defined
in the equation (3.4). At the end, the sum of the contributions is added to the
previous state and resized with the integration step.

4.1.2 Testing
To test the propagation of the trajectory, the same sphere used in the testing
of gravity was used, represented in the figure 2.10. Remember that it is an
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approximation of the Earth, having used the same density and the same radius
of our planet.

The analytical model used to evaluate the trajectories is the classical model
used in orbital mechanics. In particular, defined a tangential velocity v0 and an
initial radius r0, the trajectory is described by the equation

r(ν) = h2/µ

1 + e cos ν (4.1)

Figure 4.1: Representation of the classical elliptical orbit and the parameters
involved.

Referring to the figure and the equation, we identify

• r is the radius, variable along the trajectory in the most general case

• v is the velocity, also variable along the trajectory

• a is the orbit semimajor axis

• e is the eccentricity

• ν is the true anomaly

• µ is the gravitational parameter (obtained in the case in question to make
the densities of the two models used, equal to4

3πR
3σG)
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• h is the angular momentum of the orbit, calculable in every point with
h = r× v

• E is the mechanical energy of the orbit, calculable with E = v2

2 −
µ
|r| = − µ

2a

There may be several methods for assessing whether the integration of the
dynamic equations has been successful. The one used makes use of energy
conservation of the orbit (h e E). If these are kept constant or undergo slight
variations then the method can be considered effective; the analysis of position
and speed with respect to the analytical model is carried out in addition: in
general, errors related to gravity and integration are expected to lead to an
increase in these values.

The following initial data are then chosen:

r0 = [6371 + 250, 0, 0]T km

v0 = [0, 7.8, 0]T km/s

The comparison with the analytical method is based on time, this because
time is the only independent variable of the problem with the exception of the
initial data. The assessment of the true anomaly angle as a function of time
implies an inverse problem that has already been dealt with in the course of
space flight mechanics held in Politecnico: the codes already written during the
course are recycled.1, adapting them to the case in question. In this way it
is possible to compare position differences between numerical propagation on
polyhedron and analytic integration on the same time base.

The integration methods of 4-stage Bogacki-Shampine and 6-stage Runge-
Kutta-Fehlberg, described by the following Butcher tableaux, are tested.

The methods are applied and confrontated varying the integration steps.
Steps of 1, 10, 30 and 60 seconds are used to analyze how the error varies using
explicit methods.

Following the graphs. It is noted that the position error has an oscillating
component on the orbits and a secular component induced by numerical errors,
which propagate being the step-by-step integrations. The oscillating component
is due to the gravitational model used: remember that, even if equal to ∼0.05%,
there was a small error in gravity; this, once integrated, goes to generate small
incongruities in energy quantities and position. The secular component is in-
stead relative to integration, and is variable with the integration step since the

1You can find the resolution of the problem on pages 17-18 on the PDF available here or
here.[46]
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0

1/2 1/2

3/4 0 3/4

1 2/9 1/3 4/9

BS 2/9 1/3 4/9 0

Table 4.1: BS method Butcher’s tableau.

0

1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40

RKF 25
216 0 1408

2565
2197
4104 −1

5 0

Table 4.2: RKF method Butcher’s tableau.

error accumulates more if the steps are long. The use of a 4-stage method, al-
beit more inexpensive, shows a greater variability of the secular component with
variations of ∆t; differently, the 6-stage method is more stable, and does not
show appreciable secular components even by placing ∆t equal to one minute.

Overall, however, the error in 24 hours of integration remains below the 0.1%
for energy quantities and 4% for the position, this in the case "worst possible"
(Bogacki-Shampine with ∆t one minute). In other cases, the error is reduced to
1% after 24 hours. In our case it is not interesting to go to check what happens
after 24 hours, since a landing lasts about 1 hour or at most 2: in this case
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the overall error can occur that is negligible, at least relative to the integration
algorithm, for both methods.

Figure 4.2: Results of the Bogacki-Shampine method with different integration
steps (1)
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Figure 4.3: Results of the Bogacki-Shampine method with different integration
steps (2)
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Figure 4.4: Results of the Runge-Kutta-Fehlberg method with different integra-
tion steps (1)
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Figure 4.5: Results of the Runge-Kutta-Fehlberg method with different integra-
tion steps (2)
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Figure 4.6: Plot di una traiettoria propagata (RKF, 30 secondi di passo).
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4.2 Control with MSSG

4.2.1 Implementation
Probably the theory that describes the MSSG is more substantial than its im-
plementation, which can be done with a few lines of code. The control vector
evaluated with this method can be easily implemented in the computer: just
add a line of code and an addend to the propagation algorithm.

The implementation of the MSSG method is described in the algorithm in the
following pseudocode. The fundamental equation necessary for the calculation
is (3.23): it will result a rather lean code, as well as a low computational cost.

The inputs are

• the current state, passed through a pointer

• the gravity calculated by the polyhedra method, also by means of a pointer

• the control vector by pointer in which to save the results

• the time of the simulation

• other auxiliary data (in the pseudocode represented with data). The aux-
iliary data include initial and desired state, the gains imposed on the con-
troller and final simulation times, to be selected manually.

Algorithm 6 Multiple Sliding Surface Guidance control implementation
1: function MSSG(*state, *gravity, *control, time, *data)
2: if (int)time ≥ data.tF then
3: control← 0
4: return
5: s1 = state[0 : 2]− data.desiredPosition
6: ṡ1 = state[3 : 5]− data.desideredV elocity
7: s2 = ṡ1 + data.Λ · s1

data.tF − t
8: Φ = |data.startV elocity − data.desiredV elocity| · eye(3) +
data.Λ · |data.startPosition− data.desiredPosition|

data.tF ∗ data.t∗F
· eye(3)

9: control = − [gravity − ω̄ × (ω̄ × state[0 : 2])− 2ω̄ × state[3 : 5]+

+ Λ

tF − f
·
(
ṡ1 + s1

tF − f

)
+ Φ · sign (s2)

]
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Once the control vector has been calculated, the algorithm 5 it has been
modified, so as to allow the integration of a controlled trajectory. In particular,
the changes will be

1. the insertion of the pointer to the control vector, of the current simulation
time and of the auxiliary data in the inputs

2. the insertion of the instruction for the calculation of the control vector by
MSSG just after the original instruction 10

3. adding the control vector as an addend to the original instruction 12.

The control part needs some additional measures to make it work properly. In
particular, the gains, the timing and the point of arrival must be set. Regarding
the timing, obviously they must be sensible: it makes no sense to make a probe
run 2 km in a second and pretend that the controller works in the right way, for
example.

4.2.2 Results
In testing, it was not possible to predict a test. The results are reported as-
is, since there are no controlled trajectories available on the Internet for free,
and secondly because they would, very probably, be calculated by methods
other than the MSSG. Furthermore, the trajectory that will be displayed will
be applied directly to the asteroid 433 Eros.

To verify the results of the method, they can be analyzed

• accuracy, understood as the position deviation in the last state

• the softness of the landing, understood as the speed difference in the last
state

• the maximum acceleration that the controller imposes on the control system

The probe has not been modeled, however rough estimates can be imposed by
defining the initial mass only and the specific thrusters pulse. These values
could be adapted according to the satellite to which we refer: we prefer to opt
for a 3 kg initial weight nanosatellite and a 50 s propulsive system of specific
impulse. With these data a more in-depth analysis can be made, also obtaining
an estimate of the fuel needed to perform the landing.

The following initial data are imposed on the problem:
The asteroid used was the one with 10,000 faces as previously explained.
Furthermore, an angular speed of 3.31165 · 10−4 rad/s and a density of 2670

kg/m3 are set (data obtained from [47]). With regard to initial positions and
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Parameter Value
Initial mass m0 3 kg
Specific impulse Isp 50 s
Λi gains (7,7,7)
Initial position r0 spherical neighborhood of (0, 10, 0) km
Initial velocity v0 variable (see below)
Final time tF 3600 s
Time for s2, t∗F 3600 s
Final position rF (-1.9186, 8.1165, -0.2775) km, see below
Final velocity vF (0,0,0) m/s
Integration step ∆t 1 s

Table 4.3: Initial data for the control algorithm

velocities, a sphere of plausible positions has been set to take into account any
uncertainties in the initial position of 1 km in diameter and initial position (0,
10, 0) km, and a velocity range in the three axes defined by an ellipsoid with
range [(-1, -1, -5), (1, 5, 1)] m / s. Points and speeds are randomly selected,
and 128 test paths were generated, which are shown in the following images.

Figure 4.7: Trajectories controlled by a set of spherical starting points and
velocities in the previously specified range: top view.

Detailed graphs of a trajectory are also shown to show the trend of some
characteristic quantities invisible to a trajectory plot (the control, the variability
of gravity and the velocity, specifically), with a table on the evaluation data of
the performance.
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Figure 4.8: Trajectories controlled by a set of spherical starting points and speed
in the previously specified range: zoomed view.
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Figure 4.9: In-depth analysis of an example of a controlled trajectory. Note how
chattering is absent in the control, and how this is analogical despite the use of
a sliding surface method.

As can be seen from the table, the algorithm is able to achieve considerable
precision both in terms of position and speed. Also fuel consumption2 is very
low: 56 grams of fuel, for a Cubesat 1U, represents only one twentieth of the

2To take the fuel into account, the state has changed into a seven-variable vector. The
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Figure 4.10: The trajectory described in greater detail is illustrated by the
graphs in the figure 4.9.

Result Value
Precision 3.09 cm
Velocity at landing point 1.98 cm/s
Maximum thrust 50.98 mN
Fuel usage 56.21 g

Table 4.4: Results of the sample controlled trajectory.

total mass (to which the propulsive system must be added, however). The
maximum thrust exceeds, however, that provided by conventional propulsion
systems [48] (although there are more powerful propulsion systems, for example

differential equation defining mass variation is

ṁ = −m|C|
Isp

(4.2)
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Hall effect ones [49]).
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Artifical intelligence
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Chapter 5

Artificial intelligence
fundamentals

5.1 Generalities
Artificial intelligence is a branch of computer science that studies algorithms
able to act autonomously on a certain set of data and obtain in order to obtain
performances that would normally be pertinent to human intelligence.

Key point of artificial intelligence is the obtainment of particular features,
related to the data set, and the use of the same for tasks such as classification,
recognition, drives. The applications are vast, just to name a few:

• face recognition

• object recognition

• autonomous speech recognition

• control algorithms

• pattern recognition and classification

Artificial intelligence is chosen as the application of this thesis because of its
potential in the field of control. It is used by companies such as Google, Boston
Dynamics and other IT companies; in the case of Google, the development of
unmanned terrestrial vehicles is recent, able to circulate and make decisions
in complete autonomy on the basis of inputs from human beings [50]. Boston
Dynamics is instead committed to studying how these algorithms can be used
on autonomous robots, able to perform a multitude of tasks: walking, opening
doors, taking objects and moving them, always in complete autonomy.

The artificial intelligence in itself is distinguished in two different categories:
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1. weak artificial intelligence: we mean the possibility of programming a ma-
chine able to behave in an intelligent way, through the rules that are im-
posed in a well-defined way

2. strong artificial intelligence: an extension of weak artificial intelligence, in
which the rules are imposed by the machine itself, and that it is conscious
of the behaviors it adopts.

Strong artificial intelligence is more a philosophical thought than an engi-
neering application. To date, every artificial intelligence application is explicitly
programmed and the computer or machine running it is not able to understand
what it is actually doing. The transition between weak AI and strong AI is
defined by scholars "technological singularity" because of the fact that - if a
machine were conscious - it would also be able to strengthen itself, becoming
more intelligent by itself, and man would become useless in the process. Leaving
aside the ethical considerations, a strong AI is still a distant goal to the present
day: in the rest of the thesis will be presented only methods that fall into the
category of weak artificial intelligence.

The sector is very vast and a complete treatment of all its aspects is not part
of the scopus of this thesis; it is necessary, however, to describe the scope in
which the applications for asteroid landing fall, for completeness of treatment.

5.2 Machine Learning
The branch of the artifical intelligence that deals with the study of learning
algorithms is called machine learning. The methods of machine learning are
among the most "weak" of those that will be discussed later, since they are usu-
ally associated with the identification of important patterns by the human that
implements the algorithms; these algorithms are particularly efficient in evalu-
ating the results, as they are often adapted to the case in question and highly
optimized for the same. A critical point, however, is the lack of generality: with
each new application, the algorithms must again be adapted for that specific
application. Typical machine learning approaches are

• genetic programming: they provide an approach to learning that is freely
inspired by simulated evolution. The search for a solution to the problem
begins with a population of initial solutions. Members of the current popu-
lation give rise to a new generation population through operations such as
random mutation and crossover, which are modeled on biological evolution
processes. At every step, the solutions of the current population are eval-
uated against a certain fitness measure, with the most suitable hypotheses
selected probabilistically as seeds for the production of the next generation.
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• support vector machines: set of supervised learning methods, used for clas-
sification, pattern recognition and assignment. Given a set of examples for
training and one or more categories (labels) in which examples can fall,
an SVM is an algorithm that can define in which of the two categories a
subsequent input may probabilistically fall.

• decision trees: Approach method of approximation of a discrete objective
function in which the learning element is represented by a decision tree, ie
a graph with a decision-making flow chart structure, showing the possible
consequences of a sustained choice. Since every decision can probably lead
to multiple consequences, and that each of them can be dealt with by
different decisions, the ramifications may be numerous already after some
choices; hence the term "tree". Decision trees can be represented by a set
of if-else rules to improve human readability.

Depending on the algorithm, the problem and the method of application, in
machine learning different types of learning are identified, so as to classify the
large area in smaller and more easily managed areas. The classification takes
place respect to

• a degree of supervision: the algorithms can be supervised, unsupervised or
semi-supervised. The difference lies in the nature of the interaction of the
learner with the environment that characterizes the response. If you iden-
tify learning with "using experience to gain competence", then supervised
learning deals with problems in which the training set, which constitutes
experience, contains the information that is missing in the test set, on which
the algorithm is to be applied. An example of this can be a spam filter of e-
mails: the "spam / non-spam" label is associated with the previous e-mails
(training set information), and the algorithm must retrieve the information
on the emails that will arrive in the future (test set). The environment
itself is the supervisor of the learner, providing data as well as the type of
information that this must find.
In an unsupervised algorithm, however, such information is missing. What
the algorithm can do is classify the training set into different types and
return the test set to these types. Semisupervised algorithms work similarly
to non-supervised algorithms, with some more information given by the
human behind the screen: after classification, labels are assigned to the
types obtained by the algorithm.

• a degree of activity: an active learning algorithm interacts with the test set,
asking questions and verifying experiments, while a passive algorithm sim-
ply observes the data provided by the environment to obtain its estimates.
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• a degree of learning: an algorithm can be of the online type - characterized
by continuous learning as soon as new data are available - or batch type
- characterized by learning one-off with the entire set of data available.
There are also middle ways, such as mini-batch learning, which instead of
providing training on the entire training set takes place only on a subset of
the same and with a higher frequency than the batch learning [70].

5.3 Deep Learning
Machine learning is therefore characterized by low computational cost (relative
to other learning methods) and a high amount of human work to identify impor-
tant features on which to base itself. There is a sub-group of machine learning
that is usually dealt with separately, and is defined with deep learning, deep
learning.

The scientific and technological interest that deep learning has raised since
the 90’s has grown more and more, due to the fact that the algorithms so de-
fined are able to perform the same tasks as machine learning (classification,
recognition, regression, interpolation, control etc.) without these being explic-
itly programmed to do so. In other words, the important features that the
programmer used to distinguish before implementing the program are now rec-
ognized directly by the machine. In this way the recognition of features becomes
an integral part of the algorithm, which will however be (much) more expensive
computationally.

While deep learning is able to perform tasks that human beings can not
program directly because they are too complex, on the other hand the results
are not always satisfactory: the performances of the algorithms are often linked
to the use of some hyperparameters of the problem that determine how well
the system learns, the learning frequency, the stiffness of the algorithm to learn
with respect to new data and so on: the work of the programmer in this case is
no longer bound to recognize the features but to set the right combinations of
parameters for the problem under consideration, in order to guarantee a good
learning speed and results as accurate as possible.

The deep learning algorithms can also be with a different degree of supervi-
sion. Basically, however, artificial neural networks are used for these algorithms,
a useful tool that will be discussed separately due to its importance later. Some
of the algorithms that define deep learning are

• logistic regression: developed for the first time in 1958 [52], it is a regression
model in which the dependent variable is categorical, that is, it can assume
only two opposite values and referable to 0 and 1 (for example male-female,
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live-dead, healthy-sick, etc). It is a supervised algorithm, and its output is
probabilistic (rather than deterministic - classificative).

• restricted Boltzmann machines: a stochastic ANN able to learn a proba-
bilistic distribution on its training set (and to apply it to new inputs)

• autoencoders: learns a representation (encoding) of a set of data in order
to reduce its dimensionality

• convolutional neural networks: they exploit artificial neural networks to
identify visual features through convolution of input parameters, similar to
the visual cortex of human beings.

The area is very large and reporting all the applications would take away the
time for the application of the methods to the asteroid landing. The main reason
why deep learning was mentioned is the use of ANNs, which are described below.

5.3.1 Artificial neural networks
One of the key tools of deep learning is artificial neural networks (ANN). Starting
from the neurobiology studies that developed around the mid-1950s, we tried to
implement the functioning of neurons in the human brain into algorithms. The
systems constituted by ANN represent connections of elementary components
(the neurons, in fact), which through a series of algorithms allow to determine
any function between an input set and an output set in an iterative way. ANNs
can be thought of as very powerful function approximators, able to approximate
even complex behaviors not approximated by elementary functions (such as
polynomials, exponentials and so on).

The basic element is, as already mentioned, the neuron, characterized by

• an input i that can be the sum of output of upstream neurons or input data
to the problem; in general, the input is composed of the sum of different
quantities

i =
n∑
j=1

wjxj (5.1)

where wj is the weight relative to the j-th input

• an activation function f , which defines the behavior of the neuron based
on the input

• the output or of the activation function defined by

o = f(i) (5.2)
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Seen in this way the neuron is very simple: it represents a simple function to n
variables seen as a black box.

By connecting different neurons together according to a particular order, a
neural network is obtained. The simplest possible network is the linear percep-
tron, described for the first time in 1957 in [51]. There is no unified notation
to represent neural networks, but the one used is shown below. Note that the
one described is a layer of percectrons, thus constituted by a series of parallel
spectators.

Figure 5.1: Schematic representation of a linear perceptron layer.

The percettrone is composed of several elements that are analyzed later.
The output is multidimensional with dimensionality S while the inputs are R
elements. They identify:

• the vector of R input variables represented by the black rectangle

• the matrix of w weights of size S ×R

• the vector of bias b, of size S

• the activation function (which we will call f). In the particular case under
examination it is the sign function (known as hardlims), however there are
a number of different activation functions, such as (ref. [57])

– hardlim, definita con 0 per l’input n negativo o nullo e 1 per l’input
positivo

– linear
– saturated linear (linear for positive inputs and 0 for negative or null
inputs, with saturation at 1 for input at 1 or higher)
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– linear saturated symmetric (linear saturated above and below)
– logsigmoid, defined as

a = 1
1 + e−n (5.3)

– sigmoid, defined by tanh
– positive linear (like saturated linear but without saturation)

There are, however, also others.

• the output a of size S.

Operation is simple. The output is summarily defined by the function

a = f(W · p + b) (5.4)

The perceptron is able to perform basic tasks, such as the classification of
simple elements, changing the vector of the weights, the bias and the activation
function. However, it has been demonstrated [63] that the perceptron is unable
to perform tasks that require non-linear separation of the dataset. Even as
an approximator the perceptron is not the best, since it fails to represent also
simple functions, such as polynomials.

However, the percectron is a useful theoretical basis for defining multilayer
neural networks: these networks are able to develop much better performance
than single-layer networks.

Neural networks have evolved a lot over time; what has been used in this
thesis is the network that is widely used as a function approximator.

Figure 5.2: Neural network used to approximate a 2-variable function. This can
be extended to a function with a number of arbitrary variables.
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Multilayer networks are networks that cascade several perceptron layers: in
fact, note that each layer is represented by the same elements defined previously.
In the particular case of the function approximator, we use the hyperbolic tan-
gent function on the first layer (the one called the hidden layer) and the linear
function on the second (the output layer): it has been shown that only one layer
is needed in the hidden layer for almost universally approximate every function
that is sufficiently regular.

An example of an application is given in [62], where learning by imitation is
used to train three different neural networks in an airplane flight controller and,
through a selection algorithm, select the network to use as a controller in the
three different flight phases (take-off, cruise and landing).

5.3.2 Neural network training
As anticipated, the neural network defined in figure 5.2 is able to accurately
approximate each function; however, if the weights and biases are generated
randomly, the output will be random: it is by varying the weights, in fact, that
it is defined as a function approximator.

There are numerical techniques to perform the training, such as the gradient
descent method. This method is widely used because of its simplicity, and
its purpose is to find a combination of weights that can minimize an error
function, typically quadratic. For this to be possible, however, a certain number
of samples (input-output combinations) is necessary for the network to approach
the function in an appropriate range. The number of samples should therefore
not be too small to avoid that the approximation is limited to a small interval;
on the contrary, however, if the number of samples is too high, the opposite
case occurs, called overfitting: an overfitting network is able to approximate
the function only on the training set, giving discordant results in the test set
compared to the real ones [69] [71].

The gradient descent method tries to minimize the quadratic error, defined
with

E = 1
2

dim(TS)∑
i=1

(ti − ai)2 (5.5)

where

• TS is the training set

• ti is the output of the sample i

• ai is the output evaluated with neural network given as input the i-th
sample’s input.
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The more the error tends to 0, the more the model is able to correctly ap-
proximate the training set. Given a certain combination of weights, what the
method does is follow the steepest descent at the current assigned point. Defin-
ing with θ the weight and bias vector, at the point at the k-th iteration θk

the steepest descent corresponds to the direction defined by the opposite of the
gradient of E along the directions of the variable to be minimized, that is

∇E =
[
∂E

∂θ0

∣∣∣∣∣
θ=θk

,
∂E

∂θ1

∣∣∣∣∣
θ=θk

, . . . ,
∂E

∂θn

∣∣∣∣∣
θ=θk

]
(5.6)

By calculating the gradient by numerical derivation it is thus possible to update
weights and bias with the equation

θk+1 = θk − αk∇E (5.7)

where αk defines the length of the step to be taken to descend along the gradient.
This is a critical parameter because too large a value can lead to move into a
zone with a higher error than the previous one, while a too low value leads to
progress very slowly. If αk the method is fixed and it’s stationary, vice versa if
αk varies with k the method is dynamic.

The drop-down method of the gradient is the basis of a series of more complex
algorithms that are used to determine the minimum. MATLAB, for example,
exploits derivative methods with the Bayesian regularization or the Levemberg-
Marquardt algorithm, computationally more efficient and optimized with re-
spect to the gradient descent.

At the operational level, it is advisable to carry out the training several
times to make sure that no convergence has been achieved with minimum local
functions rather than global minima.

5.4 Reinforcement Learning
Machine learning and deep learning are branches of artificial intelligence able
to perform tasks such as classification, pattern recognition and the like, but
they are not able to autonomously learn tasks such as the control of a probe or
a robot. These tasks are usually dealt with by a different branch of artificial
intelligence known as reinforcement learning.

Reinforcement learning bases its algorithms on maximizing an objective re-
ward function by mapping the possible states of the problem to the actions to be
undertaken. The learner is not explicitly told which actions must choose from
those available: it is the algorithm itself that chooses based on the situation,
initially going a bit groping and then choosing which is the action that brings a
greater reward over the long term.
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Reinforcement learning is at the base of the robots built by Boston Dynamics
and Google: by its nature, the algorithms can be applied to dynamic tasks such
as driving a vehicle, the operation of robots, but also as a control algorithm
for aircraft. We cite for example [60] and [61] as possible applications of the
method in aerospace: the methods that are applied in a more specific way to
the landing on asteroids will be shown and analyzed in the next chapter.

Specifically, reinforcement learning is a methodology that can be used to
control a system at both high and low levels. Reconnecting to navigation con-
trol systems, usually composed of three linked rings, a reinforcement learning
controller can be applied to each of the three rings, also wanting to all three
together: it is a completely general methodology, which has its point of strength
in the Markov Decision Process, which is able to describe mathematically a wide
range of control problems.

5.4.1 Markov Decision Process

The Markov Decision Process is a mathematical framework that has the pur-
pose of describing a control problem, and is used in reinforcement learning to
schematize problems waiting to be solved by one of the methods available in the
sector.

The framework is a formalization of the sequential decision making, where the
control influences not only the next state but also all those that are downstream.
For this reason, the rewards that would be obtained are actually defined in terms
of expected (or delayed) rewards, and the programmer can choose which one to
prefer over the other by executing a trade off.

L’MDP describes the following concepts

• the agent is represented by the learner, by the control algorithm and by all
that it is able to directly control

• the environment is defined as everything that is not directly connected to
the controller, but that influences the behavior of the learner.

The interface that separates the two concepts is that which defines the level of
the controller. If, for example, the position of a satellite in a reference system
is indicated as controlled, a driving controller will be provided; if only thrusters
are indicated as controlled, the position will be part of the environment (as it is
not controlled directly) and a navigation controller will be present, while if only
the voltage to be sent to the thruster is controlled, there will be a controller
related to the electric dynamics inside the vehicle.
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The MDP is usually defined for finite set of actions and states. Let A and S
be sets of actions and states respectively

A = {A1, A2, . . . , Ana} (5.8)
S = {S1, S2, . . . , Sns} (5.9)

with na and ns finite. A discrete-time measurement t is also defined, variable
along the simulation: a status owned by the agent St ∈ S is associated with each
t and a action too At ∈ A, which also corresponds to a reward Rt+1 ∈ R ⊂ R.

The three variables are linked directly: given an initial state S0, the controller
will take a A0 action, which will produce a change of state at the next timestep
t = 1 in S1 and to which will be rewarded R1. The diagram illustrates the
interactions described.

Figure 5.3: Graphical representation of the agent-environment interface in a
Markov decision process

In a finished MDP, as the number of states and actions is finished, there
will be a probability distribution relative to the rewards obtained and the new
status based on the busy state and action taken in the previous timestep. This
quantity is indicated with p:

p(s′, r|s, a) = Pr [St = s′, Rt = r|St−1 = s, At−1 = a] (5.10)
Obviously you will have that on all the possible combinations∑

s′

∑
r
p(s′, r|s, a) = 1 (5.11)

The function, in the case of a complete information problem, is deterministic
and maps the 4 variables to a probability (number included between 0 and 1
inclusive).

Variations in (5.10) they also exist to define explicit equations of the state-
transition probability p(s′|s, a) and of the expected reward r(s, a), but it’s not
important at the moment. What matters is that in the general case the problem
has not complete information: in the more general case the agent starts to choose
the actions without there being an estimate of these probabilities.
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5.4.2 Rewards and utility
To define which action is taken better than another, rewards are used for the
actions taken previously. The reason why the MDP is limited to the finished case
is precisely because in this way it is possible to build look-up tables from which
the system can draw values, through the history of the simulation. At timestep
t, the reward is simply a number; the agent’s goal is informally to maximize not
so much the Rt as the total reward (defined as "return" or "utility") defined with

Ut =
tF∑
k=t

Rk (5.12)

The choice of a reward function is critical in a reinforcement learning problem:
it must be well representative of the goal that the agent must achieve. In this
sense the choice is extremely variable depending on the problem and the goal;
in the case of the asteroid landing, a possible (arbitrary) choice can be

Rt(r,v,mf ) = −cr|r− rd| − cvv − cf (m0 −mf ) (5.13)

To maximize the function it is necessary that

• the position tends to the desired position (precision indication)

• the velocity tends to zero (indication of softness at landing)

• the fuel consumption m0−mf tends to zero (indication of the efficiency of
the maneuver)

The coefficients cr, cv and cf are used to adimensionalize the expression and to
bring the importance of a variable back to the others.

In this regard it is appropriate to specify what kind of simulations reinforce-
ment learning is able to solve. Two types are distinguished:

• episodic tasks: represented by a final timestep tF finished. An example is
given by the asteroid landing, defining in the simulation a closing condition
such as reaching the final state, a divergence of the position or having
consumed all the fuel on board

• continuous tasks: represented by tasks that continue over time.

A classic example is given by the cart that must keep a stick in balance, as
shown in the figure: this problem can be traced to a continuous task (in the
case of an already trained algorithm, able to keep the stick in balance over time
) is an episodic task (in which each episode is terminated by a fall of the stick).
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5.4.3 Discounting
To solve some problems related to the utility in continuous tasks, such as that
of the infinite utility if tF = ∞, it is common in reinforcement learning to use
the discounting of the rewards. In particular, the equation (5.12) is changed to

Ut =
tF∑
k=0

γkRt+k+1 (5.14)

where tF can take both a finite and an infinite value, and γk ∈ (0,1]. Discount-
ing allows long-term values to be considered as in (5.12), however the value of
γ helps to consider only a finite number of terms. If γ tends to 0, the controller
becomes less forward-looking and tries to maximize, at most, only the next re-
ward, at t + 1. Vice versa if it tends to 1 the controller is forward-looking and
aims to maximize terms later in time. The value of γ is another hyperparameter
of the problem to be chosen ad hoc: [68] shows that variable discounting helps
the algorithm to perform better, in particular keeping it low in the first iter-
ations is useful for increasing exploration (and therefore learning some quality
features described below), while a higher value in subsequent steps helps maxi-
mize these functions as the system becomes more forward-looking. The choice
is conditioned based on the problem, however.

5.4.4 Policy
In order for the controller to be able to choose the right action based on the
current state, a policy must be defined. Policy π(a|s) is defined as a function
that maps a state to a vector of na probability, each describing the probability of
choosing some actions. Maintaining the probabilities is useful in the first steps
to facilitate exploration, while using a policy of type greedy leads to exploit
the information obtained through the exploration (for policy greedy means to
choose deterministically the action with probability - described by π - higher
among the odds of action). To evaluate the policy, and therefore what actions
need to be taken, certain functions related to the quality of the action to be
taken must be defined:

qπ(s, a) = Eπ

 tF∑
k=0

γkRt+k+1|St = s, At = a

 (5.15)

vπ(s) = Eπ

 tF∑
k=0

γkRt+k+1|St = s

 ∀s ∈ S (5.16)

In the equations above, it is defined
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• with Eπ the expected value of the bracketed function (i.e. the utility) taken
into account that you choose the π policy

• with vπ the state value s

• with qπ the state-action value (or quality) (s, a).

The two functions are actually intimately connected, and are usually evaluated
with experience. Hence the core of reinforcement learning: if you could express
the functions v and q in a univocal and error-free way, then the problem would
be solved, choosing as policy the greedy policy, that is the one that chooses the
action with the highest quality for every state you come across.

Unfortunately, the problem is not complete information, and one can not go
about exploiting (that is the univocal choice of a greedy policy) with the infor-
mation being not sufficiently accurate. The exploration-exploitation dilemma is
the basis of reinforcement learning problems: the choice of how much to explore
and how much to exploit is at the discretion of the programmer, but a general
rule is to keep the exploration high in the early stages until the two functions
do not tend to settle down.

As said above, the value and quality functions can be evaluated with experi-
ence. In particular, the iterativity of the following identity is exploited

Ut = Rt + γUt+1 (5.17)

In this way we can define the state value by following the π policy with the
Bellman equation:

vπ(s) =
∑
a
π(a|s)

∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] (5.18)

The equation is the basis of reinforcement learning methods. Since its an-
alytical evaluation is often impossible due to lack of data and the excessive
dimensionality of S and A, it follows that the value of the policy must be ap-
proximated and improved with the experience: the goal is to find the optimal
policy (defined with π∗, which also corresponds to v∗π and q∗π).

5.4.5 States and actions dimensionality
Typically, the MDP was initially formulated with a finite dimensionality in
mind for the S and A sets. However in the more general case such states are
continuous, and therefore infinite. The problem in this case is more complicated:
it is not possible to define look-up tables with infinite values for obvious reasons,
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and also the equations (5.10) and (5.18) lose meaning1. However, nowadays
there are several methods that can overcome the problem: one of the most used
is to define artificial neural networks able to map the functions q(s, a) and v(s)
, and use these neural networks instead of look-up tables, preserving the MDP
and using the same concepts and notations.

5.4.6 Monte Carlo methods
Monte Carlo methods are methods that aim to find the optimal policy by mak-
ing experience in the form of randomly generated episodic samples. Such meth-
ods admit different advantages compared to the classic reinforcement learning
methods2:

1. there is no need for a model that describes the dynamics of the environ-
ment: estimates simply improve with experience by interacting with the
environment

2. it is simple to focus on a small subset of states (for example, using trajecto-
ries with random initial states as in the figure 4.8) rather than in its entirety
by limiting the problem to states with more probability of appearance

3. Markov’s property is not violated: in other words, the estimates obtained
from the episode are accurate, as there are no other states that could pro-
vide rewards after the final state, at the final timestep.

In defining the Monte Carlo control methods, we follow the GPI (generalized
policy iteration) scheme, where the policy improvement (the use of a different
policy from the previous one to obtain a new behavior) and the policy evaluation
(training of the policy with the data available) take place simultaneously: it is
possible with these methods to improve the estimate of the policy and the policy
itself at the same time.

What is done in these methods is iterated numerous times from one or more
initial states the trajectories, using each time the currently available policy: the
status values and the quality of the action-state are then updated from time to
time after the trajectory determination by averaging the results with the ones
obtained previously. The value of a state is its utility, this is approximated by
the mean, and it is assumed that it converges to a realistic value through a large

1Instead, an integral rather than a discrete notation should be used, but such a notation
has not been found in the literature.

2These methods are commonly called dynamic programming. They have not been treated
because they are not very useful for the purposes of the present case.
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number of iterations. The same goes for the qualities of the state-action pairs,
which in reality turn out to be even more interesting for the case of a controller.

The Monte Carlo analysis are divided into epoch. Each epoch represents a
set of episodes with fixed or variable initial states, at the end of which the new
functions are evaluated. The dimensionality of the epoch is at the discretion
of the programmer: a too large epoch slows down progress, while a too small
epoch could make significant progress only for a small subset of the chosen initial
states.

5.4.7 Direct Policy Search
The use of value and quality functions to evaluate the policy (value-based meth-
ods) are useful for passively defining what action must be taken by the controller,
given a specified state. However, not always using these functions is mandatory:
a different approach used in reinforcement learning is to explicitly define a policy
to map, deterministically or probabilistically, a state to an action. A method
of this type can help overcome a series of problems affecting the value-based
methods (the most important of all is the possibility that the approximators of
the functions of value and quality can diverge during learning, in particular way
if discounting is kept high).

In this case we speak of DPS (direct policy search). The concepts of dis-
counting, utilities and rewards can still be used, but in this case the role of
these functions is only revision, to verify that the behavior that the agent is
developing is consistent with the function declared in describing the reward,
instead of that an active role used to learn from the behaviors undertaken.

In this case reinforcement learning is slightly different from the one described
above, because the agent does not learn explicitly based on its behavior but
only on the basis of the results. The DPS allows the application of Monte Carlo
methods in a very natural way, since by varying the definition of the policy - in
terms of epoch - the results can be verified for epoch, determining whether the
new policy is actually better than the previous one or not; however, it can also
be linked to other classical machine learning algorithms (as we will see in the
next chapter).

DPS with Monte Carlo methods

The first controller that is analyzed derives from [64]. In the particular case
the policy - which effectively represents a controller - is represented by a neural
network of the type shown in 5.2. This takes in input a 6-variable vector rep-
resenting the state s = [r v]T and returns a 3-variable vector, constituting the
control vector.

130



5 – Artificial intelligence fundamentals

The described Monte Carlo method aims to define a set of starting states
and to propagate trajectories from such states and using the neural network
as a controller, this for each epoch. The basic idea is to perturb the network
parameters randomly and verify that the new network is better than the old one
in terms of utilities. Discounting is not used, as the sample x utility is simply
defined with

U(x) = R(s(tF ))x (5.19)

that is the reward of the final state of the trajectory (we use the equation (5.13)
to evaluate the reward). To evaluate the policy utility at a fixed epoch, the
utilities of the individual trajectories are averaged. These are obtained with the
propagation of states belonging to a set of preset initial states.

In addition to the implementation of the method, the work also involves a
neural network pretraining to define the weights and biases of the neural network
without them being effectively randomized.

The implementation of the method and the results obtained will be discussed
in the next chapter.

DPS con algoritmi genetici

Genetic algorithms can be used in the case of DPS, unlike the value-based [67]
methods. The algorithm described in [3] uses a genetic method to perform
controller training, called PSO (Particle Swarm Optimizer).

Also in this case, a neural network is used as a direct controller: the weights
are initialized randomly, and through the algorithm these are optimized to con-
verge to the optimal solution.

The algorithm in pseudocode is defined later (it is shown in full in the paper
[3]).
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Algorithm 7 Direct Policy Search with Particle Swarm Optimizer
1: Initialize a population of particles P with random speed and random posi-

tions in the search space
2: Initialize a random number generator τ
3: c← p0 . Initialize the champion
4: Sample the first k random seeds Ξ = (χ1, . . . , χk) from τ
5: for pi in P do
6: pi encodes a policy πi
7: Evaluate the fitness f(Ξ, pi) = −1

k

k∑
j=1

Uχj(πi)

8: if f(Ξ, pi) < f(Ξ, c) then
9: c← pi

10: for i := 1 to N do
11: Sample the next k random seeds Ξ = (χ1, . . . , χk) from τ
12: for pi in P do
13: Adapt velocity of the particle
14: Update the position of the particle
15: p∗i is the updated particle
16: if f(Ξ, p∗i ) < f(Ξ, pi) then
17: pi ← p∗i
18: if f(Ξ, p∗i ) < f(Ξ, c) then
19: c← p∗i
20: Particle c encodes the best policy after N generations

132



Chapter 6

Artificial intelligence
algorithms
implementations

The chapter will discuss the implementation of the DPS through the Monte
Carlo method and the results derived from it.

6.1 Neural network training
The neural network is pre-trained by generating a large number of trajectories
using the MSSG control algorithm, as shown in the figure 4.8. In particular, 128
trajectories are generated for a total of 460800 different samples to be fed to the
network. The number is not too large or too small, for the reasons described in
the next chapter.

The training is implemented, but not being optimized you decide to use a
tool available in MATLAB for training networks. The tool uses the Bayesian
regularization algorithm for training, which also outputs a scalar value that
defines the number of parameters actually used (in this way the number of
neurons in the network can be reduced to take into account the number displayed
parameters, smaller networks are easier to train and faster to calculate).

The final network has a hidden layer composed of 64 neurons, with 6 inputs
and 3 outputs.

There are some graphs that define how a network behaves based on its inputs
and outputs. They are distinguished

• the history of the error on iterations
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Figure 6.1: Neural network used as a controller

• a regression graph, which shows how much the output of the network de-
viates from the outputs (i.e. how well the network approaches the results
well)

• a histogram of the error on the results.

Each chart allows you to observe a different aspect of network behavior.
The error story is the least useful from a behavioral point of view because

it defines just how easy the network was to train (a flat graph with high error
means either that the algorithm was stuck in a local minimum or that it does not
exist a global minimum able to approximate the data entered into the network).

The regression graph should try to put the results as much as possible along
a line: in this way the output is well representative and the approximation of
the data is true.

The histogram, on the other hand, should maintain a central bar dominant
respect to other bars (an approximation of a Gaussian curve), and on the ab-
scissa there should be a small error. In this way the error remains concentrated
statistically in a certain range.

Following are some graphs representative of the results obtained from the
training. Note, in particular, that position inputs are not absolute positions,
but relative to the final position. After several training, it has been realized that
using relative positions helps to achieve greater stability for network training.

Notice from the regression graph that most of the error is concentrated for
output around zero. This may be due to adjustments near the landing point,
which become irregular in the MSSG and the network is not able to properly
represent them. The histogram, on the other hand, reassures us that the maxi-
mum error is between -0.003 and 0.003, with a peak around -0.001 and 0.001; a
slight consolation considering that the maximum output is of module 0.1: the
error reaches about 10%.
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Figure 6.2: Data on neural network training (1). Among the various data we
note "Effective # Param" which specifies the number of parameters actually
used. The network may also be slightly resized (but since it is not necessary to
optimize, resizing is not performed).
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Figure 6.3: Data on neural network training (2). These graphs are useful for
analyzing the behavior of the network.
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The fact that the error is very high means that there can be ample room for
improvement through DPS. The network was then pre-trained, trying to reduce
the time needed for the algorithm to identify the right weights and biases.

6.2 DPS implementation, results and analysis
The algorithm implemented for the DPS is described below. The idea is, as
anticipated, to disturb the weights and verify through the utility if the new
network is better than the old one.

The epoch utility is defined with

Uepoch = 1
nse

nse∑
i=1

U(i) (6.1)

with U(i) defined as (5.19). In other words, it mediates on the trajectories of
the epoch. The algorithm taken from the paper is slightly readjusted to the
case under examination (choosing to use the mean to evaluate the utility of the
epoch)

Algorithm 8 Direct Policy Search with Monte Carlo method
1: initialize weights and biases
2: initialize 64 initial conditions initialState
3: establish baseline utility
4: while 1 do
5: adjust_weights(weights, new_weights, scale)
6: if nimc >max nimc then
7: nimc← 0
8: scale← 0.9 ∗ scale
9: min_utility ← 0

10: for i := 1 to 64 do
11: utility ← utility + simulation(new_weights, env, initialState(i, :))
12: utility ← utility/64
13: if utility > best_utility then
14: bestutility ← utility
15: nimc← 0
16: weights← new_weights
17: else
18: nimc++
19: save results

The algorithm is very general, and some explanations are needed.
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• the function adjust_weights is a function that takes current weights into
input, perturbs them with the function rand() using the scale assigned
with the equation

wki = wk−1
i · (1− scale/2 + scale · rand()/MAX_RAND) (6.2)

and assigns the results to the new variable. These weights will then be used
to launch the new simulation. Note that there is a conditional statement
to decrease the scale value: this is due to the fact that if the perturba-
tion is too large near the maximum the simulation may get stuck. In the
implementation, maxnimc was set to 5.

• simulation is a word to indicate the generic simulation obtained using
the weights and the assigned environment. In the implementation reality,
the simulation consists of a while loop in which controlled propagation is
performed (via the neural network) until a closing condition is reached; in
particular, all the following conditions have been used:

1. fuel exhaustion
2. the probe moves away from the landing point instead of approaching,

if the distance is less than a certain value (set at 300 m)
3. the probe’s position diverges.

At the end of the simulation the equation (5.19) is used to derive the
simulation utility and this is added to the total simulations on the epoch.

As for the neural network, this is used with a self-generated algorithm in
MATLAB, exported in C code. This is due to the fact that MATLAB does not
simply find weights and bias, but scales inputs and outputs in the range [−1, 1]
and further data is required. To use the network, another function PrintNet
(in MATLAB) is then written to export the data and allow its use in C. In
summary, the equation used to define the output c with respect to the input s
is

o = WH,O · (tanh (WI,H · s + bH)) + bO (6.3)
where WH,O is the matrix of weights from the hidden layer to the output layer,
WI,H is the matrix of weights from the input layer to the hidden layer, bH is
the vector of the hidden layer’s bias and bO is the vector of the output layer’s
bias.

The simulations were generated using the Bogacki-Shampine method, with
a 1 second integration step (the control, in general, requires small integration
steps to avoid giving the same signal for too long). The asteroid used is still the
one with 10,000 faces.
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The method was then implemented and was launched for 20593 minutes (14
days and 8 hours): these methods are inherently very expensive computationally
speaking, even more so using a high-fidelity method like that of polyhedra (which
fortunately has been implemented in parallel). At the end, a total of 1927 epoch
were evaluated, with 7 points of improvement including the initial one (shown
in the graph below).

Figure 6.4: Improvement of the medium utility by DPS. The improvement
epochs were not reported because stochastic.

The algorithm then actually goes to improve the policy, although the im-
provement is very slow, requires a large number of calculations and, at most, it
is supposed to converge to 0.

However the method still can not be compared with classical methods, at
least after 2000 epoch iterates. The precision obtained in landing is over ten
meters, and speaking of softness the controller behaves even worse.

One reason for this was that the neural network is not powerful enough
to represent a controller in a high-fidelity environment, at least not as it was
conceived in this area. In support of this theory we tried to directly approximate
the gravity developed by the high-fidelity model to the neural network instead
of the control algorithm, thus trying to simplify things. The results were similar
to those seen for control: a Gaussian error distribution with a central peak, and
standard deviation equal to 10

Therefore, using a neural network with a high fidelity model is a poor choice.
The neural networks are, according to researchers working in this field, useful
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to model environments with a high degree of uncertainty, for example in the
outline of an asteroid, in the specific impulse fluctuations affecting the engines,
and so on , rather than complete information environments (represented by an
asteroidal high-fidelity model). In this case, the high-fidelity model could be
used more as a verification than as a training model.

6.3 Possible untested applications
A search for applications in reinforcement learning did not find applications
of value-based methods in the landing problem. The field is then open in this
direction: future work can be, precisely, the use of the Markov Decision Process
with approximation of neural networks to evaluate the quality functions q(s, a)1

using high uncertainty low-fidelity methods rather than high-fidelity methods.
The Q-Learning [73] [74] uses the neural network to approximate the q func-

tion both in exploration (choice of actions to be taken) and in learning (changing
weights with the new information obtained). The equations that define learning
are

θt+1 = θt + α
(
Y Q
t − q(St, At; θt)

)
∇θtq(St, At; θt) (6.4)

where
Y Q
t ≡ Rt+1 + γmax

a
q(St+1, a; θt) (6.5)

The equation (6.4) is basically a drop-down method of the gradient, which is
then performed to improve the q function in a reasoned way (not random, like
the Monte Carlo method). In this way

• the timing is reduced (instead of 1927 epoch evaluated and 6 new results
there could be 1927/1927 results, if the learning rate α is sufficiently low)

• the approach converges better and is more resistant to disturbances, since
an explicit controller is not defined but it is passive, so that it evaluates
how much an action is appropriate with respect to a given state

• the approach is more rigorous, and there are complex neural networks that
can be used to support (for example the softmax network that can map the
probabilities of an output set).

1In the literature, among the value-based methods in particular stands out the Q-Learning,
which essentially defines the Markov Decision Process using as a function approximator for q
a neural network.
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Q-Learning is a popular method that is not without defects. In some cases, it
tends to overestimate the q function for some actions, resulting in an evaluation
error on the action to be chosen.

A derivative method that aims to overcome these problems is the Double Q-
Learning, which exploits two neural networks in parallel, dividing the functions
of exploration and learning. While a network is only used to explore, the learn-
ing network improves the former. Networks can also be mutually exchanged,
performing two exploration and learning steps for epoch; it has been demon-
strated [66] that the method reduces overestimations and therefore improves the
performance of the controllers.

The technology is still in its infancy and is developing continuously (reinforce-
ment learning methods use video games from the 70s and 80s as a benchmark),
however it grows fast and the application of the techniques on the aerospace
controllers will surely find its sequel in the coming years (complexity permit-
ting).
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