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Abstract

Cloud Robotics is a recent paradigm in robotics that leverages on Internet-based technologies
to enhance robotics applications. It provides several benefits for the development of robots and
robotic applications, such as autonomous mobile robots, cloud medical robots and assistive robots.
Cloud robotics requires cloud robotic platforms that can be used by robotic developers to build
distributed robotic architectures and to interact with robots using standard Internet based proto-
cols.

Aim of this Master Thesis is to study the main Cloud Robotics concepts and the cloud robotic
platform that implements them. Then, a robotic distributed architecture is developed, making
usage of the considered cloud platform. Finally, such distributed architecture is validated through
the implementation on a service robotics application: the PARLOMA project.
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Chapter 1

Introduction

Robotics is a growing area in engineering and innovation fields. In recent times, robotics appli-
cations have become increasingly popular and their market is skyrocketing. They were initially
used to substitute workers in unsafe situations or to replace them in repetitive and boring tasks.
Nevertheless, the huge technological progress have taken them out of simple industrial applications,
in fact robots are now becoming part of our everyday life.
This tendency has given rise to Service Robots, that are, in agreement with the IFR (Interna-
tional Federation of Robotics), robots that work in part or completely autonomously to provide
useful services for the wellbeing of humans, excluding production operations [17]. Several applica-
tions are included in Service Robotics: telepresence, housekeeping and cleaning or even education.

Due to the technological advancements, the global service robotics market is in continuous
expansion, as shown in Figure 1.1.

Figure 1.1: Global robots market: service robots vs industrial robots

1



1 – Introduction

The service robotics is expected to reach a CAGR (Compaund Annual Growth Rate) of 22%
in the years 2014-2020. 1.

Figure 1.2: Example of Service Robotics applications

Another IT area is growing in recent years that is Cloud Computing. In according with the
NIST (National Institute of Standards and Technology), cloud computing is a model that enables
on-demand network access to a shared pool of configurable computing resources (e.g. servers,
networks, storage, services and applications) that can be quickly released and provided with the
minimum management effort or interaction with the service provider [16]. This architecture brings
numerous advantages in terms of cost reduction, scalability, and huge computing force. It is directly
adopted by different applications: e-mail services, social networks, shared document applications,
and others. Next, from the fusion of Robotics with Cloud Computing, a new paradigm has been
developed: Cloud Robotics.

The most comprehensive definition of cloud robotics has been presented by Mario Tremblay,
who affirms that: "Cloud Robotics occurs when we connect robots to the Internet and, in doing
so, they become more intelligent and capable. The cloud allows them to communicate with other
devices and machine, in this way, robots serve their human users more effectively. By collaborating
with other devices and people, robots surpass their physical limits and become more capable and
useful, since they can delegate portion of their activities to more suitable parts "[13].

So, thanks to cloud robotics, robots can take advantage of the characteristics offered by cloud
computing such as cloud storage, distributed computing, access to big data, scalability, coming
even to collective learning and crowdsourcing robots (see Figure 1.3).

Many tools can be used to enable Cloud Robotics solutions. In fact, the purpose of this thesis
is the following: finding and implementing tools such as ROS, OpenVPN and Docker in order to
improve the Parloma project. PARLOMA was created by the collaboration between Politecnico di
Milano and Politecnico di Torino, thanks to the Alta Scuola Politecnica (ASP), and developed by
L. Russo, G. A. Farulla, and others colleagues, under the supervision of Professors P. Prinetto and
B. Bona. This solution will be used to improve the Hotblack Robotics Platform, that is a cloud
robotics platform developed by HotBlack Robotics2, which was founded in 2015 by Dr. Ludovico
Russo and Dr. Gabriele Ermacora. In particular, their help played a key role in the development
of this Thesis project.

1Webcast: Investing in Robotics for 2015 (robotics business review),
https://www.roboticsbusinessreview.com/manufacturing/webcast_investing_in_robotics_for_20151/

2HotBlack Robotics website, http://www.hotblackrobotics.com/
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1.1 Contextualization

Figure 1.3: Cloud Robotics concepts

1.1 Contextualization
This Master Thesis has been developed under the supervision of Prof. Paolo Prinetto, from October
2017 to March 2018, in the Robotic Research Group (RRG) laboratory of Politecnico di Torino.
In addition, since a collaboration with the HotBlack Robotics group was established, also Dott.
Ludovico Russo and Dott. Gabriele Ermacora helped in the project development. This Thesis
represents the Final Project of the Master Degree in Mechatronic Engineering, and covers different
topics studied within this degree, together with the author’s personal experience and background.
Among the subjects associated with this work, the main ones are: Computer Science, Robotics,
Software Design and Development, Operative Systems and Operating-system-level virtualization,
Networks.

1.2 Main Objectives and Results
The main goal of this Thesis is the study and development of a network system allowing to use a
3D printed robotic hand through Internet. To reach such objective, different strategies have been
considered and discussed during the project. The starting point of this Thesis is the current state
of the art of Parloma project in addition with what had been developed in the cloud robotics field
by the colleague dott. Pietro Lorenzetti. He allowed the communication between an open-source
robot and a cloud robotics platform, creating an ad-hoc VPN network for a ROS Multi-machine

3



1.2 Main Objectives and Results

environment.

The Author has implemented a VPN solution, in the ROS environment together with Docker,
making the project more portable, flexible and multi-platform.

The strategy is divided in the following steps:

1. A model representing PARLOMA’s robot hand has been researched and adapted in a ROS
environment. In this way, robotic hand movements can be shown in a 3D visualization system
like RVIZ (see subsection 3.1.1).

2. An ad-hoc VPN network has been created between an AWS Server and a host PC. On both
of them the ROS framework has been installed, proving the possibity to extend the ROS
environment outside of a LAN (Local Area Network).

3. Since the robotic hand should work as a sort of telepresence system, it is needed a sort of
packaging, in a way that any user can start a conversation in a user-friendly manner. For
this purpose the Docker potentialities have been exploited.

4. Some tests have been done on the network latency, to understand whether the system is
reliable for this purpose or not. Then the solution has been tested directly on the hand,
and, by means of a Leap Motion device, the acquired data have been forwarded to ROS
environment producing the movement of the robotic hand.

The project has led to many useful results both in terms of Parloma project improvements and
usability and in terms of enhancements for the cloud robotics platform on which this system will
be deployed.

The main Thesis outcomes can be summarized as follows:

• The VPN Multi-Machine ROS network has showed excellent results both in LAN (Local
Area Network) and in WAN (Wide Area Network). Surely this solution will be at the center
of further developments, aimed at improving its usability, in order to integrate it also on
HotBlack Robotics cloud platform.

• The PARLOMA project has been successfully improved and now it is almost ready to be
made available to end users.

4



1.3 Outline

1.3 Outline
This thesis is organized in seven Chapters as described below.

The first chapter provides a brief presentation to this Master Thesis, introducing a review on
the main arguments addressed during the development of the project: Robotics, Cloud Computing,
Service Robotics and Cloud Robotics. Furthermore, it provides a description of the work carried
out, highlighting the main results and the steps followed to achieve them.

The second chapter contains a general overview of the basic notions needed to well un-
derstand the goal of this Thesis: Robotics, Tele-operated Robots, Cloud Computing and Cloud
Robotics. Furthermore, some explanations and examples are presented to simplify some concepts.

The third chapter provides main features of the software application used to reach the pur-
pose of the thesis such as: ROS (Robot Operating System), VPN (Virtual Private Network) and
OpenVPN and Docker (an operating-system-level virtualization software tool).

The fourth chapter presents the solution adopted. Practically the Author will describe in
details how to combine together VPN, ROS and Docker in order to obtain a portable and flexible
VPN-based ROS environment. A step-by-step description of the implementation process is pro-
vided.

The fifth chapter presents the main features of the state-of-the-art of the PARLOMA project,
along with the Authors’ contributions to the open issues.

The sixth chapter presents three experiments. The latency of the network system is tested
in three different configurations: client/server on a single PC, client/server on a LAN, and clien-
t/server on a WAN.

The seventh chapter presents a conclusion to this Thesis work, including achieved results,
open issues, and possible future developments.

5



Chapter 2

Robotics in the Cloud

Nowadays, there is a growing scientific interest in cloud computing. This is a topic that does not
only affect engineers, scientists and who work with it, but it is entering into the common conscience
of people. However, even if people perceive that cloud computing is an important and growing area,
they do not have a clear idea on what exactly it is. As a first definition, "the cloud" is a term that
refers to accessing the software applications, IT (Information Technology) and computers through
a network connection.

Actually, the cloud is not a brand new notion. It represents the Internet, along with the set of
protocols and standards that allow users to use Web services. The term cloud enhances more the
idea of complexity and abstraction that it hides. The difference between Cloud Computing and
Internet does not concern the involved technologies, which are the same, but in the way services
are implemented and designed. Just now, it is not easy to predict which particular routes will be
tracked by the cloud, but in the meantime, it is essential to study its potentialities to keep up with
the times that are coming.

This chapter provides a detailed overview of the technologies taken into account during the
development of this thesis project. These are:

1. Robotics: after a broad overview of robotics and related applications, the focus will be moved
on Service Robotics, the area of interest of this Thesis (Section 2.1.1). Finally the Author
will provide a theoretical background on Tele-operated Robots (Section 2.1.2).

2. Cloud Computing: the basic concepts at the base and its potentialities are shown in Section
2.2.

3. Cloud Robotics: the implementation of the cloud computing architecture in the robotics field
is carefully explained in Section 2.3.

Several documents and books have been consulted to address the theory presented in this
chapter; first of all the book Bible of Cloud Computing [24], [17], [18] and [26] for Robotics and
Service Robotics, together with some notes of Robotics of the course of Professor Bona. Moreover,
for Cloud Robotics, the knowledge comes from: [14], [13], and [12].

6



2.1 Robotics

2.1 Robotics
Robotics is a division of science and engineering that deals with the design, construction and
use of robots: machines can automatically perform a complex series of actions. In addition, it
also includes the study of computer systems for robot control, information processing and sensory
feedback. Robotics is an interdisciplinary science, as it combines together different engineering
fields, along with psychology, biology and philosophy, which address deeper themes associated
with robotics. These technologies have been designed and developed to replace human beings in
different circumstances such as: manufacturing processes, dangerous environments, and others.
Nowadays, the tendency is focusing on service robotics: a new form of robotics linked to everyday
life. The latter is at the heart of this chapter and will be covered in detail in Section 2.1.1.

Among all the various applications of robotics, the following are those of main interests:

• Industrial robots are manipulators planned to move materials, tools and parts that perform
several tasks in production and manufacturing environments.

• Service robots are designed to help humans in everyday life. They have a vast range of
applications: from floor cleaning to elderly people assistance. Most of the time, they are
completely autonomous and planned to operate in a domestic environment. Some examples
of Service Robotics are the following:

– Agricultural robots are used for agricultural functions. In the factory settings, they
perform different tasks; the main areas are: cloud seeding, weed control, harvesting,
planting seeds, soil analysis and environmental monitoring.

– Edu-tainments Robots are used to educate schoolchildren through fun. They can be
used to teach some basic concepts in funny way autonomously or led by a teacher.

• Exploration and scientific robots also called rovers, are designed to explore difficult areas
to be reached by humans. In addition, they are also able to collect and analyse samples or
send data in real-time to a remote station. Mars rover is a well-known example, it moved
itself through the Mars planet.

• Medical robots are the ones used in the medical sciences. Surgical robots are the most
popular, where robots perform a low-invasive operation while being controlled remotely by
an expert.

2.1.1 Service Robotics
The robotics market is constantly expanding. Technological enhancements in software applications
and hardware components have made possible many things that were previously unbelievable.
These significant improvements have taken robotics to the next step. Whereas before most of the
market applications were oriented towards production and manufacturing, now Service Robotics
is the new trend. Service robots are defined as: robots that perform useful tasks for human or
equipment excluding industrial automation applications [17]. In this way, robots will take part in
our everyday life: hospitals, hotels, warehouses, restaurants, shops and even in our homes.

Service robots are at a turning point, opening up new contexts for productivity gains more than
what industrial ones have done. Advances in engineering areas are allowing robots to be more in-
telligent, able to work in different environments and capable of complicated manipulations. Also
the forces of the ecosystem are reducing the barrier to innovation, involving a wider community of

7



2.1 Robotics

innovators and making much easier to teach and train robots1.

As demonstrated by the International Federation of Robotics [18], the statistics clearly show
a great increase from 2015 to 2016 (Figure 2.1). Particularly, the number of professional service
robots traded in 2015 increased appreciably by 25% to 41.060 units compared to 32.939 sold in 2014.

Figure 2.1: Service robots sold units in 2014-15

The projections of the same data in the years 2016-2019 are even more impressive (see Figure
2.2). In fact, rather than the 41,060 units sold in 2015, the total number forecast for 2019 is about
333,200 units with a value of 23.1 billion dollars.

Although the impressive growing trends, some preconceptions still remain about service robotics.
The first one is that workers will be replaced by service robots. Actually, this is a wrong belief,
since these new robot applications on the market are oriented towards supplementing work in crit-
ical tasks/ bottleneck situation or improving health outcomes by making jobs more pleasant. For
this reason, the value proposition for service robotics is to support workers to work safer, faster
and better.

To understand why robotics is moving toward Service Robotics, an interesting correlation can
be determined between new and old paradigms related to Information Technology and Robotics.
In table 2.1, the comparison is shown.

1Service robots: The next big productivity platform, http://usblogs.pwc.com/emerging-technology/service-
robots-the-next-big-productivity-platform/
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Figure 2.2: Service robots units sales for domestic/personal use, 2016-19 compared to 2014-15

According to [26], several are the challenges that need still be addressed within the service
robotics sphere. Below are some of them:

• Making the robots easier to use and program, and therefore involve a larger group of users
and innovators;

• Offering robots the skills to understand, perceive, and act in a wide spectrum of dynamic
environments;

• Improving robot manipulation ability to handle a wide range of tasks;

• Reducing the size and costs of the robots;

• Allowing robots to collaborate with human, while keeping everyone safe.
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Enterprise IT old Enterprise IT new

Desktop Computers Many types of end user devices:

PC, laptop, tablet, smart-phone

Installed applications Most applications accessed re-

motely

Wired in place Ubiquitous wireless

Specialist team on site Less need for specialist team

Robotics old Robotics new

In the factory: relatively small

number of robot families

More robotic variants with more

behaviours

Configured on site Simpler configuration: poten-

tially via web browser

Fixed positions/tasks Adaptable devices

Specialist team on site Most support remote

Wired connectivity Ubiquitous connectivity: back to

supplier/service

Table 2.1: Concepts shift in Robotics and IT in the last years

In order to overcome these challenges, a community effort is needed to improve the following
main technologies that are, at the same time, the trend areas that drive the robotics market:

1. Cognition: the ability of the robot to understand, perceive, plan and move in the real world.
This is the key point to enabling robots to work independently and in complex and different
environments.

2. Manipulation: proper dexterity and control for handling objects in the environment. Dex-
terity and manipulation allow robots to execute a wide variety of tasks.

3. Interaction: the ability of the robot to collaborate and learn from humans. This kind of
interaction will break down the barriers that prevent robots from collaborating with humans.
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h

Figure 2.3: Service Robotics Challenges

As better explained in section 2.3, in this scenario, a cloud model called Cloud Robotics plays
a crucial role. High computational forces are needed to allow self-learning for robots, advanced
algorithms allow robots to learn how to behave in unknown environments, with low or completely
absent supervision.
In this way, robots adapt themselves and learn how to face all the possible situations without that
programmers have to think about all these. These algorithms require large computational power
that cannot be obtained from a single robots or machine. As a result,in order to instruct individual
robots, a cloud platform is needed to collect data and to process them. The cohesion of Service
Robotics and Cloud Robotics lead to a new paradigm that is Cloud-based Service Robotics.
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Case Studies

After explaining the main features of Service Robotics, some examples of the real world will be
presented, to see how these concepts are actually actualised in real applications.

Fellow Robots2 produces and developes NVidia Jetson that is an autonomous robot conceived
for operating in shopping centres. Here it performs several task, one of these is to monitor the
inventory, and if something is missing, inform the employees that will restore it. In addition, it
also interacts with customers, guides them to products or simply answers questions.

Figure 2.4: Jetson walking with a customer in a center shop.

Savioke3 is a robotic enterprise that has created the first delivery robot completely au-
tonomous. It works in different areas, but hospitality is the most profitable. Here it offers ameni-
ties, food and an extraordinary experience for guests. Their robot Relay, shown in Figure 2.5, is
completely autonomous and able to deliver food and other goods in the client rooms.

2Fellow Robots Website: http://www.fellowrobots.com/
3Savioke Website: http://www.savioke.com/
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Figure 2.5: Relay delivering food in an hotel room.

2.1.2 Tele-operated Robots
Before the robots were networked, the IT world was full of tele-operation systems. They started
as devices controlled remotely and then, thanks to the Internet evolution and similar technologies,
they have become an integration of human, robots, off-board sensors, cloud and databases all over
the world.

The first networked tele-operated robot was created in 1994, by IBM, under the name of "The
Mercury Project". It was an industrial robot arm equipped with a digital camera and a little air
compressor, it allowed remote users to move on the work space, and to use burst of compressed
air to look for buried artefacts in a sand box.
Although most of networked tele-operated robotics devices consist of a single robot and a single
human operator; according to Chong et al. [23], there are four types of contexts:

• SOSR: Single Operator Single Robot,

• SOMR: Single Operator Multiple Robots,

• MOSR: Multiple Operators Single Robot,

• MOMR: Multiple Operators Multiple Robots.

This widespread network connectivity considerably increases the potential of networked robots,
and enables the use of techniques such as collaborative control and crowd-sourcing as outlined in
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Subsection 2.3.1.

There are different degrees of autonomy for robots on the network, the two opposite cases are
listed below:

• Tele-operated,where through the network, human users send commands and receive feed-
back. These are just remote controlled robots that do what is required by supervisors.

• Autonomous, where through the network, sensors and robots exchange data. In these
systems, remote users are not required. The sensing range of the robots is extended by the
sensor network.

Figure 2.6: Tele-operation control types, from guided to autonomous robots

Figure 2.6 shows the various levels of autonomy of the networked robots.

Networked robotics play a fundamental role in enabling users to interact with remote environ-
ment. For instance, in videoconferencing applications, a networked robot can offer much more
interactivity, compared to a normal video conferencing system. In fact, a robot could not only rep-
resent a remote person, but also transmits multi-modal feedback to the person connected remotely.

In the literature, this technology is called Telepresence.
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Telepresence

Telepresence is a set of technologies that allow a person to give the impression of being present, or
to have an effect, through tele-robotics in a different place from the position of the user. Video-
conferencing is the most popular example of telepresence, it consists of streaming video images
and audio between two users situated in different locations,an example is in Figure 2.7. A famous
videoconferencing software is Skype4.

Figure 2.7: Videoconferencing example

The advantages of adopting telepresence are many, in working environment for example, travel
costs are reduced, the employees work-life is safeguarded and their productivity is optimized.

In addition, users could also perform some tasks in the remote location. Manipulation can be
implemented by a robot in the remote location that copies user movements. In this way is possible
to control remotely a robot that follows the remote commands while it is streaming audio/video.
These functions refer to a new field of robotics: Mobile Robotic Telepresence (MRP) or
Telerobotics. According to [2], Mobile Robotic Telepresence can be defined as a system that
incorporates video conferencing equipment onto mobile robot devices which can be steered and con-
trolled from remote location. These systems, created to promote social interaction between people,
are also becoming prominent in other areas of application such as in office contexts, independent
living for the elderly and health care environments. Compared to conventional videoconferencing,
MRP provides a deeper social interaction.

4Skype Software: https://www.skype.com/en/
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2.2 Cloud Computing
The tendency to improve processing and storage techniques, combined with the powerful of the
Internet, has made calculation resources less expensive, more available and effective in any place.
This trend has led to Cloud Computing.

Cloud term indicates two concepts:

• Abstraction: using a layered architecture developers and users are independent from the
actual implementation of the system. This feature makes user access, applications and data
storage completely intuitive and flexible.

• Virtualization: systems are virtualized through resources sharing. This creates the illusion
of having more resources that are actually allocated in a real-time model, based on user
needs.

The National Institute of Standards and Technology (NIST) provides an accurate definition of
this model, that is:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service
provider interaction. This cloud model is composed of five essential characteristics, three service
models, and four deployment models [16].

From this statement, different key-points come up:

• On-demand self-service. A consumer can unilaterally provide calculation capabilities such
as server time and network storage, automatically based as needed without requiring human
interaction with each service provider.

• Broad network access. Capabilities are accessible on the network through standard mech-
anisms that promote use by client platforms that could be both thin or thick (e.g. mobile
phones, tablets, laptops and workstations).

• Resource pooling. The computing resources of the provider are grouped to serve more con-
sumers using a multi-tenant model, with different virtual and physical resources dynamically
assigned and reassigned depending on consumer demand. The customer has no knowledge
over the location of the provided resources so there is a sort of sense of independence in terms
of location, even if at higher level of abstraction, it could specify a position (for example, data
center, state, or country). Resources could be processing, storage and network bandwidth.

• Rapid elasticity. Capabilities can be provided and released elastically, sometimes auto-
matically, to quickly scale outward and inward according to demand. The consumer sees the
capabilities as they are unlimited or appropriated at any time in any quantity.

• Measured service. Cloud systems monitor and optimize resources usage by leveraging
a measurement capability at a level of abstraction appropriate to the type of service (for
example, bandwidth, processing, archiving, and active user accounts). The use of resources
can be controlled, monitored and reported, guaranteeing transparency both for the supplier
and the costumer of the used service.
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Figure 2.8: NIST definition with the five key points.

2.2.1 Deployment Models
Once the NIST definition is clear, a deep analysis is needed to fully understand how Cloud Comput-
ing works. For this purpose, further classifications need to be addressed. The possible distinctions
are showed in figure 2.8.

Based on the business scenario and interests of service providers, there are several implementa-
tion models that define the nature of the cloud and how it is implemented. Mainly, there are four
models:

1. Public cloud. A service oriented to the general public that offers different basic character-
istics together with many advantages: no initial capital investment and risks transferred to
infrastructure providers. However, data controls and security settings are not strict, prevent-
ing the use of this model for applications that require a certain degree of security.

2. Private cloud. In contrast to the previous one, this model offers the highest level of control
in terms of reliability, performance and security. It is designed for private use by a single
company.

3. Hybrid cloud. A combination of both the private and the public models. Properly, the
cloud is working partially in a public environment and partially in private a one. Hybrid
Cloud service is very flexible since it is a good compromise between the security levels of
private and the benefits of public service. However, they must be carefully designed to
accurately divide the private and public parts.

4. Community Cloud. This model is generally designed for one or more organisations, which
share common purpose in terms of security, policies, mission and so on.

17



2.2 Cloud Computing

2.2.2 Service models
Before describing the service models, the business model followed by the service providers has to
be defined. They offer a service-oriented business model. This means that they propose both
hardware and platform resources on demand. This is possible since, as we will see later, the cloud
architecture is arranged in such a way that each level can be seen as a service at the higher level
and, consequently, as a client of the lower level.

So, there are three main service models adopted by cloud service providers:

• Infrastructure as a Service (IaaS). The whole infrastructure is given to the consumer. It
includes virtual storage space, virtual machines and hardware resources that the client can
use. On the contrary, the customer implements other deployment aspects such as applica-
tions, operating system and so on.
Real examples of these services are GoGrid [7], Amazon EC2 [4], and Flexiscale [6]. All these
companies provide a direct access to hardware resources. The client is then supplied with a
VM image as a storage and computer, ready to be filled up with applications and the related
operating system.

• Platform as a service (PaaS). This time the customer is only responsible of deploying
its applications on top of the infrastructure or to use the tools supported by the platform;
while virtual machines, services, operating systems, development frameworks, control struc-
tures and transactions are furnished by Paas providers. Real examples of these services are
Microsoft Windows Azure [15], Google App Engine [10] and Salesforce [21].

• Software as a service (SaaS). In this model, all the services from the application to the
infrastructure takes place on the cloud provider. Mostly the customer accesses it using an
interface as a browser and the client’s responsibility concerns only with user interaction and
data management. When a provider offers software running in the cloud on a pay-as-you-go
model, it is referred to as SaaS. Customers can access to the service from their browser,
create an account and start using the software without being responsible for installation and
maintenance. The SaaS model includes two related but separate concepts: software libraries,
which can be imported into other projects as components and standalone software, which
can be used on its own. Real examples of this service are Rackspace [11], Salesforce [21] and
SAP Business ByDesign [22].

By grouping the three previous service models, the cloud computing SPI (Saas,Paas,Iaas) model
is obtained. Many other services exist, such as: IdaaS, Identity as a Service, CmaaS, Compliance as
a Service, StaaS, Storage as a Service, and others. However, the SPI model incorporates all of them.

To understand how cloud computing’s services are related, it is needed to see the model as a
hardware/software pyramid. Observing the Figure 2.9, the set of hardware infrastructures neces-
sary for the cloud is at the bottom, after that, moving upwards, each level inherits the capabilities
of the underlying service model.
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Figure 2.9: The Cloud Computing Stack

2.2.3 Architecture
Before going into details, cloud computing architecture is presented. The structure is divided into
four different levels, as showed in Figure 2.10, that are:

1. Hardware level. Typically it is implemented in data centers. It is responsible for the whole
hardware resource: power supply, router, server and so on.

2. Infrastructure layer. Also called Virtualization layer, it partionates the hardware re-
sources using virtualization technologies creating pools of computing units. It is essential as
it provides one of the key point of cloud computing: dynamic resource allocation.

3. Platform layer. Immediately next to the Infrastructure layer, this layer aims to facilitate
the development of applications into virtual machine environments. It consists of application
frameworks and operating systems.

4. Application layer. It integrates the actual cloud applications. These are featured by the
automatic-scaling method, which allows to have better efficiency, availability and perfor-
mances.
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Figure 2.10: Cloud Computing Architecture

The model is highly modular, as a result of this layered architecture. This allows each level to be
paired with those above and those below, but also, at the same time, to be able to evolve separately
and to be independent. The overall image has been presented, so in order to completely understand
the architecture of cloud computing, a more detailed introspection is needed. Composability is the
key property of the architecture. Composability is based on two points:

• Modular. It is an independent and self-contained unit that is reusable, cooperative and
replaceable.

• Stateless. A transaction is executed independently of other requests or transactions.

Now three of the layers shown above will be analyzed more precisely: Infrastructure, Platform
and Applications.

1. Infrastructure. Virtual Servers that run applications are furnished by Iaas providers. These
servers share common aspects like memory, CPU cycles, even though they are not physical
computers. Figure 2.11 shows the server part of the cloud stack. Generally, together with
the Virtual Servers, APIs are also provided, in order to ease the use of their potential from
the other layers during the development of applications.

2. Platform. The software level used to generate higher levels of service is the Platform. It
includes approximately the whole cloud software stack, with the exception of the Application
layer that serves as the user interface. Most of the time, platforms are equipped with utilities
and tools for collaboration, storing, versioning, testing and so on. Figure 2.12 shows the
Platform Layer.
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Figure 2.11: Infrastructure part of the Cloud Computing Stack

Figure 2.12: Platform part of the Cloud Computing Stack

3. Application. The Application Layer is based on all the others, so it is the highest one. It
lets users interact by allowing them to use services and to manage their data without caring
about how the platform manages services. Usually, this layer goes hand in hand with a User
interface that makes easier the use of the application making it more intuitive. Figure 2.13
shows the Application Layer.

Figure 2.13: Application part of the Cloud Computing Stack
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2.3 Cloud Robotics
James Kuffner used for the first time the term "cloud-enabled robotics" during the IEEE RAS In-
ternational Conference on Humanoid Robots in 2010 [14], highlighting the potential of distributed
networks united with robotics.

Following, different definitions have been given, each one concentrating on a several aspect of
Cloud Robotics, manifesting the diversification of approaches inside the community. In particular,
Ken Goldberg, puts in evidence the possibility of a form of collective intelligence of robots thanks
to sharing and learning, resulting from the considerable enhancement of computation capacity,
storage, and programming skills: "Humans as a species are becoming more intelligent because we
are able to share information much more quickly and take advantage of innovations faster, even
robots have that potential "[9]. Even Steve Cousins firmly believes that the most significant op-
portunity provided by Cloud Robotics is the ability to share information between the robots and
allowing them to communicate using the cloud, since how is said: "No robot is an island" [9].

Figure 2.14: Cooperating Robots

One of the most complete definitions was given by Mario Tremblay, who stated: "Cloud robotics
happens when we connect robots to the Internet and then, by doing so, robots become augmented
with more capacity and intelligence. The cloud lets them communicate with other machines and
serve their human operators better. Connected robots equal augmented robots. By collaborating with
other machines and humans, robots transcend their physical limitations and become more useful
and capable, since they can delegate parts of their tasks to more suitable parties" [13].

In technical terms, Cloud Robotics is a robotics area that makes use of cloud characteristics
such as Cloud Storage, Cloud Computing, and other Internet features to extend the advantages
of shared services and convergent infrastructures to the world of robotics. Powerful computa-
tion, communication and storage resources are therefore at the service of the robots, sharing and
processing the information collected. This view of robotics makes it possible to create low cost,
lightweight and smarter robots, where their computing center is located into the cloud.

Based on the implementation models presented in the Cloud Computing (see subsection 2.2),
a new module will be introduced: Robotic as a Service (RaaS), see Figure 2.15. As a general
knowledge, RaaS can be explained as a unit of cloud computing that eases the perfect integration
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of embedded devices and robots in the cloud computing and Web environment. It follows the
Service Oriented Architecture and contains the following features:

Figure 2.15: Robotic as a Service related to Cloud Computing Stack

• A Raas unit is a service client: according to the available services, new applications can be
implemented on the robot.

• A Raas unit is a service provider: it has loaded pre-prepared services that can be modified,
removed, or shared with other robots.

• A Raas unit is a service broker: a customer can browse through the several services available
and organize them in hierarchy classes.

A basic architecture of Cloud Robotics is composed of two complementary layers:

1. Machine-to-machine (M2M). Grouped robots form a cooperative computing entity, which
leads to numerous benefits. First of all, as a result of the collaboration, the processing power
is greatly increased. Furthermore, information are shared to make collaborative decisions.
Finally, the cloud communication range is extended also to the robots that are out of this
cloud architecture.

2. Machine-to-cloud (M2C). At this level, the cloud provides storage and computing re-
sources that are dynamically allocated depending on real-time demand. Therefore, the heavy
calculations and the large amount of data collected by robots can be moved to the cloud.
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Figure 2.16: M2C and M2M communications that allow robots to be interconnected.

Several are the applications of robotics based on cloud, the most interesting for the purpose of
this thesis is the Cloud Network (CN). Cloud Network takes place on the network as an infras-
tructure and can be subdivided into three groups:

• Tele-operated Robots. Robots controlled remotely by a human user. Generally, the goal
is telepresence. As explained in 2.1.2, this robotics area has extensive applications in remote
exploration, disaster relief, tele-robotic surgery and mining.

• Multi-robot systems. Systems in which robots are able to collaborate without any human
intervention.

• Sensor arrays. They are a form of cloud systems where robots are included in the archi-
tecture, and through M2M communication receive information from remote sensors.

2.3.1 Benefits
Once the general concepts of Cloud Robotics have been discussed and some benefits have been
briefly cited, it is time to concentrate on the advantages that the cloud offers to robotics.

Big Data. The Cloud Storage allows robotics devices to use Big Data that may not have
been kept on internal memory. When we talk about Big Data we refer to a quite wide data sets
that could include videos, maps, images, and so on. Big Data together with robotics have played
a fundamental role in different examples of applications ; among all, Kehoe in [8] proposed one
of the most interesting. It is well known that grasping objects is a usual task faced by many
robots, from industrial to service robotics. Actually, it is not easy, for a robot, to implement all
the possible procedures that start from the observation of the object to its proper grasping; par-
ticularly when it deals with an object never seen before. To this end, Kehoe conceived a system,
that, integrating Google Goggles recognition with a sampling-based algorithm is able to recognize
objects and suggest grasping path. Practically, the robot takes a picture of the object, sends it to
a server; here a trained algorithm compares the photo to a large collection of CAD models. Once
the object is recognized, the server returns to the robot, the recommended approach to grasp the
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object. Finally, the robot performs the best approach among those proposed and sends a feedback
to the server that will be updated. The system is shown in Figure 2.17.

Figure 2.17: Intelligent grasping system architecture

Cloud computing. Having the ability to perform parallel and complicated calculations is
crucial in robotics. The power of Cloud Computing has two significant consequences for robots:

• First, it is more important for a robot to be equipped with an Internet connection allowing
it to use the external power of Cloud Computing, instead of installing huge processors on
board. In this way cost will be cutted-off effectively.

• Secondly, since heavy hardware is moved to the cloud, robots can execute the same functions
as before, but being smaller and lighter. This consequence should not be neglected since
a lot of applications require small and light robots. Thus even low-cost robots are able
to accomplish heavy computational tasks such as functions related to kinematics, motion
planning, dynamics and more.

Obviously, this is possible only if the latency of the network is negligible and the quality of the
service (QoS) is reliable.

Collective robot learning. Thanks to the Cloud, that gives the ability to share information
among the robots and to send feedback between robot and servers, two important benefits can be
identified:

• The cloud database exploits not only information coming from a single robot, but from a
shared units that collect useful data.

• Once the data are acquired, learning and fusion method can elaborate and enrich the infor-
mation available.

Waze or Google Maps are examples of Collective Learning which provide vehicle route planner.
They collect a series of information retrieved from Maps, Imagery, Satellites, and so on, in this
way they have updated information. Later, different users can be seen as a robot community
that continuously provide information on traffic jam or best routes. A machine learning algorithm
process these data and select the best route in case of traffic congestion and then provides it to
drivers. This is a proper example of merging data retrieved by users and existing data.
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Crowdsourcing. In some tasks such as facial recognition, image labelling or learning associa-
tions between locations and object labels, the human experience and skill are essential. Usually, the
cloud offers the possibility to support the robots remotely, in order to improve them for particular
functions. In this scenario, the robots can repeat their work continuously and then understand
when they are unable to perform certain functions. In these cases, they request assistance and a
remote user helps them by instructing them correctly.

2.3.2 Challenges
In addition to the benefits of the Cloud, there are also some problems that must be addressed and
overcome.

1. Firstly, as specified above for Cloud Computing, some of the most important problems con-
cerns privacy and security. Examples of privacy issues occur when robots share sensitive
information in the cloud about video, images, or other data related to business or private
homes. Since these information are also accessible by others users therefore they must be
protected in some way. At the same time, security problem includes possible hacking at-
tacks to robots connected to the cloud, causing harms virtual or physical resource or even to
people.
A case of cloud hacking was performed by the Cockrell Engineering School [12] where one
professor, Todd Humphreys, along with his students, demonstrate that spoofing a UAV
(Unmanned Aerial Vehicle) is technically and practically possible. This proof caught the
attention of the Federal Aviation Administration [USA] which decided to strengthen the laws
about the UAV, from that moment it is necessary to be in possession of a license to drive a
UAV in the US airspace.

2. Another challenge closely related to Cloud both Robotics and Computing, is the QoS and
network latency. Although the Internet has grown extremely in recent years, there are several
motivations that can cause increase of latency or loss of speed.
The challenge is to design adaptive algorithms that change according to the QoS of a network,
in such a way to lower slowly when the quality of the connection decrease. Alternatively,
some customized communication channels may be designed for the sole purpose of connecting
robot into the cloud. This problem occurs primarily for real-time applications where hard
real-time calculations are required. While, when a quick response time is not required, it
does not represent a unsafe limit. For example, in applications as path planning, real-time
response is not needed, so network latency doesn’t represent a big deal.

3. Finally, a huge problem related to Big Data and Cloud Robotics, is to identify unreliable
information and dirty noise. Trusting the wrong information could cause dangerous damage
to both data treated and robots, for this reason is essential to be able to get from all available
information, only the reliable ones . Usually, the Data Mining algorithms are used to handle
noisy information.
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2.3.3 Requirements
Following are listed, the minimum system requirements necessary to run a Cloud Robotics archi-
tecture.

• First, an Internet connection with a good QoS and as stable as possible is required as a basic
requirement. Obviously, the most appropriate connection is the LAN (Local Area Network).
However, the latter uses physical cables, it may not be suitable for numerous applications. On
the opposite, the WLAN (Wireless Local Area Network) is more adaptable, but sometimes
it can be unstable.

• After that the connection is initiated, a calculation unit is needed to accomplish on-board
computations and to regulate the cloud communication.

• Next, a suitable software is necessary to form a networking allowing the communication
between robots and cloud. In the next chapter, the Robot Operating System (ROS) and
other tools will be widely described and also adopted (in 3.1).

• Finally, a platform capable of implementing the required architecture is essential to complete
the setting of the environment.

2.3.4 A practical example: RoboEarth
In this section, a Cloud Robotics application in the real world will be illustrated: the RoboEarth
project [25].

Figure 2.18: RoboEarth Architecture

The RoboEarth project was launched in 2009 and was one of the first application in the Cloud
Robotics field. It was born from the cooperation between different universities, that understood the
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need to extend computational power of individual robots to a shared processing unit. Furthermore,
they have not designed only a shared processing entity, but rather a complete platform (PaaS) in
which also data, algorithms, and learning methods are shared. The authors demonstrated two
main aspects:

• RoboEarth greatly improves the learning and adaptation of the robot in complicated tasks.

• Using RoboEarth, Robot can perform tasks that have not been explicitly planned in the
design phase.

The three-layered architecture, illustrated in the Figure 2.18 represent the core of this project.
All the design principles are based on the idea of providing robots the ability to reuse and expand
each other’s knowledge.

The Server layer represent the bottom of the architecture, that incorporates services and
database. A global world model is stored here, along with information on environments, ac-
tions and objects. It is possible to access it through common web interfaces. Below it, a Generic
Components layer is implemented in the architecture, that makes the entire platform hardware
independent. It includes components that are part of the local robot control software and act as
an interpreter between robot specific language and RoboEarth directives. At the end, the Robot
Specific layer of the robot provides skills abstracting hardware-dependent functionalities from the
robot.
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Chapter 3

Cloud Robotics: The enabling
tools

This chapter will introduce the main features of the software application used to reach the purpose
of the thesis. They will be discussed in this order:

1. ROS (Robot Operating System) described in section 3.1. It has been used as foundation of
the robotic application developed during this work.

2. VPN (Virtual Private Network) and OpenVPN described in section 3.2. These are the
foundations on which the network was created on, allowing communication between multiple
ROS machines.

3. Docker described in section 3.3. It is an operating-system-level virtualization software tool
that simplifies the task of packing and distributing SW applications, providing portable and
flexible systems.

As theoretical background, several sources have been consulted, the main ones are as follows:
[5] for ROS, [3] for VPN, [27] together with some notes of Programming for IOT course of Professor
Acquaviva for Docker.

3.1 ROS: Robot Operating System
ROS stands for Robot Operating System, even if is not actually an Operating System, it is an open-
source framework: a collection of libraries, conventions and tools designed for robotics application
developments. It provides the same functionalities of an operating system (for this reason is also
called meta-operating system) that contains:

• Hardware abstraction and device control through driver means that the code running
on ROS is independent from the hardware platform on which it is executed, so for example
the velocity command code has always the same form, independently, if the robot system is
wheeled, legged or propelled.

• Multiprocess Communication means that different programs works in parallel even on
different machines, which communicates through an efficient but simple messaging patterns
(like publish/subscribe).
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• Package Management that allow compilation, installation and packages management of
ROS-dependent library, data sets, configuration files, or anything else that is usefully orga-
nized together .

• Ecosystem and Community. ROS is organized in packages and distribution such as is
easily to install and use them. ROS provides also many online tutorials and documentation,
thanks to the large community behind it, for this reason is becoming day by day more useful
and used at the same time. A lot of robot and hardware support ROS, from Nao to ABB
industrial robot, from robot arm to rovers.

ROS has to be installed on top of an Operating system. Currently it is supported by Ubuntu
or Debian. The environment is written and supports mainly C++ and Python, but ROS has also
been designed to be language-neutral so it is possible to use also others programming languages
like Javascript, Matlab, Java etc.

However, regardless of programming languages, ROS is composed by three different cores, listed
below:

1. Communication

• Each running process is called node.
• Since it is a distributed system, ROS communication is based on a multi-machines

communication. This means that different ROS processes are distributed on different
robots, sensors, actuators or any kind of hardware, which communicate together.

• The standard communication patterns are Publish/Subscribe, Service/Client and Ac-
tions.

2. Organization

• ROS contains codes of nodes, libraries, messages, message definitions (how data are
packed) and services.

• These codes is contained inside a package that is a collection of nodes, messages and
libraries. All related files are encapsulated in the same package. A package can also
contain recordings, back files, documentation and so on.

• In turn, packages could be organized in a metapackage, that is a collection of packages
thematically similar and somehow interdependent.

3. Tools

• Command Line Tools: the fastest interface to visualize and interact with a ROS
environment.

• RViz: stands for ROS visualization and allows to see graphically what is going on in
the ROS environment, for example a virtualization of a robot that is moving in the real
world (see Figure 3.1)

• RQT is a 2D visualizator for data such as graphs representing running nodes and how
messages are exchanged (see Figure 3.2)

• ROS Bag is a set of tools for exchanged information exchanged on a ROS application,
coming from analysis and debug processes.

• Simulators they provide the necessary interfaces to simulate a robot in a 3D rigid body
simulator for robots. Gazebo is the most used simulator.
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3.1.1 RViz: ROS Visualization
RVIZ is a 3D visualizer that visualizes what is going on a ROS environment (Fig 3.1).

Figure 3.1: RVIZ interface

• The robot is represented on the center of the map.

• Grey part represents the explored floor.

• Black lines represent the walls.

• Red lines are the information obtained by laser scanner.

• Coloured 3D part is what the robot is seeing through the Kinect sensor.

3.1.2 ROS Concepts
As already mentioned, an application developed in ROS is a network of processes able to exchange
information in a multi-machines communication network; the ROS Graph is a representation of
this network (see Figure 3.2) and is composed of the following main parts.

• Node is a running process that belongs to a specific package and is identified by an unique
name. It is able to exchange messages using topics, actions and services.
A node can be a driver that controls hardware (like wheels, camera and so on) or a com-
putational node. Generally, information flow starts from a sensor node, passes through a
computational node, and ends in a actuator node.
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Figure 3.2: RQT Graph of a robotic drone

• Master is the main node, it initializes a ROS application and act as the server that enables
the communication between other nodes. Every time a new node is launched it will be
registered to the ROS master, for this reason the latter is the first node to be executed and,
thus, to start a ROS application.

• Messages encapsulate data exchanged between topics. Each message has a format described
by a message type. This format can be simple (bool, int, string, etc.) or a complex
structure (vector, matrix, etc.). Each message belongs to a package that could be sensoristic,
diagnostic, geometric and so on.

• Topics are the main communication channels inside ROS environment, each one is identified
by an unique name, each topic is a channel through which nodes exchange information
asynchronously (see Figure 3.3).

– On each topic data can be sent in a specific format (message type).
– A node that sends data to a topic is called publisher.
– A node that receives data from a topic is called subscriber.

Figure 3.3: Publish/Subscribe communication pattern
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• Service is another communication channel in ROS, it works like topics but synchronously.
This means that the one that sends a message (Client) waits a response from the one that
receives received the message (Server). It is a blocked system.

• Action is a cross between a topic and a service, since a blocking system does not exist. For
this fact, while the "client" is waiting for a response from the server a feedback is received.
It is designed to work on complex or long tasks.

• Parameter Server Different nodes could share the same parameter called parameter server.
Tt is currently part of the master node.
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3.2 Virtual Private Network (VPN)
VPN is very useful in a scenario where, for example, a Data Center or headquarters corporate
networks need to be connected to remote branches as remote data center, backup storage center,
or even to single remote users, for example somebody working by home or by travelling that wants
be connected as if he/she are in the office.

Until some years ago, these problems were resolved using dedicated connections or leased lines,
generally really expensive. But in the last years, since the internet is ubiquitous and connecting
to it is easy and inexpensive, it was thought to use internet to send and exchange data with the
corporate network.

It is obvious that due to people’s security needs and above all the need to send encrypted data
over a network, VPN technology has been developed. But in addition to the role of creating a
"private sphere of computer communications", VPN technology has many other advantages:

• High level of security. When a VPN is used, data are kept encrypted and secure.

• Remote control. In an enterprise environment, data center and information can be accessed
remotely, from home or anywhere else. So a VPN greatly increases the company’s produc-
tivity.

• Shared files. It is a good solution for users that want to share data for a long period.

• Better performance. Efficiency and bandwidth of the network increase, generally, where VPN
solution are implemented.

• Reduced costs. When a shared resource is used, the costs are shared as well. So it is cheaper
since the maintenance cost is very low.

• Provide access to corporate network in a selective and flexible way.

– Selective. Because only those who have the right profile can connect to the corporate
network, moreover, for some external users it is possible to provided limited services.

– Flexible. Since the solution is based on being interconnected on a shared infrastructure
it doesn’t matter where the users are.

A VPN is mainly used to extend a private network, which is a network that assigns private
IP addresses, through a public network. This allows users to share data on a shared network, as
if their machines were connected to a private one. In fact, within the VPN system, IP addresses
are assigned to the devices, as if they were private. When it was designed, its sole purpose was to
create a network tunnel allowing remote access to machines. However, then the VPNs have been
adopted principally to mask IP addresses, for security reasons.

In short, it works as follows. Commonly, when a machine requests an Internet connection, it
first connects to the ISP (Internet Service Provider), this provider then forwards it to the re-
quested Web site. In this way, the ISP could keep trace of the Internet traffic that passes through
their ISP servers. On the contrary, when a VPN solution is adopted, machines connect to servers
by way of the adopted VPN provider guaranteeing an encrypted connection. Thus, IP addresses
cannot be tracked by the ISP and data are protected.
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Figure 3.4: VPN vs ISP

The VPN solution has different consequences:

• Data are encrypted so the ISP cannot track the websites visited by the users, because the
VPN server routes all the Internet activity. Basically, the ISP sees only the VPN server.

• The VPN server IP address hides the real IP addresses of the machines connected to Internet.
This means that the visited websites cannot track the real IP address of the connected
machine.

• Data are encrypted only for the ISP provider but not for the VPN server. In fact, all the
sensitive data can be accessed from the VPN provider.

• The main disadvantage of using VPN solutions is the network latency. It is principally caused
by two aspects: the additional distance that data need to cover for reaching the VPN server,
and encryption/decryption of data that require time for processing. These problems have
been experienced in this Thesis work.

3.2.1 OpenVPN
OpenVPN is a famous open-source software that provides VPN solutions for building remote access
structures and site-to-site or point-to-point secure connections in bridged or routed configurations.
VPN uses a custom protocol of security based on Secure Sockets Layer or Transport Layer Security
(SSL/TLS) protocols that offer different authentication procedures, such as: username/password
system, certificates, certificates or pre-shared secret 1.

In order to achieve the goal of this Thesis, the OpenVPN application has been used to create
a client-server configuration (see subsection 4.2), in which the authentication certificates for the
clients that use certification authority (CA) and signature are released by the server.

There are several reasons why OpenVPN has been adopted. The main features2, that differen-
tiate it from other VPN applications are the following:

1OpenVPN description, https://openvpn.net/index.php/component/content/article/55-about-openvpn.html
2OpenVPN features, https://openvpn.net/index.php/open-source/335-why-openvpn.html
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• OpenVPN is an open-source software and it is supported by a powerful community of devel-
opers.

• OpenVPN offers high portability, it is compatible with FreeBSD, Linux, OpenBSD, NetBSD,
Solaris, Windows and Mac OS X.

• OpenVPN allows the user to significantly customize network attributes. Every setting from
protocol to the security countermeasures used can be adjusted according to the needs and
requirements of the application.

Figure 3.5: PKI (Public Key Infrastructure)

Before going into details, some useful notions have been addressed in order to allow a good
understanding of how the server/client solution has been implemented. In particular, the following
are of primary interest:

1. The difference between UDP (User Datagram Protocol) and TCP (Transmission Control
Protocol) is fundamental. They are both based on the IP protocol and are used to send
data over the net. This indicates that whether UDP or TCP is implemented, the packets are
sent towards an IP address. Actually, there are some important differences to be taken into
account in choosing one or the other. TCP is an end-to-end protocol, it manages error control,
packet ordering, flow control and rate control based on packet round-trip time, guaranteeing
the arrival of each package. However, redundant retransmission into a congested network
could introduce unwanted time delays in a tele-robotics networked system. On the contrary,
UDP does not implement a retransmission mechanism. It is a broadcast-capable protocol
in which users must manage rate control and error control. UDP packets are sends at the
sender’s default rate but the speed is changed according to the network congestion. UDP is
really efficient since it has less overhead than TCP, but often firewalls block it just because
of the absence of a rate control mechanism.
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2. The second important notion is the use of the CA (Certificate Authentication) method that
increases highly the security of the connection. OpenVPN exploits the X.509 certificates
for the encryption of VPN traffic and for clients authentication. Once that the Certificate
Authentication is reliable, it is possible to build a public key infrastructure (PKI) as shown in
Figure 3.5. When many users are present on the network, there is a high potential of stolen
and lost keys. Therefore, with a properly configured PKI, it is relatively easy to revoke a
lost certificate or that of a departing employee. However, for a single point-to-point link, it
does not make sense to implement the complexity of PKI just to protect a tunnel; rather it
is preferable to use pre-shared keys in this situation.

3. Finally, after configuring the PKI and before starting a trusted connection, it is important
to understand the steps that are accomplished by the client and the server. Figure 3.6 shows
these steps through a detailed diagram of the operations performed before the connection.

Figure 3.6: Steps performed before starting the connection
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3.3 Docker and containers
In the previous sections we discussed about cloud platforms that offer microservices, what are their
advantages and why are so used from companies. In this section a practical way to implement
them will be explained. The solution is to use containers and in particular the Docker containers.

3.3.1 Containers vs VMs
In computer science Virtual Machines (VM) is a very common software tool mainly used to emulate
Operating Systems. Generally on a hardware infrastructure an Operating System is hosted and,
when a VM software is used, a component, called hypervisor, divides your hardware and enables
multiple Operating systems running on the same infrastructure. The role of the hypervisor is to
simulate the fact that multiple machines are running. In this way, different guest OSs can run
simultaneously. For example on top of a Windows OS it is possible to run a Linux system and so
on. Of course it is possible to develop your own applications in the different guest OS. Each of
these ones has its own binaries and libraries and the application will be deployed on these libraries
(See Figure 3.7). VirtualBox or VMWare are the software most commonly used.

Figure 3.7: Docker vs VM

On the other side, a container works differently, as shown in the figure 3.7: the guest OS is
completely skipped and there is a direct link between the Operating system of the infrastructure
and the Container Engine. The Container Engine (also called deamon) is the software implementing
the containers, and binaries and libraries are directly installed on top of it, without having a whole
guest OS that takes a lot of memory, storage and processing from hardware resources. In fact VM
wastes a lot of resources to run a complete operating system, because in this type of virtualization,
when containers are used, a full image of an OS is uploaded, but this is instead not necessary.
So, it is possible to develop applications totally independent from the real operating system and
from the hardware infrastructure. Furthermore it is possible to move these applications, without
doing any modification, into another system which must support just the container engine. In
this way you can easily run an application of a machine onto another with different hardware,
without re-installing anything because the container engine already does the job for you. The
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main advantage of containers is that they are much lighter than the systems using hypervisors; of
course they have limitations consisting in not having available a full OS with related features and
advantages. However in terms of developing applications in a completely independent and portable
way and, thus for cloud robotics developing, this is exactly what we need.

3.3.2 Docker

Originally the containers idea was introduced in the Linux world where they were known as the
LXC. The purpose of these ones was to be able to run multiple isolated systems inside a single
machine.
Docker is a container system making use of LXC container. The main difference between Docker
and original LXC is that the first is much more dynamic. It is defined application-centric because
it is optimized for the deployment of applications as opposed to machines. In fact, after that
a docker container is enabled, it runs an application, when it finishes the docker engine will be
switched off and everything will be removed.

Docker engine guarantees high flexibility: machines can powered up and switched off faster,
since the size of these images is very light (more or less the same of the application running on top
of it) and so, also the resources used are fewer. Of course there are limitations, in particular, since
containers are designed to run just a single application, if n processes have to be executed, also n
containers have to run. In fact, only a single application and nothing else can run in background
a container.

Figure 3.8: Docker Architecture

39



3.3 Docker and containers

Docker Architecture

Docker uses a client-server architecture. The Docker client talks to the Docker daemon, which does
the heavy lifting of building, running, and distributing your Docker containers. The Docker client
and daemon can run on the same system, or you can connect a Docker client to a remote Docker
daemon. The Docker client and daemon communicate using a REST API, over UNIX sockets or
a network interface.

As shown in the figure 3.8, the Docker Daemon takes a Dockerfile from a register, builds it
making an image, and then can run the image. The image concept is similar to the one of the
VM, while in the case of VM, the image refers to a full OS (Windows, Ubuntu, etc.), in this
case the image represents a set of single applications along with an execution environment. This
environment is made of binaries and additional executable (commands that come with libraries).

So, the image is the application plus all the programs and binaries required to run it. It does not
contain memory manager, file system manager, visualization tools, setting environments, scheduler
etc.

When an image is running, it means that image has become a container, so a container actually
is a "live" version of a image. Thus, while image is something static on the hard drive, the container
is actually the image that is in execution.
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Chapter 4

Multi-Machine VPN-based ROS
Network

This chapter addresses the main part of the Thesis project: the creation of a Multi-Machine VPN-
based ROS Network, which allows to connect a Cloud Platform to I/O modules hosted into different
LAN networks, using a ROS environment through the Internet. This work will greatly improve the
PARLOMA project, as explained in Chapter 5 In fact, until now, ROS nodes could communicate
just on local ROS networks. Obviously this limitation strongly affects the potential of the Cloud
Robotics system making it almost useless, since it is designed to operate remotely. Thanks to the
Author’s contribution, these limitations have been overcome, allowing the expansion of the ROS
architecture over the Internet.

This concept is a key point not only for this project but also for the Cloud Robotics paradigm
and it is a fundamental requirement to exploit the full potential of the cloud. As a result of the
Author contribution, similar projects could be realized also by means of the HotBlack Robotics
cloud platform.

In particular, starting from this work, many advantages are obtained in Cloud Robotics Area:

1. Tele-operated robotics can be implemented. So a robotic system can be remotely con-
trolled. In the next Chapter, a direct application will be tested on the PARLOMA robotic
hand.

2. The distributed computing can be perfectly adopted. Once there are no local area
network limitations, heavy computation can be moved on cloud platforms using directly a
VPN-DOCKER solution. What is needed is just a stable Internet connection and a Docker
Daemon tool. For example, considering the heavy computer vision algorithms, they could be
performed on the platform or remote server, shifting all computations out from the local I/O
hardware devices.

3. In future developments, the collective robot learning may be used. After that the archi-
tecture is established, many robots can connect to it from all over the globe, sharing data
and feedbacks. In this way, the cloud platform database exploits not only the information
from a single robot, but from multiple robotic devices that acquire useful data. They can
also exchange information and tasks, between them, but this is possible only if they work in
the same environment and this thesis work aims precisely at this.
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This Thesis work makes it possible to support all these applications through a Cloud Platform.
In the next subsection, the architecture of the developed solution will be explained.

4.1 The overall architecture
A proper multi-machine architecture has to be set up to extend the ROS network outside of a local
network. The ROS environment provides different tools to initiate a system that uses multiple
machines. However, as described in the official ROS guide1, in order to properly start the network,
all the involved machines must satisfy these two requirements:

1. A full bi-directional connectivity is needed between all the machine pairs.

2. Each machine must be identified by a unique name traceable by all other machines.

Typically, the IP addresses are represented as unique names. This means that the involved
robots need to be connected to the same LAN to identify each other. Therefore, a loophole is
needed to set up a network that can be recognized by ROS as local, even though actually it is
not. In this way, the functionalities of ROS can still be exploited, together with the potential of a
distributed network.

VPN. There are different alternatives to bypass these limitations, in particular, VPN is the
one chosen for the development of this thesis. As explained in section 3.2 a VPN allows to extend
a private network, which is a network that assigns private IP addresses, through a public network.
This allows users to share data on a shared network, as if their machines were connected to a
private one. In fact, within the VPN system, IP addresses are assigned to the devices, as if they
were private. In this way, all the machines involved in the ROS environment can be incorporated
within the same VPN, assigning each of them a different IP, regardless of their actual LAN. Once
each device is represented by a unique IP address, it can be used to refer to the different machines
within the ROS environment, simulating a single network. This solution has been adopted, be-
cause it is easy to implement and provides a good degree of flexibility. Moreover, through VPN
technology, the architecture is also safer, since it is channeled through the Internet. To initiate
the VPN architecture, the OpenVPN2 software application (described also in subsection 3.2.1) has
been used. In section 4.2 , the configuration of the VPN solution is described in details.

ROS. After that the VPN has been properly built, the next step is to set up a ROS archi-
tecture operating within this network. In order to provide the highest degree of flexibility and
versatility, the ROS Master has been executed into the VPN Server. In particular, this servers
is initiated inside docker container, that run in a Amazon Web Services (AWS)3 platform. This
AWS platforms are used both as cloud platform for PARLOMA and HotBlack Robotics.

1ROS multi-machine network setup, http://wiki.ros.org/ROS/NetworkSetup
2OpenVPN features, https://openvpn.net/index.php/open-source/335-why-openvpn.html
3Amazon Web Services (AWS), https://aws.amazon.com/it/
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DOCKER. As explained in the introduction, a multi-machine ROS architecture through VPN
was already developed for a telepresence system in HotBlack Robotics by the collegue Lorenzetti.
However this system had two huge limitations:

• The system could work only on Linux systems.

• Only a unique instance of the architecture could be managed. This means that just a single
clients/server network can be implemented.

In order to solve these problems, the Author has decided to implement a Docker solution,
providing:

• A multi-platform system, since Docker can be installed easily on different machines (PC,
Servers, Raspberry and so on)

• Multiple instances of the docker container, permitting to manage multiple networks.

• A mechanism that automates the set up of the VPN tunnel and of the ROS environment.

Right after each network is initiated, three Dockerfile will be built, consequentially two Docker
containers will be executed on the client side and one for the server side. The two client containers
will know the server address and will be able to connect with it.

Amazon Web 

Service

MASTER
10.8.0.1

Client 1

10.8.0.x

Client 2

10.8.0.x

VIRTUAL PRIVATE NETWORK

Figure 4.1: Network solution

In the next sections all the tools configurations will be explained in order to get a Multi-Machine
VPN-based ROS Network: starting from the OpenVPN tool in Section4.2 then DOCKER tool in
Section 4.3 finally ROS framework in Section 4.4.
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4.2 OpenVPN Configuration
OpenVPN is a useful tool that allows different configurations. Each model can be customized in
terms of transmission protocol, security and more. For the development of this part, the Mastering
OpenVPN [3] has been consulted. Firstly, when setting up a VPN a proper deployment model
has to be chosen. In this project, since the required configuration must be implemented between a
server and multiple clients, the model client/server with TUN (namely network TUNnel) devices
has been selected.

After choosing the model, few steps are necessary to build a functioning environment; these
procedures will be listed below briefly. Then the client configuration files and the server configu-
ration file adopted will be dealt with in details.

The following steps are:

1. Set up the CA (Certificate Authority) directory and configure the CA variables;

2. Create the Certification Authority (ca.crt, ca.key, key.txt);

3. Creates Server Certificate, Encryption Files and Server Key (dh2048.pem, server.crt, server.key);

4. Generate a Client Certificate and a Key Pair, for each client (client_*.crt, client_*.key);

5. Configure the OpenVPN service by copying all previous files to the appropriate directories:
one for the Server and one for each Client (see Figure 4.2);

6. Creates the Server configuration file (server.conf);

7. Creates the Client configuration files (client.conf)(one for each client);

Figure 4.2: OpenVPN directory

8. Start the service.

44



4.2 OpenVPN Configuration

After these steps, different files will be obtained and will be organized as in Figure 4.2. Since
all the files different from the .conf are generated automatically and do not contain any particular
parameter, only the files client.conf and server.conf will be explained in details.

Server configuration file.

1 port 1194
2 proto tcp
3 dev tun
4 ca ca . c r t
5 c e r t s e r v e r . c r t
6 key s e r v e r . key
7 dh dh2048 . pem
8 s e r v e r 1 0 . 8 . 0 . 0 25 5 . 2 55 . 2 55 . 0
9 i f c o n f i g −pool−p e r s i s t ipp . txt

10 ke epa l i v e 10 120
11 t l s −auth key . txt 0
12 c iphe r AES−256−CBC
13 p e r s i s t −key
14 p e r s i s t −tun
15 s t a tu s openvpn−s t a tu s . l og
16 verb 3

Listing 4.1: Server configuration file (server.conf)

The configuration file for the server side is shown in Listing 5.7.
Basically it describes all the options that must be taken into consideration when the service is
started.
First of all, line 1 defines the port on which OpenVPN should listen to.
In lines 2-3 the proto tcp and dev tun options are used in place of their counterparts, namely proto
udp and dev tap. As explained in subsection 3.2.1, the TCP protocol is more robust so for this
kind of data streaming, in which it is better to avoid loss of information, it is generally preferred.
Other important options are those of lines 4-7, which indicate the name of the authentication files
needed to settle a secure TLS (Transport Layer Security) connection.
Finally, a useful information is the one of line 8 which indicates the IP addresses assigned by the
VPN, that will be of the kind 10.8.0.x.
The other parameters are almost standard and will not be dealt with in details as they do not have
a crucial influence on the functioning of the network.

Client configuration file.

In this architecture server/multi-clients, many clients could be connected to the server. In this
case, as illustrated in Figure 4.1 two clients will be involved. Both their configuration files are
tailor-made for the same VPN server. So, since they are similar at all, only one of them will be
illustrated in details in Listing 4.2.
The first line states that the device will be used as a client inside the client/server architecture.
Next, in lines 2-3, as before, the device typology and the protocol are defined.
The line 4 is also very important, since it indicates the remote address of the server and the related
ports that will be used to establish the connection. An actual IP address does not appear since
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the automated system, provided by Docker function, substitutes this string with the VPN Server
address (see Section 4.4).
As for the server, lines 9-11 show the corresponding paths of the authentication files and keys. In
particular for the client_1 the suffix _1 is used.

1 c l i e n t
2 dev tun
3 proto tcp
4 remote s e r v e r i p a d d r e s s 1194
5 re so lv −r e t r y i n f i n i t e
6 nobind
7 p e r s i s t −key
8 p e r s i s t −tun
9 ca ca . c r t

10 c e r t c l i en t_1 . c r t # or c l i en t_2 . c r t
11 key c l i en t_1 . key # or c l i en t_2 . key
12 remote−cer t −t l s s e r v e r
13 t l s −auth key . txt 1
14 c iphe r AES−256−CBC
15 verb 3

Listing 4.2: Client 1 configuration file (client.conf)

Service initiation.

After the three configuration files are correctly hosted in the corresponding directories, the Docker
containers will initiate the communication and create the VPN tunnel (the procedure is described
in next Section). Then, if no errors are present, the connection is built. Note that, during the devel-
opment of this phase, some problems may encounter from the configuration of the AWS server. In
fact, it could present some default firewall settings that block the connection with the VPN tunnel.
In particular, a firewall rule, which explicitly allows communication on port 1194, is needed.
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4.3 Docker Configuration
In section 3.3, what is a docker container and how does it work is explained. In this subsection,
the basic Docker commands, which compose a Dockerfile along with the commands allowing to
start a container, are explained.
All the information here reported has been obtained from the official Docker documentation4.

4.3.1 Dockerfile commands
Docker can create images automatically by interpreting the instructions listed in a Dockerfile.
A Dockerfile is a document that includes the commands a user could run into the command line
in order to construct an image. Running the "docker build" command, an automated build, which
runs multiple command-line instructions sequentially, is executed.
The Docker daemon executes the Dockerfile’s instructions one-by-one, adding the result of each
instruction to a new image if necessary, before issuing the new image ID. So each instruction runs
independently and causes a new image to be created.
Where possible, Docker reuses the intermediate images to significantly speed up the docker build
process.

The main commands that have been used in this project development are the following:

• FROM
Any Dockerfile must start with a FROM instruction that specifies the Base image from
which the new image will be built. The Base image is generally pulled from the Docker
Public Repositories, also called HUB Docker 5.

• RUN
The RUN instruction executes each command in a new layer above the current image and
adds the latest changes to it. The resulting image will be used as base for the next command
in the Dockerfile.
Layering RUN statements and commit generation are consistent with the key concepts of
Docker, where containers can be built from any point in an image’s history and commits are
convenient, just like source code control.

• CMD
Only a single CMD instruction could be executed in a Dockerfile. If more CMD are listed,
only the last one will be executed. This command represents the default execution of a
container. Practically, the CMD instruction sets the first command to execute when the
image is running. If arguments are added after the docker run command, then the CMD
command will be overwritten by the new parameter.
It is easy to confuse RUN with CMD. RUN actually executes a command and commits the
result on the image; CMD does not do anything at image’s build time, but specifies the
intended command for starting the container.

4Dockerfile reference, https://docs.docker.com/engine/reference/builder/
5Docker HUB, https://hub.docker.com/
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Docker Compose is a Docker tool that runs multi-container applications through the config-
uration defined in a YAML file. It is very useful even to run a single container because it allows to
use a simple command, which extrapolates the configuration information (port mapping, volumes,
tag) by default from a file called docker-compose.yml and runs the container with all its options.

Now that the basic knowledge about the main commands used in a Dockerfile has been illus-
trated, the Author will focus on how to use these commands.

4.3.2 Server Dockerfile
The Dockerfile for the server container is shown in Listing 4.3. Basically it contains all the com-
mands needed to start an instance that incorporates an OpenVPN server and a ROS environment.

1 FROM o s r f / ro s : ind igo −desktop− f u l l
2
3 RUN \
4 svn checkout https : // github . com/ creos92 /network . g i t / trunk / Server &&\
5 apt−get update &&\
6 apt−get i n s t a l l bui ld−e s s e n t i a l c h e c k i n s t a l l −y &&\
7 apt−get i n s t a l l l i b s s l −dev l i b l z o 2 −dev libpam0g−dev wget −y &&\
8 wget https : // swupdate . openvpn . org /community/ r e l e a s e s /openvpn −2 . 4 . 4 . ta r . gz &&\
9 sudo tar zxvf openvpn −2 . 4 . 4 . ta r . gz &&\

10 cd openvpn −2.4 .4 && ./ c o n f i g u r e && make && c h e c k i n s t a l l −y
11
12 CMD cd Server && chmod +rx star t_s . sh && sync && ./ star t_s . sh

Listing 4.3: Server Dockerfile

• The line 1 is the command that specifies the Base image from which the new image will
be built, in this case the Base image is the osrf/ros:indigo-desktop-full. This means that
all the ROS commands can be used in the container. It is provided by the official Docker
repository and it is maintained by the OSRF (Open Source Robotics Foundation). This
osfr/ros repository provides different pre-build images that embed several ROS framework
releases.

• The command, in line 4, provides the download of the configuration and certification files for
the OpenVPN server, described in the previous Subsection 4.2.

• The lines from 5 to 10 are the commands needed to download and install the software packages
necessary to run the OpenVPN software tool.

• The line 12, initiates the bash file start_s.sh (see Listings 4.7), that automates the process
of creating a VPN server and implementing of ROS.

Then, through the docker build . -t server command, the Dockerfile will be compiled resulting in
a new image. In order to start a container from this obtained image, the command docker-compose
up will be executed. The container will be initiated starting from the option configuration listed
in the docker-compose.yml (illustrated in Listing 4.4)
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1 se rve r_ ins tance :
2 image : s e r v e r
3 stdin_open : t rue
4 tty : t rue
5 p r i v i l e g e d : t rue
6 por t s :
7 − 1194:1194

Listing 4.4: Server docker-compose.yml file.

• Line 1 is the command that specifies the tag that will be assumed by the Docker Container.

• Line 2 contains the image that will be used to start the container.

• Lines 3-4-5 indicate the commands useful when it is needed to interact with the started
container.

• Lines 6-7 represent the commands that publish the container’s ports to the host and vicev-
ersa. In this way, it is possible to use the services hosted by that port. In this case, the port
corresponds to 1194.

4.3.3 Client Dockerfile
The Dockerfile for the client 1 is shown in Listing 4.5, instead the one for the client 2 is not listed,
since it is almost similar. You will notice that many commands correspond with the one of the
Server Dockerfile 4.3.

The main differences are explained below:
• Line 4 provides the download of the configuration and certification files for the client 1 side,

described in the previous subsection 4.2.

• Line 12 initiates the bash file start_c_1.sh (see Listing 4.8), which automates the process of
creating a VPN client and of implementing ROS.

1 FROM o s r f / ro s : ind igo −desktop− f u l l
2
3 RUN \
4 svn checkout https : // github . com/ creos92 /network . g i t / trunk / Cl i en t &&\
5 apt−get update &&\
6 apt−get i n s t a l l bui ld−e s s e n t i a l c h e c k i n s t a l l −y &&\
7 apt−get i n s t a l l l i b s s l −dev l i b l z o 2 −dev libpam0g−dev wget −y &&\
8 wget https : // swupdate . openvpn . org /community/ r e l e a s e s /openvpn −2 . 4 . 4 . ta r . gz &&\
9 sudo tar zxvf openvpn −2 . 4 . 4 . ta r . gz &&\

10 cd openvpn −2.4 .4 && ./ c o n f i g u r e && make && c h e c k i n s t a l l −y
11
12 CMD cd Cl i en t && chmod +rx start_c_1 . sh && sync && ./ start_c_1 . sh

Listing 4.5: Client 1 Dockerfile, the Dockerfile for the Client 2 is almost similar: just replace
start_c_1.sh with start_c_2.sh
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Through the docker build . -t client1 command, the Dockerfile will be compiled resulting in
a new image. In order to start a container from this new image, the command docker-compose
run -e IP=ServerAddressIP client will be executed. The IP is the environment parameter that
will be obtained from the Cloud Platform and contains the IP Address of the Server instance to
connect. This IP address will be substituted to the "ipserveraddress" in the client.conf file (see
Listing 4.2). The container will be initiated starting from the option configuration listed in the
docker-compose.yml (Listing 4.6).

1 c l i en t_1 :
2 image : c l i e n t 1
3 stdin_open : t rue
4 tty : t rue
5 p r i v i l e g e d : t rue

Listing 4.6: Client docker-compose.yml file.

Almost all the lines correspond with the docker-compose.yml file of the server, only the name
of the container and of the image are different.
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4.4 ROS Configuration
After that the clients and server containers are run and the OpenVPN and the Robotic Operating
System (ROS) software are installed on it, it is time to exploit their potential.

As anticipated in the introduction of this Chapter, the VPN solution allows the usage of ROS
across different networks, instead the Docker solution is needed to automate this configuration.

In particular, the main bash files will be listed, 4.7 ad 4.8 in order to understand which com-
mands are used to start the network architecture. These bash files could be started directly using
a CMD command, as seen in the clients/server Dockerfile 4.3 and 4.5.

4.4.1 Server initiation Bash File

1 #!/ bin /bash
2 chmod +rx / Server / c e r t i f i c a t i / s e r v e r / s t a r t_se rve r . sh &&
3 cd / Server / c e r t i f i c a t i / s e r v e r && sync && . / s t a r t_se rve r . sh &
4 s l e e p 1 s
5 r o s c o r e &
6 s l e e p 2 s
7 export ROS_IP=10 .8 .0 .1
8 export ROS_MASTER_URI=http : / / 1 0 . 8 . 0 . 1 : 1 1 3 1 1
9 i f c o n f i g

10 rosnode l i s t

Listing 4.7: start_s.sh file

• Line 1 defines which shell should be run with using a shebang. Specifying #!/bin/bash means
that the script should always be run with bash. /bin/sh is an executable representing the
system shell.

• Command at line 2 is the system call which changes the access permissions to file system
(directories and files). In this way it gives the permission to bash file (start_server.sh) to be
executed.

• Command at line 3 is one of the most important since it starts the OpenVPN server, through
the start_server.sh script, that basically executes the command openvpn –config server.conf.

• Line 5 starts a collection of nodes that are pre-requisites of a ROS-based environment. The
roscore command corresponds with the initiation of the ROS MASTER. This allows the
communication between different ROS nodes.

• Lines 7-8. Once OpenVPN is running, each machine will be able to connect with the others
through the VPN IP address. When a ROS node advertises a topic, it provides a hostname
(port combination (a URI) that other nodes will contact when they want to subscribe to
that topic). The Master can be initiated and its IP indicated as ROS_MASTER_URI can
be exported together with the ROS_IP of the machine, in order to set up the multi-machine
framework. After the Master initialisation, the other machines can be configured to enter in
the same ROS network. To this purpose, we have to export their ROS_IP as well, followed
by the ROS_MASTER_URI that is the same for all the client machines and refers to the
one of the Master.
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• Command at line 9 displays the IP address and the network interfaces. This command allows
to observe if the VPN solution is actually activated.

• Command at line 10 permits to see which nodes are running inside the ROS network.

When the Server Docker Container will be run, the output, in Figure 4.3 will be obtained. As
planned, the VPN server IP address is 10.8.0.1 and the /rosout node is running.

Figure 4.3: Server Docker container Output

4.4.2 Client initiation Bash File

1 #!/ bin /bash
2 sed − i " s / i n d i r i z z o i p s e r v e r /" $IP "/ g " . . / C l i en t / c e r t i f i c a t i / c l i en t_1 / c l i e n t . conf
3 chmod +rx / Cl i en t / c e r t i f i c a t i / c l i en t_1 / s t a r t _ c l i e n t . sh &&
4 cd / Cl i en t / c e r t i f i c a t i / c l i en t_1 && sync && ./ s t a r t _ c l i e n t . sh &
5 s l e e p 3 s
6 export ROS_IP=$ (/ sb in / i f c o n f i g | grep " i n e t addr : 1 0 . 8 "
7 | awk −F: ’{ p r i n t $2 } ’ | awk ’{ p r i n t $1 } ’ )
8 export ROS_MASTER_URI=http : / / 1 0 . 8 . 0 . 1 : 1 1 3 1 1
9 i f c o n f i g

10 rosnode l i s t

Listing 4.8: start_c_1.sh file.

52



4.4 ROS Configuration

The start_c_1.sh is very similar to the start_server.sh file, for this reason only the different
statements will be illustrated:

• Command at line 2 allows to substitute "ipserveraddress" in the client.conf file (see Listing
4.2) with the IP variable obtained when the docker is run through the command docker-
compose run -e IP=ServerAddressIP client_1 .

• Line 4 starts the OpenVPN client, through the start_client_1.sh script, that basically exe-
cutes the command openvpn –config client.conf.

• Command at line 6 extracts the IP address that starts with 10.8.xxx.xxx, resulting by the
command ifconfig executed inside the container. It uses this IP to uniquely identify the own
machine on the ROS environment.

Figure 4.4: Client 1 Docker Container Output

When the Client 1 Docker Container will be run, the output in Figure 4.4 will be illustrated.
As expected, the VPN client IP address is 10.8.0.6 and the /rosout node is reached also by this
container.
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Client 2 initiation Bash File

As far as the client 2 side is concerned, the start_c_2.sh file is almost similar. The few different
statements in lines 3-4-5 are similar: just substituting client_1 with client_2.

Figure 4.5: Client 2 Docker Container Output

When the Client 2 Docker Container will be run, the output in Figure 4.5 will be obtained.

The outputs obtained, in the Figures 4.4, 4.5 and 4.3, demonstrate that the containers are
connected to the same tun0 network, and are able to interact inside a ROS environment, since all
of them can see the /rosout topic.
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Chapter 5

PARLOMA

This chapter provides an overview of the PARLOMA project. After the theoretical presentation
on Service Robotics and Cloud Robotics, a generic Multi-Machine VPN-based ROS Network has
been developed. Now, the focus will be moved to the specific appliance of this solution: The
PARLOMA project.
This thesis provides the project with significant features to provide real remote communication,
out from a local area network (LAN). Therefore, an overview of the current state of the art of
PARLOMA is necessary to understand some subsequent considerations.

This chapter is organized in this way: Section 5.1 provides a thorough understanding of the
PARLOMA principles of work, then Section 5.2 illustrates the open issues and the related contri-
butions proposed by the Author. Finally, Section 5.3 contains the implementation of a VPN-based
ROS Network, directly on the PARLOMA project. To gather information on PARLOMA, L. Russo
has been often consulted, together with his PHD thesis works [20], the PARLOMA website [1] and
[19].

5.1 State-of-the-art
The PARLOMA project was born from the collaboration between Politecnico di Milano and Po-
litecnico di Torino, thanks to the Alta Scuola Politecnica (ASP). It was started by a team of
students from the VIII ASP cycle, about six years ago, and it is still in development under the
sponsorship of the Ministry of Education, University and Research (MIUR). It is developed by L.
Russo, G. Airò Farulla, and others colleagues, under the supervision of Professors P. Prinetto and
B. Bona.

As the PARLOMA website1 states: "The PARLOMA project is aimed at creating a robotic
system to allow remote communication between two deafblind people, a deafblind person to a deaf
person and a deafblind person to a hearing person with a knowledge of sign language". In order
to ensure this communication, the project is based on anthropomorphic robotic hands, which re-
produce the gestures of Sign Language.

1PARLOMA website, https://parloma.github.io/
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Practically, the project aims to offer deafblind people the opportunity to communicate remotely,
since, at the moment, no device provides this solution. Deaf people communicate through the SL
(sign language) since they are able to see, instead, deafblind people use TLS (tactile sign lan-
guage). Although these ways of communicating allow them to converse effectively, it has enormous
limitations. In particular, the main problems are the following:

• Both the interlocutors (receiver and signer) must be in the same position when they com-
municate, as they must keep their hands in contact;

• Only one-to-one communication is possible, as the receiver needs to maintain contact with
the signer’s hand.

Figure 5.1: How PARLOMA works.

To overcome these limitations, PARLOMA would allow both remote communication, thanks to
the use of a cloud robotics platform, and multiple conversations, by providing to multiple receivers
to remotely replying the signer gestures. Figure 5.1 illustrates how PARLOMA operates.

PARLOMA is based on the three main technologies listed below:

1. Robotic operating system (ROS), used as environment for managing communication between
devices.

2. Amazon Web Service (AWS), used to host the cloud computing platform.

3. Raspberry Pi and Arduino Mega, used as a system processing unit, connected with the PAR-
LOMA hand. When it receives commands from the cloud platform, it controls accordingly
the robotic hand.
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Moreover, the tasks performed by PARLOMA can be divided into three main groups:

• Hand tracking, performed by means of the Kinect device or a Leap Motion sensor (see Figure
5.2).

• Transmission of data, between the signer and the receiver, which must be guaranteed as
secure and private.

• Gestures reproduction using a robotic hand that moves according to the signs accomplished
by the signer. (see Figure 5.3).

Figure 5.2: Hand tracking sensor devices.

Among these groups, the solution developed by the Author involves the data transmission,
where a secure channel is required to forward information from the signer to the receiver de-
vices. For this scope, in the next section the architecture designed to guarantee the success of the
communication between devices will be discussed, and the Author’s contribution will be addressed.
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Figure 5.3: Robotic hand and Control Box containing Raspberry and Arduino

5.1.1 Transmission Architecture
For reasons of simplicity, the architecture will be divided into two parts, explained below:

• Communication Architecture, which describes the global communication between input
and output devices.

• Cloud Interface Architecture, which illustrates in detail how the behaviours necessary
to ensure the communication are implemented.

Communication Architecture. This architecture ensures the data streaming between de-
vices, from the input to the output, through the cloud platform. Thus, it is possible to assume that
input device, remote server and output device are already able to reach each other, being connected
in a common network. Figure 5.4 shows the logic diagram of the Communication Architecture,
that is composed of three modules as follows:

1. The Input module, on the left side, acquires the input signals of the signer device (Fig-
ure 5.2) in real-time and processes them in order to get the hand tracking. This module
incorporates the input driver and the ROS driver, the first represents the actual sensor, the
second, instead, converts the actual measurements in ROS messages. Then the ROS driver
send these messages to the following unit.
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Figure 5.4: Communication Architecture Logic Diagram

2. The Remote Computation Module guarantees the communication between Input and
Output modules through an ad-hoc VPN channel.

3. The Output module, on the right side, receives the hand tracking data from the previous
module through ROS messages and, complementary to the input module, sends commands
to the actuator device passing through the ROS driver and the output driver (Figure 5.3).

Cloud Interface Architecture. This architecture is responsible for starting up the commu-
nication network needed to accomplish the data transmission described above. The cloud platform
contacts all the connected devices, in order to establish independent communication channels when
needed.

The Cloud Interface Architecture is shown in Figure 5.5, where it is possible to distinguish
three main components:

• The Web GUI used by users to access the platform and configure their I/O devices.

• Input Modules Manager and Output Modules Manager, needed to communicate with
input and output devices. This communication is insured thanks to the CI (Cloud Interface)
module, which is continually running inside the connected I/O modules.
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Figure 5.5: Cloud Interface Architecture

5.2 Open Issues and Author’s contribution

Referring to Figure 5.5, it is possible to notice a red line that connects the Computing Instance
with the Input and the Output Modules. This line, identified as ROS over VPN, indicates the
presence of a Multi-Machine VPN-based ROS Network that allows to launch an extended ROS
network including both the input/output devices and the server. At the same time, a process is
needed in order to automate the initialitation of different New Computing Instances. Until today,
this possibility was not present and for this purpose, the work carried out by the Author has been
used.

The PARLOMA architecture is similar to the architecture of a teleconferencing software such
as Skype. To understand better how the developed solution has been implemented, referring to
Figure 5.6, the general steps of a call on PARLOMA will be explained.

A generic user A, through the Web GUI, initiates a call with another user B. After that the
cloud platform verifies that the corresponding I/O devices are available and connected, it will
notify the incoming call to user B. When the call is accepted, the platform generates a Docker
container, through the commands docker build . -t parloma:server and docker-compose up. It will
represent the NEW Computing Instance. Within this container the VPN server will be automati-
cally executed. Next, the involved Input/Output Modules will be informed by the Cloud Platform
about the Address: xxx.xxx.xxx.xxx of the VPN server and two different Docker containers will be
built and executed through the commands:
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Output ModulesInput Module

Cl Cl

Figure 5.6: Architecture Solution

• docker build . -t parloma:client_input

• docker-compose run -e IP=xxx.xxx.xxx.xxx client_input.

• docker build . -t parloma:client_output

• docker-compose run -e IP=xxx.xxx.xxx.xxx client_output

Finally, both these containers will initiate two separate VPN client instances that will connect to
the NEW Computing Instance container using the Address parameter. All the involved Docker
containers will run different ROS nodes, depending on the tasks they have to perform. In particular:

• the parloma:client_input container executes the Publisher node, that publishes the Hand
Tracking measurements, on the /output/serial_topic topic.

• the parloma:server container executes two nodes: the ROS master node, that manages the
communication between the other ROS nodes, and a Computation node that translates the
information read from the topic output/serial_topic in commands that will be published on
the /joint _command topic.

• the parloma:client_output container executes the Subscriber node, that reads the measure-
ments from the /joint_command topic and performs the Gestures reproduction.

This mechanism had not yet been automated, and this is the main point of this thesis devel-
opment: to automate this interfacing process using Docker Container and VPN, allowing ROS
environment over the Internet. In the next section will be explained the development in details.
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5.3 PARLOMA Contribution
In the previous Chapter 4, the way to configure a ROS network over Internet was described. In this
part instead how to use this network in order to improve the PARLOMA project will be explained.

Figure 5.7 shows the directories and files that compose the project.

Figure 5.7: PARLOMA Directory

62



5.3 PARLOMA Contribution

VPN Configuration

The VPN configuration corresponds with the one explained in subsection 4.2. The three con-
figuration files produced are:

• A configuration file, as client1, for a general Input module.

• A configuration file, as client2, for a general Output module.

• A configuration file, as server, for a general New Computing Instance.

Since both the clients are tailor-made for the same VPN server, they are really similar and
correspond with the subsection 4.2. Just the name of the certification and key files are different:

• client1.key, client1.crt -> client_in.key, client_in.crt

• client2.key, client2.crt -> client_out.key, client_out.crt

These files have to be substituted also in the client.conf file listed in 4.2.

DOCKER and ROS Configuration

After that the VPN files have been properly built, the next step is to set up the ROS environment.
In order to move the computing part away from the Input/Output modules, the ROS Master has
been executed into the VPN Server. The latter, in turn, is located, referring to PARLOMA and in
particular to the Cloud Interface (see Figure 5.6), into the Cloud Platform and a new VPN Server
instance corresponds to each New Computing Instance. In particular, these servers are initiated
inside docker containers that run in a Amazon Web Services (AWS) platform.

Right after each call is initiated within a PARLOMA system, three Dockerfile will be built. In
particular, referring to the Figure 5.6, the following Docker container will be started:

• A client, which represents the Input Module Instance

• A second client, which represents the Output Module Instance

• A server, which represents the New Computing Instance

The two client containers will obtain the server address from the I/O Modules Manager and will
be able to connect with it.
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Like for the general Multi-Machine VPN-based ROS Network, now the configuration needed to
start Docker containers (both Clients and Server) will be discussed.

Server Dockerfile

The Dockerfile for the server container is shown in Listing 5.1

1 FROM o s r f / ro s : ind igo −desktop− f u l l
2
3 RUN \
4 svn checkout https : // github . com/ creos92 /parloma . g i t / trunk / Server &&\
5 svn checkout https : // github . com/ creos92 /parloma . g i t / trunk /parloma_ros &&\
6 apt−get update &&\
7 apt−get i n s t a l l bui ld−e s s e n t i a l c h e c k i n s t a l l −y &&\
8 apt−get i n s t a l l l i b s s l −dev l i b l z o 2 −dev libpam0g−dev wget −y &&\
9 wget https : // swupdate . openvpn . org /community/ r e l e a s e s /openvpn −2 . 4 . 4 . ta r . gz &&\

10 sudo tar zxvf openvpn −2 . 4 . 4 . ta r . gz &&\
11 cd openvpn −2.4 .4 && ./ c o n f i g u r e && make && c h e c k i n s t a l l −y &&\
12 / bin /bash −c ’ source /opt/ ros / ind igo / setup . bash && \
13 cd /parloma_ros && catkin_make ’
14
15 CMD cd parloma_ros && chmod +rx star t_s . sh && sync && . / star t_s . sh

Listing 5.1: PARLOMA Server Dockerfile

This listing corresponds to the one of a general Server Dockerfile 4.3. For this reason only the
different commands will been explained:

• Command at line 5 downloads the directory that contains the ROS packages needed for this
particular application. It could contain many programs that consequentially start different
nodes inside the ROS Multi-Machine Network.

• Commands at line 12-13 make the ros_parloma packages. However, the ROS environment
must be firstly sourced, in fact the source command evaluates the file setup.bash and executes
it in the terminal window, into which the ros_parloma packages will be made.

• Command at line 15 initiates the bash file start_s.sh (see Listing 5.5) that automates the
process of creating a VPN server and of implementing of ROS.

Then, through the docker build . -t parloma:server command, the Dockerfile will be compiled
resulting in a new image. In order to start a container from this obtained image, the command
docker-compose up will be executed. The container will be initiated starting from the configuration
options listed in the docker-compose.yml (see Listing 5.2).

1 parloma_server :
2 image : parloma : s e r v e r
3 stdin_open : t rue
4 tty : t rue
5 p r i v i l e g e d : t rue
6 por t s :
7 − 1194:1194

Listing 5.2: PARLOMA Server docker-compose.yml file.
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• Command at line 1 specifies the tag that will be assumed by the Docker Container.

• Command at line 2, instead, contains the image that will be used to start the container.

• Commands at lines 3-4-5 are useful when interactign with the started container is needed.

• Commands at lines 6-7 publish the container’s ports to the host and viceversa. In this way,
it is possible to use the services hosted by that port. In this case the port corresponds to
1194.

Client Dockerfile

The Dockerfile for the Client Input Module container is shown in Listing 5.3; instead, the one
for the Output Module is not listed, since it is almost similar. It is possible to notice also that
many commands correspond with the ones of the Server Dockerfile 5.1.

The main differences are explained below:

• Command at line 4 provides the download of the configuration and certification files for the
clients described in the beginning of this Chapter.

• Command at line 15 initiates the bash file start_c_1.sh (see Listing 5.6), that automates the
process of creating a VPN client and of implementing of ROS.

1 FROM o s r f / ro s : ind igo −desktop− f u l l
2
3 RUN \
4 svn checkout https : // github . com/ creos92 /parloma . g i t / trunk / Cl i en t &&\
5 svn checkout https : // github . com/ creos92 /parloma . g i t / trunk /parloma_ros &&\
6 apt−get update &&\
7 apt−get i n s t a l l bui ld−e s s e n t i a l c h e c k i n s t a l l −y &&\
8 apt−get i n s t a l l l i b s s l −dev l i b l z o 2 −dev libpam0g−dev wget −y &&\
9 wget https : // swupdate . openvpn . org /community/ r e l e a s e s /openvpn −2 . 4 . 4 . ta r . gz &&\

10 sudo tar zxvf openvpn −2 . 4 . 4 . ta r . gz &&\
11 cd openvpn −2.4 .4 && ./ c o n f i g u r e && make && c h e c k i n s t a l l −y &&\
12 / bin /bash −c ’ source /opt/ ros / ind igo / setup . bash && \
13 cd /parloma_ros && catkin_make ’
14
15 CMD cd parloma_ros && chmod +rx start_c_in . sh && sync && . / start_c_in . sh

Listing 5.3: PARLOMA Client Input Module Dockerfile, the one for the Output Module is almost
similar, just replace start_c_in with start_c_out

Through the docker build . -t parloma:client_in command the Dockerfile will be compiled
resulting in a new image. In order to start a container from this obtained image, the command
docker-compose run -e IP=ServerAddressIP parloma:client will be executed. The IP is the envi-
ronment parameter that will be obtained from the Cloud Platform. It contains the IP Address of
the Server instance to connect with. This IP address will be substituted to the "ipserveraddress"
in the client.conf file. The container will be initiated starting from the option configuration listed
in the docker-compose.yml (see Listing 5.4).
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1 parloma_cl ient_in :
2 image : parloma : c l i e n t _ i n
3 stdin_open : t rue
4 tty : t rue
5 p r i v i l e g e d : t rue
6 volumes :
7 − /tmp / . X11−unix : / tmp / . X11−unix : rw
8 environment :
9 − DISPLAY=\$DISPLAY

10 − QT_X11_NO_MITSHM=1

Listing 5.4: PARLOMA Client Input Module docker-compose.yml file, the one for the Output
Module is almost similar, just replace client_in with client_out

Almost all the lines correspond with the docker-compose.yml file of the server
• The container tag and of the image name are different.

• The added lines, from 6 to 10, are needed to start a GUI. Practically they enable the use of
graphical user interfaces within Docker containers, in such a way that graphical application
such as Rviz can be executed properly.

Automated script
The main bash files will be listed in order to understand which commands are used to implement
the architecture. These files are the ones cited at the end of clients/server Dockerfiles 5.3 and 5.1 .

Server initiation Bash File

1 #!/ bin /bash
2 source . / deve l / setup . bash
3 chmod +rx . / s t a r t _ t a l k e r . sh &&
4 chmod +rx / Server / c e r t i f i c a t i / s e r v e r / s t a r t_se rve r . sh &&
5 cd / Server / c e r t i f i c a t i / s e r v e r && sync && . / s t a r t_se rve r . sh &
6 s l e e p 1 s
7 r o s c o r e &
8 s l e e p 2 s
9 export ROS_IP=10 .8 .0 .1

10 export ROS_MASTER_URI=http : / / 1 0 . 8 . 0 . 1 : 1 1 3 1 1
11 cd /parloma_ros && ./ s t a r t _ t a l k e r . sh

Listing 5.5: PARLOMA start_s.sh bash file.

The commands similar to the Listing 4.7 will not be discussed:
• Line 7 starts a collection of nodes that are pre-requisites of a ROS-based environment. The

roscore command corresponds with the initiation of the ROS MASTER. This allows the
communication between different ROS nodes.

• Line 11 represents the command that starts the Talker node. In this case, this node is
subscribed to the topic /output/serial_topic that collects information from Input Sensor
and publishes on the topic joint_command that contains the command needed to move the
robotic hand.
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Client Input Module Bash File

1 #!/ bin /bash
2 source . / deve l / setup . bash
3 sed − i " s / i n d i r i z z o i p s e r v e r /" $IP "/ g " . . / C l i en t / c l i e n t _ i n / c l i e n t . conf
4 chmod +rx start_play . sh / C l i en t / c l i e n t _ i n / s t a r t _ c l i e n t . sh &&
5 cd / Cl i en t / c l i e n t _ i n && sync && . / s t a r t _ c l i e n t . sh &
6 s l e e p 3 s
7 export ROS_IP=$ (/ sb in / i f c o n f i g | grep " i n e t addr : 1 0 . 8 "
8 | awk −F: ’{ p r i n t $2 } ’ | awk ’{ p r i n t $1 } ’ )
9 export ROS_MASTER_URI=http : / / 1 0 . 8 . 0 . 1 : 1 1 3 1 1

10 cd /parloma_ros && ./ start_play . sh

Listing 5.6: PARLOMA start_c_in.sh bash file.

The start_c_in.sh is very similar to the start_server.sh file 5.5. For this reason only the
different statements will be illustrated:

• Command at line 7 extracts the IP address that starts with 10.8.xxx.xxx, resulting by the
command ifconfig executed inside the container. It uses this IP to uniquely identify the own
machine on the ROS environment.

• Command at line 10 starts a node that publishes on /output/serial_topic the data read from
the sensor module.

Figure 5.8: Leap Motion measurements acquisition
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When the Client Input Module Docker Container will be started, the ROS Node will start to
read the sensor module measurements and will publish it on /output/serial_topic (see Figure 5.8).

Client Output Module Bash File
As fa as the Output side is concerned, the start_c_out.sh file is almost similar to the start_c_in.sh.

1 #!/ bin /bash
2 source . / deve l / setup . bash
3 sed − i " s / i n d i r i z z o i p s e r v e r /" $IP "/ g " . . / C l i en t / c l i en t_out / c l i e n t . conf
4 chmod +rx s t a r t_ rv i z . sh / C l i en t / c l i en t_out / s t a r t _ c l i e n t . sh &&
5 cd / Cl i en t / c l i en t_out && sync && . / s t a r t _ c l i e n t . sh &
6 s l e e p 3 s
7 export ROS_IP=$ (/ sb in / i f c o n f i g | grep " i n e t addr : 1 0 . 8 "
8 | awk −F: ’{ p r i n t $2 } ’ | awk ’{ p r i n t $1 } ’ )
9 export ROS_MASTER_URI=http : / / 1 0 . 8 . 0 . 1 : 1 1 3 1 1

10 cd /parloma_ros && ./ s t a r t_ rv i z . sh

Listing 5.7: PARLOMA start_c_out.sh bash file.

The few different statements are the following:

• Lines 3-4-5 are similar (just substituting client_in with client_out).

• The last command starts a different node from the Client Input side. In this case, this
node publishes on joint_command allowing to see on Rviz the Robotic Hand virtualization
(see Figure 5.9). Obviously, also the Robot Hand control unit is subscribing on this topic,
allowing the robotic hand motion (see Figure 5.10).

Figure 5.9: Rviz Visualization
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Figure 5.10: Parloma Robotic Hand Moving
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Chapter 6

Experiments

After the VPN-based ROS network description and the practical application on PARLOMA, some
experiments are surely useful to discuss the main characteristics of the developed solution. In
particular, the main parameters are the following:

• The Network latency that represents the amount of time taken by a data packet to flow
from one point to another through the network.

• The Network throughput error that represents the error between the rate at which pack-
ets are sent and the rate at which they are received over the network.

To perform a profitable test, three ROS networks were compared. They are all made up of the
same ROS nodes:

• A Master node on a Server Docker Container

• A Publisher node on a Client(1) Docker Container

• A Subscriber node on a Client(2) Docker Container

The involved networks, instead, are as follows:

• Single Machine VPN-based ROS network: the three Docker containers run on a single
machine.

• Local Multi-Machine VPN-based ROS network: the three Docker containers run on
three different machines connected to the same LAN.

• Multi-Machine VPN-based ROS network: the three Docker containers run on three
different machines connected through the internet from different LAN.

As for the data packets sent by the Publisher node, they consist of two fields:

• A string of variable size

• A time-stamp that indicates the time at which data have been sent (in second.nanosecond
format)
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To reach a reasonable amount of measurements, sets of 500 packets were sent in the three
different networks, varying the size of the string field, i.e. the number of characters. Each of
these packets contains 10 messages that have the same dimension, and increase progressively (10
messages of dimension 0, 10 messages of dimension 1, and so on, until 10 messages of dimension
500).

In order to collect data, the Publisher node sends the data packets while a Subscriber node
stores these packets. Successively the data are processed to obtain the desired information about
throughput errors and latency. In next subsections, these two parameters will be discussed sepa-
rately and some conclusions will be addressed.

6.1 Latency
In order to measure the latency of the three networks, the function rospy.Time.now() was used. It
returns the float seconds of the current time.
Shortly, the mechanism for calculating latency works in this way: the Publisher saves the current
time in the timestamp field of a packet, using the function rospy.Time.now(), together with the
string composed of the n characters (n increases progressively, every 10 packet sent); therefore,
once the subscriber receives the packet, it calculates the difference between the current result of
the rospy.Time.now() and the time value of the received packet to obtain the latency error.

Several factors can influence the latency like:

• The queuing latency on the listening machine.

• The clock offset between the involved machines in the ROS network.

• The network latency of the local or wide area network.

Nevertheless, since the same machines were involved in the three configurations and since the
measurements were performed under the same conditions, the experiments can be considered rea-
sonable for the evaluation of network latency. Figure 6.1, 6.2 and 6.2 show the results from the
three network configurations.

As expected, the Multi-Machine VPN-based ROS network (Fig. 6.3) is the one that shows the
highest latency peaks and also the highest average latency. The decreasing trend in the first 100
sets of packets, in Multi-Machine VPN-based ROS network figure 6.3, can be motivated by the
loading of the communication tunnel through the VPN, which takes some time to setting a stable
channel.

Regarding instead the other two configurations, the LAN has a similar behaviour respect to the
WAN; on the other hand the Single Machine VPN-based ROS network is the one that shows the
smallest latency, which can be considered almost negligible. The latter has not a growing trend
respect to the local and wide area network, in which the latency depends on the size of the packets.

All the other peaks that appear in all the Latency test are caused by the neck of the bottle
due to the enormous amount of data. Once the bottle neck was resolved, the latency returned as
constant as before.

71



6.1 Latency

Figure 6.1: Latency error of a VPN-based ROS network on a Single Machine

Figure 6.2: Latency error of a Multi-Machine VPN-based ROS network on a LAN
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Figure 6.3: Latency error of a Multi-Machine VPN-based ROS network on a WAN

6.2 Throughput error
In order to estimate the throughput error in the three network configurations, the call rospy.Rate()
was used. This function imposes a rate of the communication loop.
The Subscriber and the Publisher operate in this way: the Publisher sets a rate of communication
corresponding to 10 Hz, using the rospy.Rate (10) instruction, and then starts sending the data
packets while the Subscriber stores them. Next, the difference between successive packets arriving
times was calculated and compared with the difference between successive packets sending. Then
the error between them was used to indicate the accuracy of throughput.

Figures 6.4, 6.5 and 6.6 show the results of the three networks.

Once again, the Multi-Machine VPN-based ROS network is the one that shows the worst results
even in terms of throughput error. The tendency is similar to the latency error, since the general
behaviour of the Single Machine ROS network VPN-based is better than the other two networks,
less than some fairly high peaks.

The measures result more fluctuating than those ones of latency. In conclusion, it should be
noted that the same peaks shown by the Multi-Machine ROS network VPN-based in terms of
latency are also present in the throughput errors graphs, corresponding to the same values.
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Figure 6.4: Throughput error of a VPN-based ROS network on a Single Machine

Figure 6.5: Throughput error of a Multi-Machine VPN-based ROS network on a LAN
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Figure 6.6: Throughput error of a Multi-Machine VPN-based ROS network on a WAN

6.3 Results
Some conclusive remarks are illustrated in order to further discuss about the obtained results.

• The developed architecture is applicable in several applications, even if it does not observe
the characteristics of Hard Real-Time systems, i.e., those systems where missing a deadline
compromises the failure of the system. Indeed, although the behaviour is positive, some peaks
may compromise the deadline meeting. Anyhow, this does not correspond to an actual issue
since hard real-time system can never be realised adopting distributed networks through
Internet. The last consideration comes from the fact that the Internet behaviour is not
predictable.

• In the first graph (the latency one) the performances of the VPN-based ROS Network are a
bit worse than the ones of the local network or single computer. This represents an excellent
result because the packets sent within the VPN must go across a much longer path than the
one sent inside a local network.

• In the second graph (the one related to the throughput error) the VPN actions are much
more unstable. Probably, it is caused by the traffic congestion generated in the VPN channel.
In fact, with the exception of the first peak generated by the initialisation of the network,
the general tendency is composed of "triangular waves", in which a large peak is surrounded
by smaller ones.
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Chapter 7

Conclusions

This Thesis presents the theoretical study and an application project on the theme of Cloud
Robotics. As far as the application part is concerned, it focuses on a real case study: important
contributions to some open issues of the PARLOMA project were given in order to improve its
cloud platform and network architecture. Then, concrete experiments were provided for testing
the after-mentioned improvements.

This Chapter provides the main results reached by the Author’s work and the potential devel-
opments that can be carried on. In the first part of the Chapter the final remarks are discussed.
Next, in Section 7.2, the future developments are proposed.

7.1 Final Remarks
The architecture built succeeded in implementing external ROS networks, connected to different
LANs. Moreover, the quality of the results has been proved with the PARLOMA application that
is making usage of the extended ROS networks developed.

Finally, this allows to deafblind people, that are located everywhere around the world, to com-
municate remotely with their interlocutors thanks to PARLOMA.

In fact, until now, the PARLOMA parts could communicate just on local ROS networks. This
meant that the Cloud Platform and all the I/O devices had to be connected to the same LAN
to be identified by the ROS Master. Obviously this limitation strongly affected the potential of
the system making it almost useless, since it was designed to operate remotely. Thanks to the
Author’s contribution, these limitations have been overcome, allowing the expansion of the ROS
architecture over the Internet.

Thus, the objective of the thesis work has been completely achieved, even if it is currently a
prototype not ready to be commercialised yet. Besides some interesting outcomes are illustrated,
along with some tips (described in Section 7.2) aimed at moving the application from an experi-
mental status to a commercial one.

The main aspects that deserve to be highlighted are:

• The network is flexible and highly scalable. Thanks to Docker containers, it can be used
by many platforms without any problem. It easily interfaces to the host system, providing
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always the same functionalities.

• The set up is extremely simple. In fact, many instances of the server and client can be easily
initiated using very few commands.

• The robustness of the architecture is guaranteed regardless of the amount of connected de-
vices.

• The work has been implemented with the PARLOMA cloud platform. In fact, once the
Docker images was built and supplied with a VPN-based ROS environment, it was success-
fully integrated with the PARLOMA application.

This Thesis work represented a precious experience for the Author. Most of the goals described
before begin of the work were achieved and will be of interest for the future of HotBlack Robotics
company and, surely, of PARLOMA project.

7.2 Future developments
Even though the results achieved are good and match the requirements, some further effort can be
spent to improve the project. The following suggestions are for those intentioned to enhance the
performances of the work done:

• The procedure to produce the CA (Certification Autority) files, used to implement a unique
and secure VPN solution, should be automated, in order to manage many client/server
VPN solutions. At the moment, although many docker containers (and, thus, many New
Computing instances) can be started, they uses the same certificates. This last fact could
obviously compromise the security of the system. A best scenario, instead, would be when
different I/O modules request access to the platform and each of these couples have their
own certificates.

• Security issues have not been solved during application development. AWS protections have
been disabled with the aim of not interfering with the interfacing process. Nevertheless,
before integrating the service with the PARLOMA platform, a deeper analysis would be
needed to understand which security defences are needed for providing a secure environment
for users.

• As far as the application of PARLOMA is concerned, a graphical interface in the platform
should be integrated with the goal of guaranteeing a user-friendly experience. While, at the
moment, the Docker installation and Docker containers initiation must be lunched through
command line terminal.
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