

POLITECNICO DI TORINO

Department of Control and Computer Engineering

Master Degree in Mechatronics Engineering

Study and development of software based self-test programs
for Automotive ECU

Supervisors

Prof. Luca STERPONE Candidate
Dr. Boyang DU Younes Mahboub

Student ID: 213838

March 2018

1

Last night, in private, I asked the wise old man

 To reveal to me the secret of the world.

Softly he whispered, Hush! In my ear:

It's something you learn, not words you can hear.

“Rumi”

2

Summary

Nowadays, ever-improving technologies related to the semiconductor manufacturing and

significant complexity in the design of electronic devices implemented in the automotive systems,

lead to a rise in the number of possible defect mechanisms and affecting the level of quality and

reliability. As a result, System-On-a-Chip (SOC) testing devices have become the main challenge

in the Electronic Control Unit (ECU) of automotive systems. A wide range of demands such as

test speed, fault coverage, diagnostic options, cost-effective techniques and test length requires

an underlying solution for using an online application of functional and structural tests in key

components. Self-testing is an effective mechanism that consists of two main approaches,

Software-Based Self-Tests (SBST) and Built-In-Self-Tests (BIST) into E/E (Electric and

Electronic) architectures, to ensure the correct operation of ECUs.

Built-In Self-Test (BIST) is an embedded test hardware with limited at-speed testing. Also, BIST

resides on the system in nonfunctional mode.

Software-Based Self-Test (SBST) is an embedded test software which uses self-tested memory

and processor to test System-On-a-Chip component models. SBST handles testing as an

application. Due to the growing of the open-source microprocessors and applying SBST

methodology into an open source microprocessor core, SBST is proposed for cost reduction and

common use in SOC test environment.

Widespread use of SystemC/TLM simulation and the cycle accurate open source system simulator

gem5 in Embedded Industry and test researching lead to facilitate an optimizing virtual platform

for testing.

Gem5: Gem5 is a modular platform that built from a combination of the former full system

simulator M5 and memory system simulator GEMS for system level design, architectural and

performance exploration. This combination makes gem5 as Self-contained simulation framework

which is built on a discrete-event simulation kernel, although you are welcome to bind things

together. Unlike other simulators, gem5 overcame the limitation of the emergence of multicore

systems and deeper.

Cache hierarchies have presented architects with several new dimensions of exploration and

present a flexible simulation framework. In addition, gem5 relies on high-quality open-source

codes that allow collaborating with colleagues in both industry and academia. Gem5 has presented

practical transport interfaces for coupling CPU to Memory and binding different environments.

Relying on flexibility and availability features of gem5, it can have a key role in self-test

technologies. Through the variety of ISA possibilities which supported by gem5, the ARM should

be the best selection for this thesis propose. Gem5 as a simulator for testing base functionality

just focuses on requirements, design specifications and the increase of accuracy with code

simplicity. ARM selects a set of compile-time build options that control simulator functionalities

such as the ISA, CPU models, memory system and peripheral devices to use.

3

SystemC/TLM: SystemC for system-level design is a set of the class library in C++ which is inter-

operable for System-On-a-Chip (SOC) modeling platform and allows the exchange of IP models

in system-level design and functional verification. SystemC also offers the event-driven

simulation interface for design and concurrent development of hardware and software. These

facilities make the access to digital simulation models easier for system designers.

SystemC supports elaborating high-level synthesis (Electronic system level) and simulates

concurrent processes, furthermore enables a huge set of possibilities for architectural exploration

and performance modeling. SystemC concentrates on the functionality of the system instead of

its structure. This means that it is possible to focus on the actual behavior of the system more than

its implementation details. But detailed implementation can be changed during any alternative of

system architecture. In this regard SystemC presents TLM (Transaction-Level Modeling) as an

abstraction level framework that based on virtual prototype make communication among modules

and digital systems. Communication mechanisms in TLM are implemented modules and ports

which are using digital signals and blocks through the channels and interface classes. The

Functional model which is provided by TLM increases simulation speed against lots of pin

wiggling in RTL. Therefore, high Interoperability between modes in TLM affects directly

possibilities of system design exploration.

The goal of this thesis is to investigate the optimal virtual platform for a transaction-based

interface which is employed to connect the two environments together through two main

simulation models:

1. Computation-centric simulation

2. Communication-centric simulation

This thesis focuses on Communication-centric simulation since both gem5 and SystemC/TLM

are functional-based and data-based simulation models and not code-based. SystemC/TLM

enables to run gem5 as a thread inside the kernel and keeping the events and timelines

synchronized between the two environments. This functionality provides interoperating with a

wide range of System-On-a-Chip (SOC) component models for the gem5. MemObjects are

connected through master and slave ports. A master module has at least one master port, a slave

module has at least one slave port and an interconnect module has at least one of each protocol

stack based on Requests and Packets. Likewise, SystemC/TLM can simulate two environments

together. The TLM-2.0 presents two main blocks, initiator, and target. An initiator module

initiates new transactions, and a target module is a module that responds to transactions initiated

by other modules. A transaction is a data structure transferred between initiators and targets using

function calls by a generic payload. The same module can act as both an initiator and a target, this

would be typically the case for a model of an arbiter, a router, or a bus.

4

Therefore for coupling two environments, there are two possibilities:

1. Gem5/TLM co-simulation

2. TLM/TLM simulation

Figure 1: TLM/TLM vs Gem5/TLM coupling mechanism

Upon reviewing sample tests using these models under test to evaluate the diverse characteristics

of each model. The results demonstrate which model is the best suited for different scenarios.

5

Acknowledgments
First and foremost, I would like to thank influence persons, who support and guide me to be

possible this work.

Prof.Luca Sterpone, without your guidance and support as ACCLAIM supervisor of my

dissertation committee, I would not have felt as prepared and confident during my research,

THANK YOU for your support and encouragement throughout this strenuous process!

Dr.Boyang Du, without your additional guidance and support, I would not have focused on deep

study. Your questions and discussions during my dissertation created additional layers of my

knowledge of self-efficacy and my study of its sources. THANK YOU for illuminating the areas

that needed more investigation!

CAD group Buddies, without your support and motivation throughout my research, I would not

have felt as confident to press forward. Each of you has exemplified courage, strength, and

friendship through your own personal obstacles and setbacks. THANK YOU for always being

there to help!

Mom and Dad – Without your support, encouragement, and love, I would not have been able to

attain this goal. Knowing that I could always count on you handle my issue to provide such a

peace of mind that allowed me to focus on the work at hand. THANK YOU for learning and

inspiring me to be patient and believe in God will allow you to accomplish your goals!

My Wife– Without your understanding and support through my frustrations, lack of quality time,

and stressful deadlines, I would not have been able to complete my dissertation. You allowed me

to spend countless hours working on “this little paper” last year. I would like to dedicate this work

to my wonderful my wife Shiva. I LOVE YOU!

God – THANK YOU for the wisdom, and grant me the patience, the perseverance, and the ability!

6

List of Figure

Figure 1: TLM/TLM vs Gem5/TLM coupling mechanism 4

Figure 2: Typically Use-case of Virtual Platform 11

Figure 3: General computer simulation classification 14

Figure 4: Instruction Set Simulator and Virtual Machine Comparison 16

Figure 5: Pyramid of abstraction levels that comprise a system design from the

specification to a possible optimal solution
17

Figure 6: Gem5 in Accuracy & Flexibility 21

Figure 7: Summary of the main trending gem5 module 24

Figure 8: Configuring and Running Gem5 30

Figure 9: Implementing the model into the Gem5 31

Figure 10: Communication-centric & Mixed Abstraction level in SystemC 32

Figure 11: Comparing SystemC & other HDLs 33

Figure 12: TLM Components Interoperability 36

Figure 13: RTL vs TLM 37

Figure 14: Approximately-Time mechanism 40

Figure 15: Non-blocking Trans, mem-management through the BUS interconnect 49

Figure 16: The Similarity between Gem5 and TLM 50

Figure 17: Interaction between SimpleMemobj and its ports 52

Figure 18: Gem5 to TLM (Slave Transactor) w/o cache 54

Figure 19: Gem5 to TLM with back pressure 58

Figure 20: result execution of TLM/TLM mechanism 63

Figure 21: result execution of Gem5/TLM mechanism 63

Figure 22: Schematic comparison of TLM/TLM and Gem5/TLM mechanism 64

Figure 23: The Conclusion of the comparison of the two mechanisms 66

7

List of Table

Table 1: Configuration trade-off between speed and accuracy 22

Table 2: Gem5 supported Multiple ISA 23

Table 3: Gem5 access types and their corresponding transport 55

Table 4: Comparison of the fields used to encapsulate transfers 56

8

Contents

Summary …………………………………………………………………… 2

Acknowledgments ………………………………………………………. 5

List of Figure ……………………………………………………………… 6

List of Tables ……………………………………………………………… 7

1 Introduction …………………………………………………………… 10

1.1. Testing …………………………………….……………………… 10

1.1.1. Self-test …………………………………………………………….. 10

1.1.2. BIST ……………………………………………………………….. 10

1.1.3. SBST ……………………………………………………………..... 10

1.1.4. How does SBST work? ……………………………………………. 11

1.2. Simulation ……………………………………………………….. 11

2 Background ……………………………………………………………. 14

2.1. Computer simulation …………………………………………. 14

2.1.1. System-Level Design …………………………………….....……… 16

2.1.2. Event-driven memory system ……………………………....……… 16

2.1.3. Cycle-accurate simulation …………………………………..……… 17

2.1.4. Service-Oriented Architecture (SOA) ……………………………… 17

2.1.5. Simulator Evaluation Criteria ………………………………….…... 17

2.2. Gem5 ……………………………………………………………… 20

2.2.1. Main Goal ………………………………………………………….. 20

2.2.2. Licensing …………………………………………………………... 21

2.2.3. Platforms …………………………………………………………... 21

2.2.4. Tools ……………………………………………………………… 21

2.2.5. Compiling ………………………………………………………….. 21

2.2.6. System mode ………………………………………………………. 22

2.2.7. Multiple ISA support ………………………………………………. 23

2.2.8. Gem5 capabilities ………………………………………………….. 23

2.2.9. Event ……………………………………………………………….. 23

2.2.10. Co-simulation with SystemC ……………………………………… 23

2.2.11. Gem5’s base infrastructure ………………………………………… 24

2.3. SystemC ………………………………………………...………... 32

2.3.1. Importance of SystemC ……………………………….…………… 32

2.3.2. SystemC analogy ………………………………………...………… 33

9

2.3.3. Advantages and disadvantages …………………………..………… 33

2.3.4. Features and constructions …………………………….…………... 34

2.4. TLM 2.0 ……………………………………………………....….. 35

2.4.1. Interface and blocks in TLM …………………………………..…... 35

2.4.2. Interoperability …………………………………………………...... 36

2.4.3. TLM 2.0 vs RTL ……………………………….………………….. 37

2.4.4. TLM Advantages …………………………………………………... 38

2.4.5. TLM Infrastructure and communication …………………………... 38

2.4.6. Interface method ………………………………….………………... 41

2.4.7. Initiators, Targets, and Sockets ……………………...…………….. 41

2.4.8. Virtual Memory management ……………………….…………….. 41

3 Experimentation and analysis ………………………………….. 43

3.1. TLM-TLM mechanism …………………………………...……... 43

3.1.1. Module classes …………………………………………………... 43

3.1.2. Top-level module instantiation ………………………………...... 43

3.1.3. Initiator and Target modules classes ……………………………. 44

3.1.4. Generic payload …………………………………………………. 46

3.1.5. Phases …………………………………………………………… 46

3.1.6. Interconnect classes (BUS) ……………………………………… 47

3.1.7. Utility: Memory Management …………………………………... 47

3.1.8. Top level ………………………………………………………… 48

3.2. Gem5-TLM mechanism …………………………………………. 50

3.2.1. Coupling Gem5 with SystemC ………………………...………... 50

3.2.2. Memobject ………………………………………………..……... 51

3.2.3. Practical Usage: General Flow ……………………………...…... 52

3.2.4. Simulation project ……………………………………………..... 54

4 Results ……………………………………………………………………. 63

4.1. TLM/TLM ………………………………………………………….. 63

4.2. Gem5/TLM …………………………………………………………. 63

4.3. Comparison ………………………………………………………… 64

5 Conclusion ………………………………………………………………. 65

6 Future work ……………………………………………………………. 67

Reference ……………………………………………………..…………….. 68

A. Appendix …………………………………...……………………………... 69

a. Schematic of full system Gem5/TLM ………………………... 69

10

1 Chapter 1

Introduction

1.1. Testing

Nowadays, ever-improving technologies related to the semiconductor manufacturing and

increasing significant complexity in the design of electronic devices implemented in the

automotive embedded systems, lead to a rise in the number of possible defect mechanisms and

affecting the level of quality and enhancing validation and reliability. As a result, System-On-a-

Chip (SOC) testing devices have become the main challenge in the Electronic Control Unit (ECU)

of automotive systems. A wide range of demands such as test speed, fault coverage, diagnostic

options, cost-effective techniques and debugging and test length requires an underlying solution

for using an online application of functional and structural tests in key components. To create

Self-testing is an effective technique that consists of two main approaches, Software-Based Self-

Tests (SBST) and Built-In-Self-Tests (BIST) in E/E (Electric and Electronic) architectures, to

ensure the correct operation of ECUs.

Therefore, it needs to define the concept of these techniques.

1.1.1. Self-test:

In order to detect permanent fault and malfunction in microprocessor-based embedded systems

performance, System-on-chip microprocessor is periodically forced to execute the Self –test code

uploading to non-volatile memory during the device testing.

1.1.2. BIST

Built-in self-test is a more general test approach with additional pin or hardware and software into

embedded systems to deliver higher fault coverage which enables them to test itself. In another

word, testing of itself operation by means of own circuits leads to reduce an external automated

test equipment (ATE). This technique provides the capability to execute tests outside the

embedded testing environment, thereby it makes easier customer support and needs a way to

interface with the outside environment to be effective.

1.1.3. SBST

Software-based self-test methodology is an embedded test software that develops a testing code

and runs as an application by memory and processor during regular system operation to test

System-On-a-Chip component models. In order to detect system faults quickly after they become

visible. Additionally, SBST is the non-intrusive testing approach that provides at-speed testing

capability in actual operating frequency without any hardware or performance overheads and

11

monitoring the SOCs without interfering. While SBST can be used in the field, either off-line or

periodically on-line with avoiding over-testing.

1.1.4. How does SBST work?

Test code and test data deploy into memory (i.e., either the on-chip cache or the system memory).

A low-cost external tester can execute test code and data loading via a memory load interface.

The processor executes test programs at speed. The application runs as a test by exploiting the

proper instructions to excite faults. Finally, the test code stores. Besides, the test responses back

into the processor data memory to propagate the faults. When the test process is supported only

on the on-chip cache, the self-test program must be developed so that no cache misses occur

during SBST execution. Hence, this is sometimes called cache-resident testing. Eventually, Test

responses are uploaded into the tester memory for external evaluation. This mechanism can be

implemented on the systemC/ TLM virtual platform.

Due to the growing of the open-source microprocessors and applying SBST methodology into an

open source microprocessor core, SBST is the best choice for the industry that limited by the

difficulty to write the efficient and effecting test program and to device suitable methodology for

cost reduction and common use in SOC test environment.

1.2. Simulation

Dealing Effectively with Fast Growth of complex hardware architectures especially System-on-

chip, the hardware/software simulation and co-simulation based on virtual platforms has become

a popular approach for the embedded system. Accurate virtual platforms allow to decrease cost

and Time-to-Market (TTM), for prototyping space exploration and remove the constraint of

transposition of developing hardware and software.

Figure 2: Typically Use-case of Virtual Platform

12

They are software-based systems that can fully mirror the functionality of a target System-on-

Chip or physically hardware behavior rapidly. Also, they are able to emulate high percentage of

the behavior of the real system. Virtual platforms have the capability to be reused in future

projects and hardware engineers able to fast design space exploration, that means they can try out

different things like how big is system cache or what is the number of cores should use or

exchange easily.

Some of the important virtual prototypes are functional software models of physical hardware

which based on systemC, Furthermore, they provide controllability over the entire system and

offer powerful debugging and analysis techniques.

Generally, systemC is a standard from IEEE and different modeling hardware and software

components. It extends C++ to an event-driven simulation kernel with various levels of accuracy.

SystemC is much faster cycle accurate simulations compared to of RTL, however, the normal

cycle accurate systemC is don't fast enough to boot an operating system in a reasonable time. This

reason besides the event needs to communication between abstract levels caused to build new

communication mechanisms from the actual hardware named Transaction Level Modeling

(TLM). Cycle-accurate model has a clock on all the components and pin accurate model simulate

on each pin the events that are happening such as waveforms with analyzing waves and pins while

TLM simulates all these events communication and gets abstracted with the help of function calls.

By encapsulating data and transaction, TLM makes the simulation depending on the level of

accuracy which can simulate up to 10,000 times faster than in VHDL.

TLM is widely used in industry as Virtual platform tools and Core Models such as Synopsys

Platform Architect, Cadence - Virtual System Platform, Mentor Graphics - Vista Virtual

prototyping and ASTC - VLAB Works. Virtual Platform Core Models such as ARM (Fast-

models) have only just loosely timed blocking kind of TLM modeling.

There are several use cases for modeling platforms with TLM in different area such as software

application developing and software performance analysis in Software developers and in other

hand architecture analysis and hardware verification for hardware engineers.

Generally all TLM systems have the CPU and Memory, also the bus in between as interconnect

transfers data from CPU to target memory and target I/O

basically for communication Initiator (CPU) needs a so-called generic payload reference and a

pointer to a payload object that has information containing Command Address data, Byte Enables,

Response Status and other features with function calls, object transferred is pointer to the target

(Memory) then It can change (Read & Write) and to transmit a manipulated object back. This is

very similar to Gem5 behavior.

By knowing the detail of coding style is able to make interoperability and with getting a model

from another company it needs just plug it together with the fit model and it will work properly.

Gem5 is an event-driven simulation kernel with some objects models that compile as a library

and in Gem5. By using this logic, the systemC project can couple to Gem5. SystemC introduce a

module called Gem5simcontrol for coupling two environments which support codes and pools of

13

each side. The object in systemC implements the Gem5 event queue. It replaces the Gem5 event

queue with the hook to the systemC event queue.

Simulated system schedules Gem5 event and on the other side getting systemC event will be

scheduled to be executed driven body gem5 Object. So hooking Gem5 to the systemC kernel can

make way to communication two environments. Also with employing TLM, is solved the problem

of communicating to other systemC modules and Simulated system capable of plugging in any

other systemC model and hook it to Gem5 modules properly. As consequence Gem5 already

supported the coupling to systemC kernel.

This thesis will compare two virtual communication mechanism to find feasible configurations in

order to provide optimal design space exploration for verification and visualization applications.

14

2 Chapter 2

Background

2.1. Computer simulation

Computer simulation reproduces a mathematical model of the behavior of the system. The

following figure illustrates the classification of computer simulation, the abstraction level leads

to specific simulation tools.

To deal with the increasing complexity of System-on-Chip (SoC), the hardware/software co-

simulation based on virtual platforms has become a popular approach for the Electronic System

Level (ESL) design flow.

Three approaches to modeling the processor of a virtual platform are addressed:

1. hardware description language (HDL),

2. instruction set simulator (ISS),

3. Formal.

In general, the simulation speed of the HDL approach is far slower than that of the ISS and formal

approach.

The formal approach, which uses ‘‘compiled simulation’’ to simulate software statically, is

always faster than the ISS approach, which uses ‘‘interpretive simulation’’ to simulate software

dynamically.

Over the past years, interpretive simulators generally were used in system design but because of

poor performance of these type of simulator, system developer started research work based of

Figure 3: General computer simulation classification

15

increasing performance ability and fast compiled instruction-set simulation. Eventually,

Instruction set simulators have become a main tool for architecture development and exploration

in SOCs. Therefore, the simulation system increase the efficiency and capabilities of system

design exploration. While due to constraint compiled technique and being specificity instructions

for each program, it was not possible to use in commercial products [4]. This is a lack of industry

satisfaction caused the programmer to think about the new way in simulation till achieving to the

Virtual Platform which it will be explained in the following.

In fact, the instruction-set simulator is a special kind of functional-level mode in a simulation

model which mimics the microprocessors behavior by using internal variables with code in a

high-level programming language like C instead of using assembly language. [5]

Instruction-set methodology is used for at least one of the following reasons:

In order to simulate machine code from a hardware or full-system of a computer for compatibility.

Also, it uses for monitoring and testing the execution of machine code same as hardware device

for debugging propose. In addition, instruction-sets is able to improve the speed of system

performance compared to the interpretive simulator. In another side, the instruction-set increasing

accuracy of simulation compared to application-specific approaches. While it just mimics

hardware behavior functionally.

Common embedded systems as application-centric include a wide range of machines and products

like dependable and real-time hardware small electronics components in an integrated circuit. In

order to meet different requirements on functionality, performance for a specified product, it is

able to whether to redesign or revise frequently hardware and software codes. This ability make

to potential benefits for shortening time-to-market and makes alongside reduction cost and

consumption energy of the production process. According to Embedded Market Forecasters

reported it cause save up to 50% of the scheduled time of projects. [7] But the other side of this

effort makes a considerable challenge to the efficiency of design exploration in embedded

systems. In another word, this situation allows to fast propagate of system complexity. Generally,

all systems are separated to software and hardware part based on system specifications. Using

instruction-set allows to software and hardware developed in parallel and simultaneously and the

final application is able to test, verify and implement in hardware prototyped or finalized.

An Instruction Set Simulator ISS is a layer of software-based implanting between operating

systems and upper layers like applications or lower layer like real hardware, which enables

interface the upper layer ISA program so-called source ISA with lower layer software/hardware

of ISA so-called target ISA by binary compiling for an Instruction Set Architecture (ISA).

Basically, each instruction form Source of ISA translates into instruction set of target ISA which

represent source ISA behavior.[6]

Following figure illustrate the main differences between the ISS and virtual machine (VM) based

virtual platforms. The first row depicts the ISS-based virtual platform in building a co-simulation

environment using a lot of peripheral and interconnect model in order to run an operating system

linked to another part of systems. However, it is negligible the hardware models and the system

functionalities do not fit completely into an unmodified operating system. If all layers use single

16

language like SystemC. It is able to retain accessibility between the lower and upper layers. While

the second row represents a VM-based virtual platform which all fundamental hardware

component to run the operating system are included in the virtual platform, this model simplifies

process rather than the ISS model. It requires only extract the information of processor and target

ISA in a virtual machine to wrap and accommodate behavior as ISS. Good examples are from

VM such as QEMU and Gem5. [15]

2.1.1. System-Level Design

System-level design is electronic design in higher abstraction level which includes

identifying the specific system, verifying functionalities in order to find optimal system

architecture. Nowadays complex systems are integrated into a System-On-Chip and contain

specific software. SoC in system level design technology cause develops more complex

and capability of both hardware and software.

2.1.2. Event-driven memory system

An event-driven memory system as part of event-driven programming which suitable method in

embedded system and simulation too with containing all components like caches, crossbars,

snoop filters, and DRAM controller model, in order to capture the power of states and system

impact of memories and controller. The components need more flexibility, in order to

compatibility issues, address ranges and model complex cache hierarchies with heterogeneous

memories.

Figure 4: Instruction Set Simulator and Virtual Machine Comparison

17

2.1.3. Cycle-accurate simulation

A cycle-accurate simulator simulates a micro-architecture based on cycle-by-cycle simulation.

That means the cycle-accurate model has on all the components a clock. In another word, cycle-

accurate simulation is trying to simulate timing exact on per-cycle accesses perfectly. So each

individual component is simulated at the exact same time, with considering synchronizing at

single-clock resolution, which has a costly CPU. All in all the accuracy of this methodologies are

close to real hardware not means 100%. The following figure shows the level of accuracy and

abstraction of the different model compared to cycle accurate simulation model

2.1.4. Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA), is a software design architectural pattern where a set of

components can be invoked and provide a collection of services to each other using a

communications protocol. Services can have self-contained functionalities and highly modular

which can be swapped depending on the needs of the application, by using different

implementation languages and platforms make easy the addition and development of features.

Virtual platforms can be intuitively implemented using an SOA, where the functions of different

virtual components, such as memories, pipeline, and networks on chip (NoCs) are provided by

different services.

Figure 5: Pyramid of abstraction levels that comprise a system design from the

specification to a possible optimal solution

18

2.1.5. Simulator Evaluation Criteria

According to computer simulation literature resource, there are two types of classification of

computer architecture simulation.

1. Level of abstraction

Most resources classify computer architecture simulation by level of abstraction, where

high-level abstraction models, which result in faster simulation at the cost of a loss of

accuracy. Furthermore, these models facilitate analysis iterations around various

architectural options as well as software execution, which gives the flexibility to explore

more features than in a low-level abstraction model. Using the different level of abstraction

by simulator exactly depend on detail demanded by the target system. Also, there are two

sub-classification such as gate level and cycle level

2. Model of simulation

Simulation model classifying is used for demanding of the target application. Where they

need either the functional simulator or Full-system simulator or cycle-level simulator.

2.1.5.1. Characteristics of a simulator
Characteristics of a simulator presented in [8]

1. Speed

The speed of simulator is measured by the number of instructions executed per run-time

second for evaluation simulation model. While it takes to solve an instruction might seem

at first peek to be a basic and very useful measure.

2. Accuracy

The accuracy of the simulator is measured by both types of observational error, random

and systematic errors which occur during the simulation process. Accuracy depends on the

level of abstraction used in the simulator, low-level abstraction provide a more accurate

model. Also, accuracy can be analyzed in different modes such as at per-cycle, per-

instruction or per-function granularity, each having independent implications.

3. Flexibility

The flexibility of simulation define the capability of the simulator to support different

configuration and it can be modified to evaluate different target functionalities, also it

provides the development and exploration of design efficiently.

4. Completeness

Completeness defines in developing peripheral of the simulator and potential interaction

with other components besides of full- system simulation and communication with another

environment for developing and extending of the simulation model.

19

5. Usability

Usability feature relies on more aspect such as ease of setup, able to specify for certain

tasks, contributing to a specific purpose or fit to using in tools and devices. While in this

thesis I focus on effort and ease of setup.

20

2.2. Gem5

Gem5 is a modular platform that fabricated from a combination of the former full system

simulator M5 and memory system simulator GEMS for system level design, architectural and

performance exploration. As a side note, M5 provides a highly configurable event-driven

simulation structure, multiple ISAs, and various CPU models. GEMS complements these features

with a flexible and detailed and memory system, including support for complex and multiple

cache coherence protocols and interconnect models. This combination makes Gem5 as Self-

contained simulation framework which is built on a discrete-event simulation kernel, although

you’re welcome to glue things together.

Unlike other simulators, Gem5 dominate the limitation of the necessity of multi-core systems

and complex cache hierarchies have presented architects with several aspects of exploration and

present flexible simulation framework. In addition, Gem5 relying on high-quality open-source

codes allows them to collaborate with their colleagues in both industry and academia.

2.2.1. Main Goal

Being a community tool focused on architectural modeling is the main goal of the Gem5

simulator. While that has three aspects in the following:

1. The flexibility of modeling to appeal to a wide range of users

2. Extensive availability and utility to the community

3. The expert developer interaction to collaborate

2.2.1.1. Flexibility

Flexibility is the main role in the success of simulation infrastructure. But achieving to high-level

of flexible simulator needs to balance simulation speed and accuracy to a specific design. Fine-

grain clock gate or coarse-grained model need a different variety of accurate CPU model, System

modes, memory system and peripheral devices. The Gem5 simulator enables simulation system

with a variety of capabilities and flexibility in components and peripheral hardware. These

features allow covering a board range of speed/accuracy exchanges in multiple configurations.

2.2.1.2. Availability

Being compatible with a variety of users with different requirements and goals would be another

challenge of each simulator and Gem5 simulator as an open source software is the perfect answer

for each requirement.

21

2.2.1.3. High level of collaboration

Currently promoting Gem5 include, mailing lists, wiki, web-based patch reviews, and a publicly

accessible source repository is enabled to compatible with collaborative technologies effectively.

2.2.2. Licensing

The Gem5 simulator is released under a Berkeley-style open source license.

2.2.3. Platforms

The Gem5 simulator works on most operating systems. Though, all guest platforms aren't

supported on all host platforms.

2.2.4. Tools

Gem5 are backed up by these tools and utilities (Git, GCC/G++ 4.8+ (or clang 2.9+), Python

2.7+, SCons 0.98.1+, SWIG 1.3.40+, protobuf 2.1+)

2.2.5. Compiling

Gem5 has 5 types of compiling target and making binaries for different architectural and

flexibility purposes.

Figure 6: Gem5 in Accuracy & Flexibility

22

 Gem5.debug: It built in debugging and contain symbols, tracing, assert features

 Gem5.opt: It built in optimized and contain symbols, tracing, assert features

 Gem5.fast: It built in optimized and doesn’t contain any symbols, tracing, assert features

 Gem5.prof: Same as fast binary target with profiling support

 Gem5.perf: Similar to the prof, this target is aimed at CPU and heap profiling using the

Google Performance Tools.

2.2.6. System mode:

Gem5 has two fundamental system execution mode

2.2.6.1. System Call Emulation (SE):

This binary mode configures specific applications or set of applications on microprocessor

typically it used by calling host OS and simplify address translation model with no schedule.

(Running one or more applications by emulating sys-calls).

2.2.6.2. Full System simulation (FS):

Full System simulation FS mode configures whole of a system for booting OSs perfectly with

preferred disk images like Linux or other mimics or just in the bare-metal model for implementing

devices. It can simulate peripheral components and frame buffer in output and with a class of

instructions include interrupt handling, timer control, I/O, exceptions, privileged instructions,

fault handlers that can be executed only when the computer is in a special privileged mode that is

generally available to an operating or executive system. (Booting an entire operating system).

Processor Memory System

CPU
Model

System
Mode

Classic
Ruby

Simple Garnet

Atomic
Simple

SE Speed

FS

Timing
Simple

SE

FS

In-Order
SE

FS

O3
SE

FS Accuracy

Table 1: Configuration trade-off between speed and accuracy

23

2.2.7. Multiple ISA support

Also, Gem5 supports multiple of operating system and Instruction set architecture as a

flexible architecture simulator for full-system simulation and system-call emulation.

2.2.8. Gem5 capabilities

1. The conjunction full-system model provides instantiate multiple systems with just a

single simulation process. This capability of full-system mode enables simulation of

whole client-server networks.

2. Flexibility: Multiple CPU models, memory systems, and device models and thus multiple

systems can be instantiated within a single simulation process.

3. Accuracy: Gem5 relying on multiple memory systems and CPU model Gem5 can be

enough accurate.

4. The speed of simulation: Variety of simulation model makes Gem5 as much as fast

compared to other system simulators.

ISA Maintainer
Level of ISA

Support

Full-System

OS support

Test

coverage

Toolchain

availability

Linux kernel

availability

ALPHA None High Linux Medium Low Low

ARM
Andreas

Sandberg
High

Linux, BSD,

Android
High High High

MIPS None Low None Low Medium Medium

POWER None Low None Low Medium Medium

RISC-V Alec Roelke Medium None Low Medium Medium

SPARC Gabe Black Low None Low Low Low

X86 Gabe Black Medium Linux, BSD, Medium High High

Table 2: Gem5 supported Multiple ISA

2.2.9. Event

GEM5 has an event-driven simulation kernel framework which has diverse abstraction levels,

that balance simulation speed, and accuracy. Event-driven can keep the memory overhead down,

[9] therefore, using event scheduled mode on Timing accesses memory during process cause to

synchronize and manage all requests by Global logical time in “ticks”. In every CPU clock cycles

(system-call emulation) or Picoseconds (full system) Objects and CPU schedule their owned

events at regular intervals.

2.2.10. Co-simulation with SystemC:

For two world communication, Gem5 can be coupled in a SystemC simulation, running as a thread

inside the SystemC event kernel, and maintain the events and timelines synchronized effectively

by using the transaction methodology. This feature enables the Gem5 components and SystemC

24

functions to interoperate with a board range of System-on-Chip (SoC) component models, such

as interconnects, initiators and target devices. Transaction Level Modelling (TLM) standard

interfaces for SystemC provide interoperability and transaction between two environments.

Gem5/TLM allows full interoperability between both simulation frameworks, then it facilitates a

vast set of capabilities for system level design space exploration.

2.2.11. Gem5’s base infrastructure

Here it defines some features related to use-cases.

2.2.11.1. CPU models

2.2.11.1.1. SimpleCPU

When using a detailed model is not essential. The system can be used SimpleCPU as a fully

functional and orderly model is assorted for the simulation system. This can contain warm-up

Figure 7: Summary of the main trending gem5 module

25

periods, client systems that are operating or control a host system or only making sure that

application works as a testing program. (High-level ISA)

2.2.11.1.2. BaseSimpleCPU

The BaseSimpleCPU can’t be run by itself. This serves for maintain architect status, Defining

functions for checking or fulfill the states like interrupts, fetch request, pre-execute setup or post-

execute actions, and just advancing the PC to the next instruction.

2.2.11.1.3. AtomicSimpleCPU

The AtomicSimpleCPU is the version of SimpleCPU which uses atomic memory accesses. It

defines the port that is used to hook up to memory and connects the CPU to the cache.

2.2.11.1.4. TimingSimpleCPU

The TimingSimpleCPU is the version of SimpleCPU that uses timing memory accesses. It defines

the port that is used to hook up to memory and connects the CPU to the cache. Additionally, it

defines the required functions for conducting the response from memory to the accesses sent out.

2.2.11.1.5. O3CPU

It defines a new detailed model which has following pipeline stages such as Fetch, Decode,

Rename, issue/Execute/Writeback and Commit.

2.2.11.1.6. Checker

The checker provides dynamic verification of CPUs. Currently, it is not full support for all

systems. (high-level ISA).

2.2.11.1.7. OutOrderCPU

Detailed model of an out-of-order CPU (high-level ISA).

2.2.11.1.8. KVM-based CPU

Kernel-based Virtual Machine CPU (Visualization to accelerate simulation)

2.2.11.2. Memory

2.2.11.2.1. Memory system models:

2.2.11.2.1.1. Classic Memory System

The Classic memory enables easy and fasts configurable memory system

2.2.11.2.1.2. Ruby Memory System

Ruby memory system, unlike the previous system, is a flexible and highly configurable memory

system which implements a detailed simulation model for the memory subsystem. It designs

complex cache hierarchies, interconnection networks, coherence protocol implementations,

memory controllers and DMA, various sequencers that initiate memory requests and handle

responses.

26

2.2.11.2.1.3. General Memory System

The General Memory System is a shared infrastructure between the Classic and Ruby models.

2.2.11.2.2. Memory Port system

2.2.11.2.2.1. MemObjects

MemObject is a class scripted in C++ and pure virtual functions which all objects that connect

to the memory of Gem5 inherit from MemObject. Also, it includes a port corresponding to the

given name and index. This interface is used to connect the MemObjects together.

2.2.11.2.2.2. Ports

Ports are interconnected components which used to interface MemObject to each other. They

will always are in pairs (Master and Slave) and it refers to the other port object as the peer. The

direction defines A master port always connects to a slave port, with the master initiating requests,

and the slave providing responses. Every MemObject has to have at least one port to be useful.

There are two pairs of functions in the memory port object. Frist is sent and second is receive.

The object belongs to Master port call by send* functions on the port. As an instance a request

packet data in the memory system a CPU call myPort->sendTimingReq (pkt) to send a

packet data. Another one is recv function belongs to the Slave port that which defines the

corresponding of each send* function that is called on the ports peer. So the implementation of

the sendTimingReq () call above get simply peer->recvTimingReq (pkt). Using

this mechanism makes only one pure virtual function call penalty while it retains generic ports

which can connect any MemObject together.

2.2.11.2.2.3. Connections

The ports connection are symmetric that is no difference between IN.port1 = OUT.port2

and OUT.port2 = IN.port1 contrary a normal variable or parameter assignment, the

connection of the port is part of the configuration of system and script in Python which attributes

of SimObject such as Params function. Two objects can define on their ports should be

connected using the assignment operator. Thanks to using "Vector ports" the objects have a

possibly unlimited number of ports which an assignment to a vector port adds the new peer to a

list of connections rather than overwriting the last connection.

2.2.11.2.3. Packets

Gem5 uses a specific transfer mechanism which encapsulates data in Packet and transfers between

two Memobjects. This is against to a Request whereas a single Request transit from a requester

to the ultimate destination and back, possibly being transferred by several different Packets along

the way

Accessor methods allow Read access to the many packet fields while it verifies the data in the

filed being read is valid.

27

A packet contains the following features:

 Address - The memory location that is used to conduct the packet to own target (If it does

not allocate) and to process the packet at the target. Normally it allocates a physical address

for the request object. But virtual address may use in the specific situation. It may not be

same as the original request address due to address translation.

 Size – The allocation address in memory has size and it is able to modify also the size may

not be the same as that of the original request, as in the cache miss scenario and different

location.

 Pointer -A pointer to the data control manipulation of data in the packet. Which sets by

datastatic () and dataDynamic (), also the pointer use allocate () function

in order to allocate the packet into the address and freed when the packet is destroyed. In

addition pointer can retrieve by calling getPtr () or getConstPtr (). Eventually,

The get () function execute a guest-to-host endian conversion and the set () function

execute a host-to-guest endian conversion.

 Attributes of packer – There are a list of Packet Command Attributes related to the packet

 State of pointer - A SenderState pointer is a virtual structure that is used to maintain

state associated with the packet and return the state to the packet's response.

 Pointer to the request

2.2.11.2.4. Request

CPU or I/O devices issue the request object by encapsulating the original request. While this

request’s parameters are continuous during the whole of the transaction. Thus a request object’s

field is able to write more than once for a given request. There are few of constructor and update

value in a request filed which enables to be written at different times. Accessor method provides

read access to all request filed when it verified the data in the field being read valid. The fields in

the request object are normally used just for statistics or debugging.

Request object fields include:

 Virtual address – If the request was issued directly on the physical address. This field will

become invalid. (e.g., by a DMA I/O device).

 Physical address.

 Data size.

 Time the request was created.

 The ID of the CPU/thread that caused this request. If the request was not issued by a CPU

this filed will become invalid too (e.g., a device access or a cache write-back).

 The PC that caused this request. Also if the request was not issued by a CPU this filed

maybe invalid.

28

2.2.11.2.5. Packet allocation protocol

In fact, access type determines the protocol for allocation or de-allocation of the Packet objects

in Memobject. This protocol differs widely with coherence protocol. There are three different

memory system modes in the implementation of ports that associated with access types in the

following:

2.2.11.2.5.1. Atomic and Functional

The Atomic and Functional transaction function generate packet object in requester by calling

sendAtomic () or sendFunctional () in both Master and Slave port, Also return

recvAtomic () or sendFunctional () on the peer port. The other side responder

using the Packet::makeResponse () method in order to take a request packet and modify

then overwrite it in place to be suitable for returning as a response to that request. The requester

is able to allocate the Packet object on Stack or statically. The Atomic mode is suitable for fast-

forwarding and special situation simulation and warming up the simulator. Also, the functional

mode is debugging mode.

2.2.11.2.5.2. Timing

Timing mode generates correct simulation results compared to atomic and functional. Which use

two simple message for the transaction, a request, and a response. Unlike previous modes, timing

mode allocates Packet object by the sender dynamically. These capabilities allow to manage

memory allocation as sender responsible and deallocation as receiver responsible, it may select

to reuse the request packet for its response to save the overhead of calling operators to delete

and then new (and gain the convenience of using makeResponse ()). The Packetptr as a

parameter of ports has the main role in the interface of all memory system object. The packet is

the request or response to send or receive by using the sendTimingReq function for sending

a packet which is called on the Master then receive a packet in Slave port by calling

recvTimingReq and return value of true or false for allowing using retry mechanism or

not. In the case recvTimingResp function in master side returns true, that is the return value

of sendTimingResp in the slave. This transaction for the request is complete else slave does

not accept the request because of issue or being busy and returns false if so as mentioned slave

port use retry mechanism by calling sendReqRetry and sendReqRetry on the master

port. It is clear Master port is on CPU side and Slave port is on Memory side or cache.

2.2.11.3. Access Types

The Ports support three types of access (transport interfaces):

2.2.11.3.1. Functional

This interface method is used for loading binaries, debugging, introspection, etc. It completes the

transaction in a single function and requests complete before function returns. This method is

similar to the debug method in TLM 2.0

29

2.2.11.3.2. Atomic

It complete transaction in the single function call and Requests complete before the function

returns approximate latency without contention or queuing delay. It used for loosely-timed

simulation (fast forwarding) coding style. This method is similar to blocking transport method in

TLM 2.0

2.2.11.3.3. Timing

This access method provides a model for realistic timings of real memory systems. They use an

asynchronous protocol where responses are not instantaneous. This method is Timing accesses in

Gem5 are similar to non-blocking transactions in TLM in the sense that they split a single memory

access into request/response phases and use forward/backward paths for communication.

However, Gem5 and TLM employ a different mechanism for enforcing back pressure. While

TLM defines exclusion rules, Gem5 uses the retry mechanism.

2.2.11.4. System Configuration

Gem5 simulation script has two main phases: a configuration phase, and a simulation phase

 Configuration phase: instantiation simulation system is determined by construction

SimObject and interconnection between its component and parameter which a

hierarchy of Python simulation objects;

 Simulation phase, the actual part of system simulated derived from C++ classes and

objects whether is SimObject, Membject or other devices and components.

Both of these phases are controllability via command-line

In order to instantiate the simulation, Gem5 provide the simulator objects so-called SimObject

such as CPUs, caches, memory, peripheral devices, and buses, etc. Which all SimObject has

built-in C++ scripts and then export to Python. Then, the Python configuration script interacts

with Gem5 simulation core, while the interaction process provides by the Gem5 module is started

in Python then translate into C++ function calls. Then in order to create configuration script in

python from SimObjects needs to set system parameters and determine the interactions

between SimObjects with choosing any valid Python code in the configuration scripts. This

script is able to set up and execute the simulation. Eventually, in order to start the simulation, the

instantiation process passes through all of the SimObjects. [10]

Gem5 is a complete simulation framework that provides specific models. For a variety of system

components and means for easy configuration. [1]

To simulate fast avoiding complexity and just configure selective and necessary components of

Gem5 for accuracy, It executes system-call mode While it can simulate full system easy by means

of available configuration script also It is necessary to have extensive knowledge about the

hardware system. ARM ISA as one of the most popular ISAs used in Gem5.

30

Most of the complication in setting up configuration files come from creating the system object

(SimObject). For creating new Python objects, which inherit from own ARM class in Gem5

confirmation libraries.

2.2.11.4.1. SimObject

One of the most powerful parts of Gem5’s Python interface is the ability to pass parameters from

Python to the C++ objects in Gem5 module. Therefore All major Gem5 components are

SimObject which defines as simulation object that built-in C++ classes it includes the

SimObject’s state, behavior, and performance-critical simulation model and are accessible

from the Python configuration scripts contains the component’s parameters and specifications and

used for script-based configuration and share a common configuration. In term of the Gem5

module, SimObjects include both concrete and abstract models of hardware components such

as cores, caches, NoCs, pipelines, and memory controllers. [11]

SimObjects can have many parameters which are collected in Python configuration files. The

diversity of parameters and allows creating simple or complex simulation system close to the real

machine.

2.2.11.4.1.1. Creating a SimObject [12]

In order to create the SimObject for system configuration purpose, there is two main

instruction which in different simulation phase. First of all, it must derive from the Python class

form Python SimObject. At this point, it is necessary to define Python parameter, ports, and

configuration where parameters in Python are automatically turned into the C++ structure and

passed throughout C++ SimObject. Then append this Python filed created to SConscript

or implant it in an existing SConscript file in related root. Second it requires to derive C++

class from C++ SimObject. In this case, it necessities to describe the simulation behavior and

Figure 8: Configuring and Running Gem5

31

states. Also, it can use a documented library of C++ files in Gem5 sources. Then same as

configuration phase, it must add the C++ filename to SConscript in the directory of created

SimObject. Eventually, it needs to make sure you have a create function for the object. The

figures 8 and 9 depicts the situation of the Python and C++ parameters in configuration and

simulation phases.

Figure 9: Implementing the model into the Gem5

32

2.3. SystemC

Complexity in hardware architectures has forced companies to look for new development tools

and approaches, The Open SystemC Initiative (OSCI) is a formed standardize to support and

advance SystemC for system-level design as a set of the class library in C++ which is inter-

operable for System on Chip modeling platform and allows the exchange of IP models in order

to system-level design and functional verification. SystemC also offers the event-driven

simulation interface for design and concurrent hardware and software development. These

facilities make access easy for system designers to digital simulation models and prevent

expensive and catastrophic failures. [13]

SystemC can be used by developers in order to elaborate high-level synthesis (Electronic system

level) and simulate concurrent process furthermore enables a huge set of possibilities for

Architectural exploration and Performance Modeling. SystemC concentrate on the functionality

of the system instead of the structure of system due to avoid to cyclomatic complexity. This means

that it is possible to concentrate on the actual behavior of the system more than on its

implementation details. But detailed implementation can be changed during any alternative of

system architecture.

Virtual platforms can provide software developers with a development platform before the

building real machine. Virtual platforms have been integrated into a SystemC Analog/Mixed-

Signal-based simulation and verification environment.

2.3.1. Importance of SystemC

Some of the important virtual prototypes are functional software models of physical hardware

which based on SystemC, Furthermore, they provide controllability over the entire system and

offer powerful debugging and analysis techniques.

Virtual platforms can provide software developers with a development platform before silicon

being available. In addition, virtual platforms have the capability to be reused in future projects

Figure 10: Communication-centric & Mixed Abstraction level in SystemC

33

and hardware engineers able to fast design space exploration, that means they can try out different

things like how big is system cache or what is the number of cores should use or exchange easily.

While ago, building FPGA prototyping board and transfer to another country this is more

complicated but virtual prototype is just software that hardware engineers can email. Eventually,

virtual platforms have been integrated into a SystemC AMS-based simulation and verification

environment.

2.3.2. SystemC analogy

SystemC as a language of programming can compare with other hardware description languages

like Verilog or VHDL. These type languages only use in Register Transfer Level (RTL)

descriptions, hardware verification and using logic gates while systemC exert on system-level

modeling particularly virtual platform, software development, functional verification,

architectural exploration, and high-level synthesis. Following figure illustrate capabilities of the

systemC among the other HDLs

2.3.3. Advantages and disadvantages

SystemC as a language for modeling system has many capabilities such as easy integration in

molding product or any software production in systems, more flexible with respect to platforms

in the simulation of modules and architecture exploration, classify each module in order to

convenient access of each model. Unlike other alternatives, SystemC has written in single

programming language C++ that leads to compile faster and convenient understandably by

designers. SystemC has some drawbacks in primitive version such as poor support for

asynchronous events and necessity of kernel support but they have solved in the present version.

SystemC as an alternative modeling platform can solve several challenges in system-level design.

All in all leading companies use SystemC to create a wide range of environment for system-level

design and verification. Many semiconductor companies in the SystemC community have

participated at public events where they described their use of SystemC. Many systems and

semiconductor companies currently become a member of systemC community. For example

Figure 11: Comparing SystemC & other HDLs

34

IBM, Intel, ARM, Cadence, STMicroelectronics, Canon, NEC, Infineon, Motorola, Nokia and

etc.….

2.3.4. Features and constructions:
Communication mechanism in systemC defines essential building constructs such as modules,

interfaces, ports, exports, and channels to be used in TLM structural to represent hierarchical

structures and communication between blocks and models. In this regard, SystemC also presents

signals, processors in synthesizable model and events that allows synchronization a between

processes.

35

2.4. TLM 2.0
SystemC for more interoperability between various model needs to effective and detailed

functional communication. The TLM-2.0 transaction-level modeling standard from the Open

SystemC Initiative was published as abstraction communication instead of abstraction structure

among modules and digital systems. Transaction point to encapsulate communication for

interaction between components. Modeling in transaction level focused on functionalities help

designer to develop virtual prototypes applications and simulate hardware and software in

different abstraction levels to optimize performance modeling. Communication mechanism in

TLM is implemented modules and ports which are using digital signals and blocks through the

channels and interfaces classes. Therefore high Interoperability between models in TLM affects

directly on possibilities of system design and Architectural exploration. These attributes enable

TLM 2.0 to become a golden model for hardware functional verification. [14]

2.4.1. Interface and blocks in TLM

2.4.1.1. Initiator
The module that initiates new transactions and flows to interconnector or directly to target (CPU)
2.4.1.2. Target
The module responds to transactions initiated by other modules (Memory).
2.4.1.3. Sockets
A socket is an internal endpoint for sending or receiving data (generic payload) at a single node

inside or outside system simulated.

2.4.1.4. Transaction
A transaction is a data structure (a C++ object) passed between initiators and targets using

function calls.
2.4.1.5. Generic payload
The most significant part of TLM is generic payload because it is template argument to gain

interoperability between transaction level models. It encapsulates low-level details in a set of

attributes such as address, command, status, and other information related to data package in the

transaction cycle.
2.4.1.6. Base protocol
For using of generic payload TlM specifies protocol call base protocol which its standard form of

highest level of interoperability among the models.
2.4.1.7. Interconnector
Interconnect device is a general form of bridges between two blocks and allows the flow of data

packages and address from one to the other.

36

2.4.1.8. Router
The router is a transaction device that forwards data packets (Generic payloads) between many

blocks.
2.4.1.9. Arbiter
An arbiter is a transaction device used in multi-initiator blocks to select which initiator will be

allowed to control and send the Generic payload to the target. The most common kind of arbiter

is the memory arbiter in a TLM framework.
2.4.1.10. Bus
The bus on the TLM is referred to a communication system that can move data and commands

quickly between the initiator, target and other system peripherals
2.4.2. Interoperability
In addition to Speed of simulation, TLM has another significant capability named interoperability

which enables TLM to communicate interoperable API for memory mapped bus modeling and

between different models. So TLM avoids adapters where possible.
2.4.2.1. Interoperability layers
Interoperability layers consist of:

 Core interfaces TLM to API
 Sockets
 Generic payloads
 Base protocol (collection of rules)

Figure 12: TLM Components Interoperability

37

2.4.2.2. Interoperability has two different types

2.4.2.2.1. Interconnect
It uses a standard form of protocol call Base-protocol which cause generic payload can ignore

extension. Nevertheless Functional incompatibilities still possible.
2.4.2.2.2. Adaptor
It implements new protocol contains Generic payload with an extension which it can’t bind

sockets to differing protocols. Whereas extension mechanism in generic payload exploited for

ease of adaptation reason, generic payload with and base protocol still exploited for acceptance

of coding style.

2.4.3. TLM 2.0 vs RTL

RTL is an abstraction level detail of hardware design abstract of the structure of design (logic and

timing) which describe register and combinatorial function between those registers any abstract

timing by just dealing with state changes or clock cycle boundaries and it needs an event on each

individual signal connection those two blocks together. RTL also abstract timing – clock cycle

boundaries. While TLM is an abstraction communication replace lots of pin wiggling with a single

function, individual events and phases that constitute the communication between blocks in the

digital system and instead deal with communication in more coarse-grained terms so a collection

of individual events and the pinnacles occurring over some period of time can be abstracted. In

particular point of TLM is simulation acceleration functionality is the best captured in a behavior

model simply because that’s the best match in term of simulation speed you can take and

architectural exploration. This facility also enables TLM to boot fast enough software O/S in

seconds. The RTL Simulate every event, whereas TLM is 10-100 times faster than RTL. Simulate.

As a result of TLM accurate enough to stay in use Post-RTL.

Figure 13: RTL vs TLM

38

2.4.4. TLM Advantages

 Simulation speed.

 Interoperability.

 Capability to take different transaction level.

 Models from different sources and have played together.

 TLM based on architectural modeling for fast executable software development and

establish for hardware verification test bench.

 Make easier for system level designer to experiment with a different bus architecture.

 Using of Multiple Processor, Software stacks, Bus Bridge in high level

interoperability.

2.4.5. TLM Infrastructure and communication

Communication mechanism in TLM consist of three-layer as following

2.4.5.1. Core mechanism
Foundation layer is a set of mechanisms these are the definitive C++ API for TLM which using a

variety of interface such:

2.4.5.1.1. Blocking interface

b_transport (TRANS &, sc_time &);

This method transaction complete in one call and just in the forward path (unidirectional) also

Includes timing annotation and used with loosely- timed coding style (maximize simulation

speed).

2.4.5.1.2. Non-blocking interface

tlm_sync_enum nb_transport_fw (TRANS&PHASE, sc_time&);

tlm_sync_enum nb_transport_bw (TRANS&PHASE, sc_time&);

this method allow multiple calls backward and forward (bidirectional) also Includes timing

annotation and phases used with approximately-timed coding style (Accuracy simulation).
2.4.5.1.3. DMI (Direct Memory Interface)
This method is used for transactions direct access to main memory without the interference of

CPU and non-intrusive read and write operations. It executes with zero delays, no context, and

no side effects. This interface significantly reduces the overhead for simulating transactions.
2.4.5.1.4. Phases
It defines the state synchronization state values between an initiator and a target in non-blocking

transport. The base protocol defines 4 phases.

39

(BEGIN_REQ, END_REQ, BEGIN_RESP, END_RESP)

BEGIN_REQ ----------- Beginning of request phase

END_REQ ------------- End of request phase

BEGIN_RESP --------- Beginning of response phase

END_RESP ------------- End of response phase

2.4.5.1.5. Generic payload
Previously explained
2.4.5.1.6. Quantum keeper sockets

TLM 2.0 enables a utility class to keep track of their thread global quantum, local quantum and a

local time offset.

2.4.5.2. Coding Style

2.4.5.2.1. Loosely Time (LT): FAST

Using LT makes simulation fast enough for sufficient timing detail to boot O/S and run Multi-

Core systems in Block transport (b_transport) method and still need to give each initiator a

run and model timer and interrupt. Also, Processes can run ahead of simulation time (temporal

decoupling) by way of explanation Allowing SystemC processes to run ahead of simulation time

by doing and so minimize the amount of context switching the occur during SystemC simulation

that has a significant impact on simulation speed (Trick1). Transaction in LT coding style

completely just a single function call with minimal timing information just, of course, contribute

to speed in addition LT make direct access to an area of memory in the target bypassing the

transaction mechanism and therefore further increasing simulation speed. (Trick 2)

2.4.5.2.2. Approximately Time (AT): ACCURATE

2.4.5.2.2.1. Accurate

Using AT make simulation accurate in order to each process runs at a specific simulation time,

according to when activity happens in the target system and has enough timing information for

architectural exploration performance modeling. It uses non-blocking transport method for

the transaction and each transaction has 4 timing points (extensible) and allows models from a

different source to play to gather. In addition, transactions are annotated with delays which cause

the future event to be scheduled. AT coding style processes run in lock-step with simulation time

and call wait or notify to consume time. Totally AT coding style accurate enough for

performance modeling and sufficient for architectural exploration. AT coding style also known

as cycle-approximate or cycle-count accurate.

40

2.4.5.2.2.2. AT in three Steps

1. AT Makes use of TLM core interfaces and sockets.

2. Generic Payload catches a set of attributes that a typical of memory-map buses and it pass

through the sockets between the various DM components.

3. The base protocol defines a set of phases making the beginning at the end of the request in

a response and also captures a set of rules that are used by initiator and target when making

function calls through those standard sockets and passing the standard generic payload

backward and forward.

2.4.5.2.3. Concurrent simulation Environment

It is a type of simulation that various simulation in a different part of system simulates

concurrently instead of sequentially. In another word varies process are executed in overlapping

time without waiting for other computation to complete. This capability is used in new simulators

or when using the complex system with mesh and network

2.4.5.3. Services
AT coding style based on its specification serves some capabilities like

 Software Development
 Software Performance
 Architectural Analysis

Figure 14: Approximately-Time mechanism

41

 Performance Modeling
 Hardware Verifications

2.4.6. Interface method

2.4.6.1. Forward

1. b_transport ()

2. nb_transport_fw ()

3. get_direct_mem_ptr ()

4. transport_dbg ()

2.4.6.2. Backward

1. nb_transport_bw ()

2. invalidate_direct_mem_ptr ()

2.4.7. Initiators, Targets, and Sockets

TLM-2.0 use two type of module for transaction an initiator and target. The transaction process

begins with the initiator module and conduct to the target module that responds to the transaction

which initiated by other modules. Actually, the transaction is a data structure based on the C++

object and included some attributes transfer between initiator, target and interconnect component

by using function calls. Some module can act as initiator and target at the same time. These

modules called Interconnect component and formed in such as arbiter, router or bus. An

interconnect component does not modify or manipulating the transaction. Another important

component which places for each module is a socket. In fact, socket used by the initiator as

initiator socket for sending transaction toward the target socket whether target socket owns to

target module or buses. Target socket receives incoming transaction. An interconnect component

has both a target socket and an initiator socket in term of service to other modules.

2.4.8. Virtual Memory management

Virtual Memory management implements the tlm_mm_interface interface with storing in

IEEE Std 1666-2011 clauses 14.5 and 14.6. Memory management as a part of CPU can handle of

mapping between physical pages in actual memory and their association in the standard

addressing schema with sharing memory pool or re-use transaction objects by Memory

management utility. It also Avoids to construction and destruction of generic payload (*gp)

transaction objects because of the implementation of the extension mechanism. End-of-life: In

approximately-timed coding style use transaction objects in several times during the forward and

backward cycle. So memory management can control the lifetime of transaction object through

calls to acquire and release commands in generic payloads (*gp). Memory management utility

performs with Allocating of memory for generic payloads during the back-and-forth transaction

and then freeing of memory for generic payloads at the end of the transaction.

42

2.4.8.1. Memory management in the Interface method

2.4.8.1.1. nb-transport

Memory management (mm) must be set reference count with the non-zero object and it not

reallocated while in-use (fixed)

2.4.8.1.2. b-transport:

There is no any Memory management (mm) for b_transport whatever sets extension should

also clear it.

43

3 Chapter 3

Experimentation and analysis

In this section, it will be discussed about the implementation and experiment of two

communication mechanism and assess aspects.

3.1. TLM-TLM mechanism

It this section I present a single bus model can make bidirectional connection two environment

so-called transactions that enable accurate communication between blocks in the digital systems.

3.1.1. Module classes

Defining the macros SC_INCLUDE_DYNAMIC_PROCESSES which use in specific part of TLM

in particular simple sockets for creating Initiator and target sockets which spawn dynamic

processes.

class Initiator: public sc_core::sc_module

{.....};

class target: public sc_core::sc_module

{.....};

3.1.2. Top-level module instantiation

1. Initiator

2. Interconnect: Bus, Router, Arbiter

3. Target

SC_MODULE(Top)

{

 Initiator *initiator; /// CPU

 Target *target;

44

 SC_CTOR(Top)

 {

 initiator = new Initiator("initiator");

 memory = new Target ("target");

 initiator->socket.bind(target ->socket);

 }

};

Each component must bind by sockets in order to transactions propagating through an

interconnect component (bus) placed between the initiators (CPU) and target (memories). The

sockets encapsulate data between modules in forward and backward path Initiator socket is bound

to target socket. An initiator socket is actually a sc_port that has a sc_export on the side,

whereas a target socket is actually a sc_export that has a sc_port on the side. An initiator

socket is sc_port and a target socket is a sc_export. The bind operator binds port-to-export

in both directions by the single function call.

Sc_main function:

int sc_main(int argc, char* argv[])

{

 Top top("top");

 sc_start();

 return 0;

}

3.1.3. Initiator and Target modules classes

Namespaces tlm and tlm_utils introduce TLM 2.0 in C++. tlm_utils namespace is

created for productivity and convenience and essential for interoperability

class Initiator: public sc_core::sc_module

{

 private:

 public:

45

 tlm_utils::simple_initiator_socket<Initiator>

socket;

 SC_CTOR(Initiator) : socket("socket")

 {

 }

.....

Class Target: public sc_core::sc_module

{

 private:

 public:

 tlm_utils::simple_target_socket<Target> socket;

 SC_CTOR(Target) : socket("socket")

 {

 …

 }

These utility classes derived two simple sockets.

The Initiator communicates with the target using non_blocking transport method interface.

As mentioned above the nb_transprot method is two-way communication which is more

accurate and cycle-approximate then register callback in the backward path for incoming interface

method calls in the initiator and register callback in the forward path for incoming interface

method calls in the target.

socket.register_nb_transport_bw (this,

 &Initiator:: nb_transport_bw);

....

socket.register_nb_transport_fw (this,

 &Target:: nb_transport_fw);

.....

46

defining the peq_with_cb_and_phase.h header from tlm_utils for nb_transport

which use in specific part of TLM in particular non-block transport in order to pending an event

queue with code blocks and its phase for communicating backward and forward path with waiting

in Initiator and target sockets which spawn dynamic processes.

3.1.4. Generic payload

The Generic payload is an underlying part of TLM-2.0 standard due to make interoperability

property between transaction level models.

Using a generic payload has two main reasons:

1. General-purpose input/output transaction type for abstract memory-mapped bus modeling.

(no detail of bus protocol)

2. The base for modeling a board range of specific protocols at a more detailed level.

There is a standard set of attributes contained in generic payload: command, address, data,

pointers, byte enables, streaming width, response status, DMI (direct memory interface)

1. Command: the Generic payload support two main commands (Read & Write)

2. Address: The address value allocate for commands

3. Data pointer: It points to data buffer to the initiator.

4. Data length: It gives the length of the data array.

5. Byte enables:

6. Streaming width: It defines the width of a stream burst

7. Direct memory interface (DMI): The DMI represent direct memory interface method.

8. Response status:

This attribute must always initiate to the value of TLM_INCOMPLETE_RESPONSE.

3.1.5. Phases

The TLM non-blocking transport method includes four phases: BEGIN_REQ, END_REQ,

BEGIN_RESP, and END_RESP. which present beginning or finishing the request and response

Additionally, two functions make communication generic payload in the initiator and target in

two different directions:

nb_transport_fw()& nb_transport_bw()

Which explained above. Both functions receive a phase and a timing annotation as additional

arguments.

 Three Enumerator base on the base protocol in communication in mentioned functions:

 TLM_ACCEPTED, TLM_UPDATED, TLM_COMPLETED

47

3.1.6. Interconnect classes (BUS)

Here is the definition of BUS in the nb_transport method: The Bus has to check out

the attribute of each address to determine which socket (initiate or target) should send the

transaction out through, target_nr define a number of the socket in the target that it

is appropriate for the forwarded transaction. Finally, nb_transport return

TLM_COMPLETED then nb_transport_bw replace origin address and return

targ_socket.

3.1.7. Utility: Memory Management

1. It uses TLM::tlm_mm_interface for defining Memory Management class contains

two main objects allocate & free which allocating memory for “gp” and free

memory when the transaction terminates.

2. Simple Memory Management class contain numOfAlloc and numOfFrees

function in public for this operation.

class MemoryManager: public tlm::tlm_mm_interface

{

 typedef tlm::tlm_generic_payload gp;

public:

 MemoryManager() : numOfAlloc(0), numOfFrees(0){}

 gp* allocate();

 void free(gp* payload);

private:

 struct space

 {

 gp* payload;

 space* next;

 space* prev;

 };

 space* numOfAlloc;

 space* numOfFrees;

};

MemoryManager::gp* MemoryManager::allocate()

48

{ ... }

void MemoryManager::free(gp* payload)

{ ... }

3.1.8. Top level

Considering that in this example it uses a bus as inter-connector then the Top-level module

instantiates multi initiators, a bus, and multi targets. For this purpose Top-level module contains

an array for defining initiators and targets. So bus must bind between init_socket and

targ_socket as shown below:

SC_MODULE(Top)

{

 int n=4;

 Initiator* init[n];

 Bus* bus;

 Target* target[n];

 SC_CTOR(Top)

 {

 bus = new Bus("bus");

 for (int i = 0; i < n; i++)

 {

 char txt[10];

 sprintf(txt, "init_%d", i);

 init[i] = new Initiator(txt);

 init[i]->socket.bind(bus->targ_socket);

 }

 for (int i = 0; i < n; i++)

 {

 char txt[10];

 sprintf(txt, "target_%d", i);

 target[i] = new Target(txt);

 bus->init_socket.bind(target[i]->socket);

 }

 }

};

49

Currently, the virtual platform already prepared and it can use in the test bench.

For testing this platform It can make signals for writing in initiators and reading from targets.

While It uses the random function as a simple test, as shown in the following:

int sc_main(int argc, char* argv[])

{

 Top top("top");

 sc_start();

 return 0;

}

Figure 15: Non-blocking Trans, mem-management through the BUS interconnect

50

3.2. Gem5-TLM mechanism

In this section will present a couple Gem5 with SystemC and then both Co-simulation

environment

3.2.1. Coupling Gem5 with SystemC

Actually, Gem5 already supported the coupling to the SystemC kernel accordingly, Gem5 is an

event-driven simulation kernel and some objects models hardware and by compiling Gem5 as a

library and using same logic to SystemC project and then It has a SystemC simulation kernel and

Gem5 logic and It needs something that couples these two so this is why module was introduced

SystemC module Gem5SimControl.

SystemC introduce a module called Gem5simcontrol for coupling two environments which

support codes and pools of each side. The object in SystemC implement the Gem5 event queue

and basically, it replaces the Gem5 event queue with the hook to the SystemC event queue.

By scheduling an event on Gem5, It will get a SystemC event which will be scheduled to be

executed driven body Gem5 Object. Although it could hook Gem5 to the SystemC kernel, It is

still not able to communicate with other SystemC modules, because there is no way to

communicate between two environments. So it needs to work to TLM for the transaction, in order

to make the system capable of plugging in any other SystemC model and hook it to Gem5

modules. The CPU is simulated in the Gem5 world and there are transactors that are connected

to the memory which is simulated in the SystemC world. The following figure depicts an overview

of the communication of memory objects in Gem5. The similarities of the communication

mechanisms in Gem5 and TLM are evident.

Figure 16: The Similarity between Gem5 and TLM

51

To send a request to the memory of SystemC world, not to the memory of Gem5 containing the

address and size, It must follow these procedures:

1. Forward the packet data to the externalslave, which should translate these Gem5’s

requests in the packet data to the SystemC Generic payload.

2. Create a new Generic payload object and copy all the metadata from the Gem5 packet to

TLM Generic payload which the metadata at both sides is very similar to each other,

fortunately, it needs to just copy it.

3. Keep track of the original packet that is generated. Then it hooks reference to the packet as

an extension to the Generic payload.

4. TLM procedure forwards the payload object to the memory and it will answer the request

if it reaches the request within the data and creates a reply, then eventually the reference

returns to the slavetransactor.

5. Restore our original Gem5 packet by removing the extension from the Generic payload

and finally update the packet with the metadata from the Generic payload and store it.

3.2.2. Memobject
Before initiating the coupling develop an explanation, it is fundamental to know about memory

system of Gem5 and its object so-called “memobject” and similarity between the mechanism

of the memory system of Gem5 and transaction mechanism of TLM.

In Gem5, all objects that communicate via the memory system are called memory objects

(MemObject). These are used to make the design more modular. This class appends the virtual

function in order to interface and connect the MemObjects together structurally. Following with

functions are in use:

getMasterPort (const std::string &name, PortID idx)

getSlavePort (const std::string &name, PortID idx)

Memory objects communicate with each other through ports. Ports are always used in pairs

consisting of a master port and a slave port. The master port sends requests and receives responses.

The slave port receives requests and sends responses. Typically, a master module (e.g. a CPU)

has one or more master ports and a salve module (e.g. a Memory) has one or more slave ports.

Interconnect components (e.g. bus, cache, bridge) have both port types. A connection between

memory objects is established by binding master and slave ports to each other. Each connection

binds exactly one master port to exactly one slave port. An interconnect components, such as a

cache, bridge or bus, has both MasterPort and SlavePort instances.

The following figure illustrates that with neglecting to get address function there are two main

types of function which makes Interaction between ports and objects. the send and the receive

function. As an explanation, packets encapsulate transfer between CPU and memory call

sendTimingReq(pkt) to send a packet. Corresponding to send function in Master port

there is a recv function which must respond to any request that is sent. Slave port directly call

52

recvTimingReq (pkt) in order to return value to port peer. Since the packets contain actual

payload data of memory accesses, also Metadata consists of address, size, command, and status.

Memory objects interface, by exchanging references to packets in a series of function calls. There

is one pure virtual function as a penalty in this mechanism but is able to connect any memory

objects together with keeping generic ports. The logic of the communication between memory

and CPU in Gem5 simulator is very similar to the logic used in TLM. It goes without saying

Gem5 as simulator can take place one of the sides in TLM Structure.

3.2.3. Practical Usage: General Flow

3.2.3.1. Building gem5

This section covers the how to set up and build Gem5

1. In order to preparing system for setting up Gem5 on Ubuntu 16.04. It needs some

Requirements tools which listed in the following command used in Linux terminal.

>> sudo apt install build-essential git m4

>> scons zlib1g zlib1g-dev libprotobuf-dev \

 protobuf-compiler libprotoc-dev \

 libgoogle-perftools-dev python-dev

Figure 17: Interaction between SimpleMemobj and its ports

53

2. In order to obtain the Gem5 source code from GitHub should clone the repository then

build Gem5 in the ARM by “Scons” which uses the SConstruct file

(Gem5/SConstruct) to set up a number of variables and then uses the SConscript file

in every sub-directory to find and compile all of the Gem5 sources.

3. Compile gem5 normally:

>> scons build/arm/Gem5.opt -j4 ///or Gem5.debug

I used “j4” flag for here to execute the build on 4 of my machine.

4. Compile gem5 as a library:

>> scons --with-cxx-config --without-python \

 --without-tcmalloc build/ARM/libgem5_opt.so

5. Change directory to util/tlm

6. Current directory contains the Gem5 modules that use in coupling, like

Gem5SimControl and Gem5SlaveTransactor and/or

Gem5MasterTransactor which in your SystemC project and connect them to your

SystemC models. Make sure to go through an individual port name to the constructor of

each transactor.

7. Compile your project by starting Gem5 with tlm_slave Python configuration. Not that

It is necessary to create config.ini which reveal the Gem5 configuration for running

the coupling project.

>> ../../build/ARM/gem5.opt \conf/tlm_slave.py

8. Run gem5 with a desire python configuration script as a system-call mode or full-system

mode with --tlm-memory=<port-name> to make m5out/config.ini. Make

sure to set the tlm_data attribute of the External Slaves to the port name of the

corresponding SystemC transactor.

9. Run your SystemC project and pass the m5out/config.ini file to your

Gem5SimControl object.

build/examples/slave_port/gem5.sc \m5out/config.ini

54

There is four option flag for setting memory offset, debug mode and verbose output also a

number of ticks in the following:

 -o <offset> -- set memory offset

 -d <flag> -- set a gem5 debug flag (-<flag> clears a flag)

 -v -- verbose output

 -e <ticks> -- end of simulation after a given number of ticks

3.2.4. Simulation project

Ports of Gem5 support three different access types: timing, atomic, and functional. Atomic and

functional accesses are synchronous. While timing access is use an asynchronous protocol where

responses are not instantaneous.

In Atomic access, the master module sends a request by calling sendAtomic () on one of the

free master ports and the response is provided immediately when recvAtomic () returns then

receive an atomic request packet from the master port. The atomic model Gem5 focus more on

fast transactions and doesn't provide so much timing detail and accurate simulation model.

Also at the same hand functional access type has similar attributes like atomic calls

sendFunctional () and recvFunctional () returns then received a functional request

Figure 18: Gem5 to TLM (Slave Transactor) w/o cache

55

packet from the master port. While Functional accesses are mostly used for initialization,

debugging, and to load binaries to memories. Atomic accesses directly correspond to blocking

transactions in TLM. Similarly, functional accesses correspond to debug transactions.

In timing access, there are two main mechanisms, simple and retry, the main difference between

them is the sequence of sending and receiving the data packet. Timing access is high-accurate and

detailed forwarding and the concept is very similar to the non-blocking transport interface TLM.

All in all the master module sends a request of timing mode by calling sendTimingReq ()

function via the master ports. The corresponding slave port may accept or reject the packet. The

port return value of sendTimingReq () demonstrates the accept/reject status of a request by

using true or false. If a packet is rejected with returning false, then retry mechanism will

be used, the master module must not send any further packets using this port because of the busy

port. When the slave port is ready to receive a request, it calls sendRetryReq () to notify the

master port. The master port can then resend the request by repeating the call to

sendTimingReq (). However, the request may be rejected again. Once the slave module

accepts the request, it may forward the request to another module if there is Interconnect

component or process the request if there is a memory. On the response path, a similar protocol

is used. The slave module calls sendTimingResp () and the master port may accept or reject

the response. After a rejection, the master port calls sendRetryResp () to indicate that it is

ready to receive a response.

3.2.4.1. Coupling types

There are two types of coupling TLM to Gem5.

1. Slave Transactor

The slave transactor translates memory accesses in Gem5 to TLM transactions. For each

access, the transactor first converts the corresponding Gem5 packet to a TLM generic

payload object. The transactor acquires a generic payload object and initializes it according

to the information provided by the packet.

gem5 Access Type TLM Transport Interface

Atomic Blocking

Timing Non-Blocking

Functional Debug

--- DMI

Table 3: Gem5 access types and their corresponding transport

56

2. Master Transactor

The master transactor translates TLM transactions to Gem5 memory accesses. For each

transaction, it first converts the corresponding generic payload to a Gem5 packet. The

transactor allocates a new packet and initializes the common fields.

3.2.4.2. Explanation mechanism of Gem5 to TLM (Slave Transactor)

In this thesis I assume slave transactor due to following reasons:

1. Gem5 in the master side has more alternative in architecture and it can increase the usability

of co-simulation framework. (Usability)

2. Gem5 as the master port is capable configure in a variety of system components in system-

call or full-system mode. (Completeness)

3. CPU built-in Gem5 provide to achieve memory-system (cache-hierarchy, interconnects

and main memory) performance exploration in a fast and reasonably accurate also let’s

connect the translation lookaside buffer and cache ports on the CPU. (Flexibility)

First of all the system simulation need to define some socket for the communication and some

storage which has defined a constructor for in a special way following the SystemC. Next, the

system needs to define the TLM interface that implemented communication and apart from Gem5

actual memory so-called external memory. For transferring packet of data from Gem5 to TLM

needs to encapsulate relevant attributes in Gem5 called “Gem5 packet” to equivalent attributes in

the TLM generic so-called “payload object”. The cmd, data, addr, and size attributes of the

Gem5 packet are directly converted to their equivalent in the generic payload in TLM.

Gem5 Packet (Pkt) TLM Generic Payload (gp)

flags ---

cmd command

data data_ptr

addr address

size data_length

--- byte_enable_ptr

--- streaming_width

Table 4: Comparison of the fields used to encapsulate transfers

Since the flags are Gem5 specific, they are only checked but not converted. The

byte_enable_ptr and streaming_width in attributes of the generic payload are simply

initialized to their default values, While Gem5 does not support features that are equivalent to the

57

byte-enable and streaming features of TLM. In order to remember the original packet, the

transactor attaches a reference to the packet than to the generic payload which using its extension

mechanism. The generic payload in TLM supports two commands, read and write (R/W).

Therefore, the command attribute is set to read or write at random as input data in the master

side that here is Gem5. Then Gem5 packet of data needs to allocate address but for avoiding

construction and destruction of generic payload transaction objects due to the extension

mechanism implementation, the module should pool or re-use transaction objects by the

implementation of memory manager interface tlm_mm_interface. Memory manager can

control over a lifetime by counting a number of allocations, the transaction object which is

distributed across the hops and is coordinated.

Regardless of transacting atomic and functional accesses, this thesis selects Timing access with

multiple calls backward and forward (bidirectional). However, in order to correctly model the

timings, It needs to convert the TLM timing annotation (referenced to time object) to the Gem5

annotation (return value denotes the number of ticks). Timing accesses, however, are more

difficult to translate. The transactor needs to correctly implement both, the Gem5 timing protocol

and the TLM base protocol. Most notably, the transactor needs to enforce back pressure in both

directions.

Next, I discuss slave transactor non-blocking transport working mechanism.

As shown in figure 19 on the forward path when the master (Gem5) sends a request by calling

sendTimingReq()function to transactor. The transactor replies to this request by returning

true or false. If true receive by master module so-called Gem5SlaveTransactor. It

then calls nb_transport_fw() passing BEGIN_REQ to SCSlavePort then initiate a new

transaction and to forward the request to the SystemC target(Memory) module. The transactor

then needs to wait for the target module to advance to the END_REQ phase. If transactor returns

false. Then transactor follows TLM logic that means BEGIN_REQ phase is busy and

transactor reject all another request till be free. Then master module resend request by calling

sendRetryReq ().soon after the target module forwards the END_REQ phase.

On the backward path. Target module (Memory) on TLM side must respond to transactor. So

begin to a response by calling nb_transport_bw () by passing the BEGIN_RESP phase in

the TLM base protocol. Recovering original packet of data from generic payload when target

module (Memory) transfer generic payload to transactor by calling packet2payload ()

function like the following table. Next slave transactor transfers the packet to makeResponse

and sends the makeResponse to the master module by calling sendTimingResp ().

Then it transforms the packet to a response and sends the response to the master module by calling

sendTimingResp()same as the forward path this time slave transactor wait for the

reply of the master module (Gem5) true or false. If it returns True the transactor completes

the transaction by calling nb_transport_fw()and passing END_RESP. Otherwise, it will

return false the master module is busy and transactor has to resend the response to the master

module by calling sendRetryResp() pending master module return true finally The

58

transactor is able completes the TLM transaction. All the phase will be complete if TLM returns

TLM_ACCEPTED message.

In this section, it needs check transaction objects which transfer to TLM environment. Therefore,

check_transaction Check value returned from nb_transport_fw and BEGIN_RESP

by reading the state of command (cmd), exact address (adr) and pointer of data in the master

side.

Finally, in order to instantiate for completeness, when using the OSCI simulator, you will also

need the following sc_main function Therefore the Top level of simulation instantiate systemC

modules defined in initiator and memory modules, the initiator and target sockets have to be

declared and constructed explicitly, In other words for coupling two environments like a master

in Gem5 side and slave in TLM side, as follows:

The Gem5simcontrol module It also instantiates a transactor and then the memory Next all

module should bind to proper transactors and sockets in order to begin simulation and execute

tasks. Consequently, it performs all the connections and then starts the simulation.

There is some information hidden in these config notes that it will spread by passing the

config.ini file through the simcontrol module.

Figure 19: Gem5 to TLM with back pressure

59

But the simulation system requires another side which it should configure and implement in Gem5

domain side.

Due to creating a coupling simulation system. It requires creates a trafficGenerator on

CPU side then creates a cross by bus connects them. Also, it creates an external slave and

connected to the bus and then again it starts the simulation. Similar TLM domain the

Gem5simcontrol module build the Gem5 file system instantiate all the objects.

In this thesis, the project of a coupling system builds by scons through the passing

Sconstruct file.

Finally, simulation system needs to generate the configuration file for executing normal Gem5

with the Python script. Configuration file provides parameters in python script which are

automatically turned into a C++ and run the project and its binaries generated from the SystemC

TLM codes. Output as result of simulation shows in Result section that the simulation actually

runs successfully.

3.2.4.3. Configuration file

A typical simulation script has two phases: a configuration phase, where the target system is

specified by constructing and interconnecting a hierarchy of Python assembling objects; and a

simulation phase, where the actual simulation takes place in C++ simulation objects.

System simulation has many integrated objects which named SimObject that is structured by

C++ classes for forming the features and state then is placed into simulation system by a hierarchy

of Python object for composing parameters and relationships with other components of the

system. In fact, Gem5 enables a collection of Python object classes that correspond to its C++

simulation object classes. In another word Parameters in Python are transferred to a C++ structure

and passed to the C++ object. For instantiating system simulation, Gem5 provide configuration

files that it uses SimObject and their parameters synthesized from Python structure. These

Python classes are described in a Python module called "m5.objects". It can be found in .py files

in src in Gem5 sub-directory corresponding to C++ class location.

It needs to create a special configuration file for salve transactor. This is python file that will be

executed by the Python interpreter compiler into Gem5.

First, it must import the m5 library and all SimObjects and classes that we’ve compiled.

import m5

from m5.objects import *

Creating the first SimObject: The all System object inherit of the SimObjects in the Gem5

simulation system. The System object contains most of the simulation information In the form

60

of functionally such as various type of CPU, physical memory ranges, a memory bus, the

systemCrossbar, the root clock domain Xbar and memory, the root voltage domain, the kernel (in

full-system simulation), etc. SimObjects is instantiated like python class.

system = system ()

Transaction data between two environments need a number of regular ticks for this reason Gem5

system simulation needs to set the clock on the system. First, it requires to create a clock domain

and set '1GHz'clock frequency on that domain. Finally, It needs to configure '1V' voltage

domain for this clock domain.

system.clk_domain = SrcClockDomain ()

system.clk_domain.clock = '1GHz'

system.clk_domain.voltage_domain = VoltageDomain

 (voltage = '1V')

For converting non-blocking TLM to Gem5 equivalent access type It must use timing mode for

the memory simulation. Note that in the python configuration scripts, whenever a minimum size

is required and allocate that size in common '512MB'.

system.mem_mode = 'timing'

system.mem_ranges = [AddrRange ('512MB')]

In this system, there are two environments and it needs a component to connect their rout as

master and slave, here we use Gem5 as master and we have to configure CPU on it and TLM as

slave side and also we have to configure all memory and peripheral in slave side. First, we create

a CPU. But we need the Traffic Generator as an initiator module that randomly generates new

transactions. We modified the Traffic Generator so that it measures the host CPU time required

to complete each transaction. On an Intel i7-4790 host CPU, we measured an average of 818

ns=transaction for a total of 1:5 million transactions. So to create the Traffic Generator as CPU

and the relative file we can simply just instantiate the object:

system.cpu = TrafficGen (config_file =

"conf/tgen.cfg")

61

We can create an interconnect module called membus as the system-wide memory bus.

system.membus = SystemXBar (width = 16)

It will connect the I-cache and D-cache ports directly to the membus. In this system, It has no

caches.

So what we can do now is we can create transactors so we already have external ports and Gem5

and we created external ports that connect to TLM and then we created some transactor modules

and SystemC what we can do is we can hook to together and transact from Gem5 to TLM and

vice versa by simply translating these interface SystemC interfaces to the Gem5 models and vice

versa.

In this case, we should connect CPU TrafficGem port directly to membus slave port,

otherwise, by defining cache it is able to connect caches’ mem_side to a slave port of

membus, it is possible to will connect the I-cache and D-cache ports directly to the membus.

But as mentioned it needs to define connection ports on both sides for the transaction. It is

necessary to an object that able to connect CPU to ExternalSlave object as the last object in

the Gem5 side. Also, membus can play a significant role in the interconnect module which has

two different types of socket. First one is a slave port that able to bind to CPU port and also

system port and second is master port which directly connected to ExternalSlave.

system.cpu.port = system.membus.slave

system.system_port = system.membus.slave

system.membus.master = system.tlm.port

The last object that must define is ExternalSlave, also clearly we know ExternalSlave

acts as a bridge between the Gem5 world and TLM environment. In fact ExternalSlave

transfer data to SlaveTransactor inside TLM and vice versa.

system.tlm = ExternalSlave ()

system.tlm.addr_ranges = [AddrRange ('512MB')]

system.tlm.port_type = "tlm_slave"

system.tlm.port_data = "transactor"

62

Finally, we should instantiate and simulate all configured system and start execution whatever

simulated and assembled before we must create the Root object. All of the python SimObjects

are turned into C++ equivalents by instantiation process and passed to the C++ object.

root = Root(full_system = False, system = system)

m5.instantiate ()

m5.simulate ()

See figure 18

63

4 Chapter 4

Results

After running the project in two different mechanisms we can see the results and compare:

4.1. TLM/TLM

The following result achieved from TLM/ TLM experiment which this simulated system as

it mentioned it has one initiator send randomly generated data to Bus then data transfer to

four targets one after another. See Figure 15

4.2. Gem5/TLM

The following figure illustrates the result of Gem5/TLM Mechanisms which Gem5 as CPU send

random data to External Slave in Gem5 domain then transfer to Slave transactor in TLM domain.

Figure 20: result execution of TLM/TLM mechanism

Figure 21: result execution of Gem5/TLM mechanism

64

4.3. Comparison

With observing this two mechanism it can realize the TLM/TLM mechanism can transfer same

data about ~3.7 time faster than Gem5/TLM mechanism. So it can be concluded Gem5/ TLM

mechanism is slower because of it use two more components and translate data attributes in the

Gem5 domain to TLM logic. On the other hand, it is worth noting the Gem5 simulator has more

capability which provides a more complete and accurate model.

Figure 22: Schematic comparison of TLM/TLM and Gem5/TLM mechanism

65

5 Chapter 5

Conclusion

Both TLM-TLM and Gem5-TLM communication mechanisms proved to be suitable and feasible

communication between the environment to varying degrees of usability and accuracy depending

on the needs and resources of the application being modeled.

Selection the optimal mechanism allows focussing on efficiency in the simulation with regards to

five simulator evaluation criteria such as Speed, Accuracy, Flexibility, Completeness, and

Usability.

My final subjective assessment of both mechanisms can be summarized as listed below:

Speed: The Gem5-TLM communication mechanism has to employ master and slave transactors

along with External master and slave components using TLM logic for communication while

TLM-TLM mechanism can bind directly. This reason illustrates TLM-TLM is much faster.

Accuracy: With respect to Cycle-Accurate model both scenarios offer higher accurate

performance. But the accuracy depends on the memory traffic. Therefore, Gem5 provide two

types of memory model such as Ruby memory model and support for various cache coherence

protocols. This feature able to Gem5 simulator possible to explore various possible combinations

of parameters.

Flexibility: The Ruby memory system is much more elaborate and allows the accurate and

flexible definition of SLICC (Specification Language for Implementing Cache Coherence) and

network topologies along with supporting a large number of systems. It provides a domain-

specific language for cache coherence protocols, with defining cache memories, DMA controllers

enable high flexibility simulation. On the other side, SystemC TLM supports cache coherence

protocol too. But it has limitations to use another type of memory system.

Completeness: Gem5 simulator can support full-system simulation with multiple ISA whereas

systemC is not fast enough to boot an operating system in a reasonable time. Also, systemC needs

to implement IP-Cores.

Usability: With focusing on ease of setup and execution in usability there are many reasons as

following that SystemC has played the main role in developing Virtual platforms among vendors.

1. SystemC is an open-source free C++ class library and is very compatible with software and

easy to use in applications and virtual platforms.

66

2. SystemC able to quickly simulate HW and SW systems on different levels of abstraction

in order to estimate and optimize the performance and power for different applications.

3. SystemC is used for High-Level Synthesis, usually focused above RTL and models with

considering much less detail. In another word, it takes less time to develop code and much

faster.

Theses advantage of SystemC has become a reference model for verification and more popular

language in system-level modeling, in order to optimize the performance and power for different

applications. Furthermore, gem5 needs to systemC TLM logic for easing of setup and execution

to reach more usability.

Figure 23 : The Conclusion of the comparison of the two mechanisms

67

6 Chapter 6

Future work

By coupling Gem5 to TLM, Network-on-chip (NOC) can achieve several tiles where each

processing element present Memory or CPU connect by interface data transfer components. Each

processing element can present sub-system simulated Gem5 domain which couple to SystemC

domain. NOC model is able to use in the virtual testing environment.

68

Reference

[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness,Derek R. Hower, Tushar Krishna, Somayeh Sardashti,

Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David

A. Wood. “The gem5 simulator”. Newsletter ACM SIGARCH Computer Architecture

News. Volume 39 Issue 2, May 2011 Pages 1-7. DIO: 10.1145/2024716.2024718

[2] Anastasiia Butko, Rafael Garibotti, Luciano Ost, Gilles Sassatelli, “Accuracy evaluation

of GEM5 simulator system”, 7th International Workshop on Reconfigurable and

Communication-Centric Systems-on-Chip (ReCoSoC), July 2012, Pages 1-7, DOI:

10.1109/ReCoSoC.2012.6322869

[3] Christian Menard, Jeronimo Castrillon, Matthias Jung, Norbert Wehn, “System

simulation with gem5 and SystemC”, 2017 International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS), July 2017,

Pages 1-8, DIO: 10.1109/SAMOS.2017.8344612

[4] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich Meyr,

Andreas Hoffmann, “A universal technique for fast and flexible instruction-set

architecture simulation”. DAC '02 Proceedings of the 39th annual Design Automation

Conference, Pages 22-27, DIO: 10.1145/513918.513927.

[5] Islam Almasri, Gheith Abandah, Ali Shhadeh, Anas Shahrour, “Universal ISA simulator

with soft processor FPGA implementation”, 2011 IEEE Jordan Conference on Applied

Electrical Engineering and Computing Technologies (AEECT), December. 2011, DOI:

10.1109/AEECT.2011.6132512

[6] Mingsong Lv, Qingxu Deng, Nan Guan, Yaming Xie, Ge Yu, “ARMISS: An Instruction

Set Simulator for the ARM Architecture”, 2008 International Conference on Embedded

Software and Systems, July 2008, DIO: 10.1109/ICESS.2008.73

[7] R. Leupers and O. Temam, Eds., “Processor and System-on-Chip Simulation”. Boston,

MA: Springer US, Book · January 2010, DIO: 10.1007/978-1-4419-6175-4

[8] Hari Angepat, Derek Chiou, Eric S. Chung, James C. Hoe, “FPGA-Accelerated

Simulation of Computer Systems”, Book, August 2014, DIO:

10.2200/S00586ED1V01Y201407CAC029

[9] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, Muneeb Ali, “Protothreads: simplifying

event-driven programming of memory-constrained embedded systems”, SenSys '06

Proceedings of the 4th international conference on Embedded networked sensor systems

Pages 29-42, November 2006, DIO: 10.1145/1182807.1182811

[10] “Gem5 Tutorial” Available: http://learning.gem5.org/book/index.html

[11] “SimObjects - gem5.” Available: http://www.gem5.org/SimObjects

[12] “Simulating Systems not Benchmarks” HiPEAC Computing Systems, Week 2012, Ali

Saidi, Andreas Hansson, http://gem5.org/dist/tutorials/hipeac2012/gem5_hipeac.pdf

[13] “ SystemC ” Available: https://www.doulos.com/knowhow/systemc/

[14] “ SystemC TLM-2.0 ” Available: https://www.doulos.com/knowhow/systemc/tlm2/

[15] Tse-Chen Yeh, Ming-Chao Chiang, “On the interfacing between QEMU and SystemC for

virtual platform construction: Using DMA as a case”, Journal of Systems Architecture:

the EUROMICRO Journal archive Volume 58 Issue 3-4, March 2012 Pages 99-111, DOI:

10.1016/j.sysarc.2012.02.002

