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Abstract

The flow in turbomachines is inherently unsteady and creates alternating loads on the
components. In particular, the rotor and stator blades are exposed to highly unsteady
pressure and velocity fields due to upstream wakes and turbulence along with poten-
tial effects of neighboring rows, resulting in unsteady forces an thus vibration of the
blades. If the frequency, phase and distribution of the forces coincide with an eigenmode
of the structure, the vibration amplitudes will grow larger, with the maximum ampli-
tude depending on the overall damping of the structure. Especially for integrated rotors
(blisks) with very low mechanical and frictional damping, the aerodynamic damping of
the blades determines the vibration amplitude and hence the stability of the structure.

Aerodynamic damping describes the influence of the unsteady aerodynamic forces on
the oscillating blades, which can be either stabilizing or destabilizing, depending on sev-
eral geometrical and physical parameters. In order to design reliable, highly efficient tur-
bomachines with high pressure ratios and improved performance, the exact determina-
tion of the aerodynamic damping during the design process is crucial, however though
an accurate prediction of the unsteady aerodynamic forces with transient CFD simula-
tions is still very time consuming and requires enormous computational powers. Fur-
thermore, there are no specific geometrical design parameters regarding aerodynamic
damping yet, which could help to decrease the number of design iterations in design
process of new turbomachines.

The main objective of this work has been to investigate, if there are correlations between
specific geometrical parameters such as blade angle distribution and the aerodynamic
damping of an axial compressor rotor. In order to determine the appropriate setup for
the transient CFD simulations for investigation of the aerodynamic damping coefficient,
initially, a numerical influence study has been performed for a grid including an isolated
rotor representing the subjected rotor geometry under investigation. Subsequently, ge-
ometrical parameters have been identified and the baseline rotor blisk has been then
be modified according to a test matrix of the parameters. The rotor design was real-
ized using ANSYS DesignModeler and BladeGen, with the subsequent CFD mesh being
developed using Numeca AutoGrid. Once modal analysis of the blisks were performed
in ANSYS Mechanical Classic, transient CFD simulations have been performed using
ANSYS CFX 18 to determine the aerodynamic damping, utilizing both the “Traveling
Wave Mode” approach and the “Influence Coefficients Method”.

Keywords: aerodynamic damping, aeroelasticity, turbomachinery, CFD, forced response, flutter,

FEM, trawling wave mode, influence coefficients method
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Nomenclature

Latin Letters

b m blade span height

C m chord length

C kg/s damping matrix

C - turbulence intensity factor

c N s/m damping coefficient

ccr N s/m critical damping coefficient

cp J/kg K specific heat capacity at constant pressure

d m distance from the nearest boundary

d s m2 infinitesimal arcwise surface component, per unit span

et J/kg specific total energy

F N force, force vector
~̂F N complex force vector

f Hz frequency
~̂h - complex mode shape vector

I - identity matrix

I - turbulence intensity

i - imaginary unit, i =p−1

K kg/s2 stiffness matrix

k - reduced frequency

Lref m reference length of the test case

l - nodal diameter

M kg mass matrix

m kg mass

m kg/m mass per unit wing span

m,n - blade indices

ṁ kg/s mass-flow rate

N - number of blades

NNB - number of blades

~n - normal vector to surface element

p N/m2 pressure

p̄ N/m2 mean pressure

p̂ N/m2 complex pressure perturbation

p̃ N/m2 time-dependent fluctuating pressure



xx Nomenclature

pdyn Pa dynamic pressure

Q̄ m modal displacement vector

qα W/m thermal flux

R m radius

S m span height

S m2 surface area

S f - blade scaling factor

T s oscillation period

t s time

u m/s flow velocity

~u m/s velocity vector

uref m/s reference velocity of the flow

uτ m/s friction velocity, shear velocity

V m3 volume

~v m/s velocity vector

X m displacement vector

Ẋ m/s first derivative of displacement vector (velocity)

Ẍ m/s2 second derivative of displacement vector (acceleration)

x, y, z m Cartesian coordinates

Y + - dimensionless wall distance parameter

Ywall m distance of the nearest grid to the wall

Wcycle J work per cycle

Greek Letters

α m2/s thermal diffusivity

Γdisp N/m mesh stiffness

δ m mesh displacement

ζ - damping ratio

λ W/m K2 thermal conductivity

λ m wave length

µ - mass ratio

µt Pa · s turbulence viscosity

ν m2/s kinematic viscosity

Ξ - stability parameter

Πν N/kg m2 viscous part of the stress tensor

ρ0 kg/m3 density

σ - interblade phase angle

φ - mode shape

φp→h rad phase angle of response with respect to excitation (motion); the phase

angle is per definition positive if the response is leading the excitation



Nomenclature xxi

ω rad/s angular velocity

Subscripts

ae aerodynamic

cycle over a complete cycle

damping related to damping

disp displacement

dist distance

disturbance related to disturbances

dyn dynamic

est estimated

Hub blade hub

ic influence coefficient

inlet domain inlet

ip integration point

max maximum

NB number of blades

ref reference

Shroud blade shroud

spec specified

static absolute quantities

tot total quantities

twm traveling wave mode

vol volume

wall refers to a wall boundary

ν viscous

τ refers to shear stress

Superscripts

∗ normalized value

◦ degree

Operators, Functions and Symbols

∇ gradient

∇· divergence

⊗ dyadic product

· inner product
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Abbreviations

BCR blade count ratio

CEL CFX expression language

CFD computational fluid dynamics

DOF degree of freedom

FEM finite element method

FFT Fast Fourier Transformation algorithm

GGI general grid interface connection

HCF high cycle fatigue

ICM Influence Coefficients Method

IBPA inter blade phase angle

MAC modal assurance criteria

NFS Navier-Stokes-Fourier system of equations

RMS root mean square value

SST shear stress transport model

TWM Traveling Wave Mode



1 Introduction

By virtue of their superior power density (power-to-weight ratio) and flexible operational
characteristics, gas turbines still remain to be the prime choice for aircraft propulsion
and conventional power generation systems in large-scale and smaller scale applications.
Aiming at higher efficiency, improved performance and reliability, lower fuel emissions
and more compact designs, modern gas turbines are designed with a tendency towards
more aggressive stage loadings, higher temperatures modern light weight materials and
slender blade designs with advanced three dimensional shapes. On the other hand how-
ever, application of these modern solutions renders unsteady aerodynamic forces and
flutter problems which may eventually lead to component failure as a result of excessive
stresses or high-cycle fatigue (HCF) induced by limit cycle vibrations.

Flutter denotes a self-excited and self-sustained aeroelastic instability phenomenon that
occurs when the aerodynamic forces overcome the structural and inertial forces in slen-
der flexible structures [27]. Thus in a gas turbine, flutter is prone to occur particularly in
the fan and the first stages of the compressor, or in the last stages of the turbine where
blades with higher aspect ratios are exposed to aggressive blade loadings.

Designing for aeroelastic stability, is therefore one of the key tasks of modern engine
designers, in order to guarantee a wide range of flutter-free operating points. Also due to
low structural damping, prediction of unsteady aerodynamic forces induced by the oscil-
lation of blades, and their reciprocal influence on the vibration modes, is of an essential
importance for an aeroelastically stable design.

In recent years the advent of modern numerical solution techniques such as computa-
tional fluid dynamics (CFD) and finite element analysis methods (FEM) along with a sub-
stantial increase in computational power during the last decade, has made it possible to
develop powerful tools for detailed assessment of the unsteady aerodynamic forces for
various blade geometries. However though an exact determination of the aerodynamic
damping during the design process with transient CFD simulations is still very time con-
suming. Furthermore, there are still no specific geometrical design parameters regarding
aerodynamic damping, which could help to decrease the number of design iterations in
design process of new turbomachines.

The main objective of the present work is to investigate possible correlations between
specific geometrical parameters and the aerodynamic damping of an axial compressor
rotor. In order to determine the transient CFD setup for the assessment of aerodynamic
damping, a numerical influence study has been performed for an isolated rotor concept,
representing the subject axial compressor. Subsequently, geometrical parameters have
been identified and a baseline rotor blisk has been then modified according to a test
matrix of parameters. Once the eigenmodes of the blisks were determined using ANSYS
Mechanical APDL, transient CFD simulations have been performed using ANSYS CFX 18
for both “Traveling Wave Mode” approach and the “Influence Coefficients Method”.
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2.1 Basic Principles of Aeroelasticity

Aeroelasticity is an engineering terminology that defines an interdisciplinary field, which
deals with the mutual interaction between inertial, elastic and aerodynamic forces.
Therefore flow-structure interaction can take place at any elastic structure subjected to
a fluid flow [4].

The classic theory of aeroelasticity deals with the stress and deformation of an elastic
body under prescribed external forces or displacements. The external loadings acting
on the body are, in general, independent of the deformation of the body. It is usually
assumed that the deformation is small and does not substantially affect the action of
external forces. The situation is different however, in most significant problems of aeroe-
lasticity. The aerodynamic forces depend critically on the attitude of the body relative to
the flow. The elastic deformation plays an important role in determining the load itself
and conversely the magnitude of the aerodynamic force is not known until the elastic
deformation is determined [11].

An in depth study of the fluid-structure interactions did not attain prominent attention
until the early stages of the World War II. With the advent of monoplane configurations
and increasing airplane speeds however, with little or no increase in load requirements
which were placed on aircraft structures by design criteria specifications, aircraft design-
ers encountered a wide variety of problems which are now classified as aeroelastic prob-
lems [4].

Inertial Forces
Dynamics

Aerodynamic Forces
Fluid Mechanics

Elastic Forces
Structural Mechanics

Dynamic Aeroelasticity
(Forced Response – Flutter)

Static Aeroelasticity

Fig. 2.1 – Collar’s triangle of forces, adapted from [4]

A comprehensive study on aeroelasticity was conducted in 1947 by collar, where he has
ingeniously classified problems in aeroelasticity by means of a triangle of forces. Refer-
ring to Figure 2.1, the three types of forces, aerodynamic, elastic and inertial, are placed
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at the vertices of a triangle so that each aeroelastic phenomenon can be located on the
diagram according to its relation to the three vertices. Dynamic aeroelastic phenomena
such as flutter, lie within the triangle, since they involve all three types of forces, whereas,
static aeroelastic phenomena such as divergence, lie outside the triangle, as they involve
only aerodynamic and elastic forces.

2.1.1 Static Aeroelasticity

Static aeroelastic phenomena deals with the interaction of aerodynamic and elastic
forces as stated in Collar’s triangle of forces. By definition, time is not present as an in-
dependent variable. This indicates that no vibrations are implied in the phenomena, but
that a structure will deform under the steady aerodynamic load [10]. In most of the phys-
ical conditions, the system converges to a stable static condition and the related prob-
lem is defined as “aeroelastic deformation”. It could happen, however, that the deformed
shape of the structure leads to an increase of aerodynamic forces resulting in an insta-
bility.

Divergence is the most important static aeroelastic instability. This corresponds to a
static instability of a lifting surface of an aircraft in flight, at a speed called the diver-
gence speed, where the elasticity of the lifting surface plays an essential role in the in-
stability [4, 9]. Divergence typically affects slender components subjected to high aero-
dynamic loads such as aircraft wings or wind turbine airfoils. Thus, in turbomachinery
applications, the blades are not prone to fail under this phenomena due to the high stiff-
ness values resulting from the influence of high centrifugal loads and mechanical prop-
erties of the materials used for blade manufacturing.

2.1.2 Dynamic Aeroelasticity

The terminology “dynamic aeroelasticity” covers the interactions of unsteady aerody-
namic forces, elastic forces and inertial forces in Collar’s triangle. Depending on the na-
ture of the unsteady flow, instabilities may appear in various forms such as, flutter, forced
vibrations, buffeting, galloping, vortex-shedding, buzz, gust, etc. It is worth also noting
that, for certain high temperature applications, dynamic thermal stresses may enter the
aeroelastic chain, changing the Collar’s triangle into a tetrahedron [7, 10].

2.2 Aeroelasticity in Turbomachines

2.2.1 Forced Response

In turbomachinery applications, the relative motion between the rotating and stationary
components result in generation of unsteady nonuniform flow fields. The consequent
periodic unsteady aerodynamic loads cause a forced vibration of the blades. Flow dis-
turbances in turbomachines are mainly initiated by wake interactions of the different
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blade-rows, potential fields of downstream rows or other flow disturbances caused by
upstream elements such as inlet guide vanes and combustion chamber burners or the
shock waves moving along blade passages [22].

With the relative motion between blade-rows, being the main source of flow distur-
bances, the frequency of the forcing term is proportional to the rotational velocity. A
potential resonance condition featuring a distinct nodal diameter may evolve if the exci-
tation frequency of the forcing term, coincides with the eigen-frequency and the corre-
sponding eigen-mode of the bladed disc. In such cases, the forced response may result in
vibration amplitudes which exceed the material fatigue endurance limit, leading to high
cycle fatigue (HCF) [20]. Thus in order to avoid failure in case of resonance the overall
damping including the hysteretic, frictional and aerodynamic damping must be positive.

Blade
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Flutter Occurrences

Fig. 2.2 – Campbell diagram indicating the occurrence of flutter, adapted from [27]

The excitation of structural modes in turbomachines, is conveniently assessed by means
of a Campbell diagram, such as the one depicted in Figure 2.2, which represents the
changes in excitation frequency as a function of the rotational velocity, together with the
corresponding engine orders. In this diagram, the horizontal lines represent the eigen-
frequencies of the blades. An increase in the rotational speed results in increasing cen-
trifugal forces which cause the natural frequency curves to vary with a positive slope in
the Campbell diagram. According to this diagram, crossings of an engine order and a
vibration mode indicate possible forced resonance, and crosses indicate either propa-
gating stall, flutter or other non-synchronous excitation [10].

2.2.2 Flutter

Unlike forced vibrations, in case of flutter, flow unsteadiness emerges due to the vibra-
tion of the blade itself, rather than an external source. The resulting unsteady aero-
dynamic forces can be either stabilizing or destabilizing in nature. Flutter denotes a
self-excited and self-sustained aeroelastic instability phenomenon that occurs when the
aerodynamic forces overcome the structural and inertial forces. Flutter phenomena will
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Fan

Low-Pressure Turbine (LPT)

Low-Pressure Compressor (LPC)

Fig. 2.3 – Cross-section of a EuroJet EJ200 low bypass turbofan engine [18]

evolve in case the fluid is feeding energy into the structure leading to larger vibration am-
plitudes and consequently to even larger aerodynamic forces which may eventually lead
to component failure as a result of excessive stresses or high-cycle fatigue (HCF) [27].

In turbomachines, flutter is prone to occur particularly in slender flexible components
such as the fan or the low pressure compressor (LPC) and low pressure turbine (LPT)
in a gas turbine, where blades with higher aspect ratios are exposed to aggressive blade
loadings. Figure 2.3 depicts a modern aero-engine denoting the components which are
more susceptible to flutter.

The classical type of flutter is associated with potential flow and usually, but not neces-
sarily, involves the coupling of two or more degrees of freedom. The non-classical type
on the other hand, may involve separated flow or stalling conditions, which is difficult to
analyze on a purely theoretical basis [4].

Instability problems on wing structures, appeared when aircraft designers abandoned
biplane construction with high torsional rigidity, in favor of monoplane types [4]. There-
after, it was quickly observed that the mass ratio was the main stability parameter deter-
mining the onset of the wing flutter occurrence. The mass ratio, µ, is defined as the ratio
of the mass of the wing or blade to the mass of the surrounding air enclosed in a circle
which has a diameter equal to the chord length [27]. In equation 2.1, m denotes the mass
per unit wing span, ρ0 is the air density and c is the chord length.

µ= 4m

π ·ρ0 ·C 2
(2.1)

In case of aircraft wings, a smaller mass ratio indicates a higher probability of flutter oc-
currence. In turbomachines though the mass ratio attains higher values and is no more
an appropriate criteria for analyzing flutter instabilities. Meldahi suggested that in turbo-
machine blade-rows flutter appears above certain flow velocities and thus introduced the
“reduced frequency” as a criteria for determining the onset of flutter phenomena [27].
The reduced frequency k relates the time of the flight for a fluid particle needed to travel
across blade chord to the vibration period and is defined as

k = t

T
= 2π · f ·C

u
(2.2)
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Fig. 2.4 – Graphical interpretation of mass ratio and reduced frequency, [27]

where f is the vibration frequency, C is the chord length and u is the flow velocity (usu-
ally the reference velocity is the upstream velocity for compressors and downstream ve-
locity for turbines). It is possible to further elaborate on equation 2.2, in order to obtain
the reduced frequency as a ratio of the blade chord and the wave length.

λ= u

ω
= u

2π f
→ k = C

λ
(2.3)

Figure 2.4, represents a graphical interpretation of the mass ratio and reduced frequency.
For turbomachine blade-rows, critical reduced frequencies have been reported in a range
between 0.1 and 1.0. Fleeter and Jay, have presented an example of the reduced fre-
quency span for axial-flow turbomachines, under which flutter has been witnessed.
Srinivasan reports similar values pointing out that flutter occurrences in the first mode
have been observed for reduced frequencies less than 0.4 and between 0.4 and 0.7 for
modes with predominantly first torsion mode [10, 22].

Table 2.1 – Typical flutter reduced frequency ranges, [10]

Type of Flutter Reduced Frequency k

Unstalled supersonic torsion 0.35 -> 0.65

Supersonic bending 0.1 -> 0.25

Subsonic/transonic torsional stall 0.2 -> 0.8

Choke bending 0.15 -> 0.25

Table 2.2 – Values of reduced frequency for which flutter has been observed, [22]

P&W Research Rotor 0.4 to 0.6 (Mikolajczak, 1975)

TS 22 0.6 to 0.65 (Stargardter, 1979)

NASA Test Rotor 0.5 to 0.7 (Kielb, 1983)

NASA Engine Tests 0.7 to 0.75 (Lubomski, 1980)

First Fan Rotor 0.7 (Kurkov, 1984)



8 2 Literature Review

2.2.3 Compressor Flutter Map

In compressors, flutter may appear in several regions of the characteristics map due to
different physical reasons. Such instabilities may occur either on the working line or at
the off-design conditions but still below the surge line, thus being of primary impor-
tance. The most important flutter domains on a typical compressor map are illustrated
on Figure 2.5 which has been established empirically throughout the years on blades of
conventional materials and shapes and does not necessarily follow that it must be iden-
tical in nature when more advanced airfoil shapes and materials are employed [10].

1. Subsonic stall flutter
2. Transonic stall flutter
3. Choke flutter
4. Supersonic started flutter at low back pressure
5. Supersonic started flutter at high back pressure
6. Classical (Potential) flutter

pressure 
ratio

operating line

surge line

massflow

increasing 
incidence

choke line

Fig. 2.5 – Compressor flutter map, [10]

Classical (Potential) Flutter: This is usually defined as flutter when the flow is at-
tached at all times and involves directly the phase lag between the movement of
blade and induced time-dependent aerodynamic forces, which can be either sta-
bilizing or destabilizing, depending on the value of the time lag.

Stall Flutter: As the name indicates, this type of flutter is situated close to the stall line
of the compressor map, and it is thus usually believed that the flow is stalled, or at
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least largely separated. This is an essentially non-linear phenomena that is charac-
terized by an abrupt decrease in the flutter speed as the flow becomes stalled.

Choke Flutter: This type of flutter evolves near the choke line of axial-flow compres-
sors (at negative incidences and part speed conditions) and is probably charac-
terized by chocked flow, separations and shock waves. Choke flutter may involve
either the bending or torsional mode of the blades.

Supersonic Unstalled Flutter: A type of classical flutter that appears in the supersonic
flow regions. In the compressor map, this kink of flutter is associated with a low
back pressure and usually involves a torsional mode, thus being sometimes re-
ferred to as “supersonic torsional flutter”.

Supersonic Flutter at High Back Pressure: By increasing back pressure, the shock
waves will move up the blade. This type of flutter is probably accompanied by a
strong in-passage shock wave, together with a boundary layer separation and usu-
ally involves a bending mode, thus being called “supersonic bending flutter”.

2.2.4 Acoustic Resonance

Acoustic resonance is an aeroelastic problem which amounts to the influence of adjacent
space upstream or downstream of the blade row. In such a phenomena, the unsteady
pressure field which arises due to the oscillation of the blades, can induce acoustic res-
onance in the adjacent ducts. In fact acoustic resonance adds one degree of freedom
to the aeroelastic system, which might be effective for extraordinary coupling of blades
during flutter [27]. Although the acoustic waves may resonate and propagate in annu-
lar ducts, significant amplitudes will only appear if there is an excitation source such as
vortex shedding which feeds energy into the perturbation [10].

2.3 Aerodynamic Damping

In modern gas turbines in order to achieve higher efficiencies and more compact de-
signs, blades are designed with more aggressive stage loadings and thus more slender
geometries with advanced three dimensional shapes. As a result the eigen-frequencies
have decreased and it has become necessary to control the mode shapes without signif-
icantly affecting the overall weight of the blade [10].

Experimental investigation on turbojet engine blade damping by Srinivasan et al, indi-
cate that material (hysteric) damping is negligible for turbomachine blades as the dis-
sipated energy during an oscillation cycle is very low due to high stiffness of the ma-
terials [23]. Mechanical or friction damping, is an alternative source of damping which
can be achieved by introducing part-span shrouds (also called snubbers or clappers) on
fan blades, and shrouds, part-span shrouds or lacing wires on turbine blades. However
though such devises introduce both an additional weight and a mechanical coupling be-
tween the different blades of the rotor [10]. It is also worth noting that, investigations
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by Kielb and Abhari has showed, that the mechanical and the material damping are in-
versely proportional to the square of the rotational speed due to a decline in friction as
the speed increases [13]. In this regard, aerodynamic damping plays an important role in
the overall damping of the system. It is worth noting that for the integrated bladed rotors
(blisks), with material damping being of negligible order, aerodynamic damping is the
only significant source of damping present in the system.

Depending on the phase-lag between the vibrating blade and the unsteady aerodynamic
forces acting on it, the structure will either absorb energy from the flow, or inversely feed
energy to the flow. In case of positive aerodynamic damping, the aerodynamic forces will
impel a stabilizing effect, limiting the amplitude of maximum displacement. In general,
the way the structure behaves over a certain period of time depends thus on the unsteady
characteristics of the fluid and the structure over several vibration cycles [10].

2.3.1 Aeroelastic Equation of Motion

From theoretical point of view the motion of a vibrating structure within a fluid flow can
be described by the aeroelastic equation as [27]

[
M

]{
Ẍ

}
+ [

C
]{

Ẋ
}
+ [

K
]{

X
}= {

Fae (t )
}

(2.4)

where
[
M

]
denotes the modal mass matrix,

[
C

]
is the modal damping matrix,

[
K

]
is the

modal stiffness matrix, and
{

X
}

represents the modal coordinates. The right hand side of
the equation 2.4 includes unsteady modal forces which can be decomposed as follows

Fae (t ) = Fdamping (t )+Fdisturbance (t ) (2.5)

In equation 2.5, Fdamping (t ) represents the aerodynamic damping force induced by the
blade oscillations, whereas Fdisturbance (t ) denotes the aerodynamic forcing arising from
spatial non-uniformities of the upstream and downstream flow fields. In case of flutter
analysis, only the forces induced by the blade motion are of interest and thus the right
hand side of the equation 2.5 simplifies to Fae (t ) = Fdamping (t ).

In order to solve the aeroelastic equation, a modal coordinate system is introduced as

{
X (t )

}= [
φ

]{
Q̄

}
e iωt (2.6)

where ω denotes the frequency, Q̄ is the modal displacement and φ represents the mode
shape. Thus the equation 2.4 can be further elaborated as

{
−ω2 [

Mm
]+ iω

[
Cm

]+ [
Km

]− [
φ∗]T [

A
]}{

Q̄
}
= 0 (2.7)

In equation 2.7, matrix
[

A
]

contains the modal unsteady aerodynamic forces. This equa-
tion represents a complex eigenvalue problem the solution of which describes the stabil-
ity of the system.
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2.3.2 Aerodynamic Coupling

In contrast to airplane wings, where flutter is driven by a mode coalescence phenomena,
flutter problems in turbomachines involve influences of neighboring blades rather than
a single blade as a result of close spacing between blades. The motion of each single
blade is influencing instantaneously the flow field in its direct neighborhood inducing a
response on itself and on its direct neighbors as depicted in Figure 2.6. This phenomenon
is referred to as aerodynamic coupling [24, 27].

+3

+2

+1

0

−1

−2

−3

stator statorrotor

Fig. 2.6 – Graphical representation of aerodynamic coupling, [27]

According to a traditional approach suggested by Crawley, provided that all the blades in
a rotor are identical and equally spaced (perfectly tuned rotor), the oscillatory motion of
a blade row at the onset of flutter can be characterized as a traveling wave mode. In other
words, in a tuned blade row, all the blades oscillate in the same mode, amplitude and fre-
quency but with a certain phase lag between two adjacent blades which is referred to as
“Interblade Phase Angle” (IBPA) [27]. Due to the kinematic constraints, interblade phase
angle can only take discrete values so as to fulfill full cycle periodicity and is therefore
defined as

σ= 2π · l

NNB
, l = 1,2,3, ...lmax (2.8)

for forward traveling wave modes and

σ= 2π

(
NNB − l

NNB

)
, l = 1,2,3, ...lmax (2.9)

for backward traveling wave modes.
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Fig. 2.7 – Graphical representation of nodal diameters of a disk, traveling wave mode shapes and
the corresponding instantaneous blade row geometry, [27]

In equations 2.8 and 2.9, N denotes the number of blades, whereas l represents the
“nodal diameter” which defines the order of the traveling wave. Depending on the to-
tal number of blades, the maximum nodal diameter is calculated as

lmax =
{

NNB
2 NNB = even

NNB−1
2 NNB = odd

(2.10)

An example of nodal diameter patterns and the corresponding cascade geometries is de-
picted in Figure 2.7

2.3.3 Traveling Wave Mode Approach

As mentioned previously, the two major differences that separate aeroelastic phenomena
on aircraft wings and turbomachine blades are the mass ratio and aerodynamic coupling
effects. Regarding the aeroelastic equation of motion, the structural terms are substan-
tially larger compared to the aerodynamic damping term as a result of the high mass
ratios. The practical implication of this is that the structural and aerodynamic parts can
be decoupled, which results in great simplification of the aeroelastic problem. Conse-
quently it is possible to determine the structural eigen-modes without considering the
flow interactions (i.e. in vacuum), while the influence of aerodynamic forces on stability,
can be determined through an unsteady flow analysis over a cascade of blades oscillating
in an arbitrary or prescribed motion [10, 27].

Oscillatory motion of blades generate an unsteady pressure disturbance which propa-
gates in the surrounding flow filed. The work per oscillation cycle exerted by the fluid on
the blade profile, can be introduced as a stability criteria in such a manner that if the
overall work performed by the unsteady flow on the structure is positive, the situation
is refereed to as unstable. Verdon, has established that, in case of small perturbations,
the unsteady pressure field resulting from the harmonic motion of the blade, is also har-
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Fig. 2.8 – Phase shift between blade motion and unsteady pressure perturbation [17]

monic in time, with the same frequency, but with a phase shift to the motion. Thus the
unsteady pressure can be represented as a harmonic oscillation around a mean value as

p
(
x, y, z, t

)= p̄
(
x, y, z

)+ p̃
(
x, y, z, t

)= p̄
(
x, y, z

)+ p̂ ·e
i
(
ωt+φp→h

)
(2.11)

Equation 2.11 is the sum of a mean value corresponding to the steady pressure distribu-
tion p̄

(
x, y, z

)
and a time-dependent fluctuating part p̃

(
x, y, z, t

)
with a complex pertur-

bation amplitude equal to p̂. Figure 2.8 is a graphical demonstration of the phase shift
between harmonic motion of the blade and its resulting harmonic unsteady pressure,
both in time domain and frequency domain representation. Similarly the instantaneous

unsteady aerodynamic force will be harmonic as well and thus can be written as ~̂F which
yields from integration of the product of unsteady pressure and blade velocity over blade
surface area.

Consequently the corresponding work per oscillation cycle is obtained by integrating the
product of force and velocity over a period of oscillation [27].

Wcycle =
∫

T

∫
S

p̃~v ·~n d s d t =
∫

T

~̃F~v d t =
∫

T

~̂F~v e iωt d t (2.12)

In equation 2.12, ~v denotes the velocity of the moving blade, S is the blade surface area

and ~n represents the local normal vector. After integration, with ~̂h representing the com-
plex motion of the blade, the expression for work per cycle simplifies to

Wcycle =π ·
∣∣∣∣~̂F ∣∣∣∣ · ∣∣∣∣~̂h∣∣∣∣ · sin

(
φF→h

)
(2.13)

According to equation 2.13, the phase shift between force and blade motion, indicates
the fact that only the imaginary part of the complex force is contributing to the overall
work per cycle. As a result, the flow will induce a stabilizing influence, if the response is
lagging the excitation, or in other words if the imaginary part has a negative contribution.

Verdon introduced a normalized stability parameter, referred to as “aerodynamic damp-
ing” which measures the negated work per cycle normalized by the oscillation amplitude
h, π, span height of the blade b, and the dynamic pressure pdyn [25, 28]. Thus a positive
aerodynamic damping indicates that the flow is acting in a stabilizing manner.

Ξ= −Wcycle

π ·b ·pdyn ·h2
(2.14)
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2.3.4 Influence Coefficients Method

In case of a perfectly tuned rotor oscillating in a traveling wave mode, the same unsteady
pressure field will be generated around each blade, but with a phase shift equal to σ

(IBPA) with respect to the neighboring blade. The practical implication of this fact is that
by measuring the flow field around a reference blade, the the unsteady pressure filed
around all the blades on the same blade-row can be determined. However from experi-
mental point of view, implementation of this method is quite complex since it requires
all the blades to be oscillated with a specific frequency and a certain inter-blade phase
angle [8, 27].

Hanamera et al. and Crawley, have suggested another method referred to as “Influence
Coefficients Method”, which is based on the linear superposition principle. Assuming
that the perturbations are small, the total unsteady response on a blade includes the
responses of the reference blade itself and of the other blades lagged by the respective
multiple of the interblade phase angles. Thus the response in traveling wave mode at a
reference blade in a cascade of N +1 blades is stated as

p̂m,σ
A,t wm

(
x, y, z

)= n=+N
2∑

n=−N
2

p̂n,m
A,i c

(
x, y, z

) ·e−iσn (2.15)

In equation 2.15, p̂m,σ
A,t wm

(
x, y, z, t

)
denotes the complex pressure coefficient at point(

x, y, z
)
, acting on blade m with the cascade oscillating in traveling wave mode with an

interblade phase angle of σ. Meanwhile, p̂n,m
A,i c

(
x, y, z, t

)
is the pressure coefficient of the

vibrating blade n, acting on the non-vibrating reference blade m at point
(
x, y, z

)
. The

coefficients p̂n,m
A,i c are commonly referred to as local aerodynamic influence coefficients.
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Equation 2.15 highlights the impact of inter-blade phase angle on the magnitude and
phase of the overall traveling wave mode response as graphically depicted in Figure 2.9.
In this figure, the complex pressure is represented by a vector with the length corre-
sponding to its magnitude, which is oriented according to the phase shift with respect to
the blade motion. The influence coefficients are depicted on the left-hand side whereas
the superposition is shown for two different interblade phase angles on the right hand
site. In addition the loci of all possible combinations are included as well.

According to equation 2.15, the reference blade (index n = 0) has a constant contribu-
tion to the summation, meanwhile the neighboring blades induce a harmonically vary-
ing contribution whose order increase moving away from the reference blade. (i.e. first
harmonic for blades ±1, second harmonic for blades ±2 ...) On the other hand previous
studies dealing with coupling effects during cascade flutter, such as Széchényi, Crawley
or Nowinski and Panovsky, have all concluded that with increasing distance from the ref-
erence blade, the influence decreases rapidly and attains convergence after blade pair
±2 [8, 24, 27]. It is worth noting that the variation of stability parameter Ξ as a function
of interblade phase angle (IBPA), represent a characteristic curve which, in literature, is
usually referred to as S-Curve. An example of a typical S-Curve is shown in Figure 2.10.
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2.3.5 Influence of Incidence Angle and Mode Shapes

The flow incidence angle is an important parameter affecting the aeroelastic stability. An
increase in incidence angle usually leads to separated flow conditions around the lead-
ing edge. Generally several studies on the influence of incidence angle such as Carta and
St.Hilaire have concluded that higher values of incidence lead to a reduction in aerody-
namic stability and consequently lower values for critical reduced frequency [10].

Additional to the reduced frequency and incidence angle, mode shape has a dominant
influence on the aeroelastic stability. In general mode shapes of a bladed disk depend-
ing on its structural setup, can be either disk-dominated or bladed-dominated. In a
simplified model, unshrouded disk blades can be modeled as a beam with its three
mode shapes with the lowest frequency, being of greatest interest for stability analysis.
Panovsky and Kielb, have created a preliminary design tool so called “Tie-Dye” plots, that
assesses the aeroelastic stability on a two-dimensional section of a cascade. This method
represents any generic mode as a rigid-body rotation of the reference section about a
center of torsion resulting in a stability map [27].

An example of a stability map is depicted in Figure 2.11 Each center of torsion position
of the reference blade gives a different aerodynamic damping. The areas with positive
aerodynamic damping indicate that a torsion axis (of the reference blade) situated in
this region gives a damped blade vibration. It is noted that certain regions have high
gradients, whereas the gradients are lower at other places.

Fictional center
of torsion mode A

Fictional center
of torsion mode B Mode B

Mode A

Fig. 2.11 – Torsion mode representation of rigid-body modes along with an example of stability
plots for a LPT cascade at different operating conditions, [27]
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2.4 Governing Equations

An aeroelastic problem involves two different engineering principles, namely fluid dy-
namics and structural mechanics. While the fluid dynamics equations are typically de-
fined using spatial coordinates (Eulerian reference frame), the structural dynamics equa-
tions are usually formulated using material coordinates (Lagrangian reference frame).

2.4.1 Basic Principles of Computational Fluid Dynamics

The following section is based on the lecture notes of Professor Pietro Asinari of Politec-
nico di Torino [3] and outlines briefly the basic principles and governing equations of
computational fluid dynamics.

Computational Fluid Dynamics (CFD) is a computer-aided tool for analysis of systems
involving fluid flow, heat transfer, and associated physical processes such as chemical
reactions. In general CFD tools utilize numerical solution techniques such as finite ele-
ment or finite volume methods in order to solve the governing equations of fluid dynam-
ics with specified boundary conditions over a discretized domain through an iterative
procedure.

Mass Conservation

The net mass flux at the border of an arbitrary control volume such as the one depicted
in Figure 2.12, will determine a rate of change of the mass accumulated inside the control
volume. Mass conservation equation can be derived by performing a mass balance over
the domain Ω as

∂mΩ

∂t
= ∂

∂t

∫
Ω
ρdV =−

∮
∂Ω
ρu · n̂ dS → ∂ρ

∂t
+∇· (ρu

)
(2.16)
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𝛾

𝑑𝑆

𝑑𝑆

Ω

𝑅

𝑛

ො𝑛

Fig. 2.12 – An arbitrary control volume, [3]
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Momentum Conservation

Equation 2.17 yields the integral momentum equation, with uΩ being the barycentric
velocity in Ω. In this case, the velocity streams itself (by advection) which is a source of
nonlinearity.

uΩ = 1

mΩ

∫
Ω
ρudV → ∂

(
mΩuΩ

)
∂t

= ∂

∂t

∫
Ω
ρudV =−

∮
∂Ω

F
(
ρu

) · n̂ dS +
∫
Ω

s
(
ρu

)
dV

→ ∂
(
ρu

)
∂t

+∇· (ρu ⊗u
)+∇p =∇·Πν+ρa

(2.17)

where a represents any external force acting on the system and Πν denotes the viscous
stress tensor as

Πν = ρν
(
∇u +∇uT − 2

3
∇·uI

)
(2.18)

Total Energy Conservation

The total energy conservation equation is derived from the first law of thermodynam-
ics. Considering the Reynold’s transport theorem the integral total energy conservation
equation can be expressed as

∂
(
mΩet

)
∂t

= ∂

∂t

∫
Ω
ρet dV =−

∮
∂Ω

f
(
ρet

) · n̂ dS

→ ∂
(
ρet

)
∂t

+∇· (ρet u +pu
)=∇· (−qα+Πν ·u

) (2.19)

where qα denotes the thermal flux which according to Fourier law, can be expressed as

qα =−λ∇T == ρcpα∇T (2.20)

Equations 2.16, 2.17 and 2.19 form a non-linear system of partial differential which is
called the Navier-Stokes-Fourier (NFS) system of equations, that are in general consid-
ered to be capable of describing Newtonian turbulent viscous flows.

Turbulence Models

In order to model turbulent flows in CFD, an appropriate turbulence model is required to
close the NFS system of equations. For most of the engineering purposes, it is unneces-
sary to resolve details of the turbulent fluctuations, and usually the effects of turbulence
on the mean flow are only considered. Thus it is possible to develop Reynolds-averaged
Navier-Stokes equations (RANS) for the mean value of flow variables by taking a time
average of these variables over a sufficiently long period compared to the frequency of
turbulent fluctuations [26].
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2.4.2 Structural Dynamics Analysis

Dynamic analysis of bladed discs can be performed using Finite Elements Method
(FEM), which is in general a discretization method for solution of partial derivative
differential equations. FEM is based on subdivision of the structure into finite ele-
ments, such as beam elements, shell elements, plate elements and etc. Therefore this
method yields models with a large number of degrees of freedom with DOFs being the
displacements at nodes of each element [12].

The equation of motion for the finite element representation of a structure can be written
as [

M
]{

Ẍ
}
+ [

C
]{

Ẋ
}
+ [

K
]{

X
}= {

F (t )
}

(2.21)

The undamped homogeneous form of equation 2.21 represents free vibration problem
of the structure, which yields the following eigen-value problem.

ω2 [
M

]{
X̄

}
= [

K
]{

X̄
}

(2.22)

The resulting set of n eigenvalues ωn and eigenvectors
{
φn

}
, yield the undamped natural

frequencies and natural modes or mode shapes of the structure. According to the expan-
sion theorem, using m modes for the n DOF system, the displacements vector can be
written as {

u (t )
}= [

Φ
]{

q (t )
}

(2.23)

In equation 2.23,
[
Φ

]
is the n ×m modal matrix which includes the undamped eigen-

vectors
{
φn

}
, whereas the vector

{
q (t )

}
is the time-dependent modal coordinate vector.

Subsituating equation 2.23 into the original equation of motion and premultiplying by
the transpose of the modal matrix, the modal equation of motion is obtained as

[
Mm

]{
q̈
}+ [

Cm
]{

q̇
}+ [

Km
]{

q
}= [

Φ
]T {

F (t )
}= {

Q (t )
}

(2.24)

With
[
Mm

]
,
[
Cm

]
and

[
Km

]
, being respectively the m ×m generalized mass, damping

and stiffness matrices, equation 2.24, represents a system of m equations. Due to the or-
thogonality of mass and stiffness matrices, the generalized mass and generalized stiffness
matrices are diagonal. The generalized damping matrix can be modeled by an equiva-
lent modal damping, in order to obtain diagonal matrix. Meanwhile the expression at
the right hand side of equation 2.24, is referred to as generalized force vector

{
Q (t )

}
. The

modal form of the equation of motion, represents a system of m uncoupled, second-
order ordinary differential equations.





3 Objectives and Approach

In the perspective of experimental and numerical studies related to aeroelasticity, the
blade geometry has often been considered as given, which means that the aeroelastic
considerations have traditionally been introduced late in the design phase. Geometrical
parameters of a blade determine the vibration frequency and mode shapes, thus directly
influence the aeroelastic stability of the system. Due to the fact that modifications to the
geometrical parameters are inconvenient to be applied late in the design process, the
present knowledge regarding the influence of such parameters on aeroelastic response
of a specific blade geometry is still very limited.

However, in recent years with the aid of modern numerical solution techniques such as
computational fluid dynamics (CFD) and finite element analysis methods (FEM) along
with a substantial increase in computational power it has been made possible to perform
a detailed assessment of the unsteady aerodynamic forces for various blade geometries
during the design process. The main objective of the present work is to investigate possi-
ble correlations between specific geometrical parameters and the aerodynamic damping
of an axial compressor rotor, which could help to decrease the number of design itera-
tions.

A decoupled treatment of aerodynamic and structural parts of the aeroelastic problem is
possible in turbomachinery applications, since the mass ratio is substantially high. The
main advantage of this approach is the fact that any method can be used for predicting
the motion of the structure and unsteady aerodynamic forces. In this study, assuming
blade dominated modes for the rotor, modal analysis is performed using ANSYS Me-
chanical APDL, for a set of various rotor geometries realized in BladeGen and ANSYS
DesignModeler.

A structured CFD mesh including an isolated rotor concept has been realized in Numeca
AutoGrid, which has been subjected to a numerical influence study with the aim of de-
termining the proper setup for the subsequent CFD simulations. ANSYS CFX 18, which
is a transient Navier-Stokes solver, has been used to predict the aerodynamic damping of
the subject axial compressor blisk for both “Traveling Wave Mode” approach and the “In-
fluence Coefficients Method”. Figure 3.1, is representation of the overall work-flow that is
carried out in present study.
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Fig. 3.1 – Graphical representation of the overall work-flow



4 Baseline Rotor Design

The baseline bladed rotor subjected to present investigation, is an axial compressor blisk,
comprised of 17 blades, that has been designed at the Institute of Thermal Turboma-
chinery and Machinery Laboratory (ITSM), University of Stuttgart, with profiles designed
according to the free-vortex theory. An unshrouded geometry with integrated design
(blisk), has been chosen for this study in order to eliminate mechanical coupling be-
tween the blades and to have minimum mechanical and frictional damping effects. The
blisk, which is rotating at 16200 RPM, is made of stainless steel with the blade profiles
being stacked on their centroid in order to avoid twisting of blades due to the centrifugal
forces.

The rotor blisk along with its geometrical parameters is illustrated in Figure 4.1. A sum-
mary of the blade profile parameters, operating condition and material properties are
represented in Tables 4.3, 4.1 and 4.2.

Table 4.1 – Summary of compressor design parameters

Parameter Value

Rotational Speed 16200 [rpm]

Mass Flow Rate 2.2 [kg/s]

Inlet Pressure 97 [KPa]

Inlet Temperature 294 [K]

Efficiency 0.867

Power 23.3782 [kW]

Torque 13.7806 [N m]

Mean Flow Coefficient 0.43416

Table 4.2 – Summary of material properties (17-4 PH Stainless Steel), [5]

Parameter Value

Density 7.8×109 [kg/m]3

Modulus of Elasticity 200×103 [MPa]

Poisson’s Ratio 0.272
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Fig. 4.1 – Baseline rotor geometry

Table 4.3 – Blade profile parameters

Parameter Symbol Value

Hub Radius RHub 80 [mm]

Shroud Radius RShroud 120 [mm]

Span Height S 40 [mm]

Aspect Ratio S/C 0.81

Solidity (midspan) C /P 1.22



5 Computational Fluid Dynamics Model

The following chapter focuses on an overview of the simulation setups used in the
present work. A description of the CFD mesh, boundary conditions, turbulence model
and solver settings as well as an introduction to the various softwares used for prepara-
tion of the numerical models is represented.

5.1 CFD Mesh Generation

The CFD meshes used in steady-state as well as unsteady simulations preformed in this
study, have been prepared using, NUMECA’s AutoGrid5 which is an automatic meshing
system for turbomachinery configurations. AutoGrid takes advantage of the characteris-
tics of turbomachinery configurations by creating blade to blade grids onto surfaces of
revolution [19]. Mesh generation in AutoGrid involves the following steps:

• Geometry definition; the curves required for the definition of hub and shroud sur-
faces of revolution

• Generation of meridional flow path

• Generation and control of 2D meshes (topology, grid clustering etc) on spanwise
surfaces

• Generation of the final 3D mesh

AutoGrid enables to generate adapted structured meshes. Although generation of struc-
tured mesh can be complex, in particular for blade geometries with high stager angle,
this type of mesh is preferred due to higher accuracy results.

5.1.1 Mesh Domain Definition

For this study a single passage domain with periodic boundaries is defined, which can be
transformed conveniently in CFX-Pre in order to create domains with different number
of passages depending on the simulation requirements. The spanwise boundaries of the
domain, namely the hub and the shroud along with the blade and the inlet and outlet
limits are defined by a number of curves in Cartesian or cylindrical coordinates. A MAT-
LAB script has been used in order to modify a predefined geomTurbo template script
with the corresponding data of the curves, hub and shroud radius, hub fillet, shroud tip
gap and the location of the inlet and outlet limits. An example of a CFD mesh domain
generated for the baseline rotor is illustrated in Figure 5.1.
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Fig. 5.1 – An example of a medium mesh domain generated for the baseline rotor

5.1.2 Meridional Control

The 3D row meshes generated with AutoGrid are obtained by stacking blade to blade
meshes on surfaces of revolution generated from meridional curves called flow paths.
The number of flow path in spanwise direction, cell width at the hub and shroud and
hub fillets can be adjusted in order to obtain desired mesh resolution. It is also possible
to introduce meridional control lines to directly control the block faces which are used to
construct flow paths. For the purpose of the present work, meridional control lines have
been implemented in order to coarsen the mesh towards the inlet and outlet boundaries
(relax inlet and outlet clustering) to avoid any possible numerical problems arising from
wall reflections.

5.1.3 Blade to Blade Control

The blade to blade meshes are created using a two dimensional multi-block structured
topology. Each block has four edges along which grid points are distributed. Depend-
ing on the turbomachinery type, it is possible to use three different blocking topologies
namely O4H, H&I or H&H. For instance when the row geometry contains splitter blades
or if the machine includes a centrifugal impeller, the H&I topology is recommended by
AutoGrid. In this study a O4H topology is chosen which consists of an O block around
the blade (skin block) and four H blocks surrounding it as shown in Figure 5.2.

Blade to Bade mesh control make it possible to determine the number of grid points
along the solid wall depending on the grid level. This tool also includes an option to
obtain matching periodicity boundary condition in order to avoid possible errors due to
interpolations at the mixing planes. The shroud gap in O4H configuration, includes a H
block surrounded by an O-block. By default, the shroud gap mesh matches the skin mesh
around the blade, therefore it is usually enough to adjust the number of points inside the
O-block. The skin block is created using a hyperbolic mesh.
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Fig. 5.2 – An overview of the O4H block topology formed at the midspan position (left) and
shroud gap region (right)

The width of the boundary layer is controlled by the cell width at the wall, the expansion
ratio and the number of points in it. The width of the first cell close to the wall has a
direct influence on Y + values, which is a dimensionless wall distance parameter defined
as [19]

Y + = Ywall ·uτ
ν

(5.1)

where

Ywall = 6

(
uref

ν

)− 7
8
(

Lref

2

)0.125

Y + (5.2)

In equations 5.1 and 5.2, uτ denotes the friction velocity, ν is the kinematic viscosity, uref,
is a reference velocity of the flow and Lref represents the reference length of the test case.
The implementation of the wall boundary conditions in turbulent flows starts with the
evaluation of Y + values.

The implementation of wall boundary conditions in turbulent flows start with the eval-
uation of Y + values. A near-wall flow can be assumed to be laminar if Y + has a value
which is lower than 10. The wall shear stress is assumed to be entirely viscous in origin.
Otherwise for turbulent flows a wall function approach can be used [26]. Thus the width
of the first cell close to the wall must be selected with care since the quality of the flow
solution will often depend upon the capture of the flow phenomena inside the boundary
layers which develop along the solid walls.
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5.2 CFD Simulation Setup

ANSYS CFX is a general purpose computational fluid dynamics solver which consists
of three software modules namely, CFX-Pre (physical pre-processor), CFX-Solve (solver)
and CFD-Post (post-processor). CFX uses a coupled solver, meaning that all the hydro-
dynamic equations are solved as a single system [1]. In the following subsections an
overview of flow physics, boundary conditions and solver parameters implemented in
tis study, is represented.

5.2.1 Domain Settings

CFX-Pre, uses the 3D primitives of the imported mesh to create fluid domains, that can
be conveniently transformed to build various flow passages according to the require-
ments of the analysis. In the present work a Total Energy heat transfer model has been
used which models the transport of enthalpy and includes kinetic energy effects. The se-
lection of the Total Energy model has implications for whether the fluid is modeled as
compressible or incompressible (Air ideal gas in this case).

Turbulence Model

The most common turbulence models used in CFD codes can be classified as classic
models which are based on time-averaged Reynolds equations or large eddy simulation
models. Large eddy simulation models are turbulence models where the time-dependent
flow equations are solved for mean flow and the largest eddies and where the effects of
smaller eddies are modeled [26]. Meanwhile large eddy simulations are currently very
costly and time consuming, the classical models are sufficient for most of the engineer-
ing applications. Among the classical models, the k −ω model, has the advantage of the
near wall treatment for low-Reynolds number computations. This model does not in-
volve the complex nonlinear damping functions required for the k−ε model and is there-
fore more accurate and more robust. The k −ω model assumes that turbulence viscosity
is linked to the turbulence kinetic energy and turbulence frequency via the relation [1]

µt = ρ k

ω
(5.3)

The Shear Stress Transport (SST) Model, used in the current investigation, is a k−ω based
model that accounts for the transport of the turbulent shear stress and gives highly accu-
rate predictions of the onset and the amount of flow separation under adverse pressure
gradients. Other k −ω models such as Wilcox and Baseline k −ω model (BSL), fail to
properly predict the onset and amount of flow separation from smooth surfaces due to
the fact that these models do not account for the transport of the turbulent shear stress,
and thus overpredict the eddy-viscosity. The SST model on the other hand imposes a
limiter to the formulation of the eddy-viscosity in order to obtain a better transport be-
havior [1]. It is worth noting that for SST model, an Automatic Near-Wall Treatment is
implied by CFX, which replaces the wall functions with a low-Reynolds near wall formu-
lation.
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Mesh Deformation

In case of transient simulation, oscillatory motion of the blades within the fluid domain,
can be simulated as moving wall boundaries, which introduce a mesh deformation with
a predefined stiffness. Among various mesh deformation models available in CFX, the
“Regions of Motion Specified”, model enables the specification of the motion of nodes on
boundaries of the mesh using CEL (CFX Expression Language) expressions. The motion
of all the other nodes is then determined through a displacement diffusion model by
solving the following equation

∇·
(
Γdisp ∇δ

)
(5.4)

Where Γdisp denotes the mesh stiffness, and δ is the displacement relative to the pre-
vious mesh locations [1]. In equation 5.4, defining a constant value for mesh stiffness,
may lead to large deformation of smaller cells near boundaries and thus formation of
negative cells during the simulation. In order to preserve mesh distribution and quality
near fine boundary layers or fine geometrical features, a variable mesh stiffness can be
defined. In CFX, different mesh stiffness options such as “Increase Near Small Volumes”
and “Increase Near Boundaries” are available to induce a non-homogeneous diffusion
of the displacements throughout the mesh. Meanwhile the “Blend Distance and Small
Volumes” option, combines features of both of the mentioned models and makes use of
information about the local domain mesh. This model is formulated as

Γdisp = A

(∀ref

∀
)Cvol

+B

(
Lref

max
(
d ,dwall

))Cdis

(5.5)

where

• Lref = 0.5
(
volume of domain

)1/3

• dwall = 10
(
minimum control volume in domain

)1/3

In equation 5.5, ∀ an d are the local values for control volume size and the distance
from the nearest boundary respectively. ∀ref is a mean control volume in the domain
and factors A and B are simple default weights that indicate a dominance of one term
over the other [1]. In this relationship, the exponents Cvol and Cdis, provide an exponen-
tial increase in the mesh stiffness as the control volume size and the distance from the
nearest boundary decrease. It is worth noting that, different numerical schemes can be
chosen for solving the mesh displacement diffusion equation in CFX. This is done by im-
plementing an “expert parameter” in order to obtain an improved mesh quality and to
avoid mesh folding.

Mapping of Mode Shapes

As it is mentioned above, the “Regions of Motion Specified” mesh deformation model, re-
quires CEL expressions which contain information about the motion of nodes on bound-
aries of the mesh. In the present work such CEL files are created using a Matlab script
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Fig. 5.3 – An overview of the surface CFD mesh with its displaced shape (left) and a graphical
representation of the mapping process (right)

which is intended for mapping the mode shapes of the FE mesh, generated by ANSYS
Mechanical APDL, to the corresponding nodes on the CFD mesh. In this regard for every
CFD node j on the surface of the blade, the surface FE nodes are sorted in order of their
distance from node j and then a weighted average of the displacement of the n nearby
nodes is mapped on the node j as formulated below

dC F D, j =
1

d 2
1
·dF E ,1 + 1

d 2
2
·dF E ,2 +· · ·+ 1

d 2
n
·dF E ,n∑i=n

i=1
1

(di+ε)2

=
∑i=n

i=1
1

d 2
i

dF E ,n∑i=n
i=1

1

(di+ε)2

(5.6)

In equation 5.6, dC F D, j denotes the displacement of the resultant displacement of the
CFD node j , dF E ,n is the displacement of the nth nearby FE node and ε is an offset value
to avoid singularities in computation of distances between nodes. It is worth noting that
in this study, the displacements are normalized over the chord length of the blade. Fig-
ure 5.3, illustrates the CFD mesh of the baseline rotor blade surface along with the dis-
placed mesh under the first mode of blade vibration.

5.2.2 Boundary Conditions

Numerical solution of the NFS system of equations within a discretized fluid domain,
require specification of the conditions on external boundaries of the domain. Thus with
the solution being directly dependent on the boundary conditions, it is important to set
appropriate boundary conditions which accurately reflect the real flow field. In CFX dif-
ferent boundary conditions such as inlets, outlets, openings, walls and symmetry planes,
can be applies to any bounding surface of a 3D primitive that is included in the domain.
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For a given computational domain various combinations of boundary conditions can
affect the robustness and thus the reliability of the results. For instance a combination
of total pressure at an inlet and velocity/mass-flow at an outlet is robust since the static
pressure at the outlet and the velocity at the inlet are part of the solution. On the other
hand though, a combination of total pressure at an inlet and static pressure at an outlet
makes the solution very sensitive to initial guess as the system mass-flow is part of the
solution.

Outlet

Inlet

Counter-rotating wall boundary for 
the rotor shroud and upstream and 
downstream channel walls

Rotating wall boundary for 
the rotor hub and the blades

Rotational 
periodic interfaces

Input vector components of the 
mapped periodic displacements

Fig. 5.4 – An overview of the boundary conditions imposed for a model with four passages

Inlet

An inlet boundary condition of a domain can be specified in different types consider-
ing the mass and momentum equations, the turbulence model and the energy equation.
In the present work, the static frame total pressure, ptot, is specified for both the steady
state and transient simulations, where CFX-Solver computes the static pressure needed
to properly close the boundary condition. It is also possible to define the direction vector
explicitly in Cartesian coordinates or alternatively to define it as normal to the boundary.
The scale of inlet turbulence quantities, such as inlet turbulence energy k and turbu-
lence viscosity µt, are either directly specified or calculated according to the turbulence
intensity as

kinlet =
3

2
I 2 U 2 and µt =C I µ (5.7)
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Where I denotes the turbulence intensity and C is turbulence intensity factor at the
boundary condition (default value of C is 1000). Regarding the boundary advection and
diffusion terms of the energy equation, by setting the inlet total temperature, the static
temperature is dynamically computed as

Tstatic,inlet = Ttot,inlet −
U 2

2Cp
(5.8)

Outlet

The various boundary conditions which can de defined at the outlet of a domain, include
static pressure, velocity or mass flow. For all other transport equations, the outlet value
of the variable is part of the solution. The velocity constraints can be specified either
as normal to the boundary or with its Cartesian coordinates. Meanwhile the mass flux
distribution across the outlet is determined by comparing the estimated total mass flow
rate, ṁest

tot , calculated by the flow solver with the specified value of mass-flow rate, ṁspec.
Thus a scaling factor F can be calculated as the ratio of ṁspec over ṁest

tot , which will be
multiplied to the integration point mass-flow in an iterative procedure as

ṁip = F ρip Aip Uip (5.9)

As a result, the mass flux profile is an implicit result of the solution and at the same
time gives exactly the specified mass flow rate [1]. In the present work, while mass-flow
boundary conditions are used for the steady-state simulations, in case of transient sim-
ulations though, after comparing various boundary conditions at the outlet, a pressure
boundary condition was chosen due to more robust numerical setups. In this case by
specifying an average static pressure over the whole outlet p̄spec, the pressure profile can
vary according to the upstream influences while constraining the average value to p̄spec

as

p̄spec = 1

A

∫
S

pip d A (5.10)

Where pip, is the imposed pressure at each integration point. In order to impose this
condition pip is calculated as

pip = p̄spec +
(
pn − p̄n

)
(5.11)

So, the integration point pressure in this case is set to the specified value plus the differ-
ence between the local nodal value and the average outlet boundary pressure [1].

Wall Boundaries

Different wall boundary condition settings which can be imposed in CFX include wall
roughness and the flow velocity at the walls, regarding the mass and momentum equa-
tions, and heat transfer model, regarding the energy equation. If a rotational velocity is
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imposed on the domain, all the wall boundaries within that domain including the blade
and the hub will have a rotational motion as well, therefore a counter-rotating wall is
introduced for the stationary shroud.

In case of unsteady simulations, the “Periodic Displacement” option allows to introduce
a transient periodic motion to the blade surface nodes that repeats itself at a given fre-
quency and has an associated phase offset. This is done by initializing a profile data
which contains input vector components of the mapped mode shapes in a CEL file and
sector tags which define position of each blade in cylindrical coordinate system. For
Traveling Wave Mode simulations, by activating the “Transient Blade Row” feature of
CFX, it is possible to associate a distinct phase shift to the oscillatory motion of each
individual blade depending on its sector tag. It is also possible to specify a nodal diame-
ter along with the direction of the traveling wave (forward/backward) for all the blades.

Domain Interfaces

Domain Interfaces provide a way of connecting meshes or domains together for different
purposes. For instance they can be used for connecting unmatched meshes within a do-
main or connecting two separate domains such as domains rotating at different rates or
domains with different physical types [1]. In an attempt to reduce the size of a compu-
tational domain by assuming periodicity in the model, it is possible to introduce “trans-
lational” or “rotational” periodic interfaces. In CFX there are various mesh connection
options such as direct connections (One-to-One) or general grid interface connections
(GGI), in order to ensure that the flow leaving one side of the interface appears on the
other side.

5.2.3 Solver Control Settings

The basic parameters which control the CFX-Solver during the solution stage include ad-
vection scheme, transient scheme, turbulence numerics, convergence control and con-
vergence criteria. In order to calculate the advection terms in the discrete finite volume
equations, a distinct advection scheme such as “Upwind” or “High Resolution” can be
associate to every set of NFS system of equations and the turbulence model. Method of
time scale control for numerical simulations is one of the most important parameters
influencing the convergence of a simulation. For steady state simulations, the “Physical
Time Scale” option enables a fixed time scale to be used for the selected equations over
the entire flow domain. In order to set a convergence criteria, a target value for residual
size (RMS or MAX) can be imposed in solver control settings. It is worth noting that CFX
uses normalized residuals to assess if convergence is reached or not.

In case of transient simulations, there are two transient methods available in CFX R18,
namely the ”Time Integration” and the “Harmonic Balance” methods. For the time inte-
gration method, the eigen-frequency of the corresponding mode shape is used to estab-
lish a value for the time period in which each disturbance of interest cycles an integer
number of times [1]. When using the “Transient Blade Row” model, it is possible to di-
rectly compute the time step size by dividing the time period over a specified number of
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time steps per period. With the accuracy of the solution being directly influenced by time
step size, it is important to choose a proper number of time steps per period sufficient
to resolve each disturbance.

5.3 Post-Processing Unsteady CFD Simulation Results

As a the desired convergence criteria is reached, CFX-Solver will generate results files
which contain a full description of the flow simulation including the calculated solution
values at each mesh node in addition to the original information contained in the CFX-
Solver input file. In case of unsteady simulations, it is also possible to export Transient
Result files for specific time steps with selected variables.

The Transient Blade Row feature of CFX makes it possible to define aerodynamic damp-
ing monitor points with a value that is calculated according ot the Equation. 2.12. It is
worth noting that integration limits are set to encompass an integration interval rather
than a vibration cycle and the resulting value yields the unnormalized value of aerody-
namic damping which can be normalized if required. In case of Traveling Wave Mode
simulations, with specified nodal diameter and traveling wave direction, it is enough to
directly read the converged value of this monitor point.

Unlike TWM simulations where all the blades within the domain oscillate with a pre-
defined inter-blade phase angle, in Influence Coefficients method simulations, the mesh
motion is imposed on a single blade only with the neighboring blades remaining station-
ary during the unsteady flow simulations. Thus a post-processing procedure is required
in order to super impose linearly the influence of stationary blades on the moving blade
with an appropriate phase shift as it is outline in section 2.3.4. In this regard, either a
time-domain approach or a frequency-domain approach can be implemented as it is
described below.

5.3.1 Post-Processing Procedure in Time-Domain and Frequency-
Domain

Once a transient periodic solution is achieved, it is necessary to export transient re-
sult files with selected variables such as mesh displacement, mesh velocity, pressures at
nodes, blade surface normal vectors and elemental areas, for all the times-steps making
up a full oscillation period.

In order to calculate aerodynamic damping through a time-domain approach, having
extracted nodal pressure signals over a complete period, a force signal can be calculated
for every node on the blade boundary surface. This is done by multiplying the resulting
pressure signal of every node by the element surface area and corresponding normal vec-
tor. With the aim of linearly superimposing every component of the obtained nodal force
vectors of the neighboring blades on the reference blade, a Fast Fourier Transformation
(FFT), is then performed on the force signals so that an appropriate phase shift can be
applied depending on the inter-blade phase angle as it is demonstrated in equation 5.12.
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F̂overall
(
x, y, z

)= n=NNB∑
n=0

∣∣∣F̂n
(
x, y, z

)∣∣∣ ·e−i
(
φn±nσ

)
(5.12)

In equation 5.12, φn denotes the phase angle of the complex work whereas σ is the in-
terblade phase angle which is either added or subtracted from the phase angle depend-
ing on the position of the each blade with respect to the reference blade.

Performing an inverse Fourier transformation on the resulting overall complex force, it is
then possible to obtain the wall power density by multiplying the superimposed nodal
force vectors by the corresponding mesh velocities, which can be subsequently inte-
grated over one period to obtain the elemental wall work per cycle. In such a manner, the
aerodynamic damping coefficient can be calculated by normalizing the negated value
wall work density.

Following a frequency-domain approach on the other hand, an FFT is performed on both
the nodal displacement and nodal force signals, which yield a complex displacement
and a complex force that are phase shifted with respect to each other. Then in order to
calculate a complex work value for every node the complex force shall be rotated with
a rotation angle which equals to the difference in the phase angles of the two complex
values as φrotation =φF −φd.

Ŵcycle =−π
n=NNB∑

n=0

∣∣∣d̂n

∣∣∣ · F̂ ·e±iφrotation (5.13)

The complex work calculate through equation 5.13 for every node of each blade can
be superimposed on the reference blade in a similar manner to the time-domain ap-
proach with the its corresponding phase shift for all the inter-blade phase angles. With
the imaginary part of the overall complex work representing the unnormalized aerody-
namic damping coefficient, the main advantage of the frequency-domain approach with
respect to the time-domain approach is the fact that by performing an FFT on the overall
complex work, it is possible to extract the influence coefficients of each of the individual
blades on the overall aerodynamic damping coefficient as it is illustrated in Figure 5.5.

5.3.2 Calculation of Aerodynamic Damping Ratio

As it is explained in section 2.3.3, Verdon refers to aerodynamic damping as a normal-
ized stability parameter which involves, work per oscillation cycle and a reference pres-
sure according to equation 2.14. This definition of aerodynamic damping is practical in
determining the onset of flutter as the flow field changes in a turbomachine for differ-
ent operating conditions. However though with the aim of investigating the influence of
geometrical parameters in aerodynamic damping for similar flow fields at a certain op-
erating condition an alternative definition of stability parameter is required [21].

Carta has introduced an aerodynamic damping ratio ζae, with reference to equation of
motion of a single degree of freedom system in the presence of viscous damping [6].
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Fig. 5.5 – An example of extracted influence coefficients for a setup with 17 blades (left), and an
example of a S-curve calculated both in time and frequency domain(right)

ẍ +2ωn ·ζ · ẋ +ω2
n · x = 0 (5.14)

In equation 5.14, ωn =
√

k
m denotes the undamped natural frequency whereas ζ = c

ccr
is

the damping ratio with ccr = 2 ·m ·ωn being the critical damping. Thus the damping force
Fd, can be written as

Fd =−c · ẋ =−ζ · ccr · ẋ =−2 ζ ·m ·ωn · ẋ (5.15)

As a result the overall work performed by the damping force during every oscillation cy-
cle can be computed as

Wd =−2 ζ ·m ·ωn · ẋ ·
∫

T
ẋ2 d t (5.16)

An average kinetic energy per oscillation cycle is defined as

Ek =
1

T

∫
T

1

2
mẋ2 d t = m ·ωd

4π

∫
T

ẋ2 d t (5.17)

Where T = 2π
ωd

denotes the period of damped oscillation cycle with ωd =ωn

√
1−ζ2 rep-

resenting the damped natural frequency. Assuming small values for ζ and with reference
to the ratio of damping work per cycle over the average kinetic energy, an aerodynamic
damping ratio can be defined as

ζae =−Wd,cycle

8 ·π ·Ek
(5.18)

With reference to the modal analysis concept and taking into account that the eigen-
vectors are mass normalized, a definition of maximum kinetic energy in matrix form can
be derived as
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1
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][
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]
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ω2
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Φ
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][
Φ

]= 1

2
ω2

n (5.19)

Consequently, assuming the average kinetic energy to be EK = 1
2 EK,max and subsituating

it into the equation 5.18, the definition of aerodynamic damping ratio can be rewritten
as

ζae =− Wd,cycle

2 ·π ·ω2
n ·S2

=− Wd,cycle

8 ·π3 · f 2 ·S2
(5.20)

It should be noted that in equation 5.20, the scaling factor S is implemented in order take
into account the correlation between the vibration amplitude of the CFD mesh and the
FE mesh as suggested by Moffatt and He [16].





6 Structural Dynamics Analysis

The following chapter focuses on an overview of the structural analysis performed in the
present work. A description of the FEM simulation setup including mesh element type
and boundary conditions, along with a mesh independence study and FE analysis results
are presented. The modal analysis is performed by ANSYS Mechanical APDL, which is a
general purpose finite-element modeling package intended for numerical solution of a
wide variety of mechanical problems.

6.1 FEM Simulation Setup

In a general approach, an axial compressor blisk can be modeled as a bladed disk with
oscillation modes which can be either blade-dominated or disk-dominated depending
on its structural setup [27]. As a simplified model, in the absence of shrouds and lacing
wires, the blades can be approximated as cantilever beams attached to a disk with a very
high stiffness. While modeling the bladed disk assembly would be more realistic, on the
other hand in order to determine the aerodynamic damping characteristics of the blisk,
CFD simulations with full rotor passage will be necessary.

In this study, assuming a perfectly tuned rotor and with the aim of performing traveling
wave mode simulations, the single blade geometry is considered for the sake of modal
analysis. ANSYS Meshing is used to generate an automated FE mesh with an adaptive
size control and a smooth transition inflation option, for the imported geometry from
ANSYS DesignModeler. After importing the generated mesh in ANSYS Mechanical APDL
the element type is modified to a “SOLID-187”, which is 3D 10-node tetrahedral struc-
tural solid element. The SOLID-187 element which is depicted graphically in Figure 6.1,
is defined by 10 nodes, each having three translational degrees of freedom in x, y and z
directions which is well suited to modeling irregular meshes.

Fig. 6.1 – The Geometry, node locations and the coordinate system for SOLID-187 element, [2]
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In addition to the nodal locations data, which is directly imported from ANSYS Meshing,
the material properties including the Young’s modulus and Poisson’s Ratio, are the other
input data that should be defined for this element type. In order to model the blade as
cantilever beam, a boundary condition has been applied to the blade hub, in such a man-
ner that all the translational degrees of freedom of the nodes corresponding to the bade
hub surface have been constrained.

In order to determine the influence of centrifugal stiffening of the blade, prior to the
modal analysis, a static analysis has been performed for the subject blisk which is con-
structed of 17-4 PH stainless-steel and has rotational speed of 16200 RPM. The eigen-
value problem is then solved using Block Lanczos modal-extraction method, which uses
a sparse matrix solver, in order to extract the first 10 eigen-frequencies and the corre-
sponding modal displacements.

6.2 Mesh Independence Study

FEM analysis have been performed for grids with different size starting from a very
coarse mesh with approximately 600 elements to a very fine mesh with about 35000
elements, with the scope of investigating the influence of mesh size on numerical re-
sults. Figure 6.2, reports eigen-frequencies obtained for the three firs modes with differ-
ent meshes. It can be observed that a fine mesh with 28822 nodes and 16077 elements
exhibits accurate results and thus has been chosen to proceed with the modal analysis
of the baseline rotor blade.

Number of Elements
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nc

y 
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Fig. 6.2 – Influence of mesh size on the first three eigen-frequencies
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6.3 Baseline Rotor Structural Analysis Results

An overview of the obtained mass-normalized, mode shapes and eigen-frequencies is il-
lustrated in Figure 6.3. As it was described in the previous sections, the resulting nodal
displacement of the blade surface nodes can be exported and mapped on the corre-
sponding nodes of the CFD mesh in order to investigate the aeroelastic stability of the
oscillating blades in a decoupled manner. It is worth noting that in the present work the
first bending mode and the first torsional mode are chosen to proceed with investigation
of the aerodynamic damping of the subject compressor blisk.

Mode 1 Mode 2 Mode 3 Mode 4

Mode 5 Mode 6 Mode 7 Mode 8

Mode 9 Mode 10

Max Disp.Min Disp.

Fig. 6.3 – A graphical representation of 10 first modes shapes of the baseline rotor

Table 6.1 – 10 first eigen-frequencies of the baseline blisk rotating at 16200 RPM

Mode Number 1 2 3 4 5 6 7 8 9 10

Frequency [Hz] 1654.4 4151.9 6183.8 7323.4 9089.5 12273 12501 13134 16301 17969





7 CFD Numerical Influence Study

Prior to the solution of discretized CFD equations by CFX-Solver, it is necessary to per-
form a numerical influence study with the scope of determining the appropriate tempo-
ral and spacial increments such as grid spacing and element size. The following chapter
represents an overview of the CFD simulation settings such as boundary conditions and
solver controls applied in the present work for steady and unsteady simulations, as well
as the numerical influence study which is performed for each case.

7.1 Steady State Simulations

For the subject axial compressor blisk, steady state simulations are performed using
ANSYS CFX in order to obtain its performance characteristics for a specified rotational
velocity over a range of different mass-flow rates. The results of such steady state simula-
tions are also essential for imposing the initial conditions for the unsteady simulations.
In table 7.1 a summary of the boundary conditions and solver controls implied for the
steady state simulation setup is given. It is noted that the simulation domain consists
of a single passages with periodic boundaries and inlet and outlet sections which are
located at a distance of 100 [mm] from the rotor blade’s leading and trailing edges.

Table 7.1 – Summary of the steady state simulation setup settings

Boundary Conditions

Rotational Velocity 16200 RPM

Inlet Total Temperature 294 [K]

Inlet Total Pressure 97000 [Pa]

Outlet Mass-Flow Rate (at design operating condition) 2.2 [kg/s]

Solver Control

Advection Scheme High Resolution

Turbulence Model Shear Stress Transport

Heat Transfer Model Total Energy

Physical Timescale 5×10−5 [s]

Within this domain which includes a single isolated blade, rotating wall boundaries have
been defined for the blade and rotor hub surfaces, whereas counter rotating walls are
used for the stationary shroud as well as upstream and downstream channel hubs. Along
with monitor points for pressure and temperature which provide a feedback on the con-
vergence of momentum and energy equations, other monitor points for variables such
as the total to total efficiency, compression ratio ans shaft power have been defined.
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Various CFD meshes with O4H block topology and different grid resolution and wall dis-
tance have been generated in AutoGrid with the aim of investigating mesh independence
of the CFD simulations. Figure 7.1 illustrates an overview of the grid quality for three dif-
ferent meshes generated for the isolated blade of the baseline rotor. An option is avail-
able in AutoGrid which avoids mesh discontinuity at the blade tip-gap region that results
in lower skewness angles at some regions. Thus it is necessary to maintain a minimum
value of this parameter in order to guarantee accurate results. Table 7.2, summarizes the
main parameters of the various meshes generated with different fineness level.

Coarse 200K A Medium 600K Fine 2400K

Fig. 7.1 – Mesh grid refinement from a very coarse mesh (left) to a very fine mesh (right)

Table 7.2 – Steady State simulation CFD mesh parameters

Mesh Name Number of Elements Average Y + Minimum Face Angle [deg]

SS Coarse 200K A 191312 0.6 21.3

SS Coarse 200K B 191312 1.2 21.3

SS Coarse 400K A 370132 0.6 18.3

SS Coarse 400K B 370132 4.0 17.3

SS Coarse 400K C 370132 16 18.1

SS Medium 600K 616252 0.6 19.9

SS Medium 800K 747456 0.6 19.9

SS Fine 1000K 941380 0.6 18.9

SS Fine 1200K 1138688 0.6 18.2

SS Fine 2400K 2338784 0.6 21.6
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As a convergence criteria a monitor point has been defined so that in case the standard
deviation of total to total efficiency reaches a value of 0.001 after a minimum number of
500 iterations, the solver stops the simulation.

Considering the above mentioned settings, steady state simulations were performed for
various meshes at the design operating conditions. The diagrams illustrated in Figure 7.2,
represent a comparison of the compression ratio Π and the isentropic total to total effi-
ciency ηt t obtained at the end of simulations. It can be observed that the medium “SS
Medium 600K” mesh which is highlighted in the figure has a deviation of 0.53 and 0.12
percents in terms of efficiency and compression ratio respectively in comparison to the
finest mesh of “SS Fine 2400K”.

Π𝑡𝑡

𝜂𝑡𝑡

Fig. 7.2 – Comparison of efficiency ηt t and compression ratio Πt t for various meshes size

In order to ensure an accurate prediction of the operating characteristics of the compres-
sor rotor, further steady state simulations have been performed keeping the rotational
speed unchanged, over a varying range of operating conditions with different mass-flow
rates, for three selected meshes. As it is illustrated in Figure 7.3 the speed lines obtained
for the three meshes are compared. Meanwhile comparing the Mach number plots at
different span positions, as represented in Figure 7.4, a detailed investigation of the flow
filed changes with changing grid quality is possible. Comparing the steady state simu-
lation results, it can be observed that the medium mesh “SS Medium 600k” reveals a
reasonable trade off regarding the solution accuracy and computational effort.
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Fig. 7.3 – Comparison of efficiency ηt t and compression ratio Πt t for various operating points

Mach Number at 0.5 Span Position

Mach Number at 0.9 Span Position

Coarse 200K A Medium 600K

Fine 2400KFine 1200K

Coarse 200K A Medium 600K

Fine 2400KFine 1200K

Fig. 7.4 – Mach number plots for different meshes at 0.9 and 0.5 span positions
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7.2 Unsteady Simulations

In order to investigate the numerical influence on the unsteady simulations at the pres-
ence of oscillating blades, causing periodic mesh motion at the blade wall boundaries,
traveling wave mode simulations have been performed for a a single passage of the rotor
with periodic boundaries, for an inter-blade phase angle of zero (σ = 0). In contrast to
the steady state simulations, a pressure boundary condition has been implied at the out-
let of the domain with the aim of obtaining more stable solutions. Also in order to avoid
numerical issues due to the reflections from the wall boundaries, the distance of the in-
let and outlet sections of the domain from the blade profile have been increased to 200
and 300 [mm] respectively with a coarser mesh resolution towards the inlet and outlet
sections. In table 7.3 an outline of the boundary conditions and solver settings applied
for the unsteady simulations, are presented, whereas Figure 7.5 illustrates the differences
between the steady state and unsteady simulation meshes.

Table 7.3 – Summary of the unsteady simulation setup settings

Boundary Conditions

Rotational Velocity 16200 RPM

Inlet Total Temperature 294 [K]

Inlet Total Pressure 97000 [Pa]

Outlet Average Static Pressure a 102484 [Pa]

a: implicit pressure averaging over whole outlet with a profile blend factor of zero

Solver Control

Advection Scheme High Resolution

Transient Scheme Second Order Backward Euler

Turbulence Model Shear Stress Transport

Heat Transfer Model Total Energy

Mesh Motion Model Displacement Diffusion

Fig. 7.5 – Steady State simulation mesh (left), compared to unsteady simulation mesh (right) with
modified upstream and downstream channel length and mesh resolution

At the blade wall boundaries the displacement vectors corresponding to the first bending
mode of the FE mesh are mapped onto the corresponding nodes of the CFD mesh with
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an appropriate scaling factor and are introduced as a profile data into the simulation
domain. It is worth noting that in order to avoid formation of negative cells due to the
mesh deformations, the mesh stiffness option of “Blend Distance and Small Volumes” is
incorporated into the mesh motion model which is of “Displacement Diffusion” type.

While monitor points are defined for different variables including the total-to-total ef-
ficiency, compression ration, mass-flow rate, and shaft power, the unnormalized value
of the aerodynamic damping calculated by CFX-Solver has been monitored as a conver-
gence criteria.

7.2.1 Mesh Resolution

With the aim of investigating influence of mesh resolution on the solution accuracy and
the required computational effort, four different meshes were generated base on the
meshes which were used for the steady state simulations. In this regard the distance of
the inlet and outlet sections from the blade profile are increase and the the grid size
gets coarser towards the inlet and outlet sections. Table 7.4 represents an overview of the
generated meshes. With maximum amplitude of blade motion being scaled to 1% of the
blade chord length, and setting the number of time-steps per period of run to 80, trav-
eling wave mode simulations have been performed over 40 periods for each case. Mon-
itoring the value of the calculated aerodynamic damping, as it is shown in Figure 7.6, it
can be observed that full convergence is achieved after approximately 40 periods of run.

Table 7.4 – Unsteady simulation CFD mesh parameters

Mesh Name Number of Elements Average Y + Minimum Face Angle [deg]

TR Coarse 200K 213932 3.0 21.2

TR Medium 600K 669676 0.6 19.9

TR Fine 1200K 1310048 0.6 18.2

TR Fine 2400K 2557664 0.6 21.6
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Fig. 7.6 – Monitor points for efficiency, compression ratio (left) and aerodynamic damping (right)

The diagram in Figure 7.7, summarizes the obtained values of aerodynamic damping
which are normalized according to equation 5.20 for the four different meshes along with
the computational time for each case to reach convergence in terms of CPU-Hours.
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Fig. 7.7 – Normalized aerodynamic damping ratio as a function of mesh resolution

7.2.2 Number of Time-Steps per Period

Number of time-steps per period of run is another parameter which can affect the ac-
curacy of solution as well as the computation time. With the frequency of blade oscil-
lation determining duration of each period, three traveling wave mode simulations are
performed in a range of 40 to 160 time steps per period. Figure 7.8, illustrates the results
obtained through these simulations. Comparing the two diagrams of figures 7.7 and 7.8,
it can elucidated that, the medium mesh of “TR Medium 600K” results in an overestima-
tion of the aerodynamic damping ratio by approximately 18 percent with respect to the
finest mesh, where as increasing the number of time-steps per period for the same mesh
decreases this offset to approximately 6 percents. However this improvement of accuracy
is achieved at a computation time which is approximately two times higher.

Number of Time-Steps per Period

~ 2300 CPU-Hours

~ 1150 CPU-Hours

~ 550 CPU-Hours

40 60 80 100 120 140 160

Fig. 7.8 – Aerodynamic damping ratio as a function of number of time-steps per period

7.2.3 Varying Amplitude of Mesh Displacement

In another attempt in order to verify the independence of the aerodynamic damping
ratio, which is normalized according to the equation 5.20 over the oscillation frequency
and scaling factor, from the amplitude of blade vibrations, further simulations have been
performed for the medium mesh of “TR Medium 600K” by varying the max amplitude
of motion in a range of 0.5 to 3 percent of the blade chord length and maintaining the
number of time-steps per period at 80. As it is observed in Figure 7.9, the variations in
aerodynamic damping ratio are negligible. This on the other hand indicates the reliability
and robustness of the simulation setup.
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Fig. 7.9 – Aerodynamic damping ratio as a function of maximum amplitude of mesh motion

7.3 Traveling Wave Mode Simulations

Regarding the traveling wave mode approach, for the baseline rotor which consists of
17 equally spaced blades, the maximum number of nodal diameters equals to 8 as cal-
culated according to equation 2.10. Thus considering both the forward and backward
traveling waves, the inter-blade phase angle σ can take 17 discrete values including the
σ= 0, in which all the blades oscillate with the same phase.

In order to determine variations of the aerodynamic damping ratio as a function of inter-
blade phase angle, or to obtain the characteristic S-Curve in other words, traveling wave
mode simulations have been performed for all possible IBPAs. In this regard, for the first
bending mode of the baseline rotor blade, 16 unsteady simulations have been performed
using the “TR Medium 600K” mesh within a computational domain which consists of all
the 17 passages of the rotor without a need for the periodic boundaries.

It is worth noting that the “Transient Blade Row” feature of ANSYS CFX makes it possible
to apply a phase shift to each oscillating blade within the domain according to its corre-
sponding sector tag, for various nodal diameters and different directions of the traveling
wave. Performing the TWM simulations for over 40 periods of run each consisting of 80
time-steps per period, the aerodynamic damping ratio ζae, is derived for all the IBPAs as
it is reported in the characteristics S-Curve of Figure 7.10.

IBPA [deg]

Fig. 7.10 – S-Curve for the baseline case with blades vibration at the 1st bending mode
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7.4 Influence Coefficients Method Simulations

Referring to the definition of influence coefficients method as described in section 2.3.4,
it can be elucidated that unlike the traveling wave mode approach, the computational
domain corresponding to the ICM method involves a reference blade which has an os-
cillatory motion with the other neighboring blades remaining stationary. In contrast to
the TWM approach a single simulation is sufficient with the ICM approach for predic-
tion of the characteristics S-Curve. In this regard a post-processing procedure is required
as explained in section 5.3.1 in order to determine the aerodynamic damping ratio as a
function of inter-blade phase angle σ.

According to the theoretical definition of ICM approach, it is assumed that the influence
of neighboring blades on the reference blade depends on the their relative distance, how-
ever though the accuracy of numerical results obtained through ICM approach depends
directly on the number of passages included in the computational domain. In order to
investigate the influence of number of simulated passages on the overall results two un-
steady simulations have been performed for different computational domains one in-
cluding 9 passages with periodic boundaries on either side, and another setup with 17
passages without periodic boundaries.

It should be noted that, similar to the TWM simulation, also in this case the “TR Medium
600K” mesh has been used and the blade is vibrating at its first bending mode with the
number of time-steps per period which equal to 80. Figure 7.11 illustrates a comparative
representation of the S-Curves obtained through the TWM approach and ICM approach
with different computational domains.
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Fig. 7.11 – Comparison of S-Curves obtained with TWM and ICM approaches

It is observed that although the ICM method setup with 9 passages is able to predict the
value of minimum damping ratio which corresponds to σ= 0, with a reasonable accuracy
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with respect to the TWM approach, in some particular nodal diameters the deviations are
not in an acceptable range. On the other hand in case of the ICM setup with 17 passages,
the resulting S-Curve reveals a better accordance with regards to the S-Curve obtained
though the TWM Approach.
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Fig. 7.12 – Comparison of blade influence coefficients obtained through ICM simulations for two
computational domains with different number of simulated passages

Figure 7.12 illustrates the differences in blade influence coefficients obtained for the two
different ICM simulation setups. As it is described in section 5.3.1, blade influence coef-
ficients represent the contribution coming from each of the individual blades present in
the simulation domain, to the overall complex work value that is calculated through the
frequency-domain post-processing of the unsteady CFD simulation results. It is observed
that in case of the simulation setup with 9 passages, the influence of the reference blade
is lower compared to the case with 17 passages, while the influence of the other neigh-
boring blades are over estimated.

Table 7.5 reports an overview of the computational time required to derive the charac-
teristics S-Curve through the TWM and ICM approaches. It is noted that using the ICM
method for a CFD setup consisting of 17 passages, results in a reduction of the compu-
tational effort by a factor of 16 compared to the TWM approach.

Table 7.5 – Computational time required for CFD simulation using TWM and ICM methods

Case Name Number of Required Simulations Total Computation Time in CPU-Hours

TWM 17 369800

ICM 9 1 11900

ICM 17 1 23000
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Fig. 7.13 – S-Curves obtained using ICM method with different number of passages

In a further attempt to investigate the influence of the number of simulated passages on
the accuracy of the S-Curve derived through the ICM method, it is possible to perform
the post-processing procedure using the pressure signals of only 9 blades in a setup con-
sisting of 17 passages. The derived S-Curve is then compared with the setup including 9
passages and periodic boundaries as it is shown in Figure 7.13.
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Fig. 7.14 – Blade influence coefficients obtained using ICM method with different number of
passages
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In a similar manner the blade influence coefficients are compared as it is reported in
Figure 7.14. It can be elucidated that the calculated aerodynamic damping ratio for ev-
ery inter-blade phase angle is influenced by the magnitude and the number of blade
influence coefficients considered within the post-processing procedure.

Comparing the S-Curves obtained through numerical simulations with traveling wave
mode approach and influence coefficients method, and taking into account the amount
of required computational effort, it can be elucidated that the influence coefficients ap-
proach yields an appropriate tool for investigation of the influence of geometrical param-
eters on the aerodynamic damping ratios. Therefore within the present work the influ-
ence coefficients method with computational domains consisting of the complete rotor
passage without periodic boundaries will be utilized.



8 Influence of Frequency Variations on the
Aerodynamic Damping of the Baseline Rotor

With the aim of investigating the influence of frequency variations on the aerody-
namic damping characteristics, the baseline rotor has been subjected to unsteady CFD
analyses using influence coefficients method. In this regard for each of the two mode
shapes under investigation, the blade oscillation frequency is altered while preserving
the mode shape. With convergence being reached after approximately 40 periods of
run, a post-processing procedure has been conducted on each result file as described in
section 5.3.1, to obtain the characteristics S-Curves and to extract the blade influence
coefficients.

8.1 1st Bending Mode

In addition to the frequency corresponding to the 1st bending mode shape of the blade
which is computed through the modal analysis as described in chapter 6, unsteady CFD
simulations are performed for blades oscillating at 1000 [Hz] and 3000 [Hz].

Figure 8.1, illustrates the obtained characteristic S-Curve for the three different cases. It
is observed that the value of minimum aerodynamic damping ratio for the case in which
the blade is oscillating at 1000 [Hz] corresponds to an interblade phase angle of σ = 0
and has a deviation of −8.9% compared to the baseline case (Frequency = 1654.4 [Hz]).
Considering the case in which the oscillation frequency is set to 3000 [Hz] though, the
minimum value of aerodynamic damping ratio corresponds to a nodal diameter of 1 of
backward traveling wave and has a deviation of 36.8% with respect to the baseline case.

Considering Figure 8.2, it is noted that the value of influence coefficient of the central
reference blade has a deviation of 41.5% and −42.3% for the cases of 1000 [Hz] and 3000
[Hz] respectively compared to the baseline case. Thus it can be elucidated that consider-
ing the three cases which have been investigated, the value of minimum damping ratio
follows an increasing trend as the blade vibration frequency increases, whereas the influ-
ence coefficient of the central reference blade decreases as the frequency increases.

In Figure 8.3, the values of blade influence coefficients are reported as a function of
blade vibration frequency. It should be noted that these values have been normalized
over the corresponding maximum value of each case for every blade. Considering this
plot, in the current case where the blades are oscillating with their 1st bending mode, a
clear trend is not detected for all of the blades.
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Fig. 8.1 – Characteristic S-Curve of the baseline rotor with different blade oscillation frequencies
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Fig. 8.2 – Blade influence coefficients of baseline rotor with different blade oscillation frequencies
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Frequency [Hz]

Fig. 8.3 – Variations of the normalized blade influence coefficients as a function of blade oscilla-
tion frequency, 1st bending mode

Figure 8.4 reports the local values of aerodynamic damping ratio, amplitude of the com-
plex work per cycle and the phase shift between the complex force and complex displace-
ment values of every node on the blade surface computed though the frequency-domain
post-processing of the transient CFD results for an inter-blade phase angle of σ= 0 as it
is marked on Figure 8.1.

In this figure positive values of local aerodynamic damping values, which indicate a sta-
bilizing character of the flow, are highlighted by red color. Considering the difference in
phase between the complex force and complex displacement values at every nodal lo-
cation (φrotation =φF −φd, as noted in section 5.3.1), it is worth noting that a phase shift
of φrotation = 270◦, highlighted with red, indicates a positive damping force (force and ve-
locity in phase) where as a phase shift of φrotation = 90◦, highlighted with blue, results
in a negative damping force (force and velocity out of phase) and thus a destabilizing
character of the flow.

Referring to Figure 8.4, it can be elucidated that as the oscillation frequency increases,
the amplitude of the local complex work per cycle follows a decreasing trend both in
magnitude and intensity which can be attributed to the the reduction of the reference
blade influence coefficient as it is reported in Figure 8.2. However, comparing the cases
in which the oscillation frequency is set to 1000 [Hz] and 3000 [Hz], it can be observed
that in the later case although the amplitude of the local complex work per cycle is lower
both on the pressure and suction sides of the blade, but with larger regions of phase
shift which conform to a value of φrotation = 270◦, the overall aerodynamic damping ratio
yields a higher value.
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Fig. 8.4 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of baseline rotor blade (1st bending, σ= 0)
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8.2 1st Torsional Mode

In a similar manner, unsteady CFD simulations involving the 1st torsional mode of the
baseline rotor blade have been performed with three different frequencies in a range of
2000 [Hz] to 6000 [Hz]. Figure 8.5, represents the characteristics S-Curve plots obtained
for the three cases. It can be observed that the value of maximum aerodynamic damping
ratio for the baseline case (4151.9 [Hz]), corresponds to an inter-blade phase angle of σ=
0, whereas, in case where the oscillation frequency is set to 2000 [Hz], this value conforms
to a nodal diameter of 3 of forward traveling wave and has a deviation of 195.6% with
respect to the baseline case. On the contrary when the blade has a vibration frequency
of 6000 [Hz], the maximum aerodynamic damping ratio corresponds to a nodal diameter
of 3 of backward traveling wave and has a value that is 40.2% lower compared to the
baseline case.

IBPA (𝜎)

Fig. 8.5 – Characteristic S-Curve of the baseline rotor with different blade oscillation frequencies

Considering the blade influence coefficients as reported in Figure 8.6, it is noted that the
influence coefficient of the central reference blade has deviations of 146.2% and −38%
compared to the baseline case, when the blade oscillation frequency is set to 2000 [Hz]
and 6000 [Hz] respectively.

In this case where the reference blade is oscillating at its 1st torsional mode, it is observed
the value of aerodynamic damping ratio for every inter-blade phase angle, conform to a
decreasing trend as the vibration frequency increases. Also similar to the 1st bending
mode, the value of the influence coefficient of the central reference blade follows a de-
creasing trend as the frequency increases.
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Fig. 8.6 – Blade influence coefficients of baseline rotor with different blade oscillation frequencies
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Fig. 8.7 – Variations of the normalized blade influence coefficients as a function of blade oscilla-
tion frequency, 1st torsional mode
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Fig. 8.8 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of baseline rotor blade (1st torsional, σ= 0)
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Figure 8.7 illustrates the variations of normalized blade influence coefficients as a func-
tion of vibration frequency for the 1st torsional mode. Unlike the 1st bending mode, in
this case a decreasing trend can be clearly detected for the influence coefficients as the
vibration frequency increases.

Figure 8.8 illustrates the local values of aerodynamic damping ratio, amplitude of the
complex work per cycle and the phase shift between the complex force and complex
displacement values of every node on the blade surface when the blades are oscillating
at their 1st torsional mode with an inter-blade phase angle of σ = 0 as it is marked on
Figure 8.5.

It is noted that in a similar manner to the 1st bending mode, when the the blades are
oscillating at their 1st torsional mode, as the oscillation frequency increases, the ampli-
tude of the local complex work per cycle follows a decreasing trend both in magnitude
and intensity which is in consistency with the decreasing trend of the blade influence
coefficients as it is reported in Figure 8.7.

Comparing the cases in which the oscillation frequency is set to 2000 [Hz] and 6000 [Hz],
it can be observed that in both of the cases the largest values of the amplitude of lo-
cal complex work per cycle conform to the regions with a phase shift of φrotation = 270◦,
and consequently the overall value of the aerodynamic damping ratio is positive which
results in a stabilizing character of the flow. As a result unlike the 1st bending mode, at
an inter-blade phase angle of σ = 0, in this case the overall value of the aerodynamic
damping ratio decreases as the oscillation frequency increases.

In general it can be elucidated that the oscillation frequency has a significant influence
on the value of aerodynamic damping ratio calculated for every inter-blade phase angle
and thus the shape of the derived characteristics S-Curve as it influences both the ampli-
tude of the local complex work per cycle and the phase shift between the local complex
force and complex displacement values.



9 Influence of Blade Count on Aerodynamic
Damping

With the aim of investigating the influence of geometrical parameters on the aeroelas-
tic stability, two different cases including “variable blade count” and “variable trailing
edge angle”, are considered within the present work. In this regard modifications are per-
formed on the baseline rotor in order to obtain new design. Following a structural anal-
ysis of each case, unsteady CFD simulations are performed through the influence coef-
ficients method and the obtained results are compared in order to find a possible trend
correlating the geometrical modifications and the aerodynamic damping ratio.

Blade count ratio (BCR), i.e. the ratio of blade counts of two adjacent rows in a stage, is
a design parameter which can be implied in order to avoid Campbell crossing in turbo-
machinery applications [14]. In this study though, for the isolated fan rotor under inves-
tigation, the blade count is varied in order to investigate its influence on aerodynamic
damping ratio.

9.1 Scaling Technique

Blade count variation is achieved by scaling the baseline blade with a fixed chord-to-
pitch ratio (solidity) through a scaling technique reported in [15]. Thus a blade scaling
factor S f is introduced as

S f = NNB,baseline

NNB,scaled
(9.1)

The baseline blade is then scaled in the axial and circumferential coordinates only, pre-
serving the blade solidity. In this sense with the blade loading remaining unchanged, the
effects on the steady-state aerodynamic performance will be minimal.

Zsclaed = S f ·Zbaseline

θscaled = S f ·θbaseline

Rsclaed = Rbaseline

(9.2)

Figure 9.1 illustrates profiles of blades with various blade count that are obtained after
scaling the baseline line rotor blade. It should be mentioned that in order to minimize
the effect of scaling on steady aerodynamics, the stacking of the profiles has been altered
in such a manner that the leading edge blade angle is preserved.
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Fig. 9.1 – Blade hub profile of modified rotors with various blade count

9.2 Modal Analysis

In order explore influence of scaling on the mode frequency and mode shapes of the
modified blades a modal analysis has been performed as described in chapter 6. Fig-
ure 9.2 illustrates the two first mode shapes of the baseline rotor blade as well as the
modified blades.
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Fig. 9.2 – A graphical representation of the 1st bending and the 1st torsional modes of different
blades corresponding to rotors with variable blade count
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Further more to investigate the influence of scaling on the mode shapes of modified
blades, a modal assurance criteria (MAC-Index) has been computed for the mode shapes
obtained from FEM analysis as

M AC =

∣∣∣∣{Φx,scaled

}T {
Φx,baseline

}∣∣∣∣2

({
Φx,scaled

}T {
Φx,scaled

})({
Φx,baseline

}T {
Φx,baseline

}) (9.3)
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Fig. 9.3 – Comparison of eigen-frequencies and MAC numbers for different blades corresponding
to rotors with variable blade count
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It is worth noting that in order to calculate the MAC index, having performed the modal
analysis, the nodal locations of the modified blades have been scaled back by a factor of

1
S f , so that a mapping of the modal vectors can be performed over the nodal locations of
the baseline rotor blade.

The diagrams in Figure 9.3 report variations of eigen-frequencies corresponding to the
the first 5 vibration modes and the modal assurance criteria as a function of blade count
of the various rotors. It is observed that regarding the 1st bending mode and the 1st tor-
sional mode which are of importance to the present work, the eigen-frequencies follow
a decreasing trend as the blade count increases. On the other hand though, considering
the MAC numbers with values close to unity for all of the cases, it can be elucidated that
the influence of scaling on the mode shapes is of negligible order.

9.3 Steady State Analysis

Considering the scaling method introduced in section 9.1, it is expected that the steady
state aerodynamic performance of the modified geometries will be consistent with the
baseline design. Thus steady state simulations have been performed for all of the mod-
ified cases in ANSYS CFX according to the same CFD setup and mesh resolution, de-
scribed in section 7.1. Figure 9.4, represents the obtained results in a comparative man-
ner for all the cases. In this figure, blade loading are plotted at the midspan position for
all the cases. Also deviations of the total-to-total efficiency and compression ratio with
respect to the baseline rotor design is reported. Comparing the overall results, it can be
elucidated that with minimal changes in the operating conditions of the modified ge-
ometries with various blade count, the steady aerodynamics is preserved.

Streamwise Direction at mid-span position a

a) based on meridional coordinate, following the blade surface and normalized with 0 at the leading edge and 1 at the trailing edge of blade
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Fig. 9.4 – Blade loadings plot (left) and steady-state aerodynamic performance variations (right)
compared for different cases
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9.4 Unsteady CFD Analysis

In order to investigate the influence of blade count on the aerodynamic damping ratio,
unsteady CFD analyses have be performed. For this purpose, three cases with 13, 21 and
25 blades have been picked to be compared with the baseline rotor which consists of 17
blades. In this regards, all of the mentioned configurations have been subjected to tran-
sient CFD simulation using the influence coefficients method, for both the 1st bending
mode and the 1st torsional mode.

According to results obtained in the previous section, variations in the blade count have
the major impact on oscillation frequency rather than the mode shape. Thus with the
aim of gaining a detailed insight into the influence of mode-shape on the overall aero-
dynamic damping ratio two series of CFD simulations have been conducted. Within
the first series of simulations, blade oscillations involve the eigen-frequency computed
through the modal analysis corresponding to each individual case. Meanwhile in the sec-
ond series of CFD simulations, blade vibrations in all of the different configurations take
place at eigen-frequency of the baseline rotor which correspond to the mode shape being
investigated.

Influence coefficients method analyses have been conducted through a computational
setup as described in section 7.2 with similar boundary conditions and a computational
domain which includes the whole rotor passages without a need for periodic boundaries.
In table 9.1 an overview of the unsteady simulation parameters and the overall compu-
tational effort is reported.

Table 9.1 – An overview of unsteady CFD setups and computational effort for different cases

Case Name Blade Count
Number of

Elements
Mode Shape

Frequency

[Hz]

Computation Time

[CPU-Hours]

NB13 1st EF 13 8868900 1st Bending 2080.28 18900

NB13 1st UF 13 8868900 1st Bending 1654.36 18900

NB13 2nd EF 13 8868900 1st Torsional 4415.35 18900

NB13 2nd UF 13 8868900 1st Torsional 4151.91 18900

NB21 1st EF 21 14063200 1st Bending 1376.86 31500

NB21 1st UF 21 14063200 1st Bending 1654.36 31500

NB21 2nd EF 21 14063200 1st Torsional 3871.51 31500

NB21 2nd UF 21 14063200 1st Torsional 4151.91 31500

NB25 1st EF 25 16741900 1st Bending 1187.36 34600

NB25 1st UF 25 16741900 1st Bending 1654.36 34600

NB25 2nd EF 25 16741900 1st Torsional 3615.48 34600

NB25 2nd UF 25 16741900 1st Torsional 4151.91 34600

Total Computation Time 340000
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9.5 Results

With convergence being reached after approximately 40 period, a post-processing pro-
cedure has been conducted on each result file as described in section 5.3.1, to obtain
the characteristic S-Curves and to extract the blade influence coefficients. In addition to
the S-Curve plots and blade influence coefficient diagrams, local aerodynamic damping
ratios are plotted on the blade surface as well as the amplitude and phase of the normal-
ized complex work per cycle which yield from the frequency-domain post-processing of
the transient CFD results.

9.5.1 1st Bending Mode (Blades Vibrating at Different Frequencies)

Figure 9.5 illustrates the obtained characteristic S-Curves for rotors of various blade
count vibrating with the 1st bending mode shape at frequencies derived through modal
analysis for each individual case. It is observed that in case of the rotor with 13 blades,
the value of minimum damping which corresponds to a nodal diameter of 1 of backward
traveling wave is 0.17% higher compared to the baseline rotor. Meanwhile for rotors con-
sisting of 21 and 25 blades, minimum damping ratios correspond to nodal diameters of 4
and 3 of forward traveling wave respectively. Also for the later cases minimum damping
ratio values increase by 94% and 115% respectively.

IBPA (𝜎)

Fig. 9.5 – S-Curve for rotors with various blade count oscillating in different frequencies

Figure 9.6 on the other hand, reports the extracted influence coefficients of the individual
blades. As the number of blades increase from 17 to 25, the value of influence coefficient
of the central reference blade increases by 26.5% and 83% respectively. On the contrary
this value is decreased by 37.7% for the rotor of 13 blades.
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Blade Number

Fig. 9.6 – Blade influence coefficients for rotors with various blade count oscillating in different
frequencies

Figure 9.7 reports the local values of aerodynamic damping ratio, amplitude of the com-
plex work per cycle and the phase shift between the complex force and complex displace-
ment values of every node on the blade surface computed though the frequency-domain
post-processing of the transient CFD results for an inter-blade phase angle of σ= 0 as it
is marked on Figure 9.5.

In this figure positive values of local aerodynamic damping values, which indicate a sta-
bilizing character of the flow, are highlighted by red color. Considering the difference in
phase between the complex force and complex displacement values at every nodal lo-
cation (φrotation =φF −φd, as noted in section 5.3.1), it is worth noting that a phase shift
of φrotation = 270◦, highlighted with red, indicates a positive damping force (force and ve-
locity in phase) where as a phase shift of φrotation = 90◦, highlighted with blue, results
in a negative damping force (force and velocity out of phase) and thus a destabilizing
character of the flow.

It can be elucidated that in the regions of the blade surface above the mid-span posi-
tion towards the blade tip, the largest values of the amplitude of local complex work per
cycle conform to the regions with a phase shift of φrotation = 270◦, and consequently the
overall value of the aerodynamic damping ratio is positive which results in a stabilizing
character of the flow.

Figure 9.8, illustrates similar plots for the modified rotor consisting of 21 blades. It is
noted that compared to the baseline case, with the values of the phase shift being close
to φrotation = 270◦ on the upper regions of the pressure side of the blade, there are no
regions of negative damping present.



70 9 Influence of Blade Count on Aerodynamic Damping

Pr
es

su
re

 S
id

e
Su

ct
io

n 
Si

de

Fig. 9.7 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of baseline rotor blade (mode 1, σ= 0)
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Fig. 9.8 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of the modified rotor with 21 blades (mode 1, σ= 0)
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The plots in Figure 9.9 represent the difference in phase between the values of local com-
plex force and complex displacement of every nodal location on the pressure side of the
central reference blade for the modified rotor of 25 blades. As it is illustrated in the fig-
ure, some of abrupt changes of phase in the blade tip region can be attributed to the tip
vortex arising from the tip of the neighbouring blade.

direction of rotation

Fig. 9.9 – Phase shift between the local complex force and complex displacement values plotted
on the pressure side of modified rotor consisting of 25 blades (mode 1, σ= 0)

Figure 9.10 illustrates the difference in phase between local complex force and complex
displacement values On the suction side as well as local wall shear stress values. Similar
abrupt changes of the phase are noticed in the regions close to the blade hub as it is
highlighted in Figure 9.10. However in this region very low values of wall shear stress
indicates regions of flow separation which could be contributing to the changes in the
local phase shift values.

[𝑑𝑒𝑔]

direction of rotation

Fig. 9.10 – Phase shift between the local complex force and complex displacement values (left)
and the local wall shear stress values (right) plotted on the suction side of modified rotor consist-
ing of 25 blades (mode 1, σ= 0)
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9.5.2 1st Bending Mode (Blades Vibrating at the Same Frequency)

The diagrams in figures 9.11 and 9.12, report the characteristics S-Curve and blade in-
fluence coefficients for the case in which blade oscillation frequency is set to that of
the baseline rotor for all of the different rotors of various blade count. Regarding the
S-Curve plot, it is elucidated that in this case the value of minimum damping ratio cor-
responds to an inter-blade phase angle of σ= 0 and it follows an increasing trend as the
blade count increases. According to this plot the value of minimum damping is 16.5%
and 34.3% higher for with rotors of 21 and 25 blades compared to the baseline design,
whereas this value is 14% lower for the rotor of 13 blades.

Also a similar trend is observed concerning the influence coefficient of the central blade
with variations of −10%, 14.3% and 31% for the rotors of 13, 21 and 25 blades respectively
compared to the baseline rotor design.

IBPA (𝜎)

Fig. 9.11 – S-Curve for rotors with various blade count oscillating in same frequency

Figure 9.13 and Figure 9.14, show the local values of aerodynamic damping ratio, ampli-
tude of the complex work per cycle and the phase shift between the complex force and
complex displacement values of every node on both suction and pressure sides of blade
surface for the rotors of 17 and 25 blades respectively. Considering the phase shift plots
in the two figures, it is noted that unlike the case where the blades were oscillating with
different frequencies, in this case though a similar trend can be detected for both of the
blades on pressure side as well as the suction side. Regarding the amplitude of the local
complex work per cycle however, in case of the rotor with 25 blades some regions with
larger magnitudes are detected compared to the baseline rotor. This can be attributed
to the smaller pitch values and thus more closely spaced blades as the blade count in-
creases and consequently larger influence coefficients as seen in Figure 9.12.
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Blade Number

Fig. 9.12 – Blade influence coefficients for rotors with various blade count oscillating in same
frequency
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Fig. 9.13 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of baseline rotor blade (mode 1, σ= 0)
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Fig. 9.14 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of the modified rotor with 25 blades (mode 1, σ= 0)

9.5.3 1st Torsional Mode (Blades Vibrating at Different Frequencies)

Figure 9.15, reports the S-Curve corresponding to the rotors of various blade count vi-
brating with the 1st torsional mode shape at frequencies derived through modal analysis
for each individual case. According to this diagram, the value of minimum damping ra-
tio for rotors of 13, 17 and 21 blades corresponds to nodal diameters of 1, 7 and 6 of
forward traveling wave respectively, whereas in case of the rotor with 25 blades mini-
mum damping ratio takes place at a nodal diameter of 11 of backward traveling wave.
Also the deviations of value of minimum damping ratios from the baseline case equals
to −23%, 23% and 70.4% for rotors of 13, 21 and 25 blades respectively.

In general as the blade count increases an increase in the value of aerodynamic damp-
ing ratio is observed for all nodal diameters. However though in case of the rotor with 25
blades a significant increase in the value of aerodynamic damping ratio for nodal diam-
eters of 6 to 10 of forward traveling wave is detected.

Considering Figure 9.16, which illustrates the blade influence coefficients, a similar trend
can be observed as the influence coefficient of the central reference blade increases with
increasing number of blade count. Deviations in the value of influence coefficient of the
central reference blade compared to the baseline case are −29%, 30.5% and 108% for the
rotors of 13, 21 and 25 blades respectively.
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Fig. 9.15 – S-Curve for rotors with various blade count oscillating in different frequencies

Blade Number

Fig. 9.16 – Blade influence coefficients for rotors with various blade count oscillating in different
frequencies
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Fig. 9.17 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of baseline rotor blade (mode 2, σ= 84.7)
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Fig. 9.18 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of the modified rotor with 25 blades (mode 2, σ= 100.8)
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Figure 9.17 illustrates the local values of aerodynamic damping ratio, amplitude of the
complex work per cycle and the phase shift between the complex force and complex
displacement values for the baseline rotor case which is oscillating at a nodal diameter
of 4 of forward traveling wave (σ= 84.7) as it is marked on Figure 9.15. On the other hand
Figure 9.18 reports similar plots for the rotor consisting of 25 blades oscillating at a nodal
diameter of 6 of forward traveling wave (σ= 100.8).

Considering the two figures mentioned, it is observed that in case of the rotor with 25
blades, large values of the local complex work per cycle magnitude, together with the
values of the phase shift being close to φrotation = 270◦, have resulted in regions of high
local aerodynamic damping ratios on the suctions side. On the contrary in case of the
baseline rotor, the distribution of local phase shift values on the suction side cause re-
gions of negative local aerodynamic damping.

9.5.4 1st Torsional Mode (Blades Vibrating at the Same Frequency)

In case where blade oscillation frequency is set to that of the baseline rotor for all of the
different rotors of various blade count, the characteristics S-Curve and blade influence
coefficients plots corresponding to the 1st torsional mode of blades are illustrated in fig-
ures 9.19 and 9.20.

Comparing the aerodynamic damping ratio plots as reported in Figure 9.19, for rotors of
13 and 21 blades with respect to the baseline rotor, it is observed that the S-Curves follow
a similar trend with the maximum damping ratio corresponding to the inter-blade phase
angle of (σ= 0). In case of the rotor with 25 blades though, the maximum damping ratio
takes place at the nodal diameter 5 of forward traveling wave, while significant deviations
in terms of aerodynamic damping ratios are present at nodal diameters of 6 to 10 of
forward traveling wave compared to the baseline rotor.

Figure 9.19 also yields the fact that the value of minimum aerodynamic damping ratio
for rotors of 13 and 25 blades correspond to the nodal diameters of 6 and 10 of backward
traveling wave with deviations of −18.6% and 54.5% respectively compared to the base-
line rotor. Meanwhile in case of the rotor with 21 blades, the value of minimum damping
ratio is detected at a nodal diameter 7 of forward traveling wave and with deviation of
1.4% compared to the baseline rotor.

Regarding the blade influence coefficients plot in Figure 9.20, the deviations in value of
influence coefficient of the central reference blade with respect to the baseline case, is
−20.4%, −22.4% and −54.5% for rotors of 13, 21 and 25 blades respectively.

Figures 9.21 and 9.22, represent the local values of aerodynamic damping ratio, ampli-
tude of the complex work per cycle and the phase shift between the complex force and
complex displacement values, for the baseline rotor (σ= 84.7) and the rotor consisting of
25 blades (σ= 100.8) respectively. Comparing the two figures it is noted that when both
of the blades are oscillating with a similar frequency, the distribution of phase shift val-
ues on both the suction and pressure sides of the blade follow a similar trend, although
the magnitude of the local complex work per cycle remains substantially higher in case
of the rotor with 25 blades compared to the baseline case.
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Fig. 9.19 – S-Curve for rotors with various blade count oscillating in same frequency

Blade Number

Fig. 9.20 – Blade influence coefficients for rotors with various blade count oscillating in same
frequency
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Fig. 9.21 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of baseline rotor blade (mode 2, σ= 84.7)
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Fig. 9.22 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of the modified rotor with 25 blades (mode 2, σ= 100.8)
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Fig. 9.23 – S-Curves of the rotor consisting of 25 blades compared at two different frequencies
(mode 2, σ= 100.8)
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Fig. 9.24 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of the modified rotor with 25 blades (mode 2, σ= 100.8)
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Figures 9.18 and 9.24 represent the local aerodynamic damping ratio, amplitude of the
local complex work per cycle and phase shift between the local complex force and com-
plex displacement values for the rotor consisting of 25 blades oscillating at the 1st tor-
sional mode with two different frequencies, as it is marked on Figure 9.23. Comparing
the two figures a substantial reduction in the magnitude and intensity of the local com-
plex work per cycle can be detected as the oscillation frequency decreases. Referring to
section 8.2, however such variations in the phase and amplitude of the local complex
work per cycle and the resulting shape of the characteristics S-Curve can be attributed
to the variations of the blade vibration frequency.

9.6 Conclusion

Referring to the results obtained in chapter 8, it can be perceived that, a reduction in the
value of oscillation frequency results in an increase in the value of the reference blade
influence coefficient and thus an increase both in the magnitude and intensity of the
local complex work per cycle values. However though such an increase in the value and
intensity of the local complex work per cycle values may result either in a stabilizing
or destabilizing character of the flow depending on the distribution of the local phase
shift between the complex force and complex displacement values which is itself largely
influenced by variations of the oscillation frequency.

It is worth to restate that as it was illustrated in section 9.2, in the current case by increas-
ing the blade count a reduction in the values of the eigen-frequencies of the 1st bending
and torsional modes is detected. Meanwhile with the MAC indices remaining close to 1
for both of the mode shapes under investigation in all of the cases, it can be elucidated
that the variations in the mode shapes are minimum.

Considering the case where the blades are oscillating at their 1st bending mode and with
different frequencies, as it is demonstrated in a comparative manner for the baseline ro-
tor and the rotor consisting of 21 blades at an inter-blade phase angle of σ= 0, the larger
values of the aerodynamic damping ratio for the rotor of 21 blades can be attributed
to the variations in value and distribution of the local phase shift between the complex
force and complex displacement as well as the variations in the magnitude and intensity
of the local complex work per cycle.

On the other hand when the blade oscillation frequency in all of the cases with variable
blade count is set to eigen-frequency corresponding to the 1st bending mode of the base-
line rotor, it is noted that the value and distribution of the phase shift between the local
complex force and complex displacement follow a similar trend for all of the cases as it
is demonstrated by comparing the baseline rotor and the rotor of 25 blades.

However though in this case with increasing blade count a substantial increase in the
magnitude and intensity of the local complex work per cycle can still be detected which
results in larger values of overall aerodynamic damping ratio for the rotors with larger
blade count. Thus with the variations of the mode that pertain to a minimum extent,
such an increase in the magnitude and intensity of the local complex work per cycle can
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be attributed to the reduction of blade pitch for increasing blade count as the blades are
more closely spaced.

Considering the 1st torsional mode shape similar conclusions can be drawn when the
blades of different rotors of variable blade count are oscillating at different frequencies.
As it is demonstrated in a comparative manner for the baseline rotor and the rotor of 25
blades at an inter-blade phase angle of σ = 84.7 and σ = 100.8 respectively. Also com-
paring the rotor consisting of 25 blades at an inter-blade phase angle of σ = 100.8, at
two different frequencies it is observed that an increase in the magnitude and intensity
of the local complex work per cycle as a result of reduction in the oscillation frequency,
followed by variations in distribution and value of the local phase shift between the com-
plex force and complex displacement, can result in significant changes in the value of the
overall aerodynamic damping ratio.

Referring to section 9.5.1, it is also worth restating that phenomena such as the tip vortex
of the neighbouring blades or flow separations can influence the values of the phase shift
between the complex force and complex displacement as well.



10 Influence of Blade Loading Distribution on
Aerodynamic Damping

The baseline rotor blade has been designed according to the “free vortex” law which re-
sults in a flow with a radial component of velocity equal to zero and an axial component
which remains constant along spanwise direction. Characteristics of such a design cri-
teria are the large flow deflections near the blade hub and smaller flow deflections near
the blade tip region.

In an attempt to investigate the influence of variations of the blade trailing edge angle
on the aerodynamic damping characteristics, multiple blades have been generated by
modifying the baseline rotor design. In this regard, while the leading edge angle (β1) is
preserved, the trailing edge angle (β2) has been altered in such a manner that the blade
chord length remains unchanged.

It must be noted that, unlike the baseline design which pertains to a parabolic distribu-
tion of β2 angle along the spanwise position, in case of the modified blades, the varia-
tions of β2 angle follow a linear trend as it is illustrated in Figure 10.1.

Blade Trailing Edge Angle (𝛽2) [deg]

Fig. 10.1 – Variations of the (β2) angle as a function of the spanwise position for different cases
of modified geometries

As a result, 12 new cases have been generated which no longer conform to the free vortex
law and yield different flow deflection both at the blade hub and tip regions compared to
the baseline design. Table 10.1 reports the geometrical parameters of the selected modi-
fied blades.
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Table 10.1 – Geometrical parameters for different cases with modified trailing edge angle

Case Name β1,hub [deg] β2,hub [deg] β1,t i p [deg] β2,t i p [deg] ∆βhub ∆βt i p

Baseline Case −60.7 −18 −69.7 −59.4 42.7 10.3

Case 5 −60.7 −35.5 −69.7 −57 25.2 12.7

Case 6 −60.7 −23 −69.7 −65 37.7 4.7

Case 12 −60.7 −48.5 −69.7 −48.5 12.2 21.2

10.1 Steady State Analysis

Prior to conducting unsteady CFD analysis to determine the aerodynamic damping char-
acteristics of the modified rotors, a steady state analysis is necessary for all of the modi-
fied cases. Thus by investigating the steady state performance it is possible to distinguish
the cases in which the steady state aerodynamics is preserved.

Figure 10.2, represents the aerodynamic performance characteristics in terms of effi-
ciency and compression ratio in a comparative manner for all of the investigated cases. It
is observed that the cases 5, 6 and 12, which are also highlighted in Figure 10.1, guaran-
tee steady state aerodynamics with minimal deviations with respect to the baseline rotor
design.

𝜂𝑡𝑡

Π𝑡𝑡 Π

Fig. 10.2 – Steady state aerodynamic performance of the investigated cases with variable β2 angle

Figure 10.3, illustrates the blade loading plots for the investigated cases at different span
positions. It is noted that an increase in the flow deflection results in an increases in
blade loadings both at the hub region and blade tip region. In this regard, it can be ob-
served that the blades of case 12 and case 6 yield the highest and lowest blade loadings
in the tip region respectively.
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Fig. 10.3 – Blade loading plots at 0.1 span positions (left), 0.5 span position (center) and 0.9 span
position (right)

10.2 Modal Analysis

In order to obtain oscillation frequencies and mode shapes which will be mapped on the
CFD mesh within the unsteady simulations setup, a modal analysis has been performed
for each case through finite element analysis as described in section 6. A graphical rep-
resentation of the 1st bending and 1st torsional mode shapes of each case is represented
in Figure 10.4 where as table 10.2 reports the oscillation frequencies.

Max Disp.Min Disp.

Baseline Case Case 5 Case 6 Case 12
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Fig. 10.4 – Graphical representation of the 1st bending and 1st torsional mode shapes of the
investigated cases with variable β2 angle

Table 10.2 – Frequencies of the first two mode shapes of investigated cases with variable β2 angle

Case Name Baseline Case Case 5 Case 6 Case 12

Frequency [Hz] - Mode 1 1654.36 1702.29 1733.25 1599.67

Frequency [Hz] - Mode 2 4151.91 3519.94 4654.72 2722.89
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10.3 Unsteady CFD Analysis

In an attempt to investigate the influence of variations in the blade trailing edge β2 on
the aerodynamic damping ratio, an unsteady CFD analysis is required. Thus transient
CFD simulations have been performed for the three selected case through the influence
coefficients method approach for the 1st bending and 1st torsional mode shapes.

Similar to the case of variable blade counts, also in this case with the aim of gaining a dis-
tinguished overview on the influence of oscillation frequency and mode shape, two series
of simulations are performed. For the firs set of simulations, the eigen-frequencies com-
puted through the modal analysis for each individual case are used, where as in the sec-
ond set of the simulations, all the modified geometries oscillate with the eigen-frequency
of the baseline rotor blade.

The computational domain which includes the full rotor geometry for each case with 17
passages without the need for applying periodic boundaries, consists of approximately
11,400,000 elements. With the boundary conditions and solver control being defined ac-
cording to the CFD setup described in section 7.2, the convergence is reached after ap-
proximately 40 periods of run for each case. Thereafter each case has been subjected to
the post-processing procedure described in section 5.3.1, in order to obtain the charac-
teristics S-Curves and to extract the blade influence coefficients.

10.4 Results

10.4.1 1st Bending Mode (Blades Vibrating at Different Frequencies)

Figure 10.5 illustrates the obtained characteristic S-Curves corresponding to different ro-
tors with modified blade trailing edge angles, vibrating with the 1st bending mode shape
at frequencies derived through modal analysis for each individual case. It can be ob-
served that for all the cases, the value of minimum aerodynamic damping coefficient
conforms to an inter-blade phase angle of σ = 0, with a deviation of 16.4%, 28.8% and
21.5% for case 5, case 6 and case 12 respectively, compared to the baseline case.

Considering the blade influence coefficients as plotted in Figure 10.6, it is noted that, the
influence coefficient of the central reference blade in case 5 and case 6, is higher by 2.7%
and 0.75% respectively compared to the baseline design, where as this value is lower by
−8.8% for case 12.

Figures 10.7 and 10.8, represent the local values of aerodynamic damping ratio, ampli-
tude of the complex work per cycle and the phase shift between the complex force and
complex displacement values, on both suction and pressure sides of blade surface for the
baseline rotor and the rotor of case 6 respectively. Considering the plots which show the
values of phase shift (φrotation) for an inter-blade phase angle of σ = 0, on the pressure
side of the rotor of case 6 a different distribution of φrotation compared to the baseline
rotor is detected which results in larger regions of positive local aerodynamic damping
values. On the suction side though, a similar trend is detected for both of the cases.
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Fig. 10.5 – S-Curve for rotors with various trailing edge angle oscillating in different frequencies

Blade Number

Fig. 10.6 – Blade influence coefficients for rotors with various trailing edge angle oscillating in
different frequencies
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Fig. 10.7 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of baseline rotor blade (mode 1, σ= 0)
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Fig. 10.8 – Local aerodynamic damping ratio (left), amplitude of the local complex work per cycle
(center) and phase shift between the local complex force and complex displacement values (right)
plotted on the suction and pressure side of the modified rotor of case 6 (mode 1, σ= 0)
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10.4.2 1st Bending Mode (Blades Vibrating at the Same Frequency)

Figure 10.9 represents the characteristic S-Curves in case where different rotors with
modified blade trailing edge angles oscillate with the 1st bending mode shape at a fre-
quency which is set to that of the baseline rotor. It is observed that while the minimum
damping value corresponds to an inter-blade phase angle of σ= 0 for all of the cases, the
deviations in this value for case 5 and case 6 compared to the baseline case is limited to
−2.5% and −5.3% whereas in case 12 minimum damping ratio pertains to a value which
is 38.8% higher with respect to the baseline case.

Considering Figure 10.10 which depicts the blade influence coefficients, the influence
coefficient of the central reference blade in case 5, case 6 and case 12 incorporates a
deviation of 2.6%, 2.5% and −2.9% respectively compared to the baseline rotor.

Referring to section 10.2, it is worth noting that, the rotor blade of case 6 has the high-
est eigen-frequency corresponding to the 1st eigen-mode compared to the other cases.
Regarding the rotor blade of case 12 however, it can be elucidated that albeit having the
lowest oscillation frequency compared to the other cases, the mode shape conforms to a
pure bending mode about the blade camber line (flap mode) rather than a corner mode
as the other cases.

IBPA (𝜎)

Fig. 10.9 – S-Curve for rotors with various trailing edge angle oscillating in same frequency

Figures 10.11 and 10.12, represent the local values of aerodynamic damping ratio, am-
plitude of the complex work per cycle and the phase shift between the complex force
and complex displacement values, on both suction and pressure sides of blade surface
for the baseline rotor and the rotor of case 12 respectively.
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Blade Number

Fig. 10.10 – Blade influence coefficients for rotors with various trailing edge angle oscillating in
same frequency
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Fig. 10.11 – Local aerodynamic damping ratio (left), amplitude of the local complex work per
cycle (center) and phase shift between the local complex force and complex displacement values
(right) plotted on the suction and pressure side of baseline rotor blade (mode 1, σ= 0)
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Fig. 10.12 – Local aerodynamic damping ratio (left), amplitude of the local complex work per
cycle (center) and phase shift between the local complex force and complex displacement values
(right) plotted on the suction and pressure side of the modified rotor of case 12 (mode 1, σ= 0)

Comparing the two figures, it is observed that although both of blades are oscillating
with a similar frequency, differences in the distribution of the local phase shift values
(φrotation) can be detected which can be attributed to differences in the corresponding
mode shapes.

It is worth noting that, comparing similar plots for rotors of case 5 and case 6 with the
baseline rotor, a similar trend can be seen in terms of local phase shift distribution on
blade surfaces.

10.4.3 1st Torsional Mode (Blades Vibrating at Different Frequencies)

Figure 10.13 illustrates the obtained characteristic S-Curves corresponding to different
rotors with modified blade trailing edge angles, vibrating with the 1st torsional mode
shape at frequencies derived through modal analysis for each individual case. It is ob-
served that for rotors of case 5 and case 6, the minimum damping ratio conforms to
nodal diameters of 6 and 7 of forward traveling wave respectively, with values that have
deviations of −18.2% and −19.8% compared to the baseline case. For the rotor of case 12
though, the minimum damping ratio corresponds to a nodal diameter of 6 of backward
traveling wave with a value which is 35.6% higher than the baseline rotor.

It is also noted that the value of maximum damping ratio for rotors of case 5, case 6 and
case 12, pertains to nodal diameters of 1, 3 and 4 of forward traveling wave, with values
that are by 27.4%, −13.5% and 134% deviated from the baseline rotor design.



92 10 Influence of Blade Loading Distribution on Aerodynamic Damping

IBPA (𝜎)

Fig. 10.13 – S-Curve for rotors with various trailing edge angle oscillating in different frequencies
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Fig. 10.14 – Blade influence coefficients for rotors with various trailing edge angle oscillating in
different frequencies
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Considering the blade influence coefficients as plotted in Figure 10.14, it is noted that,
the influence coefficient of the central reference blade in case 5 and case 12, is higher
by 6.8% and 55.3% respectively compared to the baseline design, where as this value is
lower by −17.6% for case 6.

Referring to section 10.2, it is worth noting that, the rotor blades of case 6 and case
12 have the highest and lowest eigen-frequencies corresponding to the 2nd eigen-mode
compared to the other cases.

Figures 10.15 and 10.16, represent the local values of aerodynamic damping ratio, ampli-
tude of the complex work per cycle and the phase shift between the complex force and
complex displacement values, on both suction and pressure sides of blade surface for
the baseline rotor and the rotor of case 5 respectively.

Referring to Figure 10.16, it is elucidated that, on the suction side of the blade of rotor
of case 5, although the magnitude of local complex work per cycle retains lower values
compared to the baseline case, with regions of phase shift (φrotation) which conform to a
value of 270◦, the values of local aerodynamic damping ratio are mainly positive on the
suction side.
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Fig. 10.15 – Local aerodynamic damping ratio (left), amplitude of the local complex work per
cycle (center) and phase shift between the local complex force and complex displacement values
(right) plotted on the suction and pressure side of baseline rotor blade (mode 2, σ= 0)
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Fig. 10.16 – Local aerodynamic damping ratio (left), amplitude of the local complex work per
cycle (center) and phase shift between the local complex force and complex displacement values
(right) plotted on the suction and pressure side of the modified rotor of case 5 (mode 2, σ= 0)

10.4.4 1st Torsional Mode (Blades Vibrating at the Same Frequency)

Figure 10.17 represents the characteristic S-Curves in case where different rotors with
modified blade trailing edge angles oscillate with the 1st torsional mode shape at a fre-
quency which is set to that of the baseline rotor. It is observed that for rotors of case
5, case 6 and case 12 the minimum aerodynamic damping ratio conforms to a nodal
diameter of 6 of forward traveling wave which have deviations equal to −11.8%, −9.9%
and −22.5% respectively compared to the baseline case. It is also noted that for all of the
cases the value of maximum aerodynamic damping ratio corresponds to an inter-blade
phase angle of σ= 0. The deviations in this value for case 5, case 6 and case 12 compared
to the baseline case is limited to −1.3%, −4.8% and −9.7% respectively.

Considering Figure 10.18 which illustrates the blade influence coefficients, the influence
coefficient of the central reference blade in case 5, case 6 and case 12 incorporates a
deviation of −4.8%, −7.1% and −11.5% respectively compared to the baseline rotor.

Figures 10.19 and 10.20, represent the local values of aerodynamic damping ratio, am-
plitude of the complex work per cycle and the phase shift between the complex force
and complex displacement values, on both suction and pressure sides of blade surface
for the baseline rotor and the rotor of case 12 respectively. Comparing the two figures, a
similar trend is detected in terms of local phase shift value φrotation distribution on both
the pressure side and suction side of the blades. Regarding the amplitude of the local
complex work per cycle however, the baseline case yields larger values compare to the
rotor of case 12.
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Meanwhile it is worth noting that, if similar plots are compared for the baseline rotor
and the rotor of case 5, similarities both in terms of phase shift value distribution and
local complex work per cycle magnitudes are observed which is in consistency with the
S-Curve and blade influence coefficient plots.

IBPA (𝜎)

Fig. 10.17 – S-Curve for rotors with various trailing edge angle oscillating in same frequency

Blade Number

Fig. 10.18 – Blade influence coefficients for rotors with various trailing edge angle oscillating in
same frequency
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Fig. 10.19 – Local aerodynamic damping ratio (left), amplitude of the local complex work per
cycle (center) and phase shift between the local complex force and complex displacement values
(right) plotted on the suction and pressure side of baseline rotor blade (mode 2, σ= 0)
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Fig. 10.20 – Local aerodynamic damping ratio (left), amplitude of the local complex work per
cycle (center) and phase shift between the local complex force and complex displacement values
(right) plotted on the suction and pressure side of the modified rotor of case 12 (mode 2, σ= 0)
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10.5 Conclusion

Referring to the case in which the blades of different rotors with variable trailing edge
angle are oscillating at their 1st bending mode as it is demonstrated in a comparative
manner for the baseline rotor and the rotor of case 6, and considering the fact that the
eigen-frequency of the baseline rotor blade has a lower value for the 1st bending mode
compared to the rotor of case 6, in contrast to the results obtained in chapter 8, the
magnitude and intensity of the local complex work per cycle in the baseline rotor blade
is lower compared to the rotor of case 6. A similar trend is also detected when both of the
blades are oscillating with the same frequency. Thus as the mode shapes are similar for
both of the blades, such a phenomenon can be attributed to the variations of the blade
loadings of the two rotors.

In a further attempt the baseline rotor has been compared to the rotor of case 12 when
both of the blades are oscillating at their 1st bending mode but with the same frequency.
In this case in addition to the variations of the blade loadings, a significant change in
the mode shape can be detected. It is worth noting that in a similar manner when the
baseline rotor is compared to the rotors of case 5 and case 6 which pertain to similar
mode shapes, it is observed that the distribution and values of the phase shift between
the complex force and complex displacement conform to a similar pattern for the cases
mentioned. On the contrary the rotor of case 12 follows a different pattern as it is illus-
trated in Figure 10.12. As a result it can be elucidated that comparing the baseline rotor
with the rotor of case 12 when oscillating at their 1st bending mode and with the same
frequency, the variations in terms of the local complex work per cycle and the phase
shift between the complex force and complex displacement values can be attributed to
the variations in the blade loading and oscillation mode shape respectively.

Referring to the case where the blades of different rotors are oscillating at their 1st tor-
sional mode shapes with different frequencies, the baseline rotor is compared to the ro-
tor of case 5 which has an eigen-frequency with a lower value compared to the baseline
rotor at an inter-blade phase angle of σ= 0. In contrast to the results obtained in chap-
ter 8, it is observed the magnitude and intensity of the local complex work per cycle is
lower for the rotor of case 5 compared to the baseline case. However though considering
the value and distribution of the local phase shift between the complex force and com-
plex displacement, for the rotor of case 5, the overall aerodynamic damping ratio yields
a higher value.

Considering the case in which the the blades of different rotors are oscillating at their 1st

torsional mode shapes but with the same frequency, the baseline rotor has been com-
pared with the rotor of case 12. In this regard, with the mode shapes and the distribution
of the local phase shift between the complex force and complex displacement values
which follow a similar pattern or both of the cases, the variations in the magnitude and
intensity of the local complex work per cycle values, can be attributed to the variations
in the blade loadings of the two rotors.
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The baseline rotor design has been subjected to unsteady CFD simulations using the
influence coefficients method with the central reference blade oscillating at its 1st bend-
ing and torsional mode shapes with different frequencies. Tracing the characteristics S-
Curves, blade influence coefficients, local values of aerodynamic damping ratio, ampli-
tude of the local complex work per cycle values and the difference in phase between
the nodal complex work and complex displacement values, it is perceived that as the
mode shape and operating condition is preserved in all of the cases, an increase in the
oscillation frequency results in a reduction in the magnitude and intensity of the local
complex work per cycle values for both of the mode shapes under investigation. Varia-
tions in frequency also influence the value and distribution of the phase shift between
the local complex work and complex displacement and thus directly affect the overall
aerodynamic damping ratio.

With the aim of investigating the influence of blade count on the aerodynamic damping
ratio, the baseline rotor design has been scaled to generate different rotors of variable
blade count with minimum changes in the blade loading and thus the steady-state aero-
dynamic performance of the rotor. Following a modal analysis for each case, a reduction
in the eigen-frequencies corresponding to the 1st bending and torsional mode shapes
has been detected for increasing blade count, with the variations in the mode shape be-
ing of negligible order. Unsteady CFD analyses has been performed for each of the mode
shapes under investigation with the corresponding eigen-frequencies. Furthermore with
the aim of obtaining a distinguished insight into the influence of frequency and blade
pith values, a second set of unsteady CFD simulations have been performed with the os-
cillation frequency being set to the eigen-frequency of the baseline rotor blade in all of
the cases.

Comparing the obtained results, it has been observed that with increasing blade count
which is followed by a reduction of the oscillation frequency, the magnitude and inten-
sity of the local complex work per cycle values follow an increasing trend for both of
the mode shapes under investigation, while the difference in phase between the local
complex force and complex displacement values is largely influenced by the oscillation
frequency at every nodal diameter. Meanwhile comparing the results of the second set
of simulations with the oscillation frequency being the same for all of the cases, a similar
increasing trend in terms of the magnitude of the local complex work per cycle is de-
tected. As the distribution and value of the phase shift between the local complex force
and complex displacement follows a similar trend in this case, such an increase in the
amplitude of the local complex work per cycle values can be attributed to the reduction
of the blade pith as the blade count increases.

In a further attempt to investigate the influence of the blade loadings on the aerody-
namic damping ratio, the trailing edge angle of the baseline rotor blade profile which
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has been designed according to the free-vortex law, has been modified with the aim of
generating alternative blade designs. Following an iterative procedure, three cases which
conform to similar steady-state aerodynamic performance of the baseline rotor, have
been selected for the subsequent unsteady CFD analysis. Referring to the obtained re-
sults for the case in which the blades oscillate at their 1st bending and torsional mode
shapes with the corresponding eigen-frequencies, it is noted that in contrast to the re-
sults obtained in chapter 8, a reduction in the oscillation frequency is not followed by an
increasing trend in terms of local complex work per cycle magnitude and intensity. On
the other hand tracing the results corresponding to the case in which the blades of differ-
ent rotors oscillate with the same eigen-frequency of the baseline rotor at the 1st bending
and torsional mode shapes, it can be elucidated that the variations in terms of the local
complex work per cycle and the phase shift between the complex force and complex dis-
placement values can be attributed to the variations in the blade loading and oscillation
mode shape respectively.

Within the present work, the “traveling wave mode approach” and the “influence co-
efficients method” have been incorporated for the 1st bending and 1st torsional blade
dominated mode shapes that are independent of the nodal diameters, in an attempt to
establish possible trends correlating the geometrical parameters and the aerodynamic
damping ratio.

A future investigation shall include higher mode shapes as well as real mode shapes cor-
responding to every nodal diameter of forward and backward traveling waves. Also un-
steady CFD analysis using “Fourier Transformation Method” for particular nodal diame-
ters can provide a detailed insight into the variations of the flow field between different
cases. Regarding the influence of the oscillation frequency on the aerodynamic damping
ratio, it is suggested to perform unsteady CFD simulations for a wider range of frequen-
cies for the baseline rotor. The current work has been focused on the design working
point of the compressor blisk under investigation, while a similar study should be per-
formed for the off-design operating conditions including transonic flow fields.
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