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Abstract

Astronomy has always been one of the most interesting fields of study for human.
From the era which stars were the only guide u to now that we launch satellites to
observe the space more accurately, finding the secrets of the sky was an interesting
task for people. The science of observing the sky is not limited just to unlocking the
secrets of the other planets and ways, it’s a key for finding the origin of the world
and how the earth was created. Studying the stars which are far from us is actually
studying the history. When we are observing a planet which is a million light year
far from us, actually means we are studying what happened to that star 1 million
year ago and now we are receiving the information. This fascinating fact that we can
study behaviors of space of millions of years ago makes it more possible to find the
secrets of planet earth and milky way millions of years ago. Since the human started
paying attention to science, observing the sky and documenting the observations was
among the highest priorities. They first started using the naked eyes and then started
using instruments which help them see things which they could not see before.In
1609, an Italian astronomer, Galileo Galilei, pointed a telescope toward the sky. It
is said that he was the first to do so. With it, he saw mountains and craters on the
moon, and the Milky Way. Scientists kept working on this science and the ground
telescopes are the result of this procedure. Among the most advanced versions we
can name Keck Observatory in Hawaii , Large Binocular Telescope in Arizona. They
have been observing the sky since 1993 and 2005 and won’t stop doing it any time
soon. Ground telescopes are useful and popular in many aspects. Among the most
important ones we can name No limitation in size and weight and cost, but they were
not enough for the scientists. They needed to see more and better, so they started
to build something which can fly. The first ones were started in 1060s. They were
simply some telescopes attached to giant balloons for one single goal: “observing
the sky sharper”, but that was just the beginning of the story. The story of space,
the story of observing what we have started thousands of years ago when looking
at the stars and tried to find the path, the story of unlocking the secret of World
creation. They started something which is now a combination of several engineering
fields for several goals, asking about the most important one? “Observing what we
can’t from the earth”. The space telescopes are here to change the game, they have
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brought the space observatory into the next level. Today we have got several space
telescope functioning in the space. They have different instruments to observe and
each of them have got it’s own technology to record the data, and then there is the
need of the softwares to convert these raw data to information. One of the space
observatory launched in the space is called Herschell. It had been launched into space
in 2009 and was functioning for 4 years and priceless data have been captured by
this telescope. These data are in fits type which should be processed. The first need
is a software called map maker which convert the fits raw data into images which
can be studied by scientists. One of these map makers is called Unimap, which is
developed by DIET dept. of the University of Rome ’La Sapienza’, in cooperation
with the ASDC center of the Italian Space Agency (ASI). The project has started in
2011 and 7 stable versions of the product is released successfully. Since this project
is using huge data as an input, the test period of the new version is taking so much
time and effort from developers. For this purpose, there is the need of a simulator
for this product. Using this simulator we can accurately control the noise level of
input data and check the new version behaviors based in different conditions. We
should also mention that based on the behavior of the telescope, there are different
types of noises presented in the input file. Using this simulator, not only we can tune
the noise types available in the input, but also the amount of each of them. This
will result of accurately studying the changes in all different possible situations. It
worth to mention the fact that in this thesis, the goal is not modifying the Unimap
software itself, but to develop a software which test all aspects of the new versions
of Unimap accurately and help the development of new version.
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Chapter 1

Introduction

1.1 Image processing

Computers and digital processors have been a game changer in many fields. The
imaging industry is one of those which have been totally revolutionized after intro-
ducing the computers and digital sensors. Both in detecting and analyzing fields,
it has achieved what was next to impossible in the analog era. Usually an image
is a sense of a picture which is a planar representation of brightness or the amount
of light reflected or transmitted by an object. In digital representation, an image
is usually a function of spatial variables. For example f(x, y), where x and y are
the Cartesian location and f is the brightness of the image in this point. This is the
most basic and fundamental representation of an image. Any digital image process-
ing system can be divided in three main component, the input system, the image
processing part and the output system:

(1) The input system: the input system or digitizer convert the input (in most
cases light) into array of numbers. The input of this part is usually a continues
wave and the output in form of f(x, y), where f , x and y are integer numbers.
This section can be a combination of different hardwares for detecting different
range of light which can not be detected by one single sensor. This part is
usually divided in two subsection of sampling and quantization which are in
charge of indicating the location and the amount of detected light.

(2) The image processor: The image processor will have the digital input and
make the data ready for the output. The outputs can be very different and
so the image processors. The goal of the system is not always displaying a
picture and can be simply detecting an object in the image or not, in this case
the processor should lead into a single logical bit output, true or false. There
are several types of processors and usually the limitations of the hardware is
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1 – Introduction

limiting the software and the capabilities of processing and accuracy of this
section.

(3) The output: As we mentioned above, the output is not always a picture or a
display, it can be simply a single sign to show if an object is detected or not, or
a text display which writes the result of processing, like a color detector which
writes one of the words Red/Green/Blue in case of detection of each of these
colors. But in most cases, the output should transform the digital processed
data into a continuous tone and spatially continuous wave.

We will focus more on image processing operations in this chapter which are going
to be used to explain the different part of the main software of this thesis.

1.2 Image processing operations

In the classic image processing definition, this section starts after saving the data,
but nowadays part of the compression and enhancement is done using a specific
processor on the sensor itself when the image/video and a temporary storage, then
the main process starts after saving the data on the actual storage. This is mainly a
solution to the disk space problem and the dimension of the new devices and sensors.
But we are going to stick to the classic definitions and categories of the digital image
processing. The most famous categorising this section is listed below:

(1) Geometrical operations: In these kind of operations the value of the pixel
remains the same, but the pixel is mapped into a new location. This can
be useful for some effects like magnify, minify or rotate the image,but pretty
essential for some situations which have distortions due to recording geome-
try, scale changes, rotations,perspective, or due to curved or irregular object
surfaces.

(2) Point operations on single image: The value of a pixel at location (x, y) de-
pends only on the same pixel (x, y) in the input file. Changing the contrast or
brightening the image are examples of this kind of process.

(3) Point operations on multiple images: The value of a pixel at location (x, y)
depends on the same pixel (x, y) in several pictures. In this method we are
using data from several pictures to enhance the image quality. As an example
we can name averaging the pixel value for noise reduction. Another examples
is HDR (high dynamic range) photography. In this method the system takes
several images with different brightness levels and after detecting the bright
and dark parts of the image, it takes the dark parts from brighter photos and
bright parts from darker shadows. This will end to a popular effect in which
there is no saturated pixels, rich details and high contrast.
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1 – Introduction

(4) Neighborhood operations on one image: The value of the pixel with location
(x, y) depends on the same pixel of another image at location (x, y) and the
neighbor pixels of it. This method is used in convolution and spatial feature
detections like edge, line and edge detection. Depends on the application
and process, the neighborhood can be limited to one single pixel around the
location or an area of n pixels.

(5) Neighborhood operations on multiple images: This is the same operation of
neighborhood operations on one single image but the sources are more than
one.in this case we are sampling from different images and not just one single
pixel.

(6) Operation based on object shape: The value of the pixel is determined by the
object class to which a pixel belongs; examples include classification, segmen-
tation, data compression, character recognition.

(7) Global operations:The value of a specific pixel depends on the value values
of all of the pixels of the image, these include image transformations, e.g.,
Fourier, Hartley, Hough, Haar, Radon transforms

We will discuss more image processing. We will focus more on those which are
needed in satellite image processing.

Geometrical operations:
The geometrical operations are fundamental for our use case. We will have a

short review of the most important ones and will check them more in depth in
the next chapter while discussing the practical problem which we face. As we have
mentioned before, there are different geometrical processes. In the general definition,
a geometrical process is mapping a pixel with (x′, y′) coordinates to (x, y) in the
output image. As you can see, we are just mapping and no pixel value change is
done in this operation.The most common geometrical operations are:

(1) Transformation by (x0, y0) : x = x′ + x0, y = y′ + y0

(2) Spatial scaling: x = ax′, y = by′

(3) Rotation by 180 degree: x′ = −x, y′ = −y

(4) Skew: x′ = x+ ay, y′ = y

(5) Perspective distortion: x′ = x+ axy, y′ = y

(6) Rotation through a : x′ = x cos(a)− y sin(a), y′ = x cos(a) + y sin(a)
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1 – Introduction

Figure 1.1: Examples of useful geometrical operations

Point operations on multiple images:
Another interesting processing type is the point operations on multiple images.

In this process, the output (x, y) depends on the same pixel, but in several images.
Images can be different in case of the same image but different time, might have
different wavelength,depth resolution and even sensor sensitivity to the light. The
output i usually calculated using an arithmetic operation of the input images, but
in the binary images the logical operations are also possible. The most common
application of this process type is:

� Image segmentation using multispectral information

� Averaging multiple images of the same picture for noise reduction

� Change detection by subtracting

� Windowing by a template mask image

� Correct for detector nonuniformity by division
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1 – Introduction

Neighborhood operations on one image:
Neighborhood operations or better to say, local operations are those in which the

value of the pixel depends on the same pixel and also pixels around the same one
in the input image. To be more precise there are two definition of these operators.
The first one is more mathematical and uses the integral operator, but since we are
processing a two dimensional digital signal we can use a method called masking the
input. In this method we introduce a mask which have different values for each cell.
The values of each cell is called its weight and by changing the mask the operation
is totally changed.

Figure 1.2: Neighborhood operations or better to say, local operations image processing

As an example, the mask for identity operation (output = input) is:

Figure 1.3: Identity operation mask

Obviously, it is giving a weight of 1 to the same pixel of input image and the rest
0, so the output will be the same image

Vertical blur mask: in this mask the result will be the average of the pixel,
and the upper and lower pixel in the input image, so the mask will be:

As you can see, we have divided the mask to 3, so the brightness of the image will
remain the same.
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1 – Introduction

Horizontal blur: The same mask here, just it’s averaging over different direction
Low pass filter: In this filter, we are removing the sharp changes and smooth the

image. No wonder why the mask is like a two dimensional blur

Figure 1.4: Horizontal blur mask

Sharpening mask:
The sharpening or high pass filter mask can be calculated easily. As we can

consider the image is the sum of a uniform averaged image plus a high passed
filtered image. In this case the high pass filter mask is:

Figure 1.5: Sharpening mask

As we expected, the mean value of the mask is zero which reminds us the frequency
zero of a signal.

As you have considered, we did not discuss this process in depth. We just men-
tioned the main process types and the categories and a step further for those we
are going to use. Since we are going to look at them again in the next chapters and
more practical use of them in space images and more specifically in Unimap, the
software which is processing these images, we will close the image processing here.
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Chapter 2

Astronomy image processing

In this chapter we are going to go more in deep with the astronomical imaging. We
will focus on a conceptual framework for discussing the basic physics and dynamics
of astronomical objects like stars, galaxies and then the quantity and quality of
information captured by or instruments. Obviously there are limits about them
which we will mention further. This concepts are pretty important as many imaging
techniques and astronomical equipments are the results of understanding them. In
previous chapter, since we wanted to talk about the concepts and a summary of
processing we had a less theoretical approach, but in this chapter we are going to
give a more complete description of astronomy imaging and in some cases going more
in deep in to details and introducing the equations and some examples. This chapter
is going to discuss more the visible light while we are going to start talking about
infrared astronomy imaging from next chapter and then we are ready to discuss the
Unimap, a maker of astronomical images.

2.1 The nature of light and noise

When we are talking about astronomical images the most important factor is
that we are observing the distant object, but why is that important? The further
the object is, the less light will be captured by our receivers. Since we are talking
about millions of light-year the received information is countable photons. Photos
are electromagnetic waves with a particle (quantum) nature. They are emitted and
detected on an individual quantum basis. This has a strong effect on information
carried by the light. Since we are talking about the quantum dependency of the
light we know that the uncertainty of quantum information will affect the quality
of information of an image of an object. This uncertainly is called Poisson noise.

Poisson noise can be explained using an example. Measuring it is like measuring
the rainfall over a limited area in many buckets and during a specific period of time.
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2 – Astronomy image processing

The amount of water in each bucket is slightly different from the one close to it
due to the randomness of the falling drops. So for having a more accurate estimate
of the rainfall we can average the amount of water in the buckets. Poisson noise
is due to the quantum nature of the light. It can be modeled as a mathematical
predictability and the uncertainty of an accumulation of random discrete event is
described by: Poissonnoise = squareroot(numberofevents)

Talking about the poisson noise is actually about the probability. The noise itself
denotes the range of input values in which there is 68% likelihood that the output will
be true. In other words, The range which is probable enough also called as “margin
of error”. The inherent Poisson noise of light signals means that it is not possible
to increase information by inde fi nitely amplifying or distilling a signal because the
noise/uncertainty is intrinsic to the signal itself. This results in strict physical limits
to what our receivers/cameras can do, so it is critical to understand this limits and
know how far we can get since the light source is totally out of our control. As
we have mentioned, this is totally because of quantum nature of the light and it
does not exists for non-quantum signals. In this types of signals, the noise is only
due to extra sources which interfere with the pure signal. A signal which is strong
in energy/power can overpowers the noise easily and S/N becomes nearly linear.
Obviously to double the S/N in non-quantum systems you just need to double the
signal but in the quantum system, as we have seen before, for doubling the S/N we
have to quadruple the signal. This image is a good example for demonstrating the
limitations of quantum nature of light. This is an image of M57, the Ring Nebula.It
has been captured using a photon counting image. Each dot is representing a photon.
Every pixel represent i in a 30 seconds period of time a photon has arrived at the
sensor or not. This image was taken by a photon counting ICCD which have zero
read noise.

2.2 The Virtual Image

The virtual image consists of information conveyed to the focal plane by photons
from astronomical objects, regardless of camera (“before” the camera). In other
words, the Virtual image is the maximum amount of data we can have at the camera,
so the information we can get on the camera is also limited by the characteristics of
the virtual image. So it is also important to understand the dynamics and physics
of the virtual image and the study our sensors and cameras. As mentioned before,
light is consisted of photons and a telescope aperture is collecting them for a certain
amount of time. Since we are far from the object in astronomy images, this time
period is usually way longer than normal photography. The optics will convey the
photons to the focal plane. This focal plane is where the virtual image will be formed
and then will be captured using a sensor or camera. This virtual image contains
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2 – Astronomy image processing

Figure 2.1: M57 (Ring Nebula) 100 ms exposure from a photon counting camera

information about each object. We can also say at the root, we have information of
the location of every photon which has been collected by the telescope. Information
about an object is based on the number of photons collected from the object, which
depends on the area of the telescope’s aperture and collection time. Focal length
also affects the image. While the Focal length does not affect the number of collected
photons, it determines linear scale, which is irrelevant for angular properties.

2.3 Signal to Noise (S/N) Ratio

As mentioned before, the information about an object is captured by number of
photons available at the virtual image or simply called our “signal” here. Noise
is the uncertainty of this number, so the proportion of signal to noise is called
“Signal to Noise Ratio” which can be written as S/N or SNR. SNR is practically the
most used measure of information quality. Here, the SNR determines the ability of
higher contrast in the virtual image. Here, an object can be any detectable image
in the sky. From stars and planet to an arbitrary path of sky. But usually we are
talking about a planet, star or a galaxy which occupies an angular area in the sky.
A star object is the simplest. All stars have the same angular extent for a given
system/exposure. Stellar S/N is a straightforward measure with many applications;
for example S/N = 3 is the lowest S/N for star astrometric detection. Star S/N
determines astrometric and photometric accuracy. The simple object S/N of large
objects is affected by object size, so for large objects it may be preferable to use
an angular measure such as square arcseconds. An angular measure is similarly
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2 – Astronomy image processing

used for galaxies magnitude per arcsecond squared. For a large object, higher S/N
reveals The Theory of Astronomical Imaging finer contrasts, so a fuller description
of S/N would include MTF terms, but that is beyond the scope of this chapter.
It is worth mentioning that this approach is not common and the usual definition
of SNR is totally restricted to a single pixel dynamics, independent of object and
information SNR. The pixel based SNR is pretty easy to measure and implement.
This method is very useful in normal photography and combatting the in camera
noises or additive noises, but not so helpful in astronomy imaging.

2.4 Object S/N of Pure Signal

As we have mentioned before, there is poisson noise from the nature of the light
so for the moment let’s consider that we don’t have any additive noise and we
receive a pure signal. The SNR will be: S/N = (n photons)/sqrroot(nphoton) =
sqrroot(N photons) As we can see the SNR is nonlinear and will be seen repeatedly
in astronomy images.

Figure 2.2: Signal to Noise as a function of signal in the absence of other noises

Now let’s see how can we double the SNR. According to the equation to double
the SNR we need 4 times more signal. As we are talking about astronomy images
it is impossible to change the light source, but still we can modify the telescope
and camera. One solution is to increase the exposure time 4 times more. This is
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2 – Astronomy image processing

actually done since astronomy images are taken using long exposures but can’t go
any further. Consider an image with exposure time of 4 hours. It is impossible to
double the SNR by taking a 12 hours image. The other solution is using a large
aperture which has twice diameter of the one before. That’s why the astronomy
telescopes are built pretty large.

2.5 Object S/N with Sky

As an engineer we know that the noiseless channel never exists. It’s also true
for astronomy imaging. In the virtual image, moreover than the photons which are
emitted from object in the sky, there will be other photons from atmospheric sky
(high-altitude emissions and light pollution). Sky photons make the image blurry all
over the image and affects the SNR: SNR = S/(S + Sky)0.5 where S =number of
photons from object Sky = number of photons from sky glow that occupy the same
area of the object This equation clearly shows how the sky noise affects the virtual
image. To the bright object, the sky noise is negligible but the case is different for
dark objects. If we consider a sky 3 times brighter than the object we will need to
extend the exposure time 4 times more to compensate the sky noise. In the following
graph the SNR is shown based on the signal strength. As you can see in low signal
levels the sky noise affects the SNR heavily.

2.6 Point-Spread Function (PSF) and FWHM

In astronomy imaging the object distance is so high that we are actually counting
the arrival photons. The whole information is about the number of arrival photons
and the arrival location. Every photon arrives at a different location (even if the
distance is subatomic) which then results in image resolution. There is a distance at
which or less, the location precision has almost no effect on information quality. The
reason is constrained by physical limits of diffraction, atmospheric stability, optical
quality, tracking etc. We can characterize this limit as a Point-Spread Function or
aka PSF. A point-spread function (PSF) is the result of blurring a point-source. We
consider stars as a point source since their angular diameter is really small. But the
atmosphere and scope diffuse this point source into a ball shaped object which is
fuzzy and blured. If we graph this source we will have a bell-shaped curve which is
our PSF. Although the blurring procedures are complicated, but over time intervals
the blur goes closely to the Gaussian function. The most important factor in the
Gaussian function is the one which defines the width of the PSF. This parameter is a
constant measure of resolving the power regardless of intensity. Function width is of
the most important factors in the Nyquist sampling theorem. The commonly used
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2 – Astronomy image processing

Figure 2.3: Differential effect of sky glow (10 photons) on S/N by signal intensities ( 1 = same S/N as if no sky
glow)

FWHM (Full Width at Half Max) characterizes the PSF resolution by measuring
the width (diameter) of the star at half of peak intensity. FWHM is a direct result
of Gaussian function width by: FWHM = 2.355 ∗ width

In the virtual image, Star images will have different sizes, while brighter stars
will seem larger than than dimmer ones. This is the result of the PSF where the
appearance of the star is due to a constant intensity level but the FWHM is still
constant for both dim and bright stars. Both will have the same characteristics but
with different signal powers.

2.7 Sampling

Since now, we have considered the process up to the virtual image, but we need to
capture the virtual image and digitise it for any further representation or process. In
this step we will divide the location into squares and for every square we are going
to save 2 different data. The location of the square and the number of photons
encompassed within. Each of these is squares is called a pixel.
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2 – Astronomy image processing

Figure 2.4: Full Width at Half Maximum (FWHM) is constant regardless of star brightness

Nyquist Sampling Theorem

The virtual image is the analog unsampled image which will be mapped to the
digital image. One of the factors is the sampling rate and it affects the information
quality. If we use a low sampling rate we will lose information. The Nyquist theorem
makes it clear that if we use a sample size bigger than the function width of the
signal, we will lose information. The Nyquist sample size for a Gaussian function
is measured as FWHM = 2.3555 pixels. But because of the fact that pixels are
squares and the diagonal of the square is longer, we have to update the sampling
size to FWHM = 3− 3.4 pixels. Astronomy images with FWHM < 2.3 pixels are
called “under-sampled”. There will be further problems in undersampled images like
close double stars may merge into one and some details might be lost. On contrary,
the images with FWHM > 3.5 are called “oversampled”. In these images all the
information is recorded. Over sampled images with FWHM > 5 might introduce
practical problems in detectors and cameras.

Although under sampled and over sampled images have their own specific usage in
astronomy imaging, but for most of the times we stick to a number close to Nyquist
rate. The oversampling rate make practical problems in our camera and the under
sampled images have the lack of information. Image Scale and Pixel Size

There are three ways to measure the distances in the virtual image:
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2 – Astronomy image processing

� Angular distance: Angular distance is conceptually identical to an angle, it is
usually measured in arcsec and useful in astronomy imaging.

� Linear distance: The distance between two points, in Astronomy images we
talk about the distance in virtual image.

� Pixel: considering the pixel size is fixed, then it is easy to culate the distance
in pixel number

As an example, The angular diameter of the Jupiter is: Angular: 40 ar-second,
This is independent of the focal length of telescope and pixel size

Linear: 200 microns for focal length of 1m
Pixel: 40 pixels for focal length of 1 meter and pixel size of 5 microns
As you can see, linear size depends on focal length and distance in pixel depends

on both focal length and pixel size while the angular distance is independent of
both of them. That’s why in astronomy images the distances are usually shown in
angular.

2.8 Object S/N Versus Pixel S/N

Measuring the SNR of the virtual image, we can characterize it by “object SNR”.
Since the virtual image is not sampled yet this is unaffected by sampling rate. On
the other hand, in the sampled image, the signal of the object is divided into pixels
and if we want to calculate the object’s signal we just need to sum all the pixels
which have information about the object.

Instead of talking about the object SNR we can also talk about the pixel SNR.
Every single might have some information about the object but not all of them.As
we mentioned the object’s signal is distributed over several pixels. Obviously it is
easier to calculate the signal of a pixel and calculate the pixel noise and the SNR but
we should consider that the concept of pixel SNR and the object SNR are totally
different.

As an example, we can consider a virtual image of a square object 2*2 arcsec and
total intensity of 100 photons. We assume the sky glow is zero and sampling the
image with 0.5 and 1 inch pixel size.We will have: ObjectSNR = sqrt(100) = 10
1 inch pixel size: object occupies 4 pixels so every pixel will have 25 photons, then
pixel SNR = 5 0.5 inch pixel size: object occupies 16 pixels so every pixel will have
6.25 photons, then pixel SNR = 2.5 As you can see the pixel SNR depends on pixel
size and one way to battle it is to normalize the pixel size
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2.9 Normalizing Pixel Size

To compare any pixel based characteristics of different sized pixels, we have to
normalize the pixel size mathematically. This becomes even more important when
we have to use different camera on a particular telescope. We can normalize the pixel
sizes into each other or to a standard reference. This can be done using an angular
distance reference, like 1 arcsec or a linear distance such as 1 mm. As we mentioned,
the first one is independent of telescope and can be used to compare images from
different telescope but the second one depends on telescope characteristics so can
be used to compare different images of the same telescope.
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Chapter 3

Infrared image processing

In this chapter we are going to have a short review on infrared light and imaging.
Obviously we will have astronomy approach and check the possibilities and problems
of working with infrared light. Infrared history starts from the year 1800 and William
Herschel. He was working on sunlight and tried to pass the light through a prism
which splits it into a rainbow of colors. He was experimenting the differences of the
light spectrum from violet to red. He found out that the heating power of the light
is different among different colors. The red light was able to arise the temperature
much faster than blue or violet, but he wanted to experiment something even more
interesting, he wanted to explore beyond what was visible with eye and find out
if there is anything from sunlight which produces radiant heating effects but still
can not be seen by eyes. For this purpose he used three different thermometers on
his table while the middle one was in the light spectrum and the other two were
out of the light spectrum. So he could use the two side thermometers for the room
temperature and change the one in the middle to experiment the different light’s
heat power. He started by testing his previous experiment and confirming the results
which say the heating power of the red light was more than the violet light, but this
time he did not stop and went further and further.He moved the thermometer out of
the spectrum which he could see and surprisingly, he was able to detect heat power
even out of the spectrum. He kept recording the results out of the spectrum and he
realized that the maximum heating effect occurs about 1 inch after the las visible
light and the heating effect can be seen up to 1.5 inch after the last visible part of
the light spectrum which was 8 inch. This was a historical moment because William
Herschel has discovered the infrared light
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3.1 The electromagnetic spectrum

Astronomy science relies on astronomy imaging which is detecting the signals
which are carried by electromagnetic waves. These can be visible light, infrared
light,gamma rays or radio waves. Among all of them the infrared plays a key role
and is very important for astronomy, we will discuss why but before that we need
to learn more about the nature of electromagnetic radiation and the sources which
produce the infrared light. Herschel’s discovery was the basic most important step
of the infrared but as any other discoveries in the world, brought so many questions
about light itself. The theories and discoveries continued up to 20th century when
it finally led to the quantum mechanics. At that time scientist could not agree on
the nature of the light. Some believed in it as a wave phenomenon or some others
thought it is made of particles. As we know now it has both wave and particle
properties but in that era, the wave theory was more popular so that they believe
there was a wavelength assigned to it. Herschel used a prism to separate the light.
The prism bent or refracted the sunlight rays with different angles depending on
the wavelength. So that the blue light was bent more than the red. So Herschel
discovered that the prism is dividing the sunlight into different sections with a range
from blue to red which could be seen by eye, and a part after red which could not be
seen but he could measure using his thermometer. We know that the electromagnetic
spectrum covers much more wider range of wavelengths than visible light or even
what Herschel has measured. From radio emission to the X-ray and gamma-ray
radiations are part of the electromagnetic spectrum. Depending on the wavelength
they have their specific characteristics and their interaction with matters. As an
example the blue part of the visible light refract stronger than the red part. So the
prism can divide these lights but for the ultraviolet and X-rays, the prism is opaque
so it can divide these lights. The atmosphere is also opaque to very short length
waves which provides a kind of protection for us,since short wavelengths are harmful
for human. The wavelength of infrared light is between the edge of the visible light
which is almost one micron and 1 millimeter. Since this range is wide, infrared itself
is divided in three different sub-ranges:

� Near infrared: It has wavelength of 1-5 microns and is the closest part of the
infrared to the visible light.

� Mid-infrared: The wavelength of 5-25 microns

� Far-infrared: The wavelength of 25-500 microns

Nowadays the infrared which was detected by Herschel is not of our interest in
astronomy. It is now called a extended part of the visible spectrum which is called
optical. That’s because the same techniques can be applied to it as the visible
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light. This is just about astronomy and for normal photography this wavelength
(0.8 microns) is still regarded infrared light.

3.2 Thermal radiation

There are different ways which light is produced and every electromagnetic wave
has some parts. One of the factor which is common in all of them is heat. All
bodies produce electromagnetic radiation but the moment we think that we have
felt the radiations, in fact we have perceived the radiant heat. As an example
thinking about a tungsten light bulb, we can see the light produced by it but what
we actually feel from it is the radiated heat. The light we receive from the Sun
is also radiant heat, which is traveling the 150 million kilometers of space between
Earth and Sun. These examples are just a few of radiant heat and are obvious to
us because we can see and actually feel the heat by our skins. But not just these
radiating electromagnetic waves. Even cold objects are radiating, from cold surfaces
in earth, to the temperature of the universe which is - 270.27C. As we know there
are several measuring units for temperature.The most famous ones are Celsius and
Fahrenheit, but physicist prefer another one. Kelvin is the one which is similar to
Celsius but instead of using the freezing temperature of water as the reference, it
uses the absolute zero. The -273C temperature is the lowest one which any object
can have. The heat itself is a state of movements and interactions of the atoms
of an object with each other and at the 0 Kelvin, it is believed that there is no
interactions between atoms. That’s why it is called absolute zero and the lowest
possible temperature for any object. Practically this temperature is also impossible
to reach and is a good reference since all the other temperatures are above it. As we
mentioned, every object radiate electromagnetic radiations and the characteristics
of it depends on the matter and energy level of the object. In a medium the object
interact with radiations until they evolve to a state which the emitted and received
radiations are equal but in their own frequencies. This radiation is called Thermal
or black body radiation and obviously is higher for the hotter body. The actual
spectrum of black body radiation, the power emitted at each wavelength, was a
puzzle for physicists at the end of the 19th century. The light coming out of a fixed
cavity was considered to arise from all possible wavelengths of light that could fit
inside it. These can be thought of as a set of standing waves whose wavelengths are
a fixed multiple of the size of the cavity, so they always have a value of zero at the
walls. A standard result of the study of heat and energy, making up the theory of
thermodynamics, states that each of these standing waves, or modes, should have
the same energy. As you can tell from Figure, there are many many more high
frequency modes, waves that go up and down many times from one side of the
box to the other, than low frequency modes. These correspond to high frequency
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electromagnetic radiation, so they would represent ultraviolet light or beyond. This
means that, under the assumptions of 19th century, classical physics, there should be
a huge amount of ultraviolet light in all Black body emission at different wavelengths
for different temperatures thermal radiation. But we can easily see when we look
at the spectrum of thermal radiation that this ultraviolet catastrophe, as it was
known, is not the case. The solution to this problem was devised by Max Planck
in 1901, and provided the first hints of the quantum physics revolution that was
to follow. Planck suggested that the amount of energy that could be carried by
electromagnetic radiation was not continuous. Instead, this energy came in discrete
lumps, or quanta, like tiny bullets.

Figure 3.1: The spectrum of black body radiation at different temperatures.

The black body spectrum for a star like our Sun, at a temperature of - 6000K,
peaks in the optical. Cooler objects have black body spectra that peak at longer
wavelengths. Something at room temperature, 300 K, emits most strongly in the
mid infrared, around 10 microns in wavelength, while interstellar dust, at around 30
K, emits most strongly in the far infrared, around 100 microns.

Overall, the black body spectrum has fundamental properties. The most impor-
tant one is that it’s peak wavelength is not fix for every material and depends on
the temperature of the emitting object. The hotter is the object, the shorter the
wavelength becomes and the colder objects emit longer wavelengths. As an example,
the Sun is about 6000K, with a peak of black body spectrum to the color yellow.
IT is interesting to know that this wavelength is the peak of human eye sensitivity
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too. As another example the human body skin also emit heat by electromagnetic
wavelength. The wavelength is about 10 microns at the 300K (human body tem-
perature). This wavelength is in mid-infrared thats why infrared cameras can be
helpful in finding human in emergency situations. Because other object will emit
wavelengths different from this one and using a filter we can just detect the live hu-
mans. The second point is still interesting. As the emitting wavelength of the object
in specific temperature is fixed and so the radiated energy, we can use the amount of
received energy to estimate the emitting material. There are some exceptions here,
mostly about opaque object.

3.3 Spectral lines and quantum mechanics

Planck started a great way in solving the light and electromagnetic waves problems
by his solution of quantising the amount of energy in electromagnetic radiations.
Although this was just the first step, but also a fundamental and essential step to
solve lots of classical physics problem. One of these which is important in astronomy,
is the origin of spectral lines.

During the 19th century, scientists discovered that, in certain circumstances, a
given material would emit light at specific wavelengths. This could come from
a tube of gas through which an electric current was passed, or from a chemical
compound being heated in the flame of a bunsen burner. The spectral lines seen in
emission when a compound was heated could also be seen in absorption when light
passed through a similar material. A tube of gas that gives out an emission line at a
specific wavelength when excited by an electric current would, for example, absorb
light passing through the tube at that same wavelength.

These spectral lines provided reliable fingerprints for identifying the presence of
a given element, allowing chemical flame tests to determine what an unknown com-
pound might contain. Copper, for example, produces a lovely green colored flame in
a bunsen burner. These techniques were applied to observations of stars and nebulae
by William and Margaret Huggins.They found that astronomical objects contained
the same chemical elements as we find on Earth.

The origin of spectral lines remained a mystery until the quantum physics rev-
olution of the early 20th century. Planck’s discovery that light is quantised, that
it comes only in discrete particles whose energy depends on their wavelength, was
only the start. Physicists soon realised that everything in the world of atoms and
molecules is quantised. An atom or molecule can be in only a limited number of
states. If an atom is hit by a photon of light whose wavelength matches the energy
of one of those states, then the photon can be absorbed. Photons of other energies
cannot be absorbed so easily. This process gives rise to spectral absorption lines
at specific wavelengths, while the opposite process, whereby an atom decays from a
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high energy, excited state to a lower energy state, produces an emission line.
The exact wavelengths of the lines depend on the detailed properties of the atoms,

since the process of absorption and emission are shifting the electrons within the
atoms from one allowed quantum state, also known as an energy level, to another.
The atom doesn’t pass through any intermediate states in such a transition - it just
goes from one state to another in what has been called a quantum shift. It isn’t
just atoms that have quantised transitions giving rise to spectral absorption and
emission lines. The same physics applies to oscillations in molecules, where some of
the atoms in the molecule bounce around like weights on a spring. Many of these
molecular transitions are at lower energies, in the infrared rather than the optical,
since the absorption of higher energy photons may break the weaker bonds that keep
molecules in one piece.

Observations of spectral lines, both emission and absorption, can be used in as-
tronomy for more than just working out what elements and molecules make up an
astronomical object. Emission lines from atoms in higher energy, excited states can
reveal something about the nature of the rad iation that is exciting them. Ionised
material, atoms and molecules that have had electrons stripped away from them,
have different spectra than the un-ionised versions. High levels of ionisation, where
an atom has had many of its electrons stripped away, take a lot of energy, possi-
bly implying the presence of hard, X-ray radiation or some other highly energetic
processes which might not be directly detectable by an observer. The study of spec-
tral lines, across the electromagnetic spectrum, is thus a very powerful tool for the
observational astronomer.

3.4 Telescopes

Now let’s get into more details of the telescopes and how they work. Astronomy
is all about observation and that shows the fundamental tools of this science are
telescopes which can observe the universe clearly.

Basically we have two main types of telescopes: First we have telescopes using
lenses to collect the light and then capture it, these are called refracting telescopes
We have also telescopes which uses mirrors to collect the light. These are called
reflecting telescopes The refracting telescopes were the first made telescope which
were used by first generation of astronomers like Galileo. But nowadays almost
all professional and even some amateur telescopes are reflective. There are several
reasons for building the reflector telescopes instead of refracting, but probably the
most important is the practical problems of making a huge refractor telescope is
much more than the reflectors. Don’t get this wrong, the reflectors have been very
useful during the last eras and actually the fundamentals of the astronomy have been
discovered by them, but astronomers need bigger telescopes which can collect more
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light and is more accurate. The refractors were very useful and still are, but the
new reflectors are even better. Also the glass of the refractor telescopes is opaque
to a large section of infrared wavelengths. A typical reflecting telescope is shown in
the figure below.

Figure 3.2: Diagram of a typical reflecting telescope

It is clear in the image that how this telescope is able to differentiate two object
even if the arrival photons are close to each other.In this kind of telescope, the larger
mirrors results in better separation in close objects. Another consideration here is
the effect of the wavelength to the separation. Long wavelengths are separated less
than the shorter ones, so for separating the long wavelength we need even bigger
mirrors. On the other hand we have some practical limitations for big mirrors. As an
example for Space based telescopes we need the mirrors and all the rest instruments
to be launched to the orbit and that makes us limited to a maximum weight and size.
Also on the ground telescopes we have same limitation. For observing the sky the
telescope needs to turn around and this movements makes it even more difficult to
manage the heavy mirrors. For battling this problem some active support systems
are used and the mirrors are made out of several hexagonal segments instead of one
big mirror. Another big problem for these kind of telescopes is the need of a clean
view of the sky. The telescope shouldn’t have any kind of obstacles in it’s sight.
Any air pollution or clouds is problematic for the telescope. This is actually one
of the main reasons which make astronomers interested in space telescopes but for
ground based telescopes they usually use an isolated place far from cities. As an
example the Thirty Meter Telescope (TMT) is on one of the Hawaii islands is a
perfect ground based telescope in case of environmental situation.

3.5 Most known telescopes

After have a short review of the engineering and physical specifications of the
telescopes, now it’s time to have a look at different telescopes which astronomers
have been using several years for studying the sky. Many of telescopes which we
are going to mention are not operational anymore but not only they have influenced
the astronomy science, also the data captured by them years ago are still in use
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by data processors For two main reasons. First by using new processing methods
we can extract more information from the same data, and second is the fact those
data are unique. The images captured of a star far from here is valuable because
those starts might not exist anymore and even using more advanced observatories,
we can’t have any other images from them anymore. Now we will have a look at
the most advanced and well known observatories.

3.5.1 Ground-based telescopes

UKIRT Telescope

Figure 3.3: The UK Infrared Telescope (credit: UKIRT/JAC)

This is not one of the first large telescopes which has ever built, but one simple
fact made it very special. It was built and dedicated for infrared observatory. This
telescope has a large 3.9 meter diameter primary mirror which make it the second
largest infrared dedicated observatory in the world. UKIRT stands for United King-
dom Infra-Red Telescope. Unlike its name it is located on Mauna Kea, Hawai’i as
part of Mauna Kea Observatory. It is owned by the Science and Technology Facility
Council of United Kingdom and is currently being funded by NASA.

For more information please visit the official website of UKIRT observatory at
http://www.ukirt.hawaii.edu/

The Keck telescopes
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Figure 3.4: The Keck telescopes, credits:www.keckobservatory.org

These are also based in Mauna Kea, and also among the largest telescopes in the
world. The main difference is the fact that these are optical/near-infrared telescopes.
These Telescopes have primary mirrors which are 10 meters in diameters and such
huge mirrors are possible thanks to the fact they are made of several segments.
Any of them are made of 36 hexagonal mirror segments. This telescope has actu-
ally started working in 1993 and was the first telescope which has used segmented
mirrors. This technology was actually a revolution in building large telescopes. As
mentioned, these telescopes are not dedicated to infrared images but can observe
near field infrared. Ech of them weigh about 300 tons and can smoothly track objects
for hours. There is a new technology used in the Keck telescopes called Adaptive
Optics which removes the effects of atmospheric blurring. AO measures and cor-
rects this effect using a deformable mirror that changes shapes up to 2000 times per
second. This method is using a special-purpose laser to make a bright artificial star
by exciting the atoms in sodium layers. For the first time this method was used in
2004 for producing more detailed and sharper images. For more information please
visit the official website of Kek observatory at http://www.keckobservatory.org

The European Southern Observatory (ESO) Very Large Telescope
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Figure 3.5: The European Southern Observatory (ESO) Very Large Telescope By ESO (ESO) [CC BY 4.0
(http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

This complex is located on a top Cerro Pachon in atacama desert in Chile. This
observatory complex is actually made of 4 completely separate telescopes, each of
them has a 8.2 diameter mirror which are actively supported. These telescopes are
not the largest in the world and usually are working separately, but it is possible
to combine the light from all of them to form a much larger telescope. The name
is actually because of this combination. Each year almost 2000 proposals are made
for this telescope. These are requesting 6 times more than available nights in the
year!That has made the ESO the most productive observatory of the world and a
great number of over 840 refereed papers are published based on ESO data, just in
2013.The huge archive have almost 1.5 million images which are almost 65 terabytes
of data. The VLT is also functioning on both visible light and mid and near field
infrared. This combination of the visible light and infrared observatory has been
really useful for the astronomers. In the old days, they actually had to go tu UKIRT
to have infrared data but nowadays almost all the visible spectrum telescopes also
works with at least nearfield infrared. For more information please visit the official
website of Eso observatory at http://www.eso.org

3.5.2 Space based telescopes

As we have mentioned in previous chapters, the infrared photography has so
many limitations on the earth. For some wavelengths it is actually impossible and
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for the other the problems of earth atmosphere still remains. For these reasons
the telescopes have been sent to space. Obviously this is an expensive and difficult
mission but the results were so satisfying that a new mission has been started before
the previous one ends. Here we will have a short look of few space based telescopes.

IRAS

Figure 3.6: An artist’s impression of the IRAS satellite while operating in Earth orb it.(Courtesy of NASA.)

IRAS is practically the first space based telescope ever. The Infrared Astronomy
Satellite has done more than a mission for infrared astronomy. It can be called the
foundation of the far infrared astronomy since its images were the first far infrared
images which have arrived to the astronomers. It will be even more interesting to
know that all these valuable information were achieved by a mirror of 57 cm and
operation time of 10 months. It was launched in 1983, but changed the infrared
astronomy forever.

Hubble Space Telescope
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Figure 3.7: This photograph of NASA’s Hubble Space Telescope was taken on the fourth servicing mission to the
observatory in 2009. Credits: NASA@https : //www.nasa.gov/mission

pages/hubble/story/index.html

After IRAS, Hubble was the next infrared telescope launched into the space.
Hubble was primary an optical observatory, it has been equipped with different
near infrared instruments during its lifetime. The Hubble mirror was 2.5 meter
which was a great upgrade over IRAS. The Hubble has been aunched in 1990 and
still operating. The successor of the Hubble is the James Webb Space Telescope
(JWST) and is scheduled for launch in 2019. For more information please visit the
official website of Hubble observatory at www.hubblesite.org

Herschel Space Observatory
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Figure 3.8: Satellite: Herschel Space Observatory Copyright: ESA/Herschel/NASA/JPL-Caltech; acknowledgement
T. Pyle and R. Hurt (JPL-Caltech)

One of the most ambitious missions to date, is the Herschel Space Observatory.
Wit a 2.5 meter mirror, Herschel has the largest mirror which has ever launched
into the space for infrared astronomy. It has been launched in May 2009 and was
active for 4 years. Its instruments were capable of seeing the coldest and dustiest
objects in space. We will discuss more this satellite in next chapters since the main
input data and aso the results of simulation are data captured by Herschel sattelite
For more information please visit: https://www.herschel.caltech.edu/
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Chapter 4

Unimap software and Unimap
Simulator

As we mentioned, The Unimap software is using the Herschel satellite data as
input. So we are going to have a short look at the Herschel satellite specifications
and instruments and then have a deep review of Unimap.

In this chapter we are going to review to main article about Unimap and check the
specifications in details. Then we will start talking about the need and development
of the simulator for this software. Herschel satellite is a space telescope launched
by the European Space Agency (ESA) in 2009. It hosts two infrared instruments,
the Photodetector Array Camera and Spectrometer (PACS) and the Spectral and
Photometric Imaging Receiver (SPIRE).

The instruments operate with an unprecedented resolution, sensitivity and dy-
namic range, making Herschel a key tool for astrophysical research, the data of
which will be exploited in next years. Several map-makers exist for Herschel data,
including Madmap, Scanamorphos, Sanepic, Tamasis and Romagal. Among these,
Unimap stands out as one of the most cost-effective. Indeed it can produce quality
images with a comparatively modest hardware and is efficient memory-wise, which is
a noticeable advantage, given the huge volume of data produced by Herschel. This is
achieved thanks to several original algorithms and implementation choices that will
be described in next sections. Unimap has been adopted by several research groups
and has been used to process the data of some Herschel key programs, like Hi-GAL
and Hermes. Moreover, Unimap was evaluated and compared with other mapmak-
ers at a workshop organized by the National Aeronautics and Space Administration
(NASA) and the ESA, showing that it is a robust and performing software.Unimap
implements a full pipeline, starting from the level 1 data of the standard pipeline
and delivering high quality final maps. Unimap is the successor of and was obtained
from the Hi-Gal/RomaGal pipeline. With respect to the Hi-Gal pipeline Unimap
offers some improvements: it is automatic and it is a standalone, portable package.
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Furthermore several novel processing approaches are introduced.

4.1 Herschel Satellite

The Herschel Space Observatory was a space observatory built and operated by
the European Space Agency (ESA). It was active from 2009 to 2013, and was the
largest infrared telescope ever launched carrying a single 3.5-metre mirror and in-
struments sensitive to the far infrared and submillimeter wavebands (55–672 µm).
Herschel was the fourth cornerstone mission in the ESA science program, along
with Rosetta, Planck, and Gaia. NASA is a partner in the Herschel mission, with
US participants contributing to the mission; providing mission-enabling instrument
technology and sponsoring the NASA Herschel Science Center (NHSC) at the In-
frared Processing and Analysis Center and the Herschel Data Search at the Infrared
Science Archive. The observatory was carried into orbit in May 2009, reaching
the second Lagrangian point (L2) of the Earth–Sun system, 1,500,000 kilometers
(930,000 mi) from Earth, about two months later. Herschel is named after Sir
William Herschel, the discoverer of the infrared spectrum and planet Uranus, and
his sister and collaborator Caroline Herschel. The observatory was capable of seeing
the coldest and dustiest objects in space; for example, cool cocoons where stars form
and dusty galaxies just starting to bulk up with new stars. The observatory sifted
through star-forming clouds—the ”slow cookers” of star ingredients—to trace the
path by which potentially life-forming molecules, such as water, form. The tele-
scope’s lifespan was governed by the amount of coolant available for its instruments;
when that coolant ran out, the instruments would stop functioning correctly. At the
time of its launch, operations were estimated to last 3.5 years (to around the end of
2012). It continued to operate until 29 April 2013 15:20 UTC, when Herschel ran
out of coolant. The mission involved the first space observatory to cover the full far
infrared and submillimeter waveband. At 3.5 meters wide, its telescope incorporated
the largest mirror ever deployed in space. It was made not from glass but from sin-
tered silicon carbide. The mirror’s blank was manufactured by Boostec in Tarbes,
France; ground and polished by Opteon Ltd. in Tuorla Observatory, Finland; and
coated by vacuum deposition at the Calar Alto Observatory in Spain. The light
reflected by the mirror was focused onto three instruments, whose detectors were
kept at temperatures below 2 K 271 �. The instruments were cooled with over
2,300 liters liquid helium, boiling away in a near vacuum at a temperature of ap-
proximately 1.4 K 272 �. The 2,300-liter supply of helium on board the spacecraft
was a fundamental limit to the operational lifetime of the space observatory; it was
originally expected to be operational for at least three years.

Herschel carried three detectors: PACS (Photo detecting Array Camera and Spec-
trometer) An imaging camera and low-resolution spectrometer covering wavelengths
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from 55 to 210 micrometers. The spectrometer had a spectral resolution between
R = 1000 and R=5000 and was able to detect signals as weak as -63 dB. It operated
as an integral field spectrograph, combining spatial and spectral resolution. The
imaging camera was able to image simultaneously in two bands (either 60-85/85-
130 micrometers and 130-210 micrometers) with a detection limit of a few milli-
janskys. SPIRE (Spectral and Photometric Imaging Receiver) An imaging camera
and low-resolution spectrometer covering 194 to 672 micrometer wavelength. The
spectrometer had a resolution betweenR = 40 and R = 1000 at a wavelength of
250 micrometers and was able to image point sources with brightness around 100
millijanskys (mJy) and extended sources with brightness of around 500 mJy. The
imaging camera had three bands, centered at 250, 350 and 500 micrometers, each
with 139, 88 and 43 pixels respectively. It was able to detect point sources with
brightness above 2 mJy and between 4 and 9 mJy for extended sources. A prototype
of the SPIRE imaging camera flew on the BLAST high-altitude balloon. NASA’s
Jet Propulsion Laboratory in Pasadena, Calif., developed and built the ”spider web”
bolometers for this instrument, which is 40 times more sensitive than previous ver-
sions. The Herschel-SPIRE instrument was built by an international consortium
comprising more than 18 institutes from eight countries, of which Cardiff University
was the lead institute.

HIFI (Heterodyne Instrument for the Far Infrared) A heterodyne detector able to
electronically separate radiation of different wavelengths, giving a spectral resolu-
tion as high as R = 107.[28] The spectrometer was operated within two wavelength
bands, from 157 to 212 micrometers and from 240 to 625 micrometers. SRON
Netherlands Institute for Space Research led the entire process of designing, con-
structing and testing HIFI. The HIFI Instrument Control Center, also under the
leadership of SRON, was responsible for obtaining and analyzing the data. NASA
developed and built the mixers, local oscillator chains and power amplifiers for this
instrument. The NASA Herschel Science Center, part of the Infrared Processing
and Analysis Center at the California Institute of Technology, also in Pasadena, has
contributed science planning and data analysis software. Although this method can
be applied to other image types too, but this thesis is optimized for PACs instru-
ments and all the examples and graphs are produced using PACs images. Within the
complement of three instruments selected to form the science payload, the shortest
wavelength band, 60-210µm, will be covered by the Photo detector Array Camera
and Spectrometer (PACS), which will provide both photometric and spectroscopic
observing modes suited to address the key scientific topics of the Herschel mission.
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4.2 Unimap Software

4.2.1 Image formation basic

We review some basic image formation concepts and techniques. We start by
considering the image synthesis in the presence of noise. A. Image synthesis and
noise Consider an image of M pixels, represented by an M ×1 vector m. The image
is observed with an instrument producing D >> M readouts, represented by a D×1
data vector d. Assuming a linear, noisy instrument, the data vector can be written
as

d = Pm+ n = s+ n (4.1)

where P is a D×M , full-rank matrix, which depends on the instrument and on the
observation protocol, n is a zero mean, random noise vector and we introduced the
signal vector

s = Pm (4.2)

representing the ideal, noiseless output. The image formation problem is that of
estimating m knowing d, P and the statistics of n. This is a classical problem
having several established solutions. A simple and effective one is based on Least
Squares (LS) and is summarised below. Since for a generic image x the ideal output
is Px, we can minimise |d−Px|2 for varying x and obtain the image producing the
output closest to the actual data vector. This image is the LS estimate of m and is
given by

m̄ = (P TP )−1P Td. (4.3)

The vector
s̄ = Pm̄ = P (P TP )−1P Td (4.4)

is the corresponding LS fit to the signal. The vector n̄ = d− s̄ gives the fit error and
is an estimate of the noise. The Mean Square Error (MSE) is MSE = |n̄|2/D. LS
estimation is an effective technique when the noise is white. However, infrared data
are typically affected by correlated noise too, a disturbance found in several other
imaging systems, e.g. DOI [14] and fMRI [15]. In this case, standard LS performs
poorly and it is better to use a Generalised LS (GLS) approach2 [16], where the
error is weighted in order to account for the noise correlation. Indeed, when the
noise is Gaussian, this approach yields the Maximum Likelihood (ML) image. The
GLS estimate has a simple expression, namely

mg = (P TN−1P )−1P TN−1d (4.5)

where N is the noise covariance matrix, given byN = EnnT . However, the computa-
tion of mg is far from trivial as soon as the data size is appreciable. In fact, the direct
use of (5) requires the inversion of a D ×D matrix, which is impossible when D is
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large. In section V-A we see how to circumvent this problem. B. Processing pipeline
and disturbances Infrared data are affected by a number of other disturbances, in
addition to noise, which need to be compensated by the image formation system.
The optimal approach is to jointly compensate the disturbances and estimate the
image. However, this is difficult to realize due to complexity reasons. Therefore, the
image synthesis is normally preceded by one or more preprocessing steps and the
software is organized as a pipeline of modules. Each module removes some distur-
bances and passes an updated data set to the following one, down to the last module
which produces the final image. Several disturbances affecting infrared data can be
modelled as deterministic, smooth, additive curves, depending on a few parameters.
Similar disturbances are found in a number of other systems, e.g. [14], [15], [17],
[18]. Then, the data model becomes d = s+n+ y where y is a vector depending on
K << M unknown parameters. Such disturbances can be removed by estimating
the parameters from the data vector and producing a corresponding estimate of y.
Then, the estimate is subtracted from d to obtain an updated data vector which is
used instead of d in (5) to synthesize the final image. The parameters estimation
is clearly a critical step and is not trivial, because the data vector also contains
the signal s, which can bias the results. If this happens, the signal leaks into the
estimate and is removed when the estimate is subtracted from the data, resulting
in information loss. In section IV-D we present an approach to avoid this problem.
Infrared data are also affected by impulsive disturbances, corrupting a small frac-
tion of the data vector. In principle, also these disturbances can be estimated and
subtracted from the data vector. However, they are not easy to model. Moreover,
only a fraction of the data set can be used in the estimation, making the results less
reliable. A better approach is that of detecting the readouts affected and excluding
these readouts from the synthesis. This can be done with a negligible impact on the
performance as long as the percentage of readouts discarded is low. However, this
makes the computation of the GLS estimate more involved, as better discussed in
section V-C. C. Filtering and other basic operations We introduce some basic opera-
tions that we need later. Given n numbers organized into a vector x = (x1, . . . , xn),
their (arithmetic) mean is denoted by mea(x) = (

∑n
k=1 xk)/n and the median by

med(x1, . . . , xn) or by med(x). The median is useful because if the numbers are sam-
ples of a random variable, it is a robust estimator of the ensemble mean while the
arithmetic mean is more affected by the outliers. With a terminology abuse we also
introduce the variance, given by var(x) = (

∑n
k=1 x

2
k)/n− [mea(x)]2. A well known

operation that we will use is the linear filtering of a sequence x[k] with an impulse
response h[k], producing an output sequence y[k] = x[k]∗h[k] =

∑∞
n=−∞ x[n]h[k−n],

where ∗ denotes convolution. Moreover, given a sequence x[k], we can compute the
median over a sliding window of 2w+1 samples and subtract it from x[k] to produce
y[k] = x[k] − med(x[k − w], . . . , x[k + w]). This operation is a form of high-pass
filtering [18] and is called the median high-pass filtering. Naturally, the filters can
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be applied to finite length sequences too, by padding with zeros or mirroring. As
we will see, the data vector d is normally obtained by stacking several different se-
quences of data. While this is handy, since it allows to develop compact expressions
like (5), other operations have to be carried out separately on the sequences or on
parts of them. In this case we will simply say that a sequence is ı̂extracted̂ı from
the vector d and will not introduce a formal description of this operation, in order
to keep the notation simple. In particular, we can extract the individual sequences
from d, filter each of them and stack the output into a D1 vector h. When this is
done using a median high-pass filter, we will denote the operation by h = high(d).

4.2.2 Herschel data

The photometers of PACS and SPIRE consist of two and three arrays of bolome-
ters, respectively. The first PACS array operates in the 70 (blue) µm or 100 (green)
µm band and is divided into eight subarrays. The second operates in the 160 (red)
µm band and is divided into two subarrays. The SPIRE arrays operate in the 250,
350 and 500 µm bands. The field of view of each array is approximately 45 squared
arcsec for PACS ad 2 squared arcmin for SPIRE, but a typical Herschel observation
covers a much larger sky area, up to some square degrees wide. To observe the area,
the telescope is moved along a set of parallel scan lines covering the area. During
the scan the bolometers are sampled at frequency fs, producing a sequence of read-
outs for each bolometer which is termed a timeline. Redundancy is guaranteed by
observing the area at least twice, along two different scan directions, so that each
bolometer normally produces two or more timelines. The timelines, together with
the corresponding pointing information, constitute the observation output and are
collectively referred as the Time Ordered Data (TOD). Ideally, each readout gives
the emission, integrated over the Point Spread Function (PSF), received from the
direction into which the bolometer is pointed at the sampling time. In practice
there are a number of deviations from this assumption, the most relevant of which
are reviewed in the next subsection.

A. Noise and disturbances
Each timeline is affected by a thermal and electronic noise [4], [5], which is mod-

elled as a zero mean, stationary, Gaussian random sequence n[k]. The noise power
spectrum, denoted by Pn(f), can be expressed, for —f— = fs/2, as the sum of two
terms, namely a white noise with flat spectrum Pw(f) = N0 plus a correlated noise
with spectrum Pc(f) = (f0/f)aN0 where f0 is called the knee frequency and a the
frequency exponent. The correlated noise is also referred as the 1/fnoise and domi-
nates the spectrum at low frequencies. There are several deterministic disturbances
affecting the timelines. The first is a drift, i.e. a deviation from the baseline, an
example of which is shown in figure 1A. The drift is slowly varying with respect to
the sky signal and the noise but may be much larger than the signal, especially for
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Figure 4.1: Examples of timeline. Note the large drift in plot A, the initial onset and the three glitches in plot B
and the jump in plot C.

PACS3. It can be modelled as a low order polynomial curve [19]. Both a specific
drift, different for different timelines, and a common drift, equal for all the timelines
of an array or subarray, can be observed. A second disturbance is an onset, i.e.
a deviation from the baseline affecting the initial part of the timeline, due to the
memory of the calibration phase that precedes the scan. The onset can be roughly
modelled as a decaying exponential and an example is shown in figure 1B. Finally,
each timeline is affected by an offset, i.e. an unknown additive factor. The timelines
are also affected by impulsive disturbances, due to cosmic rays. Specifically, when
a ray hits the instrument, it may provoke a glitch or a jump, depending on where it
hits. A glitch is a high spike in the timeline, lasting one or two samples, examples
of which can be seen in figure 1B. A jump is an abrupt and long lasting deviation
from the baseline, shown in figure 1C. When the ray hits the readout electronics,
the jump may affect a whole row of the array and be seen in all the correspond-
ing timelines. Another problem that may be regarded as an impulsive disturbance
is the saturation which occurs when a bolometer is pointed towards a very bright
source, which may affect several consecutive samples. The timelines are affected by
several other disturbances, like quantization noise, Relative Pointing Error (RPE),
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onboard compression, bolometer memory effects and interference from the solar pan-
els. While these disturbances do degrade the image, they have less impact and will
not be considered in this paper.

B. Data model
Assuming that the TOD is composed of Nt timelines and that the k− th timeline

is composed of Nk readouts, the data vector d is obtained by stacking the timelines
and is a D1 vector, where D = PNtk = 1Nk is the total number of readouts. Then,
in order to use (1), we need to specify the signal model of (2) and the statistics
of the noise. The latter can be derived from the noise spectrum, as we see later.
Concerning the signal, we assume that the observed sky is pixellised, i.e. that it
is partitioned into a grid of M non-overlapping squares (pixels) where the flux is
constant, and is represented by an M 1 vector m. Next, we assume that the signal
component of each readout is equal to the value of the sky pixel where the bolometer
was pointed at the sampling time. Then the matrix P of (2), which is termed the
pointing matrix, is a DM, sparse, binary matrix, constructed from the pointing
information and such that Pk,i is 1 if the k − th readout falls into the i − th sky
pixel and is 0 otherwise. Clearly, our signal model is an approximation. In fact, the
readouts do not yield exactly the emission coming from the pointing direction but
the emission integrated over the telescope PSF. This could be taken into account in
the pointing matrix, e.g. [6], but at the price of a drastic increase in the complexity,
which is undesirable for Herschel data. On the other hand, the approximation is
good if the pixel size is comparable to the PSF size. Furthermore, the choice of
a sparse and binary pointing matrix greatly simplifies the processing. Indeed the
matrix can be efficiently stored. Moreover, the LS estimate of (3), which is also
called the simple projection or the naive map, can be computed with D sums and
M divisions, since the value of each pixel is just equal to the average of the readouts
falling into the pixel. Finally, the production of the signal estimate of (4), namely
Øs = PØm, termed the backprojection of Øm, only requires D memory access
operations. A second approximation implicit in our signal model is that the sky
is continuous in nature and not pixelised. Again, the approximation is good when
the pixel size is comparable to the PSF size. Naturally the pixel size also has to
be large enough that several readouts fall into each pixel, so that D ¿¿ M and the
redundancy needed for the image formation is guaranteed. Both conditions can be
satisfied for Herschel data.

4.2.3 Unimap overview and preprocessing

Unimap is written in Matlab language and is a pipeline composed by eight mod-
ules, identified by mnemonic names. Each of the first five modules compensates one
or more disturbances and produces an updated TOD. In the last three modules the
TOD is frozen and several sky images are produced. Due to the offset affecting the
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timelines, these images are themselves affected by an unknown offset, which has to
be estimated using an external reference (calibration). The processing is controlled
by a set of parameters, the main of which are summarized in table I. There is a
set of default values and the images produced using the defaults are normally good.
In this sense Unimap is an automatic mapmaker. However sometime the image
quality can be improved by tuning the parameters. To help this task, the program
produces a set of evaluation images, summarized in table II, that will be described
in the paper. The input to Unimap is a set of Herschel observations, each one
stored in a separate file. Typically, but not necessarily, the input is obtained from
the Herschel Interactive Processing Environment (HIPE) [20], which is the standard
processing pipeline maintained by the ESA4. Specifically, each file contains a set
of readouts organized into timelines and the corresponding pointing information.
For each readout also an input flag must be in the file, which is a binary value
indicating the validity of the readout. The flagged readouts will be excluded from
the image synthesis and it is the user’s responsibility to flag the readouts affected
by disturbances which are not treated by Unimap. Typically, it is sufficient to flag
the saturated readouts. Unimap can handle any number of input observations, the
only limit being the memory size. Moreover, it is not memory eager, compared
to other mappers, and wide images can be processed on a personal computer. To
give an idea, an input dataset of 400 Msamples can be processed on a laptop with
8 Gb memory, with a processing time that depends on the data and may range
from 2 to 20 hours. The memory requirements are approximately proportional to
the size of the input data. A. Data formatting and offset compensation The TOP
module loads the inputs and builds the TOD d and the pointing matrix P. Speci-
cally, given a user-specified pixellisation of the observed area, the module assigns
each readout to a pixel and produces a D1 vector p such that pk is the index of the
pixel where the k-th readout falls. This vector is called the Time Ordered Pixels
(TOP) and is an efficient way to store the pointing matrix. The module discards
timelines where the number of flagged readouts exceeds a user-specified percentage.
Moreover, the module may discard the initial samples of each timeline, which is a
brute force approach to remove the onset. Finally, the module performs a rough
offset compensation, by subtracting to each timeline its median, thereby producing
an updated TOD that, in order keep the notation simple, is still denoted by d.
The module saves the naive map obtained by projecting the updated TOD and a
second image, termed the noise map, giving the corresponding standard deviation.
That is, for each pixel, if x is the vector of the readouts falling into the pixel, the
naive map gives mean(x) and the noise map

√
var(x). B. Jumps and onset The Pre

module detects the jumps using a procedure described in appendix VIII-A. Next, a
set of jump flags is produced, by flagging 100 readouts starting from the position of
any detected jump. Typically, the percentage of flagged readouts is less than 0.5%
for PACS, while the jumps are almost absent in SPIRE data. Finally, the module
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merges the input and the jump flags and fixes all the flagged readouts. Specifically,
the vector d is updated by replacing the flagged readouts with a linear interpolation
between the preceding and succeeding valid readouts. This is a rough approxima-
tion, useful to regularise the timelines during the pre-processing. In a later stage
the flagged data will be removed. As a second task, the module performs the onset
removal which is controlled by a parameter λ, specifying the length of the onset.
An exponential curve is fit to the first λ samples of each timeline and the TOD
d is updated by subtracting the fit from the original timeline. The onset removal
must be used with caution, because the exponential model is not always adequate.
The module saves a flag mask, i.e. an image where each pixel gives the number of
flagged (input or jump) readouts falling into it. The module also saves the naive
map obtained by projecting the updated TOD and the corresponding noise map.
C. Glitches The Glitch module detects the glitches by checking the readouts falling
into each pixel and by identifying the outliers, as described in appendix VIII-B. A
glitch flag is set for every readout affected by a glitch. After the detection, the TOD
d is updated by linearly interpolating the flagged readouts. The glitch detection
is reliable only if a sufficient number of readouts, some tens, falls into each pixel.
However this condition is not always guaranteed for Herschel data. In this case, a
coarser pixellisation can be used in the detection, in order to include more samples
into each pixel. This is controlled by a user specified parameter η that is an integer
specifying a multiplicative factor for the pixel edge. Overall, the procedure removes
the glitches with an acceptable level of false alarms. A sane glitch rate is no more
than 0.5% for both PACS and SPIRE data. A known problem is that the procedure
tends to over-flag pixels containing point sources or strong signal gradients, since in
these pixels the assumption of a constant signal is less valid. The module saves a
glitch flag mask, which can be used to check over-glitching. It also saves the naive
map obtained by projecting the updated TOD and the corresponding noise map.

D. Drift removal The Drift module removes the drift affecting the timelines. Since
at this stage all other disturbances have been removed or are negligible, the TOD is
modelled as

d = s+ y + n (4.6)

where s is the signal, n is random noise and y is a drift vector, constructed by stacking
the drifts of all the timelines, each of which is modelled as a polynomial of order Na,
depending on Na + 1 coefficients. The drift is removed using an algorithm based
on Alternating Least Squares (ALS) which is a well known optimization method,
e.g. [21]. The algorithm is one of the Unimaṕıs original features5 and consist of the
following steps Repeat 1-6 until convergence: 1. Make a naive map: mØ = (PTP)-
1Pd. 2. Estimate the signal: Øs = PmØ. 3. Remove the signal: w = d-Øs. 4. For
each timeline: 4.1 Extract the corresponding subvector from w. 4.2 Fit a polynomial
to the subvector by means of LS. 5. Stack the polynomials obtained in step 4.2 into
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vector yØ. 6. Remove the drift from the TOD: d = d-yØ. The algorithm performs a
sequence of alternating signal and drift LS estimations. Indeed, the vector Øs of step
2 is the LS estimate of the signal while step 4 implements the LS drift estimation.
The key point is that the drift is estimated from the vector w, from which the signal
has been removed, thereby avoiding the signal leakage discussed in section II-B.
Naturally, the signal estimate Øs is biased, due to the presence of the drift. Then,
also the drift estimate yØ is biased. But removing it from the TOD, in step 6, we
obtain an improved data vector, where the drift is partially removed. The process
can be repeated to improve the drift removal at each iteration. Note that w is the
LS fit error, from which the MSE can be computed. The algorithm is analysed in
[24], showing that it converges and that the updated TOD is given by

d = s+ c+ ñ (4.7)

where c is a constant vector and nò a random vector. Comparing the latter expres-
sion with (6) we see that the algorithm preserves the signal and removes the drift
except for a constant. However, this is irrelevant, since c can be regarded as an
offset affecting the timelines and is removed in the calibration phase. The statistics
of the noise nò can in principle be obtained from those of n but this is not neces-
sary since we are going to directly measure them. The convergence is controlled by
checking the MSE, stopping the iterations when the MSE improvement gets below
a user-specified threshold. Similarly, the polynomial order, which is user-specified,
can be selected by checking the MSE. In particular, the MSE decreases for increasing
polynomial order and an adequate order is when the improvement becomes negligi-
ble. In practice the order should be no more than, say, 5, because at higher orders
the polynomial model is not applicable. The algorithm can be extended to other
drift models, like sinusoidal or piece-wise linear. Moreover, it can be adapted to a
common drift, by assuming that the same drift affects a group of timelines. Indeed
in Unimap the user can select between either removing a drift from each timeline or
removing a drift from each array (SPIRE) or subarray (PACS). The second option
is faster but less performing, because it leaves a residual, specific drift. However this
is not a problem since the specific drift can be regarded as correlated noise and is
suppressed by the GLS image synthesis. The module saves the naive map obtained
by projecting the updated TOD and the corresponding noise map.

4.2.4 GLS image synthesis and post processing

From (7), by neglecting the constant and dropping the tilde, we obtain (1). Then
we can use (5) to obtain the GLS estimate. However mg cannot be calculated
directly, due to the size of the matrices involved. A way out of this problem is
to rewrite (5) as Amg = m∗, where A = PTN-1P and m* = PTN-1d, and note
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that the latter is a linear system in the unknown vector mg, which can be solved
using a standard method. Typically, e.g. [6], [8], [10], the system is solved using
the Parallel Conjugate Gradient (PCG) [22] which is an iterative solver that, to be
implemented, only requires to compute the vector m* and to perform a sequence of
multiplications of the matrix A with a vector. Both these operations can be broken
into sub-multiplications with the matrices P, PT and N-1. The multiplication by
P or PT is a projection and can be implemented efficiently since P is sparse. On
the contrary the multiplication by N-1 is more involved and is discussed in the next
subsection.

A. Multiplication by the inverse covariance matrix We start by assuming that there
is a single timeline. Then the vector n is a window of D samples of a noise sequence6
n[k] fork = −∞, . . . ,∞, having an autocorrelation sequence R[k] = E{n[i]n[i+ k]}
which is the Inverse Fourier Transform (IFT) of the noise spectrum Pn(f), denoted
as R[k] = IFT{Pn(f)}. Since Pn(f) > 0, we introduce H(f) = 1/Pn(f) and the
sequence h[k] = IFTH(f) which is called the noise filter response. Since Pn(f) is
real and symmetric, the same is true for H(f) and h[k]. Moreover, in practice, the
sequence h[k] tends to zero and there is an index L such that h[k] ≈ 0 for |k| > L
. Consider now the multiplication of N-1 by a generic D1 vector v, to produce
w = N − 1v . In appendix VIII-C we show that, when L << D, the vector w
can be approximated as follows. First, from v we construct a sequence v[k] by
padding and mirroring the vector: v[k] = vk + 1 for k = 0, ..., D− 1v[k] = v − k for
k = −L, ...,−1v[k] = v2D− k for k = D, ..., D+L− 1v[k] = 0 elsewhere. (8) Next,
we filter the sequence v[k] with the response h[k], to produce w[k] = v[k] × h[k] ,
which can be done with O(2DL) multiply-add operations. Finally, the vector w is
obtained by extracting the rest D samples from the sequence w[k], i.e. wk = w[k−1]
for k = 1, ..., D. The extension to the case of Nt > 1 timelines is straightforward.
Indeed, since the noise processes of the timelines are independent, the matrix N is
block diagonal with Nt blocks and the reasoning can be repeated for each block.
Then, the multiplication w = N − 1v can be approximated by breaking the vector
v into timelines, separately filtering the Nt timelines and stacking the results into
w. B. Estimation of the noise filter response The Noise module estimates the filter
responses. As a first step, an estimate of the noise vector is produced, given by
nØ = d− Øs where Øs = PT (PTP )− 1Pd is the signal estimate. Next, the filter
responses are computed, separately for each timeline. In particular, given a timeline,
we compute only the non zero part of h[k] , which is a T = 2L + 1 samples long
sequence7. This sequence can be obtained as the Inverse Discrete Fourier Transform
(IDFT) of H[i] = 1/Pn[i] , where Pn[i] = Pn(ifs/T ) for i = 0, ..., T−1 is a sequence
of T samples of the noise spectrum. In turn, the sequence Pn[i] can be measured
from the noise estimate nØ. This is done by extracting from nØ the subvector
corresponding to the timeline, by segmenting the subvector into blocks of T samples
with an overlap of L, by computing the Discrete Fourier Transform (DFT) of each
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block and by averaging the squared magnitude of all8 the DFTs. Note that, due to
the 1/f noise, we have Pn(0) = 8 and correspondingly we set H[0] = 0, implying
that the filter response is zero mean. This guarantees that when the timelines are
filtered to produce the map m*, any residual offset is eliminated. One problem
is that the signal may leak into nØ and bias the spectrum measurement. A first
way to mitigate this problem is to separate the measurement of the spectrum shape
and amplitude. To this end we normalise to unity the DFT of each block before
the averaging and produce a normalised response Øh[k] , enforcing Øh[0] = 1.
Next, we estimate the noise power P as the median of the variances of the blocks.
Finally, we compute the response9 as h[k] = Øh[k]/P . As a second improvement,
we fit the measured spectrum Pn[i] to the 1/f plus white noise model and obtain a
sequence Ø Pn[i] which follows the theoretical spectrum and is used to produce the
filter response instead of the measured spectrum. However, since the model is not
always applicable10, the user is left the option to skip the fit. The module saves the
measured noise spectra and the filter responses.

C. Flagged data removal As a second task, the Noise module removes the flagged
readouts. In principle this is simple: to remove a flagged readout it is sufficient to
remove the entry from the vector d, the corresponding row from the matrix P and
the corresponding row and column from the matrix N; then, the GLS map is still
given by (5). However this is not easy to implement when the multiplication by N-1
is realised as a filtering. Therefore an original, approximate approach is used, which
is described in the following. As a first step, the flagged readouts (input, jump and
glitch) are removed from the TOD d and the TOP p, shifting the other elements
downwards to fill the gaps. In this way an updated, shorter TOD is produced,
where the time continuity of the noise is not preserved. However this is not a serious
problem as long as the flagged readouts are isolated samples. On the contrary, when
a long sequence is removed, the problem is exacerbated. For this reason, when a
sequence of five or more samples is removed, the corresponding timeline is broken in
two segments, which are treated from now on as independent timelines, albeit with
the same noise filter. In particular, this guarantees that the timelines are broken in
correspondence to all the detected jumps. This is important because in this way the
jump translates into two different offsets for the two segments, which are eliminated
by the zero mean noise filter.

D. GLS Image synthesis The GLS module carries out the image synthesis, by
running the PCG algorithm, which is an iterative solver and needs an initial guess
to start with. The user can select between the naive map or an all zero map. In
principle the PCG will produce the same solution, irrespectively of the start image.
However, the iterations required to achieve convergence depend on the start image.
Moreover, convergence may be diffcult to achieve if the start image is not properly
selected. Typically, when the image is signal rich it is better to start from the naive
map and convergence requires a few tens of iterations; when the image is dominated
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by the background it is better to start from the zero map and convergence may
take a few hundreds of iterations. The main outputs of the module are the GLS
map mg, the naive map mn and the corresponding noise map ms. The module
also saves a coverage image mc, giving the number of readouts falling into each
pixel.GLS approach is effective against the correlated noise. Unfortunately, the
approach also has a serious drawback, namely it may introduce distortion11.The
distortion takes the form of a cross-like artifact placed on a bright source. However,
as we see soon, the distortion can take other forms and is not always so obvious.
The distortion is better discussed in [25] and is due to the approximations implicit
in the signal model and to the uncompensated disturbances, e.g. the RPE. The
distortion is not present in the naive map, which is instead affected by the correlated
noise. In order to evaluate the presence of distortion, the GLS module saves a map
eg = mg −mn which is the difference of the GLS and the naive maps. Since mg is
constituted by the signal plus distortion and mn by the signal plus correlated noise,
by taking the difference we remove the signal and we expect eg to be constituted
by the correlated noise (with negative polarity) plus the distortion. By inspection
of hundreds of images we verified that the distortion is a serious problem, affecting
all the GLS mapmakers. The distortion is more pronounced for PACS but not
uncommon in SPIRE images. Cross-like distortion is due to bright, narrow sources
and is often found in PACS blue and green images. Diffuse distortion, which can
reach 15% of the real emission, is due to broad sources or to diffuse emission and is
more frequent in PACS red and SPIRE images. Often the two types of distortion
are mixed and both present in the same image. E. Distortion removal The PGLS
module removes the distortion introduced by the GLS synthesis, by running the
Post-processing for GLS (PGLS) algorithm, which is another Unimaṕıs original
feature12. The algorithm is described in [25] and will be summarised here. The
inputs are the TOD d and the GLS map mg and the output is the PGLS map
mp . The algorithm amounts at the following steps Init mp = mg and repeat 1-5
until convergence: 1. Estimate signal plus distortion: t = Pmp. 2. Remove signal:
r = t − d. 3. Remove correlated noise: w = high(r). 4. Remove white noise
and estimate distortion: . md = (PTP ) − 1Pw. 5. Subtract distortion from the
map: mp = mp − md . Assuming that the GLS synthesis removes the noise but
introduces distortion, the map mg contains signal plus distortion. These components
are maintained in the back-projected TOD t computed in step 1. Since the original
TOD d contains the signal, the correlated noise and the white noise, by subtracting
it from t in step 2 we obtain a TOD r where the signal is removed but the noise (with
changed polarity) and the distortion are present. By performing the median high-
pass filtering of r we eliminate the correlated noise. By projecting w in step 4, we
eliminate the white noise and produce a map md which only contains the distortion
and is subtracted from the signal map, in step 5. Naturally md is just an estimate
and the distortion removal is not perfect. However by repeating steps 1 to 5 more
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distortion is removed at each iteration. Convergence is achieved when the map mp
does not change significantly across two iterations, which typically happens after
three or four iterations. The PGLS effectively removes the distortion, provided that
there is enough redundancy in the data. In particular at least two orthogonal scans
are required. The only drawback is an increase in the background noise which is due
to the fact that the median filtering and the naive mapping do not perfectly remove
the noise, so that the distortion estimate md is noisy and this noise is injected into
the PGLS map when md is subtracted from mp in step 5. However when the signal
is strong the noise increase is negligible. The PGLS has a single parameter, namely
the window length of the median high-pass filter, which can be set using a trial and
error procedure. In particular, wider filters improve the distortion removal but also
inject more noise. The module saves the PGLS map mp and the total distortion
estimate e = mg −mp. It also saves the difference of the naive map and the PGLS
map, ep = mp−mn, which can be used to evaluate the results and to set the window
of the median filter.

F. Noise minimization The WGLS module minimises the noise injected by the
PGLS by running the Weighted post-processing for GLS (WGLS) algorithm, which
is an additional original approach. Specifically, the module detects the distortion,
using a procedure described in appendix VIII-D, and produces a mask me which is
one in the pixels where distortion has been detected and is zero elsewhere. Next,
the module computes a map by subtracting the PGLS distortion estimate from
the GLS map, but only in the pixels where distortion has been detected, thereby
avoiding the noise injection in the pixels with no distortion. Formally, by usingto
denote the elementwise multiplication of two vectors, the WGLS map is given by
mw = mg − e � me. The module saves the WGLS image mw, which is the final
Unimap map, and the mask me.

4.2.5 Performance evaluation

To evaluate the performance, we developed a simulator. In order to account for
the continuous nature of the sky, we produce a synthetic but realistic sky image,
having a higher resolution than the map to be formed, i.e. a lower pixel size (one
fourth). Next, using the pointing information of a true Herschel observation, we
sample the synthetic sky to produce the signal vector s. Then, a realistic example
of the Herschel disturbances is obtained by picking a true TOD, denoted by w,
produced by observing a sky area free of emission13. Finally, the simulated TOD
is constructed by adding the signal and the disturbances, as d = s+ gw, where g is
a gain factor that is used to set the Signal to Disturbance Ratio (SDR), defined as
SDR = var(s)/[g2var(w)]. Moreover, following [23], we produce a target map mt as
the naive map obtained by projecting the signal vector, i.e. as mt = (P TP )−1PT s.
Given the setup just described, we feed the simulated TOD to Unimap and produce
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the output maps. To evaluate the quality of, say, the GLS map mg, we compute
the Image to Error Ratio (IER) that is the ratio of the target image variance to the
error variance, i.e. IER = var(mt)/var(mg −mt). The IER is computed similarly
for the other maps. The PGLS is inferior, indicating that it introduces background
noise. However the WGLS is capable of removing the noise and attains the same
IER of GLS. The naive map is plagued by the correlated noise and is the worst one.
When the SDR is increased, all the maps get closer to the target. However, the
GLS performance saturates at some point, due to the distortion. At this point, the
PGLS yields a higher IER, indicating that it successfully removes the distortion.
Moreover, the WGLS attains a further IER increase and yields the best map. At
high SDR the WGLS and PGLS performance is the same, indicating that the noise
injected by the PGLS is negligible. At very high SDR, even the naive map becomes
a good choice. We conclude that the WGLS map is the best one across the whole
range of SDR, but at high or low SDR other maps can have a comparable quality.
For a deeper performance analysis the reader is referred to [13]. Obviously, for true
data the IER cannot be computed and we need to evaluate the map quality by
other means. To this end note that we can write the value of a generic pixel as
v = s+ e where s is the target value and e is a Random Variable (RV) representing
the error. Then, a useful performance figure is the variance of e, denoted by θ2e.
The error variance can be estimated from the Unimap outputs as discussed below.
Consider the naive map and denote by v1,...,vK the readouts falling into a generic
pixel. These can be written as vi = s+ ei where s is the target value and ei is a RV
representing the disturbances. Since the pixel value is v = mea(v1, . . . , vK) = s+ e,
by assuming that the RVs ei are uncorrelated and have the same variance, denoted
by s2, we have se = s/vK . Then, se can be approximately computed, since an
estimate of s is given by the noise map ms and K is given by the coverage map mc.
For the other maps the error variance is more difficult to estimate. An expression
exists for the GLS map, e.g. [8], but it is mainly of theoretical interest, since it
does not account for the distortion. However, at least for the WGLS map, we can
assume that the error variance of the naive map is an upper bound. In fact the naive
map is plagued by the correlated noise which is instead absent in the WGLS map.
Indeed we studied the error by means of simulations, confirming the validity of this
assumption. The results also indicate that the error is not Gaussian. However, a
deeper discussion of the error distribution is out of the scope of this paper.

4.3 The Unimap simulator

The Unimap software is more optimized by every single version. At the moment
of writing this thesis the last official version is 5. Thanks to the modular struc-
ture of Unimap these optimizations can be applied independently, one by one or
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together which is a great help for checking changes and their effects, but still there
is a problem. While the real image and the noise characteristics and amount are
unknown the effects are unknown based on noise behaviors. The need for studying
the changes based on the behaviors of different noises affecting the signals made us
to develop a simulator for this software. The goal for this simulator is to make an
input data for Unimap which has known noise amount and the same characteristics
of the real noise affecting the images. Using this simulator we can study the effects
of new changes on different amount of noises.

4.3.1 Simulator specifications

This Simulator is developed with several specifications, we have listed some of
them here:

� Input parameter file:This simulator function doesńıt have any direct parameter
input and read all of them from an external file. This feature makes it possible
to produce a compiled version of software which can be run in Linux.

� The results: The simulator produce the results in the same directory of the
input data, so , using a batch file, it is possible to run several simulations in
serial without any conflicts and no need to move the results files.

� Noise control: The amount of every single noise type can be tuned independent
of each other and even turned off. This will help us studying the effect of
different types of noises independent, one by one or all together.

� In house sub functions: There are required sub functions in simulator which
are available in Matlab itself, but for more control on these functions they
have been developed in simulator itself from scratch. Easier bug detection and
faster functions are other goals of this approach. As an example we can name
upsampling function. This function is done using FFT which will be explained
in details in upcoming chapters.

One of the main strategies in studying the features of a software in noise reduction
applications is to freeze all other noises and change one single variable and then study
the output. While this is already a well known and standard method, we need even
a more professional tool to study the behaviors of this software. With respect to all
theoretical and scientific methods, this software is a practical tool which is based on
signal processing methods.

4.3.2 Simulator inputs

The simulator is reading its parameter input from a file available in the same
directory of simulator function itself. These parameters are divided in different
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categories: Input data and true sky:

� data path: The Simulator will read a char variable from this line, this variable
refers to the data path where the simulator will read the reference image.

� sim sky: A char type variable which will show the image name which is going
to be used by Simulator.

� sim pix size: The pixel size of the image which is going to be used by simulator.
This is available in meta data of the image itself but due to some tests we
needed a tunable pixel size.

� sim up rate: As a part of simulator there is an upsamling function which is
increasing the resolution of the data, this will help us studying the effect of
noise reductions in high and low resolution images.

� sim PSF: There is PSF function built in the simulator, the size of PSF filter
is decided by this parameter which is in arcsecond.

� sim frame: Because of the upsampling, there is a border effect around the
image. This can be reduced by adding an extra border around the mage
which smoothly goes to zero.

4.3.3 Simulator paramters

As we have mentioned before, The Simulator reads the parameters from a TXT
file, now we will check these parameters:

� Data reduction parameters sim sample subs: Due to our needs and the size
of data, there might be the need to reduce the processing time, this factor will
read the parametrs one in every several, so the data size is reduced and in result
the processing time. sim bolo subs: This factor has the same functionality of
sim sample sub on the bolometer data. sim reset flag: This will reset the flags
to the initial values, otherwise it will use the latest flags available for processing
the image

� RPE parameter sim RPE: One of the noises added by Simulator is RPE.
This noise can be controlled by this variable, sim RPE is shift in samples and
can have a value between -10 to 10. 10 is actually an exaggerated value since
the practical numbers won’t be even bigger than 1

� real noise parameters sim noise path: This is chat variable which will show
the path for the real noise. The real noise will be loaded and added to the
image based on the sim rnoi SNR sim rnoi SNR: The SNR related to real
noise, There will be no real noise if this variable is assigned to ‘inf’
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� simulator drift parameters sim drift coe: Another noise which can be
added using this simulator is drift. This parameter is common drift coeffi-
cients. sim drift deep: deepness of variation for uncorrelate drift, this variable
is in percentage. sim SDR: Signal to drift Ratio, using this variable we can
control the amount of drift added to the data.

� simulated noise sim fknee: This is an artificial noise to be added to data, this
variable is the simulated noise frequency knee sim nexp: variable for control-
ling the noise exponential factor sim SNR: Signal to Noise Ratio of simulated
noise. Using this factor we can control the amount of noise added to data, if
this is set to inf, the noise will not be added.

4.3.4 Simulator outputs

Simulator saves a file with the name unimap obsid sim which is .mat file and
contains the information of a new image. This file can be passed to Unimap for
reduction and while all the information about the noises are known, it can be a
great test for efficiency of new modules in Unimap. Moreover than the main output
file, the Simulator also saves the Matlab log file, and simulator parameters file for
later uses.

4.3.5 How does it work

The Simulator starts with reading the parameters from the parameter file. It
immediately saves the parameter file in the directory of reduction. As mentioned
before, having a copy of the parameter files helps to remember the simulation vari-
ables.Thanks to the parameter file we can find out the amount of different noises and
all changes which the simulator has done to the image. The procedure of processing
starts with widening the image. This act is done to get over the border effects which
will be seen in borders of images after upsampling . The image size is increased re-
gards to the input method “sim frame” which is provided in the parameter file. In
our real time tests it has been fixed at 10 but totally depends on the image size.
The widening segment adds rows and columns to the beginning and end of image
with value on one. This help smoothing the image at the borders so we won’t see
any artifacts at the borders of the image. Then we start the upsampling procedure
which is developed specifically for this simulator. The upsampling is working based
on FFT. The inputs of this function are the image itself and the up sampling rate.
The output will be an image with the size of the original image multiply by the up
sampling factor to the power two.

The up sample function produce a matrix with the same size of output ma-
trix,which is n times bigger than original image, with all elements equal to one,
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then it inserts the real pixels in to the new matrix as there will be “n” new pixels
between every real pixels. Now comparing the fourier transform of these two images
shows us the fact that they are different in frequency range and high frequency. Re-
gards to these result we understand that the high frequencies are the changes from
real data and zeros in the up sampled image, so by removing the high frequencies
and then transfer the signal back, we will have the original image with smooth tran-
sition from any pixel to the next. At the end it increase the power of the result to
match the input power. Here are an example of the results for the famous picture
”lena” which is cropped to show the difference better. We have to mention that
for using a jpg file we have modified the function a little bit because the original
function just accepts the fits file

Figure 4.2: The original image (256*256pixel) on the left vs the 5 times upsampled image on the right

Next we have the “taper” function. This function is removing the NaN elements
from image and also normalizing the image over the segment which is real.

After the taper, it apply a PSF. This PSF is removing some artifacts due to up
sampling function. Obviously it is applied only if the up sampling function is active.

The next step in Simulator is to load the real noise and save it in a parameter
for further steps. The real noise is captured by the satellite itself. This real noise is
captured using the real sensors but with closed lenses, so in no light situation and
the result is zero data and just noise.

Then the observation process starts. It starts with checking all the files in
the loaded directory from parameters. It loads all the files with specific name
“unimap obsid ****.fits”. After some basic calculations it calls the sim obs function
which is the main function of this simulator. We will discuss this function later in
this chapter. After using this function the results are ready and the Simulator just
save the results in the same directory which it has read the data from.

Sub function sim obsid After simple calculation like converting the pixel size
and checking if variables are in the correct range, This functions for the first step
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starts to add the RPE noise. In Unimap, the pointing information is obtained from a
true Herschel observation. In order to produce the simulated data vector, it perturb
the pointing information by shifting each sampling point along the scan direction, by
a fraction of the sampling spacing, which mimics the presence of a RPE in the data.
Here we have to shift back the each sampling point in the way that it reproduce the
RPE noise based on the parameter of the input file. The number is in arcsec and
can be between -10 to +10

After adding RPE, The simulator starts the projection. The raw data is in spher-
ical format and it should be projected to a flat plane surface. This is done thanks
to a function available in the library of Unimap named gnomonic projection. In the
next step we have to make the real image. Up to now we have been working on a
data which is not the image itself, it contains the information of pixels, and there are
two other matrix named u ra and u dec which contains the pointing information. In
other words the two matrix of u ra and u dec show us the real place of the informa-
tion in the matrix. So in this step, using these information, we shape the real image.
Then we calculate the signal power for using in the next steps. While the amount of
noise to be added is given in SNR, we need to know the signal power before adding
the noise. After this computation we start to add the real noise regards to the SNR
read from parameter file. The next step is adding the artificial noise. The noise is
produced by the function mk noise. This function produce the noise regards to it’s
input, the power of noise and the sim fknee which is the knee frequency introduced
for the noise. Actually it first produce a white noise regards to the size of image
and then it reduce the unwanted frequencies from it.

It then make the drift based on the drift parameter in the input file and then
There is only one step before developing the wanted parameters for the output and
closing function. If in the input file the subsampling is determined it’s going to
downsample the image. This is due to the huge data size of the images and reducing
the size for the tests. This part is actually helpful in the very beginning steps when
we need lots of tests and then optimizing the functions. When we are confident with
the code we go further for a complete data simulation. Now we are done with the
sim obs function which stands for simulation observation.

After using the observation function of simulator, everything is ready and we
form the output file using one of the function available in the Unimap software
called ‘fitswrite’

In the next chapter we are going to review the results of different noises and the
unimap noise reduction of these images. These results are developed using a real
data from Herschel satellite which we will go more in depth in the next chapter.
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Simulation results

In this chapter we are going to review the results of one real data source with
several variations of noises and check the output of the last stable version of Unimap
software. We have to declare that while we are using a stable version of the Unimap,
the results are pretty satisfying, so there won’t be any surprise when we check the
results in even bad situations. Let’s start with different variables in this simulations.

We are going to change the RPE noise. We have already discussed what the
RPE is. In this simulation we are going to test 7 different variable for the RPE .
First the zero amount which means no shift or no RPE noise. Then we will have
+0.3 , +0.7 and the extreme value of +1.2. Since the RPE can be a forward shift
or backward, we are going to test the exact same values backward as -0.3 , -0.7 and
-1.2.

The other variable that we have for this test is the the SNR . We have already
mentioned that we can add two different kinds of noises, the real noise and the
artificial noise. The real noise is the data captured by the satellite with closed
mirrors, so this is the most accurate noise that we can actually have and better than
any other noise created by computers. Since the results for positive SNR were too
much good, we prefer to continue the tests just for worse situations. We are going
to do our tests for SNR = 0 , -10 , -20 . So in total we have got 3 SNR level and
for each of them 4-8 levels of RPE . We have to remind that every single simulation
plus reduction of the data takes few hours of time which means we needed a day for
every single reduction. For having a complete and close to reality reduction results
we turned off the downsampling in the Simulator.

Before checking the results, we have to also consider that for the input we are
using the InputSNR, but for the output there is a different method to measure the
performance. This is due to the fact that the amount of noise where there was no
object in the sky is not important for us, so we take into the account just those parts
of the image which we have detected an object. This is done using another function
developed by us for measuring the performance of Unimap with known noise types

55



5 – Simulation results

and amounts.
The output SNR function: This function uses the morphology function and flag

morpho variable for detecting the “area of interest”. Based on input, we can decide
to calculate the SNR just in the area where an object was detected, or object and a
border around the object or the whole image. Respect to the point that we already
have the “true sky” or noiseless image, we can calculate the absolute noise:
err img = wgls − ref img Where the err imgis the absolute noise data, wgls

is the output of the last module of the Unimap software and the ref img is the
reference image which is the noiseless image. Then for calculating the SNR, we
have:
SNR sig wgls = SIG wgls sig ÷ ERR wgls sig
While the SNR sig wgls is the calculated SNR , the SIG wgls sig is the power

of the signal in area of interest and ERR wgls sig is the power of the noise in area
of interest. We recall that area of interest is where the software has detected an
object and a border around it.

Now we start to check the results: As we have mentioned before, we have got
different noises, in this thesis we are focused on two of them, RPE and the instru-
ments noise which we are going to address by SNR. After running a reduction over
a data received from Herschel, we will fix the amount of noise and run the simulator,
then the data is ready to test the Unimap. We will discuss for every single SNR
different simulations with different RPE . The data is called Hope38 red. Below
we have a picture of clean reduction results. Since the differences of simulations are
not clear in the image, we will keep checking the parameters.

SNR = 0db

As we know, the SNR = 0 db means that the power of our noise is equal to the
power of our image, now let’s see how the Unimap works under this condition. At
this SNR , the output SNR is listed below:

OutputSNR@RPE = 0 OutputSNR = 38.651

OutputSNR@RPE = +0.3 OutputSNR = 29.256

OutputSNR@RPE = −0.3 OutputSNR = 29.313

OutputSNR@RPE = +0.7 OutputSNR = 22.236

OutputSNR@RPE = −0.7 OutputSNR = 22.389

OutputSNR@RPE = +1.2 OutputSNR = 17.430

OutputSNR@RPE = −1.2 OutputSNR = 17.635
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Figure 5.1: Hope-38 real data from Herschel satellite

As we can see from the results, Unimap was clearly able to remove the noise
from image. In this case the area of interest was where we have detected an object.
Another important point which we can see clearly from these numbers is that for
unimap the sign of the RPE is not important and it does the same job for positive
and negative values of RPE. For this reason we are going to continue just with the
positive values of the RPE as we know the results will be the same for negative
values.

SNR = −10db

We are going to test a very bad situation when we have got SNR = -10 db. As
we have mentioned before we are talking about the real noise and this is the closest
possible noisy image which can be produced for this kind of data. Here, we are
going to test 4 different RPE values and check how the software is able to remove
the noise in this situation.

57



5 – Simulation results

Figure 5.2: The output SNR change by different RPE at fixed Input SNR = 0

OutputSNR@RPE = 0 OutputSNR = 38.651

OutputSNR@RPE = +0.3 OutputSNR = 27.368

OutputSNR@RPE = +0.7 OutputSNR = 21.724

OutputSNR@RPE = +1.2 OutputSNR = 17.117

As we can see, again, while the results are pretty satisfying, but the effect of the
RPE is obvious. This was actually the first time that we have tested the same
signal with only one variable in Unimap software.

SNR = −20db

At this point we are going to test an extreme situation which probably we are never
going to face in the reality, but it’s definitely interesting for us to know how much
this software can push the limits and still get good images out of noisy situation.
Here are the results for these 4 reductions:

OutputSNR@RPE = 0 OutputSNR = 23.031

OutputSNR@RPE = +0.3 OutputSNR = 22.005

OutputSNR@RPE = +0.7 OutputSNR = 19.155

OutputSNR@RPE = +1.2 OutputSNR = 16.083
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Figure 5.3: The output SNR change by different RPE at fixed Input SNR = -10

Figure 5.4: The output SNR change by different RPE at fixed Input SNR = -20

The results were really surprising. Considering we have tested the software with
−20db noise and still responding well, make us pretty confident that we have got a
good margin for practical usages of this software. We can also check the same result
in another point of view. Now, instead of checking the results for a fixed SNR and
looking at the RPE as the variable noise, we are going to do the exact opposite.
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We will fix the RPE and look at the SNR as the variables.
RPE = 0 We have got 3 different SNR values, let’s check the results:

OutputSNR@inputSNR = 0db OutputSNR = 38.651

OutputSNR@inputSNR = −10db OutputSNR = 38.651

OutputSNR@inputSNR = −20db OutputSNR = 23.031

As the results, We can see that at low noises while not having the RPE noise, the
software is working pretty well and actually can remove the low to medium noise
levels pretty well. Now let’s see how it behave at the presence of RPE. RPE = 0.3
Now we have added a low amount of RPE to check the software

OutputSNR@inputSNR = 0db OutputSNR = 29.256

OutputSNR@inputSNR = −10db OutputSNR = 27.368

OutputSNR@inputSNR = −20db OutputSNR = 22.005

As we can see, now the presence of RPE is affecting the behavior of software, but
still negligible. Let’s check the results with more RPE
RPE = 0.7
The 0.7 RPE is actually a practical amount of noise for Herschel, let’s check the

behaviors of Unimap.

OutputSNR@inputSNR = 0db OutputSNR = 22.236

OutputSNR@inputSNR = −10db OutputSNR = 21.724

OutputSNR@inputSNR = −20db OutputSNR = 19.155

The same situation is repeated here, we see the behavior is changed based on the
higher RPE. Now let’s check an extreme value for RPE
RPE = 1.2
The value 1.2 is a number which we might not see never in the results of the

Herschel satellite, but let’s have a look at the results.

OutputSNR@inputSNR = 0db OutputSNR = 17.430

OutputSNR@inputSNR = −10db OutputSNR = 17.117

OutputSNR@inputSNR = −20db OutputSNR = 16.083

As we can see, at this level the software performs much worse and it’s obvious
for us the reason. The RPE noise is affecting heavily even for the low amount of
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noises. At this point, we have found out that any improvements in RPE module,
will probably improve the output SNR, even for noises which have an independent
noise source.
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Chapter 6

Summary

In this thesis we started with a long introduction about astronomy image process-
ing and then after reviewing the specifications of Unimap software we introduced
the Unimap Simulator. This Simulator has become an essential part of this software
since 2 years ago. This is both on academic and practical point of view. As the
practical point of view now we can have a deeper, faster and more complete test on
new modules. Not only we can check of the module is more optimized than before,
but also we can track any effects on the other modules. As an example we saw that
the RPE noise is affecting the other modules too and any improvements to any
module can affect all parts of the software and also on the contrary, a small change
in module A can affect the performance of module B. The same story is true about
academic point of view. While there have been academic articles about the modules
and theories which have been used in this software, they have been always tested
with real data or very limited artificial data which were not close to practice, but
since two years ago the results which have been prepared for the article were pretty
solid. The results could show the behavior of the new improvements not only for
the raw data captured by the satellite, but also for a range of different noise levels
and noise types. Thanks to the measuring instrument which we have introduced
during the development of the Unimap Simulator, there can be a very detailed and
precise comparison between the new and old version of the modules and instrument.
As an example, in two different IEEE articles. As an example in the article “Least
Squares Image Estimation for Large Data in the Presence of Noise and Irregular
Sampling” which was published in “IEEE TRANSACTIONS ON IMAGE PRO-
CESSING, VOL. 26, NO. 11, NOVEMBER 2017”, the simulated data is produced
by Unimap Simulator. In section B “Simulated data” of this article we have:

“We also realized tests using simulated data. The simulator is based on a synthetic
but realistic sky image, which is used as the truth. In order to simulate the continu-
ous nature of the sky, this synthetic image has a higher resolution than the estimate
to be produced, i.e. a lower pixel size. The pointing information is obtained from a
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true PACS observation. In order to produce the simulated data vector, we sample
the synthetic sky according to the pointing information, to obtain the signal vector
s. Next, a synthetic noise vector w is produced by filtering pseudo-random white
Gaussian noise with a filter having frequency response

√
S(f). Finally, the simu-

lated data vector is constructed by adding the signal and the noise, as d = s+ ηw ,
where η is a gain factor that is used to set the Signal to Noise Ratio (SNR), which
is defined as the ratio of the arithmetic variance of the signal and noise vectors, i.e.
SNR = var(s) ÷ [η2var(w)]. Using the simulator, we implemented several tests,
varying the sky and the pointing information. In the following we present an ex-
ample, based on an observation of the Alphaboo star in the red band. The SNR
is set to 0 dB. To give an idea of the simulated data, the arithmetic mean image,
mA, and the HLS estimate are shown in figure 7. In the test, we produced 50 in-
stances of simulated data, each having a different noise realization, and computed
the estimates. . . .”

All these simulated data and features have been developed as a part of this thesis.
As another example we have the article “Least Squares Time-Series Synchronization
in Image Acquisition Systems” published on “IEEE TRANSACTIONS ON IMAGE
PROCESSING, VOL. 25, NO. 9, SEPTEMBER 2016”. In section results of this
paper we have:

“The estimation methods introduced in the paper were integrated into the Unimap
software , as a pre-processing step, preceding the GLS estimation. Moreover, in
order to evaluate the performance, we developed a simple simulator of the PACS
instrument. The simulator is based on a synthetic but realistic sky image, which
is used as the truth. In order to simulate the continuous nature of the sky, this
synthetic image has a higher resolution than the estimate to be produced, i.e. a lower
pixel size. The pointing information is obtained from a true Herschel observation. In
order to produce the simulated data vector, we perturb the pointing information by
shifting each sampling point along the scan direction, by a fraction of the sampling
spacing, which mimics the presence of a RPE in the data. Then, using the perturbed
pointing information, we sample the synthetic sky to produce the shifted signal
vector Rs” As we have seen, not only the reduction results of the paper has been
really useful for the developers of this software, but also the Unimap Simulator has
remained as a helpful tool for them. This Unimap Simulator software has become a
companion for the Unimap for the rest of its journey towards helping astronomers
understanding our world better and deeper.
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