
POLITECNICO DI TORINO

Master Degree course in Communications and Computer Networks Engineering

Master Degree Thesis

The Evolution of Network Automation
on Internet eXchange Point (IXP) by

Software-Based Solutions

Supervisors
Prof. Paolo Giachone
Eng. Christian Racca

Candidate
Hossein RASI

December 2018

Acknowledgements

I would like to express my deep gratitude to Professor Paolo Giaccone, my research
supervisor, for his patient, guidance, and useful evaluations of this master thesis.

I would like to express my very great appreciation to Christian Racca for his con-
structive professional advice during the planning and development of this thesis. I very
much appreciate his enthusiasm to give his time so generously.

I am particularly grateful for the technical assistance given by Nicola Occelli and
Andrea Beccaris from TOP-IX for providing me with facilities necessary to do my master
thesis in TOP-IX.

I would like to offer my special thanks to Professor Marco Mellia who helped me to
start this thesis and introduced me with TOP-IX consortium.

Many thanks to Politecnico di Torino for giving me the opportunity and also pro-
viding me the proper situation to do the master degree. I would like to thanks TOP-IX
consortium that provides the requirements to create a testbed and networking equipment.

This journey would not have been possible without my loving parents and siblings,
and their encouragement to follow my aspirations. I am thankful to them, for supporting
me emotionally and financially. And to my lovely girlfriend, Nooshin, thank you for your
warm support during this period.

3

Abstract

Network automation is a constructive solution that provides better consistency and effi-
ciency in terms of IT-based operations which are repetitive and time-consuming. It also
fulfills specific demands such as the interconnection with software tools or Web systems
and supports network administrators in their daily jobs, that is getting more complex
due to the diverseness of the devices and fast-evolving technology.

Internet eXchange Point (IXP) is a neutral point that connects multiple elements of
today’s Internet connectivity to one another. The thesis describes different applications
of network automation in IXP and its advantages. A collaboration with TOP-IX (Torino
Piedmont IXP, based in the north-west of Italy) provided a real testbed based on real
networking devices and software tools.

Private Peering is one of the pioneer services which is offered by TOP-IX and has
been automated by using a free open source automation tool named Netmiko (based on
Python) and a web UI to obtain the required information of the switches. To date, the
configuration steps were entirely manual which could take various configuration interval
and might be influenced by the probable errors. While in the current work the automation
process uses a multithreading approach that gives a much faster result and facilitates
visualizing errors in the Web UI.

As an alternative approach, Private Peering has been implemented in a Software De-
fined Network (SDN) environment where the physical topology was created by Mininet
and used ONOS as the SDN controller. An ONOS application which is called Virtual
Private Lan Service (VPLS) has been used to VLAN provisioning into devices and sup-
ports the interconnection of multiple nodes in a single bridge Layer-2 broadcast domain
over an OpenFlow network.

Finally, the last performing task was focused on automating the configuration pro-
cedure when a new client wants to join to an Internet eXchange Point through a Route
server (BIRD is currently the open source routing daemon used in TOP-IX). The solution
has been implemented using the framework Flask and JavaScript language to create a web
UI and updates the TOP-IX BIRD configuration scripts to avoid IP address duplication.

Keywords: Network Automation, IXP, Private Peering, VLAN, Netmiko, BIRD,
SDN, ONOS, Mininet, VPLS, Intent

List of Codes

3.1 Authentication infromation based on JSON file 28

3.2 CheckVtpServer Function . 30

3.3 Python function to check interface condition 32

3.4 SubmitJson function writen by ajax in JavaScript 35

3.5 Creation of OpenFlow router in Mininet 40

2

Contents

List of Figures 6

1 Introduction 9

1.1 Networking technologies and evolutions 9

1.1.1 Network automation . 9

1.1.2 Machine learning and networking 10

1.1.3 SDN . 11

1.2 Internet peering and IXP model and TOP-IX 12

1.2.1 Internet peering . 12

1.2.2 Internet Exchange Point . 13

1.2.3 TOP-IX . 16

2 Problem architecture and modeling 19

2.1 Identifying and analyzing the needs in TOP-IX 19

2.1.1 Private Peering . 19

3

2.1.2 Updating BIRD routing daemon 20

2.1.3 Private Peering by SDN . 21

2.2 From problem setting to project definition 24

3 Implementation and analysis 25

3.1 Private Peering . 25

3.1.1 BackEnd . 25

3.1.2 FrontEnd . 33

3.2 Private peering by SDN . 38

3.2.1 Benchmark . 44

3.3 BIRD automation . 46

3.3.1 Backend . 46

3.3.2 Frontend . 47

4 Conclusions 53

4.1 The issues raised during the implementation 54

4.2 Importance of Network Automation for IXPs 55

4.3 Future directions . 56

Bibliography 57

Appendices 59

.1 VTP server configuration step . 61

4

.2 Custom topology creation script in Mininet 62

5

List of Figures

1.1 The typical workflow . 11

1.2 Distribution of the IXPs (data from PCH) 14

1.3 TOP-IX infrastructure . 18

2.1 VPLS components . 22

2.2 Intent State Machine . 23

3.1 Private Peering Topology . 26

3.2 Initial style of the web form . 34

3.3 Scheme of the Web template before starting the configuration 37

3.4 Private Peering Error list . 37

3.5 Private Peering authentication failure schema in the CLI terminal 38

3.6 Private Peering authentication failure schema in the web interface 39

3.7 ONOS Web GUI . 41

3.8 The instruction of installed intents from ONOS CLI 43

3.9 Default ONOS dump flows before activating VPLS 44

3.10 ONOS dump flows after activating VPLS 44

6

3.11 ONOS dump flows after sending a Unicast IP traffic (Ping) 45

3.12 Structure of TOP-IX client file . 48

3.13 Scheme of the web UI for updating BIRD 49

3.14 Output in CLI for the BIRD configuration 51

3.15 Output in Web UI for the BIRD configuration 51

3.16 Updated version of client YAML file . 52

7

8

Chapter 1

Introduction

1.1 Networking technologies and evolutions

1.1.1 Network automation

Network automation is the processes to automatize the management, configuration, mon-
itoring, testing and deployment of networking devices. It not only saves the configuration
time of the networking devices but also improves the capability of network maintenance
by means of operations that are more understandable and implementable at large scales.
Automation can be performed in both physical and virtual networking devices within a
network and also on repetitive tasks.

The automation tools can be planned as a higher layer of abstraction that expands the
functionality that can be offered by the networking devices. A high-level programming
language can create a protected condition for developing programs. Simultaneously, it can
also help the more experienced developers by implementing best practices that improve
the reliability of the work. The idea of an autonomous network can rely on automation,
programming and in many cases machine learning with an indicative plan.

Additionally, the network automation can retain the network in the state that ap-
pointed to follow with the organization’s strategies. It can produce reports on the state
of the network situation or modifications that might happen and dynamically remediates
any unintended changes in the network. So as a result, IT automation can prevent spend-
ing most of the time to configure and monitor the devices by deploying the applications
and so let the business to move ahead. For instance, based on the works done in [31] that
have been deployed in Alibaba’s global scale WAN using Netcraft [1] which shows 95%

9

1 – Introduction

reduction in the network incidents caused by configurations and 93% decline in average
processing time for network updates.

Internet eXchange Point (IXP) is a term used to identify a network interconnected
point that connects networks, content and application providers. They are built to mini-
mize the ISP’s network traffic transition that needs to go through the upstream providers.
IXPs are located at strategic points throughout countries which let hundreds of Au-
tonomous Systems (AS) to interconnect and agree on their traffic exchange. Latency
reduction, enhancing routing efficiency and bandwidth, providing fault tolerance and fast
data transition are the advantages of IXP. IXPs are one of the significant part of to-
day’s Internet connectivity also needs to use this automation. Firstly because, in IXPs
or generally in service providers, automation is an essential strategy to focus more on
network agility while controlling operational efficiency, limits, user satisfaction, and net-
work security. So there is the possibility to automate routines, complex tasks that may
be time-consuming, error-prone and repetitive in IXPs. There are plenty of open-source
DevOps automation tools like Netmiko [2], Ansible [3], and Napalm [4] which are used for
network automation purposes. The network automation features by means of software
based products improve business integrity, and network agility as well as gives a better
understanding about the network control.

1.1.2 Machine learning and networking

Machine learning has been developed from the struggles of a few computer engineers
searching whether computers could learn how to play games, and a field of statistics that
mostly overlooked computational problems. It is a set of algorithms that let the software
applications to be more precise while predicting results without being programmed. Those
algorithms get the input data and can predict the outcomes by statistically analyzing
them.

Nowadays, Machine Learning techniques play a significant role in different areas such
as speech recognition and computer vision. It is also a good solution for big data analytics.
The idea of Big Data is described in [34] as high volume, numerous velocity and a high
variety of data that need processing models to enable insight identification and enhanced
decision making. In a machine learning method, the more data you provide to the system,
the more it can learn from it and so it can return all of the evidence that you might need,
and that is why it works so well with big data. Computer networks can also use the benefit
of machine learning in different aspects. Building a sort of algorithms that can operate
as a model to determine and implement decision making is the main feature of Machine
learning that can be used in computer networking. In computer networks, the advantage
of using machine learning can be felt as it can help to make the network scheduling
much easier, aim the intrusion detection mechanisms and performance prediction by
classification and prediction methods [24]. It can also create the analytic models to deal

10

1.1 – Networking technologies and evolutions

with complex system behaviors such as throughput characteristics [24], load changing
pattern in Content Delivery Networks (CDN) [32] and Internet traffic classification [33].
The typical workflow of machine learning for networking based on the study in [36] and
can be demonstrated by Fig 1.1.

Figure 1.1. The typical workflow

Fig 1.1 shows the learning criterion in the networking field in different stages. These
steps are not independent but have internal relationships.

Deep learning also, as a technique for implementing machine learning strategies, has
investigated and implemented to provide solutions to improve the networking character-
istics. Generally, machine learning algorithms used to learn from data and make proper
future decisions and predictions. The output of the machine learning algorithms is usually
a numerical value. However, Deep learning interprets data features and their relationships
using "Neural Network" which can determine and make smart decisions by self-directed
algorithms as a sub-field of Machine learning. The output of the deep learning can be a
score, free text or an element. The latest work in [40] carries a broad review of preceding
efforts that done by applying deep learning technology in network associated areas.

1.1.3 SDN

Internet traffic and users are growing incredibly, where almost everything is connected
and there is accessibility from everywhere. Thereby, dealing with traditional IP net-
works becomes more complex and challenging to manipulate, from the configuration of
devices to maintaining and monitoring or even expanding it.The current networking tech-
nology is also vertically integrated, meaning that the control plane (network controller)
and data planes (traffic forwarders) are aggregated together so it reduces the network
compliance [28] and that is one of the main reasons for creating SDN which splits this

11

1 – Introduction

vertical integration and separates the network’s control logic from the forwarding devices
(routers/switches).

In SDN, network devices act as a simple packet forwarder, while the brain or the con-
trol logic is performed in the controller (control plane). This feature of SDN proposes the
advantages of a centralized system for network configuration, instead of the distributed
method [30]. SDN also introduces the capability of programming network to adjust net-
work flows. This behavior essentially focuses on protocols such as OpenFlow that helps
controller to cooperate with networking devices (switches and routers). So it encourages
the SDN network to be more dynamic to changing demands. This programmability also
will help to automatize network.

Based on studies in [35], the history of the works that had been done over the years
in the construction of programmable networking, divided into three stages. (1) active
networks (1900-2000) which introduced the programmable functions in the network. (2)
the separation of control and data plane (2001 - 2007) which allowed developing interfaces
between control and data plane. (3) the OpenFlow API and network operating systems
(2007-2010), described the first instances of the development of an open interface and the
practical ways to separate control and data plane. Software-Defined Wide-Area Network
(SDWAN) is also driven from Software Defined Network as an alternative technology.
It is an application that applies to Wide Area Network (WAN) connections to connect
enterprise networks. It might use a WAN connection between a central office and any
other branch offices or between data centers beyond a large geographical area. SD-WAN
technology separates traffic management from networking devices and applies them to in-
dividual applications to achieve enhanced performance, outstanding user experiences over
geographically scattered positions, and simplify the deployment of wide-area networks.

1.2 Internet peering and IXP model and TOP-IX

1.2.1 Internet peering

The benefit of Internet services from the consumer point of view is directly related to
the capability of connectivity between Internet Service Providers (ISP) and Autonomous
Systems (AS) based on the agreement to exchange the routes and traffic between each
other. There are two approaches to achieve this task. First one is transit, by which,
the big backbone providers offer connectivity to ISPs to carry their traffic all over the
Internet. The second strategy is peering agreement between two ISPs to deliver packets
that dedicated for the users on peer’s network using BGP (Border Gateway Protocol).
Peering can be implemented by creating sessions of mutual accessibility between the au-
tonomous systems connected to the Internet exchange infrastructure. There are two types

12

1.2 – Internet peering and IXP model and TOP-IX

of Internet peering, private and public. Public peering is efficient if the two operators
exchange a small amount of traffic and it can be implemented across a shared network
that created by the IXPs. In private peering, as the name suggests, a direct and private
connection is created between two providers for the purpose of interconnecting. However
in Public Peering, by means of Internet exchange points, the providers freely decide there
interconnection to other networks.

Furthermore, peering has several advantages, compared to transit since it consists of
a payment by customers to a transit provider as an entity to carry the traffic through the
global Internet. Firstly Cost-effectiveness compare to transit that needs payment to
other company for traffic transportation. Secondly, the Flexibility that by connecting
to an IXP, the consumers are no longer limited to one ISP so by broadening the network
connectivity, it settles up with a more robust and adaptable distributed solution. Thirdly,
the Performance, because peering increases efficiency and decreases redundancy and
consequently, improves network performance. As a result, peering reduces the latency
and increases the speed by letting the local traffic stays local, so the networks in the
middle will wipe out which may act as a possible point of failure.

1.2.2 Internet Exchange Point

The idea of Internet eXchange Points (IXP) comes back to the creation of Network
Access Points (NAPs) around 1994/95, which was an alternative plan to deliberately
settle the decommissioning and transitioning of the National Science Foundation Network
(NSFNET) backbone service to private industry [27]. IXPs are playing a vital role in
Internet infrastructure where the data providers and ISPs meet and exchange the traffic
between each other. It needs to state that researchers have understood that the Internet
topology is changed to a flattering shape than before due to the presence of IXPs-transit
paths which are neglecting the classic transit hierarchy [25]. As an approach, IXPs were
useful and responsible for a smooth transition from a largely consistent network that
started as an experiment to what characterized the modern Internet which comprised of
the different set of elements that interconnect with each other to exchange information or
services to end users or other customers [37]. The Fig 1.2 shows the worldwide distribution
of the Internet Exchange Points based on PCH.

There are a set of database publishers that facilitate information exchanging related
to peering. They also promote a better understanding of the current status of the Internet
ecosystem. PeeringDB, European Internet Exchange Association (Euro-IX) are the most
popular ones. PeeringDB, as a global database that intends to serve ISPs which wish to
participate in the IXP peering ecosystem. Furthermore, PeeringDB provides full informa-
tion about specific members and it is a default location for Internet peering database [5].
It is a database for peering and information associated to it. PeeringDB also allows the
members to see information about networks that might want to peer with, where and

13

1 – Introduction

Figure 1.2. Distribution of the IXPs (data from PCH)

how can peer with them. The Euro-IX groups almost 80 IXPs to improve and extend the
IXP community and aims the IXPs to recognize common ideas and it shares statics and
useful information to all IXP members. Its membership comprises the European IXPs,
which are operated as the common non-profit entities [6].

Moreover, some IXPs also considered new technologies such as Software Defined Ex-
changes (SDX) [26]. SDX makes the tasks, like time-of-day routing, dynamic traffic
engineering for peering policy agreement and route decision based on external inputs,
easier to plan and perform with excellent software control.

Based on works done in PCH [7], DE-CIX in Frankfurt is a world’s leading inter-
connection platform that transmits almost 6 (Tb/s) as the peak traffic and 4 (Tb/s) as
the average throughput. There are plenty of services that offered in DE-CIX such as
SDX, Metro Vlan, Direct Clou, GlobePeer and Blackholing [8]. The second top IXP that
located in the Netherlands is AMS-IX which established in the 1990s as a non-profit or-
ganization. The highest peak traffic is 5.664 (Tb/s) and is the first mobile peering points
worldwide. The additional services that currently proposed by AMS-IX are Mobile Data
Exchange (MDX), GPRS roaming exchange (GRX) and interconnection of IPX networks
(Inter-IPX) [9].

Automation in IXP

As it has been discussed before (1.1.1), network automation is an aim that is stimulated by
software defined networks and used programming languages for managing and monitoring

14

1.2 – Internet peering and IXP model and TOP-IX

of networking components. However, the benefits of network automation are same also
in IXPs as one of the main parts of todays Internet ecosystem. To specify the usage
of automation features in IXPs, we can first discuss the main services and core roles
of IXPs that have automatic behavior. To list them we can start with route collector
which is crucial for managing routes and is a diagnostic and metric tool in IXPs. A route
collector accepts most of the routes but advertises nothing. It is also an essential system in
looking-glasses service which provides routing information in the backbone infrastructure
level.

Border Gateway Protocol (BGP) as a unique and dynamic protocol, which is used
by ASs (autonomous systems) around the world to communicate with each other. It
is based on Exterior Gateway Protocol (EGP) which is working based on path vector
routing protocol. BGP makes decisions based on the policies that are created by the
network administrators and involvement agreement between ASs [23]. It is using standard
configuration to establish the neighbor routes that are also called BGP peers. At first,
BGP peering identified to minimize the management and operational overhead, so it
connects a large global Internet Service Providers (ISP) to a great set of providers.

Nowadays, as an approach to BGP peering between ASs, BGP route servers became
required for IXPs infrastructure from medium to large scale. They have all the features
of the route collectors but also advertise routes to associating IXP members according
to their routing policies. They are critical elements in the IXP ecosystem to offer an
innovative peering solution to the members and form an open accessibility to a signifi-
cant proportion of the Internet routes. Route servers do not route any traffic but only
redistribute routes (originating from BGP protocol) between IXP members. So, an in-
dividual BGP session can make available all the announcements that created by all the
ASs connected to the route server. The prefixes that are advertised by route servers in
IXPs are covering 80-95 percent of today’s traffic which also involved most of the pop-
ular destinations in today’s Internet ecosystem [39]. The interaction between individual
members of the route server and the others can occur through BGP communities. BGP
community as a particular BGP property, allows a network operator to advertise a group
of destinations in a single entity. They are basically labels that can be attached to BGP
routes. There is also the possibility by the route reflectors to re-advertise iBGP-learned
routes to other peers once the best path is selected or even block all paths for a partic-
ular prefix and not advertise it to other peers [29]. The most recognized route daemons
that are currently used in IXPs are open-source networking applications amongst which
BIRD, Quagga, and ExaBGP are more commonly used.

BIRD project relaunched in 2008 [10] (initial project published in 1999). It is an
open-source daemon that was developed by CZ.NIC labs and nowadays most of the IXP
communities are supporting it. It is competent to operate with multiple protocol instances
and several routing tables. Furthermore, it uses simple, readable and structured-based
configuration files. In case of modification or updating in the configuration file or in client
list, it automatically reconfigures and applies necessary changes without any interruption

15

1 – Introduction

in other routing protocol sessions. It supports IP version 4 and version 6. It has a
programmable route filter that can be implemented by scripting mechanisms which allow
a highly effective expressive ability. It fundamentally uses the Linux operating system and
kernel as a software router and data plane, so BIRD is operated as the control plane [38].

Furthermore, in today’s Internet network, IXPs are acting as a fundamental element
of traffic exchange, so it is of great importance to guarantee the reliable and effective
operation in its network infrastructure. Currently, IXPs by software-based monitoring
tools can monitor and analyze the traffic patterns. Monitoring and alerting software can
analyze performance in real-time and by that, if any malfunction happens or any issue
detected, it can be alerted immediately in many ways like email or SMS to the network
administrators. There are other advantages of using monitoring tools such as optimizing
network performance and availability, eliminating the requirements for manually control-
ling the availability of the resources.

1.2.3 TOP-IX

History

The idea of building an Internet eXchange Point in Piedmont region which takes place
in the north-west of Italy came out in April 2002. It leads to the creation of the TOP-IX
consortium which was established by a comprehensive innovation idea since the beginning.
At first, TOP-IX consortium conducted just in Torino, but as the Internet consolidated
itself as a powerful platform, then TOP-IX enlarged its connectivity to the Piedmont
region. In the beginning, TOP-IX consists of 12 connected networks and now more than
100 networks connected to it. In September 2009, TOP-IX was the first Italian IXP that
connected to Google as a hyper-scale network platform [11].

In addition to TOP-IX, there are other exchange points in Italy which are playing
a significant role in today’s Internet connectivity in Italy. For instance, Milan Internet
exchange (MIX-IT) [12] is one of the biggest IXPs in Italy that handles a huge traffic
exchange. It formed to improve the development of the Internet in Italy and to promote
the interconnection between ISPs. Pooling@MIX is a service that offers in MIX to facili-
tate the network connection and to address to the groups of operators located outside of
the Milan area. Internet exchange in Rome, Florance, Padova, and Palermo are also the
other critical points in today’s Italian Internet ecosystem.

16

1.2 – Internet peering and IXP model and TOP-IX

Services

TOP-IX as one of the critical elements in today’s Internet in Italy offers a set of inter-
connection services based on the distributed transmission infrastructure. The three main
services that can implement in TOP-IX are Peering, Transit, and Marketplace. Peering
is the function of the Internet exchange that allows creating bilateral or multilateral peer-
ing sessions. Transit, however, is an opportunity to establish a private point-to-point or
multi-point link for backhauling requirements. The marketplace as a dedicated service in
TOP-IX is an occasion to obtain services like IP transit, Cloud access, and Ethernet con-
nectivity to/from different consortium members. The marketplace is available on Layer
2 transit, among demanding individuals and requires an agreement between the two or
more than two members.

TOP-IX provides route server feature to facilitate the public peering service on its
infrastructure. As discussed in 1.2.2, these systems can automate peering operations
between members who use this service. There are two route servers activated in TOP-IX
that defined to work as Autonomous System number 25309. The details about the BGP
communities that can advertise to other members are available on RIPE website [13]. In
TOP-IX however, the use of route server stands at the preference of the members of the
consortium to freely choose to use this service.

An overview on platform

The Fig 1.3, shows the layer 2 infrastructure of the TOP-IX consortium. The infras-
tructure covers the centers in the Piedmont and Valle d’Aosta regions, as well as some
interconnection nodes in Milan. As it can see in Fig 1.3, one of the main characteristics
of the TOP-IX is to have a distributed platform. This architecture will help to guarantee
a high level of reliability and accessibility. The accessibility of specific features of the
TOP-IX consortium divided into four different nodes with various level of reliability and
administration. Core, Backbone, EDGE and Remote access are the access nodes with
different level of importance.

17

1 – Introduction

Figure 1.3. TOP-IX infrastructure

18

Chapter 2

Problem architecture and
modeling

2.1 Identifying and analyzing the needs in TOP-IX

2.1.1 Private Peering

As it is mentioned earlier in 1.2.1, peering is defined when the two separated networks are
interconnected and have the chance to exchange traffic between each other. However, it
needs to know that, network partners do not need the charge each other for the creation
of private peering.

Private peering, as one of the features of the peering strategies, can be implemented
by creating a direct connection within two networks. It is mainly adopted when the two
subnets require to send a big range of traffic between each other so, need to reduce the
cost per megabits of traffic. Generally, peering is a cost-effective solution that lets to
transmit the bandwidth at a lower price.

Additionally, a large number of IXPs throughout the world are offering the private
peering as one of the main services to all of their new (not connected to IXP network
yet) and the clients who want to produce a new private session between each other in
the different part of the regions. If customers need a private connection that transmits
their data reliably and much safer, private peering can be a good solution. It is also
beneficial when the network administrators want to monitor the data transition, likewise,
want to guaranty the network capability. Regularly, to create this service in IXPs re-
quires a connection to the layer 2 IXP fabric. Network fabric is an enterprise term that

19

2 – Problem architecture and modeling

illustrates a network topology in which network elements pass data to each other through
interconnecting devices. Each IXP member needs to connect to IXP peering fabric via a
router which has the IP address that submitted by IXP.

However, the main idea to create an automated mechanism for setting up the private
peering in IXPs is the time that needs to configure the devices as well as the time that
required for maintaining the switches and routers during the month. It is hard to estimate
the precise amount of time needed to create a private peering session but if considering
the average number of switches to build a private session to 10, and for each need at
least 5 minutes to connect and perform the essential configurations, so for performing
one private peering, it would approximately require 50 minutes. Also, it needs to take
into account that generally in big IXPs with a large number of peering requests, as the
number of requests increases, the time that needs to set up the sessions will be significant.
Although, in TOP-IX, the average number of private peering requests are 2 or 3 peers
per month.

There are several network automation tools like open source libraries or paid support
version software. Open source mechanisms provide much more elasticity and flexibility
into various approaches. However, they need network automation knowledge and also
programming skills, especially Python. Python is a programming language that is com-
petent to write and work with a lot of tools. It developed in the early 1990s as the
general confidence scripting language to increase readability and performance. It closely
resembles the English language that let the users use the words like ’not’ and ’in’ inside
the scripts and by that makes the code more readable.

One of the modules for network automation which work as a Python library is Net-
miko. It simplified Secure Socket Shell (SSH) connection and network management of the
devices based on the Paramiko SSH library. SSH is a network protocol that provides a
secure environment and connection to a remote device. Netmiko successfully establishes
an SSH connection to connect to the devices. Netmiko is a multi-vendor Python library
that simplifies connections toward a broad range of network vendors and platforms. It
also interpreted the execution of configuration commands for various vendors. In TOP-IX
also, Netmiko can be a good choice because the majority of devices are based on Cisco
solutions. Netmiko is supporting a set of Cisco platforms such as Cisco IOS, IOS-XE,
ASA, NX-OS, IOS-XR, and WLC. It is worth mentioning that it is also compatible with
other vendors like Arista, HP, Juniper, and Huawei [2].

2.1.2 Updating BIRD routing daemon

Internet eXchange Points (IXPs) provide IP data interconnection capabilities for their
associates, by using distributed Layer 2 networking communication links like Ethernet
or Fiber optics. The Border Gateway Protocol (BGP) [41], an inter-autonomous system

20

2.1 – Identifying and analyzing the needs in TOP-IX

routing protocol, is adapted to aid the exchange of network reachability information across
such media. However, the IXPs delivers new difficulties to interconnecting networks such
as the expenses related to the interconnection system that induces serious operational
and organizational scaling problems for IXP partners.

Route server or routing daemon is a process that settles routing data from border
routers and spreads this information to dependent routers. Route servers can facilitate
and automate peering management operations between consortium members that are
wishing to use the services. They dynamically manage the routing table by interacting
with daemons on other autonomous systems to exchange routing information. BGP
sessions needs to be maintained to each of the peer’s routers.

As discussed before (1.2.2), BIRD is Linux based Internet routing daemon that is
responsible for controlling and managing forwarding tables. As an optional solution,
TOP-IX is offering BIRD to perform public peering on its infrastructure to its members.
By that, members that are using this service can automatically peer with each other.

The second task that requires to be automatized in TOP-IX is to create a method
to gather new information about the new peers that want to be attached to the route
server. Basically, in TOP-IX, there is a bash configuration script that runs every morning
(1 am). This script builds the main BIRD configuration file for both IPv4 and IPv6 by a
Python program which runs at the very first lines of the script. That program compiles
and builds the configuration file of the BIRD by using the information about peers and
all available announcements that made by connected autonomous systems (AS). There
are also two YAML files based on the IP versions (IPv4 and IPv6) which consist of the
critical information about the peers and clients that are using the route server. The task
is to create a web template to arrange the information about new peer that wants to be
added to the route server. As well as, running the main script and its subscripts after
verification of the IP address for the new client. This verification procedure will aim to
limit the mistakes that may happen by the network administrators.

2.1.3 Private Peering by SDN

The idea of "programmable network" has been introduced as a solution to aid network
progression. As a new networking criterion, Software Defined Networking (SDN) is work-
ing in a way that forwarding device is decoupled from the control decision. Additionally,
in SDN the network intelligence is centralized in software-based controllers. ONOS (open
network operating system) is the controller that had been used for this scenario [14].
It provides an open platform that interprets the creation of network applications and
services that can work over a broad range of hardware. It also gives high-level APIs for
managing, monitoring, and programming networking devices. Moreover, ONOS provides
a single-page web application (ONOS GUI) that proposes a visual interface to the ONOS

21

2 – Problem architecture and modeling

controller.

ONOS is a distributed system designed to work in a symmetric style where all the
clusters are software-wise identical. Multiple machines can work collectively as a cen-
tralized, consistent distributed system, configured as a cluster. In this work, we used a
single instance of the ONOS controller installed in a single machine. Moreover, ONOS
includes an application management system for maintaining networking applications in
a distributed manner. There are a set of default applications already installed in the
controller which could be utilized once activated from ONOS CLI or web GUI.

The ONOS application that could satisfy the requirements and is used in this scenario
is called Virtual Private LAN Service (VPLS) that provides multi-point broadcast layer-
2 paths among devices in an OpenFlow network [15]. VPLS permits operators to build
overlay networks on top of the OpenFlow infrastructure. As it discussed in [15], to
verify connectivity between the hosts, after activating the VPLS application, there need
at least two interfaces to be configured in the ONOS configuration interface property.
Those interfaces must be associated with the equivalent VPLS list, so the individual
hosts which linked in the same list can send/receive the packets labeled with the same or
even different VLAN IDs.

Figure 2.1. VPLS components

The Fig 2.1 shows the components that consisted in VPLS application. What is
important to mention here is that VPLS proceeds by transforming the VPLS progress to
the sets of intent operations in VPLS store delegate component. Generally, VPLS uses

22

2.1 – Identifying and analyzing the needs in TOP-IX

the intent framework to provision unicast and broadcast connectivity between the edge
node’s ports of the OpenFlow network. There are two main intent forms per object in
the VPLS list. First is for Broadcast traffic which is called single-point to the multi-point
intent and the other is for unicast traffic, called multi-point to single-point intent. The
features and the benefits of each intent will be discussed in 2.1.3.

The intent structure is a subsystem in ONOS that permits applications to define
policies rather than mechanisms for the network control. ONOS Intent framework is one
of the key Northbound abstractions. Northbound API permits the information to be
exchanged between the SDN controller and the services and applications running over
the OpenFlow network. The Fig 2.2 shows the intent state transition diagram for the
compilation structure of the intents. The orange states are transitional which need to
last only for a short period of time. The rest are parking states, where the states require
to wait and so will take some times to go out of this states. When an intent submitted by
an ONOS application, it will be sent asynchronously into the compiling phase and after
that to the installing, and finally, to the installed state. Alternatively, an application may
even withdraw an intent if it no longer wishes to hold it. The intents are compiled down
into a set of "FlowRule" objects. It is good to know that the compilation process may
include: (1) "IntentCompiler" which is the compilation of an Intent down into installable
intent(s) or by a (2) "IntentInstaller" which is the reformation of installable Intents into
FlowRuleBatchOperations including FlowRules.

Figure 2.2. Intent State Machine

23

2 – Problem architecture and modeling

2.2 From problem setting to project definition

The main tasks that must be solved in TOP-IX are described in 2.1. However, it took
some time to establish what is required at the first step to set up the project testbed. To
properly recognize the projects, it needs to define the purposes of each task. As the outline
recommends, having a web User template could be a great choice, firstly for the network
administrators to not deal with complex scripts. Secondly, it is a reliable way to connect
the errors that may occur while the backend script is running. The principal purpose of
the creation of a web user interface (web UI) is to prepare the required information by
the web forms and analyze and regenerate them in the way that can be understandable
for the backend program. As soon as the web form filled correctly, the script will start its
routines to automatize private peering creation or automatically configure the associated
BIRD routing daemon files and runs the related privileges to the BIRD.

After outlining the objects of each task, a test environment that consists of all the
components and features that might encounter is created. The first task needs two
routers that take place in each peer and configured based on the particular VLAN. In
the real scenario, TOP-IX submits two public IP addresses in the same subnet for both
of the routers. However, as two routers will usually place out of TOP-IX network, the
configuration of routers is beyond the scope of this thesis. In addition to routers, the
topology also needs a set of switches to work as the layer 2 TOP-IX network fabric.

For the second task (Bird daemon automation), we set up an HP Portland DL360 G5
server with Ubuntu and Bird installed into it. To cancel the confliction probability with
the main TOP-IX’s Bird daemons, the test server does not have access to the Internet.
We set the daemon to use the main TOP-IX’s configuration files. However, because of
simplification of the implementation of the main task, the BGP service configuration was
neglected.

However, for the last implementation scenario to create the private peering by using
the SDN, it was impossible to use the real networking devices. Cisco 3850 was the only
switch that supports the OpenFlow and was available on that period for this purpose
in TOP-IX. However, to be able to use this feature, it needs to install the Cisco plug-in
for OpenFlow agent logical switch. But due to different technical and business reasons,
installing the abovementioned plug-in was impossible. As a result, the physical topology
formed by using Mininet [16] which lets to create a realistic virtual network and running
OpenFlow switches and the SDN controller on a single machine. The SDN controller
that used for this purpose is called ONOS [14] that produces the open source network
operating system to build real software defined networks.

24

Chapter 3

Implementation and analysis

The main idea of this chapter is to focus on implementation part of this master thesis.
This chapter is divided into three sections and inside each section the solutions, tools and
approaches that had been used for each task is explained in detail.

3.1 Private Peering

This section is divided into two parts. The first part is going to focus mainly on the logic
of the system and to solve the problem by Netmiko. In the second part, however, the key
target is to create a web interface to collect the required information to implement Private
Peering, as well as showing the errors that might face while the scripts are running.

3.1.1 BackEnd

As it has been discussed in the previous chapter (2.1), to implement Private Peering,
it needs to construct a test environment that should be as close as possible to the real
scenario. To build up this environment, the expectation is to build a solution using
scripting techniques to configure the layer 2 Cisco switches. However, as it is mentioned
before in 2.1.1, in the real private peering scenario, there need also two routers that
should locate in the two sides of the connection and are responsible to transmit the
traffic between the two networks. In this scenario also we specify two Cisco routers. Fig
3.1 shows the network architecture designed to implement private peering in TOP-IX.

25

3 – Implementation and analysis

Figure 3.1. Private Peering Topology

As it can be seen in the Fig 3.1, there are three switches that are going to work as the
TOP-IX layer 2 fabric in the real scenario. The switches are all Cisco platform (Cisco
Catalyst 3750). The connection between switches at the physical layer was made by both
twisted pair (cat 5e) and fiber optic (SFP) cables.

The first step is to check whether the Cisco IOS version of the switches supports the
SSH functionality or not. We would need SSH connection because as it has been disused
in 2.1.1, Netmiko uses SSH session to connect to networking devices.

It needs to consider that some old IOS versions do not support the SSH connectivity.
So there might need to upgrade them into newer versions. After updating the Cisco
IOS’s, the next step would be to set up SSH client on CISCO IOS. The steps to configure
SSH client for Cisco swithces [17] are:

Step 1: Configure the host name command
hostname switch1

Step 2: Setting the DNS domain name
ip domain-name topix.com

Step 3: Generating SSH key
crypto key generate

26

3.1 – Private Peering

ip ssh time-out 60
ip ssh authentication-retries 2

Step 4: Enable SSH transport support for the virtual type terminal
line vty 0 4
transport input ssh

Cisco CLI (command-line interface) has different command modes with different ac-
cessibility that a user can work. The initial mode that a user can log in is called user
EXEC mode. This mode contains a limited set of commands with low accessibility. To
access to the full list of commands, user must enter to another mode which is called Priv-
ileged EXEC mode. To enter into this mode user needs to use "enable" Exec command
into the CLI. In privileged mode however, user does not have the access to configure
commands, so to use those commands there is another mode which called Global Config-
uration mode and to enter into this mode, "configure terminal" command can be used.
As the global configuration mode has almost full permission to configure a device and
its interfaces, it is highly recommended to specify a secret password, if an user wants to
enter in this mode. This will lead to add an additional level of security to Cisco devices
and limit accessibility to global mode.

Netmiko library consists of a set of modules to work with. "ConnectHandler" is
one of those modules that is responsible to create the SSH session. This factory function,
choose the accurate Netmiko class based on the device type. Basically the information
that are required to perform a SSH connection by ConnectHandler are: (1) IP address or
DNS host name of each switch. (2) Type of device that is going to connect to it (here all
of the switches are cisco-ios). (3) Username of the devices to log on with. (4) Password
of each device to enter into enable mode. (5) Secret password of the global mode.

There are also other important modules in Netmiko that must be used after creating
the SSH session. Enable(), to enter the device into the enable mode and disconnect()
to close the SSH session in a secure way. The other module that is used very often
is send_command(). It is responsible to execute a string of commands on the SSH
channel by a pattern-based mechanism. Typically, it is used for show commands and
will keep waiting to get the data until the network device prompt is detected. And the
last Netmiko module that needs to be mentioned here is send_config_set(). The main
functionality of this module is to send the configuration commands down to the open SSH
channel. By means of this module, multiple commands can be sent to the networking
devices. The commands can be separated simply by using comma between each other.
The configuration commands will be executed one after the other. After finishing the
execution of commands it will automatically exit and enter to the configuration mode. [18]
shows all the possible classes and modules that can be used in Netmiko.

The most efficient way to provide the required information items to ConnectHandler

27

3 – Implementation and analysis

module is to create a 1JavaScript Object Notation (JSON) database. JSON is used to
create lists and also dictionaries in JavaScript. It also allows to import and export objects
to text files. Reading and parsing data from JSON file is much easier for both human
and also for the machine. Also, in this scenario, a JSON file is created that contains the
information to create the SSH connection. Code 3.1 shows the structure of JSON file.

1 [
2 {
3 "ip": "192.168.2.10",
4 " username ":"topix",
5 " password ":"topix",
6 " secret ":"topix",
7 " device_type ": " cisco_ios ",
8 "host" : "FS -TO -NEW"
9 },

10
11 {
12 "ip": "192.168.2.20",
13 " username ":"topix",
14 " password ":"topix",
15 " secret ":"topix",
16 " device_type ": " cisco_ios ",
17 "host":" Switch 2"
18 },
19
20 {
21 "ip": "192.168.2.30",
22 " username ":"topix",
23 " password ":"topix",
24 " secret ":"topix",
25 " device_type ": " cisco_ios ",
26 "host": " Switch 3"
27 }
28]

Code 3.1. Authentication infromation based on JSON file

After creating the JSON file, it is required to import the JSON library into the
Python script and then to load the file into a Python list. However, this list is not
readable for the ConnectHandler module yet. To connect separately each device, a global
dictionary template has been created. This dictionary consists of the individual keys for

1 A language-independent text format that applies conventions that are familiar to programmers and
is easy for humans to read and write

28

3.1 – Private Peering

ConnectHandler. The values of each key inside the dictionary are get from the Python
list by a for loop.

Private Peering configuration requires the two network interfaces of each switch that
are connected to other switches or to routers. This information is gathered from the net-
work administrators and by means of a web interface which has been created by Javascript
and 1Flask module in Python. Web user interface (UI) creation will be discussed in 3.1.2.

Before starting to talk about the main configuration steps, it is of a great importance
to know about Cisco Vlanning mechanism. A VLAN (virtual LAN) is introduced when
a group of devices that located in the same or different LANs needs to be configured
to communicate with each other. It enables a group of devices from different networks
to work as a single logical network. However, it has the concept of logical grouping in
the same broadcast domain. The main benefit of using VLANs in a network is that the
number of broadcast domains can be incremented while its size remains fixed or even
decreases. Since the traffic from different VLANs may need to travel over the same
physical network, it is required to map the data to a particular network. This process is
done by using a VLAN protocol, such as IEEE 801.1Q, 3Com’s VLT, or Cisco ISL.

IEEE 802.1Q is an industry standard trunking encapsulation mechanism that is used
to keep customer VLAN integrity across a service provider network [19]. Most of the
modern VLANs use this protocol which adds an additional header or "tag" into each
Ethernet frame. Data is sent between switches by a physical link called "trunk" that
connects the network switches together. The trunking method is the switchport mode
that must be configured on all switch interface modules. A trunk is a communication link
planned to carry various signals simultaneously to provide a network connection between
two points. The other VLAN trunking standard available in Cisco industry is ISL. ISL
fully encapsulates the original Ethernet frame by appending a 26-byte header and a 4-
byte FCS trailer. It was created to work with Ethernet, ATM, Token Ring, and FDDI.
In this work we are using the IEEE 802.1Q, as the main trunking method to configure
networking devices.

VLAN Trunk Protocol (VTP) is a solution in Cisco networking devices that can be
introduced to reduce the administration time and difficulties in a switched network. By
adding a new VLAN Id into the VTP server, it will be distributed to the other switches
in the domain in a few seconds. This will significantly reduce the amount of time that
is required to add the individual VLAN in the relevant switches. In this scenario, as all
of the switches are in the Cisco platform so it is possible to use VTP server approach.
However, there are some steps to configure a switch to work as a VTP server. First,
setting a VTP domain name by using (set VTP domain name) and second, choosing
its mode that must set to a server mode by (set VTP mode [server | client |

1A microframework in Python based on Werkzeug, Jinja 2

29

3 – Implementation and analysis

transparent]). In this work, switch one with IP address (192.168.2.10) has been set to
work as the VTP server and so other switches will work as the VTP clients.

In my solution, the VLAN ID and VLAN name that the new Private Peering session
is going to work with, as well as the IP address of the VTP server, will be provided by
the web user interface that is going to discuss in 3.1.2. Appendix .1 shows the script that
has been written to add the new VLAN into VTP server by using Netmiko.

As it is illustrated by the script, after creating the SSH connection in the VTP server,
the configuration commands are going to send to the devices by using "send_config_set"
module. In many cases, it might happen that the chosen VTP server has been selected
wrongly or it is not in the server mode. For this reason, a function has been created that
can detect if the switch is currently in a VTP server mode or not. This function uses
the output result of "show vtp status" which is a Cisco standard show command and
then will parse into this output and can understand the situation of the selected switch.
This function which is called CheckVtpServer also is useful if an error happens during
VTP configuration and if so, it can show the error definition on the web platform and
so will let the administrators to realize the reason of the error in a very clear way.The
CheckVtpServer function is shown in Code 3.2.

First of all, it will create a Python list by using the "splitlines()" method with the
output string lines form the "show vtp status" command. Then in a loop, it will search
for the specific line which consists of the "operation" keyword which shows the mode of
the VTP in the individual switch and then will append that line into a new Python list
which is called interfaces. Then by setting a for loop into the new list and splitting each
word by Python "split()" method, the function will search for the keywords "Server" and
"Client" into the list and will get the current situation of the switch. It is good to know
that each switch can work in just one of the abovementioned (Server or Client) modes.
So, the main function will use this function to realize whether the specific switch is really
in the server mode or not.

1 def CheckVtpServer (z):
2 lines = z. splitlines ()
3 interfaces = []
4 for line in lines:
5 if " Operating " in line:
6 interfaces . append (line)
7 for line in interfaces :
8 words = line.split ()
9 if " Server " in words:

10 return " Server "
11 else:
12 return " Client "

Code 3.2. CheckVtpServer Function

30

3.1 – Private Peering

To improve the configuration time a multithreading approach based on Python pro-
gramming language is used. Primarily, before using multithreading technique, the script
took about four minutes to configure all of the devices. Regularly, the individual switch
requires about one minute for configuration and other switches must wait until the con-
figuration procedure of the current device finishes. As Kirk Byers, the producer of the
Netmiko specified, the principal policy of the Netmiko is reliability and security. The two
factors in Netmiko that inject delays during the configuration procedure, (1) delay_factor
and (2) global_delay_factor. Delay_factor is used as a multiplication factor for timing
delays. For instance, setting the delay_factor to two and using a "send_command()",
the amount of time that requires to wait for the response will be doubled. Second is
global_delay_factor that mainly is used to increase the delay for the whole configuration
process and not just the send_comand(). Occasionally, global_delay_factor used when
Netmiko wants to configure too slow devices. So by that, it can have adequate time for
the device responses. So as a result, multithreading solution improves the configuration
period from four minutes to less than two minutes, and this is because of the fact that
the configuration commands are going to send to the devices in parallel.

The thread’s arguments that need to be sent to the start routine function are the
authentication information of each device, the two interface or port Ids associated to
each switch, and the VLAN Id. For each device, it needs to create one thread which is
responsible for configuring the device or run any function that is inside the body of the
start routine function. The other related object that can cause issues in Cisco devices
and needs to find a solution is the current state of the switch interfaces that are going
to work in individual Private Peering configuration procedure. At first, It requires to
understand the configuration commands that need to use when attempting to configure
the interfaces based on proper configuration. The commands that applied respectively
for configuring switch interfaces and provision the VLAN configuration are:

1: Specifying the interface to configure and enters the interface configuration mode
switch(config)# interface id

2: Configuring trunk encapsulation as dot1q
switch(config-if)# switchport trunk encapsulation dot1q

3: Enabling trunking on the interface
switch(config-if)# switchport mode trunk

4: Setting the proper VLAN to work in trunking mode in this interface
switch(config-if)# switchport trunk allowed vlan VlanID
or

switch(config-if)# switchport trunk allowed vlan add VlanID

5: Setting spanning tree mode

31

3 – Implementation and analysis

switch(config-if)# spanning-tree mode ra

6: Enabling the spanning tree for VLAN id

switch(config-if)# spanning-tree vlan VlanId

As it can be seen in above commands, in step 4, the configuration procedure needs
initially to know whether any VLAN currently is set to the individual interface or not.The
first option is used when the interface does not consist of any VLAN configuration setup
or it is in the Cisco interface default configuration mode. But, the second command is
used when there are VLAN/VLANs, already configured to work in a specific switch port
and, it is also configured based on trunking mode. It needs to mention that a Cisco
switch interface can’t work in both trunk and access VLAN mode at the same time. So
to solve this issue, based on the abovementioned consideration, it needs to find a way to
configure interfaces dynamically. As a result, a function has been created to solve this
issue.

The function uses the "show runnig-config interface interfaceID" command, which
is a standard Cisco show command to display the current running configuration in a
specific switch interface. Then, the function will parse into the output of the show
command and so, based on the current situation of the switch port, the program will
make a dynamic decision and will choose the best approach. The function structure is
shown in Code 3.3.

1 def intCond (x):
2 word = []
3 inf = []
4 lines = x. splitlines ()
5 word = [t.split () for t in lines]
6 for i in word:
7 if ’switchport ’ in i and ’allowed ’ in i:
8 inf. append (i)
9 return inf

Code 3.3. Python function to check interface condition

First of all, the function creates a list of lines in the string and break them at the
boundaries and splits them at the line breaks. Then strings will be cut into a list where
each word is a list object by itself. The function will search for the keywords "switchport"
and "allowed" into the list of lines. If it can find the keywords which means that there
is at least one VLAN, provisioned to operate in this port, so the main function uses the
second method of previously discussed steps(step 4) to add the new VLAN. Otherwise, it
will use the first solution of step 4, as the interface configuration does not consists of any
VLAN, to configure the interface. After understanding which configuration command
must be used, Netmiko will start its main procedure to send the proper Cisco commands
toward switches.

32

3.1 – Private Peering

The last thing that needs to be mentioned here is the list of Python-based exceptions,
connected to the Netmiko, to purposefully manage the errors that might happen during
the code execution process. Generally, in Python, errors caused an exception or a syntax
error. Netmiko API consists of some predefined exceptions that can help to manage
devices properly. The Netmiko exceptions, used in this program are, (1) SSH connection
timeout and (2) SSH authentication failures. The first is used when the script takes too
long to send the tasks to the device while the SSH session is active. The second exception
mainly happens when the API tries to connect with wrong authentication information to
the networking devices.

3.1.2 FrontEnd

As discussed in 2.2, the procedure for the Private Peering implementation is divided into
two parts. By letting the complexity of the process to stay in the backend, frontend
development controls everything that is associated to what users can visually see first,
in a web interface. The web interface is created because, from client-side, it involves
everything that a user can encounter during the compilation process. It is also an efficient
way to observe the errors that may happen during the process in a more readable way
for both network administrators and the people with a low level of technical knowledge.

The tool that is used in the purpose of the web form creation is Flask [20]. Flask
is a web framework that consists of tools and libraries to help the users to build a web
application. It is in the category of micro-framework, which are the frameworks that have
no dependencies to external resources. The Flask dependencies are Werkzeug which is
WSGI and Jinja2. Werkzeug is a library in Python which uses for communicating with
the web server. Jinja2 is Flask’s template engine for Python which inspired from Django
system template but gives more useful tools to the user than Django. The Flask is used
because it is much more lightweight platform than Django and also it can be implemented
in a single Python file which made its administration easier than Django.

The web form implementation procedure divided into two sub-programs. First is the
core web controller which is based on Python and second is html file based on JavaScript.
The core controller is responsible for specifying the initial requirements of the Flask to
run the web form. The script in backend section which is proposed to configure devices
will compile or call in this program. Additionally, by using Werkzeug methods, it can
communicate with web template. The way to request the representation of the specific
resources is named "GET" and it only retrieves web template data from the URL. The
other method which is used to submit an object to particular resources is called "POST"
and it always generates a modification in states or side impacts of the server. It also
leads to classifying the errors that may happen during the script compilation by making
a Python dictionary which consists of all the possible errors that may occur.

33

3 – Implementation and analysis

As discussed in 3.1.1, the private peering task needs some information to start its
routine. That information will gather by a web form that will be explained in this
section. Fig 3.2 shows the initial scheme of the web template with the empty fields.

Figure 3.2. Initial style of the web form

It uses the WTForms which is a module for form validation. The form includes
the field descriptions, take input, delegate, validation, aggregate errors and in general,
keeping everything together. The core Flask controller as the central operation section
will gather all the required information and puts them into a JSON file by request object
in Flask.

This object is used by default in Flask and it automatically pushes a request context
when checking a request. The module that parses and returns the data as a JSON file
is "get_json()" which by default this function will return none, if the mimetype is not
application/json. Get_json() can accept some parameters as the input functions but

34

3.1 – Private Peering

in this scenario, performed in the default model. As a solution to correctly import the
information into the backend script, a JSON template which consists of names (vlan,
vlan_name, vtp, IP, port1, port2), which their values will be full fill by the output of the
request.get.json() method.

Additionally, in the HTML file that is created for the web template, it is mandatory
to submit the input data into the JSON template. There is a JavaScript module for this
specific purpose which is called AJAX which stands for Asynchronous JavaScript and
XML with jQuery. JQuery is a very small JavaScript library which used to make working
with JavaScript much simpler. It is a perfect tool for web applications and will let them
be more powerful while transferring data in JSON between server and client. 1JQuery
AJAX is used to post the data form to the Python Flask. So the web application demands
transmitting information to/from the server by synchronous request. It is possible by
filling up the web form and hitting the submit button and at the end, directing to a new
page to send further information toward the server or updating the current page. The
function below shows the solution that is used for this purpose.

1 function submitJson ()
2 {
3 $.ajax(
4 {
5 url: ’http ://127.0.0.1:5000/ result ’,
6 type: ’post ’,
7 contentType : ’application /json ’,
8 success : function (data)
9 {

10 if(data.error)
11 {
12 $. LoadingOverlay ("hide");
13 alert(data. message);
14 }
15 else
16 {
17 $. LoadingOverlay (’hide ’);
18 alert(data. message);
19 }
20 },
21 data: JSON. stringify (DataArray)
22 });
23 }

Code 3.4. SubmitJson function writen by ajax in JavaScript

The function is using AJAX jQuery method that performs when the type of the request
is in post method. The information data that is sent from the web page added to the
web server which must be defined by the URL in a query string. The solution to convert

1Perform an asynchronous HTTP (Ajax) request to load data from the server without a browser
refresh.

35

3 – Implementation and analysis

the receiving data (JavaScript object or array) into a string is to use JSON.stringify()
method. Basically, what JSON.stringify() do is to get JavaScript object and turns it into
JSON text and then stores that JSON text in a string.

As it can be recognized from Fig 3.2, there are two buttons in the web template
(New Switch and Submit data). They have both the JavaScript button type. New switch
button should be used when we require to save the switch information and if we have
more than one device to configure. When the New Switch button pushes, a new JSON
template will be generated to get the new device data. And the Submit Data button is
used to start the configuration routine firstly by submitting the information data into the
JSON file and compiling the main configuration script which explained in the preceding
section (3.1.1).

The Fig 3.3 demonstrates the scheme of the web template after saving all the infor-
mation about the devices to start the Private Peering configuration procedure. There
also specified a delete button that uses in the case that the switch information is pro-
posed wrongly or consists of the false data. After finishing the data entry, by pushing
the Submit Data button, the Private Peering routine will begin its operations.

As it has mentioned a lot of times, one of the reasons for web form creation was
to show the errors that might probably face during the configuration procedure. As a
solution, an error list created which has a Python dictionary type in the Flask controller
script. The way that errors might happen are directly related to the information that sent
from the created JSON file from the web template or while the individual information is
correct but the specified device is not accessible. The error list established for the Private
Peering configuration procedure with the unique error numbers shown in Fig 3.4.

Generally, the error checking procedure performed as the main configuration script
start its compilation. If any error occurs, not only it is possible to see in the CLI terminal,
but also it will show the error as an HTTP alarm in the web browser. The steps to show
a specific error started when the Flask Python controller script calls the configuration
program to start running. By default, the output zero means that the program finished
successfully, so both the CLI and web template will demonstrate the message which refers
to the successful configuration procedure. Any value except zero refers to the condition in
which an error occurred during the configuration process. The Flask module that used to
redirect the error definition to the web page is jsonify() which can import in Python from
Flask library. Jsonify converts the JSON output in a response object with the application
or JSON mimetype. So for the non zero outputs, jsonify() will define the status value as
an error and then after obtaining the correct error, the individual error value displays on
the screen. Fig 3.5 and Fig 3.6 show the output scheme of the both CLI terminal and
web interface when the authentication information is wrongly defined to connect to the
switches.

36

3.1 – Private Peering

Figure 3.3. Scheme of the Web template before starting the configuration

Figure 3.4. Private Peering Error list

37

3 – Implementation and analysis

Figure 3.5. Private Peering authentication failure schema in the CLI terminal

3.2 Private peering by SDN

As it is discussed in 2.1.3, the physical topology of the Private Peering has been created
based on OpenFlow Network and by using the Mininet. It is mainly due to the fact that
the current available networking devices in TOP-IX did not provide us the possibility to
perform an OpenFlow approach. So the last part of this master thesis was created using
the Mininet and ONOS as the control plane.

Mininet is used to solve the problem by creating prototypes and simulation in a virtual
mode. Mininet provides rapid prototyping for large or small networks on a single system.
The Mininet installation methods are explained in [16]. However, as a solution, the SDN
environment is created by using an official virtual machine installed in VirtualBox. This
machine is an Ubuntu 16.04.3 which is downloaded as a VM ova file from ONOS tutorial
web site and contains ONOS and Mininet in a single machine to implement the proper
environment.

The first step to create the proper environment is to run the Openflow controller
(ONOS) as a single individual machine. As the machine already consists an installed
ONOS, it just would needed to run the ONOS locally in it. So the ONOS template has
been built by buck method from ONOS directory as a local buck daemon. It is of great
importance to mention that ONOS controller comprises of ONOS Web GUI and ONOS
CLI. ONOS web GUI is a single web application page that provides a visual interface
to the controller. It consists of different modules that allowed to monitor and control
the network from the web browser. By using "http://localhost:8181/onos/ui" web URL

38

3.2 – Private peering by SDN

Figure 3.6. Private Peering authentication failure schema in the web interface

address, it is possible to access GUI on a localhost machine. ONOS CLI works as an
extension of Karaf’s CLI [21]. It gives the capability of leveraging features such as the
ability to load and unload the ONOS applications and programmatic extensibility to
manage the network. By using "onos localhost" on a machine terminal, it is possible to
access to CLI of an ONOS which is running on a local machine.

Now it is time to create the physical topology by using Mininet. Mininet provides the
possibility to create and interact with a software defined network prototype. In this work
the custom network topology is created by using a Python script. The principal goal
of this section is to create a network topology that consists of three OpenFlow switches
which act as the TOP-IX network fabric and two routers as the customers router for
Private Peering scenario. However, there is no individual module that performs like a
layer-3 router in Mininet. So, to rectify this issue, the Mininet node (host), converts
into the router using IP forwarding feature that already built into the Linux operating

39

3 – Implementation and analysis

systems. As it is discussed in [22], the networking routes can be inserted into the routing
table by using "ip route" or "route" commands on the associated virtual nodes in Mininet.
Additionally, based on the principal instruction of making Private Peering scenario, the
routers must transfer the traffics in a completely private connection that labeled based
on specific VLAN that is configured in the proper interfaces. So this is done by using the
definition of VLANing feature in the Linux kernel. The VLAN installation requires first
to get and install the Linux VLAN package by using "sudo apt-get install vlan" in the
Linux terminal.

The Python class that is responsible for creating Openflow routers which also enables
the VLAN features in the interfaces, is shown in Code 3.5.

1 class LinuxRouter (Node):
2 "A Node with IP forwarding enabled ."
3
4 def config (self , vlan =100 , ** params):
5 x = super(LinuxRouter , self). config (** params)
6 intf = self. defaultIntf ()
7 self.cmd(’ifconfig %s inet 0’ % intf)
8 self.cmd(’vconfig add %s %d’ % (intf , vlan))
9 self.cmd(’ifconfig %s.%d inet %s’ % (intf , vlan , params [’ip ’]

))
10 newName = ’%s.%d’ % (intf , vlan)
11 intf.name = newName
12 self. nameToIntf [newName] = intf
13 return x
14 # Enable forwarding on the router
15 self.cmd(’sysctl net.ipv4. ip_forward =1’)
16 routers = { ’vlan ’: LinuxRouter }

Code 3.5. Creation of OpenFlow router in Mininet

This class permits to create nodes with enabled IP forwarding. As well as, attempts
to create VLAN interfaces and assign the IP address to the networking interfaces. Addi-
tionally, it updates the router interfaces based on the proper name and VLAN ID. Then
the routers are called in topology creation procedure in Mininet. The IP address of each
router, as well as the VLAN Id, set like the implementation of Private Peering into the
real devices. The IP subnet for the routers sets to 194.116.98.0/30 that can cover only
two host IP addresses and the VLAN ID as the previous section 3.1.1 set to 77. So, the
custom topology which is consists of three OpenFlow switches, two routers, and a single
controller which runs in a local machine and will manage all the networking devices has
been created and it can be seen in appendix.2. Then, the Mininet configuration Python
script must run by root privilege. It creates the physical scheme of the OpenFlow net-
work. The solution uses the REST API to upload the JSON configuration file which
consists of the interfaces information and VPLS structure that interfaces must use. In
order to allow the VPLS to verify the network connectivity between two routers, there
need to configure the interfaces of each router in the ONOS interfaces configuration.

40

3.2 – Private peering by SDN

The Fig 3.7 illustrates the scheme of the OpenFlow topology from ONOS web GUI
for Private Peering implementation scenario.

Figure 3.7. ONOS Web GUI

After setting up the physical network topology, now it is time to discuss about the
VPLS and the way that it encapsulates the OpenFlow traffics. As it is discussed earlier
2.1.3, VPLS is an ONOS application that permits to provision and creates L2 circuits
between various end-point OpenFlow devices. It generally manages the virtual private
LANs by providing the public API. The CURD functionality to create/update/read-
/delete has been provided by this API which benefits to other applications to work with
VPLS components. VPLS manager also can handle the events that may occur to the
hosts while want to attach or detach to VPLS list.

VPLS uses the Intent framework to provision the broadcast/unicast connection be-
tween the interfaces of the hosts (here routers). The usage of intent definition in VPLS
lets to minimize the complexity of provisioning of the flows on the OpenFlow switches
and performs the error recovery in case of failures occur. The ONOS concept allows the
intent and interprets them by intent compilation procedure into installable intents. The
different components of the VPLS is shown in Fig 2.1. It needs to know that a new VPLS
operation will be queued when it is generated and submitted to VPLS operation service.
There is an operation scheduler that performs the optimization of multiple operations
if there exists. The VPLS operation executor is the component that generates different
intents based on different operational task like add, remove or update of the VPLS lists.
It is important to know that the VPLS application requires at least two interfaces to be
configured in the ONOS interface configuration context and be associated to the same
VPLS. In this scenario, the interfaces are related to two OpenFlow routers that mentioned
earlier.

41

3 – Implementation and analysis

The operation executor will produce two types of intents when the new interface of
the OpenFlow edge-node wants to add into the VPLS list. The first one is Single-to-
Multi point intent which is for the broadcast traffic and other is Multi-to-Single point
intent for unicast traffics. Single-to-Multi is used to provide broadcast provisioning in-
tents for the objects inside the same VPLS list. The intent ingress (source host/router)
selector is determined using the edge in-port, the broadcast destination MAC address
(FF:FF:FF:FF:FF:FF), and the individual VLAN Id of the source node. The egress
points are related to all of the other edge ports that the destination hosts are associ-
ated and connected to in the same VPLS. However, the Multi-to-Single intents provide
the unicast definition in the same VPLS list and have the opposite definition in term
of ingress and egress points comparing to the broadcast intents. The Fig 3.8 shows the
intents installed after establishing a new VPLS list called "VLAN77" and after adding
the proper interfaces into the VPLS list by ONOS CLI. So regarding the scenario, as
there are two interfaces related to the routers, the VPLS operation executor creates two
intents for each object. As well as, VPLS accepts three type of encapsulation meth-
ods. (1)None which means that no encapsulation mode is applied for the provided list,
(2)VLAN which is based IEEE802.1Q encapsulation method, and (3) 1MPLS (Multipro-
tocol Label Switching). Fig 3.8 shows that the encapsulation type is based on VLAN
method.

Additionally, we can also check the behavior of the flow rule subsystem in the ONOS.
The flow rule subsystem is responsible for installing and managing the flow rules in the
networking devices. This subsystem uses the definition of the distributed flow table that
a master copy of the rules that prevails with the controller and will then be pushed down
into the devices. It needs to mention that the flows are installed into the subsystem
through the FlowRuleSerive API. The figures 3.9, 3.10, and 3.11 shows the dump flows
that the ONOS applications pushed into the OpenFlow switches. There are different
flows for different traffics that are found by the controller. They are the outputs of the
"flows -s" from the ONOS CLI.

Fig 3.9 shows the dump flows that pushed by ONOS into the devices based on different
different flow ids and traffic selectors that identifies the requirement rules to apply into
the OpenFlow traffics. So based on the default applications that installed in the ONOS,
we can see some specific rules like 2BDDP and LLDP (links discovery methods), 3ARP,
and IPv4 traffics.

Fig 3.10 shows that the when activating the VPLS application in controller, it will

1A Layer-3 VPN label for each route - RFC4364
2BDDP and LLDP are LinkDiscovery mechanisms that ONOS uses based on probes to discover paths

in Openflows network. A LinkDiscovery instance sends out probe messages that is containing LLDPs and
BDDPs. LLDP probes are dropped after one network hop on both SDN controlled and legacy network.

3Address Resolution Protocol (ARP) to map the IP network address to the hardware address.

42

3.2 – Private peering by SDN

Figure 3.8. The instruction of installed intents from ONOS CLI

create two new flows in all of the switches that are based on incoming and outgoing traffics
for different switch ports and characterized by different VLAN Ids. Before sending any
traffic between edge-nodes, the destination hardware address is set to the Broadcast
address for the edge switches (Switch 1 and 2). Fig 3.11 shows when sending out a
unicast IP traffic (Ping), the switches could define the MAC address of the edge nodes
by using ARP protocol. The switches then add the two unicast flows for different ports
which are based on the incoming and outgoing traffics into their flow lists.

43

3 – Implementation and analysis

Figure 3.9. Default ONOS dump flows before activating VPLS

Figure 3.10. ONOS dump flows after activating VPLS

3.2.1 Benchmark

There are many aspects to be compared between the enterprise network (TCP/IP based
network) with respect to SDN based on the OpenFlow protocol. The fundamental rule
of using the SDN network based on OpenFlow forwarding protocol is that the data plane
separated with forwarding plane and is directly programmable by an SDN controller.
SDN provides a centralized view of the entire network and can accelerate service delivery
in provisioning new configuration into the networking devices.

Before preceding to the next steps, to compare the two approaches, it is essential to
represent some information about the working environment of the two techniques. As
it has been discussed before, the SDN testbed has been created in a completely virtual
environment and in a personal computer with limited resources. Those resources need to
be normalized and shared among virtual routers and switches. Mininet provides the op-
portunity to create a virtual environment and consists of the software switching definition
rather than hardware switching. So that would probably cause a significant drawback in
the long run for the performance of the controller since all of the OpenFlow devices and
the ONOS controller had been created in the same system. In a real network, switches
and hosts could be operated in parallel and independently. In contrast, in an emulated
environment, parallel operations are executed sequentially due to the limited number of
CPU cores. However, It should be mentioned that the main purpose to automate the
Private Peering was not to the performance of the network connectivity since most of the

44

3.2 – Private peering by SDN

Figure 3.11. ONOS dump flows after sending a Unicast IP traffic (Ping)

devices in the enterprise environment (real test) were in Cisco family and had the good
connectivity. Working in a real environment and dealing with real network traffic with a
lot of constraints is completely different with a virtual situation. The principal benefits
of SDN over common approaches are based on the fact that SDN permits to simulta-
neously test and use new applications, minimizes operating risks and allows centralized
management of each switch.

As it has been discussed, the main idea of automating the Private Peering was focusing
on the agile development of the process and to limit the human errors that might hap-
pen during configuration. Comparing the configuration period between two approaches
operationally is not efficient. Initially, due to the fact that preparing the SDN envi-
ronment is consists of activating the controller and individual applications, creating the
physical topology by Mininet and pushing the proper interfaces information would take a
significant amount of time (almost 6 minutes). This procedure varies based on available
resources and the performance of the system. However, by neglecting the required time to
activate the SDN controller and considering that the physical network is already up and
is connected to the controller, the amount of time required to configure VPLS application
to create a Layer-2 broadcast domain is negligible. As the controller is integrated with all
of the networking elements, pushing the new configurations will be done very quick. The
controller would adopt the OpenFlow protocol to communicate with OpenFlow switches.

45

3 – Implementation and analysis

3.3 BIRD automation

Like the previous task, this task also will be divided into two parts. First, the definition
of the task and solution demonstration. The second part will be concentrated on the
visual appearances that solved by designing a web UI to gather the essential information
and run the Bird daemon.

3.3.1 Backend

As it has been discussed in 2.1.2, the BIRD configuration procedure in TOP-IX comprises
of different steps. These steps modify the route server features to work automatically.
The main script which is responsible to create the BIRD configuration file is called "con-
figure.sh". This bash script is running every day to update the BGP client prefix lists
and to let the BIRD to advertise the peering sessions to the route server’s members. The
script manages both IP versions (V4 and V6) routing configuration. Additionally, the
bash script runs a Python program that is called "create_config.py" which is responsible
to directly create the configuration files by predefined sources and templates.

To create the configuration files, it is necessary to store the client or route server’s
member information. The objects that are used to this purpose are a set of YAML files
and are different based on IP address versions. The Python script uses those YAML
files that are comprises of the information to create the BIRD configuration files. The
process in TOP-IX to add a new client information to the main client list was fully hand-
operated. As the principal demand for this part of my thesis, there need to find a way
to automatically update the client list after gathering the information from the web UI.
Alternatively, there need to find a mechanism to verify whether the new client that is
going to add to the YAML file is new or is a duplicated one.

Before addressing the web user interface (UI) creation structure and the process that
consolidates the information, it is of the great importance to illustrate the required ad-
justments that would need to perform in the TOP-IX Python script. The function that
is responsible for loading the client list is called "load_clients" that is characterized in
terms of version of the IP address and also the appropriate route server.

For the principal step, a Python list has been created to load the TOP-IX’s YAML
client file into it. After loading the YAML file, inside a loop, all of the IP addresses will
be appended into the list. The only object which is unique amongst clients is the IP
address of the members, so it is likely to check if the new client requires to add in the
TOP-IX client list or not. If the new client is not a duplicated one, it must be added
to the YAML file with all of the required parameters in a way that can readable to the

46

3.3 – BIRD automation

route server. The procedure and the solution to get the information from web UI and the
way to show the error when the new entry is duplicated will be discussed in the frontend
implementation section. What needs to be mentioned here is that, as a solution, for the
new client information, the web UI will make first a JSON template and then will dump
it into a temporary YAML file. The temporary YAML file structured in a way that the
BIRD daemon can use it after adding to the end of the main BIRD’s client list.

The Fig 3.12 shows the lines of the client file (YAML file). It provides the general
policies and clients configuration options and the required information that needs for the
members who want to use the route server features.

As we can see from Fig 3.12, each client specified by an Autonomous System (AS)
number, as well as the other related information. The reason why and how they are using
is out of the scope of this thesis. It can be seen that the clients separated by an empty
line and started by a dash at the beginning and before the "as" keyword.

So as the final step for the Backend programming section, we need to find a solution to
add the temporary YAML file which contains of the new information of the new member
to the end of the TOP-IX client file. It can be done by using read/write file module in
Python which is a native and unique feature in the language. Firstly, it needs to open
the file by open() function which must return to a file object (file descriptor). File object
consists of the attributes and the methods that can be used to gather the information
about the opened file. To open a file in Python by builtin open() function, we can specify
various modes as the syntax arguments. Briefly, the modes can be "r" to only read the file,
"w" used for editing and writing the information into the file and "a" which is appending
mode to add new data to the end of the file. After opening the files, it is time to read the
file, as the specific characters by "file.read()" method. Both of the YAML files must be
opened but the client files in the appending mode and the temporary file in the reading
mode. The next step is to write the exact characters from the temporary file to the
client file by the file.write() function. Alternatively, we need to put a separation between
the clients by the empty space line and it can be simply done by adding a "\n", as a
syntax argument in the write function. In the end, both files must be closed to terminate
resources that are in use to make them available for the system by close() function.

3.3.2 Frontend

For the BIRD configuration automation task, a web UI has been created to get the
information and produce the template YAML file. The tools that has been used for web
form creation is Flask and JavaScript that introduced in 3.1.2. The method of web UI
creation and its performance is almost the same with 3.1.2. However, in this scenario,
as the final step, we must transfer the data from the JSON to the YAML file. It is
because of the reason that the Flask form can export the data into a JSON file. It has

47

3 – Implementation and analysis

Figure 3.12. Structure of TOP-IX client file

been discussed in 3.1.2 that, AJAX would be a decent tool to produce the JSON file and
exclude the errors. The selected error that must be observed in case of happening is when
the new entry is already inside the list with the same IP address.

Fig 3.13 shows the empty web template that has been created to get the new infor-
mation of the new peer for the Bird daemon configuration. Fig 3.13 shows the required

48

3.3 – BIRD automation

Figure 3.13. Scheme of the web UI for updating BIRD

information that would be needed, if a new client wants to use Bird’s features such as ad-
vertising the BGP prefixes to other members. As it can be illustrated from Fig 3.12, the
fill out policy of the web UI is different per member. Means that there might be cases like
the last insertion in Fig 3.12 that consists of two more lines (custom_command and limit)
than the others. The Bird configurator, by using the proper 1Jinja2 templates, will select
the proper data based on the peer’s condition and will create the BIRD configuration file.

1A full-featured template engine for Python that supports the Unicode, as an arbitrary integrated
sandboxed execution context. It is inspired by Django’s templating system but extends it with a strong
language by providing a very powerful set of tools to template authors.

49

3 – Implementation and analysis

The Flask controller sets the output JSON file from the web UI by using
"request.get_json()" into a Python list object. Here, a template YAML file which consists
of the BIRD required elements (as, name, import, ...) as the YAML object keys and
without any YAML object values. Those elements (YAML keys) are precisely the same
as the objective elements of the main TOP-IX client file. Then, in a loop and by using
the verification methods, the associated object keys pushed from the web UI into the
JSON object will be copied into the temporary YAML file. It is worth mentioning that
the stipulated names for the key elements in both templates (YAML and JSON) files
are defined similarly to limit the potential obstacles that might happen in the script and
gain the code more straightforward. So, after preparing the temporary YAML file, it is
time to verify the new member’s IP address and define whether it is a new entry or is the
duplicated one. In case of duplication, the Bird configuration procedure will not start
its cycle and will expose an error message into the web browser to notify the reason for
the error. The solution to rectify this issue is like the previous task 3.1.2 that used the
Flask’s jsonify module. Jsonify will redirect the error message from the error list to the
Javascript template and then to show to the user.

If no duplication happens, the script will run the Bird configurator bash command
that has been discussed in 3.3.1. However, as the file directories for the web template
and the bash file are different, there need to change the directory environment before
compiling the bash file. Additionally, the bash script should get as the syntax argument,
the name of the route server because there are two route servers currently working in the
TOP-IX consortium. The bash script configure.sh will create the bash configuration files
automatically based on the information that prepared to it. Fig 3.14 and Fig 3.15 show
the final output in backend (CLI) and frontend (Web browser), after filling out the web
form with corresponding data and pushing the "Run Script" button at the left bottom
of the web UI. As it is highlighted in Fig 3.14, the route server could attain new object
that appended at the end of the client YAML file and could run or reconfigure the route
server accurately.

50

3.3 – BIRD automation

Figure 3.14. Output in CLI for the BIRD configuration

Figure 3.15. Output in Web UI for the BIRD configuration

51

3 – Implementation and analysis

And at the end, the Fig 3.16 represents that the client YAML file updated correctly
with new information that produced by the web UI. It can see that the structure of the
new entry data is almost equal with the previously added configuration data.

Figure 3.16. Updated version of client YAML file

52

Chapter 4

Conclusions

This thesis is structured by different components and programming languages to design,
implement, and help to improve the networking quality. The principal goal of this thesis
was to find the best solution to connect the software developing features into the network
operation and engineering. In fact, we tried to use the best practices, tools, and ideas
from software development to the networking area.

Network monitoring and moving from the old models with SNMP, Syslog, and Net-
Flow and adopting new strategic models around machine learning approaches is part of
the network automation. The goal was to understand how those tools are fundamentally
working and enable them to the operational scenarios. In network automation, we can
take the concept of DevOps like configuration management. Basically, DevOps indicates
to the enterprise software development that uses an agile relationship between develop-
ers and IT operational team. It tries to improve this relationship by promoting better
interaction between these two business units.

The objective of this master thesis also tried to highlight the importance of using
Software Defined Network in today’s networking paradigm. As it has been discussed, the
fundamental aspects of the SDN were to define a distinct separation between network
control plane and network forwarding and the transition of network logic from hardware
implementation to software.

As it has been discussed, this thesis has been divided into three totally practical
works. (1) The automation of Private Peering, as an extensive service which is offered
by TOP-IX both in the real environment and software based environment using different
tools. (2) Implementing an automated process to update and maintain the BIRD rout-
ing daemon. The automation of Private Peering firstly done using the real operational
Cisco switches in TOP-IX. The solution used Netmiko, an open-source Python library

53

4 – Conclusions

to send the configuration management instructions dynamically and a Web UI based on
Flask and JavaScript to effectively get the required information from the Network ad-
ministrators and try to create a visual representation if any error happens during the
configuration procedure. The solution used a multi-threading method based on Python
to send the configuration commands to multiple devices in parallel and at the same time.
The proposed solution can be readily used in practice. The approach is applicable even
for much bigger areas which consist of a higher number of devices to configure. As an
alternative approach, a virtualized OpenFlow environment created by using Mininet and
ONOS to design a proper situation based on Private Peering implementation needs.

4.1 The issues raised during the implementation

During Private Peering automation in real environment 3.1.1, the issues were mainly
related to the structure of the API (Netmiko) and the way to connect it to the project
definition. As it is mentioned before in 3.1.1, to configure multiple devices by Netmiko,
by default it will send commands first to one device and then to the next one, separately
and does not provide any parallelization definition. So, to minimize the configuration
period, we must define a solution to prevent waiting time for the individual devices. To
do so, I used the multithreading definition in Python. However, multithreading demands
more precise programming to avoid non-intuitive behaviors such as deadlocks and racing
conditions.

As well as, the other issue was related to the time that needs to check the current
setting of the switch interfaces and finding the best solution to dynamically configure the
devices based on the proper VLAN. Before finding the best solution which was discussed
in 3.1.1, three other Cisco show commands had experimented but none of them has
the adaptability of "show running config interface" command to different interface setups.
This command shows the current configuration for the individual interface which involves
the VLAN configuration.

The other time-consuming issue was related to the connection between the Frontend
and Backend and to create a readable JSON file from the Frontend. It must consider
that the problems were mainly associated with JavaScript modules and error establish-
ment procedure. For instance, the solution for Private Peering automation used three
operational scripts. The API configuration script based on Python, the backend Flask
controller based on Python and the Frontend web UI script based on JavaScript. The final
solution is directly related to connectivity and proper synchronization between related
scripts.

54

4.2 – Importance of Network Automation for IXPs

4.2 Importance of Network Automation for IXPs

As it has been discussed many times, network automation can make the work easier.
However, the knowledge of programming fundamentals is ultimately crucial for network
automation. There are multiple possible operational approaches in IXP’s throughout the
world that are related to automate tasks. Automation is of a great importance in IXP’s
firstly to get rid of the error-prone manual configuration jobs which in many cases are
related to human mistakes. In most instances, the customers must wait for an individual
person in IXP who is directly associated to maintain the manual changes. It might happen
that the networking equipment in customer side fails and they need to replace with the
new device and so the MAC address will change. The new device port will not work
until in IXP, they change the configuration based on new information. So, it is essential
that in the customer side, they have the possibility to inform the IXP about any changes
by using the user interfaces and in the IXP side, the device maintenance performed in
a automatic and dynamic way. By using automation approaches, the configuration does
not need a human decision in IXP. They can be done any time, in different situations
and for various purposes.

Additionally, automation can operationally perform to configure the IXP participant
edge ports such as 1Dot1q framing, layer 2 filters, speed controlling and so on. It is also
possible to go one step ahead and configure the IXP core features. There are a significant
amount of configuration items for the network in IXP which are massively repetitive and
almost impossible to visually inspect for the correctness. Each of those configuration
items might have multiple steps associated with it like having different AS numbers or
IP addresses or interface numbers. So there are a lot of types of data that all might look
the same and so manual configuration might face with critical problems.

The other very important aspect is that the automated data models must be portable.
The automation tasks should not be limited just for one IXP or just for a particular
network device. It is a critical matter that should be taken into consideration before
starting to automate complex tasks and to limit the additional time-consuming efforts
to debug or to update the code for the new environments. However, this compatibility
needs a very well-defined plan with the knowledge of the numerous conditions which is
rather very difficult to achieve.

Automation is also a good solution for the security of the IXP network. There are
plenty of threats to IXP’s which can cause a very harmful impact on the performance
of the network. Additionally, automation can help network security professionals with
their leading jobs like policy updating, finding hidden threats, extend network protections

1Dot1q framing or VLAN tagging is a technique developed by Cisco to help classify packets moving
through trunk links

55

4 – Conclusions

against defining attacks and so on. Alternatively, automated machine learning algorithms
can be a constructive solution for the DDoS attack detection and protection in IXP’s.
It can lead to automate the 1Blackholing techniques. However, there are some concerns
about network security process automation, particularly when it comes to maintaining
security deployments. Lack of trust in the technology, fear to change of the way that
people doing the works and loss the control on the critical decision making are some
example of the concerns around incorporating automation into the cyber security.

Moreover, SDN planning provides a virtual network that tends to transform the cur-
rent network paradigm into a more flexible and programmable design. I am of the belief
that the future networking will stick more on software-based solutions and SDN. On the
other hand, SDN gives a complete view of networking elements and services. Additionally,
the SDN controller gives the opportunity to reconfigure the SDN and provide seamless
migration of virtual machines around the network. Furthermore, SDN gives the chance
to dynamically insert a virtual load-balancer or a firewall.

4.3 Future directions

The importance of network automation has been discussed in conclusion sections. Private
Peering automation, as one of the pioneer features in TOP-IX was considered as the
starting point to automate most of the demanding and time-consuming tasks. The key
aspect that limits to test the OpenFlow environment was directly related to the restriction
to implement the testbed in a real context. The real context means to have the possibility
to work with real OpenFlow supported switches and having hands-on experience into
the IXP network. Unfortunately, during my thesis, as TOP-IX could not provide the
OpenFlow switches, it was impossible to have a real performance benchmark. So, as
a result, the future task can be dedicated to have a real testbed with some OpenFlow
switches. It would give the chance to test the OpenFlow traffics and also test the VPLS
application in an operational scenario.

1A network-based reactive defense mechanism to counter with DDoS attack used in IXPs.

56

Bibliography

[1] https://www.netcraft.com/.
[2] https://pynet.twb-tech.com/blog/automation/netmiko.html.
[3] https://www.ansible.com/.
[4] https://napalm-automation.net/.
[5] https://www.peeringdb.com/.
[6] https://www.euro-ix.net.
[7] https://www.pch.net/ixp/dir.
[8] https://www.de-cix.net/.
[9] https://ams-ix.net/.

[10] http://bird.network.cz.
[11] https://www.top-ix.org.
[12] https://www.mix-it.net/index.php?lang=en.
[13] https://apps.db.ripe.net/db-web-ui/#/query?bflag&searchtext=as25309&

source=RIPE#resultsSection.
[14] https://onosproject.org/.
[15] https://wiki.onosproject.org/display/ONOS/Virtual+Private+LAN+

Service+-+VPLS.
[16] http://mininet.org/.
[17] https://www.cisco.com/c/en/us/support/docs/security-vpn/

secure-shell-ssh/4145-ssh.html.
[18] https://media.readthedocs.org/pdf/netmiko/stable/netmiko.pdf.
[19] https://www.cisco.com/c/en/us/td/docs/routers/connectedgrid/switch_

module_swcg/cgr-esm-configuration/config_vlans.html#99222.
[20] http://flask.pocoo.org/.
[21] https://karaf.apache.org/.
[22] https://github.com/mininet/mininet/blob/master/examples/linuxrouter.

py/.
[23] I. Dolnak. The purpose of creating bgp route servers at internet exchange points.

IEEE, 2017.
[24] Y. Sun et. Cs2p: Improving video bitrate selection and adaptation with data-driven

throughput prediction. page 272. SIGCOMM, 2016.

57

https://www.netcraft.com/
https://pynet.twb-tech.com/blog/automation/netmiko.html
https://www.ansible.com/
https://napalm-automation.net/
https://www.peeringdb.com/
https://www.euro-ix.net
https://www.pch.net/ixp/dir
https://www.de-cix.net/
https://ams-ix.net/
http://bird.network.cz.
https://www.top-ix.org
https://www.mix-it.net/index.php?lang=en
https://apps.db.ripe.net/db-web-ui/#/query?bflag&searchtext=as25309&source=RIPE#resultsSection
https://apps.db.ripe.net/db-web-ui/#/query?bflag&searchtext=as25309&source=RIPE#resultsSection
https://onosproject.org/
https://wiki.onosproject.org/display/ONOS/Virtual+Private+LAN+Service+-+VPLS
https://wiki.onosproject.org/display/ONOS/Virtual+Private+LAN+Service+-+VPLS
http://mininet.org/
https://www.cisco.com/c/en/us/support/docs/security-vpn/secure-shell-ssh/4145-ssh.html
https://www.cisco.com/c/en/us/support/docs/security-vpn/secure-shell-ssh/4145-ssh.html
https://media.readthedocs.org/pdf/netmiko/stable/netmiko.pdf
https://www.cisco.com/c/en/us/td/docs/routers/connectedgrid/switch_module_swcg/cgr-esm-configuration/config_vlans.html#99222
https://www.cisco.com/c/en/us/td/docs/routers/connectedgrid/switch_module_swcg/cgr-esm-configuration/config_vlans.html#99222
http://flask.pocoo.org/
https://karaf.apache.org/
https://github.com/mininet/mininet/blob/master/examples/linuxrouter.py/
https://github.com/mininet/mininet/blob/master/examples/linuxrouter.py/

Bibliography

[25] A. Dhamdhere et al. The internet is flat: modeling the transition from a transit
hierarchy to a peering mesh. Co-NEXT ’10 Proceedings of the 6th International
COnference Article No. 21, 2010.

[26] A. Gupta et al. Sdx: a software defined internet exchange. SIGCOMM, 2014.
[27] B. Ager et al. Anatomy of a large european ixp. pages 163–174. SIGCOMM, 2012.
[28] D. Kreutz et al. Software-defined networking: A comprehensive survey. pages 14–76.

IEEE, 2014.
[29] D. McPherson et al. Border gateway protocol (bgp) persistent route oscillation

condition,rfc3345. IETF, 2002.
[30] H. Kim et al. Improving network management with software defined networking.

pages 114–119. IEEE, 2013.
[31] HH Liu et al. Automatic life cycle management of network configurations. ACM,

2018.
[32] J. Jiang et al. Cfa: A practical prediction system for video qoe optimization. page

137. NSDI, 2016.
[33] L. Jun et al. Internet traffic classification using machine learning. pages 239–243.

IEEE Conference, 2007.
[34] M. A. Beyer et al. The importance of big data: A definition. Gartner, 2012.
[35] M. Feamster et al. The road to sdn: and intellectual history of programmable

networks. ACM SIGCOMM Computer Communication Review, 2014.
[36] M. Wang et al. Machine learning for networking: Workflow, advances and opportu-

nities. pages 92–99. IEEE, 2017.
[37] N. Chatsiz et al. On the importance of internet exchange points for today’s internet

ecosystem. 2013.
[38] O. Zajicek et al. Bird internet routing daemon. Proceedings of netdev 0.1, Feb

14-17, 2015, Ottawa, On, Canada, 2015.
[39] P. Richter et al. Peering at peerings: On the role of ixp route servers. pages 31–44.

IMC ’14 Proceedings of the 2014 Conference on Internet Measurement Conference,
2014.

[40] Z. Fadlullah et al. State-of-the-art deep learning:evolving machine intelligence to-
wards tomorrow’s intelligent network traffic control systems. pages 2432–2455. IEEE,
2017.

[41] Ed et al. Y. Rekhter. A border gateway protocol 4. RFC BGP - RFC 4721 | The
most updated BGP Looking Glass database, 2006.

58

Appendices

59

.1 – VTP server configuration step

.1 VTP server configuration step

Cisco VTP server Configuration function which also will check the probable errors during
the VTP server configuration procedure.

1 vlan_name = peers [0][" vlan_name "]
2 vtp = peers [0][" vtp "]
3 print (’# ’*60)
4 print(’ Connecting to VTP server to add the new vlan ’)
5 device ["ip"] = vtp
6 iplist = []
7 for l in devices :
8 iplist . append (l["ip "])
9 if vtp in iplist :

10 for i in devices :
11 if i ["ip"] == vtp:
12 device [’username ’] = i [" username "]
13 device [’password ’] = i [" password "]
14 device [’secret ’] = i [" secret "]
15 device [’ device_type ’] = " cisco_ios "
16
17 vtp_connection = ConnectHandler (** device)
18 vtp_connection . enable ()
19 out2 = vtp_connection . send_command (’show vtp status ’)
20 VTPStatus = CheckVtpServer (out2)
21 if VTPStatus == " Server ":
22 vtp_config = [’vlan ’+vlan_id ,’name ’+vlan_name ,’no shutdown

’]
23 vtp_output = vtp_connection . send_config_set (vtp_config)
24 print (’Vtp server updating ... ’)
25 vtp_connection . disconnect ()
26 else:
27 print (" The Selected VTP server is not actually a VTP Server

,\
28 It is in VTP Clinet mode ... Leaving ")
29 exit (200)
30 else:
31 print (" There is No Such IP Adress in DATABASE As the VTP Server

... leaving ")
32 exit (166)

61

.2 Custom topology creation script in Mininet

The Python class that is responsible for custom OpenFlow topology creation in Mininet.
1
2 class NetworkTopo (Topo):
3 " Private Peering Topology "
4 # def addSwitch (self , name , ** opts):
5 # kwargs = { ’protocols ’ : ’OpenFlow13 ’ }
6 # kwargs . update (opts)
7 # return super(NetworkTopo , self). addSwitch (name , ** kwargs

)
8
9 def __init__ (self):

10 " Create an empty network and add nodes to it."
11 Topo. __init__ (self)
12 #
13 info(’*** Adding switch \n’)
14 switch1 = self. addSwitch (’s1 ’)
15 switch2 = self. addSwitch (’s2 ’)
16 switch3 = self. addSwitch (’s3 ’)
17
18
19 info (’*** Adding Routers \n’)
20 router1 = self. addNode (’r1 ’, cls= LinuxRouter , ip

= ’194.116.98.1/30 ’ , vlan =77)
21 router2 = self. addNode (’r2 ’, cls= LinuxRouter , ip

= ’194.116.98.2/30 ’ , vlan =77)
22
23
24
25
26 info(’*** Creating links\n’)
27 self. addLink (switch1 , switch2)
28 self. addLink (switch2 , switch3)
29 self. addLink (switch1 , router1 , intfName2 =’r1 -eth1 ’)
30 self. addLink (switch3 , router2 , intfName2 =’r2 -eth1 ’)
31
32 topos = { ’test ’: (lambda : NetworkTopo ()) }
33 def run ():
34 topo = NetworkTopo ()
35 net = Mininet (topo=topo , controller = RemoteController)
36 # c1 = net. addController (’c1 ’, controller = RemoteController ,

ip ="172.17.0.1")
37 net.start ()
38 CLI(net)
39 net.stop ()
40
41
42 if __name__ == ’__main__ ’:
43 setLogLevel (’info ’)
44 run ()

62

	List of Figures
	Introduction
	Networking technologies and evolutions
	Network automation
	Machine learning and networking
	SDN

	Internet peering and IXP model and TOP-IX
	Internet peering
	Internet Exchange Point
	TOP-IX

	Problem architecture and modeling
	Identifying and analyzing the needs in TOP-IX
	Private Peering
	Updating BIRD routing daemon
	Private Peering by SDN

	From problem setting to project definition

	Implementation and analysis
	Private Peering
	BackEnd
	FrontEnd

	Private peering by SDN
	Benchmark

	BIRD automation
	Backend
	Frontend

	Conclusions
	The issues raised during the implementation
	Importance of Network Automation for IXPs
	Future directions

	Bibliography
	Appendices
	VTP server configuration step
	Custom topology creation script in Mininet

