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Abstract

In the last decades the amount of available data increased extremely and
the data analytics field evolved and expanded accordingly. Starting from
linear regression many other algorithms have been developed, leading to the
spread of machine learning methods. Such methods are able to implement
more complex regression models, achieving higher accuracy, but often at the
cost of interpretability. In this master’s thesis a study about the interpre-
tation of some regression models has been carried out. Methods to evaluate
variable importance and to display efficiently feature effects on the variable
of interest are explained; the respective R functions that implement such
methods are illustrated through the presentation of a case study developed
by the author during an internship in Tetra Pak.
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Chapter 1

Introduction

Technological progress is leading the world, and companies in particular, to a
true digital revolution. We have entered the Big Data Era, so called because
of the huge amount of available data, that is further increasing. With the
rise in volume of data to analyse, it was necessary to develop new techniques
and methods to handle and interpret them, bringing increasingly attention
to machine learning algorithms.

Recently, part of the attention moved to the interpretation of such algo-
rithms behaviour. Indeed, many of them are able to deliver pretty accurate
results, however, without providing an explanation of the logic behind them.
Such algorithms are called black box methods.

Being able to understand the variable dynamics carrying to the results,
would allow gaining insights on complex systems impossible to describe with-
out resorting to black box methods. However, not managing to unravel such
complexity does not implicate just giving up on further knowledge. Indeed,
there are many reported cases of black box models applied to prediction and
classification problem that resulted to not work properly due to biases hidden
in the learning process [12]. Thus, it should not be placed blind trust in such
algorithms, without carrying out some preliminary analysis to assess which
logic driving them.

In Chapter 2 is provided a description of some of the most applied re-
gression models with relative measures useful to asses variable importance.
Thereafter, with the purpose of deliver insights as effectively as possible,
Chapter 3 focuses on visualisation tools for interpretability. Chapter 4 presents
a case study along with applications in R of the previous methods. Finally,
in Chapter 5 a summary is provided.
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Chapter 2

Variable importance in
regression models

Regression analysis is a substantial branch of statistical modelling. Its pur-
pose is the study of relationships between a variable of interest y, also called
target variable or response variable, and a set of p explanatory variables,
txku

p
k“1, also called features or independent variables. In particular, thanks

to regression analysis is both possible to predict the target variable value,
given the values of the features, and to understand the influence of each
independent variable on the one of interest. Different regression models ac-
complish these two tasks to different extents.

Each regression method describes the relationships between the variables
by mean of some function y “ fpxq, characterised by M parameters Λ “

tλmuMm“1. Given a dataset pY,Xq an approximation ŷ “ f̂pxq of such function
can be computed, assigning to the parameters the values Λ̂ “ tλ̂muMm“1,
which minimise a loss function Lpy, f̂pxqq that quantifies the prediction error
of f̂pxq:

Λ̂ “ argmin
Λ

N
ÿ

i“1

LpYi, fpXi; Λqq. (2.1)

The methods presented below are briefly described, more detail can be
found in [4, 8].
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2.1 Linear regression

Linear regression has been the very first form of regression analysis. This
model approximates the relationship - that is not necessarily linear - between
the target and the independent variables by means of the following linear (in
the β’s) equation:

Y “ β0 ` β1X1 ` β2X2 ` ... ` βpXp ` ε, (2.2)

where Y and Xk, with k “ 1, ..., p, are the vectors collecting the observed
values of the target and the independents variables, respectively; βk, with
k “ 1, ..., p, are the unknown constant coefficients of the model and ε is
the approximation errors vector. By means of a given sample pY,Xq, where
X “ tXku

p
k“1, it is possible to train the model and to compute an estimate

of the coefficients, β̂k, with k “ 1, ..., p, obtaining

ŷ “ β̂0 ` β̂1x1 ` β̂2x2 ` ... ` β̂pxp. (2.3)

Substituting in (2.3) txku
p
k“1 with new observed values of the features we

obtain an estimate ŷ of the target variable. Furthermore, the coefficient
estimates give us insights on the relationship between the respective variable
and the one of interest. Indeed, βk indicates by how much the value of the
target variable increases in average, when xk rises by one unit and all the
other variables remains unvaried.

An issue arises when the features are measured in different units, as it
usually is, because each coefficient is expressed in the relative variable unit.
Hence, it is not possible to compare them directly in order to analyse the
relative effects of the independent variables. One questionable solution is to
standardise the regression coefficients [2] as

bk “ β̂k
sk
sy
, (2.4)

where sk and sy are the standard deviations of xk and y, respectively. The
interpretation is similar to the previous one, but units are replaced by stan-
dard deviations. Thus, the standardised coefficients represent the change in
standard deviations in the target variable, when xk varies of one standard de-
viation. Therefore, larger is the absolute value of bk, more is the importance
and influence of xk on y.
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Figure 2.1: Variance distribution over two independent variables and a target
variable. paq is the unexplained variance in the target variable Y . pbq is the
variance in Y predicted only by X1. pcq is the variance in Y predicted only
by X2. pdq is the variance in Y explained by both variables X1 and X2. peq

represents covariance between X1 and X2 not related to Y . It is noted that
pdq and peq are not void only if X1 and X2 are correlated.

This approach has been largely criticised for different reasons, but in par-
ticular, because standardised coefficients combine standard deviation with
estimated effects, making it very difficult to interpret them. Alternatively,
other coefficients are often taken into account to quantify the relative impor-
tance of the features [11]. Among them there are partial and semi-partial
correlation coefficients.

For the sake of clarity, suppose to have just two independent variables x1

and x2. The Venn diagram in Figure 2.1 represents how the variance is shared
between them and the response variable. The partial correlation coefficient
indicates the correlation between y and xi without taking into account any
contribution by xj:

r2yxi¨xj
“

¨

˝

ryxi
´ rxixj

ryxj
b

1 ´ r2xixj

b

1 ´ r2yxj

˛

‚

2

. (2.5)

The same measure can be calculated by means of the coefficient of deter-
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mination R2. Let R2
y|xixj

be the coefficient of determination of the model

y “ β0 ` βixi ` βjxj. Then, (2.5) is equivalent to

r2yxi¨xj
“

R2
y|xixj

´ R2
y|xj

1 ´ R2
y|xj

. (2.6)

Nevertheless, this coefficient neglects the variance in y explained by xj.
Instead, semi-partial correlation coefficients consider it and remove just the
influence of xj over xi, obtaining

r2ypxi¨xjq “

¨

˝

ryxi
´ rxixj

ryxj
b

1 ´ r2xixj

˛

‚

2

, (2.7)

equivalent to
r2ypxi¨xjq “ R2

y|xixj
´ R2

y|xj
. (2.8)

It actually measures the proportion of R2 associated to xi, aside from the
other independent variable taking part to the model. For this reason semi-
partial correlation coefficients are more suitable indicators of variable impor-
tance compared to partial correlation coefficients.

Going back to the general case with p independent variables, for each
variable xi its relative influence can be computed, extending (2.8) to

r2ypxi¨x´iq
“ R2

y|x ´ R2
y|x´i

, (2.9)

where x concisely denotes txku
p
k“1 and x´i denotes the whole set of indepen-

dent variables except for xi.
The main issue of linear regression is that it is based on several assump-

tions, which usually are not satisfied by real data - above all the linearity
hypothesis stands out. For these reason often is better to reach for other
methods and to abandon the use of r2-like measures.

2.2 Regression trees

Another very simple regression models are the regression trees. The idea is
to split the feature space in a partition R “ tRwuWw“1 by means of a set of
rules (as illustrated in Figure 2.2), and in each region Rw the target variable
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is approximated by ŷw, that often is the average value of the y observations
belonging to the region itself. The rules are ranked and each one fixes a value
that splits a feature domain. Each rule correspond to an internal node of the
tree, also called splitting node, and the total number of rules defines the tree
depth. A tree can be formally defined as

T px;Rq “

W
ÿ

w“1

ŷwχRwpxq (2.10)

where χRw is the characteristic function (also called indicator function) of
Rw, defined as,

χRwpxq :“

$

&

%

1 if x P Rw

0 if x R Rw

(2.11)

Regression trees are easily interpretable models and variable importance
is stated by the set of rules. Indeed, if a variable is not present in any of
the rules, then it has not much influence on the target one, and, among the
variables that participate in the rules, the higher is the rule ranking, the
more important is the feature.

On the other hand, this model is not very robust: a small variation in the
given sample can lead to very different fitted trees. To overcome this issue,
methods have been developed, that fit not just a tree, but a collection of
them, in order to gain robustness: this approach is called ensemble learning.

2.3 Ensemble learning methods

Ensemble methods combine a set of simple base models to boost their per-
formances, at the expense of interpretability. In the following sections we
will consider regression trees as base model.

2.3.1 Boosting

The boosting approach consists in stagewise methods that at each step learn
from the errors of the model trained at the previous step, adding to it a new
regression tree to improve its performances. Formally, at each step j, a new
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Figure 2.2: Two-dimensional regression tree example

tree is computed, solving the following optimization problem (equivalent to
(2.1)), which aims to minimise the overall prediction error:

R̂j “ argmin
Rj

N
ÿ

i“1

Lpyi, f
j´1
boostpxiq ` T pxi;Rjqq. (2.12)

Usually, to solve this minimisation problem the gradient descent method is
applied, and in such case the model is called gradient boosted trees.

Essentially, the first grown tree aims to predict the response value, then
the second one aims to compensate for the errors of the former. Supposing
that the loss function is the squared error,

Lpyi, fpxiqq “

N
ÿ

i“1

pyi ´ fpxiqq
2,

then the second tree achieves his goal simply being fitted to the first tree
residuals. Therefore, at the second iteration of the algorithm, the model
consists in the sum of two trees, one predicting the target variable value, the
other predicting the error committed by the former. Iterating the second
step, every new tree is fitted to the residuals of the model developed up to
that iteration. At the end we will obtain a model that is a sum of J trees:

fJ
boostpxq “

J
ÿ

j“1

T px;Rjq, (2.13)
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hence, the predicted values are given by the sum of the singular values pre-
dicted by each tree.

It should be noted that if each tree is composed of just one internal
node, the model is additive and no interaction between variable is considered.
Variable interactions can be represented by deeper trees, specifically, a model
made up of trees with maximum depth equals to k can describe up to k-way
interactions.

Differently from regression trees, gradient boosted models are hard to
interpret, but a variable importance measure is available, that gives insights
on the relationships between the features and the target variable. For each
tree the importance of an independent variable xk can be measured as

ζ2kpT q “

M´1
ÿ

m“1

ι̂2mχpxm
“ xkq, (2.14)

where M ´ 1 is the number of the tree internal nodes and ι̂2m is the squared
estimated improvement, expressed as squared error risk, gained in node m
by splitting over a variable, such variable is denoted as xm. In particular,

ι̂2m “ min
t

ι2mptq “ min
t

wt´
wt`

wt´
` wt`

pȳt´
´ ȳt`

q
2, (2.15)

where ȳt´
, ȳt`

are the response means for the instances which have xm ď t
and xm ą t respectively, and wt´

, wt`
are the corresponding total weights

[3]. Indeed, it is possible to assign different importance, or weight, to the
observations, such that instances with higher importance are more influential
in the fitting process. When the weights are not assigned, each observation
has same importance equals to 1. Hence, (2.14) sums for each internal node
the squared estimated improvement given by xk, that is different from zero
only when xm “ xk. This measure is not very useful, nor robust, for a single
tree, but averaging it over the whole set of trees of a boosted model, it gains
reliability and become a very useful interpretation instrument for boosting
methods:

ζ2k “
1

J

J
ÿ

j“1

ζ2kpTjq, with Tj “ T px;Rjq. (2.16)

2.3.2 Random forests

Another ensemble method are random forests. Differently from boosting,
random forests build a set of trees that are decorrelated. Indeed, whereas
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the goal of boosted models is to reduce bias, learning from the already grown
trees, random forests grow each tree separately leaving the bias unchanged.
However, the main difference between these two approaches is that boosted
models are constituted by the sum of each tree outcomes, whereas random
forests average the results of the grown trees:

fJ
rf pxq “

1

J

J
ÿ

j“1

T px;Rjq, (2.17)

where J is the number of trees generated.
The collection of trees is built by mean of the bootstrap method, that

is a resampling technique that creates new datasets of the same size as the
original one, just sampling it with replacement. Hence, each tree is fitted to
a different dataset, in order to obtain different trees.

To introduce further variability, the tree growing algorithm is slightly
modified. At each step a random features subset of size m ď p is sampled
and the splitting variable must belong to it. In this way, when the most
influent features do not belong to the random sample, the algorithm is forced
to choose variables that otherwise would not be considered, because they are
less influent.

Thanks to these characteristics, this method builds trees very different
from each other, learning from all the variable available and broadening its
knowledge. Therefore, averaging the tree outcomes, we obtain a model that
overcomes the lack of robustness, intrinsic to singular regression trees.

Due to their structure similar to boosted methods, random forests are
difficult to interpret as well, but the same measure (2.16) can be applied to
gain insights on variable relationships. It is noted that, since the splitting
variables are chosen every time over a different limited set of features, it
is likely that every independent variable will be eventually picked for the
splitting. Therefore, hardly some variable will have importance equal to
zero, differently from boosted models, where such occurrence is not unusual.

Moreover, another measure that quantifies the variable prediction strength
can be calculated for random forests. When the algorithm build a tree, some
observations from the original sample are left out, since they were not picked
in the bootstrapping process. Such observations constitute the so called out-
of-bag sample (OOB). Each tree is tested twice, first with the OOB sample
and then with the same sample but randomly permuting the values for a
variable xk. The resulting accuracy variation is averaged over all trees and
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normalised by the standard deviation of such variations. The more the ac-
curacy decays, the more the variable in exam is considered important.
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Chapter 3

Opening the black box

The ensemble models presented in the previous chapter belong to a group of
models called black box models. This name is due to their characteristic of
not being self-explanatory. It is difficult to trace back which features dynam-
ics brought to the obtained output. In order to understand such dynamics
we studied the ideas implemented by the R package ’iml’; thereafter we
implemented an alternative method more suitable for our case study.

3.1 iml package

The best way to understand how a single variable influences the response
variable is visualising this relation with a plot, such that it is readable also
by non-experts. The ’iml’ package makes it possible in three different ways,
which are presented below.

3.1.1 Individual conditional expectation curves and par-
tial dependence plots

Individual conditional expectation (ICE) curves and partial dependence plots
(PDPs) are the first two options [3, 10], very simple and intuitive, but reliable
only if the input variables are uncorrelated.

They evaluate the target variable for each observation multiple times,
varying the value of the feature xi whose effects are going to be plotted.
Therefore, a distinct analysis is carried out for each instance and the response
evolution for different values of xi is obtained as result.

12



Individual conditional expectation curves plot a line per observation show-
ing how the prediction is affected by the variation of xi. Instead, partial
dependence plots summarise all the lines in one representing the average:

f̄ipxiq “ E´i

”

f̂pXq

ı

“ E´i

”

f̂pxi,x´iq

ı

“

ż

f̂pxi,x´iqp´ipx´iqdx´i, (3.1)

with p´ipx´iq marginal probability density of x´i, defined as

p´ipx´iq “

ż

ppxqdxi, (3.2)

where ppxq is the joint probability density of all features. Hence, to detect
the relationship between the feature in exam xi and the response variable, the
model response is marginalised over the distribution of the other features x´i.
The result is a function that depends only on xi, including its interactions
with the others variables.

Instead of the integral, the following averaging is implemented:

f̄i,PDP pxiq “
1

N

N
ÿ

j“1

f̂pxi, xj,´iq, (3.3)

where N is the number of observations and xj,´i is the vector collecting the
feature values of the j-th observation except for the i-th variable. For large
datasets this formula can be computationally expensive, due to the fact that
for each distinct value of xi the model is evaluated N times.

Since averaging could hide some non-negligible effects and individual con-
ditional expectation plots potentially deliver more information, it could be a
valid alternative to plot both solutions together, as shown in Figure 4.10.

The main problem with these two approaches is that they are both based
on the assumption that there is no interaction or correlation between the
features, which is not so obvious. Taking this for granted carries the risk
of evaluating feature value combinations that are unrealistic, introducing
bias into the analysis. Indeed, the conditional density probability of the
feature in exam is neglected, and equal consideration is given to every value
combination whether it is likely or not. For example, let assume we are
analysing a dataset collecting physical information about a population, such
as height and weight, which are strongly correlated. Evaluating ICE curves
and PDPs, we would consider unlikely value combinations such as height
1.95 m and weight 45 kg, and those would contribute to the results as much
as realistic combination, that have been actually observed.
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3.1.2 Accumulated local effects plots

Accumulated local effects (ALE) plots overcome this problem [1, 10]. Instead
of carrying out an instance-wise analysis, they perform a neighbourhood-wise
analysis. Specifically, the analysed feature domain is split in intervals and
the variable influence is evaluated locally in each of them. Furthermore,
differently from PDPs, they do not plot the average response values, but
rather the average variations of the response variable, delivering the pure
effects of the variable in exam, without mixing them with the ones of all the
other features.

Let xi be the analysed variable, I “ tIkuKk“1 a partition of xi domain,
Jipkq “ tju the set of indexes corresponding to the observations for which
xj,i P Ik and nipkq its cardinality. For each instance xj, with j P Jipkq, the
model is applied twice, setting first xj,i equals to the right endpoint of Ik,
zk,i, and then to the left one, zk´1,i. Thereafter, the difference between the
two predicted values is calculated as

δIk,j “ fpzk,i, xj,´iq ´ fpzk´1,i, xj,´iq. (3.4)

Averaging the obtained differences tδIk,juk,j over each interval Ik, we obtain
the set of local average effects tδIkuk.

δIk “
1

nipkq

ÿ

jPJipkq

δIk,j. (3.5)

Finally, the accumulated local effects are calculated for each interval accu-
mulating the local average effects of the previous intervals.

f̃i,ALEpxiq “

Ki
ÿ

k“1

δIk , (3.6)

where Ki is the index of the interval IKi
to which the value xi belong.

Thereafter, to have mean effect zero, (3.6) is centred as

f̃˚
i,ALEpxiq “ f̃i,ALEpxiq ´

1

N

N
ÿ

j“1

f̃i,ALEpxj,iq. (3.7)

The main advantages of this method are two:
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Figure 3.1: For example, to evaluate the local effect in the interval r6, 8q, only
the observations belonging to it are considered, predicting for each of them
the value of y with x1 “ 8 and x1 “ 6. Then the differences are computed,
averaged and accumulated with the results obtained in the previous intervals.
Doing so we avoid to consider unrealistic data combinations such as px1, x2q “

p1, 7q.
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• the risk of considering unrealistic data instances is neutralized by shift-
ing the analysis from the entire domain of the variable for each instance
to local evaluations within neighbourhoods;

• the plotted effects are pure and not mixed with potentially correlated
features, due to the fact that the average is computed for the variations
of the predicted values, and not for the values themselves as in partial
dependence plots.

3.2 Partial cumulative differences plots

We picked some characteristics of the plots presented above and rearranged
them, designing partial cumulative differences (PCD) plots. The intuition
of ALE plots consisting in shifting the focus from the predicted values to
their variations has been preserved. Nevertheless, their local analysis could
result quite limiting in presence of small and imbalanced datasets. When
it is reasonable to assume that the risk to introduce unrealistic instances is
negligible, an approach similar to the one introduced by PDPs could be more
efficient. For these reasons we developed a new tool that allows displaying
partial cumulative differences in different ways, computing mean, median,
standard deviation and percentiles as best suits the needs.

A pseudo-code of the function is shown in Algorithm 1 and an implemen-
tation in R is reported in Appendix A. The inputs to the function are:

• dataset: the analysed data frame;

• variableName: a string containing the name of the variable in exam;

• fittedModel: an object of the class randomForest or gbm;

• meanMedian: a string specifying whether the mean or the median of
the effects should be plotted;

• percentile: the lower percentile that we want displayed together with
its symmetrical with respect to the median, if NULL (default value) the
standard deviation is plotted;

• categorical: a boolean variable specifying whether the variable in
exam is categorical or continuous (default).

16



Algorithm 1 pcdPlot pseudocode

1: function pcdPlot(dataset, variableName, fittedModel,

meanMedian, percentile = NULL, categorical = FALSE)
2: if categorical==TRUE then
3: domain Ð distinct observed values of variableName
4: else
5: domain Ð equispaced array over variableName domain

6: j Ð 1
7: for i in domain do
8: dataset[variableName] Ð i
9: predicted Ð apply fittedModel to dataset

10: if not first iteration then
11: difference Ð predicted - predictedOld

12: m Ð get meanMedian of difference
13: effect[j] Ð effect[j-1] + m

14: if percentile==NULL then
15: sd Ð get standard deviation of difference
16: upper[j] Ð effect[j-1] + sd

17: lower[j] Ð effect[j-1] - sd

18: else
19: p1 Ð get percentile of difference
20: p2 Ð get percentile of difference
21: upper[j] Ð upper[j-1] + p1

22: lower[j] Ð lower[j-1] + p2

23: predictedOld Ð predicted

24: j Ð j ` 1

25: plot effect, upper, lower and variableName distribution vs.
domain

The model is applied over each instance multiple times, varying the value
of the analysed feature over all its domain. Every time the value of the
variable in exam changes from η to η ` ∆ the difference between the new
predicted values and the ones calculated at the previous step, with xi “ ηI,
is calculated for every instance (line 11). At lines 12-13 the mean (or the
median) of these variations is evaluated and accumulated with the previous
values. In the same way, at lines 14-22, percentiles (or standard deviation)
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are computed. Finally, before restarting the cycle, the predicted values are
stored in order to be compared to the ones evaluated in the next step.

For a more complete evaluation, in order to avoid misleading interpreta-
tions, along the x axis it is provided a boxplot, showing the distribution of
values of the variable in exam in the original dataset.

When the analysed variable is categorical, it takes every value belonging
to its domain and, differently from continuous ones, a barplot is displayed
instead of a boxplot. In the following chapter some examples are reported
(Figures 4.11, 4.12, 4.13, 4.14).
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Chapter 4

Case study

4.1 Tetra Pak

In 1951 Ruben Rausing founded Tetra Pak, an innovative food packaging
company destined to become a market leader company. The very first prod-

Figure 4.1: Tetra Pak logo

uct developed was a tetrahedric carton for milk packaging, but over time
the company broadened its horizons, developing not only packaging, but also
processing and distribution solutions for a huge variety of beverages and food
products. Today Tetra Pak is the world’s leading food packaging company
delivering end-to-end solutions to thousands of customers worldwide.
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Figure 4.2: A set of different Tetra Pak packages

4.1.1 Case study description

Due to confidentiality reasons only a simplified version of the real problem is
reported in this thesis.

For its production needs, Tetra Pak relies on a worldwide network of
suppliers, buying from one or more of them in each country where it operates.
The variable of interest is the number of successfully delivered orders from
suppliers to Tetra Pak. In particular we want to know which variables affect
it, in which way, and whether the socio-economic and geographic framework
of the different countries plays any role. In this simplified version of the
problem, the assumption done on the response variable is that the higher the
better.

4.2 Data collection and variables selection

4.2.1 Internal data

The first source of data was a company’s internal database, containing sup-
pliers data. Tetra Pak collects data from its suppliers, but not all of them are
sharing information and sometimes data are not accurate enough to guaran-
tee reliability. For these reasons, the amount of missing data is considerable
and part of the data available is based on estimations. Futhermore, some
information are manually collected from people, hence human errors can oc-
cur. Therefore, it was necessary a prior cleansing process delivered by means
of SQL scripts.

In the following, a summary description of these data is provided. For
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each supplier we know:

• country;

• production capacity;

• percentage of capacity dedicated to Tetra Pak supplies;

• company type (a categorical variable which can assume five different
values);

• production equipment level;

• number of raw material suppliers;

• number of successfully delivered orders to Tetra Pak.

The last one is the variable of interest and from now on we will refer to it as
sales.

Furthermore, the orders belongs to different categories and for each sup-
plier is known which categories of orders produces. Thanks to these infor-
mation a co-supply index for each supplier s has been calculated:

ξpsq “
ÿ

cPCs

pNc ´ 1q

where Cs is the set of order categories produced by the supplier s and Nc

is the number of suppliers, operating in the same country of the supplier s,
delivering the order category c P Cs. We subtract a unit from Nc to avoid
counting the supplier s itself. Furthermore, must be noted that a supplier s1

can be counted multiple times in the co-supply index of the supplier s if it
shares with s more than one order category. An example is shown in Figure
4.3.

4.2.2 External data

In order to understand if the culture, the socio-economic framework and
the geography of each country influence somehow the supplier sales, it was
necessary to retrieve data describing them. All these data have been collected
in a table in which each record corresponds to a country.
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ξpAq “ p3 ´ 1qsimp ` p3 ´ 1qmed ` p2 ´ 1qelab

“ 5

ξpBq “ p3 ´ 1qsimp “ 2

ξpCq “ p3 ´ 1qmed ` p2 ´ 1qelab “ 3

ξpDq “ p3 ´ 1qsimp ` p3 ´ 1qmed “ 4

Figure 4.3: Toy example of the calculation of co-supply indexes for suppliers
in a country.

Starting from the climate, five logical variables (equatorial, arid, warmTem-
perate, snow, polar) has been created and the values has been assigned re-
ferring to the five main climates of the Köppen-Geiger climate classification
[9]. In case of four or more climates present in the same country, just the
main three has been considered.

All the other external variables come from the dataset of the World Bank
named World Development Indicators. Among these indicators we selected
the ones pertaining to the analysis and available for all the countries where
Tetra Pak suppliers are present:

• totTax17 : percentage of commercial profits that businesses has to pay
as taxes overall in 2017;

• laborTax17 : percentage of commercial profits that businesses has to
pay as taxes on labor in 2017;

• profitTax17 : percentage of commercial profits that businesses has to
pay as taxes on profits in 2017;

• otherTax17 : percentage of commercial profits that businesses has to
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pay in 2017 as taxes that are not on labor or profits, such as vehicle
and fuel taxes, property taxes, municipal fees and so on;

• taxTime17 : hours spent in 2017 preparing and paying taxes, taking
into account only labour taxes, sales taxes and the corporate income
tax;

• distFront17 : distance to frontier score in 2017, that indicates how far
an economy is from the best performance recorded among all countries
since 2005, evaluating several topics, such as starting a business, getting
credit, registering property, etc.;1

• easyBus17 : ease of doing business in 2017, that is a ranking based on
the distance to frontier score, lower ranks corresponds to economies
that facilitates more business operations 1

• last10yDeaths : count of the battle-related deaths in the last ten years;

• popGrowth16 : percentage that expresses the exponential growth rate2

of population in 2016 compared to 2015;

• compEduc16 : number of years of compulsory education in 2016;

• PPP16 : Purchasing Power Parity conversion factor for 2016, that is the
amount of local currency necessary to purchase the amount of services
and goods in the local market that 1 U.S. dollar would purchase in
U.S.A.;

• gni16 : gross national income in 2016;

• gniGr16 : annual percentage of growth of gross national income in 2016;

• gnipc16 : gross national income per capita in 2016;

• gds16 : gross domestic savings in 2016 expressed as percentage of gross
domestic product;

1A more detailed description can be found at http://www.doingbusiness.org/

content/dam/doingBusiness/media/Annual-Reports/English/DB18-Chapters/

DB18-DTF-and-DBRankings.pdf

2G “ ln

ˆ

p2016
p2015

˙

, where pt is the midyear population for year t.
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• gdp16 : gross domestic product in 2016;

• gdpGr16 : annual percentage of growth of gross domestic product in
2016;

• gdppc16 : gross domestic product per capita in 2016;

• gdppcGr16 : annual percentage of growth of gross domestic product per
capita in 2016;

• gdpPPP16 : gross domestic product in 2016 converted by means of
purchasing power parity rates to international dollars;

• gdpPPPpc16 : gross domestic product per capita in 2016 converted by
means of purchasing power parity rates to international dollars;

• infl16 : inflation in 2016;

• undernour15 : percentage of population whose nourishment does not
reach the minimum amount of dietary energy requirements in 2015.

Variable selection

Overall we had 32 variables with no insights on eventual redundancy shared
by some of them, especially the economic ones. To avoid useless computa-
tional complexity, we investigated whether we could reduce the number of
features, selecting the more significant. To achieve this goal we consulted
subject matter experts and applied an algorithm that studies the correla-
tion between the variables using the mutual information index [14], revealing
which are more significant for our variable of interest.

The selected variables are:

• Company.Type;

• Equipment.Level ;

• Production.capacity ;

• Dedicated.capacity ;

• Raw.material.suppliers ;

• Co.supply.index ;

• taxTime17 ;

• totTax17 ;

• laborTax17 ;

• distFront17 ;
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Figure 4.4: Correlation map
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• gnipc16 ;

• gdpPPP16 ;

• infl16.
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4.3 Data analysis

4.3.1 Regression analysis

Once the data were ready to be analysed, we assessed which regression model
suited better the problem in exam. Linear regression models are not appro-
priate for a problem of such complexity, where the relationships between
variables are unlikely to be linear. Whereas ensemble methods could be a
useful resource.

Before fitting any model it is recommended to understand the distribution
of the variables in exam. In particular it is important to analyse the response
variable, in order to know its order of magnitude and to be able to assess
whether the error committed by the model is negligible or not.

1 > summary(custData$Sales)

2 Min. 1st Qu. Median Mean 3rd Qu. Max.

3 1.000 4.000 6.000 6.889 9.000 43.000

As we can see, Sales takes mostly values of the order of units, hence, an
error of few units is quite high, but, in the same way, if a feature influences
the target variable just by a unit it is quite significant.

Starting from boosting, there exists an R package, called ’gbm’, that
implements gradient boosted models. By mean of the function gbm it is
possible to fit a model, giving as inputs:

• formula: a regression formula describing the model to fit;

• distribution: a string specifying the target variable distribution;

• data: the data frame to analyse;

• n.trees: number of trees to fit;

• interaction.depth: maximum depth of trees allowed, namely maxi-
mum interaction level allowed among variables, (e.g., when equal to 1
no interaction is considered and the model is additive);

• cv.folds: if greater than 1 the algorithm perform a cross-validation
at each iteration and the number of folds is equal to cv.folds.
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This function takes as inputs also many other variable that we are not going
to discuss, but a complete explanation is available on CRAN website.3.

In our case, we are interested to regress sales on all the other variables
and the most suitable choice as distribution is the Poisson. As a first try,
we stick to the default values for n.trees and interaction.depth, that are
respectively 100 and 1. Running the following line we obtain a gbm object
named saleBoost:

1 > saleBoost <- gbm(Sales~.,data=saleData, distribution ="poisson",

n.trees =100, interaction.depth =1)

To understand whether a hundred trees are enough or not for a good
fit, we can use the function gbm.perf that calculates the optimal number of
iterations, taking as inputs a gbm object and the method used to compute
the estimate. The methods available are three, out-of-bag estimate, out-of-
sample estimate and cross-validation, but the last one can be considered the
most reliable, as shown in [13]. Hence, if we want to run gbm.perf with
cross-validation, we first need to run again the above code setting cv.folds

different from the default value 1. The loss function used by the algorithm to
assess the error depends on distribution value. When it is set as ”poisson”
the error is expressed as Poisson deviance [13].

2 > saleBoost <- gbm(formula = Sales~., data = saleData,

distribution = "poisson", n.trees = 100, interaction.depth = 1,

cv.folds = 10)

3 > gbm.perf(object = saleBoost, method = "cv")

4

5 [1] 37

The function gbm.perf along with the optimal number of iteration, give
as output a plot as Figure 4.5 by default. It is possible to disable it by setting
the input plot.it equal to FALSE.

Figure 4.5 shows the error evaluated on the training set (in black) and
on the test set (in green) at each iteration. In blue it is shown the iteration
that reports the lowest error on the test set, corresponding to the output
displayed in console at line 5.

Since the estimated optimal number of iteration is well below 100, it is
not necessary to increase n.trees. Furthermore, it is neither useful to reduce

3https://cran.r-project.org/web/packages/gbm/gbm.pdf
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Figure 4.5: GBM performance plot

it, because we would fit again the same model, simply stopping the algorithm
early, not growing the trees that provide no added value to the model. Hence,
we would execute the same code two times without any further benefit.

Regarding the tuning of the variable interaction.depth, we decided to
allow at most 3-way interaction, therefore, by means of cross-validation we as-
sessed which value assign to it. A vector of size n.trees, collecting the error
computed at each iteration as Poisson deviance, is stored as cv.error in any
gbm object that has been obtained by running gbm with cross-validation.
Calling the function summary on such vector we can compare the perfor-
mances of different models.

6 > set.seed(1369)

7 > saleBoost1 <- gbm(Sales~., data=saleData, distribution

="poisson", n.trees =100, interaction.depth =1, cv.folds = 10)

8 >

9 > set.seed(1369)

10 > saleBoost2 <- gbm(Sales~., data=saleData, distribution

="poisson", n.trees =100, interaction.depth =2, cv.folds = 10)

11 >

12 > set.seed(1369)

13 > saleBoost3 <- gbm(Sales~., data=saleData, distribution
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="poisson", n.trees =100, interaction.depth =3, cv.folds = 10)

14 >

15 > summary(saleBoost1$cv.error)

16 Min. 1st Qu. Median Mean 3rd Qu. Max.

17 -12.99 -12.98 -12.97 -12.96 -12.96 -12.82

18 > summary(saleBoost2$cv.error)

19 Min. 1st Qu. Median Mean 3rd Qu. Max.

20 -12.98 -12.97 -12.94 -12.94 -12.93 -12.83

21 > summary(saleBoost3$cv.error)

22 Min. 1st Qu. Median Mean 3rd Qu. Max.

23 -12.98 -12.96 -12.93 -12.93 -12.91 -12.84

It can be noted that the performances do not vary significantly, changing
the value of interaction.depth. However, comparing the quartiles and the
mean, it results that the error is slightly smaller when interaction.depth

is equal to 1.
The code executed by the gbm function also computes the variable im-

portance defined as (2.16). To display these values we just need to call the
function summary on the gbm object and it will returns both the variable list
with their relative importance and a barplot, see Figure 4.6.

24 > summary(custBoost1)

25 var rel.inf

26 Production.capacity Production.capacity 21.338838

27 Dedicated.capacity Dedicated.capacity 17.780234

28 Co.supply.index Co.supply.index 12.032458

29 Equipment.Level Equipment.Level 7.531387

30 Raw.material.suppliers Raw.material.suppliers 7.522901

31 gnipc16 gnipc16 6.165835

32 gdpPPP16 gdpPPP16 5.427797

33 laborTax17 laborTax17 5.179042

34 Company.Type Company.Type 4.678017

35 taxTime17 taxTime17 3.567275

36 totTax17 totTax17 3.387600

37 infl16 infl16 2.713270

38 distFront17 distFront17 2.675347

Thereafter, we fitted a random forest model, by means of the func-
tion randomForest, belonging to the homonymous R package. As gbm,
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Figure 4.6: Feature relative importance in gradient boosted model.
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randomForest take several variables in input4, but we are going to discuss
just few of them. In particular:

• formula: a regression formula describing the model to fit;

• data: the data frame to analyse;

• ntree: number of trees to fit;

• mtry: size of the features random sample from which the splitting
variable is chosen;

• importance: logical variable specifying whether the variable impor-
tance should be computed or not.

Since the aim is to understand the behaviour of the variables, importance
will be set to TRUE. Instead, ntree and mtry can be tuned, respectively, with
cross-validation and a specific function, tuneRF, implemented in the package
itself.

Specifically, a cross-validation function, computing the mean squared er-
ror, has been implemented (see Appendix B for the R code) and executed for
random forests built with different values of ntree. Then, the performances
have been plotted as shown in Figure 4.7.

39 > ntrees <- c(10, 20, 30, 40, 50, 70, 90, 120, 150, 200, 250, 300,

400, 500, 600, 700, 800, 900, 1000)

40 > crossVal <- 0

41 > j <- 1

42 > for (i in ntrees) {

43 + crossVal[j] <- crossValidation(data = custData, y = "Sales",

method = "RandomForest", ntree = i)

44 + j <- j+1

45 + }

46 > plot(ntrees,crossVal)

Repeating this cross-validation test multiple times, we assessed that 200
is a good choice as ntree, since compared to smaller values the error drops
remarkably, but adding further trees does not bring any significant improve-
ment to the model.

4randomForest package documentation available at https://cran.r-project.org/web/-
packages/randomForest/randomForest.pdf
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Figure 4.7: ntree tuning.

To establish which value is more suitable for mtry we can simply apply
the function tuneRF giving as inputs5

• x: matrix or data frame of features;

• y: target variable vector;

• ntreeTry: number of trees to grow;

• stepFactor: parameter by which mtry is inflated or deflated, at each
step;

• improve: the minimum improvement in OOB error necessary to con-
tinue the research.

It calculates for different values of mtry the OOB error of the model and
display it both in console and with a plot, see Figure 4.8.

47 > saleFeatures <- saleData

48 > saleFeatures$Sales <- NULL

5Also for this function more inputs are available, see https://cran.r-project.org/web/-
packages/randomForest/randomForest.pdf.
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Figure 4.8: mtry tuning.

49 > mtryTune <- tuneRF(x = saleFeatures, y = saleData$Sales,

ntreeTry = 200)

50 mtry = 4 OOB error = 16.85785

51 Searching left ...

52 mtry = 2 OOB error = 16.34912

53 0.03017736 0.05

54 Searching right ...

55 mtry = 8 OOB error = 16.76721

56 0.005376473 0.05

We executed the function with the selected value of ntree, the default
value of improve, that is 0.05, and with different values of stepFactor. The
only value of mtry that seems to perform slightly better than the default
value 4, is 2.

As a double check we tuned again ntree setting mtry = 2 and the value
previously selected has been confirmed.

Once all the parameters have been assessed, we fitted the random forest:

57 > sale.rf <- randomForest(formula = Sales ~ ., data = saleData,
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importance = TRUE, ntree = 200, mtry = 2)

sale.rf is a random forest object containing several information about
the model. Among them we can find the variable importance calculated
as discussed in 2.17, stored as importance. Furthermore, it is possible to
plot these values similarly as for boosted trees models , with the function
varImpPlot, that takes as input a random forest object (see Figure 4.9).

58 > sale.rf$importance

59 %IncMSE IncNodePurity

60 Co.supply.index 0.52425623 1295.6443

61 Production.capacity 1.60869976 1657.5130

62 Dedicated.capacity 2.01710216 1799.0010

63 Company.Type 0.19936245 703.3986

64 Equipment.Level 1.01524422 1254.2139

65 Raw.material.suppliers 0.35104074 1133.1120

66 taxTime17 0.04327482 614.4901

67 totTax17 0.18871698 649.8098

68 laborTax17 0.18591600 712.9181

69 distFront17 0.42057431 685.3919

70 gnipc16 0.40651533 679.2631

71 gdpPPP16 0.25153233 674.2369

72 infl16 0.25871958 605.5216

73

74 > varImpPlot(sale.rf)

It should be noted that the results of the two measurements are pretty
consistent. Indeed, the top four is the same, with the only difference in
Equipment.Level and Co.supply.index that are inverted, but, actually, it is
almost a tie when they are calculated with (2.16). In general this measure
tends to distribute the importance quite uniformly over the features, indeed,
we could split the variables in three group: extremely influent, very influ-
ent, ordinarily influent. If we need a more detailed ranking, we can consult
the other measure that delivers a less uniform influence distribution. The
only difference between this two measures that stands out regards Raw.ma-
terial.supplier, that results very influent on one side, but not so much on the
other, where it switches its position with gnipc16.

Similar remarks may be made confronting the results computed with
(2.16) over the two different models. Indeed, they detect as most impor-
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Figure 4.9: Feature relative importance in random forest model. The mea-
surements are computed permuting the OOB sample on the left and evalu-
ating the improvement gained by splitting on the variable on the right.

tant the same variables and the random forest does not deliver many other
information about the others, differently from boosted trees.

However, the results obtained with the boosted trees model cannot be
trusted much. Performing a cross-validation analysis, we assessed by com-
parison of mean squared errors, that this model perform much worse than
the random forest.

75 > crossValidation(custData, "Sales", "RandomForest", ntree = 200)

76 [1] "folds= 10"

77 [1] 16.82437

78

79 > crossValidation(custData, "Sales", method = "Boosting",

ntree=100)

80 [1] "folds= 10"

81 [1] 44.84724

One might fairly object that both of them lack in accuracy, but it is
important to remember that the purpose of this analysis it is not to predict
the target variable, but instead, to acquire knowledge about the underlying
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system dynamics.

4.3.2 Visualisation

Thanks to the importance measures we assessed which features are more
significant to the variable of interest, but we still did not know which re-
lationship bounds them and how the target variable varies when a feature
value increases or decreases. We wanted to graphically illustrate it in order
to complete the task in the clearest possible way.

Since the analysed sample is quite limited and imbalanced, probably ac-
cumulated local effects plots are not a good choice. Indeed, our dataset
imbalance does not correspond necessarily to the reality, but rather to a lim-
ited availability and quality of data. In this case taking into account not
observed feature values combinations, could help broaden our vision, lead-
ing to a more general analysis. After consulting subject matter experts, in
order to make sure there were no risks to introduce unrealistic instances, we
concluded that in this case partial cumulative differences plots are the best
option. However, for the sake of completeness, the following shows how to
obtain all the plots presented in Chapter 3.

Since we assessed that the random forest model performs better than the
gbm one, all the plots are generated exploiting the first.

The command FeatureEffect$new(), belonging to the iml package, al-
lows computing all the plots discussed in 3.1 just specifying:

• predictor: a Predictor object, that can be obtained with the com-
mand Predictor$new() that takes as input the predictive model, the
features sample and the respective target variable observations (see line
83);

• feature: a string containing the name of the variable in exam;

• method: a string specifying which plot should be generated (’ale’,
’pdp’, ’ice’, ’pdp+ice’).

For example, it is possible to obtain the plots in Figure 4.10 with the
following code:

82 > X = saleData[which(names(custData) != "Sales")]

83 > predictors = Predictor$new(sale.rf, data = X, y =

saleData$Sales)
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84 >

85 > aleProd = FeatureEffect$new(predictor, method = ’ale’, feature =

"Production.capacity")

86 > aleProd$plot()

87 >

88 > pdpProd = FeatureEffect$new(predictor, method = ’pdp’, feature =

"Production.capacity")

89 > pdpProd$plot()

90 >

91 > iceProd = FeatureEffect$new(predictor, method = ’ice’, feature =

"Production.capacity")

92 > iceProd$plot()

93 >

94 > pdpiceProd = FeatureEffect$new(predictor, method = ’pdp+ice’,

feature = "Production.capacity")

95 > pdpiceProd$plot()

The pcdPlot function, that plots the partial cumulative differences of a
variable, is already been explained in details in 3.2. To execute this function
the R package plotly is required.

To verify the results obtained by the computation of variable importance
delivered by the random forest model, we report here the plots for three
variables, each belonging to a different level of influence individuated in the
previous section: Production.capacity as extremely influent feature, Equip-
ment.Level as very influent and totTax17 as ordinarily influent. Furthermore,
to show all the potentialities of the function we plot the mean and standard
deviation for the former and the median with the percentiles for the others.
In Appendix C are reported the partial cumulative differences plots for all
the variables.

96 > library(plotly)

97 > pcdPlot(dataset = saleData, variableName =

"Production.capacity", fitted = sale.rf, meanMedian = "mean")

98 >

99 > pcdPlot(dataset = saleData, variableName = "Equipment.Level",

fitted = sale.rf, meanMedian = "median", percentile = 0.35)

100 >

101 > pcdPlot(dataset = saleData, variableName = "totTax17", fitted =

sale.rf, meanMedian = "median", percentile = 0.35)
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Figure 4.10: ALE plot (top left), PDP (top right), ICE plot (bottom left),
PDP+ICE (bottom right) for Production.capacity.

39



Figure 4.11: Production.capacity partial cumulative differences plot. The
standard deviation is multiplied by 6 for a more readable visualisation.

Considering the order of magnitude of Sales, the variation delivered by
Production.capacity is remarkably large, as assessed previously. Also the
other two plots confirm the previous results. Indeed, in the PCD plot of
Equipment.Level the Sales median value varies overall by about 1 unit, and
by about 0.3 units in relation to totTax17. Furthermore, it can be noted that
in both these plots the range delimited by the percentiles, and therefore the
variance, increases with the variable in exam.

Such plots confirmed expected relationships, but also revealed unsus-
pected dependencies, deepening our knowledge about the system. Whereas it
seems clear that suppliers with larger production capacity delivers an higher
number of order, it is not that obvious that relying on a lower number of raw
material suppliers implicates a smaller amount of delivered orders, as shown
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Figure 4.12: Equipment.Level partial cumulative differences plot.
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Figure 4.13: totTax17 partial cumulative differences plot.
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Figure 4.14: Raw.material suppliers partial cumulative differences plot.

in Figure 4.14.
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Chapter 5

Conclusions

Since the amount of data available nowadays is increasing exponentially, it is
possible to model and analyse always more complex systems. Many models
allow accomplishing regression analysis delivering accurate results also for
complex problems, but retrieving their dynamics is not as simple.

The aim of this work was to design a method to quantify variable im-
portance and open the black box, delivering results understandable also by
non-experts in the data analysis field. For this reason the specific results of
the case study analysis are not discussed in details.

To achieve our goal we made use of regression models, trying to reveal
how they interpret and elaborate the information provided by the features
when predicting the target variable value. We focused on their influence over
the response variable both quantitatively and qualitatively.

Carrying out this analysis for a company, it was crucial to produce results
clearly interpretable by laymen. For this reason a specific attention has been
paid to graphical tools.

Analysing the case study, we have assessed that random forest models
performed better and partial cumulative differences plots were more suitable
to achieve our goal. However, it is very important to understand that the
choice of the methods to apply must be carried out on the basis of the dataset
to analyse.

Furthermore, it should be kept in mind that limiting the interpretation
to partial effects analysis is not advised, because features interactions could
play a crucial role in the fitted model. However, as expected, detecting
variable interactions behind a black box model is even more challenging than
detecting the relative effects of the single features.
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An interesting method to achieve this goal has been developed and imple-
mented in the astrid package [5, 6], but it is suitable only for classification
problem and it is extremely computationally demanding. We tried to ap-
ply it to our case study, discretizing the response variable, but the results
were not significant. The development of a tool for the analysis of variable
interaction in regression models will be the aim of further studies.

The next step for Tetra Pak will be to automate the type of analysis
discussed in this work at the maximum extent, in order to successfully model
highly complex systems.
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Appendix A

R code for partial cumulative
differences plot

1 pcdPlot <- function(dataset, variableName, fittedModel,

meanMedian, percentile= NULL, categorical = FALSE){

2 #dataset: the analysed data frame

3 #variableName: a string containing the name of the variable in

exam

4 #fittedModel: an object of the class randomForest or gbm

5 #meanMedian: a string specifying whether the mean or the median

of the effects should be plotted

6 #percentile: the lower percentile that we want displayed together

with its symmetrical with respect to the median, if NULL

(default value) the standard deviation is plotted

7 #categorical: a boolean variable specifying whether the variable

in exam is categorical or continuous (default)

8

9 #extract an array with the variableName values

10 varPlot <- dataset[[variableName]]

11

12 #array that collects all observed values of variableName in

ascendent order, (removing duplicates)

13 variable <- sort(unique(dataset[[variableName]]))

14

15 #if the model is fitted with the gradient boosted trees method

the optimal number of trees in order to predict y is retrieved

16 if(class(fittedModel)=="gbm"){
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17 ntree <- gbm.perf(fittedModel, method = "cv")

18 }

19

20 #when the variable analysed is continuous, an equispaced array is

generated with extremes equal to the observed domain

boundaries of the variable in exam, and increment equals to

the average gap between the observed values. If the array

size would be greater than 300, then the increment is not

set, instead the size is set to 300

21 if(!categorical){

22 gap <- diff(variable)

23 avgGap <- mean(gap)

24 if(avgGap >= 1){

25 avgGap <- round(avgGap)

26 }

27 minimum <- min(variable)

28 maximum <- max(variable)

29 if((maximum - minimum)/avgGap>300){

30 variable <- seq(from = minimum, to = maximum, length.out =

300)

31 avgGap <- variable[2]-variable[1]

32 }

33 else{

34 variable <- seq(from = minimum, to = maximum, by = avgGap)

35 }

36 }

37

38 test <- dataset

39 j <- 1

40

41 #declare arrays in which mean/median and percentiles/standard

deviation values will be stored

42 var <- array(0, dim = length(variable))

43 upper <- array(0, dim = length(variable))

44 lower <- array(0, dim = length(variable))

45

46 #loop over the different values of the variable in exam

47 for (i in variable){

48

49 #set analysed variable value to i for all observations
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50 if(categorical){

51 test[variableName] <- factor(i, levels = variable)

52 }else{

53 test[variableName] <- i

54 }

55

56 #predict y for each observation with gbm or randomForest

57 if(class(fittedModel)=="gbm"){

58 predicted <- predict(fittedModel, test, n.trees = ntree)

59 }

60 else{

61 predicted <- predict(fittedModel, test)

62 }

63 if(j>1){

64 #from second iteration on calculate difference respect

previous step

65 diff <- predicted-prev

66 #calculate mean/median of the differences and accumulate it

with the previous values

67 if(meanMedian=="mean"){

68 var[j] <- var[j-1]+mean(diff)

69 }else if(meanMedian=="median"){

70 var[j] <- var[j-1]+median(diff)

71 }else{

72 stop("meanMedian value is wrong: nether median nor mean")

73 }

74 if(is.null(percentile)){

75 #calculate standard deviation of the differences and add

it to and subtract it from

76 #the mean/median to obtain a range

77 stddev <- sd(diff)

78 upper[j] <- (var[j]+6*stddev)

79 lower[j] <- (var[j]-6*stddev)

80 }else{

81 #calculate given percentile and its symmetrical with

respect to the median and accumulate them with the

previous values

82 upper[j] <- upper[j-1]+quantile(diff, percentile)

83 lower[j] <- lower[j-1]+quantile(diff, 1-percentile)

84 }
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85 }

86 #save values predicted to compute differences in the next

iteration

87 prev <- predicted

88 j <- j+1

89 }

90 #plot results

91 if(categorical){

92 if(meanMedian=="mean"){

93 p1 <- plot_ly( x=~variable, y=~var, type = "scatter", name =

’average variation’) %>%

94 add_trace(y=~upper , color=’rgb(22, 96, 167)’, line =

list(color=’rgb(22, 96, 167)’, dash="dash"), name =

’6*StdDev’, opacity=0.5) %>%

95 add_trace(y=~lower , color=’rgb(22, 96, 167)’, line =

list(color=’rgb(22, 96, 167)’, dash="dash"),

opacity=0.5, showlegend = FALSE) %>%

96 layout(title= paste0(variableName, ’ vs. Delta Sales’),

xaxis= list(title=variableName), yaxis=

list(title=’Delta Sales’))

97 }else if(meanMedian=="median"){

98 p1 <- plot_ly( x=~variable, y=~var, type = "scatter", name =

’median’) %>%

99 add_trace(y=~upper , color=’rgb(22, 96, 167)’, line =

list(color=’rgb(22, 96, 167)’, dash="dash"), name =

paste0(percentile, ’% - ’, 1-percentile, ’%’),

opacity=0.5) %>%

100 add_trace(y=~lower , color=’rgb(22, 96, 167)’, line =

list(color=’rgb(22, 96, 167)’, dash="dash"), name =

paste0(1-percentile, ’%’), opacity=0.5, showlegend =

FALSE) %>%

101 layout(title= paste0(variableName, ’ vs. Delta Sales’),

xaxis= list(title=variableName), yaxis=

list(title=’Delta Sales’))

102 }

103 p2 <- plot_ly(x=~varPlot, name = "frequence", showlegend =

FALSE)

104 }else{

105 if(meanMedian=="mean"){

106 if(is.null(percentile)){
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107 p1 <- plot_ly( x=~variable, y=~var, type = "scatter", mode

= "lines", name = ’average variation’) %>%

108 add_trace(y=~upper , line = list(color=’rgb(22, 96,

167)’, dash="dash"), name = ’6*StdDev’, opacity=0.5)

%>%

109 add_trace(y=~lower , line = list(color=’rgb(22, 96,

167)’, dash="dash"), name = paste0(1-percentile, ’%’),

opacity=0.5, showlegend = FALSE) %>%

110 layout(title= paste0(variableName, ’ vs. Delta Sales’),

xaxis= list(title=variableName), yaxis=

list(title=’Delta Sales’))

111 }

112 else{

113 p1 <- plot_ly( x=~variable, y=~var, type = "scatter", mode =

"lines", name = ’average variation’) %>%

114 add_trace(y=~upper , line = list(color=’rgb(22, 96, 167)’,

dash="dash"), name = paste0(percentile, ’% - ’,

1-percentile, ’%’), opacity=0.5) %>%

115 add_trace(y=~lower , line = list(color=’rgb(22, 96, 167)’,

dash="dash"), name = paste0(1-percentile, ’%’),

opacity=0.5, showlegend = FALSE) %>%

116 layout(title= paste0(variableName, ’ vs. Delta Sales’),

xaxis= list(title=variableName), yaxis=

list(title=’Delta Sales’))

117 }

118 }else if(meanMedian=="median"){

119 if(is.null(percentile)){

120 p1 <- plot_ly( x=~variable, y=~var, type = "scatter", mode

= "lines", name = ’median’) %>%

121 add_trace(y=~upper , line = list(color=’rgb(22, 96,

167)’, dash="dash"), name = ’6*StdDev’, opacity=0.5)

%>%

122 add_trace(y=~lower , line = list(color=’rgb(22, 96,

167)’, dash="dash"), name = paste0(1-percentile, ’%’),

opacity=0.5, showlegend = FALSE) %>%

123 layout(title= paste0(variableName, ’ vs. Delta Sales’),

xaxis= list(title=variableName), yaxis=

list(title=’Delta Sales’))

124 }

125 else{
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126 p1 <- plot_ly( x=~variable, y=~var, type = "scatter", mode

= "lines", name = ’median’) %>%

127 add_trace(y=~upper , line = list(color=’rgb(22, 96,

167)’, dash="dash"), name = paste0(percentile, ’% - ’,

1-percentile, ’%’), opacity=0.5) %>%

128 add_trace(y=~lower , line = list(color=’rgb(22, 96,

167)’, dash="dash"), name = paste0(1-percentile, ’%’),

opacity=0.5, showlegend = FALSE) %>%

129 layout(title= paste0(variableName, ’ vs. Delta Sales’),

xaxis= list(title=variableName), yaxis=

list(title=’Delta Sales’))

130 }

131 }

132 #add distribution boxplot

133 p2 <- plot_ly(x=~varPlot, type = "box", name = "distribution",

showlegend = FALSE)

134 }

135 x <- list(title = variableName)

136 y <- list(title = ’Delta Sales’)

137 subplot(p1, p2, nrows = 2, heights = c(0.9, 0.1), shareX = TRUE)

%>%

138 layout(title= paste0(variableName, ’ vs. Delta Sales’),

xaxis=x, yaxis=y)

139 }
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Appendix B

R code for cross-validation

1 crossValidation <- function(data, y, method, dimBlocks = 0.1,

ntree=1000){

2 #data: the analysed data frame

3 #y: a string containing the name of the variable in exam

4 #method: a string specifying the method to validate, options:

"RandomForest", "Boosting"

5 #dimBlock: folds size expressed as percentual of the dataset size

6 #ntree: number of tree to grow in both methods

7

8 #n number of obs per fold (last fold will have also the remaining

obs)

9 #k number of folds

10

11 dimension <- nrow(data)

12 n <- as.integer(dimension*dimBlocks)

13 k <- 1/dimBlocks

14 extra <- dimension%%k

15 # print(paste0("folds= ", k))

16 err <- 0

17 if (method == ’RandomForest’){

18 #loop over first k-1 folds

19 for (i in 1:(k-1)){

20 #definition of train set and test set

21 test <- data[((n*(i-1))+1):(n*i),]

22 train <- data[-(((n*(i-1))+1):(n*i)),]

23 #fit the model
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24 fmla <- as.formula(paste0(y, "~."))

25 rf <- randomForest(fmla, data = train, ntree=ntree, mtry = 2)

26 #predict y for test set and compute mean squared error

27 pred <- predict(rf, test)

28 errVect <- (test[y]-pred)^2

29 err <- err + sum(errVect)/n

30 }

31 #repeat the code in the previous loop for the last fold

32 test <- data[((n*(k-1))+1):dimension,]

33 train <- data[-(((n*(k-1))+1):dimension),]

34 fmla <- as.formula(paste0(y, "~."))

35 rf <- randomForest(fmla, data = train, ntree=ntree, mtry = 2)

36 pred <- predict(rf, test)

37 errVect <- (test[y]-pred)^2

38 err <- err + sum(errVect)/(n+extra)

39 err <- err/k

40 }

41 else if (method == ’Boosting’){

42 #apply the same algorithm to the boosting case

43 for (i in 1:k){

44 test <- data[((n*(i-1))+1):(n*i),]

45 train <- data[-(((n*(i-1))+1):(n*i)),]

46 fmla <- as.formula(paste0(y, "~."))

47 custBoost <- gbm(fmla, data=train, distribution ="poisson",

n.trees =ntree, interaction.depth =5, cv.folds = 10)

48 pred <- predict(custBoost, test, n.trees=gbm.perf(custBoost,

method = "cv"))

49 errVect <- (test[y]-pred)^2

50 err <- err + sum(errVect)/n

51 }

52 test <- data[((n*(k-1))+1):dimension,]

53 train <- data[-(((n*(k-1))+1):dimension),]

54 fmla <- as.formula(paste0(y, "~."))

55 custBoost <- gbm(fmla, data=train, distribution ="poisson",

n.trees =ntree, interaction.depth =5, cv.folds = 10)

56 pred <- predict(custBoost, test, n.trees=gbm.perf(custBoost,

method = "cv"))

57 errVect <- (test[y]-pred)^2

58 err <- err + sum(errVect)/(n+extra)

59 err <- err/k
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60 }

61 else{

62 print("Error: invalid method")

63 }

64 return(err)

65 }
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Appendix C

Case study partial cumulative
differences plots

The variables are plotted in order of importance as calculated by (2.16) with
the random forest model in Chapter 4. The standard deviation is plotted
multiplied by 6 in order to make the plots more readable.
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Figure C.1: Dedicated.capacity partial cumulative differences plot.
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Figure C.2: Production.capacity partial cumulative differences plot.
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Figure C.3: Co.supply.index partial cumulative differences plot.
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Figure C.4: Equipment.Level partial cumulative differences plot.
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Figure C.5: Raw.material.suppliers partial cumulative differences plot.
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Figure C.6: laborTax17 partial cumulative differences plot.
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Figure C.7: Company.Type partial cumulative differences plot.
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Figure C.8: distFront17 partial cumulative differences plot.
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Figure C.9: gnipc16 partial cumulative differences plot.
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Figure C.10: gdpPPP16 partial cumulative differences plot.
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Figure C.11: totTax17 partial cumulative differences plot.
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Figure C.12: taxTime17 partial cumulative differences plot.
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Figure C.13: infl16 partial cumulative differences plot.
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[5] A. Henelius, K. Puolamäki, and A. Ukkonen. Find-
ing Statistically Significant Attribute Interactions. arXiv e-prints,
arXiv:1612.07597, 2017.

[6] A. Henelius, K. Puolamaki, and A. Ukkonen. Interpreting Clas-
sifiers through Attribute Interactions in Datasets. Proc. 2017 ICML
Workshop on Human Interpretability in Machine Learning (WHI 2017),
2017.
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