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Abstract

Molecular sorting is a complex system by which eukaryotic cells sort speci�c

proteins aggregating into localized domains, subsequently distilled into lipid

vesicles and transported to appropriate intracellular destinations. The main

di�culty in analyzing this process is related to its tridimensional evolution

on micrometric intracellular membrane structures called endosomes. Despite

being powerful tools, microscopy techniques have limit of resolution when

working on this scale. Consequently, to overcome the instrumental barriers

new methods are needed. The aim of this thesis work is to reconstruct the

molecular sorting from experimental images obtained by means of the micro-

scope. The whole project can be summarized in three main phases: image

acquisition, preprocessing and identi�cation of structures. I have collected

the experimental data, using a confocal �uorescence microscope, at Molec-

ular Biotechnology Center (MBC) of the Università degli Studi di Torino

(UniTo). Subsequently, the images have been preprocessed using the de-

convolution technique to remove the noise associated with the experimental

setup. At this stage, the main issue was the poor resolution. To cope with

this problem, I have developed a 3D reconstruction procedure, based on the

a priori knowledge about endosomal and protein domain morphologies. This

approach has proven to reach good results providing a faithful representa-

tion of the experimental images. The thesis is organized as follows. In the

�rst chapter molecular sorting is introduced. Then, in the second chapter

are presented the mathematical tools, while the third is devoted to the data

acquisition and to the deconvolution technique. Subsequently, in the fourth
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chapter the reconstruction procedure is explained. Finally, in the last two

chapters, the main results obtained are discussed, presenting conclusions and

future work.
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Chapter 1

Introduction

1.1 Motivation

The process of molecular sorting is an elaborate system whereby specifc pro-

teins and lipids are concentrated and distilled into nanometric lipid vesicles

in eukaryotic cells [14, 20]. This complex process takes place on the plasma

membrane, on inner membrane bodies called endosomes [22]. It is a crucial

phenomenon of great interest for a di�erent variety of biological phenomena.

In particular, molecular sorting conduce to the tra�c of vesicles, transport-

ing lipids and proteins to the most disparate subcellular locations [21], con-

tributing in this way to maintain their biochemical identity. However, still

today this dynamics is not yet fully understood. For this reason, it is clear

the great interest of biologists and physicists to investigate the phenomenon

experimentally [6].

Molecular sorting can be observed in real time using modern �uorescence

microscopy techniques, which are discussed in Chapter 3.

The experiments are carried out on cell cultures in vitro, in which the en-

dosome membrane and the proteins are made visible with �uorescent mark-

ers. These experiment provide real time movies of the process.

The main di�culties are related to the three-dimensional nature of the

phenomenon. In fact, the molecular factors can aggregate at each point of
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Chapter 1. Introduction

the endosome membrane and the process generating the domains changes

very quickly over time.

Besides, despite the continuous technological evolution, imaging tools

have resolution limits linked to the light nature and to its di�raction. In

fact, 3D visualization techniques are not yet widely used to observe phe-

nomena of this type. For this reason, the biologists analysis are limited to

observations carried on two-dimensional optical sections of the specimen.

To overcome the instrumental barriers new methods are needed.

The goal of the present work is to reconstruct the three-dimensional vol-

ume of the endosome and to identify the proteins domains on the lipid mem-

brane, using experimental images obtained from the microscope.

The images collected are called Z-stacks and are described in detail in

Chapter 3. They are data generated from a series of optical sections imaged

at regular intervals along the Z axes, as in Figure 1.1.

Figure 1.1: Example of Z-stack
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Chapter 1. Introduction

Using the current microscope techniques, it is possible to observe only

partially the volume into consideration. In fact, in our experiments, optimiz-

ing the acquisition parameters of the microscope, a resolution about 3 times

lower in the z-direction compared to the xy ones is obtained. Consequently,

the digital volume element of the images, the voxel, is strongly anisotropic,

with dimensions of ∆z = 155 nm and ∆x = ∆y = 45 nm.

To cope with this technical problems, the strategy is to use the knowledge

about the phenomenon. In fact, experimental observation suggest that the

protein domains have mostly a circular morphology [25]. Furthermore, theo-

retical considerations about the circular shape has been linked to the presence

of a linear tension, the 2D analogous of the surface tension observed in the

physical process of phase separation [8, 9].

Using the mathematical tools of information theory, probability, statistics

and optimization theory, I have developed a method able to reconstruct the

endosome 3D volume and the molecular agglomerates on the lipid membrane.

To summarize, the aim of the thesis is to acquire information about the

phenomenon, which can not be currently recorded due to the limit of the

instrument optics, exploiting the a priori knowledge of molecular sorting.
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Chapter 1. Introduction

1.2 Molecular Sorting

The cell is the fundamental structural and functional unit of living organisms.

There are two di�erent types of cells: prokaryotic and eukaryotic. Di�erently

from a prokaryotic cells, a eukaryotic cell has a more complex structure,

subdivided into more than a single intracellular compartments.

Several thousands of di�erent types of eukaryotic cells have been identi-

�ed. Over the time the evolution process allowed the specialization of eukary-

otic cells to perform dedicated functions such as movement, energy storage

and reproduction. Every cell belonging to this family has a plasma mem-

brane separating the interior of the cell from the outside environment, called

extracellular space. In addition, it is elaborately subdivided into functionally

distinct, membrane-enclosed compartments, also named organelles [1]. The

major intracellular compartments, common to all eukaryotic cells are shown

in Figure 1.2.

The cells have a nucleus that contains the genome which is the principal

site of DNA and RNA synthesis. The surrounding cytoplasm consists of the

cytosol and the cytoplasmic organelles suspended in it. Among the most im-

portant, the endoplasmic reticulum (ER) is a transport network for molecules

targeted for certain modi�cations and speci�c destinations. The ER has two

forms: the rough ER, which has on its surface ribosomes secreting proteins

into the ER, and the smooth ER, which lacks ribosomes.

Another fundamental organelle is the Golgi apparatus. Its primary func-

tion is to process and package macromolecules, such as proteins and lipids,

from the ER dispatching them to various destinations.

A further organelle is the mitochondria, where respiration occurs. This

process generates the energy for the cell by oxidative phosphorylation, using

oxygen to release the energy stored in cellular nutrients.

The lysosome is the organelle containing digestive enzymes which degrade

defunct or worn-out intracellular organelles, as well as macromolecules, parti-

cles, engulfed viruses or bacteria taken in from outside the cell by endocytosis.

On the way to lysosomes, endocytosed material must �rst pass through a se-
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Chapter 1. Introduction

ries of organelles called endosomes. The endocytosed molecules are sorted

on the endosomes that subsequently send them to their �nal destination.

In general, each membrane-enclosed organelle performs the same set of

basic functions in all types of eukaryotic cell.

Mitochondria 

Lysosomes
Cytoplasm

Endosome
Nucleus

Ribosomes

Rough ER 

Smooth ER Golgi Apparatus

Figure 1.2: The major intracellular compartments of an animal cell. The

cytosol (gray), ER, Golgi apparatus, nucleus, mitochondria, endosomes and

lysosomes are distinct compartments isolated from the rest of the cell by a

membrane.

Membranes are crucial to the life of the cell. As the cellular membrane

encloses it, de�nes its boundaries and maintains the essential di�erences be-

tween the cytosol and the extracellular environment, similarly, inside eu-

karyotic cells, the membranes of the organelles maintain the characteristic

di�erences between the contents of each organelle and the cytosol. Despite

their di�ering functions, all biological membranes have a common general

structure: each is a very thin �lm of lipid and protein molecules (Figure 1.3).
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lipid molecule protein molecule

lipid
bilayer
(5 nm)

Figure 1.3: A schematic view of a cell membrane and the general disposition

of its lipid and proteins [1].

Cell membranes are dynamic �uid structures, and most of their molecules

move in the plane of the membrane. In fact, many vital biochemical processes

take place in membranes or on their surfaces.

The lipid molecules are arranged as a continuous double layer of about

5 nm thick. This lipid bilayer provides the basic �uid structure of the mem-

brane and serves as a relatively impermeable barrier to the passage of most

water-soluble molecules.

Most membrane proteins span the lipid bilayer and mediate almost all

of the other functions of the membrane, including the transport of speci�c

molecules across it, and the catalysis of membrane-associated reactions.

For instance, the plasma membrane contains proteins which act as sen-

sors of external signals, allowing the cell to change its behavior in response

to environmental cues, including signals from other cells. The protein sen-

sors, or receptors, transfer information�rather than molecules�across the

membrane.

A simple example is given by cellular duplication. The starting structure

of the cell is initially isotropic. In response to external signal the cell breaks
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Chapter 1. Introduction

the membrane symmetry. At this stage is possible to observe the emergence

of a daughter cell, and subsequently the duplication, as shown in Figure 1.4.

t

Figure 1.4: Duplication of the cell.

A crucial point is to understand in which part of the cell the germ nucle-

ates. Speci�c membrane proteins aggregate into localized domains, deforming

the membrane. In these accumulation regions the germ forms leading to the

duplication process as graphically shown in Figure 1.5.

t

Figure 1.5: Molecular factors aggregation into localized domains leading to

the cell duplication.

Experimental evidence of the aggregation phenomenon can be obtained

by looking at the cells under a microscope. Molecular factors of interest are

marked with �uorescent molecules allowing their visualization.

In [25] experiments have been conducted on yeast cells, in which two

factors, Bem1 and Cdc3 were marked and followed over time. From these

experimental images (Figure 1.6) it is evident that the molecules are initially

spread on the cell membrane and subsequently aggregate into well-localized

domains.
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5 µm

Figure 1.6: Example of aggregation of molecular factors on the membrane of

a yeast cell [25].

Every membrane organelle contains its own characteristic set of enzymes

and other specialized molecules making it unique. Each set of these molecular

factors performs a di�erent function.

In the intracellular space, subsets of molecules (proteins, reactants, ions)

are concentrated to optimize the biochemical reactions in which they partic-

ipate. Because the lipid bilayer of cell membranes is impermeable to most

hydrophilic molecules, the membrane of an organelle must contain membrane

transport proteins to import and export speci�c metabolites [1].

These proteins can move between organelles in di�erent ways. The syn-

thesis of all proteins begins on ribosomes in the cytosol. Their subsequent

fate depends on the chemical composition, which can contain sorting signals

directing their delivery from the cytosol to organelle surfaces.

There are di�erent ways by which proteins move from one compartment

to another. The most common way is the vesicular transport, in which small

spherical transport vesicles, membrane-enclosed, transports proteins from

one compartment to another.
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The transport vesicles become loaded of molecules derived from a donor

compartment as they distill and pinch o� from its membrane; they discharge

these proteins into a second compartment by fusing with the membrane en-

closing that compartment, as shown in Figure 1.7.

DONOR
COMPARTMENT

TARGET
COMPARTMENT

Distilling
 vesicle

lipid bilayer membrane protein

FUSION

DISTILLATION

Figure 1.7: Transport vesicles are distillate from one compartment (donor)

and fusing with another (target) compartment. In this process, proteins are

transferred from one membrane to another.

These vesicles can take a great variety of pathways.

In each case to perform its function, the transport vesicles that buds from

a compartment must be selective. Therefore, these must take up only the

appropriate molecules and must fuse only with speci�c target membrane [1].
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Chapter 1. Introduction

The main reason is that the cell have to maintain the molecular and func-

tional di�erences between its compartments, preserving its special identity.

Therefore, the molecules distilled from the donor compartment has to be

sorted �rst.

The endosome is the organelle of the cell performing this task. The trans-

port vesicles, loaded of mixed molecular factors, fuse with the endosome

membrane as shown in Figure 1.8.

At this stage, themolecular sorting takes place: similar proteins aggregate

on the membrane of the endosome by mutual a�nity, creating homogeneous

circular domains.

Once sorted, the proteins are distilled again into transport vesicles. These

last, are then directed towards the target compartment, which can now rec-

ognize and accept them.

Endosome

Cell Membrane
Vesicles

A

A

A A

A

A

A A

B

B

B

B

BB B

C

C

C

C

C

C C

B B

C

Molecular factors

Sorting

Figure 1.8: Molecular Sorting
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Speci�cally, this happens in the case of endocytosis process, in which the

molecules arriving from the extracellular space are internalized by means of

transport vesicles derived from the cellular membrane. The same molecules

are sorted on the endosomes and again distilled into vesicles. These can be

now transported into the cytosol to be used in various biosynthetic processes,

such as being delivered to the lysosome for degradation, to the plasma mem-

brane to be released into the extracellular space or to other compartments

to be further processed.

There are many di�erent families of proteins taking part to molecular

sorting. The most common is the Rab family, with over 60 members [1],

such as Rab11, Rab4, Rab5 etc.

In particular, the sorting of Rab11 on the lipid membrane of the endo-

some will be considered in the present work. The aim is to give useful tools

for further investigations on molecular sorting which is still today poorly

understood.
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Chapter 2

Mathematical Framework

In this chapter the main mathematical tools used in this thesis are exposed.

In particular some de�nitions taken from information theory and statistics.

These concepts will be very useful in the development of the 3D reconstruc-

tion presented in Chapter 4.

2.1 Elements of Information Theory

This section introduces the main concepts from information theory which has

been a discipline only since the mid-1940s and covers a variety of theories that

are fundamental to many of the sciences e.g. statistics, economics, physics,

computer science etc.

Information theory was originally proposed by Claude E. Shannon in

1948 to �nd fundamental limits on signal processing and communication

operations such as data compression, in a landmark paper entitled "A Math-

ematical Theory of Communication" [19]. Shannon's Information Theory

de�nitely established the purely mathematical nature of entropy and relative

entropy, in contrast to the previous identi�cation by Boltzmann (1872) of his

�H-functional� as the physical entropy [2].
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The following statement is attributed to Shannon (Tribus and McIrvine

1971):

My greatest concern was what to call it. I thought of calling it

�information�, but the word was overly used, so I decided to call it

�uncertainty�. When I discussed it with John von Neumann, he had

a better idea. Von Neumann told me, �You should call it entropy, for

two reasons. In the �rst place your uncertainty function has been used

in statistical mechanics under that name, so it already has a name.

In the second place, and more important, nobody knows what entropy

really is, so in a debate you will always have the advantage.�

The concepts of information theory are widely used in the following chap-

ters of the thesis. In particular, the Kullback-Leibler divergence or relative

entropy between two distribution of probability is de�ned and discussed. It

will be convenient in the development of pattern recognition.

Let us to consider a discrete random variable X with a �nite number of

state x in the space of the states χ.

Let us to de�ne the probability of the occurrence of an event X = x as

pX(x) = P (X = x) (2.1)

Of course, the axioms of the probability are valid:

0 ≤ pX(x) ≤ 1 and
∑
x∈χ

pX(x) = 1 (2.2)

How much information is received when it is observed X = x?

It depends on how probable the event in question is: if it is told that

an highly improbable event has just occurred, one will have received more

information than if it is told that some very likely event has just occurred,

and if it is knew that the event was certain to happen e.g. pX(x) = 1 one

would receive no information [3].

13
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Hence, one can model the amount of information with a monotonic func-

tion h(x) that will depends on the probability distribution pX(x).

To choose the form of h(·), let us to consider two independent events x and

y in χ. The information gained observing both should be the sum of each

one of them. Instead, according to the independence of the events, the joint

probability should be the product. Therefore the following must be satisfy:

h(x, y) = h(x) + h(y)

p(x, y) = pX(x)pX(y)

From the last two relationships follows that h(x) must be given by the

logarithm of pX(x):

h(x) = − log pX(x). (2.3)

This quantity is called information gain.

Properties

1. h(x) = 0 if pX(x) = 1 for some x ∈ χ;

2. h(x) ≥ 0 for every x ∈ χ such that 0 ≤ pX(x) ≤ 1;

3. h(x) > h(y) if pX(x) < pX(y) with x, y ∈ χ.

As we can see by the property 3 the selected function satisfy the de-

sired requirement that a lower probability event x corresponds to an high

information gain.

The choice of basis for the logarithm is arbitrary. For example, in infor-

mation theory is used the logarithm in base 2 and then unit of h(x) are bits.

Instead, in statistics is used the natural logarithm whit unit nats ('natural

unit of information'). In the following the natural logarithm is used.

14
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It is possible to state the following:

De�nition 2.1. Let X be a discrete random variable and pX a probability

distribution. The entropy of the random variable X is de�ned as:

H(p) = −
∑
x∈χ

pX(x) ln pX(x), (2.4)

with pX(x) ln pX(x) = 0 for all x ∈ χ such that pX(x) = 0.

Notice that in case of pX(x) = 0 for some x ∈ χ, the value of the corre-

sponding addend is taken to be 0, which is consistent with the limit:

lim
p→0+

p ln(p) = 0. (2.5)

To better understand the entropy de�nition, let us to suppose that a

sender wish to transmit the value of a random variable to a receiver, then

the average amount of information received is given by the expectation with

respect to the distribution pX .

Therefore, the entropy can also be interpreted as

H(p) = Ep[h] = Ep[− ln pX(x)]. (2.6)

Now, let us suppose that p(x) and q(x) are the probability that the ran-

dom variable X be in the same state x under di�erent conditions, which are

described by the two mass distributions p and q.

Under these assumptions it follows:

De�nition 2.2. Let us de�ne relative entropy or Kullback-Leibler di-

vergence of the distribution q from p

DKL(p||q) = −
∑
x∈χ

p(x) ln q(x)−

(
−
∑
x∈χ

p(x) ln p(x)

)

= −
∑
x∈χ

p(x) ln

(
q(x)

p(x)

)
=
∑
x∈χ

p(x) ln

(
p(x)

q(x)

) (2.7)

with p(x) ln p(x)
q(x)

= 0 for all x ∈ χ such that p(x) = 0.
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Imagine p as some unknown distribution and suppose that we have mod-

elled this using an approximating distribution q. If we use q to construct a

coding scheme for the purpose of transmitting values of X to a receiver, then

the average additional amount of information required to specify the value

of X as a result of using q instead of the true distribution p is given by the

Kullback-Leibler divergence of q from p.

It is possible to extend the de�nitions of entropy and relative entropy to

include distributions over continuous variables as follows:

De�nition 2.3. Let X be a continuous random variable and p a probability

distribution. Let us de�ne entropy of the random variable X

H(p) = −
∫
p(x) ln p(x) dx (2.8)

with p(x) ln p(x) = 0 for all x such that p(x) = 0.

De�nition 2.4. The relative entropy or Kullback-Leibler divergence

of the probability distribution q from p is de�ned as

DKL(p||q) =

∫
p(x) ln

(
p(x)

q(x)

)
dx (2.9)

with p(x) ln p(x)
q(x)

= 0 for all x such that p(x) = 0.
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2.2 Properties of Kullback-Leibler Divergence

1. DKL(p||q) ≥ 0 for any p and q, the equality is satis�ed if and only if

p = q almost everywhere;

2. DKL(p||q) is convex in the pair of probability distributions (p, q).

Let p1, q1 and p2, q2 be probability distributions over a random variable

X and λ ∈ (0, 1), de�ne

p = λp1 + (1− λ)p2

q = λq1 + (1− λ)q2

Then, DKL(p||q) ≤ λDKL(p1||q1) + (1− λ)DKL(p2||q2).

To prove the properties we shall use the log-sum inequality.

Lemma 2.5. (Log-sum Inequality) If a1, . . . , an and b1, . . . , bn are non-

negative numbers, then

n∑
i=1

ai ln
ai
bi
≥

(
n∑
i=1

ai

)
ln

(∑n
i=1 ai∑n
i=1 bi

)
with equality if and only if ai and bi are equal for all i.

Proof (Property 1). Using the log-sum inequality we can prove the positiv-

ity of the Kullback-Leibler divergence as follows:

DKL(p||q) =
∑
x∈χ

p(x) ln
p(x)

q(x)
≥

(∑
x∈χ

p(x)

)(
ln

∑
x∈χ p(x)∑
x∈χ q(x)

)
= 1 ln 1 = 0

(2.10)
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Proof (Property 2). Let a1(x) = λ p1(x), a2(x) = (1− λ) p2(x)

and b1(x) = λq1(x), b2(x) = (1− λ)q2(x). Then:

DKL(p||q) =
∑
x∈χ

(λp1(x) + (1− λ)p2(x)) ln
λp1(x) + (1− λ)p2(x)

λq1(x) + (1− λ)q2(x)

=
∑
x∈χ

(a1(x) + a2(x)) ln
a1(x) + a2(x)

b1(x) + b2(x)

≤
∑
x∈χ

(
a1(x) ln

a1(x)

b1(x)
+ a2(x) ln

a2(x)

b2(x)

)
(Using the logsum inequality)

=
∑
x∈χ

(
λp1(x) ln

λp1(x)

λq1(x)
+ (1− λ)p2(x) ln

(1− λ)p2(x)

(1− λ)q2(x)

)
= λD(p1||q1) + (1− λ)D(p2||q2)

(2.11)

Remark

Notice that the Kullback-Leibler divergence is not a metric distance on the

space of probability distributions.

In fact, a distance over the space X is a function d : X ×X −→ R that

satisfy the following property foe every x, y, z in X:

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

The Kullbac-Leibler divergence DKL(·||·) satis�es the �rst two properties of

distance but it is not symmetric - that is, DKL(p||q) 6= DKL(q||p) - nor does

it satisfy the triangle inequality.

Thus we can interpret the Kullback-Leibler divergence as a measure of

the dissimilarity of the two distributions p and q [3].

18
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2.3 Statistical Models

In this section are listed some de�nitions that will be useful to formalize

in mathematical terms the problem of 3D reconstruction from experimental

images.

De�nition 2.6. Let us de�ne random sample the vector X = (X1, . . . , Xn)

of random variables representing the data.

De�nition 2.7. Let X = (X1, . . . , Xn) be random sample. A statistical

model is de�ned as a family of densities of probability f for X, indexed by

the parameter θ belonging to the parametric space Θ ⊆ Rn:

F = {f(· ; θ) , θ ∈ Θ} (2.12)

Once obtained the data x = (x1, . . . , xn), may be useful to consider

their density distribution as a function not of the data itself - which post-

experimentally are not random variables but observed constants - but of the

parameter θ [10].

Hence, let us consider the following:

De�nition 2.8. Given the observations x = (x1, . . . , xn), is de�ned likeli-

hood function:

L (θ ; x) = f (x ; θ) (2.13)

It is the density function of the observations with θ ∈ Θ

De�nition 2.9. Let us consider a parametric statistical model of parameter

θ ∈ Θ. The maximum likelihood estimate is given by the θ̂ that maximize

the likelihood function:

θ̂ = arg max
θ∈Θ

L(θ ; x) (2.14)
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2.4 Maximum Likelihood and Kullback-Leibler

Divergence

Suppose that observations are generated from the distribution p(x) whose

functional form is unknown and we wish to model.

In particular, we want to �nd a description of p(x) in terms of q(x|θ),
which represents the probability of observing the realization x once the values

of certain parameters θ = (θ1, . . . , θNp) that de�ne the model.

Let X = (X1, . . . , XN) be a vector of random variables is independent

and identically distributed (i.i.d) from p and also that we have observed x =

(x1, . . . , xN) realizations of such random sample. Then, the joint probability

distribution is given by:

q(x|θ) =
N∏
i=1

q(xi|θ) (2.15)

From the Bayes theorem we have that the probability of the parameters

given the data, that is the posterior probability of the parameters is as follows:

q(θ|x) =
q(x|θ) q(θ)

q(x)
(2.16)

where:

• q(x|θ) is the likelihood function;

• q(θ) is called a prior probabilities and expresses what is already known

about the parameters before that the experiment is conducted. Here

we assume absence of information about the value of the parameters. A

standard choice, in this case, for the a prior distribution of parameters

is to assume uniform probability.

• q(x) is called evidence and it is a normalization constant, in fact:

q(x) =

∫
q(x)q(θ|x) dθ

=

∫
q(θ)q(x|θ) dθ

=

∫
dθq(θ)q(x|θ) = const
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where the last two steps are due to the fact that the parameters estimate

is made at �xed model and therefore it constant.

In conclusion, assuming a uniform a prior distribution we simply have:

q(θ|x) ∝ L(θ ;x) (2.17)

which is that the posterior probability distribution of the parameters

given the data is proportional to the likelihood function.

At this stage our objective is to �nd the combination of the parameters

θ = (θ1 . . . , θNp) that maximize the a posterior probability or equivalently

the likelihood function.

As seen in (2.17) it is equivalent to �nd the maximum likelihood estimate.

Furthermore, considering that the argument maximizing a function is the

same that maximize his logarithm since it is monotonous and increasing.

Therefore, we have the following:

arg max
θ∈Θ

log q(θ|x) = logL(θ ;x)

(a)
= log

N∏
i=1

q (xi |θ)

(b)
=

N∑
i=1

log q (xi |θ)

(c)
≈
∫
V
p(x) log q(x |θ) dx

=

∫
V
p(x) log

q(x |θ)
p(x)

dx+

∫
V
p(x) log p(x) dx

= −
∫
V
p(x) log

p(x)

q(x |θ) dx
dx+

∫
V
p(x) log p(x) dx

= −DKL(p||q(· |θ)) +H(p)

(2.18)

where (a) is given by (2.15); (b) by the property of the logarithm; (c) from

the following observation.
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Let us consider the expectation of a function under a probability distri-

bution p(x):

Ep[f ] =

∫
p(x)f(x) dx (2.19)

If is given a �nite number N of points drawn from the probability distribution

p(x), then the expectation can be approximated as a �nite sum over these

points:

Ep[f ] ≈ 1

N

N∑
i=1

f(xn) (2.20)

In conclusion, it should be noted that the second term of (2.18), the

entropy, does not depend on θ.

Follows that, the problem to �nd the maximum likelihood estimate is

equivalent to �nd the argument θ over the set of the possible parameters Θ

minimizing the Kullback-Leibler divergence:

arg max
θ∈Θ

L(θ ;x) = arg min
θ∈Θ

DKL(p||q(· |θ)). (2.21)
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2.5 Alternative Forms for the Kullback-Leibler

Divergence

Since the Kullback-Leibler divergence is not symmetric, an optimization

problem based on DKL(p||q) will exhibit a di�erent behavior compared to

one whose objective function is de�ned by DKL(q||p).
Then we can give the following de�nition:

De�nition 2.10. Let us de�ne M-projection the distribution q(x|θ∗) where
θ∗ is such that:

arg min
θ∈Θ

DKL(p||q(· |θ)) (2.22)

De�nition 2.11. Let us de�ne I-projection the distribution q(x|θ∗), where
θ∗ is such that:

arg min
θ∈Θ

DKL(q(· |θ)||p) (2.23)

The I-projection and the M-projection will exhibit di�erent comportment

as shown in Figure 2.1.

The M-projection will turn a distribution q which is a global approxima-

tion of the distribution p. This is due to the fact that values of x such that

p(x) > 0 will have q(x) > 0, and typically q(x) will stretch to cover all of

p(x) and will over-estimate the support of p(x) [3] as in Figure 2.1 (a).

Conversely, the I-projection turn q will typically under-estimate the sup-

port of p and will lock onto one of its modes as show Figure 2.1 (b) and (c).

This is due to the fact that q(x) can be zero also when p(x) have support

di�erent from zero. Hence, the I-projection turns a local approximation of p.

23



Chapter 2. Mathematical Framework

[a] [b]

[c]

Figure 2.1: A comparison of the two alternative forms for the Kullback-

Leibler divergence. (a) The blue contours show the distribition p given by a

mixture of two Gaussians, and the green contours correspond to the single

Gaussian distribution q that best approximates the �rst in the sense of min-

imizing the Kullback-Leibler divergence KL(p||q). (b) As in (a) but now the

green contours correspond to a Gaussian distribution q found by numerical

minimization of the Kullback-Leibler divergence KL(q||p). (c) As in (b) but

showing a di�erent local minimum of the Kullback-Leibler divergence.
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Deconvolution of Experimental

Images

In modern cellular biology, images obtained from �uorescence microscopes

are becoming a very important tool, as they are necessary for subsequent

quantitative analysis.

Sub-cellular components and processes can now be visualized in vivo,

both structurally and functionally. The observation of many biological pro-

cesses relies on the ability to identify and locate speci�c proteins within their

cellular environment. Cells are mostly transparent in their natural state, and

the immense number of molecules constituting them are optically indistin-

guishable among each other. Consequently, the identi�cation of a particular

protein is a very complex task. However, a bright marker, attached to the

protein of interest, could be a precise indicator of its position.

Many e�orts have gone into �nding suitable markers for this purpose,

but only over the course of the past decade, with the advent of �uorescent

proteins, this concept has been revolutionized. These biological markers

have the crucial properties necessary for dynamic observations of living cells:

they are essentially harmless to the organism, and can be attached to other

proteins without impacting their function.
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Therefore, the discovery of �uorescent markers suitable for in vivo use

and the development of new techniques of microscopy have transformed the

�uorescence microscope into a tool widely used in the �eld of quantitative

analysis.

The 3D image of a biological specimen is acquired from a series of 2D

images focusing the �uorescence microscope on di�erent planes of the whole

structure. In order to perform quantitative analysis on �uorescence images,

a preliminary study of the image obtained with the microscope is neces-

sary. In fact, microscopy images su�er of various distortions, due to multiple

causes. The main reasons behind the alterations of the measured 3D image

are the out-of-focus light, the spatial �uctuations of lighting in the sample,

the Poisson noise caused by the emission of background photons.

The work presented in this chapter deals with the image restoration,

which consists in the recovery of the image in its original form. We start

from the de�nition of the mathematical model describing the physical pro-

cess of the signal generation (Image). Subsequently, we present the images

deconvolution as image restoration technique.This mathematical operation

is applied to recover a signal degraded by a physical process. In particular,

using an a known model (PSF) the deconvolution reconstructs the original

characteristics of an image to increase its resolution, contrast and signal to

noise ratio. Therefore, the images obtained experimentally with the �uo-

rescence microscope, concerning the endosome and the Rab11, have been

opportunely processed with this technique.

The aim is to remove possible distortions generated by the imaging sys-

tem. At this stage, it is possible to perform the quantitative analysis pre-

sented in the next chapter.
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3.1 Fluorescence Microscopy

The experimental images of the molecular sorting phenomenon on the endo-

some membrane have been obtained with a �uorescence confocal microscope

(Leica SP8).

Fluorescence confocal microscopy is an optical technique widely used

nowadays for the three-dimensional study of biological structures exploiting

the physical phenomenon of �uorescence. It is the easiest way to observe the

cellular structures: after labeled with a �uorescent dye, the biological speci-

men is illuminated at excitation wavelength and the �uorescence emission is

used to form the image [17].

The three-dimensional images of the biological specimen in consideration

are collected as a sequential optical sections. The optical sectioning of a bio-

logical specimen consists in a collection of images of parallel planes, moving

the focus of the objective along an axis that generally coincides with the prop-

agation axis of the light. To excite the molecules, confocal microscopy uses

a very intense light source: the laser. The light emitted by the �uorophores

excited by the laser is captured by the objective lens, it passes through the

dichroic mirror and reaches the photomultiplier, which converts the light

intensity into an electrical signal of proportional intensity (Figure 3.1).

Between the dichroic mirror and the photomultiplier, the light beam

passes through the pinhole, which prevents most of the light coming from

the out of focus areas to reach the photomultiplier.

To obtain the representation of an entire plane, the light beam is moved

from point to point along the sample, so that the whole plane located at

the desired depth is illuminated by the light beam according to a precise

sequence. This process is called scan.
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Figure 3.1: Basic confocal microscope structure

These values are used to construct the image: each point corresponds to a

screen pixel and the light intensity of the point are represented by a grayscale

value. The matching of all the pixels corresponding to points scanned by the

laser beam in the sample give the �nal image. Moving the sample along the

vertical axis after each scanning operation, it is possible to perform a series

of successive ones corresponding to increasingly deep focal planes within the

biological sample. These scans take the name of optical sections and their

ordered overlap Z-stack. The Z-stacks allow to reconstruct the overall image

of the entire scanned volume, in which all the planes are simultaneously in

focus.

Hence we have information not only of the brightness of each point, but

also related to its location in the biological specimen, ie its position in a plane

and its depth. The location is de�ned by the three coordinates, (x, y, z),

called voxels, which are the three-dimensional equivalent of the pixels of a
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two-dimensional image. An example of 3D acquisition of a cell that is created

as a stack of 2D images by moving the focal plane through the specimen is

shown in Figure 3.2.

Optical Sections
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Figure 3.2: An example of the acquired image of a cell captured by a �uo-

rescence microscope [18].
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3.2 Image formation

The microscope is an imaging systems. As such, the image formation process

can be described mathematically with the following equation.

g = T (f) (3.1)

where g is the image recorded, f is the object under observation and T is

the operator representing the imaging system, as shown in Figure 3.3.

Figure 3.3: An example of the acquired image g as a result of the processing

of the object f with the imaging system T .

In systems such as �uorescent microscopes, the image formation process

is linear and shift-invariant. These two properties hold being most part of

the process linear and being the response of the system independent from the

position. Therefore, it is described using the Linear Shift-Invariant system

theory.

Mathematically a point object is represented by a Dirac delta distribution.

Applying an useful property of the delta distribution we can write the

object f as:

f(x, y, z) =

∫ ∫ ∫
R3

f(ε, ν, ς)δ(x− ε, y − ν, z − ς)dε dν dς.

In signal processing impulse response of a linear system is de�ned as the

output of the system when an impulsive input is applied, i.e. a delta function.
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Similarly, the Point Spread Function (PSF) is de�ned as the impulse

response of an imaging system, which models how the imaging system rep-

resents a point object. In formula:

h = T (δ).

In conclusion we can write the imaging equation in current context as:

g(x, y, z) =

∫ ∫ ∫
R3

f(ε, ν, ς)h(x− ε, y − ν, z − ς) dε dν dς (3.2)

The last relation is de�ned as the convolution equation between the original

object and the Point Spread Function of the imaging system. It can also be

rewrite as:

g = f ∗ h (3.3)

Figure 3.4: Convolution operation.
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Sampling and Nyquist criterion

In order to be processed by a calculator a signal, such as an image, must be

discrete.

Sampling is the process of converting a continuous signal into a numeric

sequence [23]. The procedure is also called analog-to-digital conversion, or

simply digitizing.

The sampling density is the number of recorded samples (i.e voxel which

is the 3D equivalent of a pixel) per unit distance when converting from an

analog signal to digital.

Thus, the larger is the sampling distance, i.e. the size of one voxel, the

smaller is the sampling density.

The sampling density is a microscopic parameter describing the conditions

of the image acquisition. It establishes a direct connection between one voxel

in the Z-stacks and a real volume in the physical space.

The Nyquist criterion determines the minimal sampling density needed

to capture all information from the microscope into the image. When the

sampling distance is larger than the Nyquist distance, information about the

image is lost.

The Nyquist critical sampling distance for a conventional �uorescence

confocal microscope is given by:

∆x,y =
λem

8n sinα

∆z =
λem

4n(1− cosα)

with n the Lens Refractive Index (usually 1, 515 for immersion oil), α the

half-aperture angle of the objective of the microscope, λem the Emission

Wavelength of the �uorophore that we are observing, and ∆x,y, ∆z the sam-

pling distances in the lateral and axial direction respectively.

In the equation above α can be computed from α = arcsin NA
n

with NA

the Numerical Aperture of the objective.

In conclusion, we have that a Z-stack is represented by a 3D matrix

containing intensity values. Each element of this matrix represents a �volume
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element,� or �voxel� whose physical dimensions are given by ∆x, ∆y and

∆z calculated with the Nyquist criterion (i.e. Figure 3.5). Moreover, each

intensity value represents a measured physical quantity of the object at the

sample point.

Since all physical instruments have �nite resolution, samples correspond

with the average of the physical quantity over a volume element.

Figure 3.5: Graphical representation of a Z-stack as 3D matrix.
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The Point Spread Function

The Point Spread Function (PSF) is the three-dimensional di�raction

pattern of light emitted from an in�nitely small point source in the specimen.

As already seen in the previous section, it is considered the fundamental

unit of an image in theoretical models of image formation. Therefore, the

PSF is crucial to perform the deconvolution on experimental images. This

function might be calculated theoretically for the used imaging arrangement,

or alternatively might be directly measured. Both approaches are widely

used in biological studies. The PSF can be experimentally measured using

a �uorescent bead embedded in a gel that approximates an in�nitely small

point object in a homogeneous medium.

Nevertheless, these procedures require an high cost both in terms of time

and economical resources. In fact, more experiments of images acquisition

are necessary for a precise evaluation. Due to these drawbacks and to the

lack of some equipment, we adopt a theoretically derived PSF. Indeed, the

literature on PSF modeling is extensive and characterized by a large number

of approximations with various degrees of accuracy.

A particular challenge in representing the PSF of a microscope is the

reduced amount of information related to the exact design of the objectives.

As matter of fact, the only parameters usually known are the overall op-

tical characteristics of the objective (i.e., magni�cation, numerical aperture,

etc.) and the experimental conditions for which it is designed (i.e. refractive

index of the immersion medium, working distance). Therefore, it is desir-

able a formulation of the PSF that relies only on these known parameters,

accordingly treating the objective as a black box.

A signi�cant contribution in this direction was made by Gibson and

Lanni [11], Wolf and Richards [24, 15] and Born & Wolf [4].

The PSF of the �rst two models is shift invariant only in the lateral

directions, while the last has this property also in axial direction. Hence,

we adopt the Born & Wolf PSF model, which is de�ned by the following

34



Chapter 3. Deconvolution of Experimental Images

equation:

h(x, y, z) =

∣∣∣∣∣∣C
∫ 1

0

J0

[
k
NA

ni

√
x2 + y2ρ

]− 1
2
jkρ2z

(
NA
ni

)2
ρ dρ

∣∣∣∣∣∣
2

(3.4)

where:

• (x, y, z) denotes the coordinate of a point in the image plane.

• J0 is the Bessel function of �rst kind of order zero.

• NA is the Numerical Aperture of the objective lens. This value is given

by NA = ni sin(θ) where θ is one half of the angular aperture of the

lens.

• ni is the actual value of the refractive index of the immersion layer (i.e.

the noil = 1, 515).

• C is the normalization constant.

• k is the wavenumber in vacuum of the emitted light, k = 2π
λ
.

In Appendix B it is reported a guide which explains the procedure to

generate the PSF.

Some examples of Z-stacks obtained with this model are presented in

the Figure 3.6. Subsequently, these same Z-stacks are used to perform the

deconvolution of the experimental images related to the molecular sorting.
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Figure 3.6: Theoretical PSF, generated with Born & Wolf model. [a] shown

the plane xy and [b] xz
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3.3 Deconvolution

Image Deconvolution is the mathematical operation aimed to reverse the

e�ect of the convolution. Hence, it is used to reduce the distortions present

in the Z-stacks due to the imaging system, restoring the e�ective object

representation.

In modern biological research, deconvolution is becoming not only a fun-

damental, but almost a standard image processing step when analyzing small

relevant details. For example, deconvolution can reveal hidden pertinent

structures with the amelioration of contrast.

In Fluorescence Microscopy, much of the distortion comes from two basic

physical limitations. First, the presence of out-of-focus light from multiple

planes causing the blur e�ect. In an ideal microscope, only light from the

focal plane would be allowed to reach the detector producing a clear image

of the plane of the sample the microscope is focused on.

Unfortunately a microscope is not enough speci�c and also the light from

sources outside to the focal plane reaches the detector; in a thick specimen

there may be a signi�cant amount of material, and so spurious signal.

As such, �uorescent images appear soft and di�used, losing much of the

�ner detail.

Secondly, the pinhole drastically reduces the amount of light detected by

the photomultiplier and produces a grainy appearance in the image owing

to the reduction in the signal compared to random variations recorded by

the detector, causing then Poisson noise. Therefore, the acquired images

di�er from the true object since they are unavoidably a�ected by noise and

convolution e�ects due to the optical system.

Hence, more realistic is to model the acquired image as follows:

g(x, y, z) = f(x, y, z) ∗ h(x, y, z) + ε(x, y, z) (3.5)

Where ε represents the noise recorded.

One way to improve the images is numerically inverting the blurring and

the noise processes applying the deconvolution, that mitigates the distortion
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created by the microscope [18, 17] .

Figure 3.7: Principle of the deconvolution [17].

Several deconvolution methods have been proposed for 3D microscopy:

Naive inverse �ltering [17], is the simplest approach to deconvolution and

consists in least-squares method; Tikhonov�Miller [12], Richardson�Lucy [7,

16] algorithms and many others achieve out-of-focus deblurring by iterative

deconvolution.

A brief user manual of the software in which it is possible to perform the

3D deconvolution is shown in Appendix B.

The selection of the appropriate model depends on the type of image that

we are analyze. As for our Z-stacks we choose to use the Richardson�Lucy

method that give good results. Deconvoluted images are shown in the last

chapter.

Richardson�Lucy Deconvolution Algorithm

The goal of the Richardson�Lucy (RL) deconvolution algorithm is there-

fore to obtain iteratively an estimate f̂ of the image, reversing the e�ect of

noise and the blur created by the PSF , using the a prior knowledge of the

image recorded g and the point spread function h.

The RL method is a maximum likelihood approach. The quantum nature

of light leads to a Poisson modeling both the signal emitted by the object

and the noise [18], as follows:

g(x) = P(f(x) ∗ h(x)) + P(ε(x)), with x = (x, y, z) ∈ R3 (3.6)
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where g(x) is the number of photons measured in the detector in position x,

P indicate a Poisson distribution and ε(x) is the noise.

Both P(f(x)∗h(x)) and P((x)) are independent Poisson random variables

and, hence, the measured output is a Poisson random variable P(f(x)∗h(x)+

ε(x)).

In order to obtain the maximum-likelihood estimate of f , the likelihood

function for the Poisson imaging model (3.6) should be maximized. But max-

imizing the likelihood is equivalent to maximizing the log-likelihood, given

by the functional:

J(f) =
∑
x

{g(x) log f(x) ∗ h(x)− f(x) ∗ h(x)} .

A multiplicative gradient-based iterative search algorithm is used to maxi-

mize J(f) and yields the following iterative formula:

f̂i+1(x) =

{[
g(x)

f̂i(x) ∗ h(x)

]
∗ h(−x)

}
× f̂i(x),

where f̂i is the estimation of the object at i-th iteration.
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3D Reconstruction of

Experimental Images

We aim to reconstruct the 3D volume of the endosome and identify the Rab11

protein domains over the membrane from experimental images.

The main problem of the Z-stacks is the poor spatial resolution. Further-

more, each one is composed by a limited amount of 2D images.

To cope with this problem, a 3D reconstruction procedure in this chapter

have been developed. In particular, the crucial idea is to use the a priori

knowledge about endosomal and protein domain morphologies.

Furthermore, information theory and statistics tools, introduced in the

preceding chapter, are used to deal with the analysis.

4.1 Data Interpretation

In this section, we present the analytical formulation of data transformation.

The aim is to prepare them for the formulation of the pattern recognition

problem.

Let V ⊆ R3 be the portion of space observed by the microscope.

In this volume a distribution of �uorescent molecules allows to detect the

object under investigation.
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The �uorescence collected by the microscope can be represented with the

following continuous function:

f : V ⊆ R3 −→ R

x 7−→ f(x)
(4.1)

Hence, the empirical probability distribution of �uorescence is given by:

p : V ⊆ R3 −→ [0, 1]

x 7−→ p(x) =
f(x)∫

V f(x) dx

(4.2)

Consequently, p(x)dx is interpretable as the probability to detect a �uores-

cent molecule in the element of volume dx centered in x.

As stated in the de�nition (4.1), the distribution describing the specimen

in the volume V ⊆ R3 is a continuous function.

However, after the sampling procedures, the signal become discrete: the

data (Z-stacks) are 3D matrix reporting intensity values. Each value repre-

sents the mean �uorescence in the correspondent volume element (voxel) of

physical sizes ∆x,∆y,∆z evaluated with the Nyquist criteria of sampling.

Hence, let Ṽ be the set of the voxels as reported in the following de�nition.

Ṽ = {v = (i, j, k), i ∈ {0, . . . , Nx − 1}, j ∈ {0, . . . , Ny − 1}, k ∈ {0, . . . , Nz − 1}}

with Nx, Ny and Nz the number if pixels in the three directions.

The �uorescence can be de�ned as discrete function as follows:

f̃ : Ṽ −→ R

v 7−→ f̃(v)
(4.3)

where:

f̃(i, j, k) =
1

∆x∆y∆z

∫ (k+1)∆z

k∆z

∫ (j+1)∆y

j∆y

∫ (i+1)∆x

i∆x

f(x, y, z) dx dy dz (4.4)

Therefore, we can de�ne the empiric mass probability distribution of �u-

orescence for each point v = (i, j, k) ∈ Ṽ , as reported below.

p̃ : Ṽ −→ [0, 1]

v 7−→ p̃(v) =
f̃(v)∑
v∈Ṽ f̃(v)

(4.5)
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Being the function representative of a probability distribution the follow-

ing relations hold:

∑
v∈Ṽ

p̃(v) = 1

and

0 ≤ p̃(v) ≤ 1 ∀ v ∈ Ṽ .

4.2 Structure Recognition

In this section, we present the analytical formulation of the optimization

problems used to recognize the structures of interest.

As described in the second chapter, each Z-stack is composed by two

channels. The �rst contains the signal related to Fyve2x, which is the marker

of the endosome membrane. Instead, the signal of the second channel is

referred to Gfp which labels the protein Rab11.

Starting from the �uorescence values of the two channels we de�ne their

empirical distributions, using the analytical formulations introduced in the

previous paragraph.

At this point is useful to de�ne the notation adopted along the whole

dissertation to distinguish among the probability distribution of the di�erent

channels. In particular, the one related to Fyve2x is indicated with pf , while

pg refers to Gfp.
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4.2.1 Recognition of Endosome Structure

In this subsection we explain the procedures adopted, analyzing the �rst

channel data, to identify the endosome structure. To achieve our objective

we exploit the knowledge of the membrane geometrical properties. In fact,

starting from the observations of the Z-stacks we can appreciate the endosome

spherical symmetry, shown in Figure 4.1.

Figure 4.1: Experimental Z-stack of Fyve2x.

Consequently, we approximate the function pf with a parametric distri-

bution qf (·|θ), with θ belonging to the parametric space Θ. This parametric
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function should be of the same type of the one reported in Figure 4.2.

o

x

y

z

r0 R

Figure 4.2: Ideal structure of the endosome membrane

In fact, being spherical the geometry of the membrane, qf (·|θ) is de�ned

as an ideal distribution with parameters θ = (r0x, r0y, r0z, R, σ) ∈ R5, where:

• ~r0 = (r0x, r0y, r0z)
′ ∈ R3 is the vector identifying the position of sphere

center;

• R ∈ R is the sphere radius;

• σ ∈ R identi�es the dispersion of the �uorescence at di�erent membrane

radius.

Hence, the parametric distribution has the following explicit form:

qf (v |θ = (~r0, R, σ)) =
1

Cf
exp

{
−1

2

(
‖~r0 − v‖ −R

σ

)2
}
, ∀ v ∈ Ṽ (4.6)

where Cf is the normalization constant: Cf =
∑

v∈Ṽ qf (v |θ).
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At this stage, the main issue is to �nd the proper value of the tuning

parameters allowing the best �tting of the empirical distribution.

As stated in the Paragraph 2.4, having available the observations drawn

from pf , the value of the adjustable parameters could be derived with the

maximum likelihood estimation.

However, as starting data, we have the empirical distribution rather than

the observations. As demonstrated with the Equation (2.18), when a su�-

cient number of observations are available and under certain conditions, the

maximum likelihood estimation is equivalent to �nd the argument minimizing

the Kullback-Laibler divergence from the model to the empirical distribution.

The optimal �t of the data is given by the density function qf (·|θ∗), where
θ∗ is the solution of the following optimization problem:

arg min
θ=(r0x,r0y ,r0z ,R,σ)∈R5

DKL(pf (·)||qf (·|θ)) =
∑
v∈Ṽ

pf (v) log

(
pf (v)

qf (v|θ)

)
subject to 0 ≤ r0x ≤ Nx, (C1),

0 ≤ r0y ≤ Ny, (C2),

0 ≤ r0z ≤ Nz, (C3),

0 ≤ R ≤ Rmax, (C4),

0 ≤ σ ≤ σmax (C5)

(4.7)

As it is possible to observe in the optimization problem de�nition, we

only impose simple bounds on the variables to constrain the solution. The

three constraints (C1), (C2) and (C3) force the center of the endosome to be

contained in the observation volume Ṽ . On the other hand, (C4) and (C5),

bound both radius and deviation to be positive and within the maximum

limits.
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4.2.2 Recognition of Protein-Enriched Membrane Do-

mains

Following a procedure similar to the one of the previous paragraph, in this

subsection we describe the logic used to identify the Rab11 domains, starting

from the intensity values of the second channel of the Z-stacks.

Biological studies related to the molecular sorting highlighted the occur-

rence of the phenomenon on the membrane.

Hence, de�ning as fg(v) with v ∈ Ṽ the discrete function identifying the

�uorescence distribution of Gfp in the Z-stacks, we eliminate the �uorescence

values referred to zones outside the membrane.

To achieve this objective, we use the optimal solution of the problem (4.7).

In fact, being θ∗ = (~r∗0, R
∗, σ∗) the theoretical solution of the problem,

qf (·|θ∗) is the function reconstructing the endosome membrane from the ex-

perimental images.

Hence, once known its functional form, we are able to identify with an

indicator function the region referred to the membrane. Subsequently, using

this function, we can localize the protein in the region of interest.

Analytically, we multiply fg by the indicator function localizing the mem-

brane, as reported in the following equation:

f (1)
g (v) = fg(v) χmembrane(v) ∀ v ∈ Ṽ (4.8)

where ∀ v ∈ Ṽ the following de�nition holds:

χmembrane(v) :=

1 if qf (v|θ∗) > qf (·|θ∗),

0 if otherwise.
(4.9)

in which qf (·|θ∗) indicates the sample mean: qf (·|θ∗) = 1

|Ṽ|

∑
v∈Ṽ qf (v|θ∗).

Notice that the applied threshold have been selected heuristically.
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Once normalized, the intensity function f
(1)
g can be interpreted as an

empirical distribution of Gfp molecules in the volume Ṽ , and indicated as pg.

Then, as for the �rst channel, we de�ne a proper parametric function to

�t the domains of Rab11. In this case, we exploit the a priori knowledge

about the shape of the Rab11 domains, derived by biological and theoretical

observations mentioned in Chapter 1.

In fact, it has been shown that the domains form is a circular calotte

localized on the endosome membrane.

As stated in the introduction, our �nal purpose is to reconstruct the 3D

image. To accomplish this task we need a parametric function, de�ned as

the intersection between the membrane and a cone, as shown in Figure 4.3.

o

x

y

z

r*0 n

φ

R

Figure 4.3: Ideal structure of the Rab11 protein agglomerate.
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This implies that the vector of parameters identifying the model distri-

bution is θ = (nx, ny, nz, ϕ) ∈ R4.

In particular:

• n̂ = (nx, ny, nz)
′ ∈ R3 is the unit vector applied to the center ~r∗0 of the

sphere de�ning the orientation of the cone;

• ϕ is the cone angle.

A graphical visualization of the parameters is presented in Figure 4.3.

In order to construct the model distribution, we de�ne the characteristic

function identifying the cone as:

χcone(v; n̂, ϕ) :=
1

π
arctan (n̂ · û− cos(ϕ)) +

1

2
(4.10)

with

û =
v − ~r∗0

||v − ~r∗0||
(4.11)

Hence, we can de�ne the parametric distribution as follows:

qg(v |θ = (n̂, ϕ)) =
1

Cg
χmembrane(v) χcone(v; n̂, ϕ), ∀ v ∈ Ṽ (4.12)

where Cg is the normalization constant Cg =
∑

v∈Ṽ qg(v |θ) and χmembrane
is the characteristic function de�ned by the Equation (4.9).

At this point, as for the previous case, we need to �nd the proper tuning

parameters of the distribution which better identify the domain.

48



Chapter 4. 3D Reconstruction of Experimental Images

The optimal solution qg(·|θ∗) is given by the argument θ∗ minimizing the

Kullback-Laibler divergence from the empirical distribution to the model, as

follow:

arg min
θ=(nx,ny ,nz ,ϕ)∈R4

DKL(qg(·|θ)||pg(·)) =
∑
v∈Ṽ

qg(v|θ) log

(
qg(v|θ)
pg(v)

)
subject to 0 ≤ nx ≤ Nx, (C1),

0 ≤ ny ≤ Ny, (C2),

0 ≤ nz ≤ Nz, (C3),

0 ≤ ϕ < 2π, (C4)

(4.13)

We impose simple bounds on the variables to constrain the solution. The

three constraints (C1), (C2) e (C3) force the unit vector n̂ to be contained

in the observation volume Ṽ , while (C4) bound the angle to be in [0, 2π).
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4.2.3 Reconstruction Procedure

In this section the reconstruction algorithm is explained. The procedure is

summarized in the following steps:

1. Evaluate the empirical distribution pf

2. De�ne the distribution model of Fyve2x:

qf (·|θf ) with θf = (~r0, R, σ)

3. De�ne the KL divergence DKL(pf ||qf (·|θf ))

4. Solve the optimization problem

arg min
θf∈R5

DKL(pf (·)||qf (·|θf )) 7−→ θ∗f

5. Evaluate pg (using the optimal distribution qf (·|θ∗f )) and set p
(0)
g ← pg

6. De�ne the model distribution of Gfp (using the optimal distribution

qf (·|θ∗f )):
qg(·|θg) with θg = (n̂, ϕ)

7. i← 0

8. While ϕ∗i < ϕmin:

8.1. Solve the optimization problem

arg min
θ
(i)
g ∈R4

DKL(qg(·|θ(i)
g )||pg(·)) 7−→ θ(i)

g
∗

8.2. Save the current solution in a list:

Domains_list[i]← θ(i)
g

∗

8.3. Eliminate the current domain from the dataset and de�ne

the new distribution p
(i)
g

8.3. i← i+ 1
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According to the observations presented in the Paragraph 2.5, is impor-

tant to underline that two di�erent optimization problem has been de�ned

in the points 4 and 8.

Regarding the point 4, from the analytical formulation of the divergence

DKL(pf ||qf (·|θf )), it follows that, if the empirical distribution pf is di�erent

from zero, consequently also the model distribution qf (·|θf ) is forced to be

positive. Accordingly, solving the minimization problem, the optimal model

distribution will turns a global approximation of pf .

Contrarily, the de�nition of the diverge DKL(qg(·|θg)||pg) is adopted to

de�ne the minimization problem of the point 8. In this case, even if the

empirical distribution pg positive, the model distribution qg(·|θg) can be null.

As a matter of fact, if the pg function is multimodal, the solution of

the optimization problem 8.1 generates a model distribution, which gives a

local approximation of the empirical one. Consequently, in this case, there

is a value minimizing the operator for each of the mode of the empirical

distribution. Our objective is to �nd all the models satisfying this criteria

and consequently identifying the Rab11 domains.

The described process, as it can be noticed looking at the structure of

the point 8, is iterative. At each iteration, we eliminate the �uorescence

data referred to the domain identi�ed using the optimal current solution.

The iteration ends when the current optimal angle ϕ∗i is below a certain

threshold, selected based on the experimental images resolution.

It should be underlined that the proposed methodology is robust and

general. In fact, it can be applied to reconstruct any number of domains

presented in the experimental data.
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Remark:

The explained procedure is the one leading to the best results. However,

several strategies for domains reconstruction have been tested.

For example, another approach is to de�ne the model function qg as a

linear combination of the used one. The main limitation of this approach is

the huge set of parameters needed. In fact, in this way at each iterative step,

the number of optimization parameters would have grow with a step of 4 at

each iteration, since each cone is identi�ed by a direction in the space and

an angle.

Another idea was to use a mixture of trivariate normal distributions.

However, also in this case, the main issue was related to the large amount

of parameters needed to perform the estimation. In fact, in this way at each

iterative step, the number of optimization parameters would have grow with

a step of 9, since that to de�ne a single trivariate normal distributions the

means vector and the covariance matrix are needed.

For this reason we choose the the cone, which is the function with the

lowest number of parameters and the elimination approach, since in this way

at each iteration the number of parameters remains constant.

The code implementing our reconstruction algorithm has been developed

in Python and is shown in the Appendix C. To �nd the solution of the

optimization problems the Broyden�Fletcher�Goldfarb�Shanno (BFGS) al-

gorithm has been adopted. This is a numerical optimization belonging to the

family of quasi-Newton methods, used to solve large nonlinear optimization

problems, which variables are constrained by simple bounds [5, 26].
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Results

In this chapter we report the main results obtained following the reconstruc-

tion process, presenting the main phases in three di�erent paragraphs. In

particular, the �rst shows the images obtained applying the 3D deconvolu-

tion algorithm, explained in the Paragraph3.3. Instead, the second and third

paragraphs report the results of the reconstruction referred respectively to

the endosome membrane and of Rab11 domains.

5.1 Image Deconvolution

The results commented in this paragraph refer to the deconvolution of the

experimental data. In Fig. 5.1 is shown the comparison among original im-

ages obtained with the microscope related to the endosome membrane and

deconvoluted ones. The same comparison is reported in Fig. 5.2 for data

relative to the protein. In both cases, the deconvolution registers good per-

formances. In fact, as matter of example, in Fig. 5.3 we show the images

before and after the deconvolution for both channels at a speci�c deep of fo-

cus. Comparing the intensity pro�le of the images, is interesting to observe,

for deconvoluted data, the better identi�cation of the membrane edges with

a signi�cant decrease of background noise. Hence, it is proven the bene�t of

the deconvolution for a successful quantitative analysis.
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Figure 5.1: Example of deconvoluted Zstack of Fyve2x, representing the �rst

channel of dataset. On the right side there are the original images, while on

left side the deconvoluted ones. Each image corresponds to di�erent depth

of focus, indicated by the value of Z.
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Figure 5.2: Example of deconvoluted Zstack of Gfp, corresponding to the

second channel of dataset. On the right side there is the original image and

on left side the deconvoluted one. Each image corresponds to di�erent depth

of focus, indicated by the value of Z.
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Figure 5.3: Intensity pro�les of the stack Z = 18 to compare the signal of

original image and of the deconvoluted one. [a] and [b] refers to the �rst

channel, while [c] and [d] to the second one.
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5.2 Endosome Reconstruction

In this paragraph are shown the images of the membrane reconstruction.

In Fig. 5.4, Fig. 5.5 and Fig. 5.6 we present in three di�erent columns re-

spectively the empirical data, the corresponding reconstruction and their dif-

ference. Are reported the images of the relevant slices of the entire Z-stack

collection. In particular, to empathize the goodness of the obtained �tting, is

worth to focus on the data di�erence. In fact, the reconstruction reproduces

faithfully the membrane areas, ignoring the �uorescence of the surrounding

zones. In conclusion, the signi�cant results are collected in Fig. 5.7.
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Figure 5.4: Results of the reconstruction procedure of the endosome mem-

brane in Z = 10, 11, and 12. From left to right, each column show respectively

the starting image, the corresponding reconstruction and their di�erence.
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Figure 5.5: Results of the reconstruction procedure of the endosome mem-

brane in Z = 13, 14, 15, 16 and 17. From left to right, each column show

respectively the starting image, the corresponding reconstruction and their

di�erence.
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Figure 5.6: Results of the reconstruction procedure of the endosome mem-

brane in Z = 18, 19, 20, 21 and 22. From left to right, each column show

respectively the starting image, the corresponding reconstruction and their

di�erence.
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Figure 5.7: Summary of the results.
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5.3 Domain Reconstruction

This last paragraph of the results section, deals with the domains identi�ca-

tion and reconstruction. The results presented in the Fig. 5.8, Fig. 5.9 and

Fig. 5.10 are organized by following. The �rst columns reports the original

images after the application of the deconvolution pre-process. Instead, in

the �rst column we show the membrane and protein colocalization obtained

using the reconstructed membrane discussed in the previous paragraph. On

the other hand, the third column is related with the reconstruction obtained

with the proposed tool. Once more, to prove the quality of the approach,

we present in the last column the di�erence among the experimental images

processed and the reconstruction generated. The good �tting for the zones of

interest con�rm the value of the methodology. In conclusion, the signi�cant

results are collected in Fig. 5.11.
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Figure 5.8: Comparison between original image and reconstructed in Z = 10,

11, and 12. From left to right, each column show respectively the starting

image, the colocalization of protein and membrane, the reconstruction and

in conclusion the di�erence between the last two.
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Figure 5.9: Comparison between original image and reconstructed in Z = 13.

14, 15, 16 and 17. From left to right, each column show respectively the start-

ing image, the colocalization of protein and membrane, the reconstruction

and in conclusion the di�erence between the last two.63
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Figure 5.10: Comparison between original image and reconstructed in Z =

18, 19, 20, 21, and 22. From left to right, each column show respectively the

starting image, the colocalization of protein and membrane, the reconstruc-

tion and in conclusion the di�erence between the last two.64
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Figure 5.11: Summary of the results.

65



Chapter 5. Results

In the following �gure (Fig. 5.12), are presented the 3D rendering of

membrane and Rab11 domains from di�erent point of view.

Figure 5.12: Reconstructed 3D volume
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Conclusions and Future Work

In this thesis work an experimental study related to eukaryotic cells have

been performed.

In particular, the main focus has been the 3D reconstruction of molecular

sorting from experimental images, aimed to allow a more complete under-

standing of the process.

The main contribution are related to the introduction of a methodology

to accomplish this goal.

The proposed strategy has been implemented in Python.

A principal intuition, to obtain a good reconstruction of the images, has

been the hypothesis related the morphologies of the structures of interest.

In particular, this assumption has compensated the reduced images reso-

lution linked with the microscope limits.

The proposed approach is able, as well as to identify and reconstruct,

to give physical informations related to size of the structure of interest for

molecular sorting.

In addition, analyzing di�erent Z-stack frames, allow the reconstruction of

the whole process evolution over time. Consequently, this tool can be greatly

contribute to investigate a large variety of phenomena related to living cells,

which are still poorly understood.

The prospects are to adapt the procedure to quantitatively show some
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phenomena. Such as, the domains subdivision, or contrarily, their aggrega-

tion. Other possible applications are the study of the domains kinetics, or

the reconstruction of nucleation of the transport vesicles with the consequent

detachment.
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Appendix A

Acquisition of Experimental

Images

The acquired experimental images are obtained from living cells suitably la-

beled with �uorescent proteins.

These proteins bind to the structures we want to observe, allowing them to

be traced and observed under a microscope.

Two �uorescent proteins are used: the Gfp and the Fyve2x which binds re-

spectively to Rab11 and to the lipid membrane of the endosome.

The advantage of these �uorescent markers is that they bind to the subcel-

lular structures of interest, without altering their normal functionality.

Live imaging of the endosomes was performed on a Leica SP8 confocal laser

scanning microscope, equipped with 63X O2/oil immersion objective and

with numerical aperture (NA) 1.40.

Hyd detectors allow the simultaneous detection of Gfp and Fyve2x.

Fluorescent dyes are sequentially imaged.

The Gfp is excited with a 458 nm laser line and imaged at 470 − 500 nm

bandpass emission �lters.

The Fyve2x instead is excited with the 568 nm Helium Neon laser line and

imaged through to 580− 650 nm bandpass emission �lter.

Serial sections is acquired satisfying the Nyquist criteria for sampling and
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processed.

The ROI has been chosen in order to contain the endosome and the sur-

rounding intracellular region, su�ciently wide and homogeneous to be able

to visualize moving vesicles.

Each image (Z-stack) consists of 28 dual-channel optical sections; the two

channels corresponds to Gfp and Fyve2x respectively. Each optical section

is an image of size 88× 88 pixels.

In conclusion, the images are exported as a single TIFF �le.
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3D Deconvolution Manual

B.1 Creating a PSF image

In deconvolution the key element needed is the Point Spread Function (PSF)

which de�nes how a given point of light is imaged by your camera and mi-

croscope. The PSF is notoriously tricky to calculate empirically, so we opted

to create a theoretical PSF using the PSF Generator plug-in for Fiji.

You can install it from http://bigwww.epfl.ch/algorithms/psfgenerator/.

Open this plugin from your Fiji menu:

>Plugins >PSF Generator

We need to have the following information to create a PSF:

• The algorithm, e.g. B&W;

• Index of refraction

• Numerical aperture

• Wavelength of the emission �uorescence of the �uorophore in nano-

meters;

• Pixelsize XY in nano-meters;
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• Z-step in in nano-meters;

• SizeXYZ.

When you have found and entered all of these numbers hit on this image and

then select:

File >Save as>.tiff

from Fiji menu for later use.

B.2 3D Deconvolution

In 3D deconvolution a stack of images at di�erent depths of focus are ef-

fectively cross referenced to eliminate blur from every layer. The algorithm

used works in repeated iterations, to calculate successively more accurate

images. This process is more computationally complex than can, especially

where large images or large numbers of iterations are concerned, take a few

hours to complete.

For 3D deconvolution you will need a stack of images (a single �le containing

the photographic slices at di�erent depths). To begin, open the color image

you wish to deconvolute in Fiji and then:

>Image >Color >Split channels.

You should now have di�erent images, one for each channels. Save each of

these separately to perform the 3D deconvolution process on each of them.

Using the deconvolutionLab2 plug-in of Fiji we can perform our deconvolu-

tion operation.

You can install it from http://bigwww.epfl.ch/deconvolution/.

Open this plug-in from your Fiji menu:

>Plugins >DeconvolutionLab2
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You have to select, for each channel separately:

• Image �le Path to a single �le;

• PSF �le Path to the correspondent PSF previously generated;

• Algorithm Select the algorithm and set the parameters (for more de-

tails about it you can see the appendix B).

Press 'Run' to start the deconvolution an then save it.

Once that all channels have been deconvoluted using the process outlined

above, you can marge them:

Image >Color >Merge Channels

Finally you can save your deconvoluted image.

Figure B.1: Example of deconvolution on a dataset of three stacks of images

of a C. Elegans embryo.
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Python Code for 3D

Reconstruction

In the following sections are reported the Python library containing the func-

tions codes used to reconstruct the 3D volume from experimental images. In

each of these functions is reported a brief comment to better describe them.

The code is structured as follows:

• Read_Meta_images.py In this library there are the de�nitions of

the functions used to read the microscopy images. In particular, this

code is able to read images using the metadata contained in the mi-

croscopy �le (i.e. .li�, .ti�, etc...) which are stored following the Open

Microscopy Environment (OME) schema [13]. Examples of metadata

are: the number of pixels in the X, Y and Z directions, the temporal

information T, the physical dimensions of the pixels, the information

concerning the objective lens used, the numerical aperture (NA), the

refractive index (RI), the information on the emission and excitation

wavelength of the light used, the number of C channels present and

many others. Typically a microscopy �le contains several series and

each series is a 3D movie. This last can be represented in the calcula-

tor as a 5-dimensional matrix: [T, Z,C,X, Y ], which values represent

the pixel intensities. The data are saved in lists of length corresponding
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to the number of series present in the �le and each element of the list

is a 5D matrix containing the pixel values.

• Tools_fyve2x.py In this library there are the python de�nitions em-

ployed to reconstruct the membrane of the endosome using the data

of the �rst channel dataset. In particular, is possible to �nd the de�-

nition to evaluate the empirical distribution probability, the one eval-

uating the model function as in ( 4.6), and also the KL divergence.

Furthermore, there is the function used to solve the optimization prob-

lem de�ned in ( 4.7). As stated in the dissertation, the optimization

method selected is the 'L-BFGS-B' one. Starting from a random point,

the algorithm search the solution moving in the feasible region until

the objective function is minimized.

• Tools_gpf.py In this library there are the python functions used to

reconstruct the Rab11 domains using the data of the second channel of

the dataset. As for the previous case, there is the function evaluating

the empirical distribution probability, the one that de�ne model distri-

bution ( 4.12) and the KL divergence. Even to perform this analysis,

the method used to solve the optimization problem ( 4.13) is the 'L-

BFGS-B'. In the minimization function, we are looking for a solution

in the feasible region, starting from a random vector over the sphere

identi�ng the endosome membrane and from a random value of the

angle, representing the cone width.

• Reconstruction.py This is the main function reconstructing the en-

tire volume from a single Z-stack. In this function, all the previously

de�nitions are called to implement the procedure described in the Para-

graph 4.2.3.

• Final_Script This script is shown for illustrative purposes. With

the method de�ned in Reconstruction.py it is possible to reconstruct a

3D movie, simply giving in input the �le name and indicating frames

collection t we want to reproduce.
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C.1 Read_Meta_images.py

from __future__ import pr int_funct ion

import j avabr idge as jv

import bio formats

import numpy as np

from lxml import e t r e e as e t l

import sys

VM_STARTED = False

VM_KILLED = False

def start_jvm (max_heap_size=' 4G' ) :

"""

S ta r t the Java Vi r tua l Machine .

"""

global VM_STARTED

jv . start_vm ( class_path=bio formats . JARS,\

max_heap_size=max_heap_size )

VM_STARTED = True

def ki l l_jvm ( ) :

"""

K i l l the JVM.

"""

global VM_KILLED

jv . kill_vm ( )

VM_KILLED = True
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def jvm_error ( ) :

raise RuntimeError ( "The Java Vi r tua l  Machine has a l r eady  been"

" k i l l e d ,  and cannot  be r e s t a r t e d . "

"You must r e s t a r t  your program"

"and try  again . " )

start_jvm (max_heap_size=' 4G' )

def get_OMEXML( imag e f i l e ) :

i f not VM_STARTED:

start_jvm ( )

i f VM_KILLED:

jvm_error ( )

#ge t OME−XML and change the encoding to UTF−8
omexml = bio formats . get_omexml_metadata ( imag e f i l e )

omexml = omexml . encode ( ' ut f−8 ' )
return omexml

def getinfofromOMEXML(omexml , nodenames , ns ) :

"""

This f unc t i on can be used to read the most u s e f u l

OME MetaInformation from the r e s p e c t i v e XML.

Check f o r the co r r e c t namespace .

"""

#ge t the roo t t r e e

root = e t l . f r omst r ing (omexml )

#de f i n e the namespace in order to f i nd the co r r e c t path

NSMAP = { 'mw' : ns}
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#cons t ruc t the search s t r i n g

i f len ( nodenames ) >= 1 :

search = " .//mw: " + nodenames [ 0 ]

i f len ( nodenames ) >= 2 :

search = search + "/mw: " + nodenames [ 1 ]

i f len ( nodenames ) >= 3 :

search = search + "/mw: " + nodenames [ 2 ]

#f ind a l l e lements us ing the search s t r i n g

out = root . f i n d a l l ( search , namespaces=NSMAP)

#crea t e an empty l i s t to s t o r e the d i c t i o n a r i e s in

d i c t l i s t = [ ]

for i in range (0 , len ( out ) ) :

#crea t e the d i c t i ona r y from key va lue

dict = {}

for k in range (0 , len ( out [ i ] . a t t r i b ) ) :

dict [ out [ i ] . keys ( ) [ k ] ] = out [ i ] . va lue s ( ) [ k ]

#add d i c t i ona r y to the l i s t

d i c t l i s t . append ( dict )

return d i c t l i s t

def get_relevant_metainfo ( image f i l e , \

ns = ' http ://www. openmicroscopy . org /Schemas/OME/2016−06 ' ) :

i f not VM_STARTED:

start_jvm ( )

i f VM_KILLED:

jvm_error ( )

#ge t the a c t ua l image reader

rdr = bio formats . get_image_reader (None , path=imag e f i l e )

#Number o f t o t a l s e r i e s

t o t a l s e r i e s = np . int ( rdr . rdr . getSer i e sCount ( ) )
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omexml=get_OMEXML( imag e f i l e )

Meta=[ ]

MetaIn fo_l i s t =[ ]

Meta=getinfofromOMEXML(omexml , [ ' Image ' , ' P i x e l s ' ] , ns )

for s e r i e s ID in range (0 , t o t a l s e r i e s ) :

MetaIn fo_l i s t . append (Meta [ s e r i e s ID ] )

return MetaInfo_l i st , t o t a l s e r i e s

def get_image5d_multidim ( image f i l e , MetaIn fo_l i s t ) :

"""

This f unc t i on read the image data s e r i e s by s e r i e s .

Every s e r i e s i s s t o r ed i n s i d e a t u p l e as a 5D numpy array .

The 5D array has the f o l l ow i n g dimension order : [T, Z , C, X, Y] .

"""

i f not VM_STARTED:

start_jvm ( )

i f VM_KILLED:

jvm_error ( )

rdr = bio formats . ImageReader ( image f i l e , per form_init=True )

r e ad s t a t e = 'OK'

readproblems = [ ]

# i n i t i a l i z e the empty l i s t t h a t w i l l ho ld a l l the 5D array

images_l i s t = [ ]

numser ies = len ( MetaIn fo_l i s t )

for s e r i e s ID in range (0 , numser ies ) :

current_sizeT = int ( MetaIn fo_l i s t [ s e r i e s ID ] [ ' SizeT ' ] )

current_s izeZ = int ( MetaIn fo_l i s t [ s e r i e s ID ] [ ' S izeZ ' ] )

current_sizeC = int ( MetaIn fo_l i s t [ s e r i e s ID ] [ ' SizeC ' ] )

# read the XY dimension o f the f i r s t s e r i e s

current_sizeX = int ( MetaIn fo_l i s t [ s e r i e s ID ] [ ' SizeX ' ] )

current_sizeY = int ( MetaIn fo_l i s t [ s e r i e s ID ] [ ' SizeY ' ] )
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newsize = [ current_sizeT , current_sizeC , current_sizeX ,

current_sizeY , current_s izeZ ]

# crea t e the 5D numpy array

img5d = np . z e r o s ( newsize , dtype=BF2NP_DTYPE

[ rdr . rdr . getPixelType ( ) ] )

# main loop to read the images from the data f i l e

for t imepoint in range (0 , current_sizeT ) :

for zp lane in range (0 , current_s izeZ ) :

for channel in range (0 , current_sizeC ) :

try :

img5d [ t imepoint , channel , : , : , zp lane ] =\

rdr . read ( s e r i e s=se r i e s ID , c=channel , \

z=zplane , t=timepoint , r e s c a l e=Fal se )

#pr in t ( r e ad s t a t e )

except :

print ( ' Problem read ing  data in to

                                                                        Numpy Array f o r  S e r i e s ' , s e r i e s ID , sys . exc_info ( ) [ 1 ] )

r e ad s t a t e = 'NOK'

readproblems = sys . exc_info ( ) [ 1 ]

# s to r e the 5D array i n s i d e a t u p l e

images_l i s t . append ( img5d )

# c l e a r the array from memory

img5d = None

rdr . c l o s e ( )

return images_l i s t , r e ad s t a t e
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C.2 Tools_fyve2x.py

from __future__ import d i v i s i o n

import numpy as np

from s c ipy . opt imize import minimize

def norma l i za t i on (M) :

"""

This f unc t i on g i v e s in input a 3D matrix o f i n t e n s i t i e s ,

r e tu rns p [ x , y , z ] which corresponds to the p r o b a b i l i t y to

observe a molecu le in p o s i t i o n ( x , y , z )

"""

N=np .sum(M)

i f N != 0 :

p=M/N

return p

def modulo ( r0 , de l ta , rx , ry , rz ) :

"""

This f unc t i on re turns the d i s t an c e s between

r=(rx , ry , r z ) ( po in t s o f the volume ) and r0 ( f i x e d po in t ) .

I t t a k e s in t o account the p h y s i c a l s i z e o f a vo x e l

g i ven by d e l t a=(dx , dy , dz ) .

"""

mod=np . sq r t ( ( ( rx−r0 [ 0 ] ) ∗ de l t a [ 0 ] )∗∗2\
+(( ry−r0 [ 1 ] ) ∗ de l t a [ 1 ] )∗∗2\
+(( rz−r0 [ 2 ] ) ∗ de l t a [ 2 ] ) ∗ ∗ 2 )

return mod
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def fun_fyve2x (mod, R, sigma ) :

"""

Def ines the func t i on o f the model t h a t f i t

the endosome and e va l u a t e s i t in each po in t o f the volume .

"""

f=(np . exp ((−1/2)∗((mod−R)/ sigma )∗∗2) )
return f

def div_fyve2x ( theta , p , de l ta , rx , ry , rz ) :

"""

Given p and q p r o b a b i l i t y d i s t r i b u t i o n s ,

d iv_fyve2x e v a l u a t e s the Kul lback−Le i b l e r d i ve rgence

o f q from p .

D_kl = p∗ l o g ( p/q ) .
"""

r0 ,R, sigma=theta [ : 3 ] , theta [ 3 ] , theta [ 4 ]

mod=modulo ( r0 , de l ta , rx , ry , rz )

C=np .sum( fun_fyve2x (mod, R, sigma ) )

ind=np . nonzero (p)

D = np .sum(p [ ind ]∗ np . l og (p [ ind ] ) ) \

+np .sum(p∗ ( ( np . l og (C)−((−1/2)∗((mod−R)/ sigma )∗∗2 ) ) ) )
return D

def qmat_fyve2x ( theta , de l ta , rx , ry , rz ) :

"""

This f unc t i on e v a l u a t e s the model matrix q

g i ven the va l u e s o f the t h e t a parameters .

"""

r0 ,R, sigma=theta [ : 3 ] , theta [ 3 ] , theta [ 4 ]

mod=modulo ( r0 , de l ta , rx , ry , rz )

C=np .sum( fun_fyve2x (mod, R, sigma ) )
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q=(1/C)∗ fun_fyve2x (mod, R, sigma )

return q

def minimizat ion (p , de l ta , rx , ry , rz , S i z e ) :

"""

This f unc t i on re turns the argument ( i . e . t h e t a )

minimizing the Kul lback−La i b l e r d i ve rgence

o f q_theta from p .

"""

Rmax=1000

devmax=250

theta0=np . array ( [ np . random . uniform (0 , S i z e [ 0 ] ) , \

np . random . uniform (0 , S i z e [ 1 ] ) , \

np . random . uniform (0 , S i z e [ 2 ] ) , \

np . random . uniform (0 , Rmax) ,\

np . random . uniform (0 , devmax ) ] )

arg=(p , de l ta , rx , ry , rz )

bnds=([0 , S i z e [ 0 ] ] , [ 0 , S i z e [ 1 ] ] , [ 0 , S i z e [ 2 ] ] , [ 0 ,Rmax ] , [ 0 , devmax ] )

r e s = minimize ( div_fyve2x , theta0 , \

args=arg , method='L−BFGS−B ' ,\

j a c=None , bounds=bnds , \

t o l=None , c a l l b a ck=None , \

opt ions={ ' d i sp ' : None , 'maxcor ' : 10 ,\

' f t o l ' : 2 .220446049250313 e−09, ' g t o l ' : 1e−05 ,\
' eps ' : 1e−08, 'maxfun ' : 15000 , ' maxiter ' : 15000 ,\

' i p r i n t ' : −1, ' maxls ' : 20})

return r e s
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C.3 Tools_gpf.py

from __future__ import d i v i s i o n

import numpy as np

from s c ipy . opt imize import minimize

def norma l i za t i on (M) :

"""

Normal izat ion t ake s as input M, the matrix and

re turns the matrix p .

p [ x , y , z ] corresponds to the p r o b a b i l i t y to observe

a molecu le in p o s i t i o n ( x , y , z ) .

"""

N=np .sum(M)

i f N != 0 :

p=M/N

return p

def modulo ( r0 , de l ta , rx , ry , rz ) :

"""

This f unc t i on re turns the d i s t an c e s between

r=(rx , ry , r z ) ( po in t s o f the volume ) and r0 ( f i x e d po in t ) .

I t t a k e s in t o account the p h y s i c a l s i z e

o f a vo x e l g i ven by d e l t a=(dx , dy , dz ) .

"""

mod=np . sq r t ( ( ( rx−r0 [ 0 ] ) ∗ de l t a [ 0 ] )∗∗2\
+(( ry−r0 [ 1 ] ) ∗ de l t a [ 1 ] )∗∗2\
+(( rz−r0 [ 2 ] ) ∗ de l t a [ 2 ] ) ∗ ∗ 2 )

return mod
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def modulou ( r0 , de l ta , u ) :

"""

Distance between the v e c t o r s u and r_0

"""

mod=np . sq r t ( ( u [0]− r0 [ 0 ] ∗ de l t a [ 0 ] )∗∗2\
+(u[1]− r0 [ 1 ] ∗ de l t a [ 1 ] )∗∗2\
+(u[2]− r0 [ 2 ] ∗ de l t a [ 2 ] ) ∗ ∗ 2 )

return mod

def modulou ( r0 , de l ta , u ) :

"""

The func t i on e v a l u a t e s the d i s t ance between the u and r_0 ,

t a k ing in t o account the p h y s i c a l s i z e d e l t a=(dx , dy , dz ) .

"""

mod=np . sq r t ( ( u [0]− r0 [ 0 ] ∗ de l t a [ 0 ] )∗∗2\
+(u[1]− r0 [ 1 ] ∗ de l t a [ 1 ] )∗∗2\
+(u[2]− r0 [ 2 ] ∗ de l t a [ 2 ] ) ∗ ∗ 2 )

return mod

def rand_unif_sphere ( r0 ,R, de l t a ) :

"""

The func t i on genera t e s a random po in t on a sphere o f

rad ius R and cen te r r_0 .

"""

theta= 2 . ∗ np . p i ∗ np . random . uniform (0 , 1 )

phi = np . a r c co s ( 2∗np . random . uniform (0 ,1)−1)

x = r0 [ 0 ] ∗ de l t a [ 0 ] + R ∗ np . cos ( theta )∗ np . s i n ( phi )

y = r0 [ 1 ] ∗ de l t a [ 1 ] + R ∗np . s i n ( theta )∗ np . s i n ( phi )

z = r0 [ 2 ] ∗ de l t a [ 2 ] + R ∗ np . cos ( phi )

p=np . array ( [ x , y , z ] )
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return p

def qmat_gfp (u , c , r0 , mask , de l ta , rx , ry , rz ) :

"""

The func t i on e v a l u a t e s the d i s t r i b u t i o n

model q f o r the Gfp channel .

Data : r0 , mask , de l t a , rx , ry , r z

Parameters : ux , uy , uz , c

"""

n=(u−r0∗ de l t a )/modulou ( r0 , de l ta , u )

mod=modulor ( r0 , de l ta , rx , ry , rz )

w=((( rx−r0 [ 0 ] ) ∗ de l t a [ 0 ] ) /mod∗n [ 0 ] \
+(( ry−r0 [ 1 ] ) ∗ de l t a [ 1 ] ) /mod∗n [ 1 ] \
+(( rz−r0 [ 2 ] ) ∗ de l t a [ 2 ] ) /mod∗n[2]− c )

w0=0.1

f0=1/np . p i ∗np . arctan (w/w0)+1/2

f =f0 ∗mask

C=np .sum( f )

return f /C

def div_gfp ( theta , p , mask , de l ta , r0 , rx , ry , rz ) :

"""

The func t i on e v a l u a t e s the KL d ivergence o f p from q ,

where p and q are the emp i r i ca l and the model d i s t r i b u t i o n .

D( q | | p ) = sum( q l o g ( q\p ))

"""

u , c=theta [ : 3 ] , theta [ 3 ]

q=qmat_gfp (u , c , r0 , mask , de l ta , rx , ry , rz )

ind=np . nonzero (q )

D = np .sum( q [ ind ] ∗ ( np . l og (q [ ind ] / p [ ind ] ) ) )
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return D

def min_gfp ( r0 ,R, de l ta , p_mask , mask , rx , ry , rz , S i z e ) :

"""

The func t i on re turns the va lue and the argument minimizing the

KL d ivergence o f p from q .

The minimizat ion a l gor i thm take s in input o b j e c t i v e

f unc t i on ' div_gfp ' and the s t a r t i n g po in t t h e ta0 .

Theta0 i s random and uni formly d i s t r i b u t e d .

"""

u0=rand_unif_sphere ( r0 ,R, de l t a )

theta0=np . array ( [ u0 [ 0 ] , u0 [ 1 ] , u0 [ 2 ] , np . random . uniform (−1 ,1) ] )

bnds=([0 , S i z e [ 0 ] ∗ de l t a [ 0 ] ] , [ 0 , S i z e [ 1 ] ∗ de l t a [ 1 ] ] , \

[ 0 , S i z e [ 2 ] ∗ de l t a [ 2 ] ] , [ − 1 , 1 ] )

arg=(p_mask , mask , de l ta , r0 , rx , ry , rz )

res_gfp = minimize ( div_gfp , theta0 , args=arg , \

method='L−BFGS−B ' , j a c=None , \

bounds=bnds , t o l=None , \

ca l l ba ck=None , \

opt ions={ ' d i sp ' : None , 'maxcor ' : 10 ,\

' f t o l ' : 2 .220446049250313 e−09 ,\
' g t o l ' : 1e−05, ' eps ' : 1e−08 ,\
'maxfun ' : 15000 ,\

' maxiter ' : 15000 ,\

' i p r i n t ' : −1,\
' maxls ' : 20})

return res_gfp . fun , res_gfp . x
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C.4 Reconstruction.py

from __future__ import d i v i s i o n

import numpy as np

import sys

sys . path . append ( 'C: \ Users \Path . . . . ' )

import Read_Meta_Images as rmi

import tools_Fyve2x as t l f

import tools_Gfp as t l g

from s c ipy import ndimage

def r e c on s t r u c t i on ( image f i l e , t ) :

"""

The func t i on t ake s in input the imag e f i l e and the frame t .

I t r e tu rns :

−p_fyve2x : the emp i r i ca l d i s t r i b u t i o n o f Fyve2x in the volume ;

−the ta_f : the argument minimizing D( p_yve2x , q f ( t h e t a ) ) ;

−q f : the model d i s t r i b u t i o n f o r Fyve2x , e va l ua t ed in the ta_f ;

−p_gfp : the emp i r i ca l d i s t r i b u t i o n o f Gfp in the volume ;

−t h e t a_g_l i s t : the l i s t o f the arguments minimizing the KL d iv .

−qg : the model d i s t r i b u t i o n f o r Gfp , e va l ua t ed in theta_g .

"""

#Read the images in microscope format eg . . l i f , . t i f f e t c

#and save them in a l i s t .

#Each element o f the l i s t i s a 5D−array :
#a c o l l e c t i o n o f T frame , each one whi t C channe l s and vox e l XYZ.

#e . g . L i s t [ S e r i e s ] [ T,C,X,Y,Z ]

rmi . start_jvm (max_heap_size=' 4G' )

MetaInfo_l i st , t o t a l s e r i e s = \

rmi . get_relevant_metainfo ( image f i l e , \

ns = ' http ://www. openmicroscopy . org /Schemas/OME' )
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Img , r e ad s t a t e=rmi . get_image5d_multidim ( image f i l e , MetaIn fo_l i s t )

Img=np . u int8 ( Img)

#Save the frame t and s p l i t the two channe l s

M = Img [ 0 ] [ t , : , : , : , : ]

M_fyve2x = M[ 0 , : , : , : ]

M_gfp = M[ 1 , : , : , : ]

#Phys i ca l s i z e s

de l t a = np . array ( [ 4 4 . 1 8 6 7 , 4 4 . 1 8 67 , 1 5 0 . 2 0 3 9 ] ) #nm

#s i z e o f the image

S i z e = M_fyve2x . shape

#voxe l g r i d

x = np . arange (0 , S i z e [ 0 ] , 1)

y = np . arange (0 , S i z e [ 1 ] , 1)

z = np . arange (0 , S i z e [ 2 ] , 1)

rx , ry , rz = np . meshgrid (x , y , z )

#−−−−−−−−−−−−−−F i t t i n g Fyve2x−−−−−−−−−−−−−−−−−−

#Pro b a b i l i t y matrix ( Fyve2x )

p_fyve2x = t l f . no rma l i za t i on (M_fyve2x )

#gauss ian f i l t e r ( Fyve2x )

p_fyve2x_gaussian = t l f . no rma l i za t i on (\

ndimage . g au s s i a n_ f i l t e r ( p_fyve2x , 2 ) )

#th r e s h o l d ( Fyve2x )

threshold_pf = ( p_fyve2x_gaussian > \
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(np .mean( p_fyve2x_gaussian)+\

2∗np . std ( p_fyve2x_gaussian ) ) )

p_fyve2x_gaussian_tresh = p_fyve2x_gaussian∗ threshold_pf

#f i n a l p r o b a b i l i t y matrix ( Fyve2x )

p_fyve2x_final = t l f . no rma l i za t i on ( p_fyve2x_gaussian_tresh )

#Minimize the d i ve rgence D(p_f | | q f )

res_fyve2x = t l f . minimizat ion ( p_fyve2x_final , de l ta , rx , ry , rz , S i z e )

#Save the argument t ha t minimize D(p_f | | q f )

theta_f = res_fyve2x . x

#Evaluate the ( opt imal ) model d i s t r i b u t i o n ( Fyve2x )

qf = t l f . qmat_fyve2x ( theta_f , de l ta , rx , ry , rz )

r0 = theta_f [ : 3 ]

R = theta_f [ 3 ]

#−−−−−−−−−−−−−−−−−−−−F i t t i n g Gfp−−−−−−−−−−−−−−−−−−

#Pro b a b i l i t y matrix (Gfp )

p_gfp = t l g . norma l i za t i on (M_gfp)

#gauss ian f i l t e r (Gfp )

p_gfp_gaussian = ndimage . g au s s i a n_ f i l t e r ( p_gfp , 5)

#mask ( to ignore the f l u o r e s c en c e ou t s i d e the membrane)

mask = ( qf >(np .mean( q f ) ) ) + 1e−50

#th r e s h o l d (Gfp )
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threshold_pg = ( p_gfp_gaussian >\

(np .mean( p_gfp_gaussian)+\

np . std ( p_gfp_gaussian ) ) ) + 1e−50
p_gfp_gaussian_mask = threshold_pg ∗ p_gfp_gaussian ∗ mask

#f i n a l p r o b a b i l i t y matrix (Gfp )

p_gfp_final = t l g . norma l i za t i on ( p_gfp_gaussian_mask )

q_gfp_l ist =[ ]

theta_g_l i s t =[ ]

current_theta_g=np . array ( [ 0 , 0 , 0 , 0 ] )

p_current= p_gfp_final

npatch=−1

while current_theta_g [3 ] <0.9 and npatch <10:

#f ind 10 min o f the d i ve rgence D( q_theta | | p_gfp )

#and save them in a l i s t

l i s t_re s_g fp = [ ]

for i in range ( 0 , 1 0 ) :

l i s t_re s_g fp . append ( t l g . min_gfp ( r0 ,R, de l ta , \

p_current , mask , rx , ry , rz , S i z e ) )

#sor t the l i s t wi th r e s p e c t to the d i ve rgence

l i s t_re s_g fp . s o r t ( )

#save the argument t ha t minimize D( qg_theta | | p_gfp )

current_theta_g=l i s t_re s_g fp [ 0 ] [ 1 ]

theta_g_l i s t . append ( current_theta_g )

#eva l ua t e the ( opt imal ) model d i s t r i b u t i o n (Gfp )

q_gfp_list . append ( t l g . qmat_gfp ( current_theta_g [ : 3 ] , \
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current_theta_g [ 3 ] , r0 , mask , de l ta , rx , ry , rz ) )

current_q = t l g . norma l i za t i on (sum( q_gfp_l ist ) )

e l im = current_q < np .mean( current_q ) + np . std ( current_q )

p_current = ( p_gfp_final ∗ e l im ) + 1e−50
npatch=npatch + 1

qg=t l g . norma l i za t i on (sum( q_gfp_l ist [ : −1 ] ) )

return ( p_fyve2x , qf , theta_f , p_gfp , qg , theta_g_l i s t )
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C.5 Final_Script

from __future__ import d i v i s i o n

import numpy as np

import sys

sys . path . append ( ' path . . . ' )

import Read_Meta_Images as rmi

import tools_Fyve2x as t l f

import tools_Gfp as t l g

import r e c on s t r u c t i on as r ec

imag e f i l e='D_RL30_2018_07_19_clus_rab11gfp_fyve2x . l i f  − Se r i e s 013 . t i f '

#recon s t ru c t i on o f frames 1 , 2 , . . . , 4 4

res_reconstruct ion_frames =[ ]

for t in range ( 1 , 4 5 ) :

res_reconstruct ion_frames = rec . r e c on s t ru c t i on ( image f i l e , t )
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