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Abstract 
 

 

This thesis project exploits the learning and computation capacity of Machine Learning algorithms, 

with the purpose of forecasting the Laminar Burning Speed (𝑆𝐿) for gaseous fuelled Spark-Ignition 

Engines. In the specific, both compressed natural gas (CNG) and compressed natural gas with 

hydrogen (HCNG) will be evaluated. The analysis has the objective to provide a robust model able 

to predict, in an acceptable computation time, the 𝑆𝐿. The robustness is fundamental for the CFD 

computations, also as the saving time that we can gain during the simulating with respect to the 

requested one for the different flame speed correlation laws. For the creation of predictive model, 

a dataset is adopted considering the 𝑆𝐿 dependence on Temperature (T, [K]), pressure (p, [bar]), 

EGR rate [%], equivalent air-fuel ratio (Ø, [-]), available percentage of methane (% 𝐶𝐻4) and 

hydrogen (% 𝐻2). However for an effective result, Rational Quadratic Gaussian Process Regression 

model is used due to its better performance than the other considered linear regression, 

regression tree, and support vector machine (SVM) models. In addition, the neural networks as 

well are considered for the forecasting of 𝑆𝐿 because these are used for solving the regression 

problems with a high level of efficiency and accuracy. In the specific for this computation step, the 

Levenberg-Marquardt training algorithm is considered.   
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1. Introduction 
 

 

The requirements of existing emission standards, which defines the maximum acceptable limit for 

the new vehicles exhaust emissions, influence the developing of new technologies. For example, 

to stay within the imposed restrictions, the elaboration of alternative fuels to petroleum fuels in 

internal combustion engines has been necessary. The natural gas, mainly made up of methane, is 

part of this family of fuels because of the low carbon percentage that means a lower level of 

emissions in terms of CO, 𝐶𝑂2 and HC. For what concernes the  𝑁𝑂𝑥 , they will also decrease for 

the least reached temperature in the cylinder. However, in the case of turbocharging engines the 

temperature, inside the cylinder, will surely increase with a consequence rising of  𝑁𝑂𝑥 emissions. 

Hence, an EGR system will be exploited to preventing 𝑁𝑂𝑥  formation because the residual gasses 

can act as diluents in the unburned gas mixture, and the peak temperature reached during the 

combustion process decreases with increasing of the residual concentration. By the way, the 

recirculated exhaust gasses amount must be kept under control since it produces a less reactive 

mixture with possible misfiring events. Indeed, at the end of the combustion process, the peak 

pressure and flame front normally slows down due to the dropping in peak pressure and 

temperature of mixture caused by expansion phase; but if the temperature goes down too fast 

due to a high residual concentration, the flame front can stop leaving a part of mixture unburned. 

Moreover, the natural gas has an anti-knock property that allows the exploiting of a spark ignition 

engine (SI engine) fuelled by methane at higher compression ratio. Therefore, a rising of thermal 

efficiency is expected. It should be noted that the methane burns slowly influencing in negative 

way the efficiency, the available power and the engine fuel consumption due to a certain cycle to 

cycle variations. Mixing hydrogen with the natural gas can help to address these issues thanks to 

its reactivity which ensures to improve the thermal efficiency, increase the burning velocity, 

extend the flammability limits and reduce the pollutant emissions because of a higher 

Hydrogen/Carbon atomic ratio. Thus, for the design of spark ignition engines an accurate 

computation for the laminar burning speeds is mandatory. It is a key parameter to describe the 

fuel properties, the occurring combustion phenomena and strictly related to the equivalence ratio 

as well as to temperature and pressure of the unburned gas mixture.  
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1.1 Premixed turbulent combustion 
 

For the spark ignition engines, a low reactivity fuel1, as gasoline or CNG, is compressed after 

mixing with air. Despite, in the end of compression, it may reach high temperature and pressure in 

order of 700 K and 25-30 bar, there is the necessity to trig the oxidation reaction by mean a spark 

properly due to the already mentioned low fuel reactivity. It can increase at several thousands of 

temperature Kelvin degree (6000-7000 K) the region where the electrical arc is taking place. 

Immediately after the first portion of charge is ignited, the heat is transferred to the surrounded 

layers of mixture meanly through convection increasing their temperature. In this way, the flame 

travels through the combustion chamber.  

 

Figure 1.1.1,  Representation of SI engine combustion event 

 

Therefore, at the beginning of the combustion, the spark plug is encircled by unburned gasses; 

right after, the combustion chamber also contains burned gasses and at the interface between 

them and the unburned ones, the chemical reactions go on determining the growing of the 

burning region. These two zones are separated by a region called flame front. Actually, the flow 

process in the engine cylinder is turbulent and the charge motion within the cylinder is one of the 

major factors that controls the combustion process in spark ignition engines. The turbulence 

corrugates the flame front, increasing the heat exchange area and the flame propagation speed. 

                                                      
1 characterized by a short hydrocarbon chain, rigid structure and high capability to evaporate 
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Indeed, as the engine spin speed goes up, also the turbulence intensity increases thereby 

positively affecting the burning speed and reducing the time available for combustion at higher 

engine regime.  

 

 

Figure 1.1.2, SL vs equivalence ratio plot for an SI ICE fuelled by CNG 

 

The Figure 1.2 is showing the reason for which Naturally Aspirated Spark Ignition engines must 

work as much as possible close to the stochiometric condition; the velocity of combustion has a 

maximum around an equivalence ratio about 1.1, and so they are throttled at part load to meet 

the decreasing of injected fuel.  

 

1.2 Laminar burning speed existing models  
 

Over the years, different chemical kinetic models and laminar flame speed correlations are 

developed for its prediction and to approximately describe the mixture behaviour in the engine 

combustion chamber. For making some evaluations and understanding how the combustion event 
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develops, it is possible to assume that the system is working under laminar flow conditions. In this 

way, there is the opportunity to neglect the effect of corrosion due to turbulence, which 

complicates the analysis. It is possible to imagine the combustion chamber subdivided in the 

simplest case in two macrozones, one where there are the unburned gases and the other in which 

the burned gases are host. The two zones are separated by a flame front assumed to be 

infinitesimal.  By magnifying the flame front, it is possible to distinguish three layers:  

• Preheat zone, where the fuel available, in the unburned region, reacts with oxygen creating 

the O, OH and H radicals without any important energy release. This is the initiating step 

promoted by the plug triggering activity. From the Figure 1.3, it is possible to see how the 

temperature gradient “T” grows with a concave upward trend thanks to the heat 

transferred from inner layer; 

• Inner layer, where the chain-braking reaction takes place; the products of the reaction 

(radicals) contribute to the reactants (fuel and radical) of another reaction. This continuous 

transformation of products in reactants leads to a thermal explosion with an important 

release of energy 

• Oxidation layer packed by hot products at the equilibrium temperature of the burned 

gases. In this layer, the temperature gradient has a concave downward trend due to the 

delivery of heat 

Thus, all these reactions are exothermal and the maximum for the Heat Release Rate is reached in 

the inner layer where the thermal explosion determines the combustion event.                                        

Different methodologies can be used for the evaluation of flame speed, like that in which it 

propagates normally and relatively to the unburned gases. In this case, an unsteady spherical 

flame front spreading in the radial direction is considered, for which, in general, can be described 

by the following formula:  

 

 𝑑𝑟𝑓̅̅ ̅

𝑑𝑡
=  𝑉𝑢̅ + 𝑆𝐿,𝑢

̅̅ ̅̅ ̅       (1) 

 

javascript:%20void(0)
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Figure 1.2.1, Magnification of laminar flame front 

 

 

By considering a one-dimensional flow in radial dimension, the vectoral formula (1) can be 

simplified into the scalar one:  

 

 𝑑𝑟𝑓

𝑑𝑡
=  𝑉𝑢 + 𝑆𝐿,𝑢       (2) 

 

 where the first term is the flame front velocity, the second one is the unburned gas velocity and 

the third one is the laminar burning speed measured at the unburned gas. Introducing the 

conservation of mass between the burned and unburned zone, it is possible to compute 𝑉𝑢 : 

 

 𝑉𝑢= 
𝜌𝑢−𝜌𝑏

𝜌𝑢

𝑑𝑟𝑓

𝑑𝑡
 (3) 
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𝜌𝑢−𝜌𝑏

𝜌𝑢
 is showing the expansion effect2 that is present when the unburned mass, within the flame 

front, becomes burned. As consequence, the laminar burning speed measured at the unburned 

gas is obtained as3:  

 
𝑆𝐿,𝑢 = (1 −

𝜌𝑢 − 𝜌𝑏

𝜌𝑢
)

𝑑𝑟𝑓

𝑑𝑡
 

(4) 

 

For the simulation of SI engine cycles, different models are evaluated and classified as zero-

dimensional model, quasi-dimensional model, multi-dimensional model and multi-zone model. 

The possibility and capability to predict a simplified description of three-dimensional phenomena 

occurring in the cylinder is the main difference between the quasi-dimensional and the zero-

dimensional model, which is only based on thermodynamic equilibrium. The zero-dimensional 

model thermodynamic equations, representing the model structure, are: 

• the mass conservation equation dependent on time 

• the energy conservation equation dependent on time 

Multi-zone models include some geometrical parameters in addition to the previous basic 

thermodynamic approach, like the interface radius (flame) which divides burned from unburned 

gases. In this case, the multi-zone can be also called as two-zone model. Therefore, combustion is 

triggered, several multiple burned gas zones are generated at each specific crank angles and the 

flame propagation starts. For example, the Figure 1.2.2 shows a multizone model for a SI engine, 

at a specific crank angle θ, with one unburned zone and six burned zones, where the point 1 is 

where the spark is taking place. Every burned and unburned gas zone has an uniform temperature 

and composition, but with an independent evolution during the expansion stroke. Also, the 

pressure is shared through the cylinder in uniform way. For the first thermodynamic law, an ideal 

gas inside the combustion chamber is considered. During the compression stroke, the mixture is 

homogeneous and made by induced air, fuel and residual gases4 coming from the previous engine 

cycle: 

 

                                                      
2 𝜌𝑢 − 𝜌𝑏 > 0  
3 𝑉𝑏 = 0 for assumption, because the burned mass inside the flame front is not moving  
4  They are computed by means of a correlation in which the residual gases are in function engine speed and average 
pressure during the exhaust and intake pressure strokes 
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Figure 1.2.2 Representation of SI engine combustion event according to the Multi-zone model; 𝑉𝑏 is showing the burned gas 

volume, instead 𝑉𝑢 is the unburned gas volume. The point 1 is where the combustion starts thanks to the trigging event 

 

 𝑚 = 𝑚𝑎 + 𝑚𝑓 + 𝑚𝑟 (5) 

 

For the conservation of mass, the flow through the crevices and all possible other leakages are 

neglect: 

 𝑑𝑚 = 𝑑(𝑚𝑎 + 𝑚𝑓 + 𝑚𝑟) = 𝑑𝑚𝑢 + 𝑑𝑚𝑏,𝑛 = 0 (6) 

 

It is worth to highlight the presence of 𝑑𝑚𝑏,𝑛 in the formula: after the spark timing, the first 

burned single zone is generated and it grows in volume and mass since part of unburned gas is 

burning. At a specific crank angle, a new burned gas zone is created and the old one does not 

receive mass from the unburned gasses, unlike its volume continue to change due to its density 

variation. As consequence:  

• 𝑑𝑚𝑏from the first to the penultimate zone is equal to zero 

• 𝑑𝑉𝑏 for each zone is always different from zero 



 
9 

 

For what concerns the energy conservation equation, it is necessary to write different equations 

considering one for unburned gas zone, n-equations for each i-th burned gas zones and one for 

the last one burned zone:  

 

For unburned gas zone: 
   −𝑞𝑢𝐴𝑢

𝑑𝜃

𝜔
+ 𝑉𝑢𝑑𝑝 = (1 − 𝑥𝑏)𝑚𝑑ℎ𝑢 

           (7) 

 

For i-th burned gas zone: 
    −𝑞𝑏,𝑖𝐴𝑏,𝑖

𝑑𝜃

𝜔
+ 𝑉𝑏,𝑖𝑑𝑝 = 𝑥𝑏,𝑖𝑚𝑑ℎ𝑏,𝑖 

            (8) 

 

For the last burned gas zone: 
−𝑞𝑏,𝑛𝐴𝑏,𝑛

𝑑𝜃

𝜔
+ 𝑉𝑏,𝑛𝑑𝑝 = 𝑥𝑏,𝑛𝑚𝑑ℎ𝑏,𝑛 + 𝑚𝑑𝑥𝑏,𝑛(ℎ𝑏,𝑛 − ℎ𝑢) 

      (9) 

 

where in general 𝑞 is the heat flux transferred to the wall, A is the surface across which the heat 

flux is exchanged, 
𝑑𝜃

𝜔
 is the time, 𝑥 is the mass fraction5 and h the enthalpy.  In all the equations, it 

is possible to distinguish three terms:  

• the first one is the heat transferred  

• 𝑉𝑑𝑝 is the work transferred6 

• the change of enthalpy related to the specific zone. 

In the equation (9), there is an additional fourth term that represents the presence of some 

unburned gasses entrained in the burned gas zone. These will change their chemical composition. 

However, if a prediction activity must be carried out, a sub-model for 𝑥𝑏 is necessary.  Moreover, 

the model owns a formulation of Newton’s convection law that takes account of the fact that 

there is an unsteadiness of the exchanged heat flow from the bulk gas to the wall [12]. The heat 

transfer coefficient ℎ̃ is evaluated by means of the Woschni’s correlation, for which it is in function 

of engine bore, the mean piston speed, the gas temperature, the pressure in the combustion 

chamber, the displacement, the temperature at the intake valve closing and the motored 

pressure. The multi-dimensional model is governed by the Navier-Stokes equations in addition to 

                                                      
5𝑥𝑏,𝑖 =

𝑚𝑏,𝑖

𝑚
 ; 𝑥𝑏 = ∑ 𝑥𝑏,𝑖

𝑛
𝑖=1  ; 𝑚𝑢 = (1 − 𝑥𝑏)𝑚 

6 It is not 𝑝𝑑𝑉 because on the right of equation there is the enthalpy term 
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the conservation equation of mass and energy; these are also dependent on the spatial 

coordinate. However, in practical simulations the analytical correlations of the laminar flame 

speed as function of equivalence ratio, pressure and temperature are preferred. They are simply 

implemented in CFD codes, considering that the 𝑆𝐿 is defined for any type of fuel, once the 

unburned mixture composition, pressure and temperature are known. Various forms of empirical 

and semi-empirical functional relationships have been proposed for the laminar burning speed 

[1,2]. The most used is the power law formula:  

 
𝑆𝐿  (Ø, 𝑇𝑢, 𝑝𝑢) =  𝑆𝐿0 (

𝑇𝑢

𝑇0
)

𝛼

(
𝑝𝑢

𝑝0
)

𝛽

  
(10) 

where 𝑆𝐿0 is the velocity for a specific equivalence ratio Ø , measured at room condition (𝑇0 , 𝑝0) 

and α and β are respectively temperature and pressure exponents that could be constant or 

mixture strength-dependent. Gülder pitched an expression of 𝑆𝐿0 : 

 

 𝑆𝐿0(Ø) = 𝑍 𝑊 ∅𝜂 𝑒−𝜉(Ø−𝛿)2
                      (11) 

 

where W, η and ξ are constants for a specific fuel and Z=1 for a single constituent fuel. In the case 

of natural gas, the mixture is a mix of hydrocarbon molecules and their volume fraction vary with 

geographical source and treatment applied during production or transportation [3]. Despite 

varying Z in the Gülder correlation, it has been demonstrated that it is not enough to evaluate the 

effects of variation of natural gas composition on its laminar flame speed [3]. A few years ago, 

Dirrenberger et al. [4] starting from a modified version of Equation (6), obtained a relationship 

valid for a natural gas composed by methane, ethane and propane. 𝑆𝐿 estimated with this 

correlation has a good accuracy for lean and rich mixtures, but less acceptable close to 

stoichiometric condition. In the present thesis, the modified Huang et al. correlation is used, and it 

stipulates a dependence of laminar burning speed on fuel-air equivalence ratio, pressure, 

temperature and amount of residual gas in the mixture:  

 
𝑆𝐿 (Ø, 𝑇𝑢, 𝑝, 𝑥𝑟𝑒𝑠) =  𝑆𝐿0 (

𝑇𝑢

𝑇0
)

𝛼

(
𝑝𝑢

𝑝0
)

𝛽

(1 − 1.5𝑥𝑟𝑒𝑠) 
(12) 
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The chemical kinetic analysis is useful to evaluate the chemical reaction rates; the mechanism of a 

chemical reaction can be thought as a sequence of events occurring as before reaching the final 

product. The chemical kinetic study contains different complex reactions that must be analysed 

through a specific mechanism. Indeed, the reaction mechanisms are designed as step-by-step 

descriptions of what is happening at molecular level during the reaction. Therefore, an overall 

reaction can be imagined to be composed of several elementary processes. For example for the 

oxidation reaction of methane molecule, it does not collide with two molecules of oxygen forming 

suddenly 𝐶𝑂2 and two molecules of 𝐻2𝑂𝑣𝑎𝑝  , but there will be a first step in which is involved a 

hydrogen of 𝐶𝐻4 which will be replaced with an oxygen molecule and so on. Then, several steps 

will follow each other up to the 𝐶𝑂 final oxidation step in 𝐶𝑂2. Naturally, this procedure requires 

more time if the molecule is always more rigid and longer. Different mathematical models are 

exploited to describe and forecast a specific chemical reaction.  A particular attention is given to 

the GRI 3.0 mechanism developed to obtain a detailed chemical reaction mechanism capable to 

describe all the important step of the natural gas flame propagation, ignition, 𝑁𝑂  formation and 

re-burn chemistry [7]. This mechanism can be adapted also for air-methane-hydrogen 

combustions. The dataset available, on which the laminar burning speed predictions will be done, 

is designed as a look-up-table generated by the result of the commercial simulation tool DARS 

used for 0D and 1D chemistry analysis, laminar flame speed computation and so on. Naturally, in 

this case DARS helped for the calculation of laminar burning speed for air-methane-hydrogen 

mixture. For this computation, a freely propagating flame model is used, and it assumes that the 

propagating flame front is flat and infinitely large. This gives the possibility to consider a constant 

system total energy and avoid evaluating the boundary conditions. As regards kinetic mechanism, 

the GRI 3.0 mechanism is used to validate the methane-hydrogen combustion and compute the 

corresponding mixture laminar burning speed over a wide range of pressure, temperature, 

equivalence ratio and residual fraction. The mechanism is represented by three files which contain 

information about chemistry and thermodynamic parameters.   
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1.3 The hydrogen contribution to CNG engines 
 

The hydrocarbon fuels are a molecular combination of hydrogen and carbon atoms and the 

simplest one is the methane (𝐶𝐻4) ; as it was mentioned in the previous subchapter, the methane 

is also the main constituent of natural gas in addition to ethane (𝐶2𝐻6), butane (𝐶3𝐻8) and 

propane (𝐶4𝐻10). Everyone is part of the light hydrocarbon fuel molecule since they have a 

number of carbon atoms less than five, meaning a low molecular weight. On the contrary, the 

gasoline7 and the diesel8 are heavy hydrocarbons, which are liquid at ambient conditions unlike 

the hydrogen that is gaseous.  Moreover, it has also the lowest atomic weight with respect to any 

other substance, and consequently also a low-density value at whatever temperature and 

pressure conditions. The hydrogen at ambient conditions is in gaseous form, so it is possible to 

store it in high pressure tanks or in liquid state at 20 K. The expansion ratio considers the 

difference in volume that is present when the gas or liquid is stored on a storage system compared 

to one occupied at the atmospheric pressure and temperature by the same gas or liquid. When 

the hydrogen is kept in gaseous state at high pressure the expansion ratio is 1: 240, instead when 

it is stored in liquid form it rises to 1: 848. This means that from the hydrogen size storage system 

point of view, it is better to choose the first solution. However, this solution can take out a 

problem related to the safety passenger conditions: because in case of accident or explosion, the 

tank, being highly pressurized, would act as bullets. Thus, another possible solution is to produce 

the hydrogen on board, for example from methanol, avoiding this last issue. Another important 

parameter to take into account is the flammability of hydrogen, defined as upper and lower 

flammability limit. These two bound values represent respectively the lowest and the highest gas 

concentration that will support the propagation of flame when the mixture is ignited: below the 

lower flammability limit (LFL) there is not enough fuel to withstand the combustion, unlike above 

the upper flammability limit (UFL) the mixture inside the cylinder is too rich and there is not 

enough oxygen to trig the combustion. The hydrogen flammability has a wide range of 

concentrations in air varying from 4 to 75 %, and it tends to increase with the temperature. Thus, 

the leakages of hydrogen can lead to potential burning event and are not so simple to avoid 

because it is the smallest molecule naturally occurring.  By the way, the hydrogen has an 

                                                      
7 An important constituent of gasoline is the heptane (𝐶7𝐻16) 
8 Fuel used for CI engines are extremely “flexible” since they are long chain like cetane (𝐶16𝐻34) 
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autoignition temperature higher than methane and gasoline, so it is difficult to ignite the mixture 

air/hydrogen without an external source and has also a decent anti knock property when it is 

exploited in ICE (see below the summary Table 1.1).  

 

Fuel Autoignition Temperature [°C] Octane Number9 

Gasoline 230-480°C 87 

Methane 540°C 125 

Hydrogen 585°C >130 

Table 1.3.0.1 

 

The hydrogen has also a higher flame and combustion propagation velocity than methane; so, it 

can solve the low methane propagating flame problem that impacts negatively the ICE 

performance. This sentence can be confirmed by Figure 1.4.1, where the comparison of laminar 

burning speed for an air-methane and air-hydrogen-methane combustion is shown. In addition, 

there is also the possibility to reduce the CO, 𝐶𝑂2 and HC emissions due to lower 

carbon/hydrogen ratio; on the other hand, producing a higher combustion temperature, an EGR 

system can be introduced to take under control the 𝑁𝑂𝑥 emissions. To sum up, the laminar 

burning speed is in function of:  

 

 𝑆𝐿  (Ø, 𝑇𝑢, 𝑝𝑢, % 𝐸𝐺𝑅, % 𝐶𝐻4, % 𝐻2 ) (13) 

 

It is important to introduce also the dependence on the amount of recirculated exhaust gases   in 

the combustion chamber because they make the mixture less reactive. 

 

                                                      
9 Octane Number describes the antiknock tendency 
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Figure 1.3.1 Laminar burning speed vs equivalence ratio at 400 K, 0.2 MPa for three different cases 

 

Continuing with the theme of emissions, it is worth recalling that for the direct injection spark 

ignition engines (DISI) there is also a particulate number (PN) limit introduced from the                          

1𝑠𝑡 September 2017, in fact also a particulate filter must be adopted. In general, the main sources 

of particulate emissions in Gasoline Direct Injection (GDI) engines is the wall wetting, since the fuel 

spray hits the piston surface, the intake valve bottoms and the liners. This fuel impingement in a 

CNG DISI engine can be isolated due to the gas fuel directly injected into the cylinder. Moreover, 

from an experimental analysis the CNG DISI engine particle emissions showed an unannounced 

trend: PN concentration rises as fuel injection timing is advanced due to the fuel mixing quality; 

instead, the PN concentration dependence on spark timing remains unchanged with respect to 

GDI engine [5].  Hora et al. [6] performed some experiments on CNG and hydrogen-CNG (HCNG) 

fuelled engines; partial combustion of lubricating oil leads to formation of nano-particles in the 

engine combustion chamber. They showed that HCNG combustion emitted a lower amount of 

particulate compared to CNG because the flame speed of HCNG is higher than CNG one, resulting 

in better combustion. 
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2. Fundamentals of Machine Learning and Artificial 

Neural Networks 
 

The aim of this second chapter is to provide an overview about the key concepts of machine 

learning algorithms that will be necessary to reach the final thesis goal. 

 

2.1 The different applications of Machine Learning  
 

Machine Learning exploits different statistical methods to give the machine (e.g. a computer) the 

possibility to learn directly from the data without any explicit knowledge. In general, the "training" 

is the first step in which the available data are examined for the following model creation. It is 

obtained through a specific algorithm, which analyses the supplied dataset. After the algorithm 

has found the best possible repetitive model, it is used to make estimates or to achieve any other 

pre-set objective [i].  

 

 

Figure 2.1.1 Iterative process to achieve satisfactory performance 

 

Machine Learning finds many fields of application and can be used for: speech recognition, image 

processing, e-mail filtering, regression or classification problems and so on. The main activities of 

Machine Learning are subdivided in three categories:  

• Supervised Learning, in which the machine receives data, in the form of input and output, 

with the final goal of extracting a general rule that associates them. In this case, the 
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response of the machine to a given problem is based on the "experience" accumulated in 

the training phase. There are two different types of supervised learning: 

o Classification, the inputs are divided into two or more classes and the learning 

system must produce a model able to assign them a specific class (example: e-mail 

anti-spam filtering, where the inputs are the emails and the classes are "spam" and 

“not spam"); 

o Regression, starting from continuous input, machine uses a model capable of 

predicting a continuous output (example: predicting laminar burning speed S_L 

having as input T, p, EGR and phi); 

• Unsupervised Learning, in which the computer aims to find a structure or a path in the 

input data provided. The machine will have to list all the information, organize it and learn 

its meaning and using to get the best results for different situations. Usually, for this type 

of learning, the Clustering method is considered [ii]; 

• Reinforcement Learning, where the machine is equipped with systems and tools able to 

improve its learning and understand what is happening around her thanks to the support 

provided by a series of elements such as sensors. This type of learning is used for 

autonomous cars that, in fact, make use of many sensors, cameras, GPS systems to create 

a detailed learning system that allows to take any decision [ii]. 

 
 

2.2 Artificial neural networks (ANN) 
 

Artificial neural networks are machine learning approaches, seen as mathematical models 

composed of artificial neurons used to solve problems in various technological fields. The network 

is usually composed of a layer of input neurons (or nodes), which receive signals from the external 

environment or from one or more intermediate layers (hidden layers) organized in several levels. 

Each node can receive, process and send a signal to a following node [8]. The hidden layer is the 

intermediate layer where there are several hidden neurons that are neither in the input layer nor 

the output layer [9]. There are different artificial neural networks: Feed forward type, Recurrent 

neural network and Radial Basis Function neural network. In this project, a two-layer feed forward 

network with sigmoid hidden neurons and linear output neurons is exploited because an input-
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output fitting problem with a big amount of data must be solved. The final layer is the output one 

where there is a single neuron capable of providing the above-mentioned output. The neural 

network can understand and process data of a certain degree of complexity and providing a 

function that would be difficult to extract through manual procedures. 

 

 

Figure 2.2.1, Representation of a simple neural network 

 

Networks can also be used to solve Classification, Regression and Clustering problems. Moreover, 

these can work in parallel and so handle a lot of data. Despite their great efficiency and the ability 

to generate almost certainly acceptable results, due to the impossibility of examining step-by-step 

the path from input to output, neural networks are often criticized. In fact, we should accept the 

result as it is, without being able to explain why and how the result has been generated10. 

 

 

 

 

 

 

                                                      
10 Indeed, the neural networks are considered as black boxes 
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3. Laminar burning speed modelling  
 

In this chapter, a model for methane-air and methane-hydrogen-air mixture based on regression 

machine learning algorithms will be created and implemented to predict the laminar burning 

speed 𝑆𝐿. For a first attempt design, it is considered a simpler model able to forecast the 

aforementioned parameter as function of temperature, pressure, equivalence ratio and amount of 

recirculated gases. This is useful to understand the prediction potentiality of different machine 

learning algorithms and how to select the best regression model according to the indicated 

performance parameters. The same first attempt design approach is exploited to get acquainted 

with artificial neural network model. After that, a more complicated model is developed 

considering a higher amount of input data and introducing other two independent variables, 

namely the percentage of methane and hydrogen in the mixture. Thus, at the end, the model is 

able to forecast a laminar burning speed as function of six independent variables as shown in the 

equation (7). The input data, exploited for the training of model, are extrapolated by means of the 

GRI 3.0 mechanism on DARS. The Regression Learner Matlab App and the Neural Network Matlab 

Fitting App are used for this project to reach the goal. Using these applications, it is possible to 

explore the data, select a specific model validation scheme, create it and evaluate the results. 

 

3.1 Modelling through Machine Learning  

 

3.1.1 Flow-chart approach 

 

 

 

 

 

 

Data Selection 

Model Validation 

Model Selection 
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Data selection 

For both models developed, the data come from a look up table, where the 𝑆𝐿 values are taken 

out by using GRI 3.0 mechanism. These values of laminar burning speed are useful to have a 

comparison with the results coming from the regression models. By the way the data was 

organized in this way:  

 

𝑇𝑢[K] 𝑝𝑢 [bar] EGR rate[%] phi[-] 𝑋𝐶𝐻4
[%] 𝑋𝐻2

[%] 

300÷1600 1÷200 0÷100 0÷5 100% 0% 

300÷1600 1÷200 0÷100 0÷5 85% 15% 

300÷1600 1÷200 0÷100 0÷5 75% 25% 

Table 3.0.1.1, Dataset used for the model training 

 

For the first attempt design, the first data raw of previous table is used to create the model. 

Instead for the second model, the approach is slightly different.  First of all, an unique dataset11 is 

built by combing all the three data raw. However, not all the data will be exploited for the training 

of model; in fact, a random sample is created and it will be exploited for the training and 
                                                      
11 The number of data is 153307 

Model Performance Evaluation 

Trained Model 

Prediction of 𝑆𝐿 
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validation of algorithm. As consequence, the trained model will predict the laminar burning speed 

for the remaining data that are not involved in the previous sample.  This is useful also to manage 

and control the problem of overfitting12; in fact, this issue is present when a model is able to work 

(or as in this case to make prediction) only with a specific dataset, and it may fail to adapt different 

data for the forecasting of future observations. Thus, overfitting occurs when a model remembers 

the training data instead of learning a trend that will be useful to generalize the analysis. To 

reduce the overfitting chance, there is the possibility to select different techniques like the cross-

validation or the Holdout validation-based early stopped. The latter splits the data in two subsets, 

training and validation data, of which the corresponding classification errors13 are computed. 

When the validation error starts to rise while the training one is still decreasing, overfitting has 

occurred [10]. This is an approach quite exploited by neural network, but the cross-validation is 

more powerful and complex than the early stopped approach. The cross-validation splits data in k-

partitions (called k-folds) instead of one single partition as seen before, but it is not suitable for 

abundant dataset.  

 

 

Model validation 

For the model validation, the “Holdout validation” is exploited because for the first attempt and 

the final model the data available abound. For this approach the dataset is subdivided in three 

portions:  

 

 

Figure 3.1.1, Partitioning of data according to the Holdout validation approach 

 

                                                      
12 In machine learning, it can be called also overtraining 
13 The workedclassification error is computed comparing the predictions and the targets (true values) 
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• Training set is a subset of the provided dataset from which the machine learning algorithm 

learns the relationship among inputs and the target; 

• Validation set is another input data subsection to which the trained algorithm is applied for 

understanding how much it is reliable in defining the relationship inputs-predicted target. 

However, the amount of data dedicated to the validation is fixed at priori and if there are a 

lot of data it is possible to keep the 40% of them for the validation, so that the model can 

be selected basing on 40% of the available data; 

• Holdout set gives a final estimate of model after the two previous steps. It is like a final 

check for our model. 

 

Model Selection and Performance evaluation 

The Regression Learner Matlab App gives the possibility to train a selection of models to find the 

best solution in terms of accuracy and operating time. The choice can be among:  

• Linear regression model 

• Regression tree model 

• Gaussian process regression (GPR) 

• Supported vector machine (SVM) 

To assess the best performance of model, it is necessary to consider four statistic parameters: 

• Root Mean Square Error (RMSE) measures the average magnitude of error, which is the 

difference between the estimated target value of model and the actual test value. It is 

always positive and the smaller the RMSE will be and the smaller will be the difference of 

predicted model value and the provided one by look-up-table; 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑗 − 𝑦̂𝑗)2

𝑛

𝑗=1

 

 

(14) 
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Figure 3.1.2, Table provided by the Matlab App in which all the possible trained regression models are shown 

 

• R-squared (𝑅2)  is the principle goodness index of regression curve and it is also known as 

coefficient of determination.  𝑅2 is always less than one and higher than zero. It must 

compare the trained model with the model where the response is constant and equals the 

mean of the training response; 

• Mean squared error (MSE) that is the square of the RMSE, and so, as for the RMSE, the 

smaller it will be and the better it is; 

• Mean absolute error (MAE), that is always positive and provide an information similar to 

RMSE but this last one, taking the square root of the average errors, gives a relatively high 

weight to large errors. Thus, RMSE is more useful when large errors are particularly 

undesirable. 

 
𝑀𝐴𝐸 =

1

𝑛
∑ ǀ𝑦𝑗 − 𝑦̂𝑗ǀ

𝑛

𝑗=1

 
(15) 
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For holdout validation, the RMSE is calculated on the held-out observations. By the way, the best 

the best model for your goal is not the one is showing the best score in terms of MAE, RMSE and 

so on. Indeed, a model with slightly lower score could be better than another model, it all depends 

on final goal.  

 

Trained Model 

For both the two examined cases, the best regression model is the Rational Quadratic Gaussian 

Process Regression (GPR).  It is a Bayesian approach14, namely a mathematical procedure that 

applies probabilities to statistical problems, and produces a posterior distribution of an unknown 

regression function “f". Bayesian statistic is strictly related to the concept of posterior probability 

𝑝(𝜗|𝐷) , described as:  

 
𝑝(𝜗|𝐷) =

𝑝(𝜗)𝑝(𝐷|𝜗)

𝑝(𝐷)
 

(16) 

 

where D is the outcome of the events, 𝑝(𝜗) is the prior (i.e. the function of probability distribution of a 

priori belief), 𝑝(𝐷|𝜗) is the likelihood of observing the results given the prior distribution 𝑝(𝜗) and 

𝑝(𝐷)is the evidence [iii]. The prediction problem is managed as a non-parametric regression 

problem15, such that it is possible to face up with the goal of machine learning that  is  the one to 

learn from a set of measurements a function "f"  of  the relationship existing between the 

predictor variables 16 x (Ø, 𝑇𝑢, 𝑝𝑢, % 𝐸𝐺𝑅, % 𝐶𝐻4, % 𝐻2) and the target17  y, defined as: 

 

 𝑦 = 𝑓(𝑥) + 𝜀 (17) 

 

                                                      
14 It is a mathematical procedure that applies probabilities to statistical problems.  
15 It is a specific type of regression analysis, where the predictors are created according to information derived from 
the dataset. 
16 Input data or covariates 
17 In this case study, it is the laminar burning speed 
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where ε is the error term. A Gaussian process (GP) defines a probability distribution over 

functions, described as:  

 𝑓(𝑥)~𝐺𝑃(m(x), k( xi  , xj ))  (18) 

 

where m(x) and 𝑘(𝑥𝑖, 𝑥𝑗) are the mean and the covariance function of the regression function "f"  

[11]. The covariance function 𝑘(𝑥𝑖, 𝑥𝑗) , called also Kernel function, determines how two outputs 

𝑦𝑖 and 𝑦𝑗  are expected to be at the inputs 𝑥𝑖  and 𝑥𝑗. These 𝑥𝑖  and 𝑥𝑗  are column vectors and so 

the Kernel function determines how much the target at point 𝑥𝑖  is affected by targets at other 

point 𝑥𝑗 with i ≠ j, i = 1, 2, ..., n. For different kernel functions, the kernel parameters are strictly 

related to the signal standard deviation σf  and the characteristic length scale σl . The 

characteristic length scales define how far away the values of 𝑥𝑖  are from the responses to 

become unrelated [iv]. In this work, the Rational Quadratic Kernel is evaluated and it is defined in 

this way:  

 
𝑘(𝑥𝑖, 𝑥𝑗, 𝜗) = 𝜎𝑓

2 (1 +  
𝑟2

2𝛼𝜎𝑙
2) 

(19) 

 

 

Figure 3.1.3, Comparison between the available and predicted 𝑆𝐿 for the first Trained model 
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Figure 3.1.4, 𝑆𝐿 vs. equivalence ratio phi for the first trained model 

 

 

Figure 3.1.5, Regression plot for the first Trained model 
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Figure 3.1.6, Comparison between the available and predicted 𝑆𝐿 for the second Trained Model 

 

 

 

Figure 3.1.7, 𝑆𝐿 vs. equivalence ratio phi for the second Trained model 
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Figure 3.1.8, Regression plot for the second Trained model 

 

 

Predicted Laminar burning speed 

The Regression Learner Matlab app gives the possibility to extract a code, through which there will 

be the possibility to obtain a regression model and its RMSE like the one seen during the exploiting 

of the application. Thus in input, there is the necessity to provide a table containing the same 

predictor and response columns as provided in the app. In output, all the information about the 

trained model will be available, and naturally there will be the possibility to make predictions with 

the returned model using a new dataset, that must contain at least the same predictor columns as 

used during the training. Indeed, as it has been said in the Data Selection section, for the second 

model not all the data will be exploited for the training activity and the laminar burning speed 

predictions will be executed on the remaining data that are not involved in training and validation 

step. 
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3.2 Modelling through Neural Networks   
 

The curve fitting is a process used to construct a mathematical function able to have the best 

correspondence on a series of data; so, this curve fitting can mean carrying out both an 

interpolation among points or a "smoothing" activity where a flat function is built on the data 

available. This field is strictly related to the regression analysis and to the research of a 

mathematic curve which can be suitable with the observed data. These curves can give a hand for 

highlighting a data trend, hypothesizing a specific function pattern where the data are not 

available and so on. The Neural Network is a tool that can solve a fitting problem in a restricted 

time interval because its algorithm is faster than the conventional iterative one. For this project, 

the Neural Fitting Matlab app is used for solving an input-output fitting problem through a two-

layer forward neural network with ten hidden neurons. The steps that must be followed are: 

• the data selection 

• the creation and training of model 

• the evaluation of its performance through the parameters seen in the previous Machine 

Learning section. 

However, the datasets exploited are the same that are shown in the Machine learning Data 

selection section. Thus, there will be two case studies: 

1. a first attempt design, needed to understand the capability of the neural network 

algorithm 

2. a second analysis, where two different datasets will be exploited for the training and the 

forecasting of Laminar Burning Speed 𝑆𝐿 

For what concerns the data selection, there is always the necessity to subdivide and provide the 

data in input and output (target) form. To carry out this, a simple Matlab code can be created and 

executed to split the data in two portions: input and output matrices. After that, there is the 

necessity to select the amount of data that will be used for: 

• the training phase of model  

• validation phase, useful for evaluating the network generalization 

• testing phase, for measuring the network performance after the training. 
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For this work, 30% of data are exploited for the training phase, the 35 % for the validation and the 

35% for the testing. The splitting is chosen for obtaining the best trade-off between performance 

and computation time as Figure 3.2.1 and 3.2.2 are showing. 

 

 

Figure 3.2.1, For the first attempt design: NN performance and computation timing with Testing at 50% , Validation at 25% and 

Testing at 25% 
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a) 

Figure 3.2.2, For the first attempt design:  a) NN performance and computation timing with Testing at 40%, Validation at 35% and 

Testing at 25%; b) NN performance and computation timing with Testing at 30%, Validation at 35% and Testing at 35%. 

b) 
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Figure 3.2.3, For the second analysis: NN performance and computation timing with Testing at 30%, Validation at 35% and Testing 

at 35% 

 

For the training, the Levenberg-Marquardt algorithm, i.e. damped least squares, is used to manage 

the curve fitting problem through a minimization approach. This regression technique searches 

the function such that it minimizes the sum of distances squares among the observed data and the 

one of function itself. The Figure 3.2.1 and 3.2.2 are showing the lines of least squares. The 

regression plots provide not only an information about the accuracy of model, by means of the 

value of R, the slope and offset of line, but also it is showing a comparison between each 

generated data with its known target. Naturally, when the amount of data is increasing, it is 

difficult to appreciate in the plot the spreading of data and the presence of errors among model 

output and the targets.  
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4. Laminar burning speed results 
 

In this chapter, the physic aspect of models will be analyzed to understand if the previous 

algorithms are not only appreciable from a mathematical and statistical point of view.  

 

4.1 Laminar burning speed vs. Fuel-air Equivalence ratio with Rational Quadratic GPR 

method 
 

In this section, the analysis of the equivalence ratio effect on the laminar burning speed will be 

treated. The plots refer to the laminar burning speed predicted with Rational Quadratic GPR 

method considering the second case model analysis. In the first plots, it is possible to see the 

difference in trend between the 𝑆𝐿 computed by models and the one provided by the look-up 

table considering the 3.0 GRI mechanism; the level of temperature and pressure is fixed 

correspondingly at 300 K and 1 bar.  

 

a) 
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b) 

 

c) 
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d) 

Figure 4.1.1, Laminar burning speed vs. Equivalence ratio: a) pure methane EGR 0%, b) pure methane 10% EGR, c) pure methane 

20% EGR, d) comparison among previous cases 

 

It is possible to see, especially in the Figure 4.1.1 c), how the discontinuity points, present in the 𝑆𝐿  

look-up table, are smoothed by model computation. In the following plots, the fuel-air equivalence 

ratio ranges between 0.5 and 1.5 and two different mixtures are considered to evaluate how the 

laminar flame speed trend changes: 

• pure methane (100% 𝐶𝐻4)  

• methane-hydrogen with 85% 𝐶𝐻4 , 15% 𝐻2 

Moreover, in the figures there will be a comparison among curves that are moving in function of 

pressure level. Depending on the Figure 4.1.2 and 4.1.3, it is possible to highlight how the curves 

move downward as the pressure rises with a stronger value change for the laminar burning speed 

at low pressure events. 
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a) 

 

 b) 
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c) 

 

 d) 

Figure 4.1.2, Laminar burning speed vs. equivalence ratio at 800 K: a) pure methane mixture with 0% EGR, b) comparison laminar 

burning speed of model vs. look-up table laminar burning speed at 0%EGR, c) pure methane mixture with 20% EGR, d) comparison 

laminar burning speed of model vs. look-up table laminar burning speed at 20%EGR 
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a) 
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c) 

 

d) 

Figure 4.1.3, Laminar burning speed vs. equivalence ratio at 800 K: a) methane-hydrogen mixture with 0% EGR, b) comparison 

laminar burning speed of model vs. look-up table laminar burning speed at 0%EGR, c) methane-hydrogen mixture with 20% EGR,     

d) comparison laminar burning speed of model vs. look-up table laminar burning speed at 20%EGR 
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4.2 Laminar burning speed vs. pressure with Rational Quadratic GPR method 
 

In this section, the analysis of the pressure effect on the laminar burning speed will be treated.  It 

will be plotted in function of different level of pressure, considering, as in the previous section, the 

two different mixtures for this purpose. As consequence of the result reached in the section 4.1, 

the pressure growth tends to mitigate the propagation of flame. The curves, shown in the Figure 

4.2.1, have a horizontal asymptotic trend when a certain pressure level is exceeded.  

a) 

b) 

Figure 4.2.1, Laminar burning speed vs. pressure at 800 K: a) pure methane mixture with 0%,10%, 20% EGR; b) methane-hydrogen 

mixture with 0%,10%,20%EGR 
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4.3 Laminar burning speed vs. Temperature with Rational Quadratic GPR method 
 

In this section, the analysis of the temperature effect on the laminar burning speed will be treated. 

The Figure 4.3.1 shows an increasing of laminar burning speed because of the unburned gas 

temperature rising. This variation of flame propagation is more evident at high temperature 

events.  

a) 

b) 

Figure 4.3.1, Laminar burning speed vs. Temperature at φ=1: a) pure methane mixture at 20 bar, 40 bar, 80 bar; b) methane-

hydrogen mixture at 20 bar, 40 bar, 80 bar 
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4.4 Laminar burning speed vs. EGR with Rational Quadratic GPR method 
 

In this section, the analysis of the EGR effect on the laminar burning speed will be treated. The 

Figure 4.4.1 shows an exponential correlation and with a high level of residual in the combustion 

chamber, the laminar flame speed decreases.  

a) 

b) 

Figure 4.4.1, Laminar burning speed vs. EGR at φ=1,800K: a) pure methane mixture at 9.09 bar, 40 bar , 80 bar; b) methane-
hydrogen mixture at 9.09 bar, 40 bar, 80 bar 
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4.5 Laminar burning speed vs. Fuel-air Equivalence ratio with ANN 
 

In this paragraph, in contrast to the 4.1, the plots refer to the laminar burning speed predicted 

through the ANN algorithm. As consequence, all the following sections will discuss results 

obtained with this last method. In addition to the two-mixture considered in the previous four 

paragraphs, there will be another one with a level of Hydrogen equal to 25%. Previously, during 

the exploiting of Rational Quadratic GPR method for the prediction of 𝑆𝐿 , this third mixture is not 

taken into account because the results do not have a physical meaning; in fact, the values of 

laminar speed were negative and not acceptable. Despite this, the trend of laminar burning speed 

versus temperature, pressure, equivalence ratio and EGR rate has been conserved correctly. 

Maybe, in a future analysis, it will be possible to better understand why this last mixture generates 

this prediction errors. By the way, in the Figure there will be a comparison among curves that are 

moving in function of pressure level. 
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b) 

c) 

Figure 4.5.1, Laminar burning speed vs. equivalence ratio at 800K, 0% EGR: a) for a pure methane mixture; b) for a mixture with 85% 

𝐶𝐻4 and 15% 𝐻2; c) for a mixture with 75% 𝐶𝐻4 and 25% 𝐻2 
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a) 

b) 

 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,50 0,70 0,90 1,10 1,30 1,50 1,70

SL
 [

m
/s

]

PHI

SL vs. phi for pure methane ICE at 800K, 20 % 
EGR

SL at 10 bar

SL_look-up-table at 10 bar

SL at 20 bar

SL_look-up table at 20 bar

SL at 40 bar

SL_look up table at 40 bar

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,50 0,70 0,90 1,10 1,30 1,50

SL
[m

/s
]

PHI

SL vs. phi for a H2 (15%) - methane (85%) ICE at 800K, 
20%EGR

SL at 10bar

SL_look-up-table at 10 bar

SL at 20 bar

SL_look-up table

SL at 40 bar

SL_look-up table at 40 bar



 
45 

 

c) 

Figure 4.5.2, Laminar burning speed vs. equivalence ratio at 800K, 20% EGR: a) for a pure methane mixture; b) for a mixture with 

85% 𝐶𝐻4 and 15% 𝐻2; c) for a mixture with 75% 𝐶𝐻4 and 25% 𝐻2 

 

4.6 Laminar burning speed vs. pressure with ANN 
 

In this section, the analysis of the pressure effect on the laminar burning speed will be treated. 

Different levels of pressure and EGR rates, for the three different mixtures, are considered for this 

purpose. The curves, shown in the Figure 4.6.1, have a horizontal asymptotic trend when a certain 

pressure level is exceeded.  

4.7 Laminar burning speed vs. Temperature with ANN 
 

In this section, the analysis of the Temperature effect on the laminar burning speed will be 

treated. The Figure 4.7.1 shows an increasing of laminar burning speed because of the unburned 

gas temperature rising. This variation of flame propagation is more evident at high temperature 

events.  
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a) 

 

b) 
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c) 

4.7.1,  Laminar burning speed vs. pressure at 800 K: a) pure methane mixture with 0%,10%, 20%  EGR;  b)  ; b) for a mixture with 

85% 𝐶𝐻4 and 15% 𝐻2 with 0%,10%,20%EGR ; c) for a mixture with 75% 𝐶𝐻4 and 25% 𝐻2 with 0%,10%,20%EGR 
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 b) 

 

 c) 

4.7.1, Laminar burning speed vs. Temperature at φ=1: a) pure methane mixture at 20 bar, 40 bar, 80 bar; b) mixture with 85% 𝐶𝐻4 

and 15% 𝐻2 at 20 bar, 40 bar, 80 bar ; c) mixture with 75% 𝐶𝐻4 and 25% 𝐻2 at 20 bar, 40 bar, 80 bar 
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4.8 Laminar burning speed vs. EGR with ANN 
 

In this section, the analysis of the EGR effect on the laminar burning speed will be treated. The 

Figure 4.8.1 shows an exponential correlation between EGR rate and 𝑆𝐿 ; with a high level of 

residual in the combustion chamber, the laminar flame speed tends to decrease.  
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c) 

Figure 4.8.1,  Laminar burning speed vs. EGR at φ=1, 800K : a) pure methane mixture at 9.09 bar, 40 bar , 80 bar; b) mixture with 
85% 𝐶𝐻4 and 15% 𝐻2 at 9.09 bar, 40 bar, 80 bar; c) ) mixture with 75% 𝐶𝐻4 and 25% 𝐻2 at 9.09 bar, 40 bar, 80 bar 

 

 

4.9 Laminar burning speed vs. crank angle with Rational Quadratic GPR method 
 

In this section, there will be a new laminar burning speed comparison between: 

• SL obtained through the Huang et al. correlation, seen in the equation (12), exploiting both 

the input data and the obtained one of DARS Multi-zone model 

• SL obtained through the Machine Learning model applied on DARS Multi-zone data 

The input data are relative to the ensemble average 0, so the “average” behavior of the engine is 

considered instead to evaluate the relative one of each single cylinder. These are summarized in 

the Table 4.1:  

 

Θ[deg] 𝑇𝑢[K] 𝑝𝑢 [bar] EGR rate[%] phi[-] 𝑋𝐶𝐻4
[%] 𝑋𝐻2

[%] 

300°÷420° 300÷820 2.8 ÷53 3÷12 0.6÷1.4 >75% 0÷25% 

Table 4.9.1, Input data used for the prediction 
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and the two working points at which the comparison is done are: 

• 2000rpm x 600 kPa 

• 3000 rpm x 800 kPa 

 

 

 

 

Figure 4.9.1., Laminar burning speed vs. Crank at 2000 rpm x 600 kPa for pure methane mixture comparing SL predicted through 
machine learning model and SL obtained from Huang et al. correlation 
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Figure 4.9.2., Laminar burning speed vs. Crank at 3000 rpm x 600 kPa for pure methane mixture comparing SL predicted through machine learning 
model and SL obtained from Huang et al. correlation 

 

Figure 4.9.3., Laminar burning speed vs. Crank at 2000 rpm x 600 kPa for HCNG15 comparing SL predicted through machine learning model and SL 
obtained from Huang et al. correlation 
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Figure 4.9.4., Laminar burning speed vs. Crank at 3000 rpm x 600 kPa for HCNG15 comparing SL predicted through machine learning model and SL 
obtained from Huang et al. correlation 

 

Figure 4.9.5., Laminar burning speed vs. Crank at 2000 rpm x 600 kPa for HCNG25 comparing SL predicted through machine learning model and SL 
obtained from Huang et al. correlation 
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Figure 4.9.6., Laminar burning speed vs. Crank at 2000 rpm x 600 kPa for HCNG25 comparing SL predicted through machine learning model and SL 
obtained from Huang et al. correlation 

 

From the Figure 4.9.6. it is possible to highlight how the laminar burning speed, forecasted by 

means of Machine Learning model, increases with amount of hydrogen concentration in the 

mixture. Moreover, all that in the Section 1.3 has been addressed from theorical viewpoint of 

hydrogen contribution on methane mixture is confirmed. 

 

 

 

 

 

 

 

Figure 4.9.7., Laminar burning speed increment w.r.t. hydrogen rising concentration   
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Table 4.9.2, Laminar burning speed increment w.r.t. the hydrogen concentration 
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5. Conclusion and future development 
 

The present work thesis provides a laminar burning speed predictive model obtained through 

supervised Machine learning. In the specific, the Regression Learner Matlab App is used to train 

the regression model and forecast the laminar burning velocity. The used input data, organized as 

a look-up-table, are extrapolated by means of the GRI 3.0 mechanism on DARS for different 

pressure, unburned gas temperature, fuel-air equivalence ratio, EGR rate, methane and hydrogen 

concentration in mixture. These are used in the app to select the validation scheme, train the 

model and assess the best regression model. As consequence, this latter can generate predicted 

responses for each new dataset if they are organized with the same number of input argument 

given during the training activity processed in the app. After that, the prediction capability of this 

model is checked making another comparison, in correspondence of two specific working points, 

between the laminar burning speed obtained by the application of machine learning algorithm on 

DARS Multi-zone data and the one obtained from DARS Multi-zone model applying the Huang and 

al. correlation for the laminar burning velocity computation.  In addition, it is analyzed also the 

possibility to design an Artificial Neural Network, by means of Matlab Fitting App, extending it at 

the same two case previously highlighted for the supervised machine learning. The main results 

can be summarized as follows: 

1. The regression model designed thanks to the machine learning algorithms, has not only a 

certain mathematical meaning, in fact its goodness of fit is around 0.9, but also a physical 

one and this is confirmed by results shown in the figures of Chapter 4. Indeed, as it is 

expected the laminar burning speed trend is bell-shaped reaching the maximum in the 

slight lean condition, decreases with rising of unburned gas pressure with a horizontal 

asymptotic trend and has an exponential correlation with the unburned gas temperature. 

Moreover, it is always possible to highlight from figures of same chapter the positive 

contribution of hydrogen in the mixture treated in the Chapter 1. 

2. The discontinuity points present in the look-up-table laminar burning speeds generated by 

GRI 3.0 mechanism on DARS disappear in the ones predicted by supervised machine 

learning as shown in the Chapter 4. 
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3. When the predictive model is managing the DARS Multi-zone data, the major differences in 

terms of laminar burning velocities are detected in the field of leaner mixture, where the 

hydrogen high burning speed improves the pure methane behavior.  

4. The choice of programming language for machine learning is quite important; due to same 

limits of Matlab app in terms of code “flexibility” and limited integration with other 

languages, in the future plans it is expected to use Python. This could also give the 

possibility to better exploit the ANN tool, since with the Fitting Matlab App there was only 

the opportunity to execute a curve fitting.  
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Nomenclature 
 

deg = degree 

CNG = Compressed natural gas 

SI = Spark Ignition 

DISI = Direct Injection Spark Ignition 

ICE =Internal Combustion Engine 

HCNG = Hydrogen and CNG blend 

EGR = Exhaust gas recirculation 

CO = Carbon monoxide 

𝐶𝑂2= Carbon dioxide 

HC = unburned hydrocarbon 

𝑁𝑂𝑥= Nitrogen oxide level at engine exhaust 

bmep = brake mean effective pressure 

n = engine speed 

p = pressure 

T = temperature 

𝑝𝑢 = unburned mixture pressure 

𝑇𝑢 = unburned mixture temperature 

𝑉𝑢 = unburned mixture volume 

𝑝𝑜= room pressure 

𝑇𝑜 = room temperature 

𝑆𝐿= laminar burning speed 

𝑆𝐿𝑜= laminar burning speed at room condition 

Z, W, η, ξ and σ = Gulder’s correlation coefficients  

α = influence exponent 

β = influence exponent  

𝑋𝐶𝐻4
= methane volume fraction in the mixture 

𝑋𝐻2
= hydrogen volume fraction in the mixture 

phi = Φ = fuel-air equivalence ratio 
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h = enthalpy 

ρ = density 

θ = crank angle 

𝑥𝑏 = mass fraction burned 

TDC = top dead center 

BDC = bottom dead center 

m =mass 

q = heat flux transfer 

ℎ̃ = convective heat transfer coefficient 

CFD = Computational fluid dynamics 

ANN = artificial neural network  

GPR= Gaussian process regression 

RMSE = root mean square error 

σf = standard deviation 

ε = error term 

𝑅2 = the goodness of fit 

 

Subscripts 
 

b = burned 

u = unburned 

i = summation index 

res = residual gas  
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