
 

 

 

 

 

 

 

CONCRETE AS A SOUND ABSORPTION MATERIAL 

Theoretical models used as simple predictive tools for architects 
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6. Conclusion  

6.1. Improvement 

 
By comparing the data obtained through the theoretical models and the 

experimental measurements made, it is possible conclude that, the material 

taken into account, is able to absorb the sound only at high frequencies. 

Through the data collected with the measures and previous research on 

cementitious materials, it was possible to propose changes to the testing 

sample to improve its sound-absorbing performance. 

 

6.1.1. Thickness 

 
As already seen in paragraph 3.3.3. the thickness is one of the major parameters 

that affects the sound absorption capacity of a material. With the increase in the 

thickness of the material, a shift of the sound absorption coefficient spectrum 

towards lower frequencies can be noted. As said previously, in chapter 5.1., the 

tested sample have three different thicknesses: 20 mm, 40 mm and 60 mm. In 

the reverberation room, the panels of the three different thicknesses were tested 

to test how the thickness could influence the sound absorbing capacities. As is 

possible to note from fig.6.1.1.1. on our sample there is not a real translation of 

the curve but it is noticed how increasing the thickness the sample is able to 

absorb the sound already at lower frequencies. If with a thickness of 20 mm it is 

possible to notice an increase in absorption coefficient only from 2500 Hz, 

increasing the thickness at 40 mm, it is noted that this increase is already present 

from 800 Hz, and increasing the thickness up to 60 mm the increase is it already 

has from 630 Hz. From these results it is possible conclude that, in order to have 

greater sound absorbing capacities even at lower frequencies, it is sufficient to 

increase the thickness of the material. 

 

6.1.2. Position 

 
Considering a stationary wave, of whatever wavelength λ, the maximum 

absorption will be where the particle velocity is maximum. in order to place a 

sound-absorbing material on a surface it is therefore necessary to consider that, 

the first point corresponding to the maximum speed is located at a distance of 

d=λ/4 from the wall, and the points after each odd multiple of λ/4 moving away 

from the wall. As you can see from the fig.6.1.2.1. in an ideal situation, the trend 

of the absorption coefficient according to the normalized distance 4d/λ, will have 

a trend of selective absorption with the maxima at distance d=n(λ/4), n is an odd 

integer. Then, by placing an absorbent material of thickness d against a wall, the 

material will absorb all the wavelengths with the first maximum of vibration at a 

distance from the wall lower than the thickness of the material layer, that is λ<4d. 

By spacing the absorbent material from the wall, thus creating an air gap, of a 

distance d’, the acoustic waves with λ<4(d+d’) will be absorbed [1]. Therefore, as 

already noted for the thickness, the frequency for which the absorption 



coefficient begins assume significant values depends on the distance at which 

the material is placed. In this regard, it has been tried to make measurements in 

the reverberation room placing the 20 mm thick panel on a 50 mm wooden 

frame, thus creating an air gap. Comparing the results of the 20 mm thick panel 

with those of the panel + air gap, it is noted that with the help of the gap, the 

panel has an uplifting of the absorption coefficient values already at 500 Hz. 

 

6.1.3. Aggregate 

 
The most drastic change that can be applied, to modify the sound 

absorbing performances, is to change the aggregate. As already seen in 

chapter 3.3.2. changing the aggregate it is possible to modify the sound 

absorbing capacities of the material. Changing the aggregate not only 

involves a change in the design of the material but changes all the 

parameters of the material. Several articles have been examined regarding 

the use of different types of aggregate. 

Vasina et al. [2] uses expanded clay as an aggregate, of different sizes 

starting from a smaller one of 3.5 mm in diameter, increasing to 6.5 mm, 

then to 8.5 mm and at the end 12 mm. From this study it is noted that the 

size of the aggregate does not influence the frequency at the maximum 

absorption coefficient, which remains unchanged, but the increase in the 

aggregate size reduces the value of the maximum of the absorption 

coefficient. 

 

6.2. Concrete is a good sound absorption? 

 

 


