
POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Service-Agnostic Configuration and
Control for eBPF Services

Supervisor

prof. Fulvio Risso
Candidate

Nico Caprioli

Academic Year 2018-2019





Contents

1 Introduction 5

1.1 XDP and eBPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Polycube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Thesis Goal 8

2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Service Structure . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Automatic Code Generation . . . . . . . . . . . . . . . . . . 9

2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Further Features . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Tools and Technologies 12

3.1 YANG 1.1 Data Modeling Language . . . . . . . . . . . . . . . . . 12

3.1.1 Polycube Service YANG Structure . . . . . . . . . . . . . . 14

3.2 libyang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3



3.4 Flex & Bison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Representational State Transfer . . . . . . . . . . . . . . . . . . . . 18

3.6 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Pistache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Architecture 20

4.1 Services as Grey-boxes . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Virtual Method Tables . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Registering New Services at Run-time . . . . . . . . . . . . . 26

4.2.2 Input Validation . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Implementation 30

5.1 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Body Resources . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.2 Endpoint Resources . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.3 Validators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.4 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Service Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Validation 46

6.1 Storage Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Services’ Compiling Time . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Service Deploy Timing . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Input Validation Timings . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusions 51

4



Chapter 1

Introduction

Nowadays, online service providers are moving from hardware-based network infras-

tructure to a software-based one. In particular, the network function virtualisation

(NFV) decreases the cost of deployment of computer networks because it breaks

the explicit coupling with specific equipment. Moreover, NFV enables to achieve

better scalability and provide more agile services.

1.1 XDP and eBPF

One of the biggest problems regarding NFVs is the performance; in fact, in a

software solution, each packet must traverse the whole network stack, producing

significant and non-feasible delays.

In order to solve the problem, the Linux community proposed a solution named

eXpress Data Path (XDP), which is an integrated fast path in the kernel stack.

XDP goal is to provide a way to process incoming packets in the lowest point of the

software stack, which makes it ideal for speed without compromising programma-

bility.

XDP retrieves raw packets; it is then required the extended Berkeley Packet

Filter (eBPF) which allows writing programs to manage the packets. Those pro-

grams run in a virtual machine inside the kernel space (e.g., parse the packet, drop,

forward, manipulate, etc.).
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1 – Introduction

1.2 Polycube

In this scenario comes the polycube framework, which aims to provide a uniform

and simplified way to develop network functions based on XDP and eBPF, named

services. One other important polycube feature is service chaining.

Figure 1.1 depicts the polycube architecture prior to this work. The most im-

portant component of the architecture is the polycube daemon, named polycubed,

which is a service-agnostic user space daemon that is in charge of interacting with

the different services. In particular, the daemon exposes a Kernel Abstraction Layer

by means of which services can access the fast path in an easier way.

eBPF Program
("bridge" datapath) Enc/Decapsulator

eBPF Maps

Kernel Abstraction Layer

REST API

Service Module
(e.g., bridge)

REST API

Input
Validation

polycubed
(daemon)

polycubectl
CLILinux Host

User Space
Kernel Space

Figure 1.1. Old Architecture

One crucial aspect of this architecture is the REST API, which aims to enable

the interaction to the framework. The REST API included in the daemon is in

charge of providing web server functionalities (§3.7) and expose a set of endpoints

to check the currently loaded services. Instead, the REST API included in each

service is in charge of providing the endpoints to interact with the service itself,

and their associated handlers to the web server contained in the daemon.

It is important to notice that each service is entirely contained within a single
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1 – Introduction

shared object which, in turn, loads a library named libpolycube which leverages

on BCC and thus provides the polycube functionalities to the service.
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Chapter 2

Thesis Goal

This chapter will present how and why this thesis aims to improve the architecture

presented in Figure 1.1.

2.1 Problem

Before talking about the improvement proposed and implemented with this thesis,

it is crucial to see the problems it aims to solve in the bigger picture.

2.1.1 Service Structure

Most of the problems solved by this work derive from the internal structure of a

general service, which is depicted in Figure 2.1. In particular, this figure shows the

components making up a service and how they interact each other.

The REST API component oversees the interaction between the user and the

service as it contains all the function for fetching the status of a cube and configure

it. The REST endpoints and the associated HTTP are derived from the YANG

data model (§3.1) and follow a well-defined structure which is described in §5.1.2.

The Input Validation component might be considered as a part of the REST

API. It receives input data from the REST API and validates it across the restric-

tions defined within the YANG data model. If the validation succeeds, it invokes

the Core Logic component.
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2 – Thesis Goal

Service

REST API

Input Validation

Core Logic

mgmt/ctrl Slow Path

Figure 2.1. Service Component Diagram

Finally, the Core Logic component is where the actual service code resides. In

particular, the slow path is standard user code, while the control plane exploits

XDP and eBPF.

2.1.2 Automatic Code Generation

Along with polycube, it is shipped an automatic code generation tool which aims

to generate all the REST APIs, the input validation component and a skeleton

for the core logic. When it is possible, along with the skeleton, a partial default
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2 – Thesis Goal

implementation for the core logic is provided.

The automatic code generation tool surely helps the developer to develop a

polycube-compatible service faster; nevertheless, it lays the foundations for a rel-

evant drawback: the service developer freedom.

Before this work, a service developer had only two possibilities:

• Use the automatic code generation tool and then write the entire service in

C++.

• Use any programming language (possibly one that allows writing eBPF pro-

grams) but implementing by hand the input validator and REST API in

C++, since it requires pistache (§3.7).

It is clear that with the first case there is a strong limitation in available pro-

gramming languages (namely, only C++), while in the second case there is a steeper

learning curve since the service developer must understand how to map YANG

nodes to REST endpoints.

Moreover, two other aspects must be taken into account with this architecture.

First of all, since third-parties develop services, the architecture presented so far

is not very resilient to automatic code generation tool modifications. For instance,

changes in the REST endpoint generation (e.g., to adhere the RESTCONF speci-

fication defined RFC-8040), or modification in supported REST request data type

(such as supporting both JSON and XML), would require to each service developer

to update their automatic code generation tool and re-generate the REST API.

Furthermore, the architecture above suffers from accidental modifications of the

REST endpoint mapping by the service developers, thus breaking any automatically

generated client such as the polycube CLI.

2.2 Solution

To solve the problem presented so far, a simple and yet effective solution has been

designed.
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2 – Thesis Goal

The general idea is to move the REST API and Input Validation components

from the service to the daemon. The immediate effect of this operation is that

service code shrinks to only Core Logic, namely the only component on which

service developer needs to focus.

2.2.1 Implications

Even though the initial idea was to remove unnecessary code from the service to

allow service developers to focus only on core logic, moving the REST API and the

Input Validation solved all the problems presented in 2.1.2.

In particular, the restrictions on programming language are coarser as there is

no need to understand how REST endpoints are generated and then create them

in C++ (§4.1.2). Nevertheless, the automatic code generation tool will still create

a C++ skeleton and a partial implementation.

Secondly, moving REST API and Input Validation components makes the sys-

tem more resilient to changes. For instance, changing the YANG to endpoint

mapping from the actual one to a RESTCONF compliant one and updating the

CLI accordingly, would not affect any service.

2.2.2 Further Features

The changes presented so far lays the foundations for some unforeseen but well-

accepted features.

Let us consider a situation in which the polycube daemon must be moved into

a new computer after a hardware upgrade, or more simply, it just crashes. In both

situations, it is desirable restarting the daemon with the same configuration it has

before the shutdown, without requiring to re-configure it from the ground up.

By moving the REST API into the daemon, it now has full control over all the

services and can fetch data from them whenever deemed useful. This condition

permits to implement polycube persistence regarding deployed services and their

configuration directly into the daemon.
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Chapter 3

Tools and Technologies

Before exploring how the solution (§2.2) to the problem in 2.1 was implemented, it

is useful to provide some background on the tools used.

This chapter aims to provide all the required information about tools and lan-

guages deployed during the implementation of this work.

3.1 YANG 1.1 Data Modeling Language

Most of this work revolved around the YANG Data Modeling Language, version

1.1, which is defined in RFC-7950.

In a nutshell, YANG is a data modeling language used to model configuration

data, state data, Remote Procedure Calls, and notifications for network manage-

ment protocols.

YANG Nodes

Models defined through the YANG data modeling language have the form of a

tree in which each node can have different properties, depending on its type. Even

though YANG offers a vast number of nodes, only a subset of them can be currently

used to define a polycube service.

The most external node in a YANG data model is the module one, which allows
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3 – Tools and Technologies

defining the service-wide properties such as copyright or version. Ignoring the

unique service-wide properties, it acts as a container.

The container node, as the same suggest, is a simple container for other YANG

nodes. Due to its nature, a container node cannot be instantiated.

Another YANG node supported by the polycube framework is the list node.

In some ways, the list node is similar to the container one, as it contains a set of

nodes. The main difference between the container node and the list one is that

the latter is instantiated as a collection of the elements that contains. Moreover, an

arbitrary number (even zero) of leaf nodes contained inside the list can be set as

keys for the list and then used to identify one instance across the entire collection

uniquely. If no key is defined, one must be defined internally by the system.

The leaf node, as the name suggests, is a leaf in the data model tree. It maps

to a scalar type and, as such, can be instantiated.

Finally, the last YANG node that can be used to define a polycube service

is the action node. It can only contain two nodes: input and output. Both of

them act as a container. The purpose of the action node is to enable the service

developer to create an operation that works on other nodes, explicitly setting its

input and output. For instance, an action may be the flushing of a bridge filtering

database, which is defined elsewhere.

Configuration and Status Nodes

Currently, the polycube framework does not support either notifications nor Re-

mote Procedure Calls. Nevertheless, it is possible to configure a node as a configu-

ration node or status node using the config parameter.

To better understand the difference between status and configuration nodes, let

us consider a routing table. Any static route, or the routing algorithm to use, are

part of the configuration; instead, the whole list (including static routes, directly

connected devices, and routes computed with the routing algorithm) is the status

of the routing table.
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3 – Tools and Technologies

YANG Types and Restrictions

As already mentioned, the leaf node represents a scalar type. In more details, a

leaf can have a type (such as integer, string, or enumeration) and optionally

some restrictions on it.

The restrictions purpose is to reduce the available value space following some

well-defined rules. For instance, it is possible to define a regular expression for a

string or set a limit on its length. It is possible to force a number in a given range,

and so on.

For the full context, refer to [1].

3.1.1 Polycube Service YANG Structure

Within the polycube framework, YANG is the language used for defining services’

structure. Each service is contained in precisely one module, where the service

name is the module name.

In order to instantiate cubes of a specific service, configure it, or fetch status

data, the framework exposes a set of REST endpoints. Since YANG was already the

language used to define services, part of this work consisted in reverse-engineering

the REST endpoint generation algorithm, as defined in 5.1.2.

For convenience, the content of the module is wrapped into a list in a user-

transparent way. This list represents the cubes instantiated, and it has a single

key representing the cube name. This silent wrapping can be summarised as follows:

1 module sample {

2 yang-version 1.1;

3 namespace "http://polycube.network/sample";

4 prefix "sample";

5

6 import polycube-base { prefix "basemodel"; }

7

8 organization "Polycube open source project";
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9 description "YANG data model for the Polycube Sample service";

10

11 basemodel:service-description "Sample Service";

12 basemodel:service-version "2.0";

13 basemodel:service-name "sample";

14

15 list sample {

16 key "cube_name";

17 leaf cube_name { type string; }

18 [...]

19 }

20 }

Listing 3.1. Sample Service List Wrapping

Lines 2, 3, 4, 8, and 9 are simple descriptive information about the service. Line

6 imports a polycube-defined YANG file which is required to create a polycube-

compliant service. Lines 11, 12, and 13 sets polycube specific service information.

Finally, lines 15, 16, and 17 are the implicitly added wrapping list. This is not

present into the developer’s YANG file but it is required to identify instantiated

cubes uniquely.

3.2 libyang

libyang is a YANG data modelling language parser and toolkit written in C and

is available at [2].

Even though it was possible to implement a YANG parser by hand, possibly

achieving higher performances as it would generate REST endpoints and validators

during the parsing process, the solution was discarded.

Relying on a third-party library has the advantage of updates such as bug fixes or

performance improvements regardless of polycube development status. Moreover,
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3 – Tools and Technologies

along with the standard compile-and-install configuration, libyang is shipped in

pre-compiled packages for most common GNU/Linux distributions.

3.3 XPath

The XML Path Language, better known as XPath, is a language used to address

parts of a data tree.

Even though it is designed to work with XML documents, the YANG data

modeling language adopted it in with version 1.0 to address one node from one

other, whose full specification is available at [3]. Additionally, some YANG-specific

function has been defined in [1, section 10].

XPath is very useful for enforcing logical constraints by means of when and must

statement. Listing 3.2 shows an example of usage.

Discarding the preamble which is useful only to give a context, what it is essen-

tial is line 11, which can be read as: the sibling node named ifType is valid only

if ifMTU is at most 1500.

1 container interface {

2 leaf ifType {

3 type enumeration {

4 enum ethernet;

5 enum atm;

6 }

7 }

8 leaf ifMTU {

9 type uint32;

10 }

11 must 'ifType != "ethernet" or ifMTU = 1500' {

12 error-message "An Ethernet MTU must be 1500";

13 }

14 must 'ifType != "atm" or'

15 + ' (ifMTU <= 17966 and ifMTU >= 64)' {

16



3 – Tools and Technologies

16 error-message "An ATM MTU must be 64 .. 17966";

17 }

18 }

Listing 3.2. Example of XPath Restriction

3.4 Flex & Bison

As should be clear from Listing 3.2, XPath is a string into a YANG document.

libyang is capable of parsing the simple XPath inside a leafref node and

replace it with the correct leaf. Nevertheless, when it comes to must and when

statements, libyang will merely put the string into the correct structure, without

any parsing involved.

For this reason, it was necessary to write a parser that can understand the

XPath expression inside a must or when statement.

Since writing a parser by hand is non-feasible, the tools used to write an XPath

parser are Flex and Bison.

Flex is a scanner generator. A function generated with flex will take a string

as input (the XPath in this case) and outputs a set of tokens. The association

between the input string and the output token is achieved with regular expressions.

For every matched regular expression, the lexer will advance the position in the

input string and emit a token.

Let us consider the following simple mapping as an example:

polycube → emit POL;

[a-zA-Z]+ → emit ALPHA;

[0-9]+ → emit NUM;

. → ignore;

Given the input string polycube v0.1, the output tokens sequence would be POL

ALPHA NUM NUM.
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The main advantage of using flex instead of standard regular expression is that

flex will generate minimised deterministic finite automaton ahead of time, thus

improving the overall performances.

The flex output token stream is passed to Bison, which is a parser generator.

Through Bison, it is possible to define formally the rules forming a grammar, and

an action associated with each rule.

For instance, assuming flex emits the token DOT when it encounters a dot and

SEP when it encounters a forward slash, a mapping may look like the following:

start_with : path;

current = DOT;

parent = DOT DOT → goto parent folder;

path = current SEP path | parent SEP path |

ε → print folder content;

As it is easy to see, the parent rule has one action associated that moves to the

parent directory (being the example a simplified grammar, it is not clear what

moves to parent, but it is not relevant). The ε rule, also known as empty rule will

match when no other rule can match.

Since the path rule is recursive, this parser can handle any combination of

current and parent directory, such as ./../. or ../.././.. and so on.

For the full context regarding flex and bison, refer to [4], [5].

3.5 Representational State Transfer

REpresentational State Transfer (REST) is a software architectural style originally

described in [6] that defines a set of constraints to be used for creating web ser-

vices. Web services that conform to the REST architectural style, termed RESTful

web services, provide interoperability between computer systems on the Internet.

RESTful web services allow the requesting systems to access and manipulate textual

representations of web resources by using a uniform and predefined set of stateless

operations.
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In a RESTful web service, requests made to a resource’s URI will elicit a re-

sponse with a payload formatted in either HTML, XML, JSON, or some other for-

mat. The response can confirm that some alteration has been made to the stored

resource, and the response can provide hypertext links to other related resources

or collections of resources. When HTTP is used, as is most common, the operations

available are GET, POST, PUT, DELETE, and other predefined CRUD HTTP methods.

In the polycube framework, a stored resource is any YANG defined node that

can be instantiated, such as a leaf or a list. In particular, for status nodes only

read operation are defined, while for the configuration ones are defined the creation,

update and deletion as well.

3.6 JSON

JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is

easy for humans to read and write. It is the format chosen for exchanging data

through the REST API. In particular, service data is encoded according to RFC-

7951 [13].

3.7 Pistache

Pistache is a modern and elegant HTTP and REST framework for C++. It is

entirely written in pure C++11 and provides a clear and pleasant API.

The main reason to choose this library instead of another one is because it was

already used in previous polycube versions, and thus it did not require further

integrations. Nevertheless, this library did not entirely fulfil the requirements, and

thus it as been modified, as described in 5.1.2.
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Chapter 4

Architecture

This chapter will present a revisitation of the architecture presented in 1.2 to solve

the problems proposed in chapter 2. Comparing the Figure 4.1 with Figure 1.1, it

is easy to notice the addition of a Service Controller module.

eBPF Program
("bridge" datapath) Enc/Decapsulator

eBPF Maps

Kernel Abstraction Layer

Service Controller
Service
Manager REST API

Input
Validation

polycubectl
CLI

Service Module
(e.g., bridge)

polycubed
(daemon)

Linux Host

User Space
Kernel Space

Figure 4.1. New Architecture

The purpose of this module is to provide a service-agnostic interface that allows

users to interact with the services. It operates by means of three sub-modules:

• REST API: Receives the request from a REST client (e.g., the polycube

20
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CLI).

• Service Manager: Enables services’ run-time registration and unregistra-

tion (§5.2).

• Input Validation: Enforces YANG defined constraints on REST request

path parameters and body.

The Service Controller will, in turn, forward the request to the correct service only

if all constraints are satisfied, otherwise returns an error.

4.1 Services as Grey-boxes

polycube design lets anyone develop a custom service; nevertheless, the daemon

cannot know services’ internals. For this reason, it has been designed a uniform

protocol that allows the daemon to exchange data with any service module.

This architectural model goes by the name of grey-box. In particular, with

this work, only services contained in a shared object each are supported.

Let us consider the trivial data model defined in listing 4.1 as an example.

The shared object that implements this service must expose a set of well-defined

entry points.

1 module example {

2 list ports {

3 key "name";

4 leaf name {

5 type string;

6 }

7 leaf ip {

8 type inet:ipv4-address;

9 config false;

10 }

11 }

21



4 – Architecture

12 }

Listing 4.1. YANG Data model example

First of all, it is defined a special purpose entry point that returns the YANG

data model:

1 extern "C" {

2 const char *data_model();

3 }

Listing 4.2. YANG data model entry point

For all the other functions, since there is no guarantee of success, the daemon will

know the outcome of the operation by means of a simple struct named Response,

whose goal is to store the response body along with an enumerable value stating

whether the operation was successful or, if there was an error, what kind of error

was it.

The service-wide entry points can be considered special purpose ones, since they

are always present, and they have fixed parameter known at compile time by the

daemon:

1 extern "C" {

2 Response create_example_by_id(const char *cube_name,

3 const char *value);

4 Response update_example_by_id(const char *cube_name,

5 const char *value);

6 Response replace_example_by_id(const char *cube_name,

7 const char *value);

8 Response read_example_by_id(const char *cube_name);

9 Response delete_example_by_id(const char *cube_name);

10

11 Response read_example_list_by_id();

12 Response update_example_list_by_id(const char *value);
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13 Response read_example_list_by_id_get_list();

14 }

Listing 4.3. Service wide entry points

The functions from line 2 to line 9 expose the operations on a single Cube,

identified by its name; the value parameter is the validated request JSON body.

The function on line 11 and 12 allow to operate on the whole list of Cubes within

the service. The function on line 13 returns the list of the names of all instantiated

Cubes.

Finally, all other nodes defined in the YANG data model take a set of functions

each. Before showing how these nodes are mapped to the correct entry points, we

need to show how list keys are managed. Since there is no control over YANG

data models submitted by the user, each node might be a descendant of zero or

more lists, each with a variable number of keys.

The Key structure overcomes the problem by specifying the type of the value so

that it is possible to retrieve it without any casting required:

1 enum ElementType {

2 BOOLEAN, STRING, INT8, INT16, INT32, INT64,

3 UINT8, UINT16, UINT32, UINT64, DECIMAL

4 };

5

6 union ElementValue {

7 bool boolean;

8 const char *string;

9 int8_t int8;

10 int16_t int16;

11 int32_t int32;

12 int64_t int64;

13 uint8_t uint8;

14 uint16_t uint16;

15 uint32_t uint32;

23
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16 uint64_t uint64;

17 };

18

19 typedef struct {

20 const char *name;

21 enum ElementType type;

22 union ElementValue value;

23 } Key;

Listing 4.4. Structure for passing a list key

The service implementation will then take the correct value depending on the type.

For the sake of simplicity, function names have been simplified using the place-

holder data_op which can be one between create, update or replace and with

no_data_op which can be read or delete.

1 Response

2 data_op_example_ports_by_id(const char *cube_name, Key *keys,

3 size_t num_keys, const char *value);

4 Response

5 no_data_op_example_ports_by_id(const char *cube_name, Key *keys,

6 size_t num_keys);

7

8 Response

9 data_op_example_ports_list_by_id(const char *cube_name, Key *keys,

10 size_t num_keys, const char *value);

11 Response

12 no_data_op_example_ports_list_by_id(const char *cube_name, Key *keys,

13 size_t num_keys);

14

15 Response

16 read_example_ports_list_by_id_get_list(const char *cube_name, Key *keys,

17 size_t num_keys);
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18

19 Response

20 read_example_ports_ip_by_id(const char *cube_name, Key *keys,

21 size_t num_keys);

Listing 4.5. Generic YANG nodes entry points

As anticipated, each of these functions takes a C-style array of keys. Function

from line 1 to line 17 are equivalent to the ones shown in listing 4.3. Instead, for

leaf nodes are only defined single entry operations. In this particular case, since

the ip leaf is config false, only the reading operation is provided.

4.1.1 Virtual Method Tables

The former architecture used a Cube interface declared in the polycube daemon

and then implemented it in each service. The daemon would then have used this

interface to interact with the cube.

Even though this approach may seem working, it has a significant drawback:

the C++ standard states that virtual member functions must be called through

virtual method tables, but it does not define how compilers should implement them.

Therefore, compiling the daemon and a service with different compilers (or even

different versions of the same compiler) may lead to undefined and possibly harmful

behaviour. Instead, treating the service as a grey-box where the daemon interacts

with the services by means of entry-points, does not have the same problem, since

there is no longer a common interface.

4.1.2 Extensibility

Requiring services to be grey-boxes in which only the data exchange entry point is

known in advantage, provides a great improvement over extensibility.

In particular, once the flow reaches the shared object entry point, any imple-

mentation is valid. The polycube provided automatic code generation [7] will still
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generate a C++ implementation stub on request; nevertheless, the constraint on

allowed programming languages for developing a service (i.e. C++) has been re-

laxed as it is now possible to use any programming language that allows developing

of shared objects (e.g., python).

4.2 Workflows

This section provides information about the workflows changed with the new ar-

chitecture. In particular, it will be presented a revisited version of the workflow to

register a new service at run-time, and the revisited workflow to provide input data

validation before it reaches the service.

4.2.1 Registering New Services at Run-time

Since polycube daemon is intended to be always running, requesting to stop it,

register a new service and then restart it with a new set of services is not feasible.

For this reason, it has been implemented a mechanism to provide run-time service

registration.

Originally, the workflow to register a service at run-time was straightforward

since after the request to register it by the user, the daemon would simply load the

shared object which, in turn, would configure all the REST APIs. Instead, Figure

4.2 depicts how this mechanism changed with new architecture.

At first, the user must submit a new shared object to the daemon. For security

reasons, instead of directly sending arbitrary binary code which will be run by

the daemon with root permissions, the user must upload the file out-of-band (e.g.,

through SSH) and then provide the path to the file onto the server. A valid request

might look like the following:

1 POST /services HTTP/1.1

2 Host: example.org

3 Content-Type: application/json

4 Content-Length: 82
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Shared
Object

Service
Controller

User
1: Submit Shared Object

2: Fetch YANG

4: Parse YANG

5: Compute Entry Point Names

loop [foreach entry point]

6: Check Exists

alt [All Entry Point Exist]

8: Success

9: Failure

Figure 4.2. Run-time Service Registration

5

6 {

7 "protocol": "lib",

8 "service": "/usr/lib/polycube/services/myservice.so"

9 }

Listing 4.6. HTTP request for registering a service at run-time

For convenience, instead of sending both YANG data model and shared object

path with the request in listing 4.6, a shared object must contain an entry-point

containing the YANG data model, which the Service Controller will parse.

The parsing process, starting from the YANG data model will then compute all

entry-point names and will check if the shared object exposes all of them.

The outcome of this operation will finally reach the user, and, in the case of

success, the correct REST endpoints will be created.
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Entry-point names’ generation

The algorithm for synthesising an entry-point name starting from the YANG data

model follows some trivial steps. At first, it is added the operation name, which

can be one between create, read, update, replace and delete. At this point,

the whole tree to reach the node of interest is appended using the snake_case

convention. For instance, assuming a leaf inside a container, the tree to reach

the leaf would be containername_leafname. Since a YANG node might contain

both dashes and dots, while C does not allow these symbols in function names, they

are both replaced with an underscore. Finally, for compatibility with the actual

naming convention, a by_id is appended.

It is important to notice that there exist two other entry points defined for

lists: listname_list and listname_by_id_get_list. The difference between

the _list version and the standard one is that the former operates on the list as

a whole, while the latter operates on a single element of the list. The _get_list

variant is instead used for the help feature, and it is intended to return a list of

instantiated key values.

4.2.2 Input Validation

Input data validation is a crucial aspect of the polycube framework and, as such,

the former architecture already implemented it.

The most significant difference between the previous architecture and the cur-

rent one resides in the responsibility of each component. In a nutshell, the input

validation has now been moved into the polycube daemon instead of being part of

the auto-generated code for each service.

Figure 4.3 depicts how the Service Controller handles the input validation pro-

cess.

Upon HTTP request, the REST API module will request the Input Valida-

tion module to validate each path parameter and the body of the request across

restriction imposed by the YANG data model.
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User

REST
API

Input
Validator

Shared
Object

1: Request

loop [foreach path param
and body element]

2: Request Validation

opt [Requires Instantiated
Data]

3: Retrieve Value

5: Validate

alt

7: Success

8: Failure

Figure 4.3. Input Validation

If the restriction requires instantiated data (e.g., a when clause), the Input Vali-

dation module will fetch it from the shared object and then proceed with validation.

Finally, the REST API will answer the user with a list of error messages (one

for each check not passed) in the case of failure or will process the request and then

answer accordingly.
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Implementation

Chapter 4 presents a high-level overview of a programming language agnostic archi-

tecture. This chapter aims to provide implementation details for the aforementioned

architecture.

The programming language used for this work is C++ (§5), chosen for two main

reasons:

1. Average better performance in terms of time and space, compared to other

high-level programming languages.

2. Compilation dependencies. The rest of the polycube daemon is already im-

plemented in C++, so no other compiler/interpreter is required.

Since the implementation is extremely complex, the component diagram in fig-

ure 5.1 presents a summarised view of the system, which will be further analysed

along this chapter.

First of all, libyang, flex, bison and pistache are external libraries covered

respectively in 3.2, 3.4 and 3.7.

The implementation revolves around the concept of resource, which is a 1:1

mapping to YANG data model nodes and that comes in two flavours: body resource

and endpoint resource. The goal of the body resources is to process the body request

whilst endpoint resources extend the corresponding body resource by providing

REST APIs for manipulating it. Moreover, endpoint resources process request
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path parameters. The separation between body and endpoint resources is required

to handle resources without a mapped REST endpoint, such as the descendant of

an action node.

Each resource internally holds a mapping between a field (i.e. a path parameter

or a body field) and a set of validators, whose goal is to enforce YANG defined

restrictions. Upon request, a resource will invoke the right validator for each path

parameter and each body field. The validator will, if required, request to the shared

object the instantiated value, then will proceed with the validation.

The XPath Parser is a special-purpose validator which exploits flex and bison

to evaluate an XPath and then enforce the restrictions as a regular validator.

Finally, the Yang Parser takes as input a YANG data model, generating the

right resources accordingly.

Programming Language

This work has been implemented using the C++ 17 standard. The main reason

to use it is the string_view that is a non-owning object referring to a constant

contiguous sequence of char-like objects with the first element of the sequence at

position zero.

A typical implementation holds only two members: a pointer to constant char

and a size.

The main advantage of the string_view over classical string is that the

substring operation just performs two arithmetical operations: addition on the

pointer and a subtraction on the size; thus, returning just a portion of the original

data. Instead, string performs a copy of the characters in the substring. It is

clear that the string_view substring has an O(1) complexity, while the string

one has an O(n) complexity. Since both pistache and the JSON parsing library

do use string_view when available, allowing it provides a great performance im-

provement.

Two other good reasons to use C++ 17 are a native reader-writer lock, useful to

provide thread-safety with a higher throughput and the if constexpr construct
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libyang Flex + Bison

Parser

«uses» «uses»

Data Model

Yang XPath
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Resources
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Resources

Validate
Validators

Value
Shared Object

Figure 5.1. High-Level Implementation Overview

that allows the compiler to compile only the correct branch of the if-else state-

ment.

5.1 Class Hierarchy

Now that it is clear what the main components are, it is possible to analyse in

detail each component.
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5.1.1 Body Resources

Each class in this component is abstract as it delegates the reading functionality

to the concrete class implementing it in a protocol dependent fashion (§5.1.4).

Figure 5.2 depicts a simplified class diagram of the body resource component.

It has been stripped of all internal operations and all non-relevant specialisations

(such as ListResource that extends ParentResource and manages the YANG

list node).

What it is important to notice is that the component is developed in a polymor-

phic way: all the components except the body resource one will refer to its object

only through the Resource abstract class. The purpose of this class is to create a

mapping between the parsed YANG nodes and the body of a REST request and to

validate it. In particular, each node is a different named body field.

Resource
#name : string
#parent : ParentResource

+BodyValidate()
+ReadValue()

ParentResource
#children : vector<Resource>

+BodyValidate()

LeafResource

+BodyValidate()

0..1

1..*

Figure 5.2. Body Resource simplified class diagram

The Resource abstract class exposes an operation to read the value upon the in-

stantiated data; moreover, each resource has exactly one parent, with the exception

of the root resource (i.e. the service).

Finally, the LeafResource is in charge of handling the YANG leaf scalar types,

while the ParentResource is in charge of handling complex body requests by pass-

ing the body field of interest to the correct child.
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Body Resources Implementation

Listing 5.1 shows how a ParentResource handles the body validation process.

First of all, it iterates over every child. For each child, it checks if it was marked

as mandatory in the YANG data model and whether it is present into the request

body. In the case of a missing mandatory field, an error is added to the response

body. Similarly, if the field is present in the body request but it was marked as

config in the YANG data model, an error is added since configuration nodes are

meant to be read-only.

1 std::vector<Response>

2 ParentResource::BodyValidate(nlohmann::json &body,

3 bool check_mandatory) const {

4 std::vector<Response> errors;

5 for (auto &child : children_) {

6 if (body.count(child->Name()) == 0) {

7 if (check_mandatory && child->IsMandatory()) {

8 errors.push_back({ErrorTag::kMissingAttribute,

9 child->Name().data()});

10 }

11 } else {

12 // non configuration nodes are read only

13 if (!child->IsConfiguration()) {

14 errors.push_back({ErrorTag::kInvalidValue,

15 child->Name().data()});

16 } else {

17 auto child_errors =

18 child->BodyValidate(body.at(child->Name()),

19 check_mandatory);

20 errors.reserve(errors.size() + child_errors.size());

21 // remove current parsed element from the body.

22 // required for detecting unparsed elements,

23 // that may be typos

34



5 – Implementation

24 body.erase(child->Name());

25 std::copy(std::begin(child_errors), std::end(child_errors),

26 std::back_inserter(errors));

27 }

28 }

29 }

30

31 errors.reserve(errors.size() + body.size());

32 for (auto &unparsed : body.items()) {

33 errors.push_back({ErrorTag::kInvalidValue, unparsed.key().data()});

34 }

35

36 return errors;

37 }

Listing 5.1. ParentResource Body Validation

At this point, the request body field associated the current children is passed

to it, which will, in turn, validate it.

Every validated body field, whether the validation was successful, is removed

from the body request. Once the ParentResource has iterated over all of its

children, if there is a remaining field into the body, it is marked with an error as it

might be a typo.

As it is clear, the ParentResource only checks for mandatory and configuration

children; then it delegates the actual validation to its children. If the child happens

to be a ParentResource as well, the process is repeated recursively. Instead, when

the child is a LeafResource, it uses the implementation in Listing 5.2.

1 std::vector<Response>

2 LeafResource::BodyValidate(nlohmann::json &body,

3 bool check_mandatory) const {

4 std::vector<Response> errors;

5 if (body.empty()) {
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6 errors.push_back({ErrorTag::kMissingAttribute, name_.data()});

7 return errors;

8 }

9

10 auto field = field_->Validate(body);

11 if (field != kOk) {

12 errors.push_back({field, name_.data()});

13 }

14 return errors;

15 }

Listing 5.2. LeafResource Body Validation

The body emptiness check is useful only if the function is invoked from the leaf

REST handler, as there is assured to be existent when invoked by a ParentResource.

The most important part of the body validation process in a LeafResource is

on line 10, in which it passes the body to a JsonBodyField (§5.1.3) that is in charge

of performing the actual validation.

Finally, all body resources expose a SetDefaultIfMissing function which is

invoked by the REST handlers. Its purpose is to add a leaf YANG defined default

value if it is missing in the request body. If required, the whole tree for reaching

the leaf from the resource handling the request is added.

5.1.2 Endpoint Resources

Similarly, to body resources, each class in this component is abstract as well. In

particular, the top-most abstract class is Resource, which provides REST request

validation functionality and delegates the writing and deletion functionalities to

the concrete class implementing them in a protocol dependent fashion (§5.1.4).

The component will then exploit the multiple inheritance mechanism provided

by the C++ programming language. As it is possible to see in figure 5.3, like in

the body resource (fig. 5.2), there are the LeafResource and the ParentResource
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Body
Resource

LeafResource ParentResource
0..1

1..*

Endpoint

Resource
-endpoint : string

+RequestValidate()
+WriteValue()
+DeleteValue()

LeafResource
+RequestValidate()
-get()
-post()
-put()
-delete()

ParentResorce
+RequestValidate()
-get()
-post()
-put()
-patch()
-delete()

Figure 5.3. Endpoint Resource simplified class diagram

which extend the endpoint Resource and their body correspondent. Through this

structure it is always possible to refer to a class by means of the Resource (either

the body or the endpoint one), providing greater flexibility.

While the body validation functionality is inherited from the body resource,

these classes use the Pistache library (§3.7) to provide REST APIs.
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REST Endpoints Generation

The REST endpoints are derived from the YANG data model following a straight-

forward algorithm.

The first path segment is the service name, followed by a path parameter con-

taining the requested instantiated cube name. At this point, the YANG data model

is parsed with a top-down approach. The parser will produce a path segment us-

ing the name of any container, rpc, action, leaf and leaf-list encountered.

Similarly, list nodes will produce a path segment corresponding to their name,

followed by a path parameter for each key.

Taking the listing in 4.1 as an example, the endpoints would be:

/example/:cube_name/

/example/:cube_name/ports/

/example/:cube_name/ports/:name/

/example/:cube_name/ports/:name/ip/

where the segments starting with a colon are path parameters.

It is important to notice that, while the HTTP GET handler is always registered

with each endpoint, the registration of the remaining handlers depends on whether

the resource is a configuration resource or a state resource: if the node is configu-

ration all manipulation operations (POST, PUT, PATCH, and DELETE) will be present,

but will not otherwise.

Pistache

As already mentioned in section 3.7, for this work the Pistache library has been

used as Web Server with REST features. Nevertheless, it has been modified with

this work both for performance improvement and for missing features.

The performance improvement concerns the routing algorithm used by Pistache,

meaning how it does select the correct handler for the incoming request. Before the

modification, the Pistache library used a linear search, which can be summarised

as follow:
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1. Explode each registered route (request URI) and the ongoing one in path

segments.

2. For each registered route, compare in order all path segments

3. If all path segments match, invoke the handler; otherwise go back to step 2.

While this approach is trivial to implement, it has an O(n·m) complexity, where

n is the total number of registered routes and m is the number of path segments in

the incoming request URI.

By reorganising the known routes in a tree of path segments with nodes contain-

ing the handler to invoke, an O(m) complexity was achieved. Since in a real case

scenario, the daemon must handle hundreds of routes, the performance achieved is

significant.

The modification regarding missing features concerns the ability to add and

remove routes at run-time, required for registration and un-registration of services.

This result was achieved by allowing the Pistache library to handle a non-owning

reference of the router and then add to it the operations to add and remove a route

which, in turn, add or remove a node and the associated handler from the path

segments tree.

Endpoint Resources Implementation

Both ParentResource and LeafResource implement a trivial request validation as

they only pass the request to their parent.

Instead, it is interesting how ListResource handles the validation process,

which is shown in Listing 5.3.

1 std::vector<Response>

2 ListResource::RequestValidate(const Pistache::Rest::Request &request,

3 const std::string &caller_name) const {

4 auto errors = ParentResource::RequestValidate(request, caller_name);

5 for (const auto &key_param : key_params_) {

6 auto error = key_param.Validate(request);
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7 if (error != ErrorTag::kOk) {

8 errors.push_back({error, key_param.Name().data()});

9 }

10 }

11 return errors;

12 }

Listing 5.3. ListResource Request Validation

First of all, the request is passed to the parent, which allows the errors to be in

the correct order. Since YANG list keys are mapped to REST path parameter,

it is required to validate each of them. In particular, each key is associated with a

PathParamValidator (§5.1.3) which will, in turn, validate the key across a set of

validators.

5.1.3 Validators

All the components presented so far rely on a last component named Validators

which is presented here.

Figure 5.4 extends the class structure presented in Figure 5.2 and Figure 5.3. For

the sake of simplicity, all the class relationships and private members not deemed

useful for this section have been omitted.

Let us begin with the Validators component. It is easy to understand that it

provides to the external world a simple interface named Validator that exposes a

single operation to validate a string. The validation process is then delegated to

the concrete class. In Figure 5.4 it is possible to see a PatternValidator and a

NumberValidator; however, other validators such as LengthValidator exist. The

main point is that, from a resource standpoint, it does not matter what the validator

actually is.

The validators are stored in a list inside a Field abstract class, which is in turn

implemented by JsonBodyField and PathParamField. As the name suggests, the
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Resources

Body

LeafResource
-field : JsonBodyField

JsonBodyField
+Validate(body : json)

1

Endpoint

ParentResource

ListResource

-fields : vector<PathParamField>

PathParamField
+Validate(request : HTTP)

1..*

Field
#validators : vector<Validator>

Validators 1..*
«Interface»
Validator

+Validate(value : string)

PatternValidator NumberValidator

Figure 5.4. Validators simplified class diagram

purpose of these two classes is to respectively validate a JSON body field or a path

parameter across the list of registered validators.

It is resource (either LeafResource, LeafListResource, or ListResource)
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duty to handle the Field object lifetime. In particular, the LeafResource will

handle a single JsonBodyField, the LeafListResource (not shown in the figure,

but part of the body component) will handle a list of JsonBodyFields, while

ListResource and Service (not shown in the figure, but part of the endpoint

component) will handle a list of PathParamFields.

In order to implement the Separation of Concerns design principle, each resource

can call only its directly connected validators. Upon REST request, the handler

designated to manage the request (§5.1.2) will pass the request URI to its resource

parent, which will validate it and then pass it to its parent until the flow reaches the

top-most resource (i.e. the Service). Similarly, once the request URI validation is

completed, the handler will pass to each child the body subsection of interest, which

will, in turn, pass another subsection to its child. The descent continues until the

flow reaches a LeafReource or a LeafListResource which can apply validation.

Let us take the YANG data model in listing 4.1 as an example. Let us remove

the config false on line 9 and let us assume a POST request on

/example/ex1/ports/p1/ with body {"ip":"1.1.1.1"}. At first, the handler will

check that p1 is a valid port name. Regardless the outcome of the operation, it will

pass the request URI to the example service, as it is its parent, which will check if

ex1 is a name for an instantiated cube of type example. Finally, the initial handler

will pass to the LeafResource associated with the field "ip" the value "1.1.1.1".

The LeafResource will validate if "1.1.1.1" is a valid IPv4 address.

XPath Validator

As already mentioned at the beginning of the chapter, the XPath Validator exploits

flex and bison to parse an XPath.

In a nutshell, there is an XPathParserDriver class holding the currently han-

dled cube name (retrieved from the request URI) and the currently parsed resource,

which at first is the one holding the REST handler. This class is passed as a pa-

rameter to the bison parser to avoid global scope pollution and thus provide thread

safety.
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The XPathParser implements a simple grammar supporting XPath path oper-

ators (., .., current(), and /) and boolean operators. All those operators are

retrieved using the Flex scanner. Each time the parser reduces a rule that changes

the reference node in the XPath, the associated action will update it in the driver

as well. For example, the action associated with the operator .. will change in

the driver the current Resource with its parent. Instead, when the parser reduces a

boolean rule, it will fetch the value of the current resource by means of the Value()

operation and will perform the requested boolean evaluation.

The parser will output a simple boolean stating whether the XPath was evalu-

ated to true or to false, or it will throw an error if an invalid XPath is provided.

Validator Implementation

To better understand how Validators are implemented, Listing 5.4 shows the

PatternValidator implementation by way of example.

Its implementation is trivial as it just compiles a regular expression to an NFA,

which is then used to check whether the input request input string matches it.

1 namespace polycube::polycubed::Rest::Validators {

2 PatternValidator::PatternValidator(const char *pattern, bool inverse)

3 : pattern_(pattern, std::regex_constants::optimize |

4 std::regex_constants::ECMAScript),

5 inverse_(inverse) {}

6

7 bool PatternValidator::Validate(const std::string &value) const {

8 return !inverse_ == std::regex_match(value, pattern_);

9 }

10 } // namespace polycube::polycubed::Rest::Validators

Listing 5.4. PatternValidator Implementation
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5.1.4 Extensibility

Even though this work comes with limited shared object support (namely, it sup-

ports YANG container, list, leaf and all types), its design allows any developer

to complete the support for shared object and add any other protocol as deemed

useful.

In order to achieve this result, the Resources component exposes an abstract

factory whose goals is to create resources in a protocol independent fashion. It

is then the protocol bridge responsibility to provide an implementation for each

resource by implementing the ReadValue, WriteValue and DeleteValue operations

and then providing a concrete factory implementing the abstract one.

The abstract will pick the correct concrete factory using the protocol field in the

request body (see listing 4.6) which the parser will use to create all the resources.

Figure 5.5 briefly depicts how the abstract factory is implemented. It introduces

the ServiceManager, which is described in section 5.2.

ServiceManager Parser

+CreateResource()

AbstractFactory

SharedObjectFactory gRPCFactory

Figure 5.5. Abstract Factory

This approach provides the Separation of Concerns design principle as the parser

must not know protocol details. Moreover, it provides improved extensibility as it

is now easy to develop a new protocol, such as gRPC.
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5.2 Service Manager

Section 4.2.1 shows the workflow to register a new service at run-time, while figure

5.1 depicts the component involved in YANG data model parsing and daemon-

service communications. Still, there is one last component that merges it all and

goes by the name of Service Manager.

The Service Manager exposes a REST endpoint on /services with two avail-

able operations: POST and DELETE.

The POST operation is in charge of registering a service at run-time and takes

as input a JSON containing the protocol and service fields. Starting from this data,

the Service Manager will create a concrete resource factory (§5.1.4) and will fetch

the YANG data model from the service. Before passing the concrete factory and

the YANG data model to the parser, it checks that there is not a service with the

same name. If this check fails, the process fails as well, and the parser is never

invoked.

The DELETE operation is in charge of de-registering a service starting from its

name. The operation will only succeed when there is no cube instantiated of the

requested service.

Since the PUT operation must be idempotent, it has been decided to avoid it

and allow service updating by means of a succession of DELETE and POST.
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Validation

This chapter aims to provide a comparison between the old and new architecture

in terms of required resources. In particular, it takes into account the differences

in required storage as well as some relevant timings.

6.1 Storage Requirements

Both the new and the previous architecture relies on Pistache external library for

providing REST APIs. At state of the art, Pistache compiled in release mode takes

2.4 MiB. Since it is a statically linked library, not all of its code gets copied into the

main program by the linker but only the used one. The service controller provided

with this work takes around 1.7 MiB (before the integration with the daemon).

In order to check the size of the Pistache library inside the executable, it has

been checked the size of each Pistache symbol with nm service_controller -B

-S –size-sort –demangle | grep Pistache and then summing it all. The result

is that Pistache takes ∼ 300 KiB.

The previous architecture linked Pistache on every service, as the REST API

was directly exposed by it. Moving the REST API into the daemon had the effect

of shrinking the size of each service, thus reducing the total required amount of

storage.

Figure 6.1 shows a comparison of storage requirements between the previous
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and the current architecture, assuming 1 MiB services and no restriction imposed

by the YANG data model.

As it is easy to see, when more than four services are deployed, the current

architecture requires less storage.
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Figure 6.1. Storage Requirements Comparison

It is important to notice that the graph regarding the previous architecture

shows only the size of the services, while the graph regarding the current archi-

tecture shows both the size of the services and the size of the service controller

(including libyang).

Moreover, the graph regarding the current architecture should be flatter as the

code of the REST handler is no longer present. Finally, in a real case scenario,

the difference between the two graphs would be more significant, since services

would contain validators’ code as well; in fact, while in the current architecture the

requirement for REST handlers and validators is constant, in the previous archi-

tecture the required size increased linearly with the number of defined endpoints

and YANG defined restrictions.

6.2 Services’ Compiling Time

Since most of a service code resides in user implementation, removing the input

validation and the REST API does not produce a significant reduction in compiling
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time.

Nevertheless, the main advantage of the current architecture is an improved

resilience to YANG data model changes. As a matter of fact, the following changes

would produce a recompilation only of the translation unit containing the YANG

data model shared object entry point:

• The allowed value space defined by a range, length, or pattern statement

may be expanded.

• A default statement may be added to a leaf (either directly or indirectly

through its type), or changed.

• A must statement may be removed or its constraint relaxed.

• A when statement may be removed or its constraint relaxed.

• A mandatory statement may be removed or changed from true to false.

• A min-elements statement may be removed, or changed to require fewer

elements.

• A max-elements statement may be removed, or changed to allow more ele-

ments.

• A description statement may be added or changed without changing the

semantics of the definition.

• A type statement may be replaced with another type statement that does

not change the syntax or semantics of the type. For example, an inline type

definition may be replaced with a typedef, but an int8 type cannot be

replaced by an int16, since the syntax would change.

• Any set of data definition nodes may be replaced with another set of syntac-

tically and semantically equivalent nodes. For example, a set of leafs may

be replaced by a uses statement of a grouping with the same leafs.
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6.3 Service Deploy Timing

The most time-consuming operation is the run-time service registration presented

in section 4.2.1.

In GNU/Linux, shared objects use the ELF (Executable and Linkable Format).

The dlsym function will use a hash function to resolve the bucket in which the

function is placed. Each bucket contains a linked list of functions whose hashes are

in conflict. The search average complexity on this structure is an amortised O(1),

which is a great result; nevertheless, it is significantly affected by cache misses.

Therefore, the run-time service loading mostly depends on three factors:

1. Cache size

2. RAM speed

3. Storage speed

Maximising these three factors improves the service loading time sharply, along

with better system overall performances.

Even though shared object loading is the slowest operation during run-time ser-

vice registration, it takes∼ 50% of the total deploy time. As a matter of facts, it still

is required to parse the whole YANG data model, register the REST endpoints and

generate the validators. In particular, the construction of the PatternValidator is

quite expensive as regular expression are compiled with the optimize flag. While

on the one hand, this flag makes the matching faster, on the other hand, it involves

the conversion from NFA (nondeterministic finite automaton) to DFA (determin-

istic finite automaton) during construction.

Taking the NAT YANG model shipped polycube as an example, inspecting the

shared object with readelf –dyn-syms libpcn-nat.so, we get that it exposes

160 dynamic symbols.

Measuring the time required to deploy an empty NAT service (only the entry

points are defined, no control plane) on an Intel® Core™ i7-4770@3.40GHz CPU

(caches: 32 KiB L1, 256 KiB L2, 8 MiB L3) with DDR3@1600MHz CL11 RAM

and 7200 RPM Hard Drive we get ∼ 37 ms to load it completely.
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As expected, the time to register a service at run-time is higher than the one of

the previous architecture, which was ∼ 1 ms. This huge difference is due the fact

that in the previous architecture YANG parsing was performed ahead of time, and

most of the logic was in the service itself, thus reducing the number of entry-points.

6.4 Input Validation Timings

Input data validation timings are highly variable since they strictly depend on the

restrictions defined in the YANG data model.

The trivial case in which there is no restriction has a negligible overhead since

it would require to iterate on an empty list of validators.

Most of validators will still have a negligible overhead (e.g., NumberValidator

performs comparisons between numbers, which are trivial operations). The valida-

tor with the highest impact is the PatterValidator, which may be in charge of

validating complex regular expressions.

The ipv4-prefix in the IETF YANG module containing data types for In-

ternet addresses (ietf-inet-types) is defined by means of the following regular

expression:

(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5]))̇{3}

([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])/

(([0-9])|([1-2][0-9])|(3[0-2]))

The time required to validate this regular expression on an Intel® Core™ i7-

4770@3.40GHz CPU is ∼ 80µs.
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Conclusions

The solution proposed with this thesis is far from complete. First of all, it is required

feedback from service developers to understand whether the proposed architecture

is deemed easy enough to use or another refining iteration is required. Still, this

solution is headed in the right direction since it removes all REST handler and

validation from the service, thus allowing the service developer to focus only on

core logic.

Features vs Performances

This work mainly focused on features instead of performance; it is no accident that

the run-time service deployment (§6.3) takes a significant amount of time, compared

to the previous architecture in which the YANG parsing was made ahead of time.

Nevertheless, ∼ 37ms is a negligible time, considering that service deployment

is a minimal time compared to the total service lifetime. Moreover, if in future the

run-time service deployment will become a time-critical feature, there is a vast area

for performance improvements.

For instance, at state of the art, the parser will re-generate the validators for

each new service; however, some data-types such as the IETF INET ones are very

common and reusable: parsing them at daemon startup and reusing them without

recompiling all the regular expressions all the time would reduce the service deploy-

ment time. Moreover, pre-generating them would lead to a significant reduction of
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main memory since they would be shared between services.

This improvement would require a minimal code change; nevertheless, it is

possible to improve performances even more by writing Validator specialisations

for INET types, thus moving the validator generation from run-time to compile-

time.

Thread-safety

An issue that raised with the new architecture is the thread-safety. With the

previous architecture, since the YANG data model was parsed ahead of time and

the service code generated accordingly, it was possible to provide a very fine lock

mechanism.

Instead, since the new architecture must handle all possible YANG data mod-

els, it can only provide a coarser locking mechanism. With this work, the only

thread-safety guarantee is during service deploy by means of an exclusive lock into

the ServiceManager. This means that services cannot safely accept multiple con-

figuration commands at the same time; they must be serialized and executed in

sequence, without concurrency.

Nevertheless, thread-safety should be analysed very carefully to provide the best

solution. One possible solution is to implement a per-cube reader-writer lock which

would read-locked by the GET operations inside a cube and write-locked by all the

other operations. While this locking mechanism may provide high throughput, it

may be deemed not enough; thus, the best locking mechanism must be designed

carefully.

YANG Data Modeling Language Coverage

As already mentioned, this work was meant to provide an initial prototype to deter-

mine if it was headed in the right direction and, as such, it requires improvements.

As a matter of fact, likewise the original implementation, it supports only a subset

of the YANG nodes.
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In particular, all YANG nodes are implemented as abstract classes, but the

Shared Object protocol support is limited to container, list, leaf, and action.

Similarly, the XPath parsing only supports boolean and path operations, so it is

required to implement the remaining operation for full coverage. Those missing

features have not deemed a priority during the implementation and testing phase

of this work as they were missing in the previous version as well and thus not used

in any polycube defined service.

Nevertheless, a full YANG coverage is a crucial requirement to allow services’

developers to exploit the YANG data modeling language fully.

Persistent Configuration

At state of the art, when the daemon gets shut down and then restarted, it is

initialised at an empty state in which it is required to reload and re-configure each

cube. Implementing configuration persistence would lead the daemon to check

whether there is any service loaded from a previous session and reconfigure them

accordingly, thus solving the empty-state problem.

In the previous architecture, the services existed semi-independently from the

daemon, thus it was not possible to persist cubes’ configuration from the daemon;

the only possible approach was to let each service to persist their data; nevertheless,

since services were deployed ahead of time, not the whole daemon but only the

services were in an empty state.

With the new implementation, the daemon is aware of the configuration of each

cube, since it can extract data from them. It is therefore possible to add an ad-hoc

REST endpoint to save the configuration of the whole polycube framework manu-

ally, possibly adding an automatic timed save explicitly set into the configuration

file.

Multi-protocol

Since initial design, polycube was intend to support multiple protocols to let the

daemon interact with the services; namely, the original idea was to support services
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contained in a shared object and the gRPC protocol. However, the previous imple-

mentation neither did support multiple protocols, nor its design allowed a smooth

integration with protocols different from the shared object one.

Even though the new implementation does not implement multiple services as

well, its design takes into account this requirement, thus making multiple protocol

support straightforward to implement.
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