Hardware acceleration for post-quantum cryptography
Abstract

Communication security of today heavily relies on the assumption that some mathematical problems are extremely difficult to solve and thus breaking encryptions based on such problems requires a very long time. While such encryptions are secure now, the probable diffusion of quantum computers in the foreseeable future makes the initial assumption fall short: quantum computations are efficient at breaking the most widespread algorithms in use. Post-quantum cryptographic systems are based on problems that are not (or marginally) affected by the peculiarity of quantum computing: AES[3] and many other hashing functions fall in this category, with quantum operations just moving the problem from $O(N)$ to $O(\sqrt{N})$, with N being the number of operations needed to find a solution. This is effectively countered by using double the number of bits and squaring the complexity. Other proposals are based on variations of error-correcting codes used in data transmission, so that the data is encoded and errors are purposely introduced in the encrypted version. With no a priori knowledge on the location of such errors, reverse-engineering the generation matrix becomes a very arduous task, making the system de facto equivalent to the prime-based asymmetric key system in use today but without the vulnerability to quantum attacks. This work is focused on a hardware implementation of such a system, for use in low power applications that are likely to generate the bulk of encrypted traffic in the near future.
Contents

1 Basics of cryptography 3
 1.1 Symmetric and asymmetric ciphers 4
 1.2 RSA ... 6
 1.3 Shor’s algorithm 7

2 The LEDAcrypt cryptosystem 8
 2.1 QC-LDPC codes ... 8
 2.2 LEDAcrypt’s keys 9
 2.3 Encryption and decryption 10

3 Hardware implementation of LEDAcrypt decryption 12
 3.1 Assumptions on memory 13
 3.2 System parameters 13

4 Key reconstruction 15
 4.1 Circulant block multiplication 15
 4.1.1 Out-of-order result and modulo p implementation ... 17
 4.1.2 Result sorting 19
 4.1.3 Modulo 2 on compressed matrices 20
 4.2 Circulant block sum 21
 4.2.1 Memory movement 22
 4.3 Quasi-cyclic multiplication 22

5 Vector by matrix multiplication (and vice-versa) 25
 5.1 Vector by circulant matrix 25
 5.2 Circulant matrix by vector 27
 5.3 x by L^T ... 28
 5.4 H^T by s^T ... 29
 5.5 Q^T by Σ^T 30
 5.6 e by H^T ... 30
6 Error update 32
 6.1 Peak search 32
 6.2 Row extraction from compressed matrix 33
 6.3 Vector plus compressed row 33

7 Main loop state machine 35
 7.1 Design modularity and shared resources 36

8 Conclusions 38

A Source code 40
 A.1 Key reconstruction 40
 A.1.1 Sorting 43
 A.1.2 Circulant sum 47
 A.1.3 Memory copy 50
 A.2 Vector by matrix 52
 A.2.1 Vector by circulant 52
 A.2.2 x by L^T 55
 A.2.3 H^T by s^T 56
 A.2.4 Q^T by Σ^T 58
 A.2.5 e by H^T 60
 A.3 Error update 62
 A.4 Loop control and message computation 66
 A.5 Top module 71
Chapter 1
Basics of cryptography

Cryptography comes from two ancient Greek words that more or less translate to “hidden writing”, originally with the objective of having a reliable way to deliver military orders through messengers without the enemy understanding intercepted ones[4]. While this specific application proved by far the biggest drive to cryptography up to recent times, this “hidden writing” capability is now heavily used by civilians too due to the vast amount of sensitive information that is transmitted through potentially unsecure channels.

Traditionally, the agents in cryptography examples are called Alice (A, the sender), Bob (B, the recipient) and Eve (E, the eavesdropper). Alice and Bob use cryptography so they can communicate without Eve being able to understand the message, even though Eve might intercept the code (from here on, “code” is used to refer to the encrypted version of the message). Since it is assumed that Eve knows the code, Bob must have some information not contained in the code that can be used to get the message back from it: this information is known as the “key” (figure 1.1).

In the oldest and simplest ciphers, the number of possible keys was usually quite small, so that Eve could simply try them all and see which key yielded a message that made sense. This was only effective as long as Eve did not have a clue about the mechanism of the cipher, so that Alice and Bob mostly relied on what is called “security by obscurity” and had to keep the cipher itself secret.

Since a secret mechanism does not scale up well with many possible recipients and devising a new cipher for each recipient would be a daunting task (that still requires a secure channel anyway), modern ciphers are public, while relying on other features to protect messages. These features arise from particular mathematical properties and are meant to prevent anyone not having the key from decrypting the code, while the possible number of keys is so big that brute forcing (i.e. trying them all one by one) is pointless.
Ciphers in use today fall into two broad categories: symmetric and asymmetric ciphers. The former category is made up with all systems that require Alice and Bob to know the same key (hence “symmetric”), and Eve not to know the key: it requires a secure channel for sharing the key between Alice and Bob in the first place (figure 1.2). The latter is made up with systems that have Bob know a private key nobody else knows (hence “asymmetric”), and everyone know Bob’s public key that is used to encrypt the message (figure 1.3). The system is then conceived in such a way that only Bob’s private key can decrypt what was encrypted with the public key. Asymmetric ciphers, while not extremely complicated in their most basic form, are much more recent than symmetric ciphers: the earliest military implementation was devised in 1973, while the first civilian algorithm dates 1976.

Symmetric ciphers are usually very simple and very fast to implement both in software and hardware. Unfortunately, they can only be used when Alice and Bob have a way to agree on a key without Eve intercepting it. Asymmetric ciphers let Alice and Bob communicate without any need to share their private keys, but are usually very slow and possibly quite complex. Neither of the categories can respond to the need for a massive amount of data to be transferred securely and quickly, but an asymmetric cipher can be used to send a symmetric key without Eve knowing it, and that key can then be used to encrypt and decrypt the data (figure 1.4).

The Internet itself relies on such a method for its TLS (Transport Layer Security) protocol. While TLS does not mandate any particular algorithm, the most common choice is RSA (Rivest-Shamir-Adleman, its inventors) as
Figure 1.2: Secure channel for key transmission

Figure 1.3: Asymmetric key not requiring a secure channel
asymmetric cipher and AES (Advanced Encryption Standard) as symmetric cipher.

1.2 RSA

RSA[5] is a relatively simple asymmetric cypher published in 1978, just two years after the first non-classified paper on such cryptosystems by Diffie and Hellman. The simplest explanation of RSA, while not really exact, is straightforward: choose two very big prime numbers, keep them secret and provide their product as public key. Factoring such a huge number into its two prime factors is extremely demanding in terms of computational power, and whenever processors become faster and more powerful it is a simple matter of choosing even bigger starting numbers, making the algorithm extremely scalable.

The actual RSA key generation algorithm is as follows:

• Randomly pick two distinct prime numbers, \(p \) and \(q \)
• Compute \(n \) as \(n = pq \)
• Compute \(\lambda(n) \) as the least common multiple of \(p - 1 \) and \(q - 1 \)
• Randomly pick an integer \(e \) that is smaller than \(\lambda(n) \) and coprime with it (no common divisors other than 1)
• Compute \(d \) such that \(de \pmod{\lambda(n)} = 1 \)
• Share n and e as public key, while keeping d (and technically n) as private key.

Encryption of a message m is straightforward, if computationally intensive, as $x = m^e \pmod{n}$.

Decryption is very similar in that $m = x^d \pmod{n}$.

1.3 Shor’s algorithm

From the description of the RSA algorithm it can be noted that once an attacker is able to get p and q he can also easily compute d using the same procedure that is used for key generation. While it is not proved that computing d requires explicitly factoring n, no known method that exploits the availability of e has been published. It is thus paramount that getting p and q from n be extremely time consuming: classical algorithms for factorization require exponential time, and, while the shorter 1024-bit RSA keys might be breakable given enough time and resources, the longer keys up to 4096 bits are still impregnable to any foreseeable attack.

In 1994 Peter Shor, at the time working at Bell Laboratories and now professor of mathematics at MIT, devised an algorithm[6] that can efficiently factor any number that is not an integer power of a prime number. Since a requirement of RSA is that p and q are prime and different, the condition for applying Shor’s algorithm holds. While the inner workings of the algorithm are out of the scope of this thesis, the general idea of the algorithm is that through quantum operations it is possible to obtain the period of the function $f(x) = a^x \pmod{n}$, which is in turn directly related to p and n. The algorithm requires $2 \log_2(n)$ quantum bits to be effective, and while this amounts to several thousands qubits (a far stretch from the 50 qubits available to the most powerful devices at the beginning of 2018) the number is not inherently prohibitive assuming quantum computing will undergo a similar evolution as classical computing[7].

As a direct consequence of this perceived danger, researchers have been devising alternative cyphering systems that are supposedly robust to attacks coming from future quantum computers.
Chapter 2

The LEDAcrypt cryptosystem

The LEDAcrypt cryptosystem, developed by Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi and Paolo Santini, is actually not one cryptosystem but two. The first one, LEDAkem[1], is a Key Encapsulation Mechanism, while the second one, LEDApkc, is a Private Key Cryptosystem. They are however very similar in concept and implementation, so they will be treated together from here on.

LEDAcrypt is built on the McEliece cryptosystem[8], that uses linear codes. The basic idea behind this cryptosystem is that decoding a generic error-correcting code without knowing the decoding function is NP-hard. This in turn requires being able to give a public key for anyone to encrypt a message, while the private key that decodes the message is kept secret and cannot be obtained from the public one. While the McEliece cryptosystem is quite robust, with no known attacks that cannot be neutralized by slight modification of the original system, it has almost never been used due to the sheer dimension of the keys it requires. A standard set of keys for a McEliece cryptosystem can be as big as 500 kb, which is an obvious setback if compared to RSA’s 4 kb.

Honouring the convention used by the authors of the cryptosystem in the original paper, in this thesis vectors are row vectors unless otherwise specified and transposed vectors are column vectors.

2.1 QC-LDPC codes

LEDAcrypt uses QC-LDPC (Quasi-Cyclic Low-Density Parity-Check) codes, that are based on quasi-cyclic binary matrices (hence the name). Quasi-cyclic matrices are matrices having circulant blocks: each block can be completely described by its first row. With a block size $p \times p$ and a reasonable p value,
this leads to keys more than 25,000 times smaller than they would be if they were not circulant.

These quasi-cyclic blocks, however, are also extremely sparse and binary. This property means it is possible to write, for each circulant block, the position of set elements on the first row (knowing their value is one), while everything else is assumed to be zero. A typical block is thus described with a small number of integers and takes up only a few bytes.

2.2 LEDAcrypt’s keys

The particular code used by LEDAcrypt is made up with two matrices forming the private key, from here on called H and Q:

$$H = [H_0 \mid H_1 \mid \cdots \mid H_{n_0-1}]$$ \hspace{1cm} (2.1)

$$Q = \begin{bmatrix}
Q_{0,0} & Q_{0,1} & \cdots & Q_{0,n_0-1} \\
Q_{1,0} & Q_{1,1} & \cdots & Q_{1,n_0-1} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{n_0-1,0} & Q_{n_0-1,1} & \cdots & Q_{n_0-1,n_0-1}
\end{bmatrix}$$ \hspace{1cm} (2.2)

Each block H_i in (2.1) and Q_{ij} in (2.2) has size $p \times p$, with p prime; this makes the system immune to a particular type of attack and ensures invertibility of a matrix that will need inversion to compute the public key. Parameter n_0 is a small integer, that can be as small as 2. All blocks H_i of H have weight (number of set elements) d_v, with a standard choice being 17, while blocks of Q have a weight according to the following map (which is, by the way, circulant as well):

$$W = \begin{bmatrix}
m_0 & m_1 & \cdots & m_{n_0-1} \\
m_{n_0-1} & m_0 & \cdots & m_{n_0-2} \\
\vdots & \vdots & \ddots & \vdots \\
m_1 & m_2 & \cdots & m_0
\end{bmatrix}$$

where m_i are again small integer values.

From matrices H and Q a new matrix L is obtained as:

$$L = HQ = [L_0 \mid L_1 \mid \cdots \mid L_{n_0-1}]$$

Given a proper choice of parameters d_v and $m = [m_0, m_1, \ldots, m_{n_0-1}]$ the inventors of the cryptosystem have proven that L_{n_0-1} is invertible. This
means any possible secret key satisfying the constraints on the parameters can be used to compute a corresponding public key M such that:

$$M = L_{n_0-1}^{-1}L = \begin{bmatrix} M_0 & M_1 & \cdots & M_{n_0-2} & I_p \end{bmatrix} = [M_1|I_p]$$

The generator matrix is then obtained as:

$$G' = [I_{p(n_0-1)} | M_1^T]$$

with M_1^T being the transpose of M_1. An important thing to notice is that M, albeit dense and thus not possible to compress as much as H and Q, is quasi-cyclic as well. This leads to a public key of size $p(n_0 - 1)$ bits, as the last p bits of M are known by construction and G' is obtained easily from M_1.

2.3 Encryption and decryption

The ciphertext x of size $1 \times p n_0$ is obtained by multiplying a message u of size $1 \times p(n_0 - 1)$ by the generator matrix G' as follows:

$$x = uG' + e$$

with e being a purposely introduced error having weight t which is low enough for the code to correct with a very high chance. This is necessary because the first $p(n_0 - 1)$ bits of uG' correspond to u itself.

The decryption algorithm used by LEDAcrypt is a custom bit-flipping algorithm that succeeds when the syndrome of the code is null (since the fundamental property of the syndrome in linear codes is that it is only null for valid codewords, this effectively amounts to having removed the error). The starting syndrome ξ is computed as

$$\xi^T = (HQ)\xi^T$$

and updated with an iterating algorithm, while the error e is initialized to a zero vector.

The main loop of decryption involves computing a vector R such that

$$\Sigma^{(l)} = \xi^{(l-1)}H$$

$$R^{(l)} = \Sigma^{(l)}Q$$

with Σ and R being vectors of natural numbers, in contrast with every other vector and matrix which are binary.
It is now necessary to find the positions in which $R^{(t)}$ is maximum, here denoted as set $J^{(t)}$. These positions are the ones that most likely correspond to wrong bits. Flipping bits is not done directly on the received code x_r, but rather the knowledge of H and Q allows for direct incremental updating of e and s. The new value of e is obtained as

$$e^{(t)} = e^{(t-1)} + \sum_{v \in J^{(t)}} q_v$$

with q_v being the v^{th} row of Q and v being one of the indices corresponding to maximum $R^{(t)}$. Having now the updated error, the updated syndrome is found as

$$s^{(t)} = s^{(t-1)} + e^{(t)}H^T$$

and the algorithm either terminates (due to a null syndrome or exceeding the number of permitted iterations) or starts a new cycle of the main loop.

If the algorithm terminated due to null syndrome, the error is then known as the last $e^{(t)}$ and it is then easy to get the message as the first part of the corrected code:

$$uG' = x + e^{(t)}$$

$$u = (x + e^{(t)})[0 : p(n_0 - 1) - 1]$$
Chapter 3

Hardware implementation of LEDAcrypt decryption

This thesis is aimed at obtaining a hardware implementation of the decryption system described in chapter 2. The chosen Hardware Description Language was VHDL (VHSIC Hardware Description Language, with VHSIC standing for Very High Speed Integrated Circuits), as the one that the author was most familiar with at the beginning of the work, although it must be noted that a more modern alternative exists in the form of SystemVerilog. The syntaxes of these two languages, while mostly presenting clear parallelisms, are quite different and have different tradeoffs: VHDL is a very mature language, quite limited in core features, very well supported by EDA (Electronic Design Automation) tools but quite pedantic, especially in terms of typing checks and process triggers; SystemVerilog is much more lenient but only a subset of the extensive standard is supported by EDA tools and the additional flexibility necessarily implies additional risk of inadvertently making a mistake that is interpreted as a legal construct.

The reason for supporting the decryption specifically is that the operations involved in encrypting are quite cheap to perform on a general purpose processor, as it is a single pass operation consisting of copying a message, padding it with the result of a single vector-by-matrix multiplication and adding a few errors. Decrypting, on the other hand, features multiple vector-by-matrix multiplications, peak detection and vector sums in a loop which could keep the processor busy for longer than it is acceptable.
3.1 Assumptions on memory

An important detail is that the decryption operation is heavily limited by access to memory. This is due to the extreme reliance of the algorithm on linear algebra using very big matrices and vectors, that have to reside in some kind of RAM: while storing everything in flip-flops is theoretically possible, the parameters giving the least secure implementation would still result in 225,000 flip-flops as a conservative estimate. Because of the huge area it would require, parallel access to the entire vector is impossible: to avoid excessive restraint on the algorithm I assumed a memory that can read two values per cycle and write one is available (as in figure 3.1). This would of course be custom on-chip memory, and in case of an FPGA implementation an emulation could be achieved with parallel writing on multiple memory chips at the cost of increased storage occupation. A single read or write operation per cycle would take almost three times to complete decryption, making dedicated hardware somewhat redundant, and sharing memory with the main processor would likely defeat the purpose entirely by occupying the bus.

3.2 System parameters

The implementation is completely controlled by parameters, meaning that any legal combination of block size, weights and number of blocks can be implemented by plugging in the desired values. Memory mapping is automatic and has no impact, but it can be easily tweaked too to fit into a larger module featuring secure communication with the processor if need be.
Default parameters are as follows:

\[
\begin{array}{|c|c|c|c|}
\hline
n_0 & p & d_v & m \\
\hline
2 & 27779 & 17 & [4, 3] \\
\hline
\end{array}
\]

with \(n_0 \) being the number of circulant blocks in matrix \(H \), \(p \times p \) being the size of the circulant blocks, \(d_v \) being the weight (number of set elements) of each circulant block of \(H \) and \(m \) being the first row of matrix \(W \), that is circulant and contains the weights of the blocks of \(Q \).

The implementation assumes that at the start of decryption matrices \(H \) and \(Q \), making up the secret key, are loaded into memory, and that the code to decrypt, \(x \), is in memory as well. \(H \) is stored as follows:

\[
\begin{array}{cccccc}
\text{H BASE ADDRESS} + & 0 & 1 & \cdots & d_v - 1 & d_v & \cdots & n_0d_v - 1 \\
\text{content} & H^T_0 & H^T_1 & \cdots & H^T_{d_v - 1} & H^T_{d_v} & \cdots & H^T_{n_0d_v - 1} \\
\end{array}
\]

so that the set positions of the transpose of \(H \) are what is actually in memory.

Similarly, \(Q \) is stored as:

\[
\begin{array}{cccccc}
\text{Q BASE ADDRESS} + & 0 & 1 & \cdots & m_0 - 1 & m_0 & \cdots & k - 1 \\
\text{content} & Q^T_{0,0} & Q^T_{0,1} & \cdots & Q^T_{0,m_0 - 1} & Q^T_{0,m_0} & \cdots & Q^T_{0,k - 1} \\
\text{Q BASE ADDRESS} + & k & k + 1 & \cdots & k + m_{n_0 - 1} - 1 & k + m_{n_0 - 1} & \cdots & 2k - 1 \\
\text{content} & Q^T_{1,0} & Q^T_{1,1} & \cdots & Q^T_{1,m_{n_0 - 1}} & Q^T_{1,m_{n_0}} & \cdots & Q^T_{1,k - 1} \\
\end{array}
\]

\[
k = \sum_{i=0}^{n_0-1} m_i
\]

with \(m \) here indicating the first row of \(W^T \) for brevity, as \(Q \) is also transposed.

With the default parameters, this amounts to 48 16-bit words of storage (although 15 bits would suffice, if deviating from the standard of using powers of 2 is allowed).

For ease of design it was assumed that the bits of the code \(x \) are accessible one by one by their index, although the design does not enforce that each bit is stored in a 1-bit memory location if a custom memory is not available. This does result in a substantial waste of space, though, and the assumption is as always that we have a custom memory in our chip: in this case this would allow us to have no waste while having access to single bits.
Chapter 4

Key reconstruction

The first step needed to decrypt the code is obtaining the syndrome. Since

$$s^T = Lz^T \mapsto s = zL^T$$

holds, the objective of this submodule is computing L^T as

$$L = HQ \mapsto L^T = Q^TH^T$$

Handling traditional matrix multiplication, with H having size 27779×55558 and Q having size 55558×55558 at best, is out of question: such a calculation requires $8.5 \cdot 10^{13}$ multiplications and about as many sums and would take ages. The particular format of H and Q, however, allows for a very efficient implementation.

4.1 Circulant block multiplication

A binary circulant matrix having only its first element set is the identity matrix, and multiplying any matrix by it results in the starting matrix. A binary circulant matrix having only its second element set circularly shifts all rows of the other operand right by one position, and so on. It follows that the multiplication between two binary circulant matrices, with one having a single set element in the first row, is another binary circulant matrix of the same size. We can then easily extend the result by expressing any binary circulant matrix as the sum of many having a single set element, and state that the product of any two binary circulant matrices is circulant: to ensure it is binary it is sufficient to perform all sums of partial products modulo 2.

It is then possible to obtain the product of two circulant blocks A and B as follows:

$$A = \begin{bmatrix} a_0 & a_1 & \cdots & a_{m-1} \end{bmatrix}$$
\[\mathbf{B} = \begin{bmatrix} b_0 & b_1 & \cdots & b_{n-1} \end{bmatrix} \]
\[\mathbf{A} \mathbf{B} = \begin{bmatrix} a_0 + b_0 & a_0 + b_1 & \cdots & a_0 + b_0 & \cdots & a_{m-1} + b_{n-1} \end{bmatrix} \]

with \(a_i\) being the position of the \(i\)th set element of \(\mathbf{A} \) and \(b_j\) being the position of the \(j\)th set element of \(\mathbf{B} \). The result is the list of set positions in the product, with all sums being performed modulo \(p\) to take into account the rotation of set bits “out of the right margin and back into the left one”. There is one more problem, however, that is the cancellation of terms: if both \(\mathbf{A} \) and \(\mathbf{B} \) have set positions \([0, 1]\) the product will have set positions \([0, 2]\), but this algorithm will output \([0, 1, 1, 2]\). It is then necessary to eliminate duplicates that appear an even number of times: this implies the actual weight of the result is unknown. Given the added complexity of tracking weights has no real advantage in terms of memory usage, as the space reserved for each operation must be the maximum one possibly occupied by the result, it was chosen to simply fill the unused position with illegal values.

The hardware implementation is as follows:

1. get \(a_0\) and \(b_0\), then compute \(a_0 + b_0\) and save the result modulo \(p\) in a temporary variable
2. get \(b_1\), compute \(a_0 + b_1\), save the result modulo \(p\) in a temporary variable
3. continue until all combinations have been processed, we now have a temporary result in memory
4. sort the temporary result to have all set positions in order: this is done in place with an insertion sort algorithm[2] that does not require additional space in memory
5. go through the temporary result and copy all values that are different from the one immediately following them in the memory space for the real result: if two successive values are equal skip them both
6. if it was not skipped as a result of the previous value, copy the last value of the temporary result into the real result (the previous iteration requires a “next value” to compare to and can’t be applied to the last element)
7. fill all remaining memory location assigned to the result with “invalid” flags, i.e. illegal values: in line with the software implementation, \(p\) was used as invalid flag (since the last legal position is \(p - 1\))
4.1.1 Out-of-order result and modulo p implementation

The implementation of anything having to do with division is usually very costly in terms of area and performance, either taking multiple cycles to compute a result or needing very big combinational networks to compute the result. The particular problem at hand does once again provide a way to reduce complexity, allowing for a short critical path using little area:

$$a_i < p$$
$$b_j < p$$
$$a_i + b_j < 2p - 1$$

This means that there are only two possible solutions to $a_i + b_j \pmod{p}$: either $a_i + b_j$ or $a_i + b_j - p$. The second value is computed in the same cycle as the first one and a simple comparator then selects the proper result: this is easily done by checking the sign of $a_i + b_j - p$, as that is the correct result if it is positive (a circuit performing the operation is shown in figure 4.1).

The state machine (depicted in figure 4.2) controlling the actual operation is actually quite simple, depending mostly on parameters known at compile time: it sits in an idle state until a “start” signal is received, at which point two nested loops are performed to select all combinations of a_i and b_j. Values i and j are added as offsets to the base addresses of the two circulant blocks, provided by the parent module that controls the multiplication of Q^T by H^T. The address of the result z_k is obtained by summing to the base address of the result block a counter k, incremented in the inner loop and reset when the block is idle. Once the result is ready in memory, the state machine raises a flag and stays in a “done” state until the “start” signal is deasserted: it then moves to an idle state and can perform another multiplication.

The implementation computes one result per cycle and writes it immediately to memory, then it moves to the next value on the following cycle.

If a real implementation suffers from critical path problems while trying to achieve this, since the circulant multiplication block has no feedback, it can be pipelined without side effects as long as the frequency of the memory can keep up with the frequency of the decoder itself, at which point the memory-bound nature of the problem requires reconsidering how data are stored.

Storing data in multiple memories is possible, interleaving access to each of them and thus multiplying the effective maximum frequency of the decoder at the cost of more buses: this is easily done by using the least significant bits of the addresses as computed by the existing modules as inputs to a decoder.
Figure 4.1: Encryption in LEDAcrypt
for memory selection, thus cycling through all memories before coming back to the initial one. A future modification would however need a thorough investigation on the consequence of such a choice on the system at large, to ensure all modules do have sequential access to memory locations: if this assumption does not hold additional logic is required to slow down the decoder when there is the danger of multiple subsequent accesses to the same memory.

4.1.2 Result sorting

The result as computed up to now is out-of-order, meaning that the list of positions of set bits is not increasing: this is not technically a problem in terms of end result, but efficient implementation of some operations require ensuring that the list is monotonically increasing. As such, a sorting step is needed: the insertion sort was chosen due to the algorithm simplicity (directly translating to hardware complexity and ease of implementation) and because it is an “in place” algorithm that does not require additional memory other than a temporary variable to swap adjacent values.

The insertion sort is based on two nested loops, the outer one moving from the start of the list to its end and the inner one moving back until the correct position for the element pointed in the outer loop is found. The algorithm performs the following operations:

- from the starting list two lists are built: the first, sorted, is initially made of the first element of the starting list; the second one is all the rest
• the first element of the unordered list is compared to the last element of the ordered list
• if the new element is bigger than the biggest element of the ordered list, it is appended at the end of the ordered list; if it is not, the biggest element is moved to the end of the list (now one position “right”) and the new element is compared with the second biggest one
• comparisons continue until the new element is bigger than the old one we are comparing it to or the beginning of the list is reached, then the new element is placed just after the one it was compared against
• a new element is taken from the unordered list and the previous steps are repeated until all elements are moved to the sorted list

The hardware implementation is extremely simple, consisting of a comparator and a register containing the value being inserted in the current iteration. The value from the sorted sub-list is directly taken from memory, and the smaller of the two is selected by a multiplexer and sent back to memory in the position right after the one in which the already-sorted element resides. A simple control unit takes care of selecting a new element to insert (outer loop, increasing a counter each time the previous element is inserted) and selecting the appropriate values to compare this element against (inner loop, decreasing a second counter that starts one off the current value of the first one).

Future improvements to the sorting operation could come from the study of an ad-hoc algorithm tailored to the specific distribution of the out-of-order result, possibly taking advantage of the monotonic segments that are already present to implement a custom merge-sort. No additional investigation was done in this direction.

4.1.3 Modulo 2 on compressed matrices

Given a circulant block stored in memory as defined in previous sections, any position containing a value \(n \) is present \(n \) times in the list of set positions. Due to the result being sorted, any position containing a value bigger than once will be present multiple times in adjacent positions in memory, thus allowing for a fast elimination of pairs in a single pass. The elimination of pairs results in positions appearing an odd number of times reduced to appearing only once and positions appearing an even number of times disappearing completely, thus getting a modulo 2 multiplication from the partial result over the natural numbers.
The hardware implementation uses two counters to cycle through memory: the first one is used to access two adjacent memory cells to compare their content (an actual synthesis might prefer to have two separate counters offset by 1 and avoid the combinational logic needed to compute the increment), the second one points at the cell where the value is going to be copied. The algorithm is as follows:

- Set i, j to 0 (i and j are offsets from the base of the list in memory)
- Get the i^{th} and the $(i+1)^{th}$ elements of the list, from here on a and b
- If $a \neq b$ copy a in place of the j^{th} element of the list, increase i and j; if $a = b$ increase i twice
- Repeat until i points either to the last element of the list or to the memory cell just after
- If i points to the last element of the list copy it in place of the j^{th} element of the list
- Fill the rest of the list with data recognizable as invalid, such as p

4.2 Circulant block sum

Summing two circulant matrices stored in the format in use is simply done by concatenating the list of set positions and then taking the modulo 2 like it is done with the multiplication. A more efficient approach is however possible by merging the sorting and the modulo operation with the concatenation, in order to avoid doing these necessary steps later on.

This is done with three different counters used to point an element of the first block, an element of the second and the cell where the result will be stored. The two operand positions are compared: they get discarded if they are the same (this ensures the result is modulo 2 without additional operations), otherwise the smaller one is copied in the result cell and the next position from its block is fetched for the next cycle. The precedence in copying the smaller position first results in the sum being ordered.

The exact algorithm is as follows:

- Set i, j, k to 0 (offsets from the base of the lists containing the set positions of the first operand, the second operand and the result)
Retrieve the positions pointed by \(i\) and \(j\) (from here on \(a\) and \(b\)) and compare them: if \(a = b\) increment \(i\) and \(j\), if \(a < b\) copy \(a\) in the memory cell pointed by \(k\) and increment \(i\) and \(k\), if \(a > b\) copy \(a\) in the memory cell pointed by \(k\) and increment \(j\) and \(k\).

- Repeat until \(a\) and \(b\) are either invalid or all values have been processed
- Fill all remaining positions of the result (if any) with invalid values

4.2.1 Memory movement

The sum of two circulant blocks as shown above is not done in-place, as there is no way to ensure that no information that is still needed would not be overwritten by the ongoing operation. As such, it is needed to move the result from a temporary location to its final destination. The hardware performing this operation is extremely simple and uses a single counter as offset to two different base positions in memory, copying the values from the first into the second until done.

4.3 Quasi-cyclic multiplication

The aforementioned submodules implement operations among circulant blocks, which are however not what we are interested in per se: the objective of the key reconstruction operation is getting \(L^T\), which is not a single circulant block. As such, we need to show that operations among quasi-cyclic matrices can be expressed as operations on their single circulant blocks.

Given that \(L^T = Q^T H^T\), the standard implementation of matrix multiplication would consist in computing the sum of the element-wise multiplication between the \(i\)th row of \(Q^T\) and the \(j\)th column of \(H^T\) to obtain each element \(l_{i,j} \in L^T\):

\[
Q^T = \begin{bmatrix}
Q_{0,0} & Q_{0,1} & \cdots & Q_{0,n_0-1} \\
Q_{1,0} & Q_{1,1} & \cdots & Q_{1,n_0-1} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{n_0-1,0} & Q_{n_0-1,1} & \cdots & Q_{n_0-1,n_0-1}
\end{bmatrix} = \begin{bmatrix}
q_{0,0} & q_{0,1} & \cdots & q_{0,n_0-1} \\
q_{1,0} & q_{1,1} & \cdots & q_{1,n_0-1} \\
\vdots & \vdots & \ddots & \vdots \\
q_{n_0-1,0} & q_{n_0-1,1} & \cdots & q_{n_0-1,n_0-1}
\end{bmatrix}
\]

\[
H^T = \begin{bmatrix}
H_0 \\
H_1 \\
\vdots \\
H_{n_0-1}
\end{bmatrix} = \begin{bmatrix}
h_{0,0} & h_{0,1} & \cdots & h_{0,p-1} \\
h_{1,0} & h_{1,1} & \cdots & h_{1,p-1} \\
\vdots & \vdots & \ddots & \vdots \\
h_{n_0-1,0} & h_{n_0-1,1} & \cdots & h_{n_0-1,p-1}
\end{bmatrix}
\]
\[
L^T = \begin{bmatrix}
L_0 \\
L_1 \\
\vdots \\
L_{n_0-1}
\end{bmatrix} =
\begin{bmatrix}
l_{0,0} & l_{0,1} & \cdots & l_{0,p-1} \\
l_{1,0} & l_{1,1} & \cdots & l_{1,p-1} \\
\vdots & \vdots & \ddots & \vdots \\
l_{n_0p-1,0} & l_{n_0p-1,1} & \cdots & l_{n_0p-1,p-1}
\end{bmatrix}
\]

\[l_{i,j} = \sum_{n=0}^{n_0p-1} q_{i,n} h_{n,j}\]

From the previous equation, simple algebra shows that:

\[l_{i,j} = \sum_{m=0}^{n_0-1} \left(\sum_{n=mp}^{(m+1)p-1} q_{i,n} h_{n,j} \right)\]

While the latter equation is somewhat inelegant, it expresses an important property of the system at hand: it is possible to break up the sum to work with smaller vectors (in our case of size \(p\)) without affecting the final result. This is important because multiplying the circulant block \(Q_{x,m}\) by the circulant block \(H_m\) results in:

\[\lambda_{i \pmod{p},j} = \sum_{n=mp}^{(m+1)p-1} q_{i,n} h_{n,j} \quad i \in [xp,(x+1)p-1]\]

with \(\lambda_{i \pmod{p},j}\) being the element of \(Q_{x,m}H_m\) in row \(i \pmod{p}\) and column \(j\). It is then possible to expand on this result with:

\[\sum_{m=0}^{n_0-1} (Q_{x,m}H_m) = \sum_{m=0}^{n_0-1} \left(\sum_{n=mp}^{(m+1)p-1} q_{i,n} h_{n,j} \right) \quad i \in [xp,(x+1)p-1]\]

which is computing all \(l_{i,j} : i \in [xp,(x+1)p-1]\) in parallel, using the extremely efficient implementation allowed by the representation of circulant blocks. It can then be noted that:

\[\sum_{m=0}^{n_0-1} (Q_{x,m}H_m) = L_x\]

Iterating through \(x \in [0,n_0-1]\) it is then possible to obtain the full \(L^T\) matrix only using multiplication and sum of circulant blocks and concatenating the results.

The hardware implementation uses a request-based system in which each module implementing an operation over circulant blocks is inactive until
explicitly awoken by the control unit. Each module has moreover as inputs the base position in memory of the circulant blocks on which it will perform the operation (both operands and result, where applicable) and the maximum size of the inputs, needed because the weight of \(Q_{x,m} \) depends on \(x \) and \(m \).

The outputs to memory of each submodule are multiplexed by the control unit and forwarded up the hierarchy, while the “operation done” signals are used to move between states of a finite state machine without the need to know the exact duration of the operation beforehand.

The state machine is as follows:

- set \(i, j \) to 0 (\(i, j \) indexes of circulant blocks in \(Q^T \) and \(H^T \))
- when instructed to start, multiply \(Q_{i,j} \) by \(H_j \) and put the result in a temporary location
- sort the result in place
- get the result in modulo 2 in place
- if \(j = 0 \) copy the result into \(L_i \), else sum the result to \(L_i \) and save the sum in a temporary location
- copy the sum to \(L_i \)
- repeat for all \(j \), then set \(j = 0 \) and repeat for all \(i \)
- signal that the operation is done
Chapter 5

Vector by matrix multiplication (and vice-versa)

After retrieving L^T, all information needed to compute the syndrome of the received code x is available. The syndrome is computed as

$$s = xL^T$$

The needed operation is the multiplication of a vector by a matrix, which is recurrent in the main decoding loop too: it is thus paramount to get a performant module that can be time multiplexed and that is flexible enough to be capable of handling different sizes of vectors and matrices.

5.1 Vector by circulant matrix

As all matrices involved in the decoding operation are concatenations of circulant blocks, the most basic building block would be a module capable of multiplying a vector having length p by a circulant block or vice-versa: the proof that this is sufficient is deferred to individual sections below.

For what concerns all operations in this section, it is assumed that a is a vector of length p stored in memory as a concatenation of individual values (that might or might not be binary) and B is a binary circulant block of weight w stored in the usual “set positions” format. Vector c^T is the result of $a^T B$ and has size p too.

$$a^T = \begin{bmatrix} a_0 & a_1 & \cdots & a_{p-1} \end{bmatrix}$$
\[\mathbf{B} = \begin{bmatrix} b_0 & b_1 & \cdots & b_{p-1} \\ b_{p-1} & b_0 & \cdots & b_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \cdots & b_0 \end{bmatrix} \]

\[\mathbf{c}^T = [c_0 \ c_1 \ \cdots \ c_{p-1}] \]

It can be noted that \(c_0 \) is, trivially:

\[c_0 = a_0 b_0 + a_1 b_{p-1} + \cdots + a_{p-1} b_1 \]

More interestingly, this same relation can be expressed as:

\[c_0 = \sum_{n=0}^{p-1} a_n b_{p-n} \]

Similarly:

\[c_1 = a_0 b_1 + a_1 b_0 + \cdots + a_{p-1} b_2 \]

\[c_1 = \sum_{n=0}^{p-1} a_n b_{p-n+1} \pmod{p} \]

This is finally expanded into a single relation that states:

\[c_i = \sum_{n=0}^{p-1} a_n b_{p-n+i} \pmod{p} \]

We thus have a universal analytic expression for the value of any \(c_i \) given that \(\mathbf{B} \) is circulant. Due to the sparsity of \(\mathbf{B} \) (we remind that \(\mathbf{B} \) is a block of \(\mathbf{H}^T, \mathbf{Q}^T \) or \(\mathbf{L}^T \)) it is possible to entirely avoid operations in which \(b_m \) is not set, saving a lot of time.

To further optimize the hardware implementation of the operation, due to the sum involving three operands (the accumulator, \(a_n \) and \(b_m \)) while we only assumed two read ports were available, \(b_m \) (actually \(m \) itself, given the way matrices are stored) is read first and stored in a register, and all operations involving that single \(b_m \) are computed before moving to the next one. This is more efficient than reading \(a_n \) and storing that, as \(p \) operations involve \(b_m \) while only \(w \) operations involve \(a_n \): reading the operands the other way around results in \(p - w \) wasted cycles. A loop over \(n \) retrieves all \(a_n \) and points the affected result \(c_{m+n} \pmod{p} \), then the next set \(m \) (easily found in the next position in memory) is retrieved and stored and the operation is repeated until the last \(m \) is reached, at the \(w \text{th} \) iteration.

At that point the result is ready and the module signals that the operation is finished.
5.2 Circulant matrix by vector

We now analyze the case in which $d = Ba$:

$$a = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{p-1} \end{bmatrix}$$

$$B = \begin{bmatrix} b_0 & b_1 & \cdots & b_{p-1} \\ b_{p-1} & b_0 & \cdots & b_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \cdots & b_0 \end{bmatrix}$$

$$d = \begin{bmatrix} d_0 \\ d_1 \\ \vdots \\ d_{p-1} \end{bmatrix}$$

It can be trivially obtained that:

$$d_0 = \sum_{n=0}^{p-1} b_n a_n$$

$$d_1 = \sum_{n=0}^{p-1} b_{n-1} (\text{mod } p) a_n$$

And the result can be generalized to:

$$d_i = \sum_{n=0}^{p-1} b_{n-i} (\text{mod } p) a_n$$

This result is very similar to what we obtained in the previous section. Indeed, we can write the two results such that:

$$c_i = \sum_{n=0}^{p-1} a_n b_{(i-n)} (\text{mod } p)$$

$$d_i = \sum_{n=0}^{p-1} a_n b_{-(i-n)} (\text{mod } p)$$
The hardware that controls the two operations can thus be the same, fixing \(m \) (index of \(b_m \)) and sweeping through \(n \) to obtain \(i \). The insertion of a simple control signal lets us select whether we want to perform \(\overline{aB} \), in which case we compute the result address as \(i = n + m \) (mod \(p \)), or \(\overline{B}a \), in which case the result address is \(i = n - m \) (mod \(p \)).

The only modification needed to support both operations is thus using an adder-subtractor instead of a simple adder in the target address computation section: the entirety of the control finite state machine is shared.

5.3 \(\overline{x} \) by \(L^T \)

The starting syndrome of the code is:

\[
\overline{s} = \overline{x}L^T
\]

\[
\overline{s} = [s_0 \ s_1 \ \cdots \ s_{p-1}]
\]

We can write \(\overline{x} \) as:

\[
\overline{x} = [x_0 \ x_1 \ \cdots \ x_{n_0-1}] = [x_0 \ x_1 \ \cdots \ x_{p-1} \ x_p \ \cdots \ x_{n_0p-1}]
\]

\(\overline{x} \) is thus split into \(n_0 \) \(p \)-length vectors, while \(L^T \) is by construction split in blocks already.

\[
L^T = \begin{bmatrix}
L_0 \\
L_1 \\
\vdots \\
L_{n_0-1}
\end{bmatrix}
\]

By definition, \(s_i \) is the sum of the element-wise multiplication between \(\overline{x} \) and the \(i^{th} \) column of \(L^T \). We hereby define \(s_k \) as:

\[
\overline{s}_k = \overline{x}_kL_k
\]

Each of such \(s_k \) is thus a partial sum and we can get then \(\overline{s} \) as:

\[
\overline{s} = \sum_{k=0}^{n_0-1} \overline{s}_k
\]

It is thus possible to obtain \(\overline{s} \) through multiplications of a vector by a circulant matrix, using the module we described in the previous section. Due to the particular implementation of the module, moreover, all multiplications behave as a “multiply and accumulate” operation, meaning there is no need to actually implement the sum thus saving area and execution time.
The module performing this operation is thus simply a control unit that provides the base address in memory of the appropriate slice of \mathbf{x} and of the proper block of \mathbf{L}^T (the latter of which is somewhat complicated by the fact that different blocks of \mathbf{L}^T have different weight, but is resolved with a simple look-up table). The unit then instructs the vector-by-circulant core to perform a vector by matrix multiplication, storing the result in the base address of \mathbf{s}, and waits for the multiplication core to return to then provide new values for the base addresses of the operands. Once the n_0th multiplication has returned the control unit itself returns.

5.4 \mathbf{H}^T by \mathbf{s}^T

In the main decoding loop the first operation is obtaining Σ as:

$$
(\Sigma^{(l)})^T = \mathbf{H}^T (\mathbf{s}^{(l-1)})^T
$$

$$
(\Sigma^{(l)})^T = \begin{bmatrix}
\sigma_0 \\
\sigma_1 \\
\vdots \\
\sigma_{n_0p-1}
\end{bmatrix}
$$

Given that \mathbf{H}^T is:

$$
\mathbf{H}^T = \begin{bmatrix}
\mathbf{H}_0 \\
\mathbf{H}_1 \\
\vdots \\
\mathbf{H}_{n_0-1}
\end{bmatrix}
$$

and \mathbf{s}^T has p elements, each σ_i can be obtained by multiplying a row of a single block by \mathbf{s}^T. The result will then be not the sum of many terms like before, but the concatenation: this is simply done incrementing the base position of the matrix-by-vector result by p between operations.

$$
(\Sigma^{(l)})^T = \begin{bmatrix}
\Sigma_0 \\
\Sigma_1 \\
\vdots \\
\Sigma_{n_0-1}
\end{bmatrix}
$$

$$
\Sigma_i = \mathbf{H}_i \mathbf{s}^{(l-1)}
$$

The hardware implementation is similar to the one used previously, but provides a new base address for the result of each multiplication instead.

29
of accumulating over the same one and instructs the multiplication core to perform a circulant-by-vector operation.

5.5 Q^T by Σ^T

After obtaining Σ, R is obtained as:

$$R^{T(i)} = Q^T \Sigma^{T(i)}$$

$$R^{T(i)} = \begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_{n_0-1} \end{bmatrix}$$

The operation is more complex as Q^T is square, thus both concatenation and sum will be needed:

$$Q^T = \begin{bmatrix} Q_{0,0} & Q_{0,1} & \cdots & Q_{0,n_0-1} \\ Q_{1,0} & Q_{1,1} & \cdots & Q_{1,n_0-1} \\ \vdots & \vdots & \vdots & \vdots \\ Q_{n_0-1,0} & Q_{n_0-1,1} & \cdots & Q_{n_0-1,n_0-1} \end{bmatrix}$$

$$R^T = \begin{bmatrix} R_0 \\ R_1 \\ \vdots \\ R_{n_0-1} \end{bmatrix}$$

$$R_i = \sum_{j=0}^{n_0-1} Q_{i,j} \Sigma_j$$

The implementation is more complicated than the other ones, but it keeps the same basic principle: two nested loops iterate over j and i providing the base addresses of R_i, $Q_{i,j}$ and Σ_j, with the appropriate values for the base of circulant blocks provided by a look-up table.

5.6 ϵ by H^T

The last operation in the decoding loop involves computing an increment vector for the syndrome, as

$$\Delta s^{(l)} = \epsilon^{(l)} H^T$$
Since \mathbf{e} has the same size as \mathbf{x} and \mathbf{H} has the same size as \mathbf{L}, this operation is exactly equivalent to the multiplication $\hat{s} = \mathbf{x} \mathbf{L}^T$. Again, due to the multiplication really behaving as a “multiply and accumulate”, the result Δs is directly summed to \hat{s} with no overhead.
Chapter 6

Error update

Vector R contains the count of unsatisfied parity checks in which the corresponding bit of x is involved. To proceed with the algorithm, the bits which are most likely to be wrong need to be found.

6.1 Peak search

Finding the peaks of R is done via a simple single-pass sequential algorithm, although it would be possible to parallelize the algorithm by replicating the hardware and adding logic to merge the results. Still, the time consumption of this step is sufficiently small with respect to the total required for the loop (dominated by vector-by-matrix multiplications) that this parallelization was deemed unnecessary for this experimental implementation.

The hardware implementation consists of a temporary register containing the current max and an array of fixed, arbitrary size to contain the position of all values equal to the current max. While the size of the array can be changed, having it too small will impact performance and possibly the stability of the algorithm, while having it too big will result in a very high area footprint. The maximum is initialized to 0 and the array is initialized to all invalid positions, then each time a value equal to the maximum is found its position is appended to the array, if there is space left. If the array is full, no operation is performed and the algorithm continues normally. Each time a value greater than the maximum is found, the maximum is updated, the array is flushed and the first value of the array is set to the position of the new maximum. The algorithm then completes once the entirety of R has been walked through, and returns the array for usage in the next module.
6.2 Row extraction from compressed matrix

The next step in the algorithm requires summing to the current error e the rows of Q^T having the index of the found maxima. As we do not have the matrix stored in a readily-available format for this operation (we only have the first row of each block, while we need individual row access), a relation between the set positions in the first row of each module and the set positions in an arbitrary row must be found.

One complication is that any row q_k stretches over multiple blocks $Q_{i,j}$:

$$Q^T = \begin{bmatrix} Q_{0,0} & Q_{0,1} & \cdots & Q_{0,n_0 - 1} \\ Q_{1,0} & Q_{1,1} & \cdots & Q_{1,n_0 - 1} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{n_0 - 1,0} & Q_{n_0 - 1,1} & \cdots & Q_{n_0 - 1,n_0 - 1} \end{bmatrix}$$

We can get the lth row of a circulant block A:

$$A = \begin{bmatrix} a_0 & a_1 & \cdots & a_{p-1} \\ a_{p-1} & a_0 & \cdots & a_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & a_0 \end{bmatrix}$$

$$q^T_l = [a_{p-l} \mod p \ a_{p-l+1} \mod p \ a_{p-l+2} \mod p \ \cdots \ a_{2p-l-1} \mod p]$$

This means it is possible to get any q_k as concatenation of rows of the appropriate blocks. The blocks involved are all blocks $Q_{i,j}$ with $i = \text{floor}(k/p)$, while l is obtained as $l = i \mod p$.

6.3 Vector plus compressed row

Due to the blocks $Q_{j,k}$ being stored in compressed format and the sparsity of the rows, it is convenient to handle q_k in n_0 chunks of length p and maintain
the compressed format on the result, in order to have a list of set positions matching the positions that will need to be flipped in the corresponding chunks of e. This is easily done reading all l corresponding to set bits in the first row of the block and applying the operation we described in the previous section, with the result being the list of set positions for q_k.

The actual sum consists in computing i and l in order to get the affected row of blocks and individual row offset, then iterating through the row of blocks one at a time to compute the list of set bits and flipping the corresponding bits in e. Once done with a row, the next k is fetched from the list of rows to be summed and the operation is repeated until either all rows have been summed or k is invalid, indicating that the number of peaks in R was smaller than the maximum supported by the decoder.

The operation is done incrementally in place, so that no additional memory is needed to store intermediate results.
Chapter 7

Main loop state machine

The entirety of the decoder is controlled by the top-level state machine, calling the various functions as they are needed according to the algorithm. This state machine is the bus arbitrator that multiplexes the RAM signals coming from the various blocks and forwards them to the external pins.

The state machine performs the following operations:

- wait for the “start” signal
- ask the key reconstruction module to retrieve L^T
- ask the module performing the xL^T operation to compute the syndrome s
- ask the module performing the $H^T s^T$ operation to compute Σ^T
- ask the module performing the $Q^T \Sigma^T$ operation to compute R^T
- ask the peak finder module to compute the positions of the maxima of R
- ask the sum module to add all the rows of Q^T corresponding to the found maxima to e
- ask the module performing the eH^T operation to update s
- clear all temporary results, including Σ and R
- check whether s is null or the iteration limit was reached: if one of the conditions holds compute the message, otherwise loop back to the step that computes Σ^T and increase the iteration counter
• return the “done” signal; in case the iteration limit was reached, report a decoding failure

As multiplication operations are implemented as “multiply and accumulate”, results from previous iterations would add up continuously. While this is desirable for certain vectors (s and e), it is disruptive for all the others: such a memory clear step is performed between iterations zeroing the memory sections containing Σ and R

7.1 Design modularity and shared resources

Deep emphasis was put in the reutilization of the same basic blocks over and over in order to save resources, wherever this was possible. The only common blocks that could potentially be shared and were not arranged to be are the mod p operators: this was a deliberate choice to ease code development and readability, while the module itself is reasonably simple so that the area overhead is not too high. In terms of actual implementation, this maps to more raw silicon needed for the gates but less routing and no multiplexing.

Modularity was achieved through a “function call” architecture that was devised to make each module accept any data that fit with the template, that being either a vector of length p or a circulant block and its weight. All vectors and blocks are passed by reference as pointers to memory, so that actual data transfer between block is minimal. The algorithm implementing the decoder is not suited to pipelining, but this very drawback is what allows for the resource sharing as all operations performed at different points of the algorithm are ensured not to be called concurrently.
Figure 7.1: Decryption module
Chapter 8

Conclusions

The proposed implementation is but a first step in the study of the feasibility on silicon of cryptographic QC-LDPC codes. While all operations needed as basic blocks to decode the input are simple, well known and efficient, the architecture at large is very much experimental and might present severe bottlenecks in high-frequency operation, especially on the side of data transfers to memory which are paramount to the decoder.

Future improvements are likely to come in the form of an additional memory management layer, translating requests to a complex memory structure able to maximize the data rate. This could be done in much the same way as was devised for hard disks with the RAID architecture[9], with multiple separated memory units having independent access that would thus be able to transfer, albeit at slow speed for each transaction, a massive amount of data per cycle. Additionally, while having memory internal to the decoding unit itself would be unfeasible for vectors (all of which have length at least \(p \)), the cost of storing internally the compressed \(H^T \), \(Q^T \) and \(L^T \) matrices is quite low: this makes it possible to have a fast portion of memory that is expected to be accessed in a single cycle even at very high frequencies.

Minor improvements in terms of resource sharing can be gained by unifying the control finite state machines performing the multiplications \(s = \bar{e}L^T \) and \(\Delta s = \bar{e}H^T \) and possibly sharing a single modulo \(p \) computation unit.

In terms of actual algorithm parallelization and assuming the problem of the memory bottleneck as completely solved, the computation of the unordered result \(L^T = Q^T H^T \) can be performed in parallel by simple replication of the processing unit, with the limit being computing all its element in one single pass. Investing bigger area then currently allotted it would also be possible to use faster sorting algorithms like the merge sort[10], while elimination of adjacent doubles from a list to implement the modulo 2 and the sum of matrices could be done with a two-cycle operation operating first on
even-odd pairs and then on odd-even ones. Still, all of this only results in speeding up the key reconstruction which happens only once.

Parallelizing operations involving vectors is more challenging, due to the sheer size of the vectors themselves. Throughout chapter 5 it was shown that all operations on vectors can be reduced to operations on length \(p \) vectors, but \(p \) is very big nonetheless. Multiplications with circulant blocks are in essence circular shifts and sums: a system to implement shifts over sections of a vector (as opposed to the entirety of it) can be obtained by simply having multiple units performing the operation. Peak finding can be carried out on segments and the results merged. The row sum operation can be carried out in parallel for each row, although the benefit of doing so is likely minimal.
Appendix A

Source code

A.1 Key reconstruction

Circulant multiplication

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system.params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;

entity circulant_multiplication is
port(
  -- control signals
  clk_i: in std_logic;
  rst_n_i: in std_logic;
  start_i: in std_logic;
  -- function arguments in (not latched)
  a_limit_i: in natural;  -- number of elements in 1st matrix
  a_base_i: in addr;  -- base address of 1st matrix
  b_limit_i: in natural;  -- number of elements in 2nd matrix
  b_base_i: in addr;  -- base address of 2nd matrix
  z_base_i: in addr;  -- base address of result matrix
```

Author: Flavio Tanese
Politecnico di Torino 2018

Multiply two sparse circulant binary matrices stored in a memory as the positions of set bits in their first row, and return a "tentative" result (which is unordered and not simplified modulo 2) in another location in memory.

Controlling circuitry should take care of keeping all inputs in the "function arguments" section constant until the module reported back, and of ensuring validity of such inputs (no overlapping memory ranges and so on).

The "start_i" signal should be kept high until "mult_done_o" goes high, implementing a rudimentary handshake, but this is not strictly required if the control circuitry operates on the same clock.
data, addresses and controls to memory

a_i: in pos; — operand from 1st matrix
a_addr_o: out addr; — address for 1st matrix
b_i: in pos; — operand from 2nd matrix
b_addr_o: out addr; — address for 2nd matrix
z_o: out pos; — Ltr result
z_addr_o: out addr; — address for Ltr result
wr_o: out std_logic; — write enable for memory
— report back once done
z_limit_o: out natural; — number of elements in result matrix
multi_done_o: out std_logic — high when done

architecture rtl of circulant_multiplication is

— assume inputs are kept constant by higher level state machine so we do not need to sample them on start

signal a_index: natural;
signal b_index: natural;
signal z_index: natural;
signal next_a_index: natural;
signal next_b_index: natural;
signal next_z_index: natural;
type state_t is (IDLE, BUSY, DONE);
signal state: state_t;
signal next_state: state_t;

begin

z_o <= a_i + b_i when a_i + b_i < P else (a_i + b_i) mod P;

a_addr_o <= a_base_i + a_index;
b_addr_o <= b_base_i + b_index;
z_addr_o <= z_base_i + z_index;

— count number of elements of result matrix, this can be done with a multiplier but we are not in a hurry and do not want a big footprint.
— Using z_index we get that for free!

z_limit_o <= z_index;

state_comb: process(
 state, start_i, a_limit_i, b_limit_i, next_a_index, next_b_index
)
begin
 case state is
 when IDLE =>
 if start_i = '1' then
 next_state <= BUSY;
 else
 next_state <= IDLE;
 end if;
 when BUSY =>
 — exit this state only once all combinations have been done
 if b_index /= b_limit_i or a_index /= a_limit_i then
 next_state <= BUSY;
 else
 next_state <= DONE;
 end if;
 end case;
end process;
end architecture;
when DONE =>
 if start_i = '0' then
 next_state <= IDLE;
 else
 next_state <= DONE;
 end if;
when others =>
 next_state <= IDLE;
end case;
end process state_comb;

state_seq: process(rst_n_i, clk_i)
begin
 if rst_n_i = '0' then
 state <= IDLE;
 elsif rising_edge(clk_i) then
 state <= next_state;
 end if;
end process state_seq;

output_comb: process(
 state, a_index, b_index, z_index
)
begin
 case state is
 when IDLE =>
 next_a_index <= 0;
 next_b_index <= 0;
 next_z_index <= 0;
 wr_o <= '0';
 mult_done_o <= '0';
 when BUSY =>
 if a_index < a_limit_i then
 next_a_index <= a_index + 1;
 next_b_index <= b_index;
 else
 next_a_index <= 0;
 next_b_index <= b_index + 1;
 end if;
 next_z_index <= z_index + 1;
 wr_o <= '1';
 mult_done_o <= '0';
 when DONE =>
 next_a_index <= a_index;
 next_b_index <= b_index;
 next_z_index <= z_index;
 wr_o <= '0';
 mult_done_o <= '1';
 when others => -- behave like IDLE
 next_a_index <= 0;
 next_b_index <= 0;
 next_z_index <= 0;
 wr_o <= '0';
 mult_done_o <= '0';
 end case;
end process output_comb;

output_seq: process(clk_i, rst_n_i)
begin
 if rst_n_i = '0' then
 a_index <= 0;
 b_index <= 0;
 end if;
end process output_seq;
A.1.1 Sorting

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;

entity sort is
  port(
    −− control logic
    clk_i: in std_logic;
    rst_n_i: in std_logic;
    start_i: in std_logic;
    −− function arguments in (not latched)
    limit_i: in natural; −− number of elements in array to sort
    base_i: in addr; −− base addr of array to sort
    −− data, addresses and controls to memory
    a_i: in pos; −− element A from array
    a_addr_o: out addr; −− address of element A
    b_i: in pos; −− element B from array
    b_addr_o: out addr; −− address of element B
    z_o: out pos; −− element Z to array
    z_addr_o: out addr; −− address of element Z
    wr_o: out std_logic; −− write enable for memory
    −− report back once done
    sort_done_o: out std_logic −− high when done
  );
end entity sort;

architecture rtl of sort is
  −− element A will be overwritten in the array, so we need to sample it in
  −− order to insert it in the right place later on
  signal tmp: pos;
signal next_tmp: pos;
  −− iterators
  signal i: natural;
signal j: natural;
signal next_i: natural;
signal next_j: natural;
  −− state machine
  type state_t is (
    IDLE, PREP_INNER, CHECK_INNER, LOOP_INNER,
    LAST_INNER, SAVE_0, SAVE_1, DONE
  );
signal state: state_t;
signal next_state: state_t;
begin
  b_addr_o <= base_i + to_unsigned(j, address_bits);
  state_comb: process(state, start_i, next_j, next_i, a_i, b_i)
  begin
    case state is
      when IDLE =>
        if start_i = '1' then
          next_state <= PREP INNER;
        else
          next_state <= IDLE;
        end if;
      when PREP INNER =>
        next_state <= CHECK INNER;
      when CHECK INNER =>
        if j /= 0 and b_i > tmp then
          next_state <= LOOP INNER;
        elsif j = 0 and b_i > tmp then
          next_state <= LAST INNER;
        else
          next_state <= SAVE 1;
        end if;
      when LOOP INNER =>
        if next_j /= 0 and a_i > tmp then
          next_state <= LOOP INNER;
        elsif next_j = 0 and a_i > tmp then
          next_state <= LAST INNER;
        else
          next_state <= SAVE 1;
        end if;
      when LAST INNER =>
        next_state <= SAVE 0;
      when SAVE 0 =>
        if i /= limit_i - 1 then
          next_state <= PREP INNER;
        else
          next_state <= DONE;
        end if;
      when SAVE 1 =>
        if i /= limit_i - 1 then
          next_state <= PREP INNER;
        else
          next_state <= DONE;
        end if;
      when DONE =>
        if start_i = '0' then
          next_state <= IDLE;
        else
          next_state <= DONE;
        end if;
      when others =>
        next_state <= IDLE;
    end case;
  end process state_comb;
  state_seq: process(rst_n_i, clk_i)
  begin
if rst_n_i = '0' then
    state <= next_state;
else if rising_edge(clk_i) then
    state <= next_state;
end if;
end process state_seq;

output_comb: process(state, a_i, b_i, tmp, i, j)
begin
    case state is
        when IDLE =>
            -- internal signals
            next_tmp <= tmp;
            next_i  <= 1;
            next_j  <= 0;
            -- outputs
            a_addr_o <= base_i + to_unsigned(i, address_bits);
            z_addr_o <= base_i + to_unsigned(j, address_bits);
            z_o     <= b_i;
            wr_o    <= '0';
            sort_done_o <= '0';
        when PREP INNER =>
            -- internal signals
            next_tmp <= a_i;
            next_i  <= i - 1;
            next_j  <= j;
            -- outputs
            a_addr_o <= base_i + to_unsigned(i, address_bits);
            z_addr_o <= base_i + to_unsigned(j, address_bits);
            z_o     <= b_i;
            wr_o    <= '0';
            sort_done_o <= '0';
        when CHECK INNER =>
            -- internal signals
            next_tmp <= tmp;
            next_i  <= i;
            next_j  <= j;
            -- outputs
            a_addr_o <= base_i + to_unsigned(i, address_bits);
            z_addr_o <= base_i + to_unsigned(j, address_bits);
            z_o     <= b_i;
            wr_o    <= '0';
            sort_done_o <= '0';
        when LOOP INNER =>
            -- internal signals
            next_tmp <= tmp;
            next_i  <= i;
            next_j  <= j - 1;
            -- outputs
            a_addr_o <= base_i + to_unsigned(j - 1, address_bits);
            z_addr_o <= base_i + to_unsigned(j, address_bits);
            z_o     <= b_i;
            wr_o    <= '1';
            sort_done_o <= '0';
        when LAST INNER =>
            -- internal signals
            next_tmp <= tmp;
            next_i  <= i;
            next_j  <= j;
            -- outputs
            a_addr_o <= base_i + to_unsigned(i, address_bits);
            z_addr_o <= base_i + to_unsigned(j + 1, address_bits);
when SAVE_0 =>
  -- internal signals
  next_tmp <= tmp;
  next_i <= i + 1;
  next_j <= j;
  -- outputs
  addr_o <= base_i + to_unsigned(i, address_bits);
  addr_o <= base_i + to_unsigned(j, address_bits);
  o <= tmp;
  wr_o <= '1';
  sort_done_o <= '0';
when SAVE_1 =>
  -- internal signals
  next_tmp <= tmp;
  next_i <= i + 1;
  next_j <= j;
  -- outputs
  addr_o <= base_i + to_unsigned(i, address_bits);
  addr_o <= base_i + to_unsigned(j + 1, address_bits);
  o <= tmp;
  wr_o <= '1';
  sort_done_o <= '0';
when DONE =>
  -- internal signals
  next_tmp <= tmp;
  next_i <= i + 1;
  next_j <= j;
  -- outputs
  addr_o <= base_i + to_unsigned(i, address_bits);
  addr_o <= base_i + to_unsigned(j + 1, address_bits);
  o <= tmp;
  wr_o <= '0';
  sort_done_o <= '1';
when others =>
  -- behave like IDLE
  -- internal signals
  next_tmp <= tmp;
  next_i <= i;
  next_j <= j;
  -- outputs
  addr_o <= base_i + to_unsigned(i, address_bits);
  addr_o <= base_i + to_unsigned(j + 1, address_bits);
  o <= tmp;
  wr_o <= '0';
  sort_done_o <= '0';
end case;
end process output_comb;
output_seq: process(rst_n_i, clk_i)
begin
  if rst_n_i = '0' then
    tmp <= (others => '0');
    i <= 0;
    j <= 0;
  elsif rising_edge(clk_i) then
    tmp <= next_tmp;
    i <= next_i;
    j <= next_j;
  end if;
end process output_seq;
A.1.2 Circulant sum

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_functions.all;

entity circulant_sum is
port(
 -- control signals
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 -- function arguments in (not latched)
 a_limit_i: in natural; -- number of elements in 1st matrix
 a_base_i: in addr; -- base address of 1st matrix
 b_limit_i: in natural; -- number of elements in 2nd matrix
 b_base_i: in addr; -- base address of 2nd matrix
 z_base_i: in addr; -- base address of result matrix
 -- data, addresses and controls to memory
 a_i: in pos;
 a_addr_o: out addr;
 b_i: in pos;
 b_addr_o: out addr;
 z_o: out pos;
 z_addr_o: out addr;
 wr_o: out std_logic; -- write enable for memory
 sum_done_o: out std_logic
);
end entity circulant_sum;

architecture rtl of circulant_sum is
begin
 constant INVALID_POS: pos := to_unsigned(P, position_bits);
 signal i: natural;
 signal j: natural;
 signal k: natural;
 signal next_i: natural;
 signal next_j: natural;
 signal next_k: natural;
 signal i_not_done: std_logic;
 signal j_not_done: std_logic;
 signal neither_done: std_logic;
 type state_t is (IDLE, COMPARE, SKIP_I, COPY_I, COPY_J, FILL_INVALID, DONE);
 signal state: state_t;
 signal next_state: state_t;
begin
end
```
i_not_done <= '1' when i < a_limit_i and a_i /= INVALID_POS else '0';
j_not_done <= '1' when j < b_limit_i and b_i /= INVALID_POS else '0';
neither_done <= i_not_done and j_not_done;
a_addr_o <= a_base_i + i;
b_addr_o <= b_base_i + j;
z_addr_o <= z_base_i + k;
z_limit_o <= k;

state_comb: process(
  state, start_i, i_not_done, j_not_done, neither_done,
  k, a_i, b_i
)
begin
  case state is
    when IDLE =>
      if start_i = '1' then
        next_state <= COMPARE;
      else
        next_state <= IDLE;
      end if;
    when COMPARE =>
      if neither_done = '1' and a_i = b_i then
        next_state <= SKIP;
      elsif neither_done = '1' and a_i < b_i then
        next_state <= COPY_I;
      elsif neither_done = '1' and a_i > b_i then
        next_state <= COPY_J;
      elsif i_not_done = '1' and not j_not_done = '1' then
        next_state <= COPY_J;
      elsif j_not_done = '1' and i_not_done = '0' then
        next_state <= COPY_J;
      elsif i_not_done = '0' and j_not_done = '0' -- cont.
        and k < sum(M)*DV then
        next_state <= FILL_INVALID;
      else
        next_state <= DONE;
      end if;
    when SKIP =>
      next_state <= COMPARE;
    when COPY_I =>
      next_state <= COMPARE;
    when COPY_J =>
      next_state <= COMPARE;
    when FILL_INVALID =>
      next_state <= COMPARE;
    when DONE =>
      if start_i = '0' then
        next_state <= IDLE;
      else
        next_state <= DONE;
      end if;
    when others =>
      next_state <= IDLE;
  end case;
end process state_comb;

state_seq: process(clk_i, rst_n_i)
begin
  if rst_n_i = '0' then
    state <= IDLE;
  elsif rising_edge(clk_i) then
    state <= next_state;
  end if;
end process state_seq;

output_comb: process(state, i, j, k, a_i, b_i)
begin
  case state is
  when IDLE =>
    internal signals
    next_i <= 0;
    next_j <= 0;
    next_k <= 0;
    -- outputs
    z_o <= INVALID_POS;
    wr_o <= '0';
    sum_done_o <= '0';
  when COMPARE =>
    internal signals
    next_i <= i;
    next_j <= j;
    next_k <= k;
    -- outputs
    z_o <= INVALID_POS;
    wr_o <= '0';
    sum_done_o <= '0';
  when SKIP =>
    internal signals
    next_i <= i + 1;
    next_j <= j + 1;
    next_k <= k;
    -- outputs
    z_o <= INVALID_POS;
    wr_o <= '0';
    sum_done_o <= '0';
  when COPY_I =>
    internal signals
    next_i <= i + 1;
    next_j <= j;
    next_k <= k + 1;
    -- outputs
    z_o <= a_i;
    wr_o <= '1';
    sum_done_o <= '0';
  when COPY_J =>
    internal signals
    next_i <= i;
    next_j <= j + 1;
    next_k <= k + 1;
    -- outputs
    z_o <= b_i;
    wr_o <= '1';
    sum_done_o <= '0';
  when FILL_INVALID =>
    internal signals
    next_i <= i;
    next_j <= j;
    next_k <= k + 1;
    -- outputs
```
179 z_o <= INVALID_POS;
180 w_r_o <= '1';
181 s_um_done_o <= '0';
182 when DONE =>
183 -- internal signals
184 next_i <= i;
185 next_j <= j;
186 next_k <= k + 1;
187 -- outputs
188 z_o <= INVALID_POS;
189 w_r_o <= '0';
190 s_um_done_o <= '1';
191 when others =>
192 -- internal signals
193 next_i <= 0;
194 next_j <= 0;
195 next_k <= 0;
196 -- outputs
197 z_o <= INVALID_POS;
198 w_r_o <= '0';
199 s_um_done_o <= '0';
200 end case;
201 end process output_comb;
202 output_seq: process(clk_i, rst_n_i)
203 begin
204 if rst_n_i = '0' then
205 i <= 0;
206 j <= 0;
207 k <= 0;
208 elsif rising_edge(clk_i) then
209 i <= next_i;
210 j <= next_j;
211 k <= next_k;
212 end if;
213 end process output_seq;
214 end architecture rtl;
```

**A.1.3 Memory copy**

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.matrix_types.all;

entity mem_copy is
 port (
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 limit_i: in natural; -- number of elements in source array
 a_base_i: in addr; -- base addr of source array
 z_base_i: in addr; -- base addr of destination array
 a_i: in pos; -- element A from source array
```
architecture rtl of mem_copy is

signal i: natural;
signal next_i: natural;
type state_t is (IDLE, COPY, DONE);
signal state: state_t;
signal next_state: state_t;
begin

a_addr_o <= a_base_i + i;
z_addr_o <= z_base_i + i;
z_o <= a_i;

state_comb: process(state, start_i, i, limit_i)
begin
  case state is
  when IDLE =>
    if start_i = '1' then
      next_state <= COPY;
    else
      next_state <= IDLE;
    end if;
  when COPY =>
    if i = limit_i - 1 then
      next_state <= DONE;
    else
      next_state <= COPY;
    end if;
  when DONE =>
    if start_i = '0' then
      next_state <= IDLE;
    else
      next_state <= DONE;
    end if;
  when others =>
    next_state <= IDLE;
  end case;
end process state_comb;

state_seq: process(clk_i, rst_n_i)
begin
  if rst_n_i = '0' then
    state <= IDLE;
  elsif rising_edge(clk_i) then
    state <= next_state;
  end if;
end process state_seq;

output_comb: process(state, i)
begin
  case state is
  when
when IDLE =>
  -- internal signals
  next_i <= 0;
  -- outputs
  wr_o <= '0';
  copy_done_o <= '0';
when COPY =>
  -- internal signals
  next_i <= i + 1;
  -- outputs
  wr_o <= '1';
  copy_done_o <= '0';
when DONE =>
  -- internal signals
  next_i <= 0;
  -- outputs
  wr_o <= '0';
  copy_done_o <= '0';
when others =>
  -- internal signals
  next_i <= i;
  -- outputs
  wr_o <= '0';
  copy_done_o <= '0';
end case;
end process output_comb;
output_seq: process(clk_i, rst_n_i)
begin
  if rst_n_i = '0' then
    i <= 0;
  elsif rising_edge(clk_i) then
    i <= next_i;
  end if;
end process output_seq;
end architecture rtl;

A.2 Vector by matrix

A.2.1 Vector by circulant
architecture arch of vector_by_circulant is

  type state_t is (IDLE, GET_M, INNER_LOOP, DONE);
  signal state: state_t;
  signal next_state: state_t;
  signal m_index_c, m_index_r: natural;
  signal m_c, m_r: pos;
  signal n_c, n_r: addr;
  signal i_c, i_r: addr;

begin

  comb: process(state, start_i, binary_i,
    m_index_r, m_c, m_r, n_c, n_r, i_c, i_r,
    op, b_weight, a_base_i, b_base_i, z_base_i,
    a_i, b_i)

begin

  next_state <= state;
  wr_o <= '0';
  done_o <= '0';
  m_index_c <= m_index_r;
  a_addr_o <= to_unsigned(0, address_bits);
  b_addr_o <= to_unsigned(0, address_bits);
  z_o <= to_unsigned(0, position_bits);
  z_addr_o <= to_unsigned(0, address_bits);
  m_c <= m_r;
  n_c <= n_r;
  i_c <= i_r;
  case state is

  when IDLE =>
    m_index_c <= 0;
    m_c <= to_unsigned(0, position_bits);
    n_c <= to_unsigned(0, address_bits);
    i_c <= to_unsigned(0, address_bits);
    if start_i = '1' then
      next_state <= GET_M;
    end if;

  when GET_M =>
    m_index_c <= m_index_r + 1;
    b_addr_o <= b_base_i + m_index_r;
    m_c <= b_i;
    n_c <= to_unsigned(0, address_bits);
    if op = '0' then
      i_c <= to_unsigned(to_integer(m_c), address_bits);
    end if;

  end when;

  when INNER_LOOP =>
    m_index_c <= m_index_r + 1;
    m_c <= b_i;
    n_c <= a_i;
    if op = '0' then
      i_c <= to_unsigned(to_integer(m_c), address_bits);
    end if;

  end when;

  when DONE =>
    m_index_c <= 0;
    m_c <= to_unsigned(0, position_bits);
    n_c <= to_unsigned(0, address_bits);
    i_c <= to_unsigned(0, address_bits);

  end case;

end process comb;
end architecture;
else
  i_c <= to_unsigned(to_integer(P - m_c - 1), address_bits);
end if;

if b_i = P then
  next_state <= DONE;
else
  next_state <= INNERLOOP;
end if;
when INNERLOOP =>
  wr_o <= '1';
  n_c <= n_r + 1;
  if i_r = P - 1 then
    i_c <= to_unsigned(0, address_bits);
  else
    i_c <= i_r + 1;
  end if;
  a_addr_o <= a_base_i + n_c;
  b_addr_o <= z_base_i + i_c;
  if binary_i = '0' then
    s_o <= a_i + b_i;
  else
    s_o <= (0 => a_i(0) xor b_i(0), others => '0');
  end if;
  if n_r = P - 1 then
    if m_index_r = b_weight then
      next_state <= DONE;
    else
      next_state <= GETM;
    end if;
  end if;
  when DONE =>
    done_o <= '1';
  if start_i = '0' then
    next_state <= IDLE;
  end if;
  when others =>
    next_state <= IDLE;
end case;
end process comb;

seq: process (rst_n_i, clk_i)
begin
  if rst_n_i = '0' then
    state <= IDLE;
    m_index_r <= 0;
    m_r <= to_unsigned(0, position_bits);
    n_r <= to_unsigned(0, address_bits);
    i_r <= to_unsigned(0, address_bits);
  elsif rising_edge(clk_i) then
    state <= next_state;
    m_index_r <= m_index_c;
    m_r <= m_c;
    n_r <= n_c;
    i_r <= i_c;
  end if;
end process seq;
end architecture;
A.2.2 \( r \) by \( L^T \)

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;
use work.memory_map.all;

entity x_by_Ltr is
port (
 -- control signals
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 -- controls to multiplication core
 vector_base_o: out addr;
 block_base_o: out addr;
 result_base_o: out addr;
 start_mul_o: out std_logic;
 mul_done_i: in std_logic;
 -- report back
 done_o: out std_logic
);
end entity x_by_Ltr;

architecture rtl of x_by_Ltr is

 type state_t is (IDLE, BUSY, DONE);
 signal state: state_t;
 signal next_state: state_t;
 signal block_count_c, block_count_r: natural;
 signal vector_base_c, vector_base_r: addr;
 signal block_base_c, block_base_r: addr;

begin
 vector_base_o <= vector_base_r;
 block_base_o <= block_base_r;
 result_base_o <= SBASE_ADDR;
 comb: process(state, start_i,
 block_count_r, block_base_r, vector_base_r,
 mul_done_i)
 begin
 start_mul_o <= '0';
 next_state <= state;
 block_count_c <= block_count_r;
 block_base_c <= block_base_r;
 vector_base_c <= vector_base_r;
 done_o <= '0';
 case state is
 when IDLE =>
 block_count_c <= 0;
 block_base_c <= LTR_BASE_ADDR;
 vector_base_c <= X_BASE_ADDR;
 if start_i = '1' then
```

next_state <= BUSY;
end if;
when BUSY =>
start_mul_o <= '1';
if mul_done_i = '1' then
  block_count_c <= block_count_r + 1;
— MdV is the maximum number of elements in a block of Ltr
  block_base_c <= block_base_r + sum(M) * DV;
  vector_base_c <= vector_base_r + P;
  start_mul_o <= '0';
if block_count_r = N0-1 then
  next_state <= DONE;
end if;
end if;
when DONE =>
done_o <= '1';
if start_i = '0' then
  next_state <= IDLE;
end if;
when others =>
  next_state <= IDLE;
end case;
end process comb;

seq: process (clk_i, rst_n_i)
begin
if rst_n_i = '0' then
  state <= IDLE;
  block_count_r <= 0;
  block_base_r <= to_unsigned(0, address_bits);
  vector_base_r <= to_unsigned(0, address_bits);
elsif rising_edge(clk_i) then
  state <= next_state;
  block_count_r <= block_count_c;
  block_base_r <= block_base_c;
  vector_base_r <= vector_base_c;
end if;
end process seq;
end architecture rtl;

A.2.3 H^T by s^T

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;
use work.memory_map.all;

entity Htr_by_str is
port ( — control signals
  clk_i: in std_logic;
  rst_n_i: in std_logic;
  start_i: in std_logic;
— controls to multiplication core

architecture rtl of Htr_by_str is

  type state_t is (IDLE, BUSY, DONE);
n signal state: state_t;
n signal next_state: state_t;

  signal block_count_c, block_count_r: natural;

  signal vector_base_c, vector_base_r: addr;
  signal block_base_c, block_base_r: addr;
  signal result_base_c, result_base_r: addr;

begin

  vector_base_o <= vector_base_r;
  block_base_o <= block_base_r;
  result_base_o <= result_base_r;

  comb: process(state, start_i, block_count_r, block_base_r, vector_base_r, result_base_r, mul_done_i)
  begin
    start_mul_o <= '0';
    next_state <= state;
    block_count_c <= block_count_r;
    block_base_c <= block_base_r;
    vector_base_c <= vector_base_r;
    result_base_c <= result_base_r;
    done_o <= '0';

    case state is
      when IDLE =>
        block_count_c <= 0;
        block_base_c <= HTR_BASE_ADDR;
        vector_base_c <= S_BASE_ADDR;
        result_base_c <= SIGMA_BASE_ADDR;
        if start_i = '1' then
          next_state <= BUSY;
        end if;
      when BUSY =>
        start_mul_o <= '1';
        if mul_done_i = '1' then
          block_count_c <= block_count_r + 1;
          block_base_c <= block_base_r + DV;
          vector_base_c <= vector_base_r + P;
          result_base_c <= result_base_r + P;
          start_mul_o <= '0';
          if block_count_r = N0-1 then
            next_state <= DONE;
          end if;
        end if;
      when DONE =>
        done_o <= '1';
    end case;
  end process;

end rtl;
if start_i = '0' then
  next_state <= IDLE;
end if;
when others =>
  next_state <= IDLE;
end case;
end process comb;

seq: process(clk_i, rst_n_i)
begin
  if rst_n_i = '0' then
    state <= IDLE;
    block_count_r <= 0;
    block_base_r <= HTR_BASE_ADDR;
    vector_base_r <= S_BASE_ADDR;
    result_base_r <= SIGMA_BASE_ADDR;
  elsif rising_edge(clk_i) then
    state <= next_state;
    block_count_r <= block_count_c;
    block_base_r <= block_base_c;
    vector_base_r <= vector_base_c;
    result_base_r <= result_base_c;
  end if;
end process seq;

end architecture rtl;

A.2.4 \( \Sigma^T \) by \( \Sigma^T \)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;
use work.memory_map.all;

entity Qtr_by_sigmatr is
  port ( -- control signals
    clk_i: in std_logic;
    rst_n_i: in std_logic;
    start_i: in std_logic;
    -- controls to multiplication core
    vector_base_o: out addr;
    block_base_o: out addr;
    block_weight_o: out natural;
    result_base_o: out addr;
    start_mul_o: out std_logic;
    mul_done_i: in std_logic;
    -- report back
    done_o: out std_logic);
end entity Qtr_by_sigmatr;

architecture rtl of Qtr_by_sigmatr is

  type state_t is (IDLE, BUSY, DONE);
signal state : state_t;
signal next_state : state_t;

signal block_row_c, block_row_r : natural;
signal block_col_c, block_col_r : natural;

signal Qtr_block_base_map :  
  addr_matrix(N0−1 downto 0, N0−1 downto 0) := get_Qtr_block_base;
signal Qtr_block_limit_map :  
  n_matrix(N0−1 downto 0, N0−1 downto 0) := get_block_limits;

signal vector_base_c, vector_base_r : addr;
signal block_base_c, block_base_r : addr;
signal result_base_c, result_base_r : addr;

begin
  vector_base_o <= vector_base_r;
  block_base_o <= block_base_r;
  block_weight_o <= Qtr_block_limit_map(block_row_r, block_col_r);
  result_base_o <= result_base_r;

  comb : process(state, start_i,  
    block_base_r, vector_base_r, result_base_r,  
    block_row_r, block_col_r,  
    mul_done_i)
  begin
    start_mul_o <= '0';
    next_state <= state;
    block_row_c <= block_row_r;
    block_col_c <= block_col_r;
    vector_base_c <= vector_base_r;
    result_base_c <= result_base_r;
    done_o <= '0';

    case state is
      when IDLE =>
        block_row_c <= 0;
        block_col_c <= 0;
        block_base_c <= QTR_BASE_ADDR;
        vector_base_c <= SIGMA_BASE_ADDR;
        result_base_c <= R_BASE_ADDR;
        if start_i = '1' then
          next_state <= BUSY;
        end if;
      when BUSY =>
        start_mul_o <= '1';
        if mul_done_i = '1' then
          start_mul_o <= '0';
          if block_col_r /= N0−1 then
            block_col_c <= block_col_r + 1;
            block_base_c <= QTR_BASE_ADDR + -- cont.
            Qtr_block_base_map(block_row_r, block_col_r);
            vector_base_c <= vector_base_r + P;
            result_base_c <= result_base_r;
          else
            if block_row_r /= N0−1 then
              block_row_c <= block_row_r + 1;
              block_col_c <= 0;
              block_base_c <= QTR_BASE_ADDR + -- cont.
              Qtr_block_base_map(block_row_r + 1, -- cont.
                block_col_r);
          end if;
        end if;
    end case;
  end begin;
A.2.5 $\mathcal{E}$ by $H^T$

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_multiplication.all;
use work.memory_map.all;

entity e_by_Htr is
port (clk : in std_logic;
 rst_n : in std_logic;
 start_i : in std_logic;
 vector_base_o : out addr;
 block_base_o : out addr;
 result_base_o : out addr;
 -- controls to multiplication core
 vector_base_r : out addr;
 block_base_r : out addr;
 result_base_r : out addr;
 block_row_r : out addr;
 block_col_r : out addr;
 vector_row_r : out addr;
 vector_col_r : out addr;
 state : out std_logic_vector(3 downto 0);
 done_o : out std_logic;
 start_o : out std_logic;
 err_o : out std_logic;
 end_state : out std_logic);
end e_by_Htr;
```
architecture rtl of e_by_Htr is

   type state_t is (IDLE, BUSY, DONE);
   signal state: state_t;
   signal next_state: state_t;

   signal block_count_c, block_count_r: natural;
   signal vector_base_c, vector_base_r: addr;
   signal block_base_c, block_base_r: addr;

begin

  vector_base_o <= vector_base_r;
  block_base_o <= block_base_r;
  result_base_o <= S_BASE_ADDR;

  comb: process (state, start_i, block_count_r, block_base_r, vector_base_r, mul_done_i)
  begin
    start_mul_o <= '0';
    next_state <= state;
    block_count_c <= block_count_r;
    block_base_c <= block_base_r;
    vector_base_c <= vector_base_r;
    done_o <= '0';
    case state is
      when IDLE =>
        block_count_c <= 0;
        block_base_c <= HTR_BASE_ADDR;
        vector_base_c <= E_BASE_ADDR;
        if start_i = '1' then
          next_state <= BUSY;
        end if;
      when BUSY =>
        start_mul_o <= '1';
        if mul_done_i = '1' then
          block_count_c <= block_count_r + 1;
          block_base_c <= block_base_r + DV;
          vector_base_c <= vector_base_r + P;
          start_mul_o <= '0';
          if block_count_r = N0-1 then
            next_state <= DONE;
          end if;
        end if;
      when DONE =>
        done_o <= '1';
        if start_i = '0' then
          next_state <= IDLE;
        end if;
      when others =>
        next_state <= IDLE;
    end case;
  end process comb;
A.3 Error update

Peak search

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;
use work.memory_map.all;

entity find_max is
 port(
 -- control signals
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 -- to memory
 a_i: in pos;
 a_addr_o: out addr;
 b_i: in pos;
 b_addr_o: out addr;
 z_o: out pos;
 z_addr_o: out addr;
 wr_o: out std_logic;
 -- report back when done
 max_idx_o: out n_array(15 downto 0);
 done_o: out std_logic
);
end entity find_max;

architecture rtl of find_max is
 type state_t is (IDLE, BUSY, DONE);
 signal state: state_t;
 signal next_state: state_t;
```
signal a_index_c, a_index_r: natural;
signal max_val_c, max_val_r: pos;
signal max_indexes_c, max_indexes_r: n_array(15 downto 0);
signal i_c, i_r: natural;
constant INVALID: natural := N0*P;

begin
  a_addr_o <= R_BASE_ADDR + a_index_r;
b_addr_o <= to_unsigned(0, address_bits);
x_o <= to_unsigned(0, position_bits);
z_addr_o <= to_unsigned(0, address_bits);
wr_o <= '0';
max_idx_o <= max_indexes_r;

dseq: process (clk_i, rst_n_i)
begin
  if rst_n_i = '0' then
    state <= IDLE;
a_index_r <= 0;
max_val_r <= to_unsigned(0, position_bits);
max_indexes_r <= (others => INVALID);
i_r <= 0;
  elsif rising_edge(clk_i) then
    state <= Next_state;
a_index_r <= a_index_c;
max_val_r <= max_val_c;
max_indexes_r <= max_indexes_c;
i_r <= i_c;
  end if;
end process dseq;
combi: process (
  state, start_i,
  a_index_r, a_i,
  max_val_r, max_indexes_r, i_r)
begin
  next_state <= state;
done_o <= '0';
a_index_c <= 0;
max_val_c <= max_val_r;
max_indexes_c <= max_indexes_r;
i_c <= i_r;
case state is
when IDLE =>
  max_val_c <= to_unsigned(0, position_bits);
max_indexes_c <= (others => INVALID);
i_c <= 0;
  if start_i = '1' then
    next_state <= BUSY;
  end if;
when BUSY =>
  a_index_c <= a_index_r + 1;
  if a_i = max_val_r then
    max_indexes_c(i_r) <= a_index_r;
-- if we have too many equal maxes we’ll flip just some
  if i_r /= 15 then
    i_c <= i_r + 1;
  end if;
  elsif a_i > max_val_r then

end process combi;
Vector plus rows

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.memory_map.all;
use work.matrix_mult_functions.all;

entity vector_plus_rows is
port (    -- control signals
  clk_i: in std_logic;
  rst_n_i: in std_logic;
  start_i: in std_logic;
  -- row indexes
  row_idx_i: in array(15 downto 0);
  -- to memory
  a_i: in pos;
  a_addr_o: out addr;
  b_i: in pos;
  b_addr_o: out addr;
  z_o: out pos;
  z_addr_o: out addr;
  wr_o: out std_logic;
  -- report back when done
  done_o: out std_logic
);
end entity vector_plus_rows;

architecture rtl of vector_plus_rows is

  type state_t is (IDLE, RELATIVE_ROW, SUM_ROW, DONE);
  signal state : state_t;
  signal next_state : state_t;
  signal cur_idx_c : natural;
  signal cur_idx_r : natural;

  max_val_c <= a_i;
  max_indexes_c <= (0 => a_idx_r, others => INVALID);
  l_c <= 1;
end if;
if a_idx_r = N0*P-1 then
  a_idx_c <= 0;
next_state <= DONE;
end if;
when DONE =>
done_o <= '1';
if start_i = '0' then
  next_state <= IDLE;
end if;
end case;
end process comb;
end architecture rtl;
signal block_row_c: natural;
signal block_row_r: natural;
signal block_col_c: natural;
signal block_col_r: natural;
signal rel_row_c: natural;
signal rel_row_r: natural;
signal i_c: natural;
signal i_r: natural;
signal Qtr_block_base: addr;
signal Qtr_block_count: natural;
constant Qtr_block_limit_map: nmatrix := get_block_limits;
constant Qtr_block_base_map: addr_matrix := get_Qtr_block_base;
constant INVALID: natural := N0∗P;

begin
Qtr_block_count <= Qtr_block_limit_map(block_row_r, block_col_r);
Qtr_block_base <= Qtr_block_base_map(block_row_r, block_col_r);
a_addr_o <= E_BASE_ADDR + block_col_r*P + ((b_i + rel_row_r) mod P);
b_addr_o <= QTR_BASE_ADDR + Qtr_block_base + i_r;
z_addr_o <= E_BASE_ADDR + block_col_r*P + ((b_i + rel_row_r) mod P);

seq: process(clk_i, rst_n_i)
begin
if rst_n_i = '0' then
  state <= IDLE;
cur_idx_r <= 0;
block_row_r <= 0;
block_col_r <= 0;
rel_row_r <= 0;
i_r <= 0;
elsif rising_edge(clk_i) then
  state <= next_state;
cur_idx_r <= cur_idx_c;
block_row_r <= block_row_c;
block_col_r <= block_col_c;
rel_row_r <= rel_row_c;
i_r <= i_c;
end if;
end process seq;
combi: process(
  state, start_i,
  block_row_r, block_col_r, rel_row_r,
  row_idx_i, cur_idx_r, i_r,
  Qtr_block_count)
begin
  next_state <= state;
cur_idx_c <= cur_idx_r;
block_row_c <= block_row_r;
block_col_c <= block_col_r;
rel_row_c <= rel_row_r;
i_c <= 0;
wr_o <= '0';
done_o <= '0';
case (state) is
when IDLE =>
A.4 Loop control and message computation

Zero syndrome detection

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix.mult_functions.all;
use work.memory_map.all;

entity null_syndrome is
 port(
 — control signals
```
```
architecture rtl of null_syndrome is

 type state_t is (IDLE, BUSY, DONE);
 signal state: state_t;
 signal next_state: state_t;
 signal bad_syn_c: std_logic;
 signal bad_syn_r: std_logic;
 signal i_c: natural;
 signal i_r: natural;

begin

 a_addr_o <= S_BASE_ADDR + i_r;
 b_addr_o <= S_BASE_ADDR + i_r + 1;
 z_o <= to_unsigned(0, position_bits);
 z_addr_o <= S_BASE_ADDR;
 wr_o <= '0';
 null_syn_o <= not bad_syn_r;

 seq: process(clk_i, rst_n_i)
 begin
 if rst_n_i = '0' then
 state <= IDLE;
 bad_syn_r <= '0';
 i_r <= 0;
 elsif rising_edge(clk_i) then
 state <= next_state;
 bad_syn_r <= bad_syn_c;
 i_r <= i_c;
 end if;
 end process seq;

 comb: process(state, start_i, a_i, b_i, i_r, bad_syn_c, bad_syn_r)
 begin
 next_state <= state;
 bad_syn_c <= bad_syn_r;
 i_c <= i_r;
 done_o <= '0';
 case state is
 when IDLE =>
 bad_syn_c <= '0';
 i_c <= 0;
 if start_i = '1' then
 next_state <= BUSY;
 end case;
 end process comb;
end entity null_syndrome;
75 end if;
76 when BUSY =>
77 i_c <= i_r + 2;
78 if a_i /= 0 then
79 bad_syn_c <= '1';
80 end if;
81 if b_i /= 0 and i_r /= P-1 then
82 bad_syn_c <= '1';
83 end if;
84 if bad_syn_c = '1' or i_r = P-1 then
85 next_state <= DONE;
86 end if;
87 when DONE =>
88 done_o <= '1';
89 if start_i = '0' then
90 next_state <= IDLE;
91 end if;
92 end case;
93 end process comb;
94 end architecture rtl;

library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.numeric_std.all;
library work;
5 use work.system_params.all;
6 use work.matrix_types.all;
7 use work.matrix_mult_functions.all;
8 use work.memory_map.all;
9
10 entity clear_temp is
11 port(
12 clk_i: in std_logic;
13 rst_n_i: in std_logic;
14 start_i: in std_logic;
15 -- to memory
16 a_i: in pos;
17 a_addr_o: out addr;
18 b_i: in pos;
19 b_addr_o: out addr;
20 z_o: out pos;
21 z_addr_o: out addr;
22 wr_o: out std_logic;
23 -- report back when done
24 done_o: out std_logic
25);
26 end entity clear_temp;
27
28 architecture rtl of clear_temp is
29 type state_t is (
30 IDLE, CLEAR_MUL_RES, CLEAR_SUM_TMP, CLEAR_SIGMA, CLEAR_R, DONE
31);
32 signal state: state_t;
signal next_state: state_t;
signal i_c: integer;
signal i_r: integer;

begin

a_addr_o <= HTR_BASE_ADDR;
b_addr_o <= HTR_BASE_ADDR;
z_o <= to_unsigned(0, position_bits);

seq: process(clk_i, rst_n_i)
begin
 if rst_n_i = '0' then
 state <= IDLE;
i_r <= 0;
 elsif rising_edge(clk_i) then
 state <= next_state;
i_r <= i_c;
 end if;
end process seq;

comb: process(state, start_i, i_r)
begin
 i_c <= i_r;
done_o <= '0';
 case state is
 when IDLE =>''
 i_c <= 0;
z_addr_o <= HTR_BASE_ADDR;
wr_o <= '0';
 if start_i = '1' then
 next_state <= CLEAR_MUL_RES;
 end if;
 when CLEAR_MUL_RES =>''
 i_c <= i_r + 1;
z_addr_o <= MUL_RES_BASE_ADDR + i_r;
wr_o <= '1';
 if i_r = DV*max(M) - 1 then
 i_c <= 0;
 next_state <= CLEAR_SUM_TMP;
 end if;
 when CLEAR_SUM_TMP =>''
 i_c <= i_r + 1;
z_addr_o <= SUM_TMP_BASE_ADDR + i_r;
wr_o <= '1';
 if i_r = DV*sum(M) - 1 then
 i_c <= 0;
 next_state <= CLEAR_SIGMA;
 end if;
 when CLEAR_SIGMA =>''
 i_c <= i_r + 1;
z_addr_o <= SIGMA_BASE_ADDR + i_r;
wr_o <= '1';
 if i_r = N0*P - 1 then
 i_c <= 0;
 next_state <= CLEAR_R;
 end if;
 when CLEAR_R =>''
 i_c <= i_r + 1;
z_addr_o <= MUL_RES_BASE_ADDR + i_r;
wr_o <= '1';
 if i_r = N0*P - 1 then
 i_c <= 0;
 next_state <= CLEAR_R;
 end if;
end case;
end process comb;
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;
use work.memory_map.all;

entity comp_message is
port(
 -- control signals
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 -- to memory
 a_i: in pos;
 a_addr_o: out addr;
 b_i: in pos;
 b_addr_o: out addr;
 z_o: out pos;
 z_addr_o: out addr;
 -- report back when done
 wr_o: out std_logic;
 done_o: out std_logic
);
end entity comp_message;

architecture rtl of comp_message is

type state_t is (IDLE, BUSY, DONE);
signal state: state_t;
signal next_state: state_t;
signal i_c, i_r: integer;

begin

 a_addr_o <= X_BASE_ADDR + i_r;
 b_addr_o <= E_BASE_ADDR + i_r;
 z_o <= a_i xor b_i;

end architecture rtl;
A.5 Top module

```vhdl
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library work;
use work.system_params.all;
use work.matrix_types.all;
use work.matrix_mult_functions.all;

entity top is
port(
  −− control signals
  clk_i: in std_logic;
  rst_n_i: in std_logic;
  start_i: in std_logic;
  −− to memory
  a_i: in pos;
  a_addr_o: out addr;
  b_i: in pos;
  b_addr_o: out addr;
```
20 z_o: out pos;
21 z_addr_o: out addr;
22 wr_o: out std_logic;
23 -- report back when done
24 failure_o: out std_logic;
25 done_o: out std_logic
26);
27 end entity top;
28
29 architecture rtl of top is
30
31 component key_reconstruction is
32 port (
33 -- control signals
34 clk_i: in std_logic;
35 rst_n_i: in std_logic;
36 start_i: in std_logic;
37 -- data, addresses and controls to memory
38 a_i: in pos;
39 a_addr_o: out addr;
40 b_i: in pos;
41 b_addr_o: out addr;
42 z_o: out pos;
43 z_addr_o: out addr;
44 wr_o: out std_logic;
45 -- report back once done
46 key_rec_done_o: out std_logic
47);
48 end component key_reconstruction;
49
50 signal kr_start: std_logic;
51 signal kr_a_addr: addr;
52 signal kr_b_addr: addr;
53 signal kr_z: pos;
54 signal kr_z_addr: addr;
55 signal kr_w: std_logic;
56 signal kr_done: std_logic;
57
58 component vector_by_circulant is
59 port(
60 -- control signals
61 clk_i: in std_logic;
62 rst_n_i: in std_logic;
63 start_i: in std_logic;
64 binary_i: in std_logic;
65 -- function arguments in (not latched)
66 a_base_i: in addr;
67 b_base_i: in addr;
68 b_weight: in integer;
69 z_base_i: in addr;
70 op: in std_logic; -- '0' -> z=aB; '1' -> z=Ba
71 -- data, addresses and controls to memory
72 a_i: in pos;
73 a_addr_o: out addr;
74 b_i: in pos;
75 b_addr_o: out addr;
76 z_o: out pos;
77 z_addr_o: out addr;
78 wr_o: out std_logic;
79 done_o: out std_logic
80);
81 end component vector_by_circulant;
82
83 signal vc_start: std_logic;
84
85
component x_by_Ltr is
 port (
 -- control signals
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 -- controls to multiplication core
 vector_base_o: out addr;
 block_base_o: out addr;
 result_base_o: out addr;
 start_mul_o: out std_logic;
 mul_done_i: in std_logic;
 -- report back
 done_o: out std_logic
);
end component x_by_Ltr;

signal x1_start: std_logic;
signal x1_vec_base: addr;
signal x1_blk_base: addr;
signal x1_res_base: addr;

component Htr_by_str is
 port (
 -- control signals
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 -- controls to multiplication core
 vector_base_o: out addr;
 block_base_o: out addr;
 result_base_o: out addr;
 start_mul_o: out std_logic;
 mul_done_i: in std_logic;
 -- report back
 done_o: out std_logic
);
end component Htr_by_str;

signal hs_start: std_logic;
signal hs_vec_base: addr;
signal hs_blk_base: addr;
signal hs_res_base: addr;

component Qtr_by_Sigmatr is
 port (
 -- control signals

component Qtr_by_sigmatr is
 port(
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
);
end component Qtr_by_sigmatr;

component find_max is
 port(
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 a_i: in pos;
 a_addr_o: out addr;
 b_i: in pos;
 b_addr_o: out addr;
 z_o: out pos;
 z_addr_o: out addr;
 wr_o: out std_logic;
 max_idx_o: out n_array(15 downto 0);
 done_o: out std_logic
);
end component find_max;

component vector_plus_rows is
 port (
 clk_i: in std_logic;
 rst_n_i: in std_logic;
 start_i: in std_logic;
 row_idx_i: in n_array(15 downto 0);
 a_i: in pos;
 row_idx_o: in n_array(15 downto 0);
 done_o: out std_logic
);
end component vector_plus_rows;
component vector_plus_rows is
port (
 addr_o : out addr;
 pos_i : in pos;
 addr_o : out addr;
 pos_o : out pos;
 addr_o : out addr;
 std_logic_o : out std_logic;
 report_back : in std_logic;
);
end component vector_plus_rows;
signal vr_start : std_logic;
signal vr_a_addr : addr;
signal vr_b_addr : addr;
signal vr_z : pos;
signal vr_addr : addr;
signal vr_wr : std_logic;
signal vr_done : std_logic;

component e_by_Htr is
 port (
 addr_o : out addr;
 pos_i : in pos;
 addr_o : out addr;
 std_logic_o : out std_logic;
 report_back : in std_logic;
 done_o : out std_logic;
);
end component e_by_Htr;
signal eh_start : std_logic;
signal eh_vec_base : addr;
signal eh_blk_base : addr;
signal eh_res_base : addr;
signal eh_start_mul : std_logic;
signal eh_done : std_logic;

component null Syndrome is
 port (
 addr_o : out addr;
 pos_i : in pos;
 addr_o : out addr;
 std_logic_o : out std_logic;
 report_back : in std_logic;
 done_o : out std_logic;
);
end component null Syndrome;
signal ns_start : std_logic;
signal ns_addr : addr;
268 signal ns_b_addr : addr;
269 signal ns_z : pos;
270 signal ns_addr : addr;
271 signal ns_wr : std_logic;
272 signal ns_null_syn : std_logic;
273 signal ns_done : std_logic;
274
275 component clear_temp is
276 port(
277 -- control signals
278 clk_i : in std_logic;
279 rst_n_i : in std_logic;
280 start_i : in std_logic;
281 -- to memory
282 a_i : in pos;
283 a_addr_o : out addr;
284 b_i : in pos;
285 b_addr_o : out addr;
286 z_o : out pos;
287 z_addr_o : out addr;
288 wr_o : out std_logic;
289 -- report back when done
290 done_o : out std_logic
291);
292 end component clear_temp;
293
294 signal ct_start : std_logic;
295 signal ct_a_addr : addr;
296 signal ct_b_addr : addr;
297 signal ct_z : pos;
298 signal ct_z_addr : addr;
299 signal ct_wr : std_logic;
300 signal ct_null_syn : std_logic;
301 signal ct_done : std_logic;
302
303 component comp_message is
304 port(
305 -- control signals
306 clk_i : in std_logic;
307 rst_n_i : in std_logic;
308 start_i : in std_logic;
309 -- to memory
310 a_i : in pos;
311 a_addr_o : out addr;
312 b_i : in pos;
313 b_addr_o : out addr;
314 z_o : out pos;
315 z_addr_o : out addr;
316 wr_o : out std_logic;
317 -- report back when done
318 done_o : out std_logic
319);
320 end component comp_message;
321
322 signal cm_start : std_logic;
323 signal cm_a_addr : addr;
324 signal cm_b_addr : addr;
325 signal cm_z : pos;
326 signal cm_z_addr : addr;
327 signal cm_wr : std_logic;
328 signal cm_done : std_logic;
329
330 type state_t is (
331 IDLE,
COMPUTE_LTR,
COMPUTE_INITIAL_SYNDROME,
COMPUTE_SIGMA,
COMPUTE_R,
FIND_B,
COMPUTE_ERROR,
COMPUTE_SYNDROME,
CHECK_SYNDROME,
CLEAR_TEMP_AND_LOOP,
COMPUTE_MESSAGE,
CLEAR_TEMP_AND_RETURN,
DONE
);
signal state: state_t;
signal next_state: state_t;
signal l_c: integer;
signal l_r: integer;

begin
KR: key_reconstruction
 port map (clk_i => clk_i,
 rst_n_i => rst_n_i,
 start_i => kr_start,
 a_i => a_i,
 a_addr_o => kr_a_addr,
 b_i => b_i,
 b_addr_o => kr_b_addr,
 z_o => kr_z,
 z_addr_o => kr_z_addr,
 wr_o => kr_wr,
 key_rec_done_o => kr_done
);
VC: vector_by_circulant
 port map (clk_i => clk_i,
 rst_n_i => rst_n_i,
 start_i => vc_start,
 binary_i => vc_binary,
 a_base_i => vc_vec_base,
 b_base_i => vc_blk_base,
 b_weight => vc_blk_weight,
 z_base_i => vc_res_base,
 op => vc_op,
 a_i => a_i,
 a_addr_o => vc_a_addr,
 b_i => b_i,
 b_addr_o => vc_b_addr,
 z_o => vc_z,
 z_addr_o => vc_z_addr,
 wr_o => vc_wr,
 done_o => vc_done
);
XL: x_by_Ltr
 port map (clk_i => clk_i,
 rst_n_i => rst_n_i,
 start_i => xl_start,
 ...
vector_base_o \Rightarrow xl_vec_base,
block_base_o \Rightarrow xl_blk_base,
result_base_o \Rightarrow xl_res_base,
start_mul_o \Rightarrow xl_start_mul,
mul_done_i \Rightarrow vc_done,
done_o \Rightarrow xl_done
);

HS: Htr_by_str
port map (
clk_i \Rightarrow clk_i,
rst_n_i \Rightarrow rst_n_i,
start_i \Rightarrow hs_start,
vector_base_o \Rightarrow hs_vec_base,
block_base_o \Rightarrow hs_blk_base,
result_base_o \Rightarrow hs_res_base,
start_mul_o \Rightarrow hs_start_mul,
mul_done_i \Rightarrow vc_done,
done_o \Rightarrow hs_done
);

QS: Qtr_by_sigmatr
port map (
clk_i \Rightarrow clk_i,
rst_n_i \Rightarrow rst_n_i,
start_i \Rightarrow qs_start,
vector_base_o \Rightarrow qs_vec_base,
block_base_o \Rightarrow qs_blk_base,
block_weight_o \Rightarrow qs_blk_weight,
result_base_o \Rightarrow qs_res_base,
start_mul_o \Rightarrow qs_start_mul,
mul_done_i \Rightarrow vc_done,
done_o \Rightarrow qs_done
);

FM: find_max
port map (
clk_i \Rightarrow clk_i,
rst_n_i \Rightarrow rst_n_i,
start_i \Rightarrow fm_start,
a_i \Rightarrow a_i,
a_addr_o \Rightarrow fm_a_addr,
b_i \Rightarrow b_i,
b_addr_o \Rightarrow fm_b_addr,
z_o \Rightarrow fm_z,
z_addr_o \Rightarrow fm_z_addr,
wr_o \Rightarrow fm_wr,
max_idx_o \Rightarrow fm_max_idx,
done_o \Rightarrow fm_done
);

VR: vector_plus_rows
port map (
clk_i \Rightarrow clk_i,
rst_n_i \Rightarrow rst_n_i,
start_i \Rightarrow vr_start,
row_idx_i \Rightarrow max_idx_r,
a_i \Rightarrow a_i,
a_addr_o \Rightarrow vr_a_addr,
b_i \Rightarrow b_i,
b_addr_o \Rightarrow vr_b_addr,
z_o \Rightarrow vr_z,
z_addr_o => vr_z_addr,
wr_o => vr_wr,
done_o => vr_done
);

EH: e_by_Htr
port map (
clk_i => clk_i,
rst_n_i => rst_n_i,
start_i => eh_start,
vector_base_o => eh_vec_base,
block_base_o => eh_blk_base,
result_base_o => eh_res_base,
start_mul_o => eh_start_mul,
mul_done_i => vc_done,
done_o => eh_done
);

NS: null_syndrome
port map (
clk_i => clk_i,
rst_n_i => rst_n_i,
start_i => ns_start,
addr_i => a_i,
addr_o => ns_addr,
addr_i => b_i,
addr_o => ns_addr,
o => ns_z,
addr_o => ns_addr,
w_o => ns_wr,
ull_o => ns_null,
done_o => ns_done
);

CT: clear_temp
port map (
clk_i => clk_i,
rst_n_i => rst_n_i,
start_i => ct_start,
addr_i => a_i,
addr_o => ct_addr,
addr_i => b_i,
addr_o => ct_addr,
o => ct_z,
addr_o => ct_addr,
w_o => ct_wr,
done_o => ct_done
);

CM: comp_message
port map (
clk_i => clk_i,
rst_n_i => rst_n_i,
start_i => cm_start,
addr_i => a_i,
addr_o => cm_addr,
addr_i => b_i,
addr_o => cm_addr,
o => cm_z,
addr_o => cm_addr,
w_o => cm_wr,
done_o => cm_done
);
seq: process(clk_i, rst_n_i)
begin
 if rst_n_i = '0' then
 state <= IDLE;
 max_idx_r <= (others => 0);
 l_r <= 0;
 elsif rising_edge(clk_i) then
 state <= next_state;
 max_idx_r <= max_idx_c;
 l_r <= l_c;
 end if;
end process seq;

-- TODO: put everything in sensitivity list
comb: process(all)
begin
 case state is
 when IDLE =>
 l_r <= 0;
 if start_i = '1' then
 next_state <= COMPUTELTR;
 end if;
 when COMPUTELTR =>
 a_addr_o <= kr_a_addr;
 b_addr_o <= kr_b_addr;
 when ...
 when ...
 when ...
 when ...
 when ...
 end case;
 next_state <= state;
 a_addr_o <= to_unsigned(0, address_bits);
 b_addr_o <= to_unsigned(0, address_bits);
 z_o <= to_unsigned(0, position_bits);
 z_addr_o <= to_unsigned(0, address_bits);
 wr_o <= '0';
 failure_o <= '0';
 done_o <= '0';
 kr_start <= '0';
 vc_start <= '0';
 vc_binary <= '0';
 vc_vec_base <= to_unsigned(0, address_bits);
 vc_blk_base <= to_unsigned(0, address_bits);
 vc_blk_weight <= 0;
 vc_res_base <= to_unsigned(0, address_bits);
 vc_op <= '0';
 xl_start <= '0';
 hs_start <= '0';
 qs_start <= '0';
 fm_start <= '0';
 max_idx_c <= max_idx_r;
 vr_start <= '0';
 eh_start <= '0';
 ns_start <= '0';
 ct_start <= '0';
 cm_start <= '0';
 l_c <= l_r;
end process comb;
z_o <= kr_z;
z_addr_o <= kr_z_addr;
wr_o <= kr_wr;
kr_start <= '1';
if kr_done = '1' then
 next_state <= COMPUTE_INITIAL_SYNDROME;
end if;
when COMPUTE_INITIAL_SYNDROME =>
 a_addr_o <= vc_a_addr;
b_addr_o <= vc_b_addr;
z_o <= vc_z;
z_addr_o <= vc_z_addr;
wr_o <= vc_wr;
vc_start <= xl_start_mul;
vcc_binary <= '1';
vcc_vec_base <= xl_vec_base;
vcc_blk_base <= xl_blk_base;
vcc_blk_weight <= sum(M)*DV;
vcc_res_base <= xl_res_base;
vcc_op <= '0';
xl_start <= '1';
if xl_done = '1' then
 next_state <= COMPUTE_SIGMA;
end if;
when COMPUTE_SIGMA =>
 a_addr_o <= vc_a_addr;
b_addr_o <= vc_b_addr;
z_o <= vc_z;
z_addr_o <= vc_z_addr;
wr_o <= vc_wr;
vc_start <= hs_start_mul;
vcc_binary <= '0';
vcc_vec_base <= hs_vec_base;
vcc_blk_base <= hs_blk_base;
vcc_blk_weight <= hs_blk_base;
vcc_res_base <= hs_res_base;
vcc_op <= '0';
hs_start <= '1';
if hs_done = '1' then
 next_state <= COMPUTE_R;
end if;
when COMPUTE_R =>
 a_addr_o <= vc_a_addr;
b_addr_o <= vc_b_addr;
z_o <= vc_z;
z_addr_o <= vc_z_addr;
wr_o <= vc_wr;
vc_start <= qs_start_mul;
vcc_binary <= '0';
vcc_vec_base <= qs_vec_base;
vcc_blk_base <= qs_blk_base;
vcc_blk_weight <= qs_blk_weight + 1;
vcc_res_base <= qs_res_base;
vcc_op <= '1';
qs_start <= '1';
if qs_done = '1' then
 next_state <= FIND_B;
end if;
when FIND_B =>
a_addr_o <= fm_a_addr;
b_addr_o <= fm_b_addr;
z_o <= fm_z;
640 z_addr_o <= fm_z_addr;
641 wr_o <= fm_wr;
642 fm_start <= '1';
643 if fm_done = '1' then
644 max_idx_c <= fm_max_idx;
645 next_state <= COMPUTE_ERROR;
646 end if;
647 when COMPUTE_ERROR =>
648 a_addr_o <= vr_a_addr;
649 b_addr_o <= vr_b_addr;
650 z_o <= vr_z;
651 z_addr_o <= vr_z_addr;
652 wr_o <= vr_wr;
653 vr_start <= '1';
654 if vr_done = '1' then
655 next_state <= COMPUTE_ERROR;
656 end if;
657 when COMPUTE_SYNDROME =>
658 a_addr_o <= vc_a_addr;
659 b_addr_o <= vc_b_addr;
660 z_o <= vc_z;
661 z_addr_o <= vc_z_addr;
662 wr_o <= vc_wr;
663 vc_start <= eh_start_mul;
664 vc_binary <= '1';
665 vc_vec_base <= eh_vec_base;
666 vc_blk_base <= eh_blk_base;
667 vc_blk_weight <= sum(M)*DV;
668 vc_res_base <= eh_res_base;
669 vc_op <= '0';
670 eh_start <= '1';
671 if eh_done = '1' then
672 next_state <= CHECK_SYNDROME;
673 end if;
674 when CHECK_SYNDROME =>
675 a_addr_o <= ns_a_addr;
676 b_addr_o <= ns_b_addr;
677 z_o <= ns_z;
678 z_addr_o <= ns_z_addr;
679 wr_o <= ns_wr;
680 ns_start <= '1';
681 if ns_done = '1' then
682 if ns_null_syn = '1' or l_r >= 20 then
683 next_state <= COMPUTE_MESSAGE;
684 else
685 next_state <= CLEAR_TEMP_AND_LOOP;
686 end if;
687 end if;
688 when CLEAR_TEMP_AND_LOOP =>
689 a_addr_o <= ct_a_addr;
690 b_addr_o <= ct_b_addr;
691 z_o <= ct_z;
692 z_addr_o <= ct_z_addr;
693 wr_o <= ct_wr;
694 ct_start <= '1';
695 if ct_done = '1' then
696 l_r <= l_r + 1;
697 next_state <= COMPUTE_SIGMA;
698 end if;
699 when COMPUTE_MESSAGE =>
700 a_addr_o <= cm_a_addr;
701 b_addr_o <= cm_b_addr;
z_o <= cm_z;
z_addr_o <= cm_z_addr;
wr_o <= cm_wr;

if cm_done = '1' then
 next_state <= CLEAR_TEMP_AND_RETURN;
end if;

when CLEAR_TEMP_AND_RETURN =>
a_addr_o <= ct_a_addr;
b_addr_o <= ct_b_addr;
z_o <= ct_z;
z_addr_o <= ct_z_addr;
wr_o <= ct_wr;
ct_start <= '1';
if ct_done = '1' then
 next_state <= DONE;
end if;

when DONE =>
done_o <= '1';
if l_r >= 20 then
 failure_o <= '1';
end if;
if start_i = '0' then
 next_state <= IDLE;
end if;
when others =>
 null;
end case;
end process comb;

end architecture rtl;
Bibliography

