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Abstract

Communication security of today heavily relies on the assumption that some
mathematical problems are extremely difficult to solve and thus breaking
encryptions based on such problems requires a very long time. While such
encryptions are secure now, the probable diffusion of quantum computers
in the foreseeable future makes the initial assumption fall short: quantum
computations are efficient at breaking the most widespread algorithms in use.
Post-quantum cryptographic systems are based on problems that are not (or
marginally) affected by the peculiarity of quantum computing: AES[3] and
many other hashing functions fall in this category, with quantum operations
just moving the problem from O(N) to O(v/N), with N being the number of
operations needed to find a solution. This is effectively countered by using
double the number of bits and squaring the complexity. Other proposals are
based on variations of error-correcting codes used in data transmission, so
that the data is encoded and errors are purposely introduced in the encrypted
version. With no a priori knowledge on the location of such errors, reverse-
engineering the generation matrix becomes a very arduous task, making the
system de facto equivalent to the prime-based asymmetric key system in
use today but without the vulnerability to quantum attacks. This work is
focused on a hardware implementation of such a system, for use in low power
applications that are likely to generate the bulk of encrypted traffic in the
near future.
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Chapter 1

Basics of cryptography

Cryptography comes from two ancient Greek words that more or less trans-
late to “hidden writing”, originally with the objective of having a reliable
way to deliver military orders through messengers without the enemy under-
standing intercepted ones[4]. While this specific application proved by far the
biggest drive to cryptography up to recent times, this “hidden writing” capa-
bility is now heavily used by civilians too due to the vast amount of sensitive
information that is transmitted through potentially unsecure channels.

Traditionally, the agents in cryptography examples are called Alice (A,
the sender), Bob (B, the recipient) and Eve (E, the eavesdropper). Alice and
Bob use cryptography so they can communicate without Eve being able to
understand the message, even though Eve might intercept the code (from here
on, “code” is used to refer to the encrypted version of the message). Since it
is assumed that Eve knows the code, Bob must have some information not
contained in the code that can be used to get the message back from it: this
information is known as the “key” (figure 1.1).

In the oldest and simplest ciphers, the number of possible keys was usually
quite small, so that Eve could simply try them all and see which key yielded
a message that made sense. This was only effective as long as Eve did not
have a clue about the mechanism of the cipher, so that Alice and Bob mostly
relied on what is called “security by obscurity” and had to keep the cipher
itself secret.

Since a secret mechanism does not scale up well with many possible re-
cipients and devising a new cipher for each recipient would be a daunting
task (that still requires a secure channel anyway), modern ciphers are pub-
lic, while relying on other features to protect messages. These features arise
from particular mathematical properties and are meant to prevent anyone
not having the key from decrypting the code, while the possible number of
keys is so big that brute forcing (i.e. trying them all one by one) is pointless.
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Figure 1.1: Alice, Bob and Eve

1.1 Symmetric and asymmetric ciphers

Ciphers in use today fall into two broad categories: symmetric and asym-
metric ciphers. The former category is made up with all systems that require
Alice and Bob to know the same key (hence “symmetric”), and Eve not to
know the key: it requires a secure channel for sharing the key between Alice
and Bob in the first place (figure 1.2). The latter is made up with systems
that have Bob know a private key nobody else knows (hence “asymmetric”),
and everyone know Bob’s public key that is used to encrypt the message
(figure 1.3). The system is then conceived in such a way that only Bob’s pri-
vate key can decrypt what was encrypted with the public key. Asymmetric
ciphers, while not extremely complicated in their most basic form, are much
more recent than symmetric ciphers: the earliest military implementation
was devised in 1973, while the first civilian algorithm dates 1976.

Symmetric ciphers are usually very simple and very fast to implement
both in software and hardware. Unfortunately, they can only be used when
Alice and Bob have a way to agree on a key without Eve intercepting it.
Asymmetric ciphers let Alice and Bob communicate without any need to
share their private keys, but are usually very slow and possibly quite complex.
Neither of the categories can respond to the need for a massive amount of
data to be transferred securely and quickly, but an asymmetric cipher can
be used to send a symmetric key without Eve knowing it, and that key can
then be used to encrypt and decrypt the data (figure 1.4).

The Internet itself relies on such a method for its TLS (Transport Layer
Security) protocol. While TLS does not mandate any particular algorithm,
the most common choice is RSA (Rivest-Shamir-Adleman, its inventors) as
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asymmetric cipher and AES (Advanced Encryption Standard) as symmetric
cipher.

1.2 RSA

RSA[5] is a relatively simple asymmetric cypher published in 1978, just two
years after the first non-classified paper on such cryptosystems by Diffie and
Hellman. The simplest explanation of RSA, while not really exact, is straight-
forward: choose two very big prime numbers, keep them secret and provide
their product as public key. Factoring such a huge number into its two
prime factors is extremely demanding in terms of computational power, and
whenever processors become faster and more powerful it is a simple matter
of choosing even bigger starting numbers, making the algorithm extremely
scalable.
The actual RSA key generation algorithm is as follows:

e Randomly pick two distinct prime numbers, p and ¢

e Compute n as n = pq

Compute A\(n) as the least common multiple of p — 1 and ¢ — 1

Randomly pick an integer e that is smaller than \(n) and coprime with
it (no common divisors other than 1)

Compute d such that de (mod A(n)) =1



e Share n and e as public key, while keeping d (and technically n) as
private key

Encryption of a message m is straightforward, if computationally inten-
sive, as © = m® (mod n).
Decryption is very similar in that m = z¢ (mod n).

1.3 Shor’s algorithm

From the description of the RSA algorithm it can be noted that once an
attacker is able to get p and ¢ he can also easily compute d using the same
procedure that is used for key generation. While it is not proved that com-
puting d requires explicitly factoring n, no known method that exploits the
availability of e has been published. It is thus paramount that getting p and
q from n be extremely time consuming: classical algorithms for factorization
require exponential time, and, while the shorter 1024-bit RSA keys might be
breakable given enough time and resources, the longer keys up to 4096 bits
are still impregnable to any foreseeable attack.

In 1994 Peter Shor, at the time working at Bell Laboratories and now
professor of mathematics at MIT, devised an algorithm|[6] that can efficiently
factor any number that is not an integer power of a prime number. Since a
requirement of RSA is that p and ¢ are prime and different, the condition
for applying Shor’s algorithm holds. While the inner workings of the algo-
rithm are out of the scope of this thesis, the general idea of the algorithm
is that through quantum operations it is possible to obtain the period of
the function f(z) = a® (mod n), which is in turn directly related to p and
n. The algorithm requires 2log,(n) quantum bits to be effective, and while
this amounts to several thousands qubits (a far stretch from the 50 qubits
available to the most powerful devices at the beginning of 2018) the number
is not inherently prohibitive assuming quantum computing will undergo a
similar evolution as classical computing]7].

As a direct consequence of this perceived danger, researches have been
devising alternative cyphering systems that are supposedly robust to attacks
coming from future quantum computers.



Chapter 2

The LEDAcrypt cryptosystem

The LEDAcrypt cryptosystem, developed by Marco Baldi, Alessandro Barenghi,
Franco Chiaraluce, Gerardo Pelosi and Paolo Santini, is actually not one
cryptosystem but two. The first one, LEDAkem[1], is a Key Encapsulation
Mechanism, while the second one, LEDApke, is a Private Key Cryptosystem.
They are however very similar in concept and implementation, so they will
be treated together from here on.

LEDAcrypt is built on the McEliece cryptosystem[8], that uses linear
codes. The basic idea behind this cryptosystem is that decoding a generic
error-correcting code without knowing the decoding function is NP-hard.
This in turn requires being able to give a public key for anyone to encrypt a
message, while the private key that decodes the message is kept secret and
cannot be obtained from the public one. While the McEliece cryptosystem
is quite robust, with no known attacks that cannot be neutralized by slight
modification of the original system, it has almost never been used due to
the sheer dimension of the keys it requires. A standard set of keys for a
McEliece cryptosystem can be as big as 500 kb, which is an obvious setback
if compared to RSA’s 4 kb.

Honouring the convention used by the authors of the cryptosystem in the
original paper, in this thesis vectors are row vectors unless otherwise specified
and transposed vectors are column vectors.

2.1 QC-LDPC codes

LEDAcrypt uses QC-LDPC (Quasi-Cyclic Low-Density Parity-Check) codes,
that are based on quasi-cyclic binary matrices (hence the name). Quasi-cyclic
matrices are matrices having circulant blocks: each block can be completely
described by its first row. With a block size p x p and a reasonable p value,



this leads to keys more than 25,000 times smaller than they would be if they
were not circulant.

These quasi-cyclic blocks, however, are also extremely sparse and binary.
This property means it is possible to write, for each circulant block, the
position of set elements on the first row (knowing their value is one), while
everything else is assumed to be zero. A typical block is thus described with
a small number of integers and takes up only a few bytes.

2.2 LEDAcrypt’s keys

The particular code used by LEDAcrypt is made up with two matrices form-
ing the private key, from here on called H and Q:

H=[H, | H; | -+ | Hpy1] (2.1)
Q0,0 ‘ QO,l | ‘ Q07n0—1

Q _ Q:1,0 } Q:1,1 : : Ql,r:lol (2'2)
Qno—l,o | Qno—l,l | ‘ Qno—l,no—l

Each block H; in (2.1) and Q;; in (2.2) has size p x p, with p prime:
this makes the system immune to a particular type of attack and ensures
invertibility of a matrix that will need inversion to compute the public key.
Parameter ng is a small integer, that can be as small as 2. All blocks H; of
H have weight (number of set elements) d,,, with a standard choice being 17,
while blocks of Q have a weight according to the following map (which is, by
the way, circulant as well):

mo | my ‘ ’ Mpy—1
W — Mpy—1 | TT‘LO ‘ ’ mn'on
I |
my | mo | ’ mo

where m; are again small integer values.
From matrices H and Q a new matrix L is obtained as:

L=HQ=[Lo | Li | -~ | Loy

Given a proper choice of parameters d, and m = [mg, my, ..., My,,—1] the
inventors of the cryptosystem have proven that L,,_; is invertible. This



means any possible secret key satisfying the constraints on the parameters
can be used to compute a corresponding public key M such that:

M=L1!

ng—1

L=[Mo | Mi | -+ | Mpgo | L] =[ML]
The generator matrix is then obtained as:
G' = [IP(HO*l) | Mﬂ

with M being the transpose of M;. An important thing to notice is that
M, albeit dense and thus not possible to compress as much as H and Q, is
quasi-cyclic as well. This leads to a public key of size p(ng — 1) bits, as the
last p bits of M are known by construction and G’ is obtained easily from
M,.

2.3 Encryption and decryption

The ciphertext x of size 1 X png is obtained by multiplying a message u of
size 1 X p(ng — 1) by the generator matrix G’ as follows:

z=uG +e

with e being a purposely introduced error having weight ¢ which is low enough
for the code to correct with a very high chance. This is necessary because
the first p(ng — 1) bits of uG’ correspond to u itself.

The decryption algorithm used by LEDAcrypt is a custom bit-flipping
algorithm that succeeds when the syndrome of the code is null (since the
fundamental property of the syndrome in linear codes is that it is only null
for valid codewords, this effectively amounts to having removed the error).
The starting syndrome s is computed as

s" = (HQ)z"

and updated with an iterating algorithm, while the error e is initialized to a
Zero vector.
The main loop of decryption involves computing a vector R such that

>0 = st-VH

E(l) — Z(l)Q

with X and R being vectors of natural numbers, in contrast with every other
vector and matrix which are binary.

10
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Figure 2.2: Decryption in LEDAcrypt

It is now necessary to find the positions in which RY is maximum, here
denoted as set J. These positions are the ones that most likely correspond
to wrong bits. Flipping bits is not done directly on the received code zx, but
rather the knowledge of H and Q allows for direct incremental updating of
¢ and s. The new value of e is obtained as

Ueﬁ(l)

with q, being the pth

row of Q and v being one of the indices corresponding
to maximum R, Having now the updated error, the updated syndrome is
found as

sO — 501 4 OpT

and the algorithm either terminates (due to a null syndrome or exceeding
the number of permitted iterations) or starts a new cycle of the main loop.

If the algorithm terminated due to null syndrome, the error is then known
as the last e and it is then easy to get the message as the first part of the
corrected code:



Chapter 3

Hardware implementation of
LEDAcrypt decryption

This thesis is aimed at obtaining a hardware implementation of the decryp-
tion system described in chapter 2. The chosen Hardware Description Lan-
guage was VHDL (VHSIC Hardware Description Language, with VHSIC
standing for Very High Speed Integrated Circuits), as the one that the au-
thor was most familiar with at the beginning of the work, although it must
be noted that a more modern alternative exists in the form of SystemVer-
ilog. The syntaxes of these two languages, while mostly presenting clear
parallelisms, are quite different and have different tradeoffs: VHDL is a very
mature language, quite limited in core features, very well supported by EDA
(Electronic Design Automation) tools but quite pedantic, especially in terms
of typing checks and process triggers; SystemVerilog is much more lenient
but only a subset of the extensive standard is supported by EDA tools and
the additional flexibility necessarily implies additional risk of inadvertently
making a mistake that is interpreted as a legal construct.

The reason for supporting the decryption specifically is that the opera-
tions involved in encrypting are quite cheap to perform on a general purpose
processor, as it is a single pass operation consisting of copying a message,
padding it with the result of a single vector-by-matrix multiplication and
adding a few errors. Decrypting, on the other hand, features multiple vector-
by-matrix multiplications, peak detection and vector sums in a loop which
could keep the processor busy for longer than it is acceptable.

12
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Figure 3.1: Decoder and memory

3.1 Assumptions on memory

An important detail is that the decryption operation is heavily limited by
access to memory. This is due to the extreme reliance of the algorithm on
linear algebra using very big matrices and vectors, that have to reside in some
kind of RAM: while storing everything in flip-flops is theoretically possible,
the parameters giving the least secure implementation would still result in
225,000 flip-flops as a conservative estimate. Because of the huge area it
would require, parallel access to the entire vector is impossible: to avoid
excessive restraint on the algorithm I assumed a memory that can read two
values per cycle and write one is available (as in figure 3.1). This would of
course be custom on-chip memory, and in case of an FPGA implementation
an emulation could be achieved with parallel writing on multiple memory
chips at the cost of increased storage occupation. A single read or write
operation per cycle would take almost three times to complete decryption,
making dedicated hardware somewhat redundant, and sharing memory with
the main processor would likely defeat the purpose entirely by occupying the
bus.

3.2 System parameters

The implementation is completely controlled by parameters, meaning that
any legal combination of block size, weights and number of blocks can be
implemented by plugging in the desired values. Memory mapping is auto-
matic and has no impact, but it can be easily tweaked too to fit into a larger
module featuring secure communication with the processor if need be.

13



Default parameters are as follows:

dy
17

m

4, 3]

o
2

p
27779

with ng being the number of circulant blocks in matrix H, p x p being
the size of the circulant blocks, d, being the weight (number of set elements)
of each circulant block of H and m being the first row of matrix W, that is
circulant and contains the weights of the blocks of Q.

The implementation assumes that at the start of decryption matrices H
and Q, making up the secret key, are loaded into memory, and that the code
to decrypt, z, is in memory as well. H is stored as follows:

H BASE ADDRESS +

0

1

d, —1

dy

nodv -1

content

Hy

Hy

T
Hdvfl

T
Hd’u

T
Hnodufl

so that the set positions of the transpose of H are what is actually in memory.

Similarly, Q is stored as:

Q BASE ADDRESS + 0 1 mgy — 1 mo k-1
content OT,O Qal QoT,mo—l Q({mo Q()kal
Q BASE ADDRESS + k k+1 k4+mpy—1—1 | k4 mpy—1 2k —1
content {0 Ffl {mo—l {mo {k—l
no—1
i=0

with m here indicating the first row of W7 for brevity, as Q is also transposed.

With the default parameters, this amounts to 48 16-bit words of storage
(although 15 bits would suffice, if deviating from the standard of using powers
of 2 is allowed).

For ease of design it was assumed that the bits of the code x are accessible
one by one by their index, although the design does not enforce that each
bit is stored in a 1-bit memory location if a custom memory is not available.
This does result in a substantial waste of space, though, and the assumption
is as always that we have a custom memory in our chip: in this case this
would allow us to have no waste while having access to single bits.

14




Chapter 4

Key reconstruction

The first step needed to decrypt the code is obtaining the syndrome. Since
s"=La" — s=2aL"
holds, the objective of this submodule is computing LT as
L=HQ— L' =Q'H"

Handling traditional matrix multiplication, with H having size 27779 x
555568 and Q having size 55558 x 55558 at best, is out of question: such a
calculation requires 8.5 - 10'® multiplications and about as many sums and
would take ages. The particular format of H and Q, however, allows for a
very efficient implementation.

4.1 Circulant block multiplication

A binary circulant matrix having only its first element set is the identity
matrix, and multiplying any matrix by it results in the starting matrix. A
binary circulant matrix having only its second element set circularly shifts
all rows of the other operand right by one position, and so on. It follows that
the multiplication between two binary circulant matrices, with one having a
single set element in the first row, is another binary circulant matrix of the
same size. We can then easily extend the result by expressing any binary
circulant matrix as the sum of many having a single set element, and state
that the product of any two binary circulant matrices is circulant: to ensure
it is binary it is sufficient to perform all sums of partial products modulo 2.

It is then possible to obtain the product of two circulant blocks A and B
as follows:

A= |:a0 a --- am_1:|

15



B=[b b - by
AB:[GU—FbO Clo"‘bl a1+b0 am,1+bn,1ﬂ

with a; being the position of the it set element of A and b; being the

position of the jth set element of B. The result is the list of set positions in
the product, with all sums being performed modulo p to take into account the
rotation of set bits “out of the right margin and back into the left one”. There
is one more problem, however, that is the cancellation of terms: if both A and
B have set positions [0, 1] the product will have set positions [0, 2], but this
algorithm will output [0, 1,1, 2]. Tt is then necessary to eliminate duplicates
that appear an even number of times: this implies the actual weight of the
result is unknown. Given the added complexity of tracking weights has no
real advantage in terms of memory usage, as the space reserved for each
operation must be the maximum one possibly occupied by the result, it was
chosen to simply fill the unused position with illegal values.
The hardware implementation is as follows:

e get ag and by, then compute ag + by and save the result modulo p in a
temporary variable

e get by, compute ag+by, save the result modulo p in a temporary variable

e continue until all combinations have been processed, we now have a
temporary result in memory

e sort the temporary result to have all set positions in order: this is
done in place with an insertion sort algorithm|2] that does not require
additional space in memory

e ¢o through the temporary result and copy all values that are different
from the one immediately following them in the memory space for the
real result: if two successive values are equal skip them both

e if it was not skipped as a result of the previous value, copy the last
value of the temporary result into the real result (the previous iteration
requires a ‘next value” to compare to and can’t be applied to the last
element)

e fill all remaining memory location assigned to the result with “invalid”
flags, i.e. illegal values: in line with the software implementation, p
was used as invalid flag (since the last legal position is p — 1)

16



4.1.1 Out-of-order result and modulo p implementa-
tion

The implementation of anything having to do with division is usually very
costly in terms of area and performance, either taking multiple cycles to
compute a result or needing very big combinational networks to compute the
result. The particular problem at hand does once again provide a way to
reduce complexity, allowing for a short critical path using little area:

a; < p

bj<p
Gi+bj<2p—1

This means that there are only two possible solutions to a; +b; (mod p):
either a; + b; or a; + b; — p. The second value is computed in the same cycle
as the first one and a simple comparator then selects the proper result: this
is easily done by checking the sign of a; +b; — p, as that is the correct result
if it is positive (a circuit performing the operation is shown in figure 4.1).

The state machine (depicted in figure 4.2) controlling the actual operation
is actually quite simple, depending mostly on parameters known at compile
time: it sits in an idle state until a “start” signal is received, at which point
two nested loops are performed to select all combinations of a; and b;. Values
1 and j are added as offsets to the base addresses of the two circulant blocks,
provided by the parent module that controls the multiplication of Q* by HT.
The address of the result z; is obtained by summing to the base address of
the result block a counter £, incremented in the inner loop and reset when
the block is idle. Once the result is ready in memory, the state machine raises
a flag and stays in a “done” state until the “start” signal is deasserted: it
then moves to an idle state and can perform another multiplication.

The implementation computes one result per cycle and writes it immedi-
ately to memory, then it moves to the next value on the following cycle.

If a real implementation suffers from critical path problems while trying
to achieve this, since the circulant multiplication block has no feedback, it
can be pipelined without side effects as long as the frequency of the memory
can keep up with the frequency of the decoder itself, at which point the
memory-bound nature of the problem requires reconsidering how data are
stored.

Storing data in multiple memories is possible, interleaving access to each
of them and thus multiplying the effective maximum frequency of the decoder
at the cost of more buses: this is easily done by using the least significant bits
of the addresses as computed by the existing modules as inputs to a decoder

17
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Figure 4.2: Multiplication between two circulant blocks

for memory selection, thus cycling through all memories before coming back
to the initial one. A future modification would however need a thorough
investigation on the consequence of such a choice on the system at large,
to ensure all modules do have sequential access to memory locations: if
this assumption does not hold additional logic is required to slow down the
decoder when there is the danger of multiple subsequent accesses to the same
memory.

4.1.2 Result sorting

The result as computed up to now is out-of-order, meaning that the list of
positions of set bits is not increasing: this is not technically a problem in
terms of end result, but efficient implementation of some operations require
ensuring that the list is monotonically increasing. As such, a sorting step is
needed: the insertion sort was chosen due to the algorithm simplicity (directly
translating to hardware complexity and ease of implementation) and because
it is an “in place” algorithm that does not require additional memory other
than a temporary variable to swap adjacent values.

The insertion sort is based on two nested loops, the outer one moving
from the start of the list to its end and the inner one moving back until
the correct position for the element pointed in the outer loop is found. The
algorithm performs the following operations:

e from the starting list two lists are built: the first, sorted, is initially
made of the first element of the starting list; the second one is all the
rest

19



e the first element of the unordered list is compared to the last element
of the ordered list

e if the new element is bigger than the biggest element of the ordered
list, it is appended at the end of the ordered list; if it is not, the biggest
element is moved to the end of the list (now one position “right”) and
the new element is compared with the second biggest one

e comparisons continue until the new element is bigger than the old one
we are comparing it to or the beginning of the list is reached, then the
new element is placed just after the one it was compared against

a new element is taken from the unordered list and the previous steps
are repeated until all elements are moved to the sorted list

The hardware implementation is extremely simple, consisting of a com-
parator and a register containing the value being inserted in the current
iteration. The value from the sorted sub-list is directly taken from memory,
and the smaller of the two is selected by a multiplexer and sent back to mem-
ory in the position right after the one in which the already-sorted element
resides. A simple control unit takes care of selecting a new element to insert
(outer loop, increasing a counter each time the previous element is inserted)
and selecting the appropriate values to compare this element against (inner
loop, decreasing a second counter that starts one off the current value of the
first one).

Future improvements to the sorting operation could come from the study
of an ad-hoc algorithm tailored to the specific distribution of the out-of-order
result, possibly taking advantage of the monotonic segments that are already
present to implement a custom merge-sort. No additional investigation was
done in this direction.

4.1.3 Modulo 2 on compressed matrices

Given a circulant block stored in memory as defined in previous sections, any
position containing a value n is present n times in the list of set positions. Due
to the result being sorted, any position containing a value bigger than once
will be present multiple times in adjacent positions in memory, thus allowing
for a fast elimination of pairs in a single pass. The elimination of pairs
results in positions appearing an odd number of times reduced to appearing
only once and positions appearing an even number of times disappearing
completely, thus getting a modulo 2 multiplication from the partial result
over the natural numbers.
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The hardware implementation uses two counters to cycle through mem-
ory: the first one is used to access two adjacent memory cells to compare
their content (an actual synthesis might prefer to have two separate counters
offset by 1 and avoid the combinational logic needed to compute the incre-
ment), the second one points at the cell where the value is going to be copied.
The algorithm is as follows:

e Set i, j to 0 (i and j are offsets from the base of the list in memory)

o Get the it and the (14 1)th elements of the list, from here on a and b

th

e If a # b copy a in place of the j°* element of the list, increase ¢ and j;

if @ = b increase 7 twice

e Repeat until 7 points either to the last element of the list or to the
memory cell just after

e If 7 points to the last element of the list copy it in place of the jth

element of the list

e Fill the rest of the list with data recognizable as invalid, such as p

4.2 Circulant block sum

Summing two circulant matrices stored in the format in use is simply done by
concatenating the list of set positions and then taking the modulo 2 like it is
done with the multiplication. A more efficient approach is however possible
by merging the sorting and the modulo operation with the concatenation, in
order to avoid doing these necessary steps later on.

This is done with three different counters used to point an element of
the first block, an element of the second and the cell where the result will
be stored. The two operand positions are compared: they get discarded if
they are the same (this ensures the result is modulo 2 without additional
operations), otherwise the smaller one is copied in the result cell and the
next position from its block is fetched for the next cycle. The precedence in
copying the smaller position first results in the sum being ordered.

The exact algorithm is as follows:

e Set 7, 7, k to 0 (offsets from the base of the lists containing the set
positions of the first operand, the second operand and the result)
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e Retrieve the positions pointed by i and j (from here on a and b) and
compare them: if a = b increment ¢ and j, if a < b copy a in the
memory cell pointed by k£ and increment ¢ and &, if a > b copy a in the
memory cell pointed by £ and increment j and k

e Repeat until @ and b are either invalid or all values have been processed

e Fill all remaining positions of the result (if any) with invalid values

4.2.1 Memory movement

The sum of two circulant blocks as shown above is not done in-place, as
there is no way to ensure that no information that is still needed would not
be overwritten by the ongoing operation. As such, it is needed to move
the result from a temporary location to its final destination. The hardware
performing this operation is extremely simple and uses a single counter as
offset to two different base positions in memory, copying the values from the
first into the second until done.

4.3 Quasi-cyclic multiplication

The aforementioned submodules implement operations among circulant blocks,
which are however not what we are intersted in per se: the objective of the
key reconstruction operation is getting L, which is not a single circulant
block. As such, we need to show that operations among quasi-cyclic matri-
ces can be expressed as operations on their single circulant blocks.

Given that LT = QTH?, the standard implementation of matrix multipli-
cation would consist in computing the sum of the element-wise multiplication
between the it row of Q7 and the jth column of H” to obtain each element
l@j € LT:

Qo,o Qo,l T Qo,n0—1 40,0 do,1 T q0,nop—1
QT _ Ql,o Q1,1 ce Q1,n0—1 _ q1,0 qi,1 ce qd1,nop—1
Qno.—l,O Qno‘—l,l T Qno—.l,no—l Qnop—LO qnop—l,l Tt Qnop—l,nop—l
H, ho,0 ho.1 ce hop—1
O I
Hn‘ofl hnopfl,(] hnopfl,l e hnopfl,pfl
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LO l0,0 lO,l T lO,pfl
Ll ll 0 ll 1 e ll
) El ’P_l
LT = —
Lno—l lnop—l,O lnop—l,l e lnop—l,p—l

nop—1

lij = Z Qisnlnj
n=0

From the previous equation, simple algebra shows that:

no—1 [ (m+1)p—1

lij = Z Z Qisnlin,j

m=0 n=mp

While the latter equation is somewhat inelegant, it expresses an impor-
tant property of the system at hand: it is possible to break up the sum to
work with smaller vectors (in our case of size p) without affecting the final
result. This is important because multiplying the circulant block Q, ., by
the circulant block H,,, results in:

(m+1)—1
A modpg = O, (Ginhng) i€ lxp (x+1)p—1]

n=mp

with A; (mod p),; being the element of Q, ,,H,, in row ¢ (mod p) and column
7. It is then possible to expand on this result with:

no—1 n0—1 [ (m+1)p—1
m=0 m=0 n=mp

which is computing all I;; : i € [zp,(x + 1)p — 1] in parallel, using the
extremely efficient implementation allowed by the representation of circulant
blocks. It can then be noted that:

no—1

Z (Qx,mHm) =L,

m=0

Iterating through = € [0,n9 — 1] it is then possible to obtain the full L”
matrix only using multiplication and sum of circulant blocks and concate-
nating the results.

The hardware implementation uses a request-based system in which each
module implementing an operation over circulant blocks is inactive until
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Figure 4.3: Module computing LT = QTH”

explicitly awoken by the control unit. Each module has moreover as inputs
the base position in memory of the circulant blocks on which it will perform
the operation (both operands and result, where applicable) and the maximum
size of the inputs, needed because the weight of Q ,, depends on z and m.
The outputs to memory of each submodule are multiplexed by the control
unit and forwarded up the hierarchy, while the “operation done” signals are

used

to move between states of a finite state machine without the need to

know the exact duration of the operation beforehand.
The state machine is as follows:

set i, j to 0 (i, j indexes of circulant blocks in QT and HT)

when instructed to start, multiply Q;; by H; and put the result in a
temporary location

sort the result in place
get the result in modulo 2 in place

if 7 = 0 copy the result into L;, else sum the result to L; and save the
sum in a temporary location

copy the sum to L;
repeat for all j, then set j = 0 and repeat for all ¢

signal that the operation is done
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Chapter 5

Vector by matrix multiplication
(and vice-versa)

After retrieving LT, all information needed to compute the syndrome of the
received code zx is available. The syndrome is computed as

s=zL"

The needed operation is the multiplication of a vector by a matrix, which
is recurrent in the main decoding loop too: it is thus paramount to get a
performant module that can be time multiplexed and that is flexible enough
to be capable of handling different sizes of vectors and matrices.

5.1 Vector by circulant matrix

As all matrices involved in the decoding operation are concatenations of
circulant blocks, the most basic building block would be a module capable of
multiplying a vector having length p by a circulant block or vice-versa: the
proof that this is sufficient is deferred to individual sections below.

For what concerns all operations in this section, it is assumed that a is a
vector of length p stored in memory as a concatenation of individual values
(that might or might not be binary) and B is a binary circulant block of
weight w stored in the usual “set positions” format. Vector ¢! is the result
of ¢’ B and has size p too.

QT = [Clo ap - Clp—1]
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B— bp—l b.O bp—2
bl b2 c. bO
= [Co TR Cp—l]

It can be noted that ¢ is, trivially:
Co = aobo + Cllbpfl + -+ ap,1b1

More interestingly, this same relation can be expressed as:

p—1

o = E anbp_y,

n=0

Similarly:
c1 = apby + a1by + - - 4+ ap_1bo

p—1
C1 = E anbpfnJrl (mod p)
n=0

This is finally expanded into a single relation that states:

p—1
Ci = E anbpfnJri (mod p)
n=0

We thus have a universal analytic expression for the value of any ¢; given
that B is circulant. Due to the sparsity of B (we remind that B is a block of
H”, QT or L) it is possible to entirely avoid operations in which b,, is not
set, saving a lot of time.

To further optimize the hardware implementation of the operation, due to
the sum involving three operands (the accumulator, a,, and b,,) while we only
assumed two read ports were available, b,, (actually m itself, given the way
matrices are stored) is read first and stored in a register, and all operations
involving that single b, are computed before moving to the next one. This
is more efficient than reading a, and storing that, as p operations involve
b,, while only w operations involve a,: reading the operands the other way
around results in p — w wasted cycles. A loop over n retrieves all a, and
points the affected result ¢4 (mod p)» then the next set m (easily found in
the next position in memory) is retrieved and stored and the operation is

repeated until the last m is reached, at the wtl iteration.
At that point the result is ready and the module signals that the operation
is finished.
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5.2 Circulant matrix by vector

We now analyze the case in which d = Ba:

Qo
a=|
ap._l
by by by
5 by b'0 by_s
b b b
do
a=| "
dp',l

It can be trivially obtained that:

p—1
do =Y buan
n=0

p—1
dl = Z bnfl (mod p)Qn
n=0
And the result can be generalized to:
p—1
d; = Z bn—i (mod p)Qn
n=0

This result is very similar to what we obtained in the previous section.

Indeed, we can write the two results such that:

p—1

Ci = Z anb(i—n) (mod p)
n=0
p—1

di = anb—(i—n) (mod p)
n=0



The hardware that controls the two operations can thus be the same,
fixing m (index of b,,) and sweeping through n to obtain i. The insertion of
a simple control signal lets us select wether we want to perform aB, in which
case we compute the result address as i = n +m (mod p), or Ba, in which
case the result address is i = n —m (mod p).

The only modification needed to support both operations is thus using an
adder-subtractor instead of a simple adder in the target address computation
section: the entirety of the control finite state machine is shared.

5.3 z by LT

The starting syndrome of the code is:

s =zL”

§:[30 S1 Sp—l]

We can write z as:
i — [&0 zl N gno—l] — |:£U0 X1 PN xp—l xp P xnop—1:|

2 is thus split into ng p-length vectors, while LT is by construction split
in blocks already.
Lo
I
Lno—l

By definition, s; is the sum of the element-wise multiplication between z
and the i*® column of L. We hereby define s, as:

S, = 2Ly

Each of such s, is thus a partial sum and we can get then s as:

no—1

§:E§k

k=0

It is thus possible to obtain s through multiplications of a vector by a
circulant matrix, using the module we described in the previous section. Due
to the particular implementation of the module, moreover, all multiplications
behave as a “multiply and accumulate” operation, meaning there is no need
to actually implement the sum thus saving area and execution time.
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The module performing this operation is thus simply a control unit that
provides the base address in memory of the appropriate slice of x and of
the proper block of LT (the latter of which is somewhat complicated by
the fact that different blocks of LY have different weight, but is resolved
with a simple look-up table). The unit then instructs the vector-by-circulant
core to perform a vector by matrix multiplication, storing the result in the
base address of s, and waits for the multiplication core to return to then
provide new values for the base addresses of the operands. Once the ngh
multiplication has returned the control unit itself returns.

54 H! by s’

In the main decoding loop the first operation is obtaining X as:

w0 g — HT (-1 T
by (s")

g0
(2@)T__ 7
Unop—l
Given that H” is:
H,
H7 H
Hno—l

and s has p elements, each o; can be obtained by multiplying a row of
a single block by s”. The result will then be not the sum of many terms
like before, but the concatenation: this is simply done incrementing the base
position of the matrix-by-vector result by p between operations.

2

<2(l))T _ 21
znofl

%, = H;s'™Y

The hardware implementation is similar to the one used previously, but
provides a new base address for the result of each multiplication instead
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of accumulating over the same one and instructs the multiplication core to
perform a circulant-by-vector operation.

55 QT by &7

After obtaining Y, R is obtained as:

RTO — QTyT0)
To
gTO — |
Tnop—1

The operation is more complex as Q' is square, thus both concatenation
and sum will be needed:

Q0,0 | QO,l | | QO,no—l
QT — Q10 | Qua | | Qine-1
N | :
Qn0—170 | Qn0—171 | | Qno—l,no—l
R,
ar_ | B
Eno—l
no—1
Ez = Z QZJZ‘]
j=0

The implementation is more complicated than the other ones, but it keeps
the same basic principle: two nested loops iterate over j and ¢ providing the
base addresses of R;, Q;; and X;, with the appropriate values for the base
of circulant blocks provided by a look-up table

5.6 e by H'

The last operation in the decoding loop involves computing an increment
vector for the syndrome, as



Since e has the same size as x and H has the same size as L, this operation
is exactly equivalent to the multiplication s = zL”. Again, due to the
multiplication really behaving as a “multiply and accumulate”, the result
As is directly summed to s with no overhead.
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Chapter 6

Error update

Vector R contains the count of unsatisfied parity checks in which the corre-
sponding bit of x is involved. To proceed with the algorithm, the bits which
are most likely to be wrong need to be found.

6.1 Peak search

Finding the peaks of R is done via a simple single-pass sequential algorithm,
although it would be possible to parallelize the algorithm by replicating the
hardware and adding logic to merge the results. Still, the time consumption
of this step is sufficiently small with respect to the total required for the loop
(dominated by vector-by-matrix multiplications) that this parallelization was
deemed unnecessary for this experimental implementation.

The hardware implementation consists of a temporary register containing
the current max and an array of fixed, arbitrary size to contain the position
of all values equal to the current max. While the size of the array can
be changed, having it too small will impact performance and possibly the
stability of the algorithm, while having it too big will result in a very high
area footprint. The maximum is initialized to 0 and the array is initialized to
all invalid positions, then each time a value equal to the maximum is found
its position is appended to the array, if there is space left. If the array is
full, no operation is performed and the algorithm continues normally. Each
time a value greater than the maximum is found, the maximum is updated,
the array is flushed and the first value of the array is set to the position of
the new maximum. The algorithm then completes once the entirety of R has
been walked through, and returns the array for usage in the next module.
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6.2 Row extraction from compressed matrix

The next step in the algorithm requires summing to the current error e the
rows of QT having the index of the found maxima. As we do not have the
matrix stored in a readily-available format for this operation (we only have
the first row of each block, while we need individual row access), a relation
between the set positions in the first row of each module and the set positions
in an arbitrary row must be found.

One complication is that any row q,, stretches over multiple blocks Q. ;:

Qo0 Qo1 s Qono—1
QT Qi Qi1 s Qi np—1
Qno—l,O Qno—l,l T Qng—l,no—l
qo,0 qo,1 s qo,p—1 qdo.,p ce qo,nop—1
q1,0 q1,1 te q1,p—1 q1,p T q1,nop—1
= | 9p-1,0 Qp—1,1  *°° Qp—-1p-—1 Qp—1p " Qp—1mngop-1
4p,0 4p T dp,p—1 dp,p T 4p,nop—1
Ldnop—1,0 Gnop—1,1 " Gnop—1,p—1 Gnop—1,p "  Gnop—1,nop—1.
We can get the !0 vow of a circulant block A
aO a‘l P a’p—l
Ay,_1 Qg --- Ap_2
p p
A
aq as - ag
T
a = [apfl (mod p) Ap—I+1 (modp) p—i+2 (modp) -~ A2p—i-1 (mOd p):|

This means it is possible to get any q, as concatenation of rows of the ap-
propriate blocks. The blocks involved are all blocks Q; ; with ¢ = floor(k/p),
while [ is obtained as [ =i (mod p).

6.3 Vector plus compressed row

Due to the blocks Q; , being stored in compressed format and the sparsity of
the rows, it is convenient to handle ¢, in no chunks of length p and maintain
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the compressed format on the result, in order to have a list of set positions
matching the positions that will need to be flipped in the corresponding
chunks of e. This is easily done reading all [ corresponding to set bits in the
first row of the block and applying the operation we described in the previous
section, with the result being the list of set positions for q,.-

The actual sum consists in computing ¢ and [ in order to get the affected
row of blocks and individual row offset, then iterating through the row of
blocks one at a time to compute the list of set bits and flipping the corre-
sponding bits in e. Once done with a row, the next k is fetched from the
list of rows to be summed and the operation is repeated until either all rows
have been summed or £ is invalid, indicating that the number of peaks in R
was smaller than the maximum supported by the decoder.

The operation is done incrementally in place, so that no additional mem-
ory is needed to store intermediate results.
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Chapter 7

Main loop state machine

The entirety of the decoder is controlled by the top-level state machine,

calling the various functions as they are needed according to the algorithm.

This state machine is the bus arbitrator that multiplexes the RAM signals

coming from the various blocks and forwards them to the external pins.
The state machine performs the following operations:

wait for the “start” signal
ask the key reconstruction module to retrieve LT

ask the module performing the zL” operation to compute the syndrome
s

ask the module performing the H”s” operation to compute X7
ask the module performing the QTX” operation to compute R?

ask the peak finder module to compute the positions of the maxima of
R

ask the sum module to add all the rows of QT corresponding to the
found maxima to e

ask the module performing the eH” operation to update s
clear all temporary results, including ¥ and R

check whether s is null or the iteration limit was reached: if one of the
conditions holds compute the message, otherwise loop back to the step
that computes X and increase the iteration counter
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e return the “done” signal; in case the iteration limit was reached, report
a decoding failure

As multiplication operations are implemented as “multiply and accumu-
late”, results from previous iterations would add up continuously. While this
is desirable for certain vectors (s and e), it is disruptive for all the others: as
such a memory clear step is performed between iterations zeroing the memory
sections containing » and R

7.1 Design modularity and shared resources

Deep emphasis was put in the reutilization of the same basic blocks over and
over in orther to save resources, wherever this was possible. The only common
blocks that could potentially be shared and were not arranged to be are the
mod p operators: this was a deliberate choice to ease code development and
readability, while the module itself is reasonably simple so that the area
overhead is not too high. In terms of actual implementation, this maps to
more raw silicon needed for the gates but less routing and no multiplexing.

Modularity was achieved through a “function call” architecture that was
devised to make each module accept any data that fit with the template,
that being either a vector of length p or a circulant block and its weight. All
vectors and blocks are passed by reference as pointers to memory, so that
actual data transfer between block is minimals. The algorithm implementing
the decoder is not suited to pipelining, but this very drawback is what allows
for the resource sharing as all operations performed at different points of the
algorithm are ensured not to be called concurrently.
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Chapter 8

Conclusions

The proposed implementation is but a first step in the study of the feasibil-
ity on silicon of cryptographic QC-LDPC codes. While all operations needed
as basic blocks to decode the input are simple, well known and efficient, the
architecture at large is very much experimental and might present severe bot-
tlenecks in high-frequency operation, especially on the side of data transfers
to memory which are paramount to the decoder.

Future improvements are likely to come in the form of an additional mem-
ory management layer, translating requests to a complex memory structure
able to maximize the data rate. This could be done in much the same way
as was devised for hard disks with the RAID architecture[9], with multiple
separated memory units having independent access that would thus be able
to transfer, albeit at slow speed for each transaction, a massive amount of
data per cycle. Additionally, while having memory internal to the decoding
unit itself would be unfeasible for vectors (all of which have length at least
p), the cost of storing internally the compressed HY, QT and L’ matrices
is quite low: this makes it possible to have a fast portion of memory that is
expected to be accessed in a single cycle even at very high frequencies.

Minor improvements in terms of resource sharing can be gained by unify-
ing the control finite state machines performing the multiplications s = xL”
and As = eH” and possibly sharing a single modulo p computation unit.

In terms of actual algorithm parallelization and assuming the problem
of the memory bottleneck as completely solved, the computation of the un-
ordered result LT = QTHT” can be performed in parallel by simple replication
of the processing unit, with the limit being computing all its element in one
single pass. Investing bigger area then currently allotted it would also be
possible to use faster sorting algorithms like the merge sort[10], while elim-
ination of adjacent doubles from a list to implement the modulo 2 and the
sum of matrices could be done with a two-cycle operation operating first on
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even-odd pairs and then on odd-even ones. Still, all of this only results in
speeding up the key reconstruction which happens only once.

Parallelizing operations involving vectors is more challenging, due to the
sheer size of the vectors themselves. Throughout chapter 5 it was shown that
all operations on vectors can be reduced to operations on length p vectors,
but p is very big nonetheless. Multiplications with circulant blocks are in
essence circular shifts and sums: a system to implement shifts over sections
of a vector (as opposed to the entirety of it) can be obtained by simply having
multiple units performing the operation. Peak finding can be carried out on
segments and the results merged. The row sum operation can be carried out
in parallel for each row, although the benefit of doing so is likely minimal.
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Appendix A

Source code

A.1 Key reconstruction

Circulant multiplication

1

2|— Author: Flavio Tanese

3|— Politecnico di Torino 2018

4

5|— Multiply two sparse circulant binary matrices stored in a memory as the
6|— positions of set bits in their first row, and return a ”tentative” result
7|— (which is unordered and not simplified modulo 2) in another location in
8| —— memory .

9]— Controlling circuitry should take care of keeping all inputs in the
10|— 7 function arguments” section constant until the module reported back,
11|— and of ensuring validity of such inputs (no overlapping memory ranges and
12|— so omn).

13|— The ”start_-i” signal should be kept high until "mult_done_o” goes high,
14|— implementing a rudimentary handshake, but this is not strictly required if
15|— the control circuitry operates on the same clock.

16

17| library IEEE;

18 use IEEE.std_logic_1164.all;

19 use IEEE.numeric_std. all;

20| library work;

21 use work.system_params. all;

22 use work.matrix_types. all;

23 use work.matrix_mult_functions. all;

24

25| entity circulant_multiplication is

26 port (

27 — control signals

28 clk_i: in std_-logic;

29 rst_n_i: in std-logic;

30 start_i: in std_-logic;

31 —— function arguments in (not latched)

32 a_limit_i: in mnatural; — number of elements in 1st matrix
33 a_base_i: in addr; — base address of 1st matrix

34 b_limit_i: in mnatural; —— number of elements in 2nd matrix
35 b_base_i: in addr; — base address of 2nd matrix

36 z_base_i: in addr; —— base address of result matrix
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37 —— data, addresses and controls to memory

38 a_i: in pos; — operand from 1st matrix
39 a_addr_o: out addr; — address for 1st matrix
40 b_i: in pos; —— operand from 2nd matrix
41 b_addr_o: out addr; — address for 2nd matrix
42 Z_0: out pos; — Ltr result

43 z_addr_o: out addr; — address for Ltr result

44 WrI_0: out std_logic; —— write enable for memory
45 — report back once done

46 z_limit_o: out natural; — number of elements in result matri
47 mult_done_o: out std_-logic — high when done

48 )s

49l end entity circulant_multiplication;

50

51| architecture rtl of circulant_multiplication is

52

53 — assume inputs are kept constant by higher level state machine so we do
54 — not need to sample them on start

55

56 signal a_index: natural;

57 signal b_index: natural;

58 signal z_index : natural ;

59 signal next_a_index: natural;

60 signal next_b_index: natural;

61 signal next_z_index: natural;

62

63 type state_t is (IDLE, BUSY, DONE);

64 signal state: state_t;

65 signal next_state: state_t;

66

67| begin

68

69 zZ_0 <= a_-i 4+ b_i when a_i + b_i < P else

70 (a-i + b-i) mod P;

71

72 a_addr_o <= a_base_-i + a_index;

73 b_addr_o <= b_base_i + b_index;

74 z_addr_o <= z_base_i + z_index;

75

76 — count number of elements of result matrix, this can be done with a
7 — multiplier but we are not in a hurry and do not want a big footprint.
78 —— Using z_index we get that for free!

79 z_limit_o <= z_-index;

80

81 state_.comb: process(

82 state, start_i, a_limit_i, b_limit_i, next_a_index, next_b_index
83 )

84 begin

85 case state is

86 when IDLE =>

87 if start_i = ’1’ then

88 next_state <= BUSY;

89 else

90 next_state <= IDLE;

91 end if;

92 when BUSY =>

93 — exit this state only once all combinations have been done
94 if b.index /= b_limit_i or a_index /= a_limit_i then
95 next_state <= BUSY;

96 else

97 next_state <= DONE;

98 end if;
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when DONE =>

if start_i = ’0’ then

next_state <= IDLE;
else
next_state <= DONE;
end if;
when others =>
next_state <= IDLE;
end case;
end process state_comb;
state_seq: process(rst_n_i, clk_i)
begin
if rst_n_i = 0’ then
state <= IDLE;
elsif rising_edge(clk_i) then
state <= mnext_state;
end if;

end process state_seq;

output-comb: process(

state , a_index, b_index, z_index
)
begin
case state is
when IDLE =>
next_a_index <= 0;
next_b_index <= 0;
next_z_index <= 0;
WTI_0 <= ’07;
mult_done_o <= 0’

when BUSY =>

if a_index < a_limit_i then

next_a_index
next_b_index
else
next_a_index
next_b_index

<= a-index + 1;
<= b_.index;

<= 0;
<= Db_.index 4+ 1;

end if;
next_z_index <= z_-index 4+ 1;
Wr_o <= 17
mult_done_o <= ’0’;
when DONE =>
next_a_index <= a.index;
next_b_index <= b_.index;
next_z_index <= =z_index;
Wr_0 <= 0’
mult_done_o <= 17
when others => —— behave like IDLE
next_a_index <= 0;
next_b_index <= 0;
next_z_index <= 0;
WTI_o <= 07
mult_done_o <= 0’
end case;
end process output_comb;
output_seq: process(clk_i, rst_n_i)
begin
if rst_n_i = 0’ then
a_index <= 0
b_index <= 0
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z_index <= 0
elsif rising_edge(clk_i) then

a_index <= next_a_index;

b_index <= next_b_index;

z_index <= next_z_index;
end if;

end process output_seq;

end architecture rtl;

A.1.1 Sorting

library IEEE;
use IEEE.std_logic_-1164.all;
use IEEE.numeric_std. all;
library work;
use work.system_params. all;
use work.matrix_types.all;
use work.matrix_mult_functions. all;

entity sort is

port (
— control logic
clk_i: in std-logic;
rst_n_i: in std_logic;
start_i: in std-logic;
— function arguments in (not latched)
limit_i: in mnatural; — number of elements in array to
base_i: in addr; — base addr of array to sort
—— data, addresses and controls to memory
a_i: in pos; —— element A from array
a_addr_o: out addr; — address of element A
b_i: in pos; — element B from array
b_addr_o: out addr; — address of element B
Z_0: out pos; — element Z to array
z_addr_o: out addr; — address of element Z
WrI_0: out std_logic; —— write enable for memory
— report back once done
sort_done_o: out std_logic —— high when done

)

end entity sort;

architecture rtl of sort is
—— element A will be overwritten in the array, so we need to sample it
—— order to insert it in the right place later on
signal tmp: pos;

signal next_tmp: pos;

— literators

signal 1i: natural ;
signal j: natural ;
signal next_i: natural;
signal next_j: natural;

— state machine

type state_t is (
IDLE, PREPINNER, CHECKINNER, LOOPINNER,
LASTINNER, SAVE. 0, SAVE_1, DONE
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signal state: state_t;
signal next_state: state_t;
begin
b_addr_.o <= base_i + to_unsigned(j, address_bits);
state_.comb: process(state, start_i, next_j, next_i, a_i
begin
case state is
when IDLE =>
if start_i = ’1’ then
next_state <= PREPINNER;
else
next_state <= IDLE;
end if;
when PREP_INNER =>
next_state <= CHECKINNER;
when CHECKINNER =>
if j /=0 and b_.i > tmp then
next_state <= LOOPINNER;
elsif j = 0 and b_i > tmp then
next_state <= LAST_INNER;
else
next_state <= SAVE_l;
end if;
when LOOP_INNER =>
if next-j /= 0 and a_-i > tmp then
next_state <= LOOPINNER;
elsif next_j = 0 and a_-i > tmp then
next_state <= LASTINNER;
else
next_state <= SAVE_l;
end if;
when LASTINNER =>
next_state <= SAVELO;
when SAVE 0 =>
if i /= limit_.i — 1 then
next_state <= PREPINNER;
else
next_state <= DONE;
end if;
when SAVE_.1l =>
if i /= limit_i — 1 then
next_state <= PREPINNER;
else
next_state <= DONE;
end if;
when DONE =>
if start_i = 0’ then
next_state <= IDLE;
else
next_state <= DONE;
end if;
when others =>
next_state <= IDLE;
end case;
end process state_comb;
state_seq: process(rst_n_i, clk_i)
begin
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if rst_n_i = 0’ then
state <= next_state;
elsif rising_edge(clk_i) then
state <= next_state;
end if;
end process state_seq;

output_comb :
begin
case state is
when IDLE =>

— internal signals

process(state, a-i, b.i, tmp, i, j)

next_tmp <= tmp;

next_i <= 1

next_j <= 0

— outputs

a_addr_o <= base.i 4+ to_unsigned (i,
z_addr_o <= base-i + to_unsigned(j + 1,
zZ_0 <= b_.i;

Wr_o <= ’0’;

sort_done_.o <= ’'07;

when PREPINNER =
— internal signals

next_tmp = a_i;
next_i <= i,
next_j <= i = 1;
—— outputs
a_addr_o <= base.i 4+ to_unsigned (i,
z_addr_o <= base-i + to_unsigned(j + 1,
Z_0 <= b_.i;
WTI_0 <= 0’
sort_done_.o <= ’'07;
when CHECKINNER =>
— internal signals
next_tmp <= tmp;
next_i <= ij;
next_j <= j;
— outputs
a_addr_o <= base.i 4+ to_unsigned (i,
z_addr_o <= base.i + to_unsigned(j + 1,
Z_0 <= b_.i;
Wr_0 <= 0’
sort_done_o <= ’'07;

when LOOPINNER =>
— internal signals

next_tmp <= tmp;

next_i <= ij;

next_j <= j - 1;

—— outputs

a_addr-o <= base-i + to_unsigned(j — 1,
z_addr_o <= base.i + to_unsigned(j + 1,
Z_0 <= b_.i;

Wr_o <= 17

sort_done_o <= ’'0’;

when LAST_INNER =>

—— internal signals

next_tmp <= tmp;

next_i <= ij;

next_j <= j;

— outputs

a_addr_o <= base_.i + to_unsigned (i,

z_addr_o <= base_.i + to_unsigned(j + 1,
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Z_0
Wr_o
sort_done_o

when SAVE 0 =>

— internal

b_i;
71 7;
70 7;

signals

next_tmp <= ‘tmp;
next_i <= i+ 1;
next_j <= j;
— outputs
a_addr_o <= base.i + to_unsigned (i, address_bits);
z_addr_o <= base.i + to_unsigned(j, address_bits);
Z_0 <= tmp;
Wr_o <= 17
sort_done_o <= '0’;
when SAVE.1l =>
— internal signals
next_tmp <= tmp;
next_i <= i 4+ 1;
next_j <= j;
—outputs
a_addr_o <= base_.i + to_unsigned (i, address_bits);
z_addr_o <= base_.i + to_unsigned(j + 1, address_bits);
Z_0 <= tmp;
WTI_0 <= 17
sort_done_.o <= ’'07;
when DONE =>
— internal signals
next_tmp <= tmp;
next_i <= ij;
next_j <= j;
—— outputs
a_addr_o <= base.i + to_unsigned (i, address_bits);
z_addr_o <= base.i + to_unsigned(j + 1, address_bits);
Z_-0 <= tmp;
Wr_0 <= 0’
sort_done_o <= '17;
when others => —— behave like IDLE
— internal signals
next_tmp <= tmp;
next_i <= 1
next_j <= 0
—— outputs
a_addr_o <= base.i + to_unsigned (i, address_bits);
z_addr_o <= base_.i + to_unsigned(j + 1, address_bits);
Z_0 <= b_.i;
Wr_o <= 0’
sort_done_o <= ’'0’;
end case;
end process output_comb;
output_seq: process(rst_n_i, clk_i)
begin
if rst_n_i = 0’ then
tmp <= (others => ’07);
i <= 0
J <= 0
elsif rising_edge(clk_i) then
tmp <= next_-tmp;
i <= mnext_i;
j <= mnext_j;
end if;

end process

output_seq;
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end architecture

rtl;

A.1.2 Circulant sum

library IEEE;
use IEEE.std_logic-1164.all;
use IEEE.numeric_std. all;
library work;
use work.system_params. all;
use work.matrix_types.all;
use work.matrix_mult_functions. all;
entity circulant_sum is
port (
— control signals
clk_i: in std_-logic;
rst_n_i: in std-logic;
start_i: in std_-logic;
—— function arguments in (not latched)
a_limit_i: in mnatural;
a_base_i: in addr; —_—
b_limit_i: in natural; —
b_base_i: in addr; —_—
z_base_i: in addr; — base
— data, addresses and controls to
a_i: in pos;
a_addr_o: out addr;
b_i: in pos;
b_addr_.o: out addr;
Z_0: out pos;
z_addr_o: out addr;
Wr_o: out std_-logic;

)

—— report back once done

z_limit_o:
sum_done_o:

out mnatural;
out std_logic

— number of elements
base address of 1st matrix
number of elements
base address of 2nd matrix
address of result matrix
memory

in 1st matrix

in 2nd matrix

— write enable for memory

— number of remaining elements (minus on

to_unsigned (P, position_bits)

(IDLE, COMPARE, SKIP, COPY.I, COPY.J, FILL.INVALID, DONE)

end entity circulant_sum,;

architecture rtl of circulant_sum is
constant INVALID_POS: pos:=
signal i: natural;
signal j: natural;
signal k: natural;
signal mnext_i: natural;
signal next_j: natural;
signal next_k: natural;
signal i_not_done: std_logic;
signal j_not_done: std_logic;
signal mneither_done: std_logic;
type state_t is
signal state: state_t ;
signal next_state: state_t;

begin
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55

56 i_not_done <= 1’ when i < a_limit_.i and a_i /= INVALID_POS else
57 07

58 j-not_done <= 1’ when j < b_limit_-i and b_i /= INVALID_-POS else
59 075

60 neither_done <= i-not_-done and j_-not_done;

61

62 a_addr_o <= a_base_i + i;

63 b_addr_o <= b_base_i + j;

64 z_addr_o <= z_base_i + k;

65

66 z_limit_o <= k;

67

68 state_.comb: process(

69 state , start_i, i_not_-done, j_not_-done, neither_done,
70 k, a_i, b_i

71 )

72 begin

73 case state is

74 when IDLE =>

75 if start_i = ’1’ then

76 next_state <= C(COMPARE;

7 else

78 next_state <= IDLE;

79 end if;

80 when COMPARE =>

81 if neither_done = ’1’ and a_-i = b_i then
82 next_state <= SKIP;

83 elsif neither_done = ’1’ and a-i < b_i then
84 next_state <= COPY.;

85 elsif neither_done = ’1’ and a_-i > b_i then
86 next_state <= COPY.J;

87 elsif i_not_done = ’'1’ and not j_not_-done = ’1’ then
88 next_state <= COPY.I;

89 elsif j_not_done = ’'1’ and i_not_done = ’0’ then
90 next_state <= COPY.J;

91 elsif i_not_done = ’'0’ and j_-not_done = ’0’ — cont.
92 and k < sum(M)*DV then

93 next_state <= FILLINVALID;

94 else

95 next_state <= DONE;

96 end if;

97 when SKIP =>

98 next_state <= COMPARE;

99 when COPY.I =>

100 next_state <= COMPARE;

101 when COPY.J =>

102 next_state <= COMPARE;

103 when FILL_INVALID =>

104 next_state <= COMPARE;

105 when DONE =>

106 if start_-i = 0’ then

107 next_state <= IDLE;

108 else

109 next_state <= DONE;

110 end if;

111 when others =>

112 next_state <= IDLE;

113 end case;

114 end process state_comb;

115

116 state_seq: process(clk_i, rst_n_i)
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begin
if

els

end

end process

output_comb:

begin

rst_n_i = ’0’
state <=

then
IDLE;

if rising-edge(clk_i) then

state <=
if;
state_seq;

case state is

when IDLE =>
— internal
next_i
next_j
next_k
—— outputs
Z_0
Wr_0
sum-done_o
when COMPARE —>
— internal
next_i
next_j
next_k
—— outputs
Z_0
Wr_0o
sum_done_o
when SKIP =>
— internal
next_i
next_j
next_k
—— outputs
Z_0
Wr_0o
sum_done_o
when COPY.I =>
— internal
next_i
next_j
next_k
— outputs
Z_0
Wr_o
sum_done_o
when COPY.] =>
— internal
next_i
next_j
next_k
— outputs
Z_0
Wr_o
sum_done_o

next_state;

process (state, i, j, k, a_i

signals
<= 0
<= 0
<= 0

<= INVALID_POS;
<: 70 K ;

<: 707;
signals
<= ij
<= Jj;
<= k;

<= INVALID_POS;
<: 70 K ;

<: 107;
signals
<= i+ 1;
<= j+ 1
<= k;

<= INVALID_POS;
<: 70 K ;

when FILL_INVALID =>

— internal
next_i
next_j
next_k

— outputs

<: 107;
signals
<= i+ 1;
<= J;

<= k + 1;
<= a_-1;
<: 71 7’
<: 707y
signals
<= 1j;

<= j+ 1
<= k + 1;
<= b.i;
<: 71 7,
<: 70 7;
signals
<= i,

<= J;

<= k + 1;
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179 Z_0 <= INVALID_POS;
180 Wr_o <= 17
181 sum_done_.o <= ’'0’;
182 when DONE =>

183 —— internal signals

184 next_i <= ij;

185 next_j <= j;

186 next_k <= k + 1;
187 —— outputs

188 zZ_0 <= INVALID_POS;
189 Wr_o <= 0"
190 sum_done_.o <= ’'17;
191 when others =>

192 — internal signals

193 next_i <= 0

194 next_j <= 0

195 next_k <= 0

196 —— outputs

197 zZ_0 <= INVALID_POS;
198 WTI_0 <= ’0’;
199 sum_done_.o <= ’'0’;
200 end case;

201 end process output_comb;

202

203 output_seq: process(clk_i, rst_n_i)
204 begin

205 if rst_n_i = ’0’ then

206 i <= 0;

207 j <= 0

208 k <= 0

209 elsif rising_edge(clk_-i) then
210 i <= next_i;

211 j <= next_j;

212 k <= next_k;

213 end if;

214 end process output_seq;

215

216| end architecture rtl;

A.1.3 Memory copy

I{library IEEE;

2 use IEEE.std_logic_-1164. all;

3 use IEEE.numeric_std. all;

4| library work;

5 use work.matrix_types.all;

6

7| entity mem_copy is

8 port (

9 —— control signals

10 clk_i: in std-logic;

11 rst_n_i: in std_logic;

12 start_i: in std_logic;

13 — function arguments in (not latched)

14 limit_i: in natural; —— number of elements in source array
15 a_base_i: in addr; — base addr of source array

16 z_base_i: in addr; — base addr of destination array
17 — data, addresses and controls to memory

18 a_i: in pos; —— element A from source array
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a_addr_o: out addr; — address of element A
Z_0: out pos; — element Z to destination
z_addr_o: out addr; — address of element Z
WrI_0: out std_logic; —— write enable for memory
— report back once done
copy-done_o: out std_-logic — high when done
)i
end entity mem_copy;
architecture rtl of mem_copy is
signal i: natural;
signal next_i: natural ;
type state_t is (IDLE, COPY, DONE);
signal state: state_t;
signal mnext_state: state_t;
begin
a_addr_o <= a_base_i + 1i;
z_addr_o <= z_base_i + i;
Z_0 <= a-i;
state_.comb: process(state, start_i, i, limit_i)
begin
case state is
when IDLE =>
if start_i = ’1’ then
next_state <= COPY;
else
next_state <= IDLE;
end if;

when COPY =>

if 1 = limit_i —1 then
next_state <= DONE;
else
next_state <= COPY;
end if;
when DONE =>
if start_i = ’0’ then
next_state <= IDLE;
else
next_state <= DONE;
end if;
when others =>
next_state <= IDLE;
end case;
end process state_comb;
state_seq: process(clk_.i, rst_n_i)
begin
if rst_n_i = 0’ then
state <= IDLE;
elsif rising_edge(clk_i) then
state <= mnext_state;
end if;

end process

output_comb :
begin
case state

pro

state_seq;

cess (state ,

i)

is
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81 when IDLE =>

82 — internal signals
83 next_i <= 0
84 —— outputs

85 Wr_o <= 07
86 copy-done_o <= ’07;
87 when COPY =>

88 — internal signals
89 next_i <= i+ 1;
90 — outputs

91 Wr_0 <= 17
92 copy-done_o <= ’07;
93 when DONE =>

94 — internal signals
95 next_i <= 0
96 —— outputs

97 Wr_0 <= 0’
98 copy-done_o <= ’'17;
99 when others =>

100 — internal signals
101 next_i <= i
102 — outputs

103 WTI_0 <= ’0’;
104 copy-done_o <= ’07;
105 end case;

106 end process output_comb;

107

108 output_seq: process(clk_i, rst_n_i)
109 begin

110 if rst_n_i = 0’ then

111 i <= o0;

112 elsif rising_edge(clk_i) then
113 i <= next_i;

114 end if;

115 end process output_seq;

116

117 end architecture rtl;

A.2 Vector by matrix

A.2.1 Vector by circulant

1| library IEEE;

2 use IEEE.std_logic_-1164.all;

3 use IEEE.numeric_std. all;

4| library work;

5 use work.system_params. all;

6 use work.matrix_types.all;

7

8l entity vector_by_circulant is

9 port (

10 — control signals

11 clk_i: in std_-logic;
12 rst_n_i: in std_logic;
13 start_i: in std_logic;
14 binary_i: in std_-logic;
15 — function arguments in (not latched)
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a_base_i: in addr;

b_base_i: in addr;

b_weight : in natural;

z_base_i: in addr;

op: in std_logic; — 0’ —> z=aB; 1’
— data, addresses and controls to memory
a_i: in pos;

a_addr_o: out addr;

b_i: in pos;

b_addr_o: out addr;

Z_0: out pos;

z_addr_o: out addr;

Wr_o: out std_-logic;

done_o: out std_logic

)

end entity vector_by_circulant;

architecture arch of vector_by_circulant is

type state_t is (IDLE, GETM, INNERLOOP, DONE);

signal state: state_t;

signal next_state: state_t;

signal m_index_c, m_index_r: natural;

signal m_c, m_r: pos;

signal n_c, n_r: addr;

signal i_.c, i-r addr ;

begin

comb: process(state, start_i, binary-i,
m_index_.r, m.c, m.r, n.c, n.r, i_c, i_.r,
op, b_weight, a_base_i, b_base_i, z_base_i,
a_i, b_.i)

begin
next_state <= state;
Wr_o <= ’07;
done_o <= 0’
m_index_c <= m_index._r;
a_addr_o <= to_unsigned (0, address_bits);
b_addr_o <= to_unsigned (0, address_bits);
Z_0 <= to_unsigned (0, position_bits);
z_addr_o <= to_unsigned (0, address_bits);
m_c <= m.r;
n_c <= n.r;
i_c <= i.r;
case state is

when IDLE =>

—> z=Ba

m_index_c <= 0
m_c <= to_unsigned (0, position_bits);
n_c <= to_unsigned (0, address_bits);
i-c <= to_unsigned (0, address_bits);
if start_i = ’1’ then
next_state <= GETM;
end if;
when GETM =>
m-_index_c <= m-index.r + 1;
b_addr_o <= b_base_i + m_index_r;
m-c <= b_.i;
n_c <= to_unsigned (0, address_bits);
if op = ’0’ then
i_c <= to_unsigned(to_integer(mc),
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else

i_c <= to_unsigned(to_integer (P-m.c—1), — cont.
address_bits);
end if;
if b_.i = P then
next_state <= DONE;
else
next_state <= INNERLOOP;
end if;
when INNER_LOOP =>
Wr_0 <= 17
n_c <= n_.r + 1;
if i.r =P — 1 then
i_c <= to_unsigned (0, address_bits);
else
i_c <= i.r + 1;
end if;
a_addr_o <= a_-base.i 4+ n_c;
b_addr_o <= z_base_i 4+ i_c;
z_addr_o <= z_base_i 4+ i_-c;
if binary_-i = ’0’ then
Z_0 <= a-i 4+ b_.i;
else
zZ_0 <= (0 => a_i(0) xor b_i(0), others => ’07);
end if;
if n.r = P—1 then
if m_index.r = b_weight then
next_state <= DONE;
else
next_state <= GETM;
end if;
end if;
when DONE =>
done.o <= ’17;
if start_i = ’0’ then
next_state <= IDLE;
end if;
when others =>
next_state <= IDLE;
end case;
end process comb;
seq: process(rst-n_i, clk_i)
begin
if rst_n_i = ’0’ then
state <= IDLE;
m_index_r <= 0;
m_r <= to_unsigned (0, position_bits);
n_r <= to_unsigned (0, address_bits);
i-r <= to.unsigned (0, address_bits);
elsif rising_edge(clk_i) then
state <= next_state;
m_index_r <= m_index_c;
m.r <= m.;
n_r <= n.c;
i-r <= i.c;
end if;

end process seq;

end architecture;
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A.2.2 zbyL”

I{library IEEE;

2 use IEEE.std_logic_-1164.all;

3 use IEEE.numeric_std. all;

4| library work;

5 use work.system_params. all;

6 use work.matrix_types. all;

7 use work.matrix_mult_functions. all;

8 use work.memory_-map. all;

9

10l entity x_by_Ltr is

11 port (

12 —— control signals

13 clk_i: in std_logic;

14 rst_n_i: in std_logic;

15 start_i: in std-logic;

16 — controls to multiplication core

17 vector_base_o: out addr;

18 block_base_o: out addr;

19 result_base_o: out addr;

20 start_mul_o: out std_logic;

21 mul_done_i: in std-logic;

22 — report back

23 done_o: out std_logic

24 ;

25l end entity x_by_Ltr;

26

27| architecture rtl of x_by_Ltr is

28

29 type state_t is (IDLE, BUSY, DONE);

30 signal state: state_t;

31 signal next_state: state_t;

32

33 signal block_count_c, block_count_r: natural;
34

35 signal vector_base_c, vector_base_r: addr;
36 signal block_base_c, block_base_r: addr;
37

38| begin

39

40 vector_base_o <= vector_base_.r;

41 block_base_o <= block_base_r;

42 result_base_.o <= S.BASE_ADDR;

43

44 comb: process(state, start_i,

45 block_count_r , block_base.r, vector_base.r ,
46 mul_done_i)

47 begin

48 start_mul_o <= 0’

49 next_state <= state;

50 block_count_c <= block_count_r;

51 block_base_c <= block_base_r;

52 vector_base_c <= vector_base_r;

53 done_o <= 0’;

54 case state is

55 when IDLE =>

56 block_count_c <= 0;

57 block_base_c <= LTRBASEADDR;
58 vector_base_c <= XBASE_ADDR;
59 if start_i = ’1’ then
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16

next_state <= BUSY;
end if;
when BUSY =>
start_-mul_-o <= ’'17;
if mul_done_.i = 1’ then
block_count_c <=

block_count_r + 1;

in a block of I

— Mx«DV is the maximum number of elements
block_base_c <= block_base_r + sum(M)*DV;
vector_base_c <= vector_base_r + P;
start_mul_o <= 07
if block_count_-r = NO—1 then
next_state <= DONE;
end if;
end if;
when DONE =>
done.o <= ’17;
if start_.i = ’0’ then
next_state <= IDLE;
end if;
when others =>
next_state <= IDLE;
end case;
end process comb;
seq: process(clk_i, rst_n_i)
begin
if rst_n_i = ’0’ then
state <= IDLE;
block_count_r <= 0
block_base_r <= to_unsigned (0, address_bits);
vector_base_r <= to_unsigned (0, address_bits);
elsif rising_edge(clk_i) then
state <= next_state;
block_count_r <= block_count_c;
block_base_r <= block_base_c;
vector_base_r <= vector_base_c;
end if;

end process seq;

end architecture rtl;

A.2.3 HT by s’

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std. all;
library work;
use work.system_params. all;
use work.matrix_types. all;
use work.matrix_mult_functions. all;
use work.memory_map. all;
entity Htr_by_str is
port (
—— control signals
clk_i: in std_-logic;
rst_n_i: in std_-logic;
start_i: in std-logic;

— controls to multiplication core
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17 vector_base_o: out addr;

18 block_base_o: out addr;

19 result_base_o: out addr;

20 start_-mul_o: out std-logic;

21 mul_done_i: in std_-logic;

22 — report back

23 done_o: out std_logic

24 )i

25l end entity Htr_by_str;

26

27| architecture rtl of Htr_by_str is

28

29 type state_t is (IDLE, BUSY, DONE);

30 signal state: state_t;

31 signal next_state: state_t;

32

33 signal block_count_c, block_count_r: natural;
34

35 signal vector_base_c, vector_base_r: addr;
36 signal block_base_c, block_base_r: addr;
37 signal result_base_c, result_base_r: addr;
38

39| begin

40

41 vector_base_o <= vector_base_.r;

42 block_base_o <= block_base_r;

43 result_base_.o <= result_base_r;

45 comb: process(state, start_i,

46 block_count_r, block_base_r, vector_base_r, result_base_r ,
47 mul_done_i)

48 begin

49 start_mul_o <= 0’

50 next_state <= state;

51 block_count_c <= block_count_r;

52 block_base_c <= block_base_r;

53 vector_base_c <= vector_base_r;

54 result_base_c <= result_base_r;

55 done_o <= '0’;

56 case state is

57 when IDLE =>

58 block_count_c <= 0;

59 block_base_c <= HTRBASE_ADDR;
60 vector_base_c <= S_BASE_ADDR;

61 result_base_c <= SIGMA BASE_ADDR;
62 if start_i = ’1’ then

63 next_state <= BUSY;

64 end if;

65 when BUSY =>

66 start_-mul_-o <= ’'17;

67 if mul_.done_.i = ’1’ then

68 block_count_c <= block_count_r 4+ 1;
69 block_base_c <= block_base_r + DV;
70 vector_base_c <= vector_base_r + P;
71 result_base_c <= result_base_r + P;
72 start_mul_o <= 07

73 if block_count_r = NO—1 then

74 next_state <= DONE;

75 end if;

76 end if;

T when DONE =>

78 done.o <= ’17;
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if start_-i = 0’ then
next_state <= IDLE;
end if;
when others =>
next_state <= IDLE;
end case;
end process comb;
seq: process(clk_i, rst_n_i)
begin
if rst_n_i = ’0’ then
state <= IDLE;
block_count_r <= 0
block_base_r <= HTR.BASE_ADDR;
vector_base_r <= SBASE_ADDR;
result_base_r <= SIGMA_BASE_ADDR;
elsif rising_edge(clk_i) then
state <= next_state;
block_count_r <= block_count_c;
block_base_r <= block_base_c;
vector_base_r <= vector_base_c;
result_base_r <= result_base_c;
end if;

end process seq;

end architecture rtl;

A2.4 QT by 27

library
use
use
library
use
use
use
use

IEEE;
IEEE. std_logic_1164. al
IEEE. numeric_std . all;

work ;
work .
work .
work .
work .

system_params. all
matrix_types.all;
matrix_mult_funct
memory-map. all;

1

)

ions. all;

entity Qtr_by_sigmatr is
port (

— control signals
clk_i: in std_-logic;
rst_n_i: in std_logic;
start_i: in std_-logic;
— controls to multiplication core
vector_base_o: out addr;
block_base_o: out addr;
block_weight_o: out natural;
result_base_o: out addr;
start_mul_o: out std_logic;
mul_done_i: in std_logic;
— report back
done_o: out std_logic

)
end entity Qtr_by_sigmatr;
architecture rtl

type state_t is

of Qtr_by_sigmatr

is

(IDLE, BUSY, DONE);
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signal state: state_t;
signal next_state: state_t;

signal block_-row_c, bl

ock_row_r: natural;

signal block_col_c, block_col_r: natural;

signal Qtr_block_base_map:
addr_matrix (NO—1 downto 0, NO—1 downto 0) := get_Qtr_block_base;
signal Qtr_block_limit_map:

n_matrix (NO—1 downto 0, NO—1 downto 0)

get_block_limits;

signal vector_base_c, vector_base_r: addr;

signal block_base_c, block_base_r: addr;

signal result_base_c, result_base_r: addr;

begin

vector_base_o <= vector_base.r;

block_base_o <= block_base_r;

block_weight_-o <= Qtr_block_limit-map (block_-row_r, block_col_r);
result_base_o <= result_base_r;

comb: procoss(statc, st

art_i,

block_base_r , vector_base_r, result_base._r ,
block_row_r , block_col_r ,

mul_done_i)

begin
start_mul_o <=
next_state <=
block_row_c <=
block_col_c <=

block_base_c <=

vector_base_c <=

result_base_c <=

done_o <=

case state is

when IDLE =>

block_row_c
block_col_c

block_base._

0 7;
state;
block_row_r;
block_col_r;
block_base_r;
vector_base_r;
result_base_r;
0 7;

<= 0;
<= 0;
c <= QTRBASEADDR;

vector_base_c <= SIGMA_BASE_ADDR;
result_base_c <= RBASE_ADDR;

if start_i
next_st
end if;
when BUSY =>

= 1’ then
ate <= BUSY;

start_mul_o <= ’17;
if mul_done_.i = ’1’ then
start_mul_o <= 0’;
if block_col_r /= NO—1 then
block_col_c <= block_col_.r 4+ 1;
block_base_c <= QTRBASEADDR + — cont.
Qtr_block_base_map (block_row_r, block_col_r);
vector_base_c <= vector_base.r + P;
result_base_c <= result_base_r;
else
if block_-row_r /= NO—1 then

block_row_c <= block_row.r 4+ 1;

block_col_c <= 0;

block_base_c <= QTRBASEADDR + — cont.
Qtr_block_base_map (block_row_r + 1, — cont.

block_col_r);
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93 vector_base_c <= SIGMA_BASE_ADDR;
94 result_base_c <= result_base_r + P;
95 else

96 next_state <= DONE;
97 end if;

98 end if;

99 end if;

100 when DONE =>

101 done.o <= ’17;

102 if start_i = 0’ then

103 next_state <= IDLE;

104 end if;

105 when others =>

106 next_state <= IDLE;

107 end case;

108 end process comb;

109

110 seq: process(clk_i, rst_n_i)

111 begin

112 if rst_n_i = ’0’ then

113 state <= IDLE;

114 block_row_r <= 0

115 block_col_r <= 0

116 block_base_r <= HTRBASE_ADDR;
117 vector_base_r <= S_BASE_ADDR;
118 result_base_r <= SIGMA_BASE_ADDR;
119 elsif rising_edge(clk_-i) then

120 state <= next_state;

121 block_base_r <= block_base_c;
122 vector_base_r <= vector_base_c;
123 result_base_r <= result_base_c;
124 block_row_r <= block_.row_c;
125 block_col_r <= block_col_c;
126 end if;

127 end process seq;

128

129 end architecture rtl;

A.2.5 e by H”

1| library IEEE;

2 use IEEE.std_logic-1164.all;
3 use IEEE.numeric_std. all;

4| library work;

5 use work.system_params. all;

6 use work.matrix_types.all;
7 use work.matrix_mult_functions. all;
8 use work.memory_map. all;

10| entity e_by_Htr is

11 port (

12 — control signals

13 clk_i: in std_logic;

14 rst_n_i: in std_-logic;

15 start_i: in std-logic;

16 — controls to multiplication core
17 vector_base_o: out addr;

18 block_base_o: out addr;

19 result_base_o: out addr;
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start_-mul_o: out std_logic;

mul_done_i: in std_logic;
—— report back
done_o: out std-logic

)

end entity e_by_Htr;
architecture rtl of e_by_Htr is
type state_t is (IDLE, BUSY, DONE);

signal state: state_t;
signal next_state: state_t;

signal block_count_c, block_count_r: natural;

signal vector_base_c, vector_base_r: addr;

signal block_base_c, block_base_r: addr;
begin

vector_base_o <= vector_base_r;

block_base_o <= block_base_.r;
result_base_o <= S_BASE_ADDR;

comb: process(state, start_i,
block_count_r, block_base.r, vector_base_.r,
mul_done_i)

begin
start_mul_o <= '0’;
next_state <= state;
block_count_c <= block_count_r;
block_base_c <= block_base_r;
vector_base_c <= vector_base_r;
done_o <= 0’

case state is
when IDLE =>
block_count_c <= 0
block_base_c <= HTRBASE_ADDR;
vector_base_c <= EBASE_ADDR;
if start_-i = ’1’ then
next_state <= BUSY;

end if;
when BUSY =>
start_mul_o <= ’17;
if mul_.done_.i = ’1’ then

block_count_c <= Dblock_count_r + 1;
block_base_c <= block_base_r + DV;
vector_base_c <= vector_base_r + P;
start_mul_o <= 0’;
if block_count_-r = NO—1 then
next_state <= DONE;
end if;
end if;
when DONE =>
done.o <= ’17;
if start_i = 0’ then
next_state <= IDLE;
end if;
when others =>
next_state <= IDLE;
end case;
end process comb;
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82

83 seq: process(clk_i, rst_n_i)

84 begin

85 if rst_n_i = ’0’ then

86 state <= IDLE;

87 block_count_r <= 0

88 block_base_r <= to_unsigned (0, address_bits);
89 vector_base_r <= to_unsigned (0, address_bits);
90 elsif rising_edge(clk_i) then

91 state <= next_state;

92 block_count_r <= block_count_c;

93 block_base_r <= block_base_c;

94 vector_base_r <= vector_base_c;

95 end if;

96 end process seq;

97

98| end architecture rtl;

A.3 Error update

Peak search

I{ library IEEE;

2 use IEEE.std_logic_1164.all;

3 use IEEE.numeric_std. all;

I{ library work;

5 use work.system_params. all;

6 use work.matrix_types. all;

7 use work.matrix_mult_functions. all;
8 use work.memory_map. all;

9

10| entity find_-max is

11 port (

12 —— control signals

13 clk_i: in std_-logic;
14 rst_n_i: in std-logic;
15 start_i: in std_-logic;
16 — to memory

17 a_i: in pos;
18 a_addr_o: out addr;

19 b_i: in pos;
20 b_addr.o: out addr;
21 Z_0: out pos;
22 z_addr_o: out addr;
23 WI_O: out std_logic;
24 — report back when done
25 max_idx_o: out n_array(1l5 downto 0);
26 done_o: out std_logic
27 )s
28| end entity find_max;
29
30f architecture rtl of find_max is
31
32 type state_t is (IDLE, BUSY, DONE);
33 signal state: state_t;
34 signal mnext_state: state_t;
35
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36 signal a_index_c, a_index_r: natural;

37

38 signal max_val_.c, max_val_r: pos;

39 signal max_-indexes_c, max_indexes_r: n_array (15 downto 0);
40

41 signal i_.c, i_-r: natural;

42

43 constant INVALID: natural:= NO*P;

45| begin

46

47 a_addr_o <= RBASEADDR + a_index_r;

48 b_addr_o <= to_unsigned (0, address_bits);

49 z_0 <= to_unsigned (0, position_bits);

50 z_addr_o <= to_unsigned (0, address_bits);

51 Wr_o <= 0’

52 max_idx_o <= max_indexes_r;

53

54 seq: process(clk_i, rst_n_i)

55 begin

56 if rst_n_i = 0’ then

57 state <= IDLE;

58 a_index_r <= 0

59 max_val_r <= to_unsigned (0, position_bits);
60 max_indexes.r <= (others => invalid);
61 ir <= 0;

62 elsif rising_edge(clk_-i) then

63 state <= next_state;

64 a_index_r <= a-index_c;

65 max_val_r <= max_val_c;

66 max_indexes_r <= max_indexes_c;

67 i_r <= i_.c;

68 end if;

69 end process seq;

70 comb: process(

71 state, start_i,

72 a_index_r, a_i,

73 max_val_r, max_indexes_.r, i_r)

74 begin

75 next_state <= state;

76 done_o <= 0’

77 a_index_c <= 0;

78 max_val_c <= max-val_r;

79 max_indexes_c <= max_indexes_r;

80 i_c <= i.r;

81 case state is

82 when IDLE =>

83 max_val_c <= to_unsigned (0, position_bits);
84 max_indexes_.c <= (others => INVALID);
85 i-c <= 0;

86 if start_i = ’1’ then

87 next_state <= BUSY;

88 end if;

89 when BUSY =>

90 a_index_c <= a_.index_.r + 1;

91 if a_i = max_val_r then

92 max_indexes_c(i-r) <= a-index-_r;
93 — if we have too many equal maxes we’ll flip just some
94 if i_r /= 15 then

95 i_c <= i.r + 1;
96 end if;

97 elsif a_i > max_val_r then
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a_i;
(0 => a_index.r,
1.

)

max_val_c <=
max_indexes_c <=
i_c <=

end if;

if a_index_.r = NOxP—1 then
a_index_c <= 0;
next_state <= DONE;

end if;

when DONE =>

done.o <= ’17;

if start_-i = 0’ then
next_state <= IDLE;

end if;
end case;

end process comb;

rtl;

end architecture

others => INVALID);

Vector plus rows

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std. all;
library work;
use work.system_params. all;
use work.matrix_types. all;
use work.memory_map. all;
use work.matrix_mult_functions. all;
entity vector_plus_rows is
port (
—— control signals
clk_i: in std_-logic;
rst_n_i: in std_logic;
start_i: in std_-logic;
— row indexes
row_idx_i: in n_array (15 downto 0);
— to memory
a_i: in pos;
a_addr_o: out addr;
b_i: in pos;
b_addr.o: out addr;
Z_0: out pos;
z_addr_o: out addr;
WI_O: out std_logic;
—— report back when done
done_o: out std_logic

)

end entity vector_plus_rows;
architecture rtl of vector_plus_rows is
type state_t is
signal state: state_t ;
signal next_state: state_t;
signal cur_idx_c: mnatural;
signal cur_idx.r: mnatural;
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signal block_row_c: natural;
signal block_row_r: natural;
signal block_col_c: natural;
signal block_col_r: natural;
signal rel_row_c: natural;
signal rel_row_r: natural;
signal i_c: natural;
signal i_.r natural;
signal Qtr_block_base: addr;
signal Qtr_block_count: natural;
constant Qtr_block_limit_map: n_matrix:= get_block_limits;
constant Qtr_block_base_map: addr_matrix:= get_Qtr_block_base;
constant INVALID: natural:= NOx*P;
begin
Qtr_block_count <= Qtr_block_limit_map (block_-row_r, block_col_r);
Qtr_block_base <= Qtr_block_base_map(block_row_r, block_col_r);
a_addr_o <= EBASEADDR + block_col_r*P 4+ ((b.i + rel_row_r) mod P);
b_addr_o <= QTRBASEADDR + Qtr_block_base + i_r;
zZ_0 <= (a-i + 1) mod 2;
z_addr_o <= EBASEADDR + block_col_-r«P + ((b.i + rel_-row_r) mod P);
seq: process(clk_i, rst_n_i)
begin
if rst_n_i = ’0’ then
state <= IDLE;
cur_idx._r <= 0
block_row.r <= 0;
block_col_r <= 0;
rel_row_r <= 0
i_r <= 0;
elsif rising_edge(clk_-i) then
state <= next_state;
cur_idx._r <= cur-idx_c;
block_row.r <= block_row_c;
block_col_r <= block_col_c;
rel_row_r <= rel_-row_c;
i_r <= i_.c;
end if;
end process seq;
comb: process (
state, start_i,
block_row_r, block_col_-r, rel_row.r,
row_idx_-i, cur_idx.r, i.r,
Qtr_block_count)
begin
next_state <= state;
cur_idx_c <= cur_-idx.r;
block_row_c <= block_row_r;
block_col_c <= block_col_r;
rel_row_c <= rel_-row_r;
i_c <= 0;
Wr_0 <= 0"
done_o <= 0’
case (state) is
when IDLE =>
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102 cur_idx_c <= 0

103 block_row_.c <= 0;

104 block_col_c <= 0;

105 if start_-i = ’1’ then

106 next_state <= RELATIVEROW;

107 end if;

108 when RELATIVEROW =>

109 if row_idx_i(cur-idx_r) /= INVALID then
110 block.row_c <= row_idx_i(cur_idx_.r) / P;
111 rel_-row_c <= row_idx_i(cur_idx_r) mod P;
112 next_state <= SUMROW;

113 else

114 next_state <= DONE;

115 end if;

116 when SUMROW =>

117 Wr_o <= 17

118 if i_r /= Qtr_block_count then

119 i-c <= i.r 4+ 1;

120 else

121 if block_col_r /= NO—1 then

122 block_col_c <= block_col_r + 1;
123 else

124 if cur_idx_.r = 15 then

125 next_state <= DONE;

126 else

127 cur_idx_c <= cur_idx_.r + 1;
128 block_col_-c <= 0;

129 next_state <= RELATIVEROW;
130 end if;

131 end if;

132 end if;

133 when DONE =>

134 done_o <= 17

135 if start_-i = 0’ then

136 next_state <= IDLE;

137 end if;

138 end case;

139 end process comb;

140

141 end architecture rtl;

A.4 Loop control and message computation

Zero syndrome detection

I| library IEEE;

2 use IEEE.std_logic_-1164.all;
3 use IEEE.numeric_std. all;

I{ library work;

5 use work.system_params. all;

6 use work.matrix_types. all;

7 use work.matrix_mult_functions. all;
8 use work.memory_-map. all;

10| entity null_syndrome is
11 port (
12 —— control signals
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13 clk_i: in std_logic;

14 rst_n_i: in std_logic;

15 start_i: in std_logic;

16 — to memory

17 a_i: in pos;

18 a_addr_o: out addr;

19 b_i: in pos;

20 b_addr_.o: out addr;

21 Z_0: out pos;

22 z_addr_o: out addr;

23 WI_0: out std-logic;

24 — report back when done

25 null_syn_o: out std_-logic;

26 done_o: out std_logic

27 )i

28 end entity null_syndrome;

29

30f architecture rtl of null_syndrome is
31

32 type state_t is (IDLE, BUSY, DONE);
33 signal state: state_t;

34 signal next_state: state_t;

35

36 signal bad_syn_c: std_logic;

37 signal bad_syn_r: std_logic;

38

39 signal i_c natural;

40 signal i_r natural;

41

42| begin

43

44 a_addr_o <= SBASEADDR + i_.r;
45 b_addr_o <= SBASEADDR + i_-r + 1;
46 Z_0 <= to_-unsigned (0, position_bits);
47 z_addr_o <= S_BASE_ADDR;

48 Wr_o <= ’0’;

49 null_syn_o <= not bad_syn_r;

50

51 seq: process(clk_i, rst_n_i)

52 begin

53 if rst_n_i = 0’ then

54 state <= IDLE;

55 bad_syn_r <= 0’

56 i_r <= 0;

57 elsif rising_edge(clk_-i) then
58 state <= next_state;
59 bad_syn_r <= bad_syn_c;
60 i_r <= i.c;

61 end if;

62 end process seq;

63 comb: process(state, start-i, a_i, b_.i, i.r, bad_syn_c, bad_syn.r)
64 begin

65 next_state <= state;

66 bad_syn_c <= bad_syn_r;

67 i_c <= i.r;

68 done_o <= 07

69 case state is

70 when IDLE =>

71 bad_syn_c <= 0"
72 i_c <= 0

73 if start_i = ’1’ then
74 next_state <= BUSY;
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75 end if;

76 when BUSY =>

7 i_c <= i.r 4+ 2;

78 if a.i /= 0 then

79 bad_syn_c <= 17
80 end if;

81 if b.i /=0 and i_r /= P—1 then
82 bad_syn_c <= 17
83 end if;

84 if bad_-syn_.c = ’'1’ or i_r = P—1 then
85 next_state <= DONE;
86 end if;

87 when DONE =>

88 done_o <= 17

89 if start_i = 0’ then

90 next_state <= IDLE;
91 end if;

92 end case;

93 end process comb;

94

95/ end architecture rtl;

Intermediate result clear

1| library IEEE;

2 use IEEE.std_logic-1164.all;

3 use IEEE.numeric_std. all;

4| library work;

5 use work.system_params. all;

6 use work.matrix_types.all;

7 use work.matrix_mult_functions. all;
8 use work.memory_map. all;

9

10| entity clear_temp is

11 port (

12 — control signals

13 clk_i: in std_logic;
14 rst_n_i: in std_logic;
15 start_i: in std_logic;
16 — to memory

17 a_i: in pos;

18 a_addr_o: out addr;

19 b_i: in pos;

20 b_addr_.o: out addr;

21 Z_0: out pos;

22 z_addr_o: out addr;

23 WI_O: out std_logic;
24 —— report back when done
25 done_o: out std-logic
26 );

27| end entity clear_temp;

28

29| architecture rtl of clear_temp is
30

31 type state_t is (

32 IDLE, CLEARMULRES, CLEARSUM.TMP, CLEARSIGMA,
33 CLEARR, DONE

34 );

35 signal state: state_t;
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36 signal next_state: state_t;

37

38 signal i_c: integer;

39 signal i_r: integer;

40

41| begin

42

43 a_addr_o <= HTRBASE_ADDR;

44 b_addr_o <= HTRBASE_ADDR;

45 z_0 <= to_unsigned (0, position_bits);
46

47 seq: process(clk_i, rst_n_i)

48 begin

49 if rst_n_i = 0’ then

50 state <= IDLE;

51 it <= 0;

52 elsif rising_edge(clk_i) then

53 state <= next_state;

54 it <= i.c;

55 end if;

56 end process seq;

57 comb: process (state, start_-i, i-r)

58 begin

59 i_c <= i.r;

60 done_.o <= 07

61 case state is

62 when IDLE =>

63 i_c <= 0

64 z_addr_o <= HTRBASE_ADDR;

65 wWr_o <= 0’

66 if start_i = ’1’ then

67 next_state <= CLEARMULRES;
68 end if;

69 when CLEAR-MULRES =>

70 i_c <= i.r 4+ 1;

71 z_addr_o <= MULRESBASEADDR + i.r;
72 Wr_o <= 17

73 if i_.r = DVxmax(M) — 1 then

74 i_c <= 0;

75 next_state <= CLEARSUMTMP;
76 end if;

T when CLEARSUM.TMP =>

78 i-c <= i-r + 1;

79 z_addr_o <= SUM.TMPBASEADDR + i_r;
80 WI_o <= 17

81 if i_r = DVksum(M) — 1 then

82 i_c <= 0;

83 next_state <= CLEARSIGMA;
84 end if;

85 when CLEARSIGMA =>

86 i_c <= i.r + 1;

87 z_addr_o <= SIGMABASEADDR + i_r;
88 Wr_o <= 17

89 if i_r = NO*P — 1 then

90 i_c <= 0;

91 next_state <= CLEARR;

92 end if;

93 when CLEARR =>

94 i-c <= i.r 4+ 1;

95 z_addr_o <= MULRESBASEADDR + i_r;
96 Wr_o <= 17

97 if i_r = NO*xP — 1 then
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98 i_c <= 0;

99 next_state <= DONE;
100 end if;

101 when DONE =>

102 i_c <= 0

103 z_addr_o <= HTRBASE_ADDR;
104 WTI_0 <= ’0’;

105 done_o <= 17

106 if start_i = 0’ then

107 next_state <= IDLE;
108 end if;

109 end case;

110 end process comb;

111

112 end architecture rtl;

Message computation

I|{library IEEE;

2 use IEEE.std_logic-1164. all;
3 use IEEE.numeric_std. all;

4| library work;

5 use work.system_params. all;

6 use work.matrix_types. all;

7 use work.matrix_mult_functions. all;
8 use work.memory_-map. all;

9

10| entity comp_message is

11 port (

12 — control signals

13 clk_i: in std_logic;
14 rst_n_i: in std_logic;
15 start_i: in std_-logic;
16 —— to memory

17 a_i: in pos;

18 a_addr_o: out addr;

19 b_i: in pos;

20 b_addr_o: out addr;

21 Z_0: out pos;

22 z_addr_o: out addr;

23 WI_O: out std_-logic;
24 — report back when done
25 done_o: out std_logic
26 )i

27l end entity comp_message;

28

29| architecture rtl of comp_message is
30

31 type state_t is (IDLE, BUSY, DONE);
32 signal state: state_t;

33 signal next_state: state_t;

34

35 signal i_.c, i.r: integer;

36

37| begin

38

39 a_addr_o <= XBASEADDR + i.r;
40 b_addr_-o <= EBASEADDR + i.r;
41 Z_0 <= a_i xor b_ij;
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42 z_addr_o <= UBASEADDR + i_.r;
43

44 seq: process(clk_i, rst_n_i)

45 begin

46 if rst_n_i = 0’ then

47 state <= IDLE;

48 elsif rising_edge(clk_i) then

49 state <= mnext_state;

50 end if;

51 end process seq;

52 comb: process(state, start_-i, i-r)
53 begin

54 next_state <= state;

55 i_c <= 0;

56 WI_0 <= 0’

57 done_o <= 0’

58 case (state) is

59 when IDLE =>

60 if start_i = ’1’ then

61 next_state <= BUSY;
62 end if;

63 when BUSY =>

64 i_c <= i.r + 1;

65 Wr_o <= 17

66 if i_r = NO*(P—1) — 1 then
67 next_state <= DONE;
68 end if;

69 when DONE =>

70 done.o <= ’17;

71 if start_i = 0’ then

72 next_state <= IDLE;
73 end if;

74 end case;

75 end process comb;

76

77l end architecture rtl;

A.5 Top module

1| library IEEE;

2 use IEEE.std_logic-1164.all;

3 use IEEE.numeric_std. all;

4| library work;

5 use work.system_params. all;

6 use work.matrix_types.all;

7 use work.matrix_mult_functions. all;
8

9]l entity top is

10 port (

11 — control signals

12 clk_i: in std_logic;
13 rst_n_i: in std_logic;
14 start_i: in std_logic;
15 — to memory

16 a_i: in pos;

17 a_addr_o: out addr;

18 b_i: in pos;

19 b_addr_o: out addr;
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20 Z_0: out pos;

21 z_addr_o: out addr;

22 WrI_0: out std_logic;

23 — report back when done

24 failure_o: out std_logic;

25 done_o: out std-logic

26 ;

27| end entity top;

28

29| architecture rtl of top is

30

31 component key._reconstruction is

32 port (

33 — control signals

34 clk_i: in std_-logic;
35 rst_n_i: in std_logic;
36 start_i: in std_logic;
37 — data, addresses and controls to memory
38 a_i: in pos;

39 a_addr_o: out addr;

40 b_i: in pos;

41 b_addr_o: out addr;

42 Z_0: out pos;

43 z_addr_o: out addr;

44 WIr_o: out std_logic;
45 — report back once done

46 key_rec_done_o: out std_logic
47 E

48 end component key_reconstruction;

49 signal kr_start: std_logic;

50 signal kr_a_addr: addr;

5 signal kr_b_addr: addr;

52 signal kr_z: pos;

53 signal kr_z_addr: addr;

54 signal kr_wr: std_logic;

55 signal kr_done: std_logic;

56

57 component vector_by_circulant is

58 port (

59 — control signals

60 clk_i: in std_logic;
61 rst_n_i: in std_-logic;
62 start_i: in std_-logic;
63 binary_i: in std_logic;
64 — function arguments in (not latched)
65 a_base_i: in addr;

66 b_base_i: in addr;

67 b_weight : in integer;
68 z_base_i: in addr;

69 op: in std-logic; — 0’ —> z=aB; ’1’ —> z=Ba
70 —— data, addresses and controls to memory
71 a_i: in pos;

72 a_addr_o: out addr;

73 b_i: in pos;

74 b_addr_o: out addr;

75 Z_0: out pos;

76 z_addr_o: out addr;

7 WIr_o: out std_logic;
78 done_o: out std_-logic
79 E

80 end component vector_by_circulant ;

81 signal vc_start: std_logic;
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)

)

)

)

)

)

)

)

)

signal vc_binary: std_logic;
signal vc_vec_base: addr;
signal wvc_blk_base: addr;
signal vc_-blk_weight: mnatural;
signal vc_res_base: addr;
signal vc_op: std_logic;
signal vc_a_addr: addr;
signal vc_b_addr: addr;
signal vc_z: pos;
signal vc_z_addr: addr;
signal vc_wr: std_logic;
signal vc_done: std_logic;
component x_by_Ltr is
port (
— control signals
clk_i: in std-logic
rst_n_i: in std_-logic;
start_i: in std_logic;
— controls to multiplication
vector_base_o: out addr;
block_base_o: out addr;
result_base_o: out addr;
start_-mul_o: out std_logic;
mul_done_i: in std_logic;
— report back
done_o: out std_-logic
)i
end component x_by_Ltr;
signal xl_start: std_logic;
signal xl_vec_base: addr;
signal xl_blk_base: addr;
signal xl_res_base: addr;
signal xl_start_-mul: std_-logic;
signal xl_done: std_logic;
component Htr_by_str is
port (
— control signals
clk_i: in std_logic;
rst_n_i: in std_logic;
start_i: in std_logic;
— controls to multiplication
vector_base_o: out addr;
block_base_o: out addr;
result_base_o: out addr;
start_-mul_o: out std_logic;
mul_done_i: in std_logic;
— report back
done_o: out std_-logic
)i
end component Htr_by_str;
signal hs_start: std_logic;
signal hs_vec_base: addr;
signal hs_blk_base: addr;
signal hs_res_base: addr;
signal hs_start_mul: std_-logic;
signal hs_done: std_logic;

component Qtr_by_sigmatr is

port

(

— control signals
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clk_i: in std_logic;

rst_n_i: in std_logic;
start_i: in std_logic;
— controls to multiplication core
vector_base_o: out addr;
block_base_o: out addr;
block_weight_o: out natural;
result_base_o: out addr;
start_mul_o: out std_logic;
mul_done_i: in std_logic;
— report back

done_o: out std_logic

);

end component Qtr_by_sigmatr;

signal qgs_start: std_logic;
signal qgs_vec_base: addr;
signal qgs_blk_base: addr;
signal qgs_-blk_weight: mnatural;
signal qgs_res_base: addr;
signal gs-start_mul: std_logic;
signal gs_done: std_logic;

component find_max is

port (
— control signals
clk_i: in std_logic;
rst_n_i: in std-logic;
start_i: in std-logic;
— to memory
a_i: in pos;
a_addr_o: out addr;
b_i: in pos;
b_addr_o: out addr;
Z_0: out pos;
z_addr_o: out addr;
WI_0: out std-logic;
— report back when done
max_idx_o: out n_array (15 downto 0);
done_o: out std_logic

);

end component find_max;

signal fm_start: std_logic;

signal fm_a_addr: addr;

signal fm_b_addr: addr;

signal fm_z: pos;

signal fm_z_addr: addr;

signal fm_wr: std_logic;

signal fm_max_idx: n_array (15 downto 0);
signal fm_done: std_logic;

signal max_idx_c: n_array (15 downto 0);
signal max_idx._r: n_array (15 downto 0);

component vector_plus_rows is

port (
— control signals
clk_i: in std_logic;
rst_n_i: in std-logic;
start_i: in std_logic;
— row indexes
row_idx_i: in mn_array (15 downto 0);
—— to memory
a_i: in pos;
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);

a_addr_o:
b_i:
b_addr_o:
Z_0:
z_addr_o:
WI_0:

out
in

out
out
out
out

addr;
pos;
addr;
pos;
addr ;

std_logic;

— report back when done

done_o:

out

std_logic

end component vector_plus_rows;

signal
signal
signal
signal
signal
signal
signal

component e_by_Htr

port

);

vr_start:
vr_a_addr:
vr_b_addr:
VIr_z:
vr_z_addr:
VI_WT :
vr_done:

(

is

std_-logic;

addr;
addr;
pos;

addr;

std_logic;
std_logic;

— control signals

clk_i:
rst_n_i:
start_i:
— controls

to

vector_base_o:

block_base_o

result_base_o:

start_-mul_o:
mul_done_i:
— report ba
done_o:

ck

end component e_by_Htr;

signal
signal
signal
signal
signal
signal

eh_start:
eh_vec_base:
eh_blk_base:
eh_res_base:
eh_start_mul
eh_done:

component null_syndrome

port

)

in
in
in

in
out
in
out
out
out

in std_-logic;
in std_logic;
in std_logic
multiplication

out addr;
out addr;
out addr;

out std_-logic;
in std_logic;

out std_logic

std_logic;

addr;
addr ;
addr;

std_logic;
std_logic;

is

std_logic;
std_logic;
std_logic;

pos;
addr;
pos;
addr;
pos;
addr;

(

—— control signals
clk_i:
rst_n_i:
start_i:

— to memory
a_i:
a_addr_o:
b_i:
b_addr_o:
Z_0:
z_addr_o:
WI_0:

out

std_logic;

—— report back when done

null_syn_o:
done_o:

out
out

std_-logic;

std_logic

end component null_syndrome;

signal
signal

ns_start:
ns_a_addr:

std_logic;

addr ;

)

)

3

)

)

3

)

)
3

)

i

)

)

5

)

)

)

)
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276
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282
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286
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308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
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327
328
329

signal ns_b_addr: addr;
signal ns_z: pos;
signal ns_z_addr: addr;
signal ns_wr: std_logic
signal mns_null_syn: std_logic
signal ns_done: std_logic
component clear_temp is
port (

— control signals

clk_i: in std-logic

rst_n_i: in std-logic

start_i: in std_-logic

—— to memory

a_i: in pos;

a_addr_o: out addr;

b_i: in pos;

b_addr_o: out addr;

Z_0: out pos;

z_addr_o: out addr;

WI_0: out std_logic

— report back when done

done_o: out std_logic

);

end component clear_temp;

signal ct_start: std_logic
signal ct_a_addr: addr;
signal ct_b_addr: addr;
signal ct_z: pos;
signal ct_z_addr: addr;
signal ct_wr: std_logic
signal ct_null_syn: std_logic
signal ct_done: std_logic
component comp_message 1is
port (

— control signals

clk_i: in std_logic

rst_n_i: in std_logic

start_i: in std-logic

— to memory

a_i: in pos;

a_addr_o: out addr;

b_i: in pos;

b_addr_o: out addr;

Z_0: out pos;

z_addr_o: out addr;

Wr_o: out std_logic

—— report back when done

done_o: out std-logic

)i

end component comp_message;

signal
signal
signal
signal
signal
signal
signal

cm_start:
cm_a_addr:
cm_b_addr:
cm_z:
cm_z_addr:
Cm_wr:
cm_done:

type state_t is (
IDLE,

std_logic
addr;
addr ;
pos;
addr;
std_logic
std_logic

76




)

COMPUTELTR,
COMPUTE_INITIAL SYNDROME,
COMPUTESIGMA,

COMPUTER,

FIND_B,

COMPUTE.ERROR,
COMPUTE.SYNDROME,
CHECK_SYNDROME,
CLEAR_TEMP_AND _LOOP,
COMPUTE.MESSAGE,

CLEAR TEMP_AND_RETURN,
DONE

signal state: state_t;
signal next_state: state_t;

signal 1l_.c: integer;

signal I_r integer;
begin

KR: key_reconstruction

VC:

XL:

port map (

clk_i = clk_i,
rst_n_i => rst_n_i,
start_i => kr_start ,
a-i = a.i,
a_addr_o => kr_a_addr,
b_i = b.i,
b_addr_o => kr_b_addr,
Z_0 = kr.z,
z_addr_o => kr_z_addr,
Wr_0 => kr_wr,
key_rec_done_o => kr_done

)i

vector_by_circulant

port map (
clk_i = clk_.i,
rst_n_i => rst_n_i,
start_i => vc_start,
binary_i => vc_binary,
a_base_i => vc._vec_base,
b_base_i => vc_blk_base ,
b_weight => vc-blk_weight ,
z_base_i => vc.res_base ,
op => vc.op,
a_i = a.i,
a_addr_o => vc.a_addr,
b_i = b.i,
b_addr_o => vc_b_addr,
Z_-0 = vc.z,
z_addr_o => vc_.z_addr,
Wr_o => VC_Wr,
done_o => vc_done

)i

x_by_Ltr

port map (
clk_i = clk_i,
rst_n_i => rst_n_i,
start_i => xl_start ,
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392
393
394

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
415
4116
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
443
445
446
447
448
449
450
451
452
453

HS:

QS:

FM:

VR:

vector_base_o
block_base_o
result_base_o
start_-mul_o
mul_done_i

done_o
)
Htr_by_str
port map (
clk_i
rst_n_i
start_i

vector_base_o
block_base_o
result_base_o
start_mul_o
mul_done_i
done_o

);

Qtr_by_sigmatr
port map (
clk_i
rst_n_i
start_i
vector_base_o
block_base_o
block_weight_o
result_base_o
start_mul_o
mul_done_i
done_o

)

find_max

port map (
clk_i
rst_n_i
start_i
a_i
a_addr_o
b_i
b_addr_o
Z_0
z_addr_o
Wr_0
max_idx_o
done_o

);

vector_plus_rows
port map (
clk_i
rst_n_i
start_i
row_idx_i
a_i
a_addr_o
b_i
b_addr_o

zZ_0

xl_vec_base ,
xl_blk_base ,
xl_res_base ,
xl_start_mul ,
vc_done ,
xl_done

clk_i,
rst_n_i,
hs_start ,
hs_vec_base ,
hs_blk_base ,
hs_res_base ,
hs_start_mul ,
vc-done ,
hs_done

clk_i,
rst_n_i,
gs_-start ,
gs-vec_base ,
gs_blk_base ,
gqs-blk_weight ,
gqs_res_base ,
gs-start_mul ,
vc_done ,
gs_-done

clk_i,
rst_n_i,
fm_start ,
a_i,
fm_a_addr ,
b_i,
fm_b_addr ,
fm_z ,
fm_z_addr ,
fm_wr,
fm_max_idx ,
fm_done

clk_i,
rst_n_i,
vr_start ,
max_idx_r ,
a_i,
vr_a_-addr ,
b_i,
vr_b_addr ,

vr_z ,
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454
455
456
457
458
459
460
461

462
463
464

465
466
467
468
469
470
471

472
473
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

EH:

NS:

CT:

CM:

z_addr_o
Wr_o
done_o

);

e_by_Htr

port map (
clk_i
rst_n_i
start_i
vector_base_o
block_base_o
result_base_o
start_mul_o
mul_done_i
done_o

);

null_syndrome

port map (
clk_i
rst_n_i
start_i
a_i
a_addr_o
b_i
b_addr_-o
Z_0
z_addr_o
WTI_0
null_syn_o
done_o

)

clear_temp

port map (
clk_i
rst_n_i
start_i
a_i
a_addr_o
b_i
b_addr_-o
Z_0
z_addr_o
WTI_0
done_o

);

comp-message

port map (
clk_i
rst_n_i
start_i
a_i
a_addr_o
b_i
b_addr_o
Z_0
z_addr_o
Wr_0
done_o

vr_z_addr ,
VI_WT ,
vr_done

clk_i,
rst_n_i,
eh_start ,
eh_vec_base ,
eh_blk_base ,
eh_res_base ,
eh_start_mul ,
vc_done ,
eh_done

clk_i,
rst_n_i,
ns_start ,
a_i,
ns_a_addr ,
b_i,
ns_b_addr ,
ns_z ,
ns_z_addr ,
ns_wr,
ns_null_syn ,

ns_done
clk_i,
rst_n_i,
ct_start ,
a_i,
ct_a_addr ,
b_i,
ct_b_addr ,
ct_z,
ct-z_addr ,
ct_wr ,
ct_done
clk_i,
rst_n_i,
cm_start ,
a_i,

cm_a_addr ,
b_i,
cm_b_addr,
cm-z ,
cm_z_addr,
cm_wr ,
cm_done
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)i
seq: process(clk_i,
begin
if rst_n_i =
state
max_idx_r
I_r

07

rst-n_i)

then

<=
<=
<=

IDLE;
(others => 0);
0.

elsif rising_edge(clk_i) then

state <= next_state;
max_idx._r <= max-idx_c;
I_.r <= l.c;
end if;
end process seq;
— TODO: put everything in sensitivity list
comb: process (all)
—state , start_i,
kr_a_addr , kr_b_addr, kr_-z, kr_z_addr, kr_wr, kr_done,
vc_a_addr, vc_b_addr, vc_z, vc_z_addr, vc_wr,
xl_start_mul , xl_vec_base, xl_blk_base, xl_-res_base, xl_done,
hs_start_mul, hs_vec_base, hs_blk_base, hs_res_base, hs_done,
gs-start_-mul, gs_-vec_base, qs_-blk_base, gs_-res_base, gs_-done,
fm_a_addr, fm_b_addr, fm_z, fm_z_addr, fm_wr, fm_max_idx, fm_done,
vr_a_addr, vr_b_addr, vr_z, vr_z_addr, vr_wr, vr_done,
eh_start_mul, eh_vec_base, eh_blk_base, eh_res_base, eh_done)
begin
next_state <= state;
a_addr_o <= to_unsigned (0, address_bits);
b_addr_o <= to_unsigned (0, address_bits);
Z_0 <= to_unsigned (0, position_bits);
z_addr_o <= to-unsigned (0, address_bits);
Wr_o <= 0’
failure_o <= 07
done_o <= 0’
kr_start <= 0’
vc_start <= '0’;
vc_binary <= 0’
vc_vec_base <= to-unsigned (0, address_bits);
ve_blk_base <= to_.unsigned (0, address_bits);
ve_blk_weight <= 0;
vc_res_base <= to_.unsigned (0, address_bits);
vc_op <= 07
xl_start <= 0’
hs_start <= ’'0’;
qs-start <= 0’
fm_start <= ’'0’;
max_idx_c <= max_idx._r;
vr_start <= 0’
eh_start <= 0’
ns_start <= 0’
ct_start <= 0’
cm_start <= 0’
I_c <= l_.r;
case state is
when IDLE =>
l.c <= 0;
if start_-i = 1’ then
next_state <= COMPUTELTR;
end if;
when COMPUTELTR =>
a_addr_o <= kr_a_addr;
b_addr_o <= kr_b_addr;
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578 Z_0 <= kr.z;

579 z_addr_o <= kr_z_addr;

580 WI_o <= kr_wr;

581 kr_start <= 17

582 if kr_done = ’1’ then

583 next_state <= COMPUTEINITIAL. SYNDROME;
584 end if;

585 when COMPUTEINITIAL. SYNDROME =>

586 a_addr_o <= vc_.a_addr;
587 b_addr_o <= vc_-b_addr;
588 Z_0 <= vc.z;

589 z_addr_o <= vc_z_addr;
590 Wr_o <= VC_Wr;

591 vec_start <= xl_start_mul;
592 vc_binary <= 17

593 vc_vec_base <= xl_vec_base;
594 vc_blk_base <= xl_blk_base;
595 ve-blk_weight <= sum(M)*DV;
596 vc_res_base <= «xl_res_base;
597 vc_op <= 0’

598 xl_start <= 17

599 if xl_done = ’1’ then

600 next_state <= COMPUTESIGMA;
601 end if;

602 when COMPUTESIGMA =>

603 a_addr_o <= vc.a_addr;
604 b_addr_-o <= vc-b_addr;
605 Z_0 <= vc_z;

606 z_addr_o <= vc-z-addr;
607 Wr_o <= VC_Wr;

608 vc_start <= hs_start_mul;
609 vc_binary <= 07

610 vc_vec_base <= hs_vec_base;
611 vc-blk_base <= hs_blk_base;
612 vc_blk_weight <= DV;

613 vc-_res_base <= hs_res_base;
614 vc_op <= 17

615 hs_start <= 17

616 if hs_done = ’1’ then

617 next_state <= COMPUTER;
618 end if;

619 when COMPUTER =>

620 a_addr_o <= vc.a-addr;
621 b_addr_o <= vc_b_addr;
622 Z_0 <= vcC.z;

623 z_addr_o <= vc_z_addr;
624 Wr_o <= VC_WT;

625 vc_start <= gs.start_mul;
626 vc_binary <= 07

627 vc_vec_base <= qgs-vec_base;
628 vc_blk_base <= qs-blk_base;
629 vc_blk_weight <= gs-blk_weight + 1;
630 vc_res_base <= (qgs_res_base;
631 vc_op <= 17

632 qs_start <= 17

633 if gs_-done = ’1’ then

634 next_state <= FIND._B;

635 end if;

636 when FIND_B =>

637 a_addr_o <= fm_a_addr;
638 b_addr_-o <= fm_b_addr;
639 Z_0 <= fm_z;
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640
641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

692
693
694
695
696
697
698
699
700
701

z_addr_o <= fm_z_addr;

WTI_0 <= fm_wr;
fm_start <= 17
if fm_done = ’1’ then

max_idx_c <= fm_max_idx;

next_state <= COMPUTEERROR;
end if;

when COMPUTEERROR =>

a_addr_o <= vr_a_addr;
b_addr_o <= vr_b_addr;
Z_-0 <= Vvr_z,
z_addr_o <= vr_z_addr;
WTr_0 <= VI_Wr;
vr_start <= 17
if vr_done = ’1’ then

next_state <= COMPUTESYNDROME;
end if;

when COMPUTESYNDROME =>

a_addr_o <= vc.a_addr;
b_addr_-o <= vc-b_addr;
Z_0 <= vcCc.z,;
z_addr_o <= wvc_.z_addr;
WI_O <= VC_wWr;
vc_start <= eh_start_mul;
vc_binary <= 17
vc_vec_base <= eh_vec_base;
vc-blk_base <= eh_blk_base;
vc_blk_weight <= sum(M)*DV;
vc_res_base <= eh_res_base;
vc_op <= 07
eh_start <= 17

if eh_done = ’1’ then
next_state <= CHECKSYNDROME;

end if;
when CHECKSYNDROME =>
a_addr_o <= mns-a-addr;
b_addr_o <= mns_b_addr;
Z_0 <= ns.z,;
z_addr_o <= mns_z_addr;
Wr_o <= ns_wr;
ns_start <= 17
if ns_done = ’1’ then
if ns_null_syn = 1’ or l_.r >= 20 then
next_state <= COMPUTEMESSAGE;
else
next_state <= CLEARTEMP_AND_LOOP;
end if;
end if;
when CLEAR.TEMP_AND_LOOP =>
a_addr_o <= «ct-a_addr;
b_addr_o <= ct_b_addr;
Z_0 <= ct_z;
z_addr_o <= ct_z_addr;
WTI_0 <= ct_wr;
ct_start <= 17
if ct_.done = ’1’ then
I_c <= l.r 4+ 1;
next_state <= COMPUTESIGMA;
end if;
when COMPUTEMESSAGE =>
a_addr_o <= cm_a_addr;
b_addr_o <= cm_b_addr;
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702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

Z_0 <= cm.z,;
z_addr_o <= cm._z_addr;
Wr_o <= Ccm_wr;
cm_start <= 17
if cm_done = ’1’ then
next_state <= CLEARTEMP_AND RETURN;
end if;
when CLEAR.TEMP_AND RETURN =>
a_addr_o <= «ct_a_addr;
b_addr_o <= ct_b_addr;
Z_0 <= ct_z;
z_addr_o <= ct_z_addr;
WTI_0 <= ct_wr;y
ct_start <= 17
if ct_done = ’1’ then
next_state <= DONE;
end if;
when DONE =>
done_.o <= ’17;
if 1.r >= 20 then
failure_-o <= 17
end if;
if start_i = 0’ then
next_state <= IDLE;
end if;
when others =>
null;

end case;
end process comb;

end architecture rtl;
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