
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Graduate Dissertation

Securing Vulnerable Web Applications

Providing a structured procedure and .Net Framework implementation examples

Supervisor
Prof. Antonio Lioy

Ema Srdoc

Academic year 2017-2018

Summary

This work tackles the problem of analysing a web application to detect security vulnerabilities
and mitigate them properly with respect to context and requirements.

During the course of the stage attended throughout 4 months in KPMG S.p.A., the candidate
was confronted with such task and, as a result of the experience gained in the process and the
difficulties encountered, a procedure has been devised, with a structure designed based on what
the candidate considers to be an optimised and less error prone approach when securing web
applications.

The procedure provides a first analytic phase in which the application is examined based
on purpose, functionality and technical structure. This section guides through the detection of
the most common vulnerabilities and provides the better part of the information necessary to
properly evaluate their severity. This includes the description of the most common mistakes
made by developers along with the most relevant exploitation methods and consequences. The
aim of this section is to concentrate all the relevant theory aspects of web application security,
therefore facilitating to developers the task of properly individuating the vulnerabilities present
in the code, and to provide an organised approach in order to optimise the process and guarantee
that all the relevant aspect are properly examined.

For each of the vulnerabilities described in the analysis section, one or more implementation
examples are proposed in the implementation section of the procedure. The code provided is
extracted from the real case study performed during the stage and is therefore specific to the
language and frameworks used by the web application, however the purpose of this section is not
to provide code ready to be used on other applications but to show the logic behind the imple-
mentation of the theory aspects, discussed in the analysis section, and expose the considerations
that where made upon selecting the proper approach. Once this concepts are clear the code can
easily be translated to apply to other languages and frameworks. In addition this section also
aims at minimising the time spent on discriminating the correctness of the different approaches
that are proposed online. The implementations proposed in this document are the result of the
discrimination performed by the candidate during her experience and have been tested to provide
the expected mitigation.

The last section of this work provides guidelines and best practices for the correct maintenance
of the secure state of the application throughout it’s lifetime.

3

Contents

1 Introduction 6

1.1 Present state . 7

1.2 OWASP . 8

1.3 Objectives . 8

1.4 The application: SoD App . 9

1.4.1 Purpose . 9

1.4.2 Functionalities . 10

1.4.3 Structure . 11

2 Analysis of the web application 14

2.1 Black Box analysis . 14

2.1.1 Understanding the application . 14

2.1.2 Mapping the Interactions . 15

2.1.3 Testing the application with unexpected behaviours 17

2.1.4 Testing with cyber attack tools . 18

2.1.5 Analysis results on SoD App . 21

2.2 White Box analysis . 21

2.2.1 Application configuration . 21

2.2.2 Input Management . 23

2.2.3 Authentication and Session Management 31

2.2.4 Password Management and Policies . 37

2.2.5 Data Management . 42

2.2.6 Keys Management . 44

2.2.7 Error handling . 45

2.2.8 Code analysis tools . 46

2.2.9 Analysis results on SoD App . 46

2.3 Analysis of support tools and environment . 48

4

3 Implementation of risk mitigation actions 50

3.1 Application configuration . 50

3.1.1 HTTPS . 50

3.1.2 HTTP Methods . 53

3.1.3 HTTP Response Headers . 53

3.2 Input management . 54

3.2.1 Managing Text Input . 54

3.2.2 Managing File Uploads . 57

3.3 Authentication and Session Management . 64

3.3.1 User ID . 64

3.3.2 Session Management . 67

3.4 Password management and Policies . 70

3.4.1 Password Strength . 70

3.4.2 Password Storage . 70

3.4.3 Password Recovery . 73

3.4.4 Password Policies . 73

3.4.5 Alternative Authentication Mechanisms . 75

3.5 Data Management . 76

3.6 Keys Management . 82

3.7 Error handling . 84

3.7.1 Exceptions . 84

3.7.2 Resource Release . 85

3.7.3 Debug Features . 86

3.8 Analysis of support tools and environment . 87

4 Review and Maintenance 88

5 Conclusions 90

Bibliography 92

5

Chapter 1

Introduction

This thesis aims at providing the structure of a general procedure to guide the process of securing
a web application against the most common risks. The procedure will be subdivided in 3 main
phases:

1. Analysis

2. Implementation

3. Review and Maintenance

Such procedure is devised keeping in consideration the current state of the art of web security
techniques and the most commonly exploited vulnerabilities.

Alongside the presentation of the general procedure a real case study will be provided, to help
understand how context, means and purposes can influence the outcome of the whole process,
together with examples of actual vulnerabilities and implementations.

The web application under exam was provided by the company KPMG S.p.A. and is devel-
oped under the .NET Framework. Therefore this provided implementation examples concentrates
exclusively on the Windows environment.

The arguments are organised as follows:

Introduction: this chapter describes the context for this work, what motivated the author and
how and in which cases this document can be useful to the reader.

Analysis of the web application: discusses the assessment process, dividing it in three main
phases and for each describes the steps to be taken both from conceptual and practical point
of view.

Phase 1 : the Black Box analysis, describes the first approach for understanding and
testing the application through the provided interactions.

Phase 2 : the White Box analysis, takes a more in depth look at the application by examin-
ing the source code and configurations. In addition, the most common vulnerabilities,
their exploitation and consequences will be explained, in order to allow a better eval-
uation of the actual risks.

Phase 3 : support tools and environment analysis, evaluates the security of the server,
support software, libraries, etc. used by the web application, to identify known vul-
nerabilities, outdated versions and insecure configurations and connections.

Implementation of risk mitigation actions: explains how to secure the application against
the evaluated risks, providing best practices and practical implementation examples from
the real case study.

Review and Maintenance: describes the necessary actions that need to be performed after
the securing process is terminated and discusses the policies that must be devised and
implemented in order to guarantee the secure state of the application throughout it’s lifetime.

6

1 – Introduction

1.1 Present state

The importance of having secure software is steadily increasing, as insecure software is undermin-
ing our financial, healthcare, defense, energy, and other critical infrastructure. As of today the
situation is alarming; an increasing number of individuals and companies are turning towards the
significant profits that derive from the exploitation of such insecure software.

Attackers have at their disposal a wide pool of systems with weak security, especially in
developing countries, that offer an ideal testing ground; more and more people are attracted by
it’s lucrative opportunities, and even those with weak hacking skills can easily find online tools
and script for their purposes, often becoming the vector for the real crackers who can thus remain
well hidden.

Furthermore often minor cyber-crimes go unpunished as it is not feasible to perform an in-
vestigation for every ransomware victim, whereas major crimes are committed by specialists that
can be very creative in hiding their tracks. In addition, thanks to cryptocurrencies, also illegal
money transfers have become easy to hide.

On the other hand many companies still do not fully grasp the threat posed by this growing
community of crackers and often adopt insufficient precautions and do not train their employees
properly.

Even when properly adopted, defensive strategies are mainly reactionary, meaning that a
system will be protected against well known threats but might be completely vulnerable to new
unknown exploits. Whereas if companies were willing to invest more in the security of their
systems, new predictive approaches could be implemented.

Furthermore increasingly complex software is developed in haste by sacrificing quality and
security and most of the developers have no training in secure coding. It has also been observed
that the explosion in the use of internet has resulted less competent system administrators, due
to the tendency of pressing non-technical people into service as system administrators [1].

Another great issue nowadays is the persistence of old “legacy” software.

“In computing, a legacy system is an old method, technology, computer system,
or application program, “of, relating to, or being a previous or outdated computer
system.” Often referencing a system as “legacy” means that it paved the way for the
standards that would follow it. This can also imply that the system is out of date or
in need of replacement.” [2]

When this kind of software remains active and running it can be a critical point for the security
of the company.

The candidate, even in her limited experience, was faced with the fact that the majority of
companies are constantly struggling with the pressure of keeping up with market demands, com-
petition and the fast pace of technological evolution. This leads to the focus being concentrated
in making the development phase as fast as possible in order to meet the demands, neglecting
among many things also the security aspects or doing the bare minimum to be compliant with
regulations, hence effectively protecting themselves against inspection, but very poorly against
real security threats.

Incidentally, it was interesting to witness the effect of the new General Data Protection Reg-
ulation(GDPR) (EU) 2016/679, applicable in Italy since the 25th of May 2018. This regulation,
that is better known for it’s implications in privacy protection, in truth also focuses on the security
of the data processing activities, clearly stating in Article 32 (1):

“Taking into account the state of the art, the costs of implementation and the
nature, scope, context and purposes of processing as well as the risk of varying like-
lihood and severity for the rights and freedoms of natural persons, the controller and
the processor shall implement appropriate technical and organisational measures to
ensure a level of security appropriate to the risk, . . . ”

7

1 – Introduction

Faced with these new security requirements, and it’s substantial fines, many companies have
been forced to acknowledge their security gaps, or rather their new compliance gaps, and have
decided to upgrade their systems accordingly. Those companies, lacking the technical expertise,
had to turn to consulting firms or external experts in order to achieve compliance, and that is
were the candidate had the chance to study this phenomenon. It emerged that many companies
were found extremely lacking to even the most basic security requirements.

Ultimately I believe that progress is being made in raising security awareness in the IT commu-
nity but these efforts are yet to reach the financial administration, which still needs to understand
that underestimating or disregarding the security issues not only exposes customers, and employ-
ees alike, to the consequences of cyber attacks but also exposes the company itself to the disastrous
impact a breach could have, such as, but not limiting to, defacement, intellectual property loss,
financial damage and in addition, if found negligent, punitive fines.

In fact the 2018 Clusit Report on ICT security has highlighted that the global costs generated
by cyber criminals has increased from 100 billion dollars in 2011 to over 500 billion dollars in
2017, of which 180 billion affected private individuals. It also estimates that by 2019 the cost
could reach 2 thousand billion if appropriate countermeasures are not adopted.

1.2 OWASP

To contrast this trend and raise awareness a new security oriented open-source community has
been growing in the last decades.

A great contribute to this community has been provided by the Open Web Application Security
Project (OWASP) [3], a non-profit organization focused on improving the security of software.
OWASP provides unbiased information, best practices and advocates open standards, in order
to make security transparent to individuals and organizations alike. In addition the Top 10
project releases every couple of years a document containing the most critical security risks to
web applications, estimated by gathering surveys from a large number of companies [4].

Throughout this dissertation the documentation and guidelines provided by OWASP are heav-
ily referenced and implemented as they represent the current publicly available state of the art
for security practices.

1.3 Objectives

The purpose of this work is to provide a structured approach to guide the process of securing a
web application against the most common risks. This structure has been drafted initially during
the securing of the KPMG web application and it has subsequently been refined. Examples
drawn from the real case study will be presented, analysing the assumptions that led to insecure
configurations and providing the current best practices and solutions.

As a consequence of the analysis performed on the current state of software security, pro-
viding an easy to follow structured procedure for discovering and patching the most common
vulnerabilities exploited by crackers and in parallel providing an analysis and explanation of the
risks involved might encourage more developers and companies to apply it on their own software.
It would significantly facilitate the task of securing vulnerable web application and reduce the
required man-hours involved. Furthermore it would be easily applicable also by developers un-
trained in writing secure code and therefore both companies and individuals might more easily
decide to dedicate some time in securing their vulnerable software.

It must be highlighted, however, that the the optimum would be to develop software that is
security-minded since the first stages of it’s conceptual design, more often the priority is to release
software as soon as possible, leaving security only as an afterthought. Furthermore in this work it
will be assumed that the software that needs to be secured was not developed by the same person
or team performing the securing, as it commonly is the case.

8

1 – Introduction

1.4 The application: SoD App

1.4.1 Purpose

The application analysed as real-case study is not an example of the previously mentioned “legacy”
software, but is instead the product of developers untrained in writing secure code and the absence
of security instructions and requirements in the design of the project.

It was regularly used by the company’s employees and was available only in the intranet before
the company decided to make the tool available also to it’s customers. For this purpose however
the application had to be exposed to the extranet and therefore it was mandatory to resolve the
security issues.

The service provided by the application is the analysis of the segregation of duties in the
Enterprise Resource Planning (ERP) systems of a customer, with the possibility to calibrate
the software’s variables to fit better the nature of the industry in which it operates and its
particular ERP system. The application will be hereinafter referred to as SoD App.

The increasing reliance of business processes on the IT systems supporting their execution
results in the necessity to define a system to properly monitor and manage segregation of
duties (SoD) to avoid granting employees with excessive system authorizations, inadequate to
their official duties, thus violating the Principle of Least Privilege. The principle states:

“In information security, computer science, and other fields, the principle of least
privilege (PoLP, also known as the principle of minimal privilege or the principle of
least authority) requires that in a particular abstraction layer of a computing envi-
ronment, every module (such as a process, a user, or a program, depending on the
subject) must be able to access only the information and resources that are necessary
for its legitimate purpose.” [5]

This is a fundamental principle in defining security, as every additional point of access to
a system constitutes a vulnerability. In the specific case of SoD, an attacker could exploit an
improper management of authorizations through the use of social engineering, to gain access
to information available to the targeted employee.

“Social engineering, in the context of information security, refers to psychological
manipulation of people into performing actions or divulging confidential information.
A type of confidence trick for the purpose of information gathering, fraud, or system
access, it differs from a traditional ”con” in that it is often one of many steps in a
more complex fraud scheme.” [6]

Usually an attacker would select multiple targets and gather little pieces of information, seem-
ingly innocuous, from the victims. All these bits of information, however, when put together
in the hands of an expert in deception could allow the social engineer to impersonate someone
internal to the company so accurately that even the most guarded person might be deceived.

On the contrary if all relevant information is well guarded and provided strictly to those
who need to know it in order to perform their job and each employee is therefore charged with
protecting a restricted set of information for which he is well aware of the exclusivity of knowledge,
an attacker would have a much smaller and cautious pool of targets for each specific information,
making his task significantly harder.

This is only one of the risks arising from the improper segregation of duties resulting from
granting employees with excessive system authorizations, inadequate to their official duties. Plan-
ning for an appropriate division of responsibilities and reflecting it in the access privileges granted
to users of IT systems becomes necessary for the proper, efficient and secure execution of the
business processes.

In this perspective the web application offers a tool to quickly and efficiently scan the database
generated by the ERP software used by the customer to retrieve roles and authorizations of each
employee to allow easier identification of excessive roles and potential conflicts.

9

1 – Introduction

1.4.2 Functionalities

Home

The home view of the application [Fig. 1.4.2] offers a short introduction to the application and
provides:

❼ Status of the account: running analyses and completed analyses.

❼ A list of the last analyses performed, along with a link to the report resource.

❼ A list of links to download helpful resources for the user.

Figure 1.1. SoD App Home view.

Projects

In the Projects Management page [Fig. 1.4.2] it’s possible to view a list of all created projects,
modify them and create new projects [Fig. 1.4.2]. Each user has a maximum number of projects
that can be created and a maximum number of analyses over all the projects. A single project
usually is specific to a certain audit activity with respect to a specific client, therefore it might
contain multiple databases and for each database multiple analyses with different parameters
[Fig. 1.4.2].

10

1 – Introduction

Figure 1.2. SoD App Projects Management view.

Figure 1.3. SoD App creation of a new project.

Analyses

Different types of analyses can be performed, and the output is returned in the format of a
specified predefined excel matrix. Many parameters [Fig. 1.4.2] and filters are available to refine
the analyses and when the setup operation is completed the application will delegate the analysis
to an asynchronous thread on the server.

1.4.3 Structure

Framework

The application was developed under .NET Framework 4.7.2, using the C# language for the
back-end, and was structured in a Model View Controller (MVC) pattern:

Model: defines the data structure, entities and relations.

View: defines the user interfaces through HTML.

Controller: the control methods and classes that define the functioning logic of the application.

11

1 – Introduction

Figure 1.4. SoD App project view.

Figure 1.5. SoD App analysis parameters.

The use of a different structure pattern should not excessively influence the actual implemen-
tation of the solutions but only how the different elements of the application communicate and
the data flows through the code.

The proposed implementation examples were developed for an application that targets .NET
Framework 4.7.2, therefore some solutions might not work for older versions, however the examples
are meant to help understanding the implementation logic and not to be an applicable solution for
all cases. Once the mechanisms are clear it should be easy to reformulate the solution and adapt
it to different contexts. The web server application used for SoD App was Internet Information
Services (IIS) version 8.5.

Throughout the dissertation two important configuration files will be referenced, they are both
named Web.config but are two different files, one used by IIS to manage it’s own configuration
and the other specifying web configurations used by the Web application, namely SoD App. In
order to distinguish them they will be referred to as “IIS Web.config” and “App Web.config”.

12

1 – Introduction

Database

The application uses both relational and non relational databases. Information related to users,
projects and analyses is contained in MongoDB 3.4, a NoSQL database, whereas static data used
by the application, such as analysis matrix schemes and analysis filters, are stored using Microsoft
SQL Server 2016. The reasons behind these design choices are unknown.

13

Chapter 2

Analysis of the web application

In this chapter it will be described how to perform a 360-degree evaluation of the web application
that must be secured. The procedure will assume that the tester has permission from the web
application owner and complete access to it, it’s source code, configurations and deployment
devices. It will also be assumed that there is no familiarity with the application at the start of
the analysis. This assumption is made on the basis that most of the time the person in charge of
securing a software is not part of the team that wrote it, and might not be able to communicate
with them. If this is not the case subsection 2.1.1 can be skipped.

2.1 Black Box analysis

The Black Box technique is a testing technique that examines the functionalities of a software
without having access to it’s internal structure and is usually employed for testing that focuses
on what the software is supposed to do and not how it does it. In this context it will be useful
to gain a global understanding of which actions are available to a user and how is interaction
structured before diving into the code.

2.1.1 Understanding the application

In order to establish if the software behaves correctly, it is important to first understand it’s
purpose, what type of users it targets, the context of deployment and everything there is to know
about the software. It is not possible to simply perform a list of standard actions to secure a
web application, that is not the purpose of this work, but each software needs to be studied and
understood in its own in order to effectively secure it.

The purpose

Understanding the purpose of the software helps defining how should the software behave. The
following information should be gathered:

❼ How many types of user accounts are defined?

❼ Who are the users?

❼ How are the users authenticated?

❼ What actions can each type of user perform?

❼ What data is necessary to perform each action?

❼ How do users provide such data?

14

2 – Analysis of the web application

❼ What data should the software provide to the users?

Each software usually has at least two types of user accounts: common users and super users.
Common users generally represent the end user the software is designed for, whereas super users
could be the administrators and developers of the software. In reality there are usually more
types of end user accounts, for example premium users, and there might be also more types of
super user accounts with different degrees of privilege.

For each type it is necessary to clearly define what are their roles and purposes to be able to
verify whether the software manages them correctly. It is also important to create typical profiles
that describe who are the people using each type of account. For example it might be interesting
to know if a user account is designed to be used only by people internal to the company, to
a specific subset of employees, to associates of the company, etc. This information will become
highly relevant when examining the actions available to each user and the authentication methods.

Depending on the type of account there might be different types of authentications: for exam-
ple the website might require a simple password from a common user but digital certificates from
super users. It is important to be aware of all of them in order to verify that they are properly
managed and it is never possible to circumvent them.

Furthermore the software should be designed to offer to each account type a specific set of
functionalities. These are the only actions it should be authorized to perform and it must be
thoroughly verified that there is no possible sequence of actions that could lead to gaining access
to any other area of the website it is not meant to access. Another reason for which it is important
to really understand the purpose of the software is to judge when an account has been designed
to have unnecessary privileges.

For example, considering an internet banking application, there might be a User Administrator
account in charge of providing support to customers having problems with their own accounts.
User Administrator type accounts should be able to perform all tasks necessary for their job, such
as view and edit account configurations in order to help customers solve their problems, delete
accounts, reset passwords, etc., but should not be able to perform actions such as creating or
removing super user accounts, as these do not fall in the scope of “customers”.

This example, however, would have been inconsequential without the initial explanation of
the role of the User Administrator account. Roles are strictly tied to the context and purposes
they are designed for, it is not possible to define a general rule, as in another smaller company
the same operator in charge of customer users might have also been in charge of super users.

Hence it is not possible to correctly judge which privileges are strictly necessary unless each
user has been correctly profiled and the context examined in detail.

Another important detail to consider is the data managed by the software. It is important to
define which data the user is asked to provide in order to make two important checks:

❼ Is such data really necessary?

❼ Does the software always check that the provided data is in an acceptable format?

It should also be considered how and where this data is requested, but this will be explored in
more detail in the next subsection “Mapping the Interactions”.

Finally it should be clearly defined what data should the application provide to the different
users, either as already available information or as result of a request.

2.1.2 Mapping the Interactions

Every time the software receives an input of any kind from an untrusted source this input should
be handled with extreme care. The definition of untrusted source could be simplified as anything
that could be potentially under the control of a malicious individual. Basically everything that

15

2 – Analysis of the web application

comes from the outside of the server itself should be assumed as untrusted, even if it comes from
the intranet.

For the sake of this dissertation the term input refers to any information that is not directly
elaborated by the software but must be provided externally. It could be the text inserted by the
user in an input field, a selection from a drop down menu but also data not directly provided by
the user, such as information inserted in the HTTP/HTTPS requests by the browser or scripts
running on the client side of the application or state information not computed by the back-end
of the web application. All this information could be easily tampered by a malicious agent and
must not be trusted.

An important step is to thoroughly map all these input sources, completing them with a
description of their purpose, what is expected by the software from that field and which account
types should be able to access it. Common input sources are:

❼ input fields

❼ drop-down menus

❼ toggle buttons

❼ upload buttons

❼ the browser’s address bar

These are all obvious inputs, but there are also less obvious inputs that are calculated by
scripts running on the client side of the web application and incorporated in the HTTP/HTTPS
request sent to the server. These inputs are also not to be trusted because even if the scripts
themselves are integral part of the web application and therefore trustworthy, a skilled user could
easily perform a number of actions to tamper with those scripts, like rewriting the script itself,
disabling it’s execution, editing manually the script’s input directly in the HTTP/HTTPS request,
etc.

Therefore anything implemented to run on the client side of the application should be only
used for improving user experience but should in no case be considered safe.

This is a common mistake made by many website developers. Incidentally many wrong as-
sumptions of these kind were found in SoD App. For example validation and sanitization of the
inputs was made by a JavaScript script running on client side. The software would perform no
additional check in the back-end C# classes. A non malicious user would be promptly notified if
the format of the input was incorrect, however it was sufficient to edit the settings of the browser
to disable JavaScript, effectively voiding any control. This could result in a SQL Injection at-
tack or in runtime exceptions being triggered by the unexpected input. Both could pose a great
security risk.

Validating an input means verifying if the input provided respects the required length, format,
range, and allowable characters. For example if an input field is supposed to contain the name of
a person, there shouldn’t be any numbers in the string and it should have a realistic maximum
length.

Sanitizing the input instead means that the input is modified in order to conform it with
respect to software and security standards. It may include the neutralisation of dangerous char-
acters from the input by means of removing, replacing, encoding, or escaping the characters.

These are two fundamental actions that must be performed by the server in order to prevent
malformed data from persisting in the database and triggering malfunction of various downstream
components. Input validation and sanitization should happen as early as possible in the data flow,
preferably as soon as the data is received from the external party. In the next section, under “Input
management” [2.2.2] it will be analysed in detail how they are implemented and what are the
most common exploits against improper input handling.

Another error that was committed in SoD App was assuming that the user would only use
buttons provided by the view in order to navigate between different pages of the website. This

16

2 – Analysis of the web application

assumption led to the belief that certain web pages were reachable by the user only through
a controlled sequence of steps that were available only if the user had proved authorization to
reach that particular page. Therefore controls had been done throughout the process of normally
reaching the page, but where not done on the actual GET request for the specific page. This
way a user could easily fool the authorisation system by requesting the interesting page directly
typing it’s URL in the browser’s address bar.

In SoD App’s specific case in order to reach the page containing the list of SoD analyses
performed by user A on a specific database, and the relative links to download the results, the
expected sequence of actions A should have performed was to login, select “Projects” button
from the home page, then select the name of the project from a list, that would have provided
the parameter for the URL query string to obtain the specific project and would have loaded it.
However the control was made only during login, so if user B, after authenticating to the website
with his own credentials then typed the URL to the project page using A’s project identifier as
parameter the server would not perform any authorization check and would provide the requested
page.

The developer naively assumed that user B would not know the parameter for A’s project, as
it was available only after a sequence of actions that only A could make.

This kind of assumptions are extremely dangerous as they expose the website to Web Param-
eter Tampering attacks, based on the manipulation of parameters exchanged between client and
server in order to modify application data. Usually, this information is stored in cookies, hidden
form fields, or URL Query Strings, and is used to increase application functionality and control.
In Sod App’s specific case a malicious user can both try to guess randomly URLs trying to find
interesting resources, or deduce the URL patterns to retrieve specific resources.

2.1.3 Testing the application with unexpected behaviours

Once the mapping has been performed, in order to establish if the application is able to respond
correctly to malformed and tampered inputs, each of the mapped input sources must be tested
with different types of inputs.

The correct behaviour for the back-end application would be to accept only the required
format, implementing also some restrictions with regard to length and allowed characters, and
refuse anything else.

In this part of the analysis the testing will concentrate only on the response of the application,
however in section [2.2.2] it will be further verified how correctly is the validation performed,
regardless of the success of the current tests. Here the main goal is to have an overview of the
application, as it is easier to understand how the application works and what the developers
expect from the user. It is extremely helpful to first familiarise in this way with the software
before diving into the code. Code is often messy, poorly commented, full of leftover classes and
methods that are not even used, and diving directly into it’s examination without having a good
idea of what it’s supposed to do and what it actually does will most likely result in an inefficient
and messy workflow, that is more prone to error.

Some examples of unexpected behaviours that can be tested are:

❼ Malformed input: testing characters and values that are not those clearly expected by the
application.

❼ URL manipulation: trying to reach resources that should not be reachable by typing their
URL directly in the browser’s address bar.

❼ Unexpected values from drop-down menus: a common mistake made by developers is assume
that since the drop-down presents a limited set of values then the input will necessarily
belong to that set. In truth a malicious user could change the value of the parameter in
many ways and the final request would contain an unexpected value for the given parameter.
If the back-end does not correctly validate this value the attacker could exploit it for example
by injecting code. Injection attacks will be explained in detail in section 2.2.2.

17

2 – Analysis of the web application

❼ Length of the input: test if there are maximum and minimum length rules and how does
the software behave for extremely long or too short inputs.

❼ Wrong content upload: if the application expects a specific type of data, such as an image
or a document, it should not be possible to upload a different type of file, even if the file
extension has been removed or changed.

❼ Unexpected values from client-side scripts: as explained earlier since it is possible to disable
the execution of scripts or tamper both with the script itself and the result, the back-end
should validate also those inputs.

❼ Tampered parameters: modifying the parameters directly in the HTTP/HTTPS requests.

It is also necessary to verify that the application fails safely. If an unexpected input triggers an
error this is a clear sign that the validation was not performed correctly, but how did the software
react? In the worst case scenario the whole application crashes if the exception is not caught
correctly. But even managed exceptions could result in security risks if not handled properly.
This topic will be discussed in more detail in section 2.2.7.

In this step it is also possible to try to perform some known attacks, such as SQL Injection,
Code Injection, XSS, etc. There are many examples online on how to perform such attacks and
some will also be provided in section [2.2.2], together with a detailed description and explanation
for these attacks.

It is however necessary to bear in mind that if the test attack fails it does not mean that the
application is safe with respect to that type of attack. There are many reasons why an attack
could fail, for example tester is inexperienced in penetration testing or the software is safe with
respect to that specific input but might be exploited with a differently designed input. Some
simple examples will be provided later in order to help understanding the attacks, however they
are only meant to help in conveying the explained concepts and are not to be intended as sufficient
test proofs against the relative attacks.

2.1.4 Testing with cyber attack tools

There are many interesting tools available online designed to find vulnerabilities in web applica-
tions. These tools should not be completely relied on, however they can help speeding the analysis
project by scanning the application and providing a first set of vulnerabilities. Once the tester
has evaluated the scan results he should proceed with a more in depth analysis of the application
and performing all steps described in the previous sections. The advantage is that the tool will
have performed part of the tester’s initial work.

Analysis tools can be categorised based on 3 main parameters:

Approach: some tools are designed to use the Black Box approach and basically perform the
steps described in this section, others use instead the White Box approach, analysing how
each input flows through the code.

Focus: some are designed to perform general testing, others instead focus on testing the appli-
cation with respect to a specific type of attack.

Cost: there are both open-source tools and proprietary tools.

Here a few interesting tools will be provided that follow the Black Box approach. For tools
using the White Box approach see section 2.2.8.

OWASP ZAP

The OWASP Zed Attack Proxy (ZAP) [7] is one of the main OWASP projects and is a penetration
testing tool for finding vulnerabilities in web applications that categorises as Black Box, general,
open-source testing tool.

Advantages:

18

2 – Analysis of the web application

❼ free

❼ easy to use for beginners

❼ developers can configure it for automated security testing

❼ cross-platform

❼ it is possible to implement extensions

Main features:

Intercepting Proxy: it is possible to configure the browser to proxy trough ZAP so
it can see all the requests and responses and edit them through it’s interface.

Passive Scanners: when the passive scanner is activated ZAP performs some vul-
nerability evaluations by looking at the requests and responses. It is safe to use
on any website as it does not perform any attack but it can nevertheless spot
problems, such as exploitable content in headers and issues with HTTP modes.

Active Scanners: the active scanners perform a wide range of attacks and analyse
the responses of the server in order to gauge vulnerabilities. These scanners
should be used only on websites for which the tester has permission.

Spider: this feature implements a bot that navigates the website with the purpose to
create an index of all the contents available. This can be useful to see what pages
and resources the spider has been able to reach that should have been off-limits
or if there are leftover contents from the development phase.

URL Brute-force: this tool uses OWASP DirBuster to find additional resources,
even if there are no links to them, by brute-forcing the URLs.

“In cryptography, a brute-force attack consists of an attacker sub-
mitting many passwords or passphrases with the hope of eventually
guessing correctly. The attacker systematically checks all possible pass-
words and passphrases until the correct one is found. Alternatively, the
attacker can attempt to guess the key which is typically created from the
password using a key derivation function. This is known as an exhaustive
key search.” [8]

In this case the brute-forced value is the URL string.

Fuzzing: fuzzing is a term that refers to the testing technique that involves provid-
ing invalid, unexpected, or random data as inputs to a computer program. In
this case the tool uses FuzzDB, an open dictionary of fault injection patterns,
predictable resource locations, and regex for matching server responses. The
provided pattern are able to cause issues like OS command injection, directory
listings, directory traversals, source exposure, file upload bypass, authentication
bypass, XSS, HTTP header CRLF injections, SQL injection, NoSQL injection
and more, providing an interesting tool for testing common attacks. The fuzzing
tool also uses OWASP JBroFuzz’s library to test HTTP and HTTPS web pro-
tocol parameters. The HTTPS traffic can be processed thanks to dynamic SSL
certificates that are generated by ZAP and can be added between the browser’s
trusted certificates.

Report generation: ZAP can produce reports describing the vulnerabilities found
and providing links where to find additional information. This is a very useful
tool as it gives more insight on the problems and how to solve them.

Port Scanner: scans the server to see what ports are open on the machine.

Parameter Analysis: by looking at requests and responses creates a list of all the
parameters used by the application.

19

2 – Analysis of the web application

Anti CSRF token handling: if the application uses tokens that prevent Cross-Site
Request Forgery attacks ZAP will use this tool to actively regenerate the tokens
when performing active scanning or fuzzing.

Usage:

A penetration testing session could be structured in the following sequence of steps:

1. Configure the browser to proxy via ZAP.

2. Explore the application manually, ZAP will list all the resources explored for later use during
scanning and fuzzing. This step could be skipped performing the exploration directly with
the Spider tool but the result is more reliable if a good set of contents from which to perform
the scan has been provided manually.

3. Run the Spider to find additional content that was not found manually.

4. Check the issues found by the passive scanner. The passive scan is run by default, so unless
explicitly disabled the traffic generated by the previous steps has been analysed.

5. Run the active scanner.

This tool is also convenient for performing manual attacks. When the requests and responses
are intercepted by the proxy feature their content is displayed and can be analysed and modified
at will.

Burp Proxy

Burp Proxy is a tool very similar to OWASP ZAP but is a proprietary solution. The free version
provides a very limited number of features, but the licensed version has more features than ZAP
and is better maintained.

Firefox tools

Firefox offers an interesting set of add-ons that can be used to inspect requests and responses
directly from the browser:

❼ Firefox LiveHTTPHeaders: allows to view HTTP headers of a page while browsing.

❼ Firefox Tamper Data: implements an interface to easily view and modify HTTP/HTTPS
headers and post parameters.

❼ Firefox Web Developer Tools: native solution that implements various web developer tools
to the browser.

❼ Firefox Firebug: a non native solution to to edit, debug, and monitor CSS, HTML, and
JavaScript.

Acunetix Vulnerability Scanner

This tool performs automated web application security testing and as a result outputs a report
containing the vulnerabilities detected, rated based on severity, along with the relative CVE (Com-
mon Vulnerabilities and Exposures) identification, information regarding impact, exploitability,
associated malware and possible solutions. This tool was used on SoD App, however it detected
only a minor set of vulnerabilities.

20

2 – Analysis of the web application

2.1.5 Analysis results on SoD App

Different types of analysis approaches where adopted, in the Black Box phase, returning different
results. Before starting with a manual analysis a first evaluation was performed using the Acunetix
Vulnerability Scanner. This tool reported the following vulnerabilities:

❼ Use of HTTP: resulting in exposed connections.

❼ Remote code execution: due to the use of an unpatched version of Windows.

❼ Information disclosure through application error message: application error massages and
warnings that displayed to the user sensitive information about the logic and structure of
the application.

❼ Use of RC4 cipher suites detected: due the existence of attacks against TLS when using
RC4 encryption.

❼ SSL certificate public key shorter than 2048.

❼ Use of SSLv3 enabled: exposes to POODLE attacks.

❼ Various information disclosed in response headers.

❼ Various security headers missing.

❼ Various dangerous HTTP methods enabled.

Subsequently during the manual Black Box analysis the following additional vulnerabilities
where found:

❼ Input validation performed only via javascript on client side.

❼ No input sanitisation.

❼ Weak file upload validation.

❼ Broken authentication on certain resources.

❼ Weak password policies.

All these vulnerabilities where successfully mitigated and the implementations can be found
in the Implementation chapter.

2.2 White Box analysis

Now that the application has been properly analysed from an external point of view, the tester
should have, in addition to the input mapping, a list of issues found, errors triggered and concerns.
If the tester did not manage to find anything with the Black Box testing it is not a problem as
this phase will cover the analysis of all the critical aspects of the application, even if no issue
was detected. However if vulnerabilities were detected, the details of their manifestation will
help understand the error committed and highlight specific issues that otherwise might have been
ignored.

2.2.1 Application configuration

Before examining the code there are some general aspects of the application that must be consid-
ered.

21

2 – Analysis of the web application

HTTPS

One thing that can be noticed right away is whether the application uses the HTTP protocol,
HTTPS or a combination of both. HTTP does not provide any security feature, requests and
responses sent with this protocol are not encrypted and no integrity or authentication actions are
performed. An attacker could easily intercept the packets, read the data and modify it without the
client and server noticing the attack. Therefore passwords, usernames, cookies, files and anything
else contained in the communication can be easily seen by anybody. It is clear that this is an
unacceptable solution.

HTTP should never be used even with web pages that do not require authentication or accept
any input from the client. Furthermore even if the client and server are not communicating
sensitive data, due to the lack of integrity controls the server might still have it’s responses to the
client modified, posing a threat for the user that could receive malicious data as if it were coming
from the legitimate server.

For the same reason mixed solutions should be avoided. Mixed solutions happen when some
pages are protected by HTTPS, but some resources available in the page or other pages are loaded
using HTTP. The unprotected resources and pages weaken the security of the website and might
be used to crack it.

Some developers make the mistake of protecting with HTTPS only pages performing authen-
tication or submitting sensitive data, but forget that they are making use of session tokens in all
connections. This approach leaves the session token completely vulnerable when browsing pages
with HTTP, effectively voiding any protection offered during authentication, as an attacker that
intercepts the session token can then use it to authenticate as the user without having to provide
the credentials.

HTTP Methods

HTTP offers a number of methods that can be used to perform actions on the web server. Many
of theses methods are designed to aid developers in deploying and testing HTTP applications,
however some could be exploited by crackers if the web server is misconfigured, as they allow an
attacker to modify the files stored on the web server and, in some scenarios, steal the credentials
of legitimate users.

If not used the following methods should be disabled:

PUT: allows a client to upload new files on the web server. An attacker can exploit it by
uploading malicious files, or by simply using the victim’s server as a file repository.

DELETE: allows a client to delete a file on the web server. An attacker can exploit it as a very
simple and direct way to deface a website or to mount a DoS attack. Denial of Service
(DoS) attacks will be described in section 2.2.2.

CONNECT: could allow a client to use the web server as a proxy.

TRACE: echoes back to the client whatever string has been sent to the server, and is used
mainly for debugging purposes. This method, originally assumed harmless, can be used to
mount an attack known as Cross Site Tracing.

Cross Site Tracing (XST) exploits the TRACE method to circumvent the protection of
user cookies implemented by the HttpOnly flag. The method allows the client to see what is being
received by the server therefore the attacker, by combining it with a XSS attack, would be able
to see the cookies incorporated in the request when it is returned by the TRACE method, even if
he is not able to access them directly using the document.cookie object [9], therefore invalidating
the security offered by the HttpOnly flag, that will be described in detail in Session Management
section[2.2.3].

In addition it was discovered in 2008 that many web application frameworks allowed well
chosen or arbitrary HTTP methods to bypass an environment level access control check:

22

2 – Analysis of the web application

“Many web environments allow verb-based authentication and access control (VBAAC).
The rules for these security controls involve using HTTP verb (also called method),
such as GET or POST, as part of the security decision. . . . Unfortunately, almost
all the implementations of this mechanism work in an unexpected and insecure way.
Rather than denying methods not specified in the rule, they allow any method not
listed. . . . Some web platforms, including both Java EE and PHP, allow the use of
arbitrary HTTP verbs. These requests execute similarly to GET requests, making it
possible for attacker to use these verbs to bypass flawed VBAAC implementations.
Even worse, the response is not stripped off as it is in HEAD request, so the attacker
can see the unauthorized pages as if there were no protection.”

Arshan Dabirsiaghi, “Bypassing Web Authentication and Authorization with HTTP
Verb Tampering”, 28 May 2008 [10]

A consequence of what is described by the quoted text is that, depending on the framework,
the method HEAD, for example, could be treated as a GET request, albeit one without any body
in the response. If a security constraint was set on GET requests such that only authenticated
users could access GET requests for a particular servlet or resource, it would be bypassed for the
HEAD version. In addition some frameworks allowed arbitrary HTTP methods such as JEFF or
CATS to be used without limitation. These were treated as if a GET method was issued, and were
found not to be subject to method role based access control checks, again allowing unauthorized
blind submission of privileged GET requests.

Therefore an additional check that should be implemented in code is the explicit verification
of the method of the request. The web application should respond only if the method is the
expected one. This would provide significant protection against misconfigurations or unexpected
mechanisms.

If an application needs one or more of these methods, such as REST Web Services (which may
require PUT or DELETE), it is important to check that their usage is properly limited to trusted
users and safe conditions.

HTTP Response Headers

By default many web servers send with the responses information regarding the web application,
such as version, framework used, etc. It is necessary to verify which information is sent and
remove anything that gives too specific information of the website’s architecture and software
versions, or an attacker could use this information to exploit well known vulnerabilities or launch
attacks refined to target the specific server configuration.

2.2.2 Input Management

In this section it will be explained what is the correct way of validating and sanitizing the most
common types of inputs, and how should they be stored in the database, complete with an
explanation of some of the most common attacks that make the proposed security measures
mandatory. For each input the tester should thoroughly analyse how it flows through the code to
verify that not only validation an serialization are performed correctly, but also that the values
are stored and managed appropriately.

Managing Text Input

Throughout the website there will be many input fields and other mechanisms that will produce
a parameter that is eventually handled as string. This kind of input is often subject to injection
attacks of different kind, where the attacker tries to inject some code instead of the expected
input.

23

2 – Analysis of the web application

“Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when un-
trusted data is sent to an interpreter as part of a command or query. The attacker’s
hostile data can trick the interpreter into executing unintended commands or accessing
data without proper authorization.” [4]

Injection attacks are rated number 1 in the OWASP Top 10 list of most critical security risks
to web applications. This kind of attacks are simple to perform, can be easily automated also
through the use of the many tools available online and could have disastrous consequences for the
attacked website.

Running trough the list of inputs mapped during the Black Box analysis, for each input
source or web parameter that accepts text input it is necessary to find the method or methods
that process it and examine whether validation and sanitization are correctly implemented as
soon as the input is received.

As a general rule, for all input strings, it should be validated the minimum and maximum
lengths, the character set and the logical validity of the value. Each validation function should
additionally consider also if there are other requirements for the input that are assumed by the
subsequently executed code. Characters should be managed using the white-list method, which
means considering valid only those belonging to a predefined list of safe characters and refusing
the whole input string if there are invalid ones. This method is opposed to the black-list method
in which the input is considered valid if none of the characters that compose it belongs to a
predefined list of dangerous characters. The second approach is strongly discouraged, however, as
it is relies on the assumption that only the listed characters are dangerous, when in truth there
are often loopholes that allow crackers to pass the validation with special character combinations.

Dangerous characters are those that have a special meaning in the language of the interpreter.

In general the safest choice is to allow only alphanumeric characters and deny all symbols
and punctuation. Sometimes however it might be necessary to allow a larger character set than
those strictly regarded as “safe”, as a consequence an additional step of sanitization is necessary.
After validation has been performed the sanitization function should either escape or encode the
dangerous characters. It is strongly discouraged to craft the sanitization function oneself, as it is
very easy to implement it incorrectly. There are specific libraries available that should be used
instead and that have been designed by experts in the field and thoroughly tested.

In addition for some fields such as descriptions, comments, etc., the website might want to
avoid restricting at all the character set. This choice removes an important level of protection,
leaving the security of the input reliant only on the sanitization process. Therefore in such
situations it is extremely important to analyse how will be the specific input used, in order to
correctly sanitize it.

For ranged values such as integer, float, dates, etc., it should also be implemented a maximum
and minimum value range check.

From the previous analysis phase it might be understood that some input fields are only meant
to help the user and improve usability. These fields usually do not contain any information that
is elaborated by the application, but are just used to be displayed in some part of the website,
such fields are for example the Biography of the user, the description of an item, comments and
reviews, etc. Usually they are not key attributes for database entries or parameters used for
database access or parameters.

Following this assumption it must be verified, by analysing the code, that they actually conform
to the expected usage. If the verification is positive these fields cannot be exploited to perform
SQL Injections, but could instead be exploited to perform other types of attacks, depending on
the use. If the fields are only retrieved to be displayed to the user, they are at risk of XSS attacks,
therefore performing validation and sanitization against characters that are dangerous for HTML
should be sufficient to avoid injection attacks.

Other attributes, on the contrary, have a functional role and are used by the web application
to take decisions, they are more likely to be vulnerable to SQL Injection and if not properly
validated result in Exceptions being raised. It is therefore necessary to verify that they belong to
an acceptable range of values in order to avoid errors.

24

2 – Analysis of the web application

SQL injection attacks target the SQL database of the application and are executed by
injecting, via web page input, strings that contain SQL commands and that are properly crafted in
order to trick the interpreter into considering what should have been the parameter of a statement
as actual part of the command. A successful SQL injection exploit could read sensitive data from
the database, modify it, execute administrative operations (such as shutdown the DBMS) and in
some cases issue commands to the operating system.

The breach could result in loss of confidentiality and integrity. Depending on the value
or sensibility of the exposed/tampered data the company could face great financial losses, repu-
tational damage and even fines. There could also be issues with authentication. If poor SQL
commands are used to check user names and passwords, it may be possible to connect to a system
as another user with no previous knowledge of the password. Furthermore if authorization in-
formation is held in the database, it may be possible to change this information and permanently
gain additional privileges.

To provide an example the following back-end code can be considered:

string querySQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

If the UserId is taken directly from input without proper validation and serialization the user
might provide a malicious input such as “123 OR 1=1”, which would result in the following
statement being constructed:

SELECT * FROM Users WHERE UserId = 123 OR 1=1

The result of the WHERE clause would always be true, independently from the UserId value
provided. This is just a simple example and the format of the SQL Injection input varies based
on how is the back-end code structured. The defense against this type of attack should not rely
on trying to formulate appropriately the statement to make it unexploitable, because an expert
might still be able to find a fault, instead it should concentrate on neutralizing the input itself on
different levels:

1. Validation: if possible the use of dangerous characters should be prohibited by using, for
example, regular expressions.

2. Sanitization: for additional protection the input should also be encoded using appropriate
encoding libraries.

3. Using prepared statements: this step offers the highest level of security. Prepared state-
ments use a structure that forces the developer to first define all the SQL code, and then
pass in each parameter to the query later. Since different objects are used to contain the
query and the parameters the database can distinguish between code and data, regardless
of what user input is supplied.

Each step offers a certain degree of security, that however is not fail-proof due to implemen-
tation errors and bugs in the libraries used.

Even if some of the security features implemented might seem to overlap in utility, imple-
menting multiple levels of security guarantees that as long as all do not fail the input is safely
processed. This approach is fundamental when implementing security in all aspects. There is
never redundancy of security.

After it has been established that an input is used to construct queries, it is not important
whether the result of the query is displayed directly to the user or used for internal processing,
whether it contains data that seems relevant or not, etc. It should be always and without exception
managed safely using prepared statements. A cracker might be able to exploit such opening to
generate errors or other kinds of unexpected and unwelcome behaviours.

25

2 – Analysis of the web application

Prepared statements, however, are a concept that is present for relational databases. If the
application uses NoSQL databases there is not an equivalent concept, as the queries are not
constructed as strings. However non relational databases are also subject to injection attacks if
the input is crafted properly. Given the following query string:

database.users.find({username: username, password: password});

If this is a MongoDB query string, an attack is possible if for example the parameters come
from deserialised JSON objects:

{

"username": {"✩gt": ""},

"password": {"✩gt": ""}

}

In MongoDB, the field ✩gt has a special meaning, which is used as the “greater than” comparator.
If the username and password fields are not validated the username and the password from the
database will be compared to the empty string and as a result return a positive outcome.

Therefore to protect against NoSQL injections the developer should take care to properly
sanitize the input against characters that have a special value for the used database.

Sensitive fields, such as those used for identification and authorisation, should not be taken
from user input or client-side scripts but should be retrieved or defined by the server.

Managing File Uploads

Uploaded files represent a significant risk to applications. The first step in many attacks is to get
some code to the system to be attacked. Then the attack only needs to find a way to get the code
executed. Using a file upload helps the attacker accomplish the first step. The consequences of
unrestricted file upload can vary:

❼ Complete system takeover: the file could be designed to execute a web-shell which can run
commands. Based on the level of privilege the attacker is able to obtain the consequences
could be disastrous. If the uploaded file can be accessed by entering a specific URL path, it
could be especially dangerous because the file could be executed immediately after uploading.

❼ An overloaded file system or database: if the user is allowed to upload an unlimited number
of files or the size of files uploaded is not restricted an attacker could exploit it to perform
a Denial of Service attack.

❼ Forwarding attacks to back-end systems: if the web-server is not isolated properly form the
rest of the company network, or if the attacker is able to exploit local vulnerabilities, the
implanted file could be used to reach other machines in the network.

❼ Client-side attacks: the file name or content could be used to perform XSS attacks or, if
downloaded by the user, to execute malicious commands on the user’s machine. In addition
the attacker might be able to put a phishing page into the website.

❼ Breach of privacy: the code executed by the malicious file could browse system files and
local resources and gain access to sensitive information regarding users.

❼ Defacement and other risks: the file storage server might be abused to host troublesome files
including malwares, illegal software, or adult contents. Uploaded files might also contain
malwares’ command and control data, violence and harassment messages, or steganographic
data that can be used by criminal organisations. These contents would not only cause
damage to the user but also to the company’s reputation.

“The Denial of Service (DoS) attack is focused on making a resource (site,
application, server) unavailable for the purpose it was designed. There are many ways

26

2 – Analysis of the web application

to make a service unavailable for legitimate users by manipulating network packets,
programming, logical, or resources handling vulnerabilities, among others. If a service
receives a very large number of requests, it may cease to be available to legitimate
users. In the same way, a service may stop if a programming vulnerability is exploited,
or the way the service handles resources it uses.”[11]

It is virtually impossible to completely protect against a DoS attack, as it is often not easy to
distinguish between legitimate traffic and malicious traffic, however there are ways to significantly
mitigate the consequences. It is straightforward that if a service relies on inadequate resources
and has trouble sustaining even the traffic generated by legitimate users, an attacker would easily
generate enough traffic to exhaust the website’s capacity, that as a consequence would not be able
to handle new requests. Therefore a first step is to redesign the system architecture in order to be
able to handle amounts of traffic sufficiently larger than the maximum entity of legitimate traffic
that is daily registered. Once such measure has been implemented it will be possible to set up a
monitoring systems that could detect if the server is under DoS attack and block the suspected
traffic.

This measure however can offer little protection if there are bugs or vulnerable implementations
in the code. An example of vulnerable implementation, as mentioned earlier, is allowing the upload
of files without restricting the size of the file or the quantity of data a user can store on the server.
In this situation an attacker could try to load an extremely large file or as many smaller files as
necessary to saturate the database capacity. Huge files once loaded could also be exploited to
saturate the RAM of the server if the application tries to load the whole file.

Some other examples are:

❼ Allocating a number of objects based on user input: if users can supply, directly or indirectly,
a value that will be used to specify how many of an object to instantiate on the application
server, and if the server does not enforce a hard upper limit on that value, it is possible to
cause the environment to run out of available memory. This type of attack would also pass
unnoticed under any monitoring system as it would require only one seemingly legitimate
request to effectively fill the server’s available memory. An example of vulnerable code:

int elementsNumber= Int32.Parse(userInput); //no check on elementsNumber value

ComplexObject[] objects= new ComplexObject[elementsNumber];

The proposed code should be modified to implement a range check for the elementsNumber
value.

❼ Using user input as loop counter: if the user can directly or indirectly assign a value that
will be used as a counter in a loop function an attacker could create an extremely long loop,
locking the used memory resources for the whole duration. An example of vulnerable code:

string[] values = GetValuesProvidedByUser(Request); //no check to verify if

number of values is acceptable

for (int i=0; i<values.length; i++) {

// lots of logic to process the request

}

The proposed code should be modified to implement a range check for the length of the
values array.

❼ Improper release of resources: if an error occurs in the application that prevents the release
of an in-use resource, it can become unavailable for further use, occupying the memory
indefinitely and resulting in memory leakage.

OleDbConnection connection = new OleDbConnection(connectionString);

connection.Open();

OleDbCommand cmd = new OleDbCommand(query, connection);

cmd.Parameters.Add(new OleDbParameter("someParameter", parameterValue));

OleDbDataReader reader;

27

2 – Analysis of the web application

reader = cmd.ExecuteReader();

//retrieving column headers

List<Field> head = new List<Field>();

for(int i = 0; i<reader.FieldCount; i++)

{

Field f = new Field(reader.GetName(i), 0);

head.Add(f);

}

db.mapTable(tableName, head);

int recordNum = 0;

// reading the rows

while (reader.Read())

{

List<string> kReadRow = new List<string>();

for (int i = 0; i < reader.FieldCount; i++)

{

kReadRow.Add(reader.GetValue(i).ToString());

}

db.insertLine(tableName, kReadRow, SE16RowsBatch);

recordNum++;

if ((recordNum % 100000) == 0)

{

outputMessage(tableName + ": " + recordNum + " records read");

}

}

db.flushTable(tableName);

reader.Close();

connection.Close();

connection=null;

In the provided example taken from the original Sod App’s code, if at any point an exception
occurs both the reader and the connection are not disposed. When using resources the code
should be designed to guarantee proper resource release in any situation. In .NET this could
be implemented with Using statement and Try-Catch-Finally statement, for which a more
detailed description of usage is provided in section 3.7.

❼ Buffer Overflow: in languages where the developer has direct responsibility for managing
memory allocation, such as C and C++, there is potential for a Buffer Overflow. While
the most serious risk related to a buffer overflow is the ability to execute arbitrary code on
the server, the first risk comes from the denial of service that can happen if the application
crashes. In order to avoid overflow the data size should be checked before storing it in
memory.

❼ Too much data in session objects: storing too much information in the user’s session, such
as large quantities of data retrieved from the database, can cause denial of service issues.
An attacker could exploit this mismanagement of memory by creating a number of sessions
and increasing their size by requesting large amounts of data. This problem is amplified if
session data is also tracked prior to a login, as a user can launch the attack without the need
of an account. In order to mitigate the risk a maximum amount of data that can be loaded
in memory should be defined for every session. This amount should be fixed and appropriate
to the service provided, and the current state should be verified before retrieving new data.

❼ Account access denial: a common defense to prevent brute-force discovery of user passwords
is to lock an account from use for a certain time after a number of failed attempts to login.
This means that even if a legitimate users were to provide their valid password, they would be

28

2 – Analysis of the web application

unable to login to the system until their account has been unlocked. This defense mechanism
can be turned into a DoS attack against an application if there is a way to predict valid login
accounts. In this case an attacker can lock all the discovered valid accounts by exhausting
the available login attempt with random passwords. Even if the accounts are unlocked after
a set amount of time the attacker can repeat the process each time the lock timer is up,
effectively denying access to the legitimate user indefinitely.

This attack can be mitigated by making it difficult for the attacker to establish whether an
account is valid. If after a failed login attempt the server replies with an error message that
states which one between the password and the username was incorrect, the attacker will
know whether to continue launching the DoS attack on the username or trying another one.
Also notifying that the account has been locked only for valid accounts hints information
about which accounts are valid, and the attacker will be able to concentrate only on those.
An additional way to mitigate the attack is to implement a monitoring system that blocks
suspicious traffic.

As a general guideline, when asking the user to upload files there are a set of key steps that
must be performed in order to properly secure the web application:

Verify the format: For each file upload function mapped in the previous phase it must be
verified which data type is acceptable. A correctly implemented upload function should
accept only specific file types and extensions, using a white-list approach. The set of allowed
formats should be as restrictive as possible and allow only those pertinent to the specific
purpose of the file and properly tested by the developers.

Sometimes however it is necessary to allow a broad set of file types, for example when pro-
viding a repository feature to the user. Even in this case the file types should be restricted,
investing some time in carefully considering which types to allow.

The most common file types used to transmit malicious code into file upload features are
the following:

❼ Web executable script files: such as aspx, css, swf, xhtml, rhtml, shtml, jsp, js, pl, php,
cgi. It is advised to deny those files.

❼ Microsoft Office document: Word/Excel/Powerpoint using VBA Macro and OLE pack-
age. The risk could be mitigated by verifying if the document contains ”code”/OLE
package, if that’s the case then the upload process should be blocked.

❼ PDF document: malicious code inserted as attachment.

❼ Images: malicious code embedded into the file or use of binary file with image file
extension. In the first case the file will still appear as a normal image but when opened
it will also execute the code hidden. It could contain scripts or tags that exploit well-
known web application vulnerabilities, such as cross-site scripting (XSS). A possible
solution could be to sanitize the incoming image using a re-writing approach and then
disable/remove any code present (this approach also handles the case in which the file
sent is not an image). The re-writing approach consists into creating a new image from
the uploaded image to remove metadata.

It’s technically possible to perform sanitizing on Office or PDF documents but it is not
advised since the sanitization could be performed incorrectly, missing evasion techniques
and allowing a corrupted file to enter the file system, or the resulting file could present
document structure/rendering issues.

When verifying the format of the file it is not sufficient to check the extension from the name
of the file or the contents of the Content-Type HTTP header, as they are both controlled
by the user and might have been tampered to not match the actual file content. Instead
the signature header in the file should also be verified.

Check/Change the name: The name of the saved file, even if temporary, should not contain
any user controlled input.

29

2 – Analysis of the web application

It is good practice to rename the uploaded file, to make it more difficult for the attacker to
locate it after the upload but also since a malicious file could overwrite another that already
exists with the exact same name on the server. Furthermore this approach offers additional
security with respect to a standard validation and sanitization approach as it ensures that,
even if evasion techniques have been used to bypass the white-list filter, the risk will be
mitigated. These evasion techniques could include appending a second file type to the file
name (for example image.jpg.php) or using trailing space or dots in the file name.

If it is necessary to keep the original file name it is advised to use a look-up table or a similar
approach to link the validated and sanitized user supplied file name to the server created
name. In addition this approach could be also used to avoid disclosing to the user the name
of the file on the file system, displaying instead only the alias from the look-up table, that
could be user supplied or specifically crafted by the application.

Depending on the type of web server, the OS used, etc., there are a number of important files,
such as configuration files, that an attacker could try to overwrite. Such attempts should
be recognized and denied and there should be a reporting system to notify the suspicious
activity from the user.

Examples of such files are the “Web.config” and “App.config” files for .NET, “crossdo-
main.xml” for Flash, Java and Silverlight, ”.htaccess” and ”.htpasswd” for Apache, and
so on. It is up to the developer to detect the critical files, however the better solution
still remains to rename the uploaded files, and use the recognition system only for threat
reporting.

Verify the size of the file: Depending on the purpose of the file to upload, the size constraint
might differ. However it is advised to choose a maximum upload size sustainable by the
server and appropriate to the type of file to be uploaded. In some cases it might be necessary
to upload very large files, as is the case for SoD App’s sqlite database upload. The size of
such databases could go up to several GB, nevertheless a maximum allowed size should
always be implemented.

When dealing with these situations there are a number of approaches that can be taken in
order to mitigate the risk of DoS attacks. First of all a maximum number of contemporary
uploads that a user can perform should be defined. The upload process should then be
monitored and when the cached file exceeds the allowed threshold the upload should be
interrupted.

Limit the quantity of data a user can store: The website should allow each user to store
on the server a limited amount of data in order to mitigate the risk of a DoS attacks in
which the attacker saturates the server’s file system by uploading a great number of files.
This can be achieved in many ways, a simple approach is to define an attribute for the User
object that stores the amount of data currently in the database for the specified user, and
is updated every time a new file is uploaded or deleted.

In addition to limiting the data on disk also session data cached by the server should be
limited by properly designing the caching system. If data is explicitly inserted by the
developer in cache then the oldest data related to the specific user could be removed if the
user reaches a set limit.

Another way to mitigate the deterioration of the service due to an overburdened memory is
to forbid the excessive growth of session objects. These objects, if correctly implemented,
should not hold large amount of data but code or design errors might lead to their uncon-
trolled growth.

Examine file content: Upon validating the file the developer could also try to sanitize a file or
detect if it contains code. For some files there are well known header and trailer signatures
that enclose the actual data of the file, anything outside of these signatures could be removed
or treated as suspicious. In addition often code is hidden as metadata, therefore another
sanitization action could be to remove the metadata from the file.

However these actions offer very limited reliability, a more secure approach is to have a valid
anti-virus scan the uploaded files before storing them and to configure the server to deny
the execution of files in the destination folder.

30

2 – Analysis of the web application

If the website supports Zip file upload, it is important to do a validation check before
unzipping the file. The check should verify the target path specified by the Zip file, the level
of compression and the estimated unzip size.

A Zip file may incorporate a malicious file that specifies as unzip target a path such as
“..\..\..\..\malicious.php” trying to gain unauthorised access to specific locations of the file
system. This type of attack is called Directory Traversal. Furthermore the Zip algorithm
can be recursively applied on a file, therefore a properly crafted file that has multiple levels
of Zip compression could go from several petabytes in the uncompressed file to a dozen
kilobytes in the final .zip.

This type of compression is called a Zip Bomb and is a DoS attack that aims at exhausting
the memory of the program or system reading it in order to render it inoperable or crush it.

Secure the save path: The directory to which files are uploaded should be outside of the web-
site root. The website root directory is public and reachable through the domain name,
hence if files are uploaded in one of its sub-directories the contents might be reachable by
an attacker. On the contrary files located outside of the rood directory cannot be directly
reached, therefore they are less vulnerable.

Check correctness of Content-Type header when serving the file: It should be verified
that the uploaded files are served to the users with the expected MIME type in the Content-
Type HTTP header, to avoid client-side execution of malicious code.

Management of Variables Storing the Input

When dealing with user input that might contain or contains sensitive data, such as passwords
and personal information, it is good practice to clean the variables containing this information as
soon as it is processed. The same should also be applied to data retrieved from the database.

In most managed languages, when using managed objects, if no explicit action is taken by
the developer the garbage collector will clean the object from memory when it falls out of scope.
However it is a non-deterministic process, it will not happen immediately but it will be simply
scheduled and executed when the garbage collector sees fit.

In addition there is the common misconception that rewriting the value effectively removes
from memory the previous content. However depending on the language used rewriting the value
might not provide any security at all, resulting instead in uncontrolled multiplication of the
sensitive information in memory. Such is the case for C#, for which a possible alternative in
provided in the Implementation chapter 3.2.2. Therefore before taking this approach the actual
management of strings should be verified for the used language, to define the correct approach.

As long as data remains in memory it is vulnerable to attacks that target the RAM of the
server, such as buffer over-read, RAM scraping, memory dumps theft, etc.

Often these types of attacks are difficult to spot as they exploit software and hardware bugs
to gain access to the memory, which usually contains some amount of sensitive information at
any given time. In order to mitigate the consequences of such leaks it is necessary to pay special
attention in disposing of sensitive data as soon as possible, without waiting for the garbage
collector.

2.2.3 Authentication and Session Management

User ID

An user identifier is a string that unequivocally identifies the user. As such the application should
guarantee it’s uniqueness when registering a new account, by verifying that the username chosen
by the user is not already in use.

When acquiring the user ID from user input the same validation and sanitization rules already
described should apply. In this case it is advised to limit the character set to only safe character
as the user ID is used for many purposes and is likely to be one of the first targets of attackers.

31

2 – Analysis of the web application

When using an email as user identifier it is important to verify that the format of the email is
properly managed.

Many developers implement complex regular expressions to validate the email that often,
relying on incorrect assumptions based on the most common email formats, allow a set of formats
an characters more restrictive than those actually allowed by the RFC standards[12].

A regular expression that correctly models the allowed character sets and combinations is
complex to define, error prone and requires to be maintained up to standards. Furthermore
such expression would have to allow also characters considered dangerous for the scope of the
web application. Hence this step can be avoided, relying instead on other types of controls to
guarantee security and validity.

In order to validate the email it is sufficient to perform the following controls [13], however it
is advised to use email validation libraries instead of regular expressions.

❼ Check for the presence of at least one “@” symbol in the provided address.

❼ Verify that the local-part is not longer than 64 bytes.

❼ Ensure the domain is not longer than 255 bytes.

❼ Verify that the address is legitimate.

The first three checks perform a first skimming of invalid addresses provided, however it’s the
last step that actually validates the email. The website will send an email to the provided address
and require confirmation from the user. In this way it is possible both to verify the validity of
the address and to ensure that the user actually owns the email provided.

In order to secure the input related to the email address against injection attacks the email
should be properly encoded for use with the website and decoded when used to send emails.

To further improve the security of the user identifier it is possible to define two separate
identifiers: the first that is the email or username chosen by the user and would be the only
identifier of the two visible to the user, the other that is a server generated string and is the
actual identifier used by the application. The purpose of creating two identifiers is to hide the
actual value used for database access and user identification, making it more difficult for an
attacker to target data relative to a specific user, as he would most likely not know the real
identifier. This solution however requires the management of two separate identifiers that must
be both unique.

An intermediate solution is to use only one identifier that, however, is defined by the server and
is more difficult to guess than an identifier defined form public data (email) or easily predictable
data (user input).

Session Management

Another important aspect that must be evaluated is the correct management of sessions. HTTP is
a stateless protocol therefore it is completely in the hands of the developer to take care of session
management, and the relative aspects of authentication and access control. Once an authenticated
session has been established, the session ID (or token) is temporarily equivalent to the strongest
authentication method used by the application, binding the user authentication credentials (in
the form of a user session) to the user HTTP traffic. This means that if not correctly designed
the tokens can allow an attacker to authenticate directly as the user for which the token was
created. This places these tokens at high risk of exploitation, in fact the OWASP Top 10 places
at second position of most critical security risks those related to broken authentication and session
management.

There are two main approaches to session verification: Permissive and Strict. The permissive
mechanism allows the web application to initially accept any session ID value set by the user as
valid, creating a new session for it, while the strict mechanism enforces that the web application

32

2 – Analysis of the web application

will only accept session ID values that have been previously generated by the web application. It
is important to verify that the web application does not implement the Permissive mechanism,
for instance PHP uses the Permissive approach by default , as it leaves it vulnerable to session
fixation attacks, that will be explained in detail in the next paragraphs.

In order to establish the security of the implemented sessions the following should be evaluated:

❼ Session name: it should be as generic as possible in order to give the least information
about it’s purpose and the technologies and programming languages used by the web appli-
cation. For example session ID names used by most frameworks, if left unchanged, have a
standard value that can easily disclose the framework used. Some examples are PHPSESSID
(PHP), JSESSIONID (J2EE), ASP.NET SessionId (ASP .NET), etc. It is clear that any
attacker inspecting the packets can easily deduce the purpose and format of the token. If
instead the name is changed to a generic “ID” the attacker will not be able to extract the
same information as easily.

❼ Token length: the session ID must be long enough to prevent brute-force attacks, where
an attacker can go through the whole range of ID values and verify the existence of valid
sessions. This type of brute-force attack is also known as Search Attack and consist of
exploring all possible combinations of a given character set for the given token length. This
kind of attack is slower the bigger is the space of possible candidates. For example the total
number of values to try for a token long 20 characters of numeric value (0-9) is 20ˆ10, which
means over 10 trillion tries.

The current best practice requires tokens of at least 128 bits, as they still provide sufficient
protection. The length however depends also on the entropy of the token, if the attacker is
able to predict the distribution of values he can greatly reduce the number of tries necessary
to find the actual value.

SoD App uses an ASP.NET SessionId that has maximum length set to 120. Currently it is
considered sufficient thanks to the entropy of the token so no modifications where applied
[14]. There is no official support for longer tokens therefore in this situation if a higher level
of security is required a different solution should be designed.

❼ Token value: the value of the token should not contain any information but should be a
meaningless identifier. If part of the ID is composed by details specific to the user it might
both result in information disclosure and the token being predictable. Information regarding
each session should be stored on the server in specific objects that can be retrieved using the
session identifier. Hence the token would constitute the identifier used to access the object
and could be designed to be a meaningless and random string. In addition being able to
generate random identifiers increases the entropy of the token. Session ID tokens whose
value is random are more secure since it is impossible for an attacker to guess or predict
the ID of a valid session through statistical analysis techniques. For this purpose, a good
PRNG (Pseudo Random Number Generator) should be used to generate at least 64 of the
bits of the token. This lower threshold is estimated based on the following equation [15]:

T =
(2E) + 1

2G× S

Where:

T is the expected number of seconds required to guess a valid session identifier.

E is the number of bits of entropy in the session identifier.

G is the number of guesses an attacker can try each second.

S is the mean value number of valid session identifiers that are valid and available to be
guessed at any given time.

Assuming a 64 bit session identifier, 32 bits of entropy, an attacking power of 1000 guesses per
second and approximately 10 000 valid session identifiers at any given moment, the expected
time for an attacker to successfully guess a valid session identifier is about 7 minutes.

33

2 – Analysis of the web application

T however grows exponentially if considering a 128 bit session identifier that provides 64
bits of entropy. Even considering a stronger attack, for example 10 000 guesses per second,
and a larger pool of active session IDs available to be guessed, for instance 100 000 , the
expected time for an attacker to successfully guess a valid session identifier is greater than
292 years.

❼ Session Implementation: session tokens can be managed in different ways, such as cook-
ies, URL parameters, URL arguments on GET requests, body arguments on POST requests,
hidden form fields (HTML forms), or proprietary HTTP headers. However it is advised to
choose a solution that allows defining advanced token properties, such as the token expira-
tion date and time, or granular usage constraints. This is one of the reasons why cookies
are one of the most extensively used session ID exchange mechanisms, offering advanced
capabilities not available in other methods. Solutions that incorporate the token in the
URL should be avoided as they facilitate a number of attacks such as the manipulation of
the ID, session hijacking or session fixation attacks.

“The disclosure, capture, prediction, brute-force, or fixation of the session ID
will lead to session hijacking (or sidejacking) attacks, where an attacker is able to
fully impersonate a victim user in the web application. Attackers can perform two
types of session hijacking attacks, targeted or generic. In a targeted attack, the
attacker’s goal is to impersonate a specific (or privileged) web application victim
user. For generic attacks, the attacker’s goal is to impersonate (or get access as)
any valid or legitimate user in the web application.” [14]

In session hijacking the attacker steals the established session between the client and the
Web Server after the user authenticates. In the session fixation attack instead the user
is induced to authenticate using a session ID provided by the attacker, then the session is
hijacked thanks to the attacker’s knowledge of the ID. A website is vulnerable to this type
of attack if after the authentication the ID is not regenerated.

An example attack could work out as follows: The attacker obtains a valid session ID, for
example by connecting to the website, and then terminates his session to free the ID. In
order to induce the victim to establish a connection using the known session ID there are
different options that the attacker could exploit. He could insert the token in the URL
argument and then send it to the victim in a hyperlink that would be then used to access
the website. Alternatively the attacker could put the session ID in a hidden form field and
trick the victim in authenticating with the malicious login form, for example by hosting it on
a website or directly in an HTML formatted e-mail. In case the website uses cookies there
are yet different ways to trick the victim into using the malicious session ID and they include
client-side scripts, injection attacks or the use of HTTP header responses that are sent to the
victim by the attacker, impersonating the website and exploiting the Set-Cookie parameter.
The victim will therefore establish an unauthenticated session with the server using the
session ID provided by the attacker and will then proceed with the authentication. If upon
performing authentication the web server does not close the previous session and open a
new one with a different session ID the attacker will be able to hijack the authenticated
session and will have successfully performed a session fixation attack.

In general the session ID must be renewed or regenerated by the web application after any
privilege level change within the associated user session, and is especially important during
the authentication process, as the privilege level of the user changes from the unauthenti-
cated (or anonymous) state to the authenticated state. However other common scenarios
must also be considered, such as password changes, permission changes or switching from a
regular user role to an administrator role within the web application.

The objects containing information relative to the active sessions must be stored in a secure
way, to avoid accidental or unauthorized access.

The application should not accept session tokens provided with any mechanism other then
the secured one. Even if a web application makes use of cookies as its default session
ID exchange mechanism, it might accept other exchange mechanisms too. It is therefore
required to confirm via thorough testing all the different mechanisms currently accepted by
the web application and properly disable them.

34

2 – Analysis of the web application

❼ Cookies Implementation: cookies should be the preferential mechanism to establish
sessions as they provide a set of useful features:

Secure attribute: instructs web browsers to only send the specified cookie through
HTTPS. This feature is especially helpful when leaving the HTTP port ac-
tive even if redirect is enabled, as the server could still be tricked to send the
cookie trough an unencrypted connection.

HttpOnly attribute: instructs web browsers to deny to scripts access to cookies
through the DOM document.cookie object, to protect them from XSS attacks.
Cross-site Scripting (XSS) attacks are a type of injection attack in which
malicious code, meant to be run on client side, is injected in a website. This
attack is very common and is ranked at position 7 of the OWASP Top 10 of
most critical security risks. It usually exploits websites that use user input to
generate an output to the user without properly validating and sanitizing it.

SameSite attribute: prevents the browser from sending this cookie along with
cross-site requests, avoiding information leakage and CSRF attacks. Cross-
Site Request Forgery (CSRF) is a type of attack similar to session fix-
ation, in this case the victim is induced to submit a request, crafted by the
attacker, to the web server. The request will be designed to execute malicious
actions such as executing payments, changing user information, etc.
As for the session fixation attack, after the attacker has crafted the request
for a target website, he will trick the victim into sending it to the server with
the help of social engineering (sending the link/form via email, chat, etc.). If
the user has an account for the targeted website there are two cases in which
the attack will be successful:

1. If the user currently has an active authenticated session with the website
the request will be automatically submitted using that session. This is
actually quite common considering for example an employee that uses a
specific company web application often enough during the day that he
has always a tab open in the browser for that website.

2. The browser is configured to automatically authenticate the user for the
specific website. This is a commonly used configuration as it removes the
hassle of having to login each time. Browser requests will automatically
include any credentials associated with the site, such as the user’s session
cookie, IP address, domain credentials, and so forth. The site will have
no way to distinguish between the forged request sent by the victim and
a legitimate request sent by the victim.

This specific attack is not aimed at retrieving data, as the attacker would
not be able to see the response of the server, but it is meant primarily for
performing actions and changing the state of the user’s account.
The SameSite attribute offers two possible values: lax or strict.
The strict value is the more secure option and will prevent the cookie from
being sent by the browser to the target site in all cross-site browsing context,
even when following a regular link. However this option might not be always
appropriate, for example for a GitHub-like website this would mean that if a
logged-in user follows a link to a private GitHub project posted on a corporate
discussion forum or email, GitHub would not receive the session cookie and
the user would not be able to access the project.
In a banking website context, however, the strict flag would be the most
appropriate, since it is unlikely that the website would want to allow any
transactional pages to be linked from external sites.
The lax on the other hands trades a bit of security for improving usability for
websites that want to maintain user’s logged-in session after the user arrives
from an external link. In the above GitHub scenario, the session cookie
would be allowed when following a regular link from an external website
while blocking it in CSRF-prone request methods (for example POST).

35

2 – Analysis of the web application

Usually the default value is lax, however in some frameworks it might be set
to none, disabling the use of the attribute, so it would be best to explicitly
set it to the required value.

Domain attribute: this attribute specifies to the browser to which domains
can the cookie be sent. If it is not set by default the cookie will only be sent
to the origin server, however it can be set to specify additional domains or
subdomains. For this attribute the most secure choice is to leave the attribute
unset, as permitting additional domains allows an attacker to launch attacks
on the session IDs between different hosts and web applications belonging to
the same domain.

Path attribute: this attribute further restricts the destination of sent cookies
to a specific directory, subdirectories or resource within the web application.
This attribute should be set as restrictive as possible by specifying the appli-
cation path that makes use of the session ID. By default the path is set to “/”
which is the server root. When setting the attribute the Path property ex-
tends the Domain property to completely describe the specific URL to which
the cookie applies. For example, in the URL http:/www.domain.com/home,
the domain is www.domain.com and the path is /home.

Expire and Max-Age attributes: The Expire attribute is an older implemen-
tation and sets the expiry date for when a cookie gets deleted, using the
format “Expires: Tue, 15 May 2007 07:19:00 GMT”.
The Max-Age attribute is a more recent implementation and sets the time in
seconds for when a cookie will be deleted, using the format “Cache-Control:
max-age=3600”.
It is advised to use the Max-Age attribute as it is less error prone and simpler
to manage. If the Expire attribute is used it should be tested that there are
no errors and cache misinterpretations derived from the format, the zone con-
versions, etc. Both attributes however are used to implement the distinction
between non-persistent and persistent cookies.

Non-persistent cookies: this type of cookies, also referred to as session
cookies, do not present the Max-Age or Expiration attribute and are
therefore deleted when the web browser instance is closed, forcing the
session to disappear from the client. It is highly recommended to use non-
persistent cookies for session management purposes, so that the session
ID does not remain on the web client cache for long periods of time, from
where an attacker could obtain it.

Persistent cookies: on the other hand when the Max-Age or Expiration
attribute is set the cookie will be stored by the browser for as long as
specified and will be available the next time the browser is launched.
These cookies should be used for user preferences and other less sensitive
information.

Therefore Expire and Max-Age must not be set for session cookies.

All these cookie attributes, however, are not supported by all browsers. In addition not even
all web servers support them, even if properly configured. It is therefore advised to always
test these flags after having implemented them, in order to verify that they are correctly
incorporated in the server responses.

❼ Session Expiration: Sessions should not be kept active until the user logs out or the
browser session is terminated, instead there should be a set expiration time imposed by the
web application. Reducing the lifetime of session IDs results in also reducing the time an
attacker has to launch attacks on active sessions. When a session is regenerated it is most
likely that all progress obtained by the attacker is lost, and in case the attacker had managed
to obtain the token he will have a short window of time to exploit it. Hence the smaller is
the validity window the more secure is the session, however the session expiration timeout
values must be set accordingly with the purpose and nature of the web application, and
balance security and usability, so that the user can comfortably complete the operations

36

2 – Analysis of the web application

within the web application without his session frequently expiring. A trade-off is to set
shorter expiration times if the session is idle.

Idle timeout values could range between 2-5 minutes for applications that require high levels
of security or 15-30 minutes for low risk applications. Absolute expiration times, for when
the user is active, should be defined based on the mean time estimated to be necessary for
users to perform the main operations on the website.

Idle timeout should be calculated from the last HTTP/HTTPS request received by the
server for the specific session. This timeout reduces significantly the window of exposure to
attacks but is irrelevant if the attacker has already managed to hijack the session.

Absolute timeout defines the maximum amount of time a session can be active, regardless
from user activity. When the absolute timeout expires, the session ID should be properly
invalidated and the user should re-authenticate. This value effectively reduces the amount
of time an attacker could use an hijacked session.

Renewal timeout is an additional approach in which the session ID is automatically
renewed and provided to the client. For a short amount of time the web server will keep
both session IDs to give enough time to the client to become aware of the renewal. This
approach does not require re-authentication and therefore should be used to complement
the previous timeouts, but it has the advantage that it minimises the amount of time a
session ID is valid even when the user is active, and therefore the time an attacker would
have to perform attacks on a specific ID or use it. Depending of the implementation, there
could be a race condition in which the attacker with a still valid previous session ID sends a
request before the victim user, right after the renewal timeout has just expired, and obtains
first the value for the renewed session ID. In this scenario, however, the victim user might
be aware of the attack as his session would be suddenly terminated because the associated
session ID is not valid anymore.

Timeouts must be enforced completely by the server and should rely only on values contained
in the session object stored on the server. Using the session token itself or other client
parameters received through the client requests is completely insecure as they could be
easily tampered by an attacker.

When the session expires or the user logs out the ID must be actively invalidated both
for the server and the client. A good approach is to set an invalid or empty value for the
session ID, set the Expires or Max-Age attribute to a date from the past (or 0 for Max-Age)
if a persistent cookie is used, and call the appropriate termination functions (for example
Session.Abandon for .NET).

It should be verified that the web application provides a logout button that is easy to reach
for the user and that effectively terminates the active session, correctly invalidating the ID.

It is also possible to use client-side JavaScript code to implement additional security features,
that should be not relied on, but that can offer and additional layer of security. An example
of such an implementation might be a script that performs the logout when the browser
window is closed, as if it was done manually by the user, immediately terminating the session
also for the server.

Session IDs should be treated as any other input and properly sanitized and validated, filtering
out invalid IDs before processing them and implementing Strict session management, perhaps even
recognising when a user provides a session ID that was not generated by the server and raising
an alert.

2.2.4 Password Management and Policies

In order to guarantee stronger security for the website accounts, proper password rules and policies
should be implemented.

37

2 – Analysis of the web application

Password Strength

Password strength is defined by length and complexity, the application should impose a minimum
values for these two parameters.

Standards define as weak those passwords that are shorter than 7 (PCI DSS [16], 2018) to
10 (NIST SP800-132 [17], 2010) characters. It can be noticed, however, that NIST defined 10
characters weak already in 2010, therefore even if more recent standards might define even weaker
lower limits it is clear that nowadays these numbers cannot guarantee a high level of security. In
addition these values require the password to have an acceptable entropy, for example containing
both alphabetic and numeric characters in case of the PCI DSS standard.

In fact the minimum length for passwords composed of only letters, as is the common case
for passphrases, is 20 characters, far more than the 7-10 previously specified. Therefore when
allowing the user to choose passwords shorter that 20 characters it is necessary to impose an
acceptable level of entropy.

In the following list, the rules applicable on a password are ordered from lowest entropy to
highest, based on the pool of possible values that a character can assume:

❼ Only numbers.

❼ Only letters.

❼ Numbers and letters required.

❼ Upper and lower case letters required.

❼ Numbers, upper and lower case letters required.

❼ Numbers, upper and lower case letters and symbols required.

When allowing short passwords, such as 10 characters long, higher levels of entropy should
be required. It must be however kept in mind that simply requiring longer passwords and more
entropy is not sufficient to guarantee security. The password authentication method is intrinsically
insecure, as it has many weak points, such as storage of the password, reuse, guessable values.
The avarage user, even if forced to provide a strong password, will most likely do some of the
following:

❼ Choose an easy to remember password, making it easier to guess.

❼ Reuse the same password for multiple websites, making it more exposed. The other websites
with which the password is shared might not manage it securely.

❼ Write it down somewhere, save it in browser or use a password manager, making it more
exposed to attacks.

For applications that require high security, such as banking applications, or to authenticate
administrator accounts, the authentication should not rely solely on a password but use multi-
factor authentication. This method will be discussed in section 2.2.4.

Additionally the upper limitations should be as lax as possible, allowing the user to choose
long and complex passwords. An acceptable upper length limit is of 160 characters. It should be
avoided to perform character set or encoding restrictions.

The web application should never truncate or normalise the password in order to conform it
to requirements.

When the user submits an unacceptable password the website, along with the refusal notifi-
cation, should also provide a detailed description of all the rules that are applied for password
validation, to avoid unnecessarily stressing the user.

38

2 – Analysis of the web application

Password Storage

Passwords should not be stored on the server in clear text, as it would expose them in case the
database gets stolen. At no point should the password be written unencrypted anywhere on disk.

If this approach is implemented the input of the user is only processed to generate the hash,
therefore it is not necessary to perform any sanitization, only validation.

In addition, upon registration, the user provided password should be associated with a Salt
with which the hash of the password should be calculated. A different Salt should be generated
for each credential, if the user has multiple credentials or the password is renewed the Salt must
also change.

The Salt is a random string whose main purpose is to mitigate the effects of brute-force attacks
that make use of precomputed dictionaries of hashed words in case the database of passwords is
stolen. This type of brute-force attack is know as Dictionary Attack and consists in preparing a
list of commonly used passwords and precomputing their hashed value. When an attacker manages
to breach the defenses of a server and steal the database containing the passwords, what he finds
are only the hashes of the passwords. Since hashing algorithms are not reversible, as they perform
a lossy operation, in order to exploit the stolen data the cracker will first need to find a string that
when hashed generates the same hash of the password. In this way, since the website performs a
check on the hashes and not on the actual password, providing the crafted value will be completely
equivalent to providing the real password. However, if a good algorithm is used, finding this type
of collision is extremely difficult, therefore the attacker creates the aforementioned dictionary and
confronts the stolen hashes with the hashes in his dictionary, hoping to find a match. In order for
this operation to work the attacker must only be careful to craft a dictionary that uses the same
hashing algorithm or key derivative function and parameters as the website, however the pool of
possibilities can be easily reduced by looking at the length of the stolen hashes and by considering
the most popular options.

This attack however relies on the fact that the input string for the hashing algorithm is
exclusively composed by the password. If a Salt is used this assumption fails and the attacker
would have to recompute the dictionary considering also the Salt. It is clear that if every password
uses a different Salt the attacker has to generate a dictionary for each password, which makes the
cracking of the whole database extremely expensive for the attacker.

On the contrary if the same Salt is used for all the users it’s purpose is completely defeated.

For a correct storage of passwords the tester should verify that the following steps are per-
formed each time a user creates a new credential or changes the password:

1. A new Salt is generated. It is not necessary to verify whether it’s value is unique, as long
as it is different for the majority of users a few collisions for the Salt values are acceptable.

2. The Salt string is appended or prepended to the password.

3. The concatenated Salt and password are hashed.

4. The variable storing the password is properly disposed.

As already mentioned in the Input Management section 2.2.2, when managing sensitive infor-
mation the used variables should be correctly disposed as soon as they have been processed, to
shorten as much as possible the persistence of such data on memory.

Not all hashing algorithms are appropriate for this task, it’s important to use good crypto-
graphic hashing algorithms, that guarantee the least amount of collision, increasing the complexity
of finding a value that generates the same hash. If a certain algorithm has different versions pro-
viding different hash lengths, as a general rule the longer is the hash generated the more secure
is the algorithm.

Good choices include: RIPEMD-160, SHA-2, SHA-3.

Bad choices include: MD2, MD4, MD5, SHA-1.

39

2 – Analysis of the web application

SHA-3 is the choice that offers the most security among the proposed.

However when hashing passwords the use of key derivative functions is preferred over direct use
of the algorithms, as they are specifically designed to introduce complexity in the computation.

The Salt and hash are the only values that should be stored on the database and when a user
authenticates the following steps should be performed:

1. The password is validated.

2. The hash stored in database is retrieved together with the associated Salt.

3. The provided password is concatenated to the retrieved Salt in the same order performed
during the creation of the password.

4. The concatenated password and Salt are hashed with the same hashing function used during
the creation of the password.

5. The calculated hash and the retrieved hash are confronted. If they are equal the user is
authenticated.

6. The variable storing the password is properly disposed or rewritten.

When analysing the code it must be verified that the Salt is unique for each credential (if a user
has multiple credentials each should have a different hash), generated at the time of registration
and regenerated for each password renewal. It is not necessary to keep the Salt secret as it’s only
purpose is to make dictionary attacks more complex.

The role of the Salt is a common cause of misconception for many developers, that implement
it’s use without fully understanding it’s purpose, resulting in incorrect and insecure implemen-
tations. Such an example was found during the analysis of SoD App, where the Salt was a
hard-coded value that was never renewed and was the same for all users. This approach com-
pletely defeats the purpose. The developer most likely believed that if the Salt is kept secret then
it is equally secure to reuse the same value. This is a very common misconception. Many people
believe that “security through obscurity” is able to provide an additional layer of protection, when
in fact it only gives a false sense of security.

In this specific case a fixed value, that being hard-coded does not have any renewal policy, is
a single point of failure for the implemented protection system, and is bound to be discovered.
Returning to the example of the cracker managing to steal the database of passwords, looking at
the database the attacker will see that no Salt is stored for each password. The attacker could
make different hypoteses, among which the most likely would be that either no Salt is used or
all the passwords share the same value. The attacker could already have an account created by
him in the database to confirm the hypotheses or if the breach has not been detected yet and the
website is still running the attacker can easily verify his assumptions by creating a new account.

In case a common Salt is used there are a number of different approaches he can use to obtain
it:

❼ Social engineering: trick or bribe an employee to reveal it.

❼ Brute-force: if the attacker had created an account previous to the breach he would be able
to brute-force the Salt by knowing the actual password to the hash belonging to his account.

❼ Code reverse engineering: if during the breach he managed to obtain also the executables
and libraries of the web application he could try to reverse them to the source code.

❼ Internal repositories: if the attacker is able to gain access to the source code he can easily
retrieve the value.

This list obviously does not cover all the possibilities available to the attacker, however it
should be sufficient to highlight that relying on the secrecy of a single value is not secure.

The correct implementation on the other hand does not rely on guaranteeing secrecy, but on
the practical unfeasibility of the attack under the given circumstances.

40

2 – Analysis of the web application

Password Recovery

When verifying the password recovery procedure the tester should check whether the following
applies:

❼ The website does not send the password to the user, independently from the channel used.
As already explained the website should not even store the password on the database, only
the hash. Furthermore if email is used it constitutes a very insecure channel and if the user
does not delete the email it will remain in the provider’s database and email application
stored in clear text indefinitely.

❼ The website should generate a unique reset token to be sent to the user along with the reset
URL. The token can either be manually inserted by the user in the pointed page or the URL
can already contain it as parameter. The website should avoid solutions in which a new
password is automatically generated and sent to the user, because in addition to security
concerns detailed in the previous point, an attacker could exploit this by launching a DoS
attack in which he continuously regenerates the user’s password denying him access.

❼ The reset token should have an expiration time. The window of time should be set as narrow
as possible, allowing enough time for the user to receive the email but reducing the amount
of time an attacker would have to obtain the token and use it. A possible range could be
between 30 minutes and 1 hour.

❼ After sending the token the website should not give any information regarding the success
of the procedure. The user should be notified with a message such as “An email has been
sent to the provided address.” regardless if the email provided is associated to any account,
otherwise an attacker could try to use use this function to enumerate email addresses to
find one that is connected to an account. If there is no user associated with the provided
address the website could send an email anyway notifying the recipient that someone has
tried to access with their address.

Email enumeration can be specifically dangerous because it is usually easy to associate an
email to an identity, therefore an attacker could exploit the information in social engineering
attacks towards the email possessor and it could additionally result in privacy issues, for
example with websites that offer services that could damage the user’s reputation.

❼ After authentication the reset token associated to the user is deleted. Tokens should be
usable only once and within their expiration window.

It is also possible to improve security by implementing an additional verification step. The
website, after the user has provided the renewal token and before allowing the user to provide
a new password, could ask for an additional information, such as answers to a set of personal
questions defined upon registration. This additional step is recommended as it is not implausible
that the user’s email has been compromised. In addition the website should lock the reset process
for a set time if wrong answers are repeatedly provided.

Password Policies

The web application should force the users to change the password regularly. The window of
validity is decided depending on the level of security required by the application and the com-
plexity forced on passwords. If frequent changes are required the time-frame in which an attacker
can exploit a cracked password is reduced to the time remaining until expiration. In addition
brute-force attacks have less time to find matches and if the password is of appropriate length
it could become unfeasible for most attackers. Therefore the website implements weak password
requirements the password renewal should be more frequent. However usability should also be
considered, in order not to stress the users excessively.

In addition an history of old passwords, in the form of Salt+hash, should be kept to prevent
the user from reusing the same passwords. The history should be maintained for a window of time
that takes into consideration the required level of security and the medium lifetime of accounts.

41

2 – Analysis of the web application

Alternative Authentication Mechanisms

The factors that can be used for authentication can be condensed to 3 key elements:

1. Knowledge: something the user knows, such as a password.

2. Ownership: something the user possesses, such as a badge, a smart card, a mobile phone, a
token, etc.

3. Inherence: some physical characteristic of the user, biometric data such as fingerprints,
retina, etc.

Multi Factor Authentication is a method of authentication that relies on the use of two or all
three types of factors.

Unless very high levels of security are required, it is advised to avoid collecting biometric data
as it is categorised as sensitive data and requires a high level of protection when managed by the
company. In addition if biometric data is compromised it is not possible to simply change it.

In general a sufficient level of security can be reached through the use of the first two factors,
for example adding to the use of passwords the use of OTP tokens.

2.2.5 Data Management

The application should avoid as much as possible storing in the database users’ personal data that
is not of public domain. Storing this type of information constitutes a great responsibility for
the company, and if it is breached the reputation damage can be considerable. In addition if the
personal data is also categorised as sensitive, depending on local privacy laws, the company must
provide adequate security measures and transparent processing procedures. The consequences of
a breach involving this type of data could be not only reputational but also pecuniary.

As for Europe, the General Data Protection Regulation(GDPR) (EU) 2016/679 in Article 32
(1) states:

“Taking into account the state of the art, the costs of implementation and the
nature, scope, context and purposes of processing as well as the risk of varying like-
lihood and severity for the rights and freedoms of natural persons, the controller and
the processor shall implement appropriate technical and organisational measures to
ensure a level of security appropriate to the risk, . . . ”

In addition the GDPR comes with severe fines, where infringements of the regulation can lead
to fines up to 20 000 000 EUR, or in the case of an undertaking, up to 4 % of the total worldwide
annual turnover of the preceding financial year (Art.83 (4-5-6)). Infringements however are not
only related to technical issues, but also to organisational issues, such as insufficient training of
the employees, improper data management documentation and procedures, improper data subject
support, etc. It is a process that requires a lot of attention therefore it is advised to avoid storing
sensitive data as much as possible and when it is unavoidable to remove it from the databases as
soon as possible.

The risks related to sensitive data can be mitigated by using processing techniques such as
tokenisation, truncation and pseudonymisation.

If the website needs to implement a transaction feature to allow credit card payments it
is highly recommended to avoid custom solutions and utilize third party payment providers to
perform payments and store credit card information for recurring billing. Developing this type of
service is extremely difficult and at high risk of attack, therefore delegate this responsibility to a
specialised third party not only guarantees more security but unburdens the company from the
management of the related sensitive data. In addition users are more likely to trust a well known
provider rather than disclosing credit card information to the website.

42

2 – Analysis of the web application

In the Black Box analysis phase the tester should have mapped all the types of data collected
and their purpose. Analysing the results it is necessary to ascertain that the different types of
data are being correctly managed.

As already explained in the Password Management and Policies section, passwords are pro-
tected employing the hashing process, however there are other types of data that must be pro-
tected but cannot be stored hashed, such as keys used for multi-factor authentication, credit card
information, etc., as their value cannot be lost. For these types of data encryption should be
employed.

Depending on the purpose of the encrypted data, incorrect uses of encryption algorithms
may result in sensitive data exposure, key leakage, broken authentication, insecure sessions and
spoofing attacks.

When testing the correct implementation of encryption the following should be verified:

Used cyphers :

The web application should avoid using weak encryption algorithms. Based on NIST spec-
ifications [18], at the time of redaction of this dissertation, the approved symmetric key al-
gorithms for encryption/decryption are: Advanced Encryption Standard (AES) and Triple
Data Encryption Standard (TDES). In addition to the right choices of algorithm, it is also
important to choose an appropriate mode of operation. It is recommended to avoid ECB
(Electronic Code Book) mode for use with asymmetric encryption, as it does not consider
any positional information regarding the blocks and therefore an attack that swaps the order
of encrypted blocks could go unnoticed.

Acceptable modes are: Cipher Block Chaining (CBC), Cipher Feedback(CFB), Output
Feedback (OFB), Counter (CTR), Galois Counter Mode (GCM), Counter with CBC-MAC
(CCM) and Offset Codebook Mode (OCM). Where possible, modes offering authenticated
encryption should be preferred.

Whereas the approved asymmetric key algorithms are: Digital Signature Algorithm (DSA),
RSA, Elliptic Curve Digital Signature Algorithm (ECDSA).

Symmetric algorithms should be used for direct encryption of data, as they are simpler
and faster algorithms. On the other hand asymmetric algorithms are better suited for key
exchange, authentication (digital signature) and integrity (digital signature + digest).

Key length :

The tester should establish what the application’s minimum computational resistance to
attack should be, taking into consideration how appealing is the information managed by
the application to an attacker, how long data needs to be protected, where it is stored and
if it is exposed. Identifying the required resistance to attacks helps defining the minimum
length of the cryptographic keys required to protect data over the life of that data.

According to OWASP the minimum key lengths acceptable, in spite of the evaluations, are:

Algorithm Minimum Key Length
AES 128
TDES 56 x 3 indipendent keys
DSA 2048
RSA 2048
ECDSA 224-255

Key storage :

The keys used to encrypt data should be stored in a secure location that is different from
where the encrypted data is stored. This means keys shouldn’t be stored on web servers,
database servers etc., but in specific key-storage devices.

Keys must be protected on both volatile and persistent memory, ideally processed within
secure cryptographic modules, minimising the time in which they are not in encrypted form.

43

2 – Analysis of the web application

In addition when encrypting keys for storage or distribution, always encrypt a cryptographic
key with another key of equal or greater cryptographic strength.

The tester should ensure that keys have integrity protections applied while in storage, and
preferably use Authenticated Encryption (AE) modes under an uniform API. AE has the
advantage of performing both encryption and authentication operations using one algorithm
and one key, providing more speed and security with respect to the combination of different
algorithms.

Recommended modes include OCB 2.0, CCM and GCM.

Encryption at rest :

Data at rest, as opposed to data in use and data in transit, means inactive data that
is stored physically in any digital form (e.g. databases, data warehouses, spreadsheets,
archives, tapes, off-site backups, mobile devices etc.).

However defining the boundary between inactive data and data in use is complex and there
are many different definitions. In the scope of this dissertation it will be considered inactive
all data in computer storage, while excluding data that is traversing a network or temporarily
residing in computer memory to be read or updated.

Data at rest should always be encrypted. Some database manager applications offer inte-
grated data at rest encryption, however if this feature is not available the encryption shoul
be performed manually by the developer.

Encryption can be applied at disk level, file level, column level, etc. It is advised to use
multiple layers of encryption by applying a first encryption for all files and columns that
contain sensitive data, using a different key for each item, and then applying a disk wide
encryption including all data. Keys should not be reused.

Hardware cryptographic modules are preferred over software cryptographic modules for protec-
tion. This includes key generators, key-transport devices, key loaders, cryptographic modules,
and key-storage devices. Caching should be disabled for responses that contain sensitive data.

2.2.6 Keys Management

Keys should be changed periodically, both for current data and old backups. In order to do so the
application should provide to administrators an integrated feature to easily change keys. Such
feature should consider two main scenarios:

❼ Periodic maintenance: the web application should allow administrators to periodically
change all the keys with new ones and data should be re-encrypted. In order to facili-
tate this process there should be also support for scheduling and logging of applied changes,
in addition the application should have a mechanism to distinguish key versions.

❼ Emergency: the application should provide the possibility to select different levels of granu-
larity for data re-encryption. In case of emergency it might be necessary to act fast and on
specific sets of data, therefore having this feature supported might significantly improve the
rapidity of remediation. In addition the web application should provide multiple algorithm
options when changing keys, in order to be able to rapidly secure the data in case a new
vulnerability is discovered for the version of the used algorithm.

Administrators should have all the information they need, readily available, when rotation of
encryption keys must be performed. Rotating keys should not require changes to source code or
other risky deployment measures, since doing this in the middle of an incident would unnecessarily
burden the mitigation team.

Additionally the tester should verify that the following applies:

44

2 – Analysis of the web application

❼ The key rotation procedure defines an appropriate cryptoperiod, meaning the time span
during which a particular cryptographic key can be used for its defined purpose. Consid-
erations for defining the cryptoperiod include, but are not limited to, the strength of the
algorithm used, length of the key, risk of key compromise and the sensitivity of the data
being encrypted. It is advised to perform key rotation at least annually.

❼ The key rotation process should remove an old key from the encryption/decryption process
and replace it with a new key. All new data entering the system must encrypted with the
new key. It is recommended also to decrypt the existing data and re-encrypt it with the
new key.

❼ Encryption keys are changed anytime anyone with knowledge of the keys leaves the company
or changes positions.

❼ For high security systems “Split knowledge” and “Dual control” of keys should be imple-
mented. Split knowledge means that key components are under the control of at least two
people who only have knowledge of their own key components. Dual control means that at
least two people are required to perform any key management operations. The system will
require both credentials to allow key management.

These two policies are used to eliminate the possibility of one person having complete control
over the keys.

❼ Access to keys is restricted to the fewer number of people necessary, additionally the inter-
faces for key management should avoid displaying to administrators the value of the keys,
minimising as much as possible the exposure of keys.

2.2.7 Error handling

Errors are an inevitable occurrence during the lifetime of a software, therefore it should be verified
that they are properly managed. There are two key aspects to consider:

❼ Whether the application fails safely: when an exception is raised it should be always caught
and properly handled by the developer. An uncaught exception will propagate upwards
in the stack until it finds a method that manages it, however if this does not happen the
application will crash.

❼ What information is disclosed by error messages: the application should avoid disclosing to
the user any specific information regarding the type of error, providing instead generic mes-
sages and suggestions. Giving detailed information about the cause of the error is certainly
more helpful for a legitimate user, however it discloses to malicious users information that
could directly or indirectly hint at the internal structure and mechanisms of the software.

The most common causes of exception being raised are improper input validation, improper re-
lease of resources, errors in establishing connections with underlying services, etc. In all situations
where a variable state is influenced by factors external to the application the developer should
wrap the code using proper statements and should explicitly implement a reaction mechanism,
also defining what is displayed to the user.

A popular scenario in which error information is commonly exploited is during authentication.
There are two very common cases of failed authentication: there is no account linked to the
provided username or the password provided is wrong. While it might be convenient for a honest
user to know which one happened, the application should not give this information. Instead it
should respond with the same generic error message, for example “Authentication error”, for both
cases. The reason is that a malicious user could exploit it in order to learn if a certain username
exists in the database and try to brute-force the password. On the other hand if the attacker does
not know if the username is even legitimate, he could be brute-forcing a non-existent account,
therefore wasting time and resources.

Other common scenarios include developers leaving debug code in the release versions, excep-
tion messages being used directly as output, etc.

45

2 – Analysis of the web application

A good example was found during the testing of SoD App. The developers had left in the
release version of the application a feature that should have been clearly intended only for the
development version. When an error occurred, and it was correctly caught, the application would
display to the user a page containing an error warning. The warning page however contained the
error message and stack trace of the exception. This can be very convenient for the developers
during testing but it’s the kind of information that should be never provided to the user. A
malicious individual could infer from this information what exactly caused the error and how is
the internal workflow of the application designed and could learn how to fabricate an input that
would take full advantage of the newly found error.

In addition to correctly managing the errors, the application should also keep a log of their
occurrences. These logs should be periodically inspected by an intrusion detection system or by
a service of the web application itself, in order to detect anomalies or suspicious activities and
report them to administrators.

It is also possible to implement an automatic system to notify the user or lock temporarily
the account/source address if an excessive amount of anomalies verify. This can both slow down
an attacker and discourage him from proceeding with the attack if he knows that his actions are
being monitored.

2.2.8 Code analysis tools

Even if meticulously going through the source code is the most reliable approach, it is undeniable
that it is a highly time consuming task and is often an unfeasible operation. Therefore there are
a set of useful tools that can be used to perform a first evaluation of the code, allowing the tester
to individuate faster at lest the problems reported by the tool’s analysis.

The software behind these tools is quite complex, therefore most of the more reliable and
multi-language tools are available only under paid licence. Among the many available solutions,
KPMG already owned a licence for the static code analysis tool Checkmarx [19], therefore that
has been the software used to test SoD App.

Checkmarx, as most of the available alternatives, requires the whole project to be uploaded
and as a result of the analysis provides a report. In the report the various vulnerabilities found
are cathegorised based on the OWASP classifications, and for each vulnerability a description
of the impact and a possible solution are provided. It is a very helpful tool for detecting the
most common vulnerabilities as the analysis is quite thorough, and it considerably speeds up the
analysis process, however it must be kept in mind that these tools have many limitations and it
is still necessary for the tester to examine the code for additional missed risks. Furthermore these
tools often find false positives, especially if the developer has designed some functions with an
uncommon approach. Fig. 2.2.8 provides an example of report.

2.2.9 Analysis results on SoD App

The White Box analysis using automated tools was performed only at the end of the securing
process, as final check. Only some minor vulnerabilities where detected, however they have been
purposefully ignored as the exploitation difficulty was high and impact entity was limited. It was
decided to focus on more critical vulnerabilities.

As for the manual analysis the following vulnerabilities were found, in addition to those already
found during the Black Box analysis:

❼ No data encryption.

❼ No legitimacy verification for provided email addresses.

❼ Use of a hard-coded global Salt for the hashing of the passwords of all users.

46

2 – Analysis of the web application

Figure 2.1. Checkmarx report extract.

❼ Use of hard-coded connection keys.

❼ No key renewal mechanisms.

47

2 – Analysis of the web application

❼ Improper resources release in multiple methods.

❼ No size verification on uploaded files.

❼ Uploaded files saved with the user provided name.

❼ Uploaded files saved in website root directory.

❼ Outdated and unpatched components with known vulnerabilities.

All these vulnerabilities where successfully mitigated and the implementations can be found
in the Implementation chapter, with the exception of the data encryption and email legitimacy
verification.

The free version of MongoDB used did not provide encryption at rest functionalities and the
manually implemented encryption was affecting too heavily performance when applied to the large
databases. Due to insufficient time the task was set aside to be implemented in the future.

Email verification was also set aside in favour of more critical vulnerabilities, as user creation
is seldom and currently performed manually by administrators and therefore this verification can
be also done manually.

2.3 Analysis of support tools and environment

The securing of a web application should take into consideration not only the web application
itself but also the environment’s configuration and the security of other components used by the
application, such as services, database application, libraries, etc.

The application should not use components or protocols with known vulnerabilities or unsafe
configurations.

The popular figure of speech “A chain is only as strong as its weakest link” is very accurate also
with respect to the security of a system. Investing time and energy in the hardening of the web
application ignoring the underlying system can have very unpleasant consequences. In this regard
the tester should also analyse the server’s configuration. Some common causes of vulnerability
are:

❼ Insecure OS version.

❼ Weak physical protection.

❼ Weak OS user authentication system.

❼ Unnecessary services installed. Some examples are: printer service, FTP, SMTP, NNTP,
etc.

❼ Remote administration enabled.

❼ Telnet enabled.

❼ Services running with over-privileged accounts.

❼ SSL allowed.

❼ Weak ciphers for TLS allowed.

Only the actually used services and applications should be left on the server machine, and each
should be properly configured to minimize the risk of exploitation. Updates should be applied
regularly and unsupported software should be replaced with newer maintained versions.

Also the libraries used by the web application should be periodically updated, and the devel-
oper should define a list easily accessible to administrators and containing all the libraries used,

48

2 – Analysis of the web application

directly and indirectly, and their versions. The administrators should periodically verify that
these libraries are up to date and that there are no know vulnerabilities discovered.

It is important to pay attention not only to the release server, when performing environment
security evaluation, but also to all the components used for maintenance and development, such
as development servers, private repositories, logs, backups etc.

49

Chapter 3

Implementation of risk mitigation
actions

This chapter will explain how to secure the application against the evaluated risks, showing best
practices and how the mitigation was implemented in the real case example. All the proposed
code refers to a .NET environment using .NET Framework 4.7.2 and IIS 8 as web server.

3.1 Application configuration

3.1.1 HTTPS

In order to migrate the whole application to HTTPS there are a few steps that must be performed.
The actual implementation depends on the structure of the web application.

1. Create SSL public key certificate: the certificate can be bough from a Certificate
Authority (CA) or self signed by the company’s internal CA. There are many CAs that
provide certificates and when choosing one it should be verified that all the most used
browsers list it among their trusted CAs, otherwise the browser will not recognize the
certificate as trusted and will display a warning advising the user against navigating on the
untrusted website. The same would happen for a self signed certificate.

When working on a web application that is exposed on Internet it is advised to use self signed
certificates only during the testing phase and replace them with certificates purchased from
trusted public CAs upon release, otherwise users would be scared by the browser’s danger
notification and it would have a negative impact on the company’s image.

If the website is to be used only in the intranet by employees it is perfectly acceptable to
use self signed certificates, as long as the employees’ browsers have the internal CA in their
trusted list. This should not be overlooked because if users learn to ignore the browser’s
notification they will ignore also when a real threat arises. For the same reasons certificates
that have expired should never be used. When implementing a self signed certificate there
is more flexibility in the configuration and it is possible to tailor the certificate to fit specific
needs.

There are many tools available to create certificates and often the web server’s control panel
offers functionalities to easily manage certificates and also create new self signed ones. It
is also possible to use OpenSSL , an open source, cross-platform cryptography library that
provides many interesting functions.

An example of command that can be used to create a certificate:

openssl req -newkey rsa:2048 -nodes -keyout key.pem -x509 -days 365

-out cert_request.pem

50

3 – Implementation of risk mitigation actions

This command generates a x509 certificate, using an RSA key pair of 2048 bits created
on the fly and saved unencrypted in key.pem. The certificate is saved under the name of
cert request.pem and has an expiration time of 360 days. The recommended key length is
of 2048 bits or more, as it still provides sufficient security and is estimated to be sufficient
until 2030, it is not recommended however to use shorter keys [20]. Before producing
the certificate OpenSSL will ask for some additional parameters, they should match those
specified for the CA. This is however not the final certificate, it must be first sent to the
CA to be approved and signed.

To have the CA sign the certificate:

openssl ca -in cert_request.pem -out signed_cert.pem

The signed cert.pem file is the actual certificate, signed by the internal Certificate Authority.

When purchasing certificates the cost can vary considerably depending on the type of certifi-
cate and other additional services offered by the CA, such as warranty, etc. The important
thing however is what extensions are contained in the certificate. When buying a certificate
for public use it is best to choose certificates that conform to the X.509 standard, that
defines the format of public key certificates in order to provide sufficient information and
avoid compatibility issues.

The last step is to install the certificate on the web server.There will either be a configuration
file in which to insert the path to the certificate and key or the web server control panel
might provide some specific tool. The IIS Manager allows to add certificates, already signed
by a CA, under Server Certificates > Complete Certificate Request.

2. Force the use of HTTPS: in order to allow only HTTPS it is possible to disable the
ports listening for HTTP connections and enable port 443 for HTTPS, providing also the
acquired certificate [Fig. 3.1.1]. However this solution can create some problems for users,
especially if the website was previously available through HTTP, as they will try connecting
to the website using the old HTTP link but will not be able to find the site not knowing that
it was migrated to HTTPS. Therefore a more user friendly solution is to implement HTTPS
binding but also leave HTTP, permanently redirecting all request coming to it to HTTPS.
This solution however must be carefully implemented to avoid leaving any possibility to
connect through HTTP.

To implement redirection rules some solutions provide management panels for the applica-
tion in which it is possible to specify the rule and it will be automatically implemented.
In other cases it might be necessary to manually implement redirect rules from HTTP to
HTTPS. This step varies based on the structure of the web application but is usually very
easy to implement and details for the specific case at hand can be easily found online, in
general there will be a configuration file in which to implement the redirection rules. For
SoD App it was sufficient to add the following lines to the IIS Web.config file:

<rewrite>

<rules>

<rule name="SoDApp_ssl_redirect" enabled="true"

patternSyntax="Wildcard" stopProcessing="true">

<match url="*sodapp*" />

<conditions logicalGrouping="MatchAny">

<add input="{HTTPS}" pattern="off" />

</conditions>

<action type="Redirect"

url="https://domain/{HTTPS_HOST}{REQUEST_URI}"

redirectType="Permanent" />

</rule>

</rules>

</rewrite>

This example would result in any URL matching the pattern “http://domain/sodapp/*”,
where the asterisk represents the path to a specific resource such as for example

51

3 – Implementation of risk mitigation actions

“http://domain/sodapp/homepage”, being redirected to “https://domain/sodapp/*” that
in the provided example would be “https://domain/sodapp/homepage”.

3. Update hard-coded links: check the code in order to find if there are any hard-coded
links using HTTP. All these links will need to be updated to HTTPS or if possible to relative
URLs, otherwise the redirection will return a non-existing resource.

4. Update Custom JS and AJAX Libraries to HTTPS: update any custom scripts used
by the application so that they point to the HTTPS versions. This also includes 3rd party
hosted scripts.

5. Enable HTTP Strict Transport Security (HSTS): Using redirection alone to force
HTTPS can still leave the system vulnerable to downgrade attacks where crackers force the
site to load an insecure version. HTTP Strict Transport Security (HSTS) is a web server
directive that instructs web browsers to only use secure connections for all future requests
when communicating with the website. The implementation depends on the application
structure. In general there should be a configuration file in which to insert the indication
to use HSTS. For SoD App it was implemented by adding a rule to the IIS Web.config file
already edited with the redirect rule:

<rewrite>

<rules>

<rule name="SoDApp_ssl_redirect" enabled="true" patternSyntax="Wildcard"

stopProcessing="true">

<match url="*sodapp*" />

<conditions logicalGrouping="MatchAny">

<add input="{HTTPS}" pattern="off" />

</conditions>

<action type="Redirect" url="https://domain/{HTTPS_HOST}{REQUEST_URI}"

redirectType="Permanent" />

</rule>

</rules>

<outboundRules>

<rule name="Add_Strict-Transport-Security_when_HTTPS" enabled="true">

<match serverVariable="RESPONSE_Strict_Transport_Security"

pattern=".*" />

<conditions>

<add input="{HTTPS}" pattern="on" ignoreCase="true" />

</conditions>

<action type="Rewrite" value="max-age=31536000" />

</rule>

</outboundRules>

</rewrite>

Figure 3.1. Add HTTPS example with IIS

52

3 – Implementation of risk mitigation actions

3.1.2 HTTP Methods

In .NET Framework there are different ways these options can be disabled, however following the
preference for white-list approaches the following has been deemed as the most secure. Only the
managed options are allowed by adding to the App Web.config file the following lines:

<configuration>

<system.webServer>

<security>

<requestFiltering>

<verbs allowUnlisted="false">

<add verb="GET" allowed="true" />

<add verb="POST" allowed="true" />

</verbs>

</requestFiltering>

</security>

</system.webServer>

</configuration>

3.1.3 HTTP Response Headers

Removing the headers can be done for .NET by implementing the following function in the
Global.asax file:

protected void Application_PreSendRequestHeaders()

{

Response.Headers.Remove("Server");

Response.Headers.Remove("X-Powered-By");

Response.Headers.Remove("X-AspNet-Version");

Response.Headers.Remove("X-AspNetMvc-Version");

}

Alternatively is is possible to implement the header removal using rewrite rules added to the
IIS Web.config file, an example for the server header:

<rewrite>

<outboundRules rewriteBeforeCache="true">

<rule name="Remove Server header">

<match serverVariable="RESPONSE_Server" pattern=".+" />

<action type="Rewrite" value="" />

</rule>

</outboundRules>

</rewrite>

If using MVC it is possible to use method attributes in order to restrict an Action method so
that it handles only specific requests:

public class ProjectController : Controllers

{

//...

[HttpPost]

public ActionResult Create(ProjectModel proj)

{

//...

}

//...

}

53

3 – Implementation of risk mitigation actions

In the provided example the element [HttpPost] is the HttpPostAttribute attribute, that restrict
the execution of the method Create only in response to POST request.

3.2 Input management

3.2.1 Managing Text Input

In order to provide a practical example the approach used for Sod App will be analysed. In
the MVC model the input is received by the back-end Controller method as a Model object, a
class defining the parameters contained in the submitted Form, filled in by the user. Valida-
tion is performed using method IsValid [21] of the System.Web.Mvc.ModelStateDictionary object
defined by the Controller class, evaluating the specifications described in the model using Sys-
tem.ComponentModel.DataAnnotations [22], that define restrictions applied by default to the
properties of the class. After validation, the data from the model is used to construct the ap-
propriate Entity Framework [23] object. The Entity Framework is a object-relational mapper
(O/RM) and is very useful to reduce the mismatch between the relational and object-oriented
elements, enabling developers to write applications that interact with data stored in relational
databases using strongly-typed .NET objects that represent the application’s domain. It is highly
recommended to use O/RM mappers instead of developing ad hoc solutions as the latter would
be more error prone and therefore vulnerable. In case an ad hoc solution is used it is necessary
to thoroughly test and verify that there is no mismatch between object and relational entities.

If a different model is used the same operations described in this example can be implemented
by defining a method that incorporates the actions performed by the DataAnnotations and the
ModelState.IsValid method.

public class ProjectModel

{

[Required(ErrorMessage = "Please insert a Name for the Project.")]

[MaxLength(25)]

[RegularExpression("^[A-Za-z0-9_]+[A-Za-z0-9 _]*[A-Za-z0-9]+✩", ErrorMessage =

"Please insert a valid project name. Special characters are not allowed.")]

public string Name { get; set; }

[Required(ErrorMessage = "Please provide a Description for the Project.")]

[MaxLength(50)]

public string Description { get; set; }

[Required(ErrorMessage = "Please insert a Customer name for the Project")]

[MaxLength(25)]

[RegularExpression("^[A-Za-z0-9_]+[A-Za-z0-9 _]*[A-Za-z0-9]+✩", ErrorMessage =

"Please insert a valid customer name. Special characters are not allowed.")]

public string CustomerName { get; set; }

[DataType(DataType.Date)]

[DisplayFormat(DataFormatString = "{0:dd/MM/yyyy}")]

public DateTime? Date { get; set; }

[Required(ErrorMessage = "Please insert a System ID for the Project")]

[MaxLength(3)]

[RegularExpression("^[A-Za-z0-9]✩", ErrorMessage = "System ID must be of 3

alphanumeric characters.")]

public string SystemId { get; set; }

[Required(ErrorMessage = "Please select a SAP Type.")]

public SystemType SystemType { get; set; }

[Required(ErrorMessage = "Please insert a Client for the Project.")]

54

3 – Implementation of risk mitigation actions

[MaxLength(3)]

[RegularExpression("^[0-9]}✩", ErrorMessage = "Client must be 3 digits.")]

public string Client { get; set; }

[Required(ErrorMessage = "Please insert the Language of the Project.")]

[MaxLength(2)]

[RegularExpression("^[a-zA-Z]+✩")]

public string Language { get; set; }

[System.Web.Mvc.HiddenInput(DisplayValue = false)]

public long ID { get; set; }

}

The MaxLength annotation validates the length of the Name string, while the regular expres-
sion provides a white-list of allowed characters. If the values are invalid an error message is sent
to the client. In the case of the Name attribute it was decided to allow only a very restricted
set of characters as more variety was not necessary. DataAnnotations also allow to specify the
Required annotation to refuse empty values for certain attributes.

However it is not always possible to restrict the set of character to use, for some fields such as
descriptions, comments, etc., restrictions might result in usability problems for the users. In SoD
App it was difficult to gauge the correct set of characters to allow for the description field, so it was
chosen to not apply any during the validation process. However this removes an important level
of protection, leaving the security of the input reliant only on the sanitization process. Therefore
in such situations it is extremely important to analyse how will be the specific input used, in order
to correctly sanitize it.

In the original version of the proposed class the MaxLength and RegularExpression annotations
where not implemented. Looking at the ProjectModel class it is clear why the previous phase that
concentrated on understanding the application is fundamental. Without knowledge of the context
and meaning of the fields it would not be possible to appropriately define neither validation nor
sanitization.

For ranged values such as integer, float, dates, etc., it should also be implemented a maximum
and minimum value range check. In this case the Date check was performed by the Controller
class, along with the actual validation and serialization, as soon as the client request is received:

public class ProjectController : Controllers

{

...

[HttpPost]

public ActionResult Create(ProjectModel proj)

{

try

{

if (proj.Date == null) proj.Date = DateTime.Now;

if (!ModelState.IsValid || !validateDate(proj.Date) ||

!validateSystemID(proj.SystemId)

||!validateLanguage(proj.Language))

{

return View("Denied");

}

PROJECT project = new PROJECT()

{

NAME = AntiXssEncoder.HtmlEncode(proj.Name, false),

DESCRIPTION = AntiXssEncoder.HtmlEncode(proj.Description, false),

CUSTOMER = AntiXssEncoder.HtmlEncode(proj.CustomerName, false),

DATE = proj.Date,

SYSTEM_ID = proj.SystemId,

SAP_SYSTEM_TYPE = AntiXssEncoder.HtmlEncode(proj.SystemType.ToString(), false),

CLIENT= AntiXssEncoder.HtmlEncode(proj.Client, false),

55

3 – Implementation of risk mitigation actions

LANGUAGE= AntiXssEncoder.HtmlEncode(proj.Language, false),

USER_ID= _database.USERS.Where(u =>

u.USERNAME.Equals(User.Identity.Name)).FirstOrDefault(),

ID= GenerateProjID();

};

}

...

}

In SoD App the client request for a new Project was handled by the ActionResult class Create
of the ProjectController, therefore this is where the validation and sanitization must be performed,
as soon as the input is received. The ModelState.IsValid method validates the ProjectModel
associated to the ProjectController by analysing the declared DataAnnotations and verifying if
the restrictions are respected. Furthermore for enum types it also checks whether the value is
one of the defined options. The additional validation functions validateDate(), validateSystemID
and validateLanguage were manually implemented to verify the logical constraints and range
constraints on the values. If the model passes validation the inputs contained are sanitized and
the Project entity is created.

The sanitization is performed using the System.Web.Security.AntiXss.AntiXssEncoder class
[24], that provides different types of encoders and uses a white-list approach. The correct encoder
should be selected based on the usage of the input and purpose of the encoding. In this case the
encoding was used to prevent XSS attacks therefore HtmlEncoder was used.

If a model different than MVC is used the same type of control can be achieved by manually
implementing the check on regular expressions, enums, and type using TryParse or lookup values
to assure that the data coming from the user is as expected.

In the analysis phase it has been confirmed that the Description field, CustomerName, Client
and Date, are only meant to help the user and improve usability by providing useful information
regarding the project. They are not key attributes used for database access. As a consequence
these fields could not be exploited to perform SQL Injections, but could instead be exploited
to perform XSS attacks and performing validation and sanitization against characters that are
dangerous for HTML is sufficient to guarantee proper security.

Other attributes such as the SystemType, SystemID and Language have a functional role and
are used during the analysis performed by SoD App on the ERP database, they are more likely
to be vulnerable to SQL Injection and if not properly validated result in Exceptions being raised.
It is therefore necessary to verify that they belong to an acceptable range of values in order to
avoid errors. For SystemType, being an enum, the check is already performed by ModelState,
however SystemID and Date are only validated syntactically, not semantically. Hence why it was
necessary to implement specific functions for the purpose.

When using prepared statements to construct database query, they would be structured in a
similar way:

string querySQL= "SELECT * FROM Users WHERE UserId = ?";

try {

OleDbCommand command = new OleDbCommand(querySQL, connection);

command.Parameters.Add(new OleDbParameter("@userId", txtUserId));

OleDbDataReader reader = command.ExecuteReader();

catch{...}

The OLE DB.NET Framework Data Provider [25] was used to access the database. Instead
of named parameters, positional parameters that are marked with a question mark “?” are used,
therefore the parameters added to the Parameters collection must be properly ordered.

What was actually found during the analysis of SoDApp was a set of insecure methods man-
aging database access, one of which is the following:

56

3 – Implementation of risk mitigation actions

public IDataReader getReaderSelect(string table, string selectClause, string

whereClause)

{

string q = "SELECT " + selectClause + " FROM " + table + " WHERE " + whereClause;

OleDbSQLiteCommand cmd = new OleDbCommand(q, sqlite);

OleDbDataReader reader = cmd.ExecuteReader();

return reader;

}

An example of code calling the method:

IDataReader reader= getReaderSelect("Projects", "*", "SystemID = " + project.SystemID

);

Resulting in:

SELECT * FROM Projects WHERE SystemID = 123

This implementation clearly suffers from SQL Injection vulnerability. However securing this
code is not as straightforward as securing the previous example, it will be necessary to reformulate
the whole method, as part of the query is assembled by the getReaderSelect class but part is
given as input. In this case it was necessary to distinguish between variables that were received
from input and parts of the query that were manually defined by the developer and properly
parameterise those from input.

public IDataReader getReaderSelect(string table, string selectClause, string

whereClause, string whereInput)

{

string q = "SELECT " + selectClause + " FROM " + table + " WHERE " + whereClause+ "

?";

try{

OleDbCommand cmd = new OleDbCommand(q, connection);

command.Parameters.Add(new OleDbParameter(whereItem, whereInput));

OleDbDataReader reader = command.ExecuteReader();

}

catch{...}

}

...

IDataReader reader= getReaderSelect("Projects", "*", "SystemID =" , project.SystemID

);

For multiple parameters it is sufficient to state them with a question mark and add the values
to the Parameters collection in order.

Sensitive fields such as User ID and ID of the Project entity, that are used for identification and
authorisation, should not be taken from user input or client-side scripts but should be retrieved
or defined by the server. In the proposed code the User ID is retrieved from the authenticated
session and the project’s ID is generated using a pseudo-random function, however in the original
code the project’s ID was retrieved from the received ProjectModel, therefore it could have been
tampered by the user.

3.2.2 Managing File Uploads

Verify the format: In the following example an implementation of such control is provided, as
it was performed for SoD App. The application has only two upload functions, the first

57

3 – Implementation of risk mitigation actions

allows the user to load a matrix model for the database analysis and must be either .xls
or .xlsx excel formats, the second is used by the user to load the database file itself in the
format of an .sqlite file. The following example will analyse the first scenario, however the
second is managed in the same fashion.

public class ExcelMatrixModel

{

[Required(ErrorMessage = "Please insert a name for your matrix")]

[RegularExpression(@"^[A-Za-z0-9_]+[A-Za-z0-9 _]*[A-Za-z0-9]+✩", ErrorMessage

= "Matrix’s name cannot include special characters!")]

[MaxLength(30)]

public string Name { get; set; }

[Required(ErrorMessage = "Please insert a description for your matrix")]

[MaxLength(50)]

[RegularExpression(@"^[A-Za-z0-9_]+[A-Za-z0-9 _,.!?]*[A-Za-z0-9.!?]+✩",

ErrorMessage = "Please insert a valid description. Special characters are

not allowed.")]

public string Description { get; set; }

[Required(ErrorMessage = "Please select a template")]

public Template Template { get; set; }

[DataType(DataType.Upload)]

[Required(ErrorMessage = "Please select a file")]

[FileType("xls|xlsx", ErrorMessage = "Please select an Excel file with

\".xls\" or \".xlsx\" extension.")]

public HttpPostedFileBase ExcelFile { get; set; }

}

internal class FileType : ValidationAttribute

{

private string[] _fileExtension;

public FileType(string fileExtension)

{

_fileExtension = fileExtension.Split(’|’);

}

public override bool IsValid(object value)

{

// Avoid duplicating the DataAnnotation "[Required]"

if (value == null)

{

return true;

}

//Get the declared file extension

string postedFileName = ((HttpPostedFileBase)value).FileName.ToLower();

string postedExtension = Path.GetExtension(postedFileName);

//Get the actual mime type

string mimeType=

FileTypeResolver.GetMimeFromFileBase((HttpPostedFileBase)value);

foreach (var item in _fileExtension)

{

if ((postedExtension).Equals(item) && (mimeType).Equals(item))

{

return true;

}

58

3 – Implementation of risk mitigation actions

}

return false;

}

}

public class FileTypeResolver

{

private static Dictionary<string, string> additionalMimeTypes = new

Dictionary<string, string>()

{

{ "504b0304","xlsx" },

{ "d0cf11e0a1b11ae1","xls" },

{ "53514c69746520666f726d6174203300","sqlite" },

};

[DllImport(@"urlmon.dll", CharSet = CharSet.Auto)]

private extern static System.UInt32 FindMimeFromData(

System.UInt32 pBC,

[MarshalAs(UnmanagedType.LPStr)] System.String pwzUrl,

[MarshalAs(UnmanagedType.LPArray)] byte[] pBuffer,

System.UInt32 cbSize,

[MarshalAs(UnmanagedType.LPStr)] System.String pwzMimeProposed,

System.UInt32 dwMimeFlags,

out System.UInt32 ppwzMimeOut,

System.UInt32 dwReserverd

);

public static string GetMimeFromFileBase(HttpPostedFileBase uploadedFile)

{

try

{

byte[] buffer = new byte[256];

byte[] fileBytes = new byte[uploadedFile.InputStream.Length];

uploadedFile.InputStream.Read(fileBytes, 0,

(int)uploadedFile.InputStream.Length);

if(fileBytes.Length<256) return "unknown/unknown";

for (int i = 0; i < 256; i++) {

buffer[i] = fileBytes[i];

}

System.UInt32 mimetype;

FindMimeFromData(0, null, buffer, 256, null, 0, out mimetype, 0);

System.IntPtr mimeTypePtr = new IntPtr(mimetype);

string mime = Marshal.PtrToStringUni(mimeTypePtr);

Marshal.FreeCoTaskMem(mimeTypePtr);

//xls and xlsx files are interpreted by FindMimeFromData as zip, whereas

sqlite as binary

if (string.IsNullOrEmpty(mime) ||

mime.Equals("application/x-zip-compressed" ||

mime.Equals("application/octet-stream"))

{

CheckAdditionalTypes(4);

CheckAdditionalTypes(8);

CheckAdditionalTypes(16);

}

return mime;

}

catch (Exception e)

{

59

3 – Implementation of risk mitigation actions

return "unknown/unknown";

}

}

//confronts the first bytes of the file with the signatures in the dictionary

private void CheckAdditionalTypes(int signatureLength){

byte[] buffer2 = new byte[signatureLength];

for (int i = 0; i < signatureLength; i++)

{

buffer2[i] = buffer[i];

}

string str = Utilities.ByteArrayToHexString(buffer2);

if (additionalMimeTypes.ContainsKey(str))

{

return additionalMimeTypes[str];

}

}

}

public class Utilities(){

...

public static string ByteArrayToHexString(byte[] ba)

{

StringBuilder hex = new StringBuilder(ba.Length * 2);

foreach (byte b in ba)

hex.AppendFormat("{0:x2}", b);

return hex.ToString();

}

}

The ExcelMatrixModel class models the user’s file input, and has the same functions al-
ready described for the ProjectModel, validating all the fields submitted by the user. In
order to validate the file a custom ValidationAttribute is created and named FileType. Val-
idationAttribute is the base class for all attributes used by DataAnnotations, hence when
ModelState.IsValid will be called by the controller the code implemented in FileType will
be executed.

The FileType attribute performs a first check on the extension declared by the filename,
confronting it with the allowed ones. The used function Path.GetExtension() retrieves the
extension after the last occurrence of the dot character, this is important in order to manage
evasion techniques such as providing “image.jpg.php” as filename. If different methods are
used it is advised to verify that the extension retrieving function does not return the first
occurrence.

As previously explained, however, this check is not sufficient as a malicious user could have
easily changed the extension in the file name, hence a second check is performed using the
GetMimeFromFileBase() method of the FileTypeResolver class.

Multipurpose Internet Mail Extensions (MIME) is an Internet standard that extends the
format of email to support various functions, however the content types defined by MIME
standards are used also by HTTP to describe content types.

The GetMimeFromFileBase() method takes inspiration from Internet Explorer’s MIME type
detection implementation [26]. Using the FindMimeFromData() method, implemented by
the Urlmon library, the first 256 bytes of the file are analysed to define the MIME type.
However this method contains hard-coded tests for currently only 26 separate MIME types,
therefore the developer should verify that the used file types are supported, otherwise the
result is unexpected. In this specific case it was later discovered that none of the required
formats were supported, therefore it was necessary to manually provide the signatures for
the acceptable files by implementing the CheckAdditionalType() method. The FindMime-
FromData was however retained for future file upload features.

If this solution is adopted, when manually adding new MIME types it is necessary to verify
all the possible signatures for a certain file extension.

60

3 – Implementation of risk mitigation actions

Check/Change the name: The following example shows the file name management imple-
mented in SoD App.

[HttpPost]

public ActionResult CreateFromExcel(ExcelMatrixModel excelModel)

{

if (!ModelState.IsValid)

{

ViewBag.Templates = templates;

return View(excelModel);

}

try

{

//encode the user provided name to secure from XSS

excelModel.Name = AntiXssEncoder.HtmlEncode(excelModel.Name, false);

excelModel.Description = AntiXssEncoder.HtmlEncode(excelModel.Description,

false);

//validate template

IExcelImport e = null;

switch (excelModel.Template)

{

case Template.LINEAR:

e = new ExcelLinearImportService();

break;

case Template.MATRIX:

e = new ExcelMatrixImportService();

break;

default:

return View("Denied");

}

//generate a random hexadecimal string

RNGCryptoServiceProvider rngProvider = new RNGCryptoServiceProvider();

var byteArray = new byte[4];

rngProvider.GetBytes(byteArray);

string serverFilename = Utilities.ByteArrayToHexString(byteArray);

//compose the path using the random string and store file

string extension= Path.GetExtension(excelModel.ExcelFile.Filename);

string path = Path.Combine(App_Data, serverFilename+"_"+

DateTime.Now.ToString()+"_"+this.User.Identity+ extension);

excelModel.ExcelFile.SaveAs(path);

MatrixService user_mService = new MatrixService("Matrices",

User.Identity.Name);

Matrix m = e.Import(path, excelModel.Name, excelModel.Description);

user_mService.Create(m);

TempData["Message"] = "Matrix successfully created!";

}

catch (Exception e)

{

...

}

return RedirectToAction("Details");

}

In this example the file is retrieved from database and displayed using the user provided
name, however the actual save path is created using a random number generator that makes
the filename hard to predict.

61

3 – Implementation of risk mitigation actions

In the original version of the proposed code, in addition to the lack of renaming, the file was
saved before validating the Template, and was inserted in the database afterwards. If the
validation failed the file was not correctly removed, therefore it remained in the App Data
folder occupying space but the web application would have not retained any reference to it,
leaving a ghost file in the file system.

It is always necessary to verify that all check are performed before saving the file and that
the file, or temporary versions of it, are correctly removed if any exception arises.

Verify the size of the file: ASP.NET automatically implements a maximum request length,
set by default at 4MB [27]. The default value can be edited by modifying the following lines
in the App Web.config:

<configuration>

<system.web>

<httpRuntime maxRequestLength="2048" timeout="3600" /> <!--sets the maximum

at 2MB-->

</system.web>

</configuration>

If using IIS version 7+ in order for the change to be effective it is also necessary to edit the
maxAllowedContentLength [28] property:

<system.webServer>

<security>

<requestFiltering>

<requestLimits maxAllowedContentLength="2048" />

</requestFiltering>

</security>

</system.webServer>

Both properties are defined as Int32, therefore the maximum upload size allowable by
ASP.NET is 4GB. Additionally it is possible to specify the timeout for the request to be
completely received. This can be a useful setting against DoS attacks that aim at keeping
the server busy with extremely slow clients.

Limit the quantity of data a user can store: The following piece of C# code allows to ver-
ify the size of a Session object.

long totalSessionBytes = 0;

BinaryFormatter b = new BinaryFormatter();

MemoryStream m;

foreach(var obj in Session)

{

m = new MemoryStream();

b.Serialize(m, obj);

totalSessionBytes += m.Length;

}

Examine file content: There are several approaches possible to inspect a Zip file:

❼ Using System.IO.Compression.ZipArchive Class [29]: this class allows to inspect the
elements contained in the file without decompressing the .zip.

[HttpPost]

public ActionResult UploadZip(HttpPostedFileBase zipFile)

{

...

using (ZipArchive archive = new ZipArchive(zipFile.InputStream))

{

long predictedTotSize=0;

foreach (ZipArchiveEntry entry in archive.Entries)

{

62

3 – Implementation of risk mitigation actions

//if it is not a folder

if (!string.IsNullOrEmpty(Path.GetExtension(entry.FullName)))

{

//deny Zip files if they contain nested Zip files

if (Path.GetExtension(entry.FullName) == ".zip")

{

//file not accepted

}

predictedTotSize+=entry.Length;

}

//check the path of zipped files to spot directory traversal attempts

if (entry.FullName.Contains(".."))

{

//file not accepted

//report suspicious activity

}

}

//deny if the decompressed length prevision is greater than a set value,

for example 4GB

if (predictedTotSize > 4294967296)

{

//file not accepted

}

}

...

}

The ZipArchive object represents the package of compressed files and the ZipArchiveEn-
try objects are the compressed files and folders within a zip archive. The Entries
collection retains all the files and folders in the archive three, including nested nodes.

By cycling through the collection it is possible to evaluate the predicted sizes for the
contained files using the Length attribute and the target paths and extensions using
the FullName attribute.

In the provided example recursive application of the compression algorithm is not
allowed, however it is possible to allow a couple of levels of recursion if necessary.
In this case the .zip entry will have to be decompressed and it will be possible to
perform the same checks already described. A single entry can be decompressed without
decompressing the whole file using the ZipArchiveEntry.ExtractToFile() method.

❼ Using a controlled process: this is the most reliable method and consists in creating a
process with the specific task of decompressing the uploaded file. However this process
should have a hard limit of memory it can use, if the extraction exceeds the limit an
exception is raised, and the file is refused. This option however has the drawback that
the bigger is the allowed data size the more resource intensive it is. For large file this
control could be easily exploited to launch DoS attacks on the server by only uploading
many files. Therefore this approach is viable if small files are allowed and the amount
of memory granted to the process is very limited.

❼ Using an antivirus: if the contents of uploaded files are analysed by an antivirus it
should already perform these verification.

Secure the save path: Applying this modification simply requires to change the target direc-
tory for saving uploaded files to be outside of root.

Check correctness of Content-Type header when serving the file: Before serving an up-
loaded file to the user it should be made sure that the Content-Type HTTP header contains
the expected value.

public ActionResult Download(string requestedFile)

63

3 – Implementation of risk mitigation actions

{

try

{

//verify authorisation

//get MIME type

//get file

return File(fileBytes, MIME_FileType, fileName);

}

catch (Exception e)

{

//...

}

}

Management of variables storing the input

In .NET it is possible to use the SecureString class [30] to store sensitive information. This class
offers three interesting features:

❼ Implements the IDisposable interface: instances of the System.String class are both im-
mutable and, when no longer needed, cannot be programmatically scheduled for garbage
collection, however the SecureString can be cleaned using the Clean() method and imme-
diately disposed with Dispose() thanks to the implementation of the System.IDisposable
interface. If using a String the only solution is to overwrite the value of the variable, how-
ever because String instances are immutable, operations that appear to modify an existing
instance actually create a copy of it to manipulate. These additional copies remain in
memory with the sensitive data until they are managed by the garbage collector, and the
developer has no power over them.

❼ Encryption: instances of the class use the protection mechanism provided by the underlying
operating system. This means that on Windows it’s contents are guaranteed to be stored
in RAM encrypted but on other platforms encryption might be unavailable. However even
if the SecureString implementation is able to take advantage of encryption, the plain text
assigned to the SecureString instance is be exposed at various times: whenever the value
of the secure string is modified by methods such as AppendChar or RemoveAt, it must
be decrypted, modified, and then encrypted again. As a result the time interval for which
the SecureString instance’s value is exposed is merely shortened in comparison to a String
instance.

❼ Memory pinning: when using String, because its memory is not pinned, the garbage collector
will make additional copies of String values when moving and compacting memory, that will
add to the copies already created when modifying the value. In contrast, the memory
allocated to a SecureString object is pinned and when removed it guarantees to leave no
copies behind.

3.3 Authentication and Session Management

3.3.1 User ID

The following example shows the controls implemented in SoD App for username and email
validation:

public class UserModel

{

[Required(ErrorMessage = "Please insert a valid Username!")]

64

3 – Implementation of risk mitigation actions

[MaxLength(40)]

[RegularExpression("^[A-Za-z0-9_]+[A-Za-z0-9]+✩", ErrorMessage = "Please insert a

valid Username, symbols are not allowed.")]

public string USERNAME { get; set; }

[Required(ErrorMessage = "Please insert an E-Mail!")]

[MaxLength(330)]

[EmailAddress(ErrorMessage = "Please insert a valid E-Mail")]

public string E_MAIL { get; set; }

//...

internal class Username: ValidationAttribute

{

public string InvalidMessage = "Please insert a valid username, symbols are not

allowed.";

public string RequireMessage = "Please insert a username.";

public int MaxLength = 40;

protected override ValidationResult IsValid(object value, ValidationContext

validationContext)

{

var input = (string)value;

//verify that it is not empty

if(string.IsNullOrEmpty(input))

return new ValidationResult(RequireMessage);

//verify that it is valid

Regex r = new Regex("^[A-Za-z0-9_]+[A-Za-z0-9]+✩");

bool match=r.IsMatch(input);

if (!match || input.Length > MaxLength)

return new ValidationResult(InvalidMessage);

//verify that it is available

try

{

using(var _database = new SOD_APPLICATION()){

USER user = _database.USERS.Where(u =>

u.USERNAME.Equals(input)).FirstOrDefault();

if (user == null)

return ValidationResult.Success;

else

return new ValidationResult(ErrorMessage);

}

}

catch

{

return new ValidationResult(ErrorMessage);

}

}

}

}

SoD App does not require high levels of security therefore it was chosen to use as identifier
the username provided by the user. In the proposed code during the validation process the web
application verifies also that the database does not already contain the proposed username. It
is important however that, before the value is used for database access, it has been properly
validated. When using Data Annotations, if more attributes are defined (such as Required,
MaxLength, etc.) the order in which the validation of the attributes will be executed is unknown,
therefore the proper way to assure that the input is valid is to perform verification directly into
the custom ValidationAttribute class, before accessing the database.

In this case the System.Text.RegularExpressions.Regex class has been used to implement the
regular expression.

65

3 – Implementation of risk mitigation actions

For the email validation the EmailAddress ValidationAttribute provided by the Data Anno-
tations namespace was used, the verfication of legitimacy is performed by the controller class:

[HttpPost]

public ActionResult Create(UserModel user)

{

if (!ModelState.IsValid)

return View(user);

try

{

RNGCryptoServiceProvider rngProvider = new RNGCryptoServiceProvider();

var byteArray = new byte[20];

rngProvider.GetBytes(byteArray);

string activationToken = Utils.ByteArrayToString(byteArray);

bool sent= UserModel.SendVerificationMail(newUser.EMAIL, "activationURL",

activationToken);

if(!sent){

TempData["Message"] = "An error occured while sending the verification email.

Please contact support.";

return View(user);

}

USER newUser = new USER();

newUser.USERNAME = AntiXssEncoder.HtmlEncode(user.USERNAME, false);

newUser.EMAIL = AntiXssEncoder.HtmlEncode(user.EMAIL,false);

newUser.VALID = ValidityState.inactive+"|" + DateTime.Now.ToString("yyyyMMdd")

+"|" +activationToken;

//...

TempData["Message"] = "User succesfully created!";

} catch (Exception e){

//...

}

return RedirectToAction("Index");

}

In the proposed example a unique token is generated, and saved in the VALID string attribute
of USER, along with the time of generation and validity value. The ValidityState is an enum that
offers three states: inactive if user has not validated the email, expired if the password has expired
and active. When the user activates the account trough the link provided the activation function
checks whether the token has expired, counting 20 minutes from the moment of generation, and if
it is still valid the user state transitions from ValidityState.inactive to ValidityState.active. The
VALID attribute will retain the date of creation, that will be used for password expiration, while
the token will be removed.

The System.Security.Cryptography.RNGCryptoServiceProvider [31] class is used in place of
the standard System.Random class for the purpose of generating the activation token. Random
relies on the computer system clock, therefore if multiple objects were created at the exact same
time, they could contain the same sequence of random numbers. For standard applications this
eventuality is remote enough to be acceptable, however for security applications more reliable
algorithms could be necessary.

Secure random number generators, such as RNGCryptoServiceProvider, guarantee a lower
collision rate and are important when creating a very high volume of numbers or to ensure proper
uniqueness over a long period of time. In the provided example, if an attacker managed to learn
the logic behind the creation of file names to be stored on the server, he could easily predict the
values for the date and username but it would be significantly more difficult to predict the random
part of the filename.

66

3 – Implementation of risk mitigation actions

3.3.2 Session Management

With respect to the evaluated session vulnerabilities the following implementations are proposed:

❼ Session name:

For SoD App in order to change the ASP.NET SessionId name the following lines were
added to the App Web.config file:

<configuration>

<system.web>

<sessionState cookieName="ID" />

</system.web>

</configuration>

For different frameworks there might be also a specific configuration file to edit or it might
have to be set programmatically.

❼ Token length:

SoD App uses an ASP.NET SessionId that has maximum length set to 120. Currently it is
considered sufficient thanks to the entropy of the token so no modifications where applied
[14]. There is no official support for longer tokens therefore in this situation if a higher level
of security is required a different solution should be designed.

❼ Token value: If using the ASP.NET SessionId the value is already generated randomly,
otherwise the System.Security.Cryptography.RNGCryptoServiceProvider class [31] could be
used to generate the token:

//generate a random hexadecimal string

RNGCryptoServiceProvider rngProvider = new RNGCryptoServiceProvider();

var byteArray = new byte[4];

rngProvider.GetBytes(byteArray);

string token = Utilities.ByteArrayToHexString(byteArray);

❼ Session Implementation:

In .NET Framework in order to renew the session the “Session.Abandon()” and “Re-
sponse.Cookies.Add()” methods are used. It is essential ti verify that all older sessions
are correctly terminated before generating a new session ID, otherwise an attacker could
exploit old session IDs to access an authenticated session. This is especially dangerous if
the website allows also HTTP sessions.

It is best to use already existing implementations and libraries offered by the web devel-
opment framework used rather than implementing home-made solutions to manage session
tokens. These libraries are thoroughly tested and maintained and are likely to be less ex-
ploitable. It is very important however to always use the latest libraries as older ones have
well known vulnerabilities and bugs that would introduce significant risks. In addition, as
already highlighted when discussing the name of the token, when using well known im-
plementations it is good practice to modify some default values in order to make it more
difficult for a cracker to guess the values used by the web application.

❼ Cookies Implementation: The offered attributes can be set using the HttpCookie class
[32] either programmatically or using the App Web.config file. With the first approach it
is possible to set attributes only for specific cookies whereas with the second approach the
attribute is set for all cookies. Examples will be provided for both approaches when using
.NET Framework equal or superior to 4.7.2.

Secure attribute: This attribute can be implemented by adding the following lines to App
Web.config:

67

3 – Implementation of risk mitigation actions

<configuration>

<system.web>

<httpCookies requireSSL="true" />

<system.web>

</configuration>

However if there is a <forms> element in the <system.web>/<authentication> block
then the default setting of false will override the previously added line so it should be
edited as follows:

<system.web>

<authentication mode="Forms">

<forms requireSSL="true" />

</authentication>

</system.web>

HttpOnly attribute: In .NET the HttpOnly attribute is set by default for Session ID and
Forms Authentication cookie, however it is possible to protect all custom application
cookies by adding the following line to the App Web.config file:

<system.web>

<httpCookies requireSSL="true" httpOnlyCookies="true" >

<system.web>

The programmatical approach:

HttpCookie customCookie = new HttpCookie("customCookie");

customCookie.HttpOnly = true;

Response.AppendCookie(customCookie);

SameSite attribute: Usually the default value is lax, however in some frameworks it might
be set to none, disabling the use of the attribute, so it would be best to explicitly set
it to the required value.

As for the other attributes this one can also be set through the App Web.config file:

<configuration>

<system.web>

<httpCookies ... sameSite="strict" />

</system.web>

</configuration>

Domain attribute: Implementing this attribute however introduces vulnerability and is
therefore not advised.

For .NET Framework the programmatical approach is:

HttpCookie customCookie = new HttpCookie("customCookie");

customCookie.Domain = ".domain.com";

or using the App Web.config file:

<system.web>

<httpCookies ... domain=".domain.com"/>

</system.web>

Path attribute: In order to set the attribute in the App Web.config file:

<system.web>

<httpCookies ... path="/home"/>

</system.web>

Expire and Max-Age attributes: Expire and Max-Age must not be set for session cook-
ies.

68

3 – Implementation of risk mitigation actions

All these cookie attributes, however, are not supported by all browsers. In addition not even
all web servers support them, even if properly configured. It is therefore advised to always
test these flags after having implemented them, in order to verify that they are correctly
incorporated in the server responses.

Sometimes the web server could ignore the cookie setting contained in the App Web.config
file. In this case the flags will have to be set through code. In case the attributes are ignored
altogether it is still possible to implement a work-around by creating mechanisms that
append the attributes directly to the Set-Cookie HTTP response header, such as for instance
redirection rules. As an example, adding the SameSite attribute can be implemented by
adding the following rule to the IIS Web.config file:

<rewrite>

<outboundRules>

...

<rule name="Add SameSite" preCondition="No SameSite">

<match serverVariable="RESPONSE_Set_Cookie" pattern=".*" negate="false" />

<action type="Rewrite" value="{R:0};SameSite=strict" />

<conditions>

</conditions>

</rule>

<preConditions>

<preCondition name="No SameSite">

<add input="{RESPONSE_Set_Cookie}" pattern="." />

<add input="{RESPONSE_Set_Cookie}" pattern=";SameSite=strict"

negate="true" />

</preCondition>

</preConditions>

</outboundRules>

</rewrite>

❼ Session Expiration:

Using .NET an idle timeout of 5 minutes can be set in the App Web.config file, using the
HttpSessionState class [33], adding the following lines:

<configuration>

<system.web>

<sessionState mode="InProc" timeout="5" />

</system.web>

</configuration>

When a session times out, the Abandon method is called, or the ASP.NET application is
shut down, and the session End event is raised if the mode is set to InProc. The End method
can be used to perform the proper invalidation of the ID.

The other two types of timeout do not have a default implementation and should be defined
manually by the developer.

For SoD App the Absolute timeout was implemented by modifying two methods in the
Global.asax file: Session Start and Application AcquireRequestState. In the Session Start
method a session value is set on the HttpSessionState object, containing the absolute expiry
time calculated adding the chosen timeframe of 30 minutes to the current time. Then in the
Application AcquireRequestState each time a request is received if the current time is later
than the expiry time set then the ID is invalidated, the session terminated and the user is
redirected to the login page.

void Session_Start(Object sender, EventArgs e)

{

Session["AbsoluteExpiryTimeout"] = DateTime.Now.AddMinutes(30);

}

69

3 – Implementation of risk mitigation actions

void Application_AcquireRequestState(object sender, EventArgs e)

{

if (HttpContext.Current.Session != null)

{

DateTime expiry = (DateTime)base.Context.Session["AbsoluteExpiryTimeout"];

if (expiry <= DateTime.Now)

{

Session["ID"]= null ;

Session.Abandon();

//redirect to login page

}

}

}

3.4 Password management and Policies

3.4.1 Password Strength

In SoD App, in order to define what was the an acceptable minimum complexity requirement,
both the pool of users and the application purpose had to be considered.

During the Black Box analysis phase it was defined that the target of the application were
the employees of the company in charge of performing auditing operations for the clients of
the company, and that it would soon be extended to include client employees, with a similar
competence profile. Since the employees of the company were colleagues it was easy to asses their
level of familiarity with computers and management of multiple accounts. It was highlighted
that the majority of the users where young, used the computer as part of their job, and were
accustomed to managing many different accounts in their daily routine, therefore it was evaluated
that they should be able to handle correctly a medium complexity password.

Concerning the application, it was evaluated that since it’s purpose was to manage databases
containing sensitive information regarding structure and roles of the clients it was necessary to
require at least medium level of security.

Based on these evaluations it was chosen to opt for a minimum length of 12 characters, coupled
with high entropy, applying all of the rules previously described.

public class UserModel

{

//...

[MaxLength(160)]

[MinLength(12)]

[Required(ErrorMessage = "Please insert a password")]

[RegularExpression("^((?=.*?[A-Z]) (?=.*?[a-z]) (?=.*?[0-9])

(?=.*?[!↔✩%&?^@➜#])).{12,}✩" , ErrorMessage = "Passwords must be at least 12

characters long and contain one for each of the following character sets: upper

case (A-Z), lower case (a-z), number (0-9), symbol (!↔✩%&?^@➜#)"))]

public SecureString PASSWORD { get; set; }

//...

}

3.4.2 Password Storage

The following portion of code is the continuation of the method that manages the creation of a
new user, and was previously proposed for the validation of user ID and email 3.3.1.The model

70

3 – Implementation of risk mitigation actions

used for validation is displayed in the above code snippet, whereas this portion of code implements
the validation and storage of the password:

[HttpPost]

public ActionResult Create(UserModel user)

{

if (!ModelState.IsValid)

{

return View(user);

}

try

{

//... ID and email validation

//generate salt:

var salt = new byte[64];

rngProvider.GetBytes(salt);

var pwdBytes = Encoding.ASCII.GetBytes(user.PASSWORD.ToString());

user.PASSWORD.Clear();

user.PASSWORD.Dispose();

var hash = Hash(salt, pwdBytes);

newUser.PASSWORD = salt+hashString;

//...additional validation

_database.USERS.Add(newUser);

_database.SaveChanges();

TempData["Message"] = "User succesfully created!";

} catch (Exception e)

{

//...

}

return RedirectToAction("Index");

}

public string Hash(byte[] salt, byte[] pwd){

//set up Argon2 hasher

Argon2i argon2hasher = new Argon2i(pwd);

argon2hasher.Iterations = 15;

argon2hasher.DegreeOfParallelism = Environment.ProcessorCount;

argon2hasher.MemorySize = 65536; //number of 1kB blocks used while processing the

hash

argon2hasher.Salt = salt;

var hash = argon2hasher.GetBytes(64);

string hashString = string.Empty;

foreach (byte b in hash)

{

hashString += String.Format("{0:x2}", b);

}

return hashString;

}

In the proposed example first the Salt was generated using the already described RNGCryptoSer-
viceProvider class. In the specific case of SoD App a restricted pool of users and the storage
capacities permitted the use of long Salts therefore it was decided to use a 64 bytes Salt, as it

71

3 – Implementation of risk mitigation actions

provides high enough collision resistance with respect to the pool of generated Salts.

After generating the Salt the password was hashed using the Argon2 [34] implementation for
.NET provided by the Konscious.Security.Cryptography library[35]. Simply hashing the password
and Salt with a hashing function does not provide the same level of security that a key derivation
function provides.

Among the available options the most relevant functions were:

Argon2 : winner of the Password Hashing Competition in July 2015, uses BLAKE2 hash func-
tion.

Scrypt : published in 2009, uses PBKDF2 and HMAC-SHA256.

PBKDF2 : published in 2000, uses HMAC-SHA1

Bcrypt : published in 1999, based on the Blowfish cipher.

It was decided to use Argon2 as it resolves vulnerabilities found in the other functions and uses a
stronger hashing algorithm, however since it is recent, and therefore less tested, the tester must be
aware that this implementation is at higher risk of new exploitation being found, hence requires
more frequent monitoring of the cryptoanalysis state.

There were three main .NET implementation available for Argon2, however only the selected
library provided the possibility to set the number of iterations of the function, the other libraries
based their implementation on the time cost of the function. In other words it was only possible
to define the duration of execution of the function and not the actual iterations. This is not
a reliable approach, as the number of iterations for a specific password depends on the current
workload of the server. An attacker could exploit this by launching a DoS attack to slow the
server which would result in hashes being computed differently throughout the duration of the
attack.

There are three versions of the Argon2 function: Argon2i, Argon2d and Argon2id.

“Argon2 has one primary variant: Argon2id, and two supplementary variants:
Argon2d and Argon2i. Argon2d uses data-depending memory access, which makes
it suitable for cryptocurrencies and proof-of-work applications with no threats from
side-channel timing attacks. Argon2i uses data-independent memory access, which is
preferred for password hashing and password-based key derivation. Argon2id works
as Argon2i for the first half of the first iteration over the memory, and as Argon2d
for the rest, thus providing both side-channel attack protection and brute-force cost
savings due to time-memory tradeoffs. Argon2i makes more passes over the memory
to protect from tradeoff attacks.”

A. Biryukov, D. Dinu, D. Khovratovich, Internet-Draft, “The memory-hard Argon2
password hash and proof-of-work function”, 03 August 2017[36].

Therefore the preferential choice would have been Argon2id, however none of the previously
cited libraries provided an implementation for it. Therefore the Argon2i variant was selected, as
more appropriate for password hashing.

The logic behind key derivation functions is to make the computation of the hash more resource
consuming than using directly the hashing functions, therefore imposing the same workload on at
attacker trying to brute-force the hash. Argon2 implements this logic using 3 main parameters:

❼ Iterations count: the number of iterations has a direct influence on the time cost.

❼ Memory size: the memory used while processing the hash, affecting the memory cost.

❼ Level of parallelism: how many threads will be used during the process, affecting memory
and CPU cost.

72

3 – Implementation of risk mitigation actions

Higher values of these parameters result in hashes more complex to brute-force, however they
reflect directly also on the web server’s workload. As already mentioned the SoD deals with a
restricted pool of users that id addition use the application infrequently, therefore it was possible
to select higher parameter values for the Argon2 implementation.

The iteration count of 15 was chosen based on recent demonstrations that if using less than 10
iterations the hash can be computed by an algorithm which has complexity that is independent
from the chosen parameters [37].

The length of the final hash has been set to 64 bytes to mitigate risk of collision.

The following formula was used for password storage, as per OWASP recommendations [38],
since it was deemed sufficient:

[protected form] = [salt] + protect([protection func], [salt] + [credential]);

However the Argon2 function allows to use additional data to increase the complexity of the
algorithm.

Concerning the variable management, from the code snippet in the previous section, reporting
the UserModel, it can be seen that the user input is stored in a SecureString object, however from
Create method code it is clear that the protection offered by the SecureString is very limited, as
it has to be converted to bytes for the Argon2 hasher. Nevertheless it still offers an improvement
and is easy to implement, therefore it is advised to take advantage of the SecureString class.

3.4.3 Password Recovery

The implementation is similar to that of email validation 3.3.1, generating a unique token sent
over email to allow the user to reset the password. Also in this case an expiration time has been
set.

3.4.4 Password Policies

For SoD App the password expiration was set at three months, an acceptable timeframe both for
the security and usability requirements.

Upon login the web application extracts the creation date information from the USER.VALID
field and checks whether the date is older than the allowed period. A week before the expiration
time the application notifies the user in the home page that the password must be renewed within
a week. When the expiration date is reached the user will be forced to provide a new password
to be able to continue using the application.

public ActionResult Login(UserModel model, string returnUrl)

{

//..authenticate

using(var _database = new KSOD_APPLICATION()){

USER user = _database.USERS.Where(u => u.USERNAME.Equals(input)).FirstOrDefault();

string[] items= user.VALIS.Split(’|’);

switch(items[0]){

case ValidityState.inactive.ToString():

//activation token management

break;

case ValidityState.expired.ToString():

TempData["Message"] = "Your password is expired, please set a new one.";

return RedirectToAction("Renew Password");

break;

case ValidityState.valid.ToString():

73

3 – Implementation of risk mitigation actions

DateTime creationDate = DateTime.ParseExact(items[1], "yyyyMMdd",

System.Globalization.CultureInfo.InvariantCulture);

var elapsedTime= (DateTime.Now - creationDate).TotalDays;

if(elapsedTime > 83){

TempData["Message"] = "Your password will expire soon, please set a

new one.";

return RedirectToAction(returnUrl);

}else if(elapsedTime>90){

TempData["Message"] = "Your password is expired, please set a new

one.";

user.VALID=ValidityState.expired.ToString()+"|"+items[1]+"|"+

items[2];

_database.SaveChanges();

return RedirectToAction("Renew Password");

}

break;

}

}

//..

}

Upon password renewal the history of old hashes is retrieved and verified against the new
password, then the new Salt+hash string is updated along with the date in the USER.VALID
field. In addition the old Salt+hash value is added to the history database.

[HttpPost]

public ActionResult Edit(UserModel user)

{

if (!ModelState.IsValid)

{

return View(user);

}

try

{

//...

USER_PASSWORD_HISTORY history=_database.PASSWORD_HISTORY.Find(User.Identity.Name);

var hash= String.Empty;

foreach(string h in history.HASHES){

string[] items= history.Split(’|’);

hash=Hash(Encoding.ASCII.GetBytes(items[0]),

Encoding.ASCII.GetBytes(user.PASSWORD.ToString()));

if(hash.Equals(items[1])){

TempData["Message"] ="The password has already been used, please chose a

different password";

return View();

}

}

//generate salt:

var salt = new byte[64];

rngProvider.GetBytes(salt);

//compute hash

var hash = Hash(salt, Encoding.ASCII.GetBytes(user.PASSWORD.ToString()));

user.PASSWORD.Clear();

user.PASSWORD.Dispose();

newUser.PASSWORD = salt+hash;

74

3 – Implementation of risk mitigation actions

//...additional validation

_database.USERS.Add(newUser);

_database.SaveChanges();

TempData["Message"] = "User succesfully created!";

} catch (Exception e)

{

//...

}

return RedirectToAction("Index");

}

public partial class USER_PASSWORD_HISTORY

{

[DataMember]

[JsonRequired]

public string USERNAME { get; set; }

[DataMember]

[JsonRequired]

public string[] HASHES { get; set; } //format: salt | hash | date_of_expiration

}

3.4.5 Alternative Authentication Mechanisms

In SoD App for administrator type of accounts a two factor authentication was implemented using
Google Authenticator. For the purpose the a .NET GoogleAuthenticator library [39] was used to
manage the token verification. The version proposed below uses the library, however it is possible
to download the project sample provided by the author, that contains the source code used by
the library. This allows to use the provided code directly and customise it as needed.

private FileContentResult GenerateQRCode(string userIdentifier, string

accountSecretKey)

{

TwoFactorAuthenticator tfA = new TwoFactorAuthenticator();

var setupCode = tfA.GenerateSetupCode("SoD App", userIdentifier, accountSecretKey,

300, 300);

WebClient wc = new WebClient();

MemoryStream ms = new MemoryStream(wc.DownloadData(setupCode.QrCodeSetupImageUrl));

var bytes= ms.ToArray();

return new FileContentResult(bytes, "image/png");

}

The TwoFactorAuthentication class manages the creation of the QR code that can be scanned
by the user using the android Google Authenticator App to instantiate a token generator in the
android App that is synchronised with the website.

The GenerateSetupCode method generates the QR code using five parameters:

❼ Issuer: describes the application to which the authenticator is synchronised.

❼ User identifier: this should be a unique user identifier such as the user ID, the email, or the
username (if it’s unique). It will be displayed in the android App to help the user identify
which account is connected to the token generator. It must contain no spaces.

75

3 – Implementation of risk mitigation actions

❼ Account Secret Key: it is a secret key used for the token generation by both authenticator
and application. It should be different for each credential and the application should store
it encrypted in the database as it is the only secret element of the token generation.

❼ QR image height.

❼ QR image width.

The SetUpCode object also provides an entry key to use in the android application, as an
alternative to the QR code, to instantiate the authenticator.

Figure 3.2. Google Authenticator android view

In order to verify the token provided by the user the following function is used:

private bool VerifyToken(string accountSecretKey, string providedCode)

{

TwoFactorAuthenticator tfA = new TwoFactorAuthenticator();

return result = tfA.ValidateTwoFactorPIN(accountSecretKey, providedCode);

}

The ValidateTwoFactorPIN method generates a set of tokens, allowing a backwards tolerance
of 30 seconds, and if the provided token is among the generated tokens the authentication is
successful.

3.5 Data Management

The following example shows the classes implementing encryption and decryption of files in SoD
App, using the System.Security.Cryptography.Aes class:

76

3 – Implementation of risk mitigation actions

static bool AESEncryptStream(Stream plainText, byte[] Key, byte[] IV, string savePath)

{

// Check arguments.

if (plainText == null || plainText.Length <= 0)

throw new ArgumentNullException("plainText");

if (Key == null || Key.Length <= 0)

throw new ArgumentNullException("Key");

if (IV == null || IV.Length <= 0)

throw new ArgumentNullException("IV");

// Create an Aes object

// with the specified key and IV.

using (Aes aesAlg = Aes.Create())

{

aesAlg.Key = Key;

aesAlg.IV = IV;

// Create an encryptor to perform the stream transform.

ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);

try{

using (FileStream encrypted = File.Open(savePath, FileMode.Create,

FileAccess.Write, FileShare.None))

{

using (CryptoStream cs = new CryptoStream(encrypted, encryptor,

CryptoStreamMode.Write))

{

plainText.CopyTo(cs);

}

}

return true;

}

catch{

//..

return false;

}

}

}

static void AESDecryptFile(MemoryStream outputStream, string encryptedFilePath,

byte[] Key, byte[] IV)

{

// Check arguments.

if (encryptedFilePath == null || encryptedFilePath.Length <= 0)

throw new ArgumentNullException("file path");

if (Key == null || Key.Length <= 0)

throw new ArgumentNullException("Key");

if (IV == null || IV.Length <= 0)

throw new ArgumentNullException("IV");

// Create an Aes object

// with the specified key and IV.

using (Aes aesAlg = Aes.Create())

{

aesAlg.Key = Key;

aesAlg.IV = IV;

// Create a decryptor to perform the stream transform.

ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);

77

3 – Implementation of risk mitigation actions

// Create the streams used for decryption.

using (FileStream encrypted = File.Open(encryptedFilePath, FileMode.Open))

{

using (CryptoStream cs = new CryptoStream(encrypted, decryptor,

CryptoStreamMode.Read))

{

int read;

//16 kB at a time are processed

byte[] buffer = new byte[16*1024];

try

{

while ((read = cs.Read(buffer, 0, buffer.Length)) > 0)

{

outputStream.Write(buffer, 0, read);

}

}

catch (CryptographicException ex_CryptographicException)

{

outputStream=null;

//..

}

}

}

}

}

The Aes class inherits from System.Security.Cryptography.SymmetricAlgorithm class, and allows
to encrypt and decrypt data using the Advanced Encryption Standard (AES) algorithm. There
are four other implementations of symmetric algorithms: DES, RC2, Rijndael and TripleDES.
The best choice in terms of strength is AES, however also TripleDES and Rijndael are acceptable
choices, the others should be avoided. The difference between AES and Rijndael implementations
is that the first one conforms to FIPS-197 specifications for AES, while the other implements
the original Rijndael version, that provides some additional options. If choosing the Rijndael
implementation it must be kept in mind however that this choice could result in interoperability
issues with other AES implementations compliant to the standard.

The Create() method creates an object containing all the necessary parameters for the encryp-
tion, and initialises them to a default value. In the provided example the relevant parameters are
the following:

❼ Block size: the default is set to 128 and should not be changed.

❼ IV: by default contains a 128 bit initialization vector, generated randomly upon creation of
the Aes instance.

❼ Key: by default contains a 256 bit key, generated randomly upon creation of the Aes
instance.

❼ Mode: describes the block cipher mode, by default CBC.

❼ Padding: describes the padding mode, by default PKCS7.

In the proposed example, in place of the IV and Key values generated by the constructor it has
been decided to obtain the values as parameters, for ease of management in the calling method.

The provided block cipher modes are: CBC, ECB, OFB, CFB, CTS. As previously explained, it
is advised to avoid ECB. Unfortunately there are no available implementations for Authenticated
Encryption (AE) modes.

The provided padding modes are:

78

3 – Implementation of risk mitigation actions

❼ None: no padding is done. Even when applicable should be avoided as it could cause
interpretation issues if upon decryption padding is expected.

❼ PKCS7: padding consists of a sequence of bytes, each of which is equal to the total number
of padding bytes added.

❼ Zeros: padding consists of bytes set to 0. Should be avoided because makes the padding
predictable and enables the attacker to perform some precomputations useful for attacks.

❼ ANSIX923: consist of a sequence of bytes set to 0 terminated by the length of the padding.
Should be avoided because predictable.

❼ ISO10126: consists of random data terminated by the length of the padding.

An example of use for the encryption of uploaded .sqlite databases:

private void UploadWholeFile(HttpContextBase requestContext,

List<ViewDataUploadFilesResult> statuses)

{

var request = requestContext.Request;

for (int i = 0; i < request.Files.Count; i++)

{

HttpPostedFileBase file=request.Files[i];

//validate file

//...

//generate a random hexadecimal string for file name and verify uniqueness

//...

var fullPath = Path.Combine(StorageRoot, generatedRandomName);

using (Aes aes = Aes.Create())

{

RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

byte[] k = new byte[32];

byte[] i = new byte[16];

rng.GetNonZeroBytes(b);

rng.GetNonZeroBytes(i);

aes.Key = k;

aes.IV = i;

// Encrypt the string to an array of bytes.

if(!AESEncryptStream(file.InputStream, aes.Key, aes.IV, fullPath)){

if(File.Exists(fullPath))

File.Delete(fullPath);

//manage failure

}

}

//...

}

}

In the provided usage example it was decided to generate the key and initialisation vector
using the RNGCryptoServiceProvider instead of the values provided by the Aes constructor as
the documentation is not clear about how are those values generated.

The key used for AES encryption must be in its turn encrypted before being stored, for
this purpose asymmetric encryption and decryption methods were implemented using the Sys-
tem.Security.Cryptography.RSACryptoServiceProvider class [40]:

public static byte[] RSAEncryptBytes(byte[] DataToEncrypt, RSAParameters RSAKeyInfo,

bool DoOAEPPadding)

{

try

{

79

3 – Implementation of risk mitigation actions

byte[] encryptedData;

//Create a new instance of RSACryptoServiceProvider and pass the key info.

using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())

{

RSA.ImportParameters(RSAKeyInfo);

encryptedData = RSA.Encrypt(DataToEncrypt, DoOAEPPadding);

}

return encryptedData;

}

catch (CryptographicException e)

{

//...

return null;

}

}

public static byte[] RSADecryptBytes(byte[] DataToDecrypt, RSAParameters RSAKeyInfo,

bool DoOAEPPadding)

{

try

{

byte[] decryptedData;

//Create a new instance of RSACryptoServiceProvider and pass the key info.

using (RSACryptoServiceProvider RSA = new RSACryptoServiceProvider())

{

RSA.ImportParameters(RSAKeyInfo);

decryptedData = RSA.Decrypt(DataToDecrypt, DoOAEPPadding);

}

return decryptedData;

}

catch (CryptographicException e)

{

//...

return null;

}

}

The RSACryptoServiceProvider class allows to encrypt or sign data using the RSA asymmetric
algorithm. The constructor of the class creates an object generating a new key pair, with prede-
fined parameters (modulus, exponent, etc.) however it is possible to provide different parameters
using the ImportParameters method. RSACryptoServiceProvider’s Encrypt and Decrypt meth-
ods, in addition to the data, accept also a boolean that should be true to perform the operation
using OAEP padding (only available on a computer running Microsoft Windows XP or later) or
false to use PKCS#1 v1.5 padding. If available OAEP is considered to be more secure.

The methods RSAEncryptBytes and RSADecryptBytes can be used in reverse order for signing
and validating data.

The following code shows how the defined methods are used in SoD App to manage the keys
used for AES:

private void UploadWholeFile(HttpContextBase requestContext,

List<ViewDataUploadFilesResult> statuses)

{

var request = requestContext.Request;

for (int i = 0; i < request.Files.Count; i++)

{

HttpPostedFileBase file=request.Files[i];

//validate file

80

3 – Implementation of risk mitigation actions

//...

//generate a random hexadecimal string for file name and verify uniqueness

//...

var fullPath = Path.Combine(StorageRoot, generatedRandomName);

using (Aes aes = Aes.Create())

{

RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

byte[] b = new byte[32];

rng.GetNonZeroBytes(b);

aes.Key = b;

// Encrypt the string to an array of bytes.

if(!EncryptStream(file.InputStream, aes.Key, aes.IV, fullPath)){

if(File.Exists(fullPath))

File.Delete(fullPath);

//manage failure

}

byte[] encryptedKey;

FileStream fs = new FileStream(@"path to certificate", FileMode.Open,

FileAccess.Read);

int size = (int)fs.Length;

byte[] rawCert = new byte[size];

size = fs.Read(data, 0, size);

fs.Close();

X509Certificate2 certificate = new X509Certificate2(rawCert, "password",

X509KeyStorageFlags.Exportable);

using (RSACryptoServiceProvider RSA = certificate.PublicKey.Key as

RSACryptoServiceProvider)

{

encryptedKey = RSAEncryptBytes(aes.Key, RSA.ExportParameters(false), true);

}

//..

}

//...

}

}

To manage the key pair the System.Security.Cryptography.X509Certificates.X509Certificate2 class
was used. The selected constructor takes as parameters a byte array containing the raw certifi-
cate, the password to the certificate and a key storage flag. The X509KeyStorageFlags must be
set to Exportable to allow access to the private key.

The certificate that was used to instantiate the X509Certificate2 object is in .pfx format and
was generated with the following command:

pkcs12 -export -in cert.crt -inkey prvKey.pem -out cert.pfx

Where cert.crt is a signed certificate in the following format:

-----BEGIN CERTIFICATE-----

MIIDLDCCAhQCCQDX1PNRy2U/+zANBgkqhkiG9w0BAQsFADBXMQswCQYDVQQGEwJJ

VDETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0

cyBQdHkgTHRkMRAwDgYDVQQDDAdtb3JnYW5hMCAXDTE4MTEwNjEzMzI1MVoYDzIy

...

3PPR+Bq4M7/T2VzxtPi/QHPGsGDt0Okg+4SIvBDk4ZU5z3jkj2G7Y4SpQglu/w4i

81

3 – Implementation of risk mitigation actions

+ILRB1R1sET6lPYeMBBS4FwCv9U2DU9t2K1G6EX949AmhKVIdlHSLtHYmV/aSviO

-----END CERTIFICATE-----

And prvKey.pem contains the private key in the format:

-----BEGIN PRIVATE KEY-----

MIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQDHEWoGLbAkaSOR

rghvWiqPgPJ2nJQYpcHW5QEqf6U0SrJiwyQEqE56OLuRQWgaDCeefnUHlTcZKcqi

zhFTxRVqRZrumj6bq/9Jm2MJD3KlDChlhszu8HWnpTr0m9le8ij7N2hAzNELYODg

...

o25x55hpZdNDtLvOLgz8kvtlX+b7BcbX1K9aj4jhAQKBgQCQuUFXU5t1wpwVzv2M

r6/eZvaC6rxT43jo/269UoQfhWcSu3ESWRxpa1d6bWuB0It/KNNs+/WjGfLVqXFE

ufX4fhR9F6PljtJYAyzevMXkwQp+IEKJ6BbZVkRWgV9Q4dPZ6zxJRqTck9Ibu2lh

YLW5ZntdkkFI5GmsAWw9JLn1Qg==

-----END PRIVATE KEY-----

For this purpose self signed certificates are well suited, as the best approach is to generate special
purpose certificates for data encryption that are frequently changed and are used only by the
server.

The following snippet is finally used to decode the data:

FileStream fs = new FileStream(@"path to certificate", FileMode.Open,

FileAccess.Read);

int size = (int)fs.Length;

byte[] rawCert = new byte[size];

size = fs.Read(data, 0, size);

fs.Close();

X509Certificate2 certificate = new X509Certificate2(rawCert, "password",

X509KeyStorageFlags.Exportable);

using (RSACryptoServiceProvider RSA = certificate.PrivateKey as

RSACryptoServiceProvider)

{

decryptedData = RSADecryptBytes(encryptedData, RSA.ExportParameters(true), true);

}

//..

For simplicity of demonstration the snipped provides the password for the certificate as if it was
hardcoded, however this should be avoided. In the following section it will be showed how to
correctly manage keys and certificates.

3.6 Keys Management

Using the System.Security.Cryptography.X509Certificates.X509Store class, in .NET, it is possible
to manage certificates. It represents a physical store where certificates are persisted and managed.

Using the Windows’ certificate store the previous example, implementing RSA encryption,
becomes:

using (X509Store store = new X509Store(StoreName.My, StoreLocation.CurrentUser))

private void UploadWholeFile(HttpContextBase requestContext,

List<ViewDataUploadFilesResult> statuses)

82

3 – Implementation of risk mitigation actions

{

var request = requestContext.Request;

for (int i = 0; i < request.Files.Count; i++)

{

//...

using (Aes aes = Aes.Create())

{

//...

byte[] encryptedKey;

X509Certificate2 certificate;

//get local store

using (X509Store store = new X509Store(StoreName.My, StoreLocation.CurrentUser))

{

store.Open(OpenFlags.Read);

//find certificate in store

X509Certificate2Collection certs =

store.Certificates.Find(X509FindType.FindByKeyUsage,

X509KeyUsageFlags.KeyEncipherment, true);

cert2 = certs[0];

store.Close();

}

using (RSACryptoServiceProvider RSA = certificate.PublicKey.Key as

RSACryptoServiceProvider)

{

encryptedKey = RSAEncryptBytes(aes.Key, RSA.ExportParameters(false), true);

}

//..

}

//...

}

}

The X509Store constructor takes as parameters the store name and location. The store names
are those defined by the Windows’ Certificate Manager tool (Certmgr.exe), and can be chosen
by the developer as he sees more fit. The selected store can reside in one of two store locations:
LocalMachine and CurrentUser. The first contains a set of stores assigned to the local machine and
is global to all users, however it is necessary to provide administrator privileges to the application
in order to access it therefore a more secure solution is to use the CurrentUser location, that
contains stores local to a specific user.

After instantiating the store there are many parameters by which it is possible to retrieve the
certificate: by Thumbprint, SubjectName, by SubjectDistinguishedName, by IssuerName, by Is-
suerDistinguishedName, by SerialNumber, by TimeValid, by TimeNotYetValid, by TimeExpired,
by TemplateName, by ApplicationPolicy, by CertificatePolicy, by Extension, by KeyUsage or by
SubjectKeyIdentifier.

However if extensions are used, for example by selecting KeyUsage as in the proposed snippet,
the certificate will have to be created accordingly, containing the respective extension.

The Find function searches the X509Certificate2Collection object contained in the X509Store
and accepts as input three parameters, the first specifying the attribute type used for the search,
the second specifying the desired attribute value and the last specifying whether to find only valid
certificates.

Using an extension such as KeyUsage allows to ignore the actual version of the key when
retrieving it from the store. In SoDApp’s case the store is maintained to contain only one valid
key that has the extension’s value set to keyEncipherment at a time and therefore when the key
is periodically changed the code is not affected.

83

3 – Implementation of risk mitigation actions

For SoD App, certificates are generated and substituted manually, however the following code
could be used to add a certificate programmatically:

FileStream f = new FileStream(@"path to certificate", FileMode.Open, FileAccess.Read);

int size = (int)f.Length;

byte[] rawCert = new byte[size];

size = f.Read(data, 0, size);

f.Close();

X509Certificate2 certificate = new X509Certificate2(rawCert, "password",

X509KeyStorageFlags.MachineKeySet | X509KeyStorageFlags.PersistKeySet |

X509KeyStorageFlags.Exportable);

using (X509Store store = new X509Store(StoreName.My, StoreLocation.CurrentUser))

{

store.Open(OpenFlags.ReadWrite);

X509Certificate2Collection certs =

store.Certificates.Find(X509FindType.FindByKeyUsage,

X509KeyUsageFlags.KeyEncipherment, true);

store.Certificates.Remove(certs[0]);

store.Add(certificate);

store.Close();

}

In this case the password and location of the certificate would be provided by administrator
as input.

3.7 Error handling

3.7.1 Exceptions

Whenever there is a piece of code that deals with variables whose value depends on factors external
to the application, exceptions could be raised. Some common examples where this verifies are
file accesses, network connections, input values, etc. Properly written code should handle such
actions by surrounding them with Try-Catch statements, in order to capture the exceptions and
properly manage them.

public void Analyse(AnalysisJob analysisJob)

{

try {

//.. dispatch some analyses on a thread

}

//manage most common exceptions

catch (ThreadAbortException e)

{

if (!analysisJob.status.Equals(AnalysisJobStatus.ABORTED))

{

if (analysisJob.status.Equals(AnalysisJobStatus.LOADING))

{

//properly release resources

}

//log failure

LogHelper.LogHelper.Fatal("Analysis job aborted for user

’’+analysisJob.ARCHIVE.PROJECT.USER+’’ on execute job at " + e.Source +

e.Message);

//react to failure

AbortAnalysis(analysisJob.Analysis.ID);

84

3 – Implementation of risk mitigation actions

}

}

//manage generic exceptions

catch (Exception e)

{

AnalysisJobManager.GetInstance().ChangeJobStatus(analysisJob.Analysis.ID,

AnalysisJobStatus.FAILED);

LogHelper.LogHelper.Fatal("Unexpected error for user

’’+analysisJob.ARCHIVE.PROJECT.USER+’’ in analysis job on execute job at " +

e.Source + e.Message);

}

}

The example shows how failures should be managed, dealing explicitly with the most common
exceptions and logging the details of the failure. Catch statements should never be empty or
inconclusive but should implement the necessary steps to guarantee that the application can
continue to run smoothly and should report the failure to the log. Failure to comply with the first
could allow an attacker to exploit the exception. Properly logging unexpected events can help
instead in individuating vulnerabilities, how often they occur and if there is suspicious activity,
such as a user is repeatedly triggering a specific error.

Among other things, logs should also be employed to provide relevant information that could
help detect attacks and suspicious accounts. However it is necessary to be careful to never log
sensitive data or too much information about the application, as logs too could be a target for an
attacker trying to gather intel on a software.

3.7.2 Resource Release

Another common source of error is the improper release of resources. If the code is not correctly
designed an exception raising during the use of the resource could result in a subsequent piece
of code, where the resource is released, to never be executed. There are two main approaches to
properly handle resources: the Using statement and the Try-Catch-Finally statement.

Using statement: defines a scope of use for a certain resource and manages the correct disposal
of objects implementing the IDisposable interface.

using (OleDbConnection connection = new OleDbConnection(connectionString))

{

connection.Open();

...

db.flushTable(tableName);

reader.Close();

}

In this case the Using statement automatically disposes of the connection when the end of
the scope is reached. Since the connection cannot be closed without closing the reader also
the reader will be correctly disposed. An error triggered inside the using statement will
result in the execution exiting the Using scope and therefore the resources will be released.

Try-Catch-Finally statement: the resources are obtained and used in the try block, exceptions
are managed in the catch blocks and resources are released in the finally block that is always
executed.

try{

connection.Open();

...

db.flushTable(tableName);

}catch(OleDbException ode){

//manage db exception

}catch(Exception e){

85

3 – Implementation of risk mitigation actions

//manage generic exception

}finally{

reader.Close();

connection.Close();

connection=null;

}

The Using statement has the advantage that the developer does not have to manage the
disposal of resources, and therefore is the safest and least error prone option, however it does not
provide a mechanism to handle raised exceptions as the Try-Catch-Finally statement does. A
possible solution could be to wrap the Using statement in a Try block and manage the Exceptions
in the Catch blocks.

3.7.3 Debug Features

Other common scenarios include developers leaving debug code in the release versions, exception
messages being used directly as output, etc. This features usually disclose dangerous information
about the software.

A good example was found during the testing of the SoD App. The developers had left in the
release version of the application a feature that should have been clearly intended only for the
development version.

public ActionResult Download(string fileName)

{

try

{

//...

}

catch (Exception e)

{

//log failure

LogHelper.Fatal("Unexpected error from user " + User.Identity.Name.ToUpper() + "

on controller " +

this.ControllerContext.RouteData.Values["controller"].ToString().ToUpper() +

", on method " +

this.ControllerContext.RouteData.Values["action"].ToString().ToUpper());

//notify user

return View("~/Views/Shared/Error.cshtml", new HandleErrorInfo(e,

this.ControllerContext.RouteData.Values["controller"].ToString(),

this.ControllerContext.RouteData.Values["action"].ToString()));

}

}

In this example the System.Web.Mvc.HandleErrorInfo class is instantiated passing the ex-
ception object, the name of the controller class and the name of the action method where the
exception originated. As can be seen in figure 3.7.3 what is displayed in the error view for the
user is a great deal of information, an attacker could gain a lot of insight on the application and
filesystem structure by triggering errors on the website.

In order to mitigate the risk of debug code remaining in the release version it is good practice
to wrap all such code using preprocessor directives. When the compiler encounters an #if DEBUG
directive it will execute the contained code only if the current mode is Debug.

86

3 – Implementation of risk mitigation actions

Figure 3.3. Example of HandleErrorInfo output to Error view.

public ActionResult Download(string fileName)

{

try

{

//...

}

catch (Exception e)

{

//log failure

LogHelper.Fatal("Unexpected error from user " + User.Identity.Name.ToUpper() + "

on controller " +

this.ControllerContext.RouteData.Values["controller"].ToString().ToUpper() +

", on method " +

this.ControllerContext.RouteData.Values["action"].ToString().ToUpper());

//notify user

#if DEBUG then

return View("~/Views/Shared/DebugError.cshtml", new HandleErrorInfo(e,

this.ControllerContext.RouteData.Values["controller"].ToString(),

this.ControllerContext.RouteData.Values["action"].ToString()));

#else

return View("~/Views/Shared/UserError.cshtml");

#endif

}

}

This solution however requires that the project is configured with the correct build mode. If
using Visual Studio, in order to correctly implement the release mode, all projects in the solution
and the solution itself must have the build configuration set to Release.

3.8 Analysis of support tools and environment

This section was introduced in the procedure as it is deemed highly important in the process
of securing a web application, however it was not in the scope of the activity performed by the
candidate and therefore the practical aspects have not been analysed.

87

Chapter 4

Review and Maintenance

When the securing of the web application has been completed a different person/team should
review and test the results of the analysis and implementation performed in the previous phases.

The application could be analysed again using the previously proposed Black Box and White
Box tools and hopefully the report should not detect anything relevant. An even better alternative
would be to hire a team of expert penetration testers to perform some in depth tests on both the
application and the server configuration, by cloning the web server to another machine that can
be freely attacked by the pen-testers.

The pen-testers will be able to give a more accurate picture of the remaining risks, and could
also perform social engineering tests to verify the actual physical security of the devices and the
employee’s awareness.

After it has been established that the risks have been mitigated to a satisfactory degree, the
tester should define a maintenance policy for the web application. The policy should define at
least the following:

❼ Who is in charge of performing the maintenance. At least two distinct persons that for
certain tasks, such as keys management, should be both required.

❼ How often are the different tasks of the maintenance performed.

❼ Evaluate the security measures implemented towards the user and establish whether they
are still secure with respect to the evolution of technologies and attacks. Such measures
could be authentication methods, password renewal process, identity verification process,
etc.

❼ How to manage key renewals. For each type of key or certificate that has to be renewed the
policy should specify the correct procedure and how to deal with old keys.

❼ How to manage database re-keying.

❼ How to manage the update of used libraries. A list of libraries with their version should be
maintained and updated accordingly.

❼ How to manage the update of used software and services. It is advised to configure automatic
updates wherever possible and especially for security updates.

❼ How to manage the list of algorithms and ciphers used. A list should be maintained and
updated.

❼ How to manage the application routine analysis using Black Box and White Box analysis
tools.

❼ How testing of the application by a penetration testing team.

❼ How to manage backups.

88

4 – Review and Maintenance

The application should be designed to make the aforementioned tasks as simple to execute
as possible, providing specific interfaces and features to the administrator. If the maintenance is
too cumbersome there is the possibility that busy administrators will skip over tasks deemed less
important or too time consuming, or perform them badly, which would result in the deterioration
of the application’s security.

89

Chapter 5

Conclusions

Securing a web application is a very complex task that requires a lot of attention to many different
aspects and details.

The Internet offers a great variety of tools and information to help in the process, however
most of this information is partial, outdated, incorrect, situational, making it a complex process
to distinguish and filter the correct approach.

The procedure devised by the candidate adopts a structure where first the analytic part is
discussed, with the aim of providing a structured and organised procedure to tackle the securing
of the application minimising the chances of missing important details. This part also gives all the
necessary information to understand the most common vulnerabilities found in web application,
in order to arm the tester with the right tools to analyse the software at hand with an educated
and critical approach.

The procedure then offers practical examples extracted from the real case study confronted
by the candidate. This part is the result of the research and analysis performed on the solutions
found online, and offers those that were evaluated and tested by the candidate to be correct
approaches, along with an the explanation of how they improve the security of the application.

The idea of structuring the procedure as described derives from the following observations and
experiences, made during the practical experience of the candidate:

❼ Often applications are not developed with security in mind, therefore it has to be imple-
mented afterwards. This unstructured approach could easily result in security being imple-
mented messily and leaving many vulnerabilities. The idea of a structured procedure came
to the candidate after realising that an organised approach was necessary for her task in
order to minimise the chances of important details being missed.

❼ Securing of software is often delegated to third parties that have little to no communication
with the team of developers. The “Understanding the Application” section is the result of
what the candidate found was necessary knowledge to gather in order to be able to correctly
analyse the application.

❼ Security is not seen as a task that brings additional value but as a necessary and costly task.
As a consequence insufficient time and resources are invested in the process. The purpose
of this dissertation is to concentrate most of the necessary information needed during the
securing, in order to allow the testers to optimize their time and focus and be able to produce
more secure software.

Some of the topics covered in this dissertation were not actually implemented on the real
case study application, as the amount of time available was sufficient to research, define and test
the correct implementations for only some of them, therefore some priorities had to be defined,
resulting in an incomplete job.

90

5 – Conclusions

The candidate feels that if she had had a guideline that would have helped her from the
beginning to correctly structure the work, and provided examples to address her toward correctly
formulated solution, she might have produced a significantly more secure application.

The exact implementation examples unfortunately have a very restricted scope of utility, as
they require that the reader is using a similar intersection of framework, version and application
structure. However they are not meant to provide copy paste code ready to work, on the contrary
they are designed to provide an idea of correct implementation, highlighting the most important
factors to consider when implementing custom solutions.

The wish of the candidate is that this work might help other developers to easily and more
efficiently integrate all the proper security measures in their applications, investing more time
in discovering and fixing vulnerabilities and less in repairing mistakes done during the process,
redoing work and discriminating valuable information versus misguided approaches.

91

Bibliography

[1] Roadmap for defeating DDOS attacks, https://www.sans.org/dosstep/roadmap

[2] Legacy System, https://en.wikipedia.org/wiki/Legacy_system

[3] Open Web Application Security Project, https://www.owasp.org

[4] https://www.owasp.org/index.php/Category:OWASP Top Ten Project, https://www.

owasp.org/index.php/Category:OWASP_Top_Ten_Project

[5] Principle of Least Privilege, https://en.wikipedia.org/wiki/Principle_of_least_

privilege

[6] Social Engineering, https://en.wikipedia.org/wiki/Social_engineering_(security)

[7] OWASP ZAP, https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

[8] Brute-force Attack, https://en.wikipedia.org/wiki/Brute-force_attack

[9] Jeremiah Grossman, “Cross-Site Tracing”, 20 January 2003 http://www.cgisecurity.com/

whitehat-mirror/WH-WhitePaper_XST_ebook.pdf

[10] Arshan Dabirsiaghi, “Bypassing Web Authentication and Authorization with HTTP
Verb Tampering”, 28 May 2008 https://dl.packetstormsecurity.net/papers/web/

Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf

[11] Denial of Service attack, https://www.owasp.org/index.php/Denial_of_Service

[12] J. Klensin, “Application Techniques for Checking and Transformation of Names”, RFC-3696,
February 2004, DOI 10.17487/RFC3696

[13] Input Validation Cheat Sheet, https://www.owasp.org/index.php/Input_Validation_

Cheat_Sheet#Email_Address_Validation

[14] Session Management, https://www.owasp.org/index.php/Session_Management_Cheat_

Sheet

[15] Token Lengh, https://www.owasp.org/index.php/Insufficient_Session-ID_Length

[16] Payment Card Industry (PCI) Data Security Standard, “Requirements and Security Assess-
ment Procedures”, May 2018 https://www.pcisecuritystandards.org/document_library

[17] Meltem Sönmez Turan, Elaine Barker, William Burr, Lily Chen, “Recommendation for
Password-Based Key Derivation: Part 1: Storage Applications”, SP 800-132, December 2010
DOI 10.6028/NIST.SP.800-132

[18] Elaine Barker, “Recommendation for Key Management”, SP 800-57, January 2016, DOI
10.6028/NIST.SP.800-57pt1r4

[19] Checkmarx, Application Security Testing and Static Code Analysis Tool, https://www.

checkmarx.com

[20] Key Size, https://en.wikipedia.org/wiki/Key_size#cite_note-15

[21] System.Web.Mvc.ModelStateDictionary class, https://docs.microsoft.com/en-us/

dotnet/api/system.web.mvc.modelstatedictionary?view=aspnet-mvc-5.2

[22] System.ComponentModel.Data Annotations namespace, https://docs.microsoft.com/

en-us/dotnet/api/system.componentmodel.dataannotations?view=netframework-4.7.

2

[23] Entity Framework, https://docs.microsoft.com/en-gb/ef/ef6/index

[24] System.Web.Security.AntiXss.AntiXssEncoder class, https://docs.microsoft.

com/en-us/dotnet/api/system.web.security.antixss.antixssencoder?view=

netframework-4.7

[25] OLE DB.NET Framework Data Provider namespace, https://docs.microsoft.com/

it-it/dotnet/api/system.data.oledb?view=netframework-4.7.2

92

https://www.sans.org/dosstep/roadmap
https://en.wikipedia.org/wiki/Legacy_system
https://www.owasp.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://en.wikipedia.org/wiki/Brute-force_attack
http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
https://dl.packetstormsecurity.net/papers/web/Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf
https://dl.packetstormsecurity.net/papers/web/Bypassing_VBAAC_with_HTTP_Verb_Tampering.pdf
https://www.owasp.org/index.php/Denial_of_Service
https://doi.org/10.17487/RFC3696
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#Email_Address_Validation
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet#Email_Address_Validation
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Insufficient_Session-ID_Length
https://www.pcisecuritystandards.org/document_library
https://doi.org/10.6028/NIST.SP.800-132
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://www.checkmarx.com
https://www.checkmarx.com
https://en.wikipedia.org/wiki/Key_size#cite_note-15
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.modelstatedictionary?view=aspnet-mvc-5.2
https://docs.microsoft.com/en-us/dotnet/api/system.web.mvc.modelstatedictionary?view=aspnet-mvc-5.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=netframework-4.7.2
https://docs.microsoft.com/en-gb/ef/ef6/index
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder?view=netframework-4.7
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder?view=netframework-4.7
https://docs.microsoft.com/en-us/dotnet/api/system.web.security.antixss.antixssencoder?view=netframework-4.7
https://docs.microsoft.com/it-it/dotnet/api/system.data.oledb?view=netframework-4.7.2
https://docs.microsoft.com/it-it/dotnet/api/system.data.oledb?view=netframework-4.7.2

Bibliography

[26] MIME Type Detection in Windows Internet Explorer, https://docs.microsoft.com/

en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/

ms775147(v=vs.85)

[27] HttpRuntimeSection.MaxRequestLength property, https://docs.microsoft.com/en-us/

dotnet/api/system.web.configuration.httpruntimesection.maxrequestlength?view=

netframework-4.7.2

[28] Request Limits element, https://docs.microsoft.com/en-us/iis/configuration/

system.webserver/security/requestfiltering/requestlimits/

[29] System.IO.Compression.ZipArchive Class, https://docs.microsoft.com/en-us/dotnet/

api/system.io.compression.ziparchive?redirectedfrom=MSDN&view=netframework-4.

7.2

[30] SecureString Class, https://docs.microsoft.com/en-us/dotnet/api/system.security.
securestring?redirectedfrom=MSDN&view=netframework-4.7.2

[31] System.Security.Cryptography.RNGCryptoServiceProvider class, https://

docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.

rngcryptoserviceprovider?redirectedfrom=MSDN&view=netframework-4.7.2

[32] HttpCookie class, https://docs.microsoft.com/it-it/dotnet/api/system.web.

httpcookie?redirectedfrom=MSDN&view=netframework-4.7.2

[33] HttpSessionState class, https://docs.microsoft.com/en-us/dotnet/api/system.web.

sessionstate.httpsessionstate?view=netframework-4.7.2

[34] Argon2, https://github.com/p-h-c/phc-winner-argon2
[35] .NET Argon2 library, https://github.com/kmaragon/Konscious.Security.

Cryptography

[36] A. Biryukov, D. Dinu, D. Khovratovich, Internet-Draft, “The memory-hard Argon2 pass-
word hash and proof-of-work function”, 03 August 2017, https://tools.ietf.org/html/

draft-irtf-cfrg-argon2-03

[37] Joel Alwen, Jeremiah Blocki, “Towards Practical Attacks on Argon2i and Balloon Hashing”,
2017 IEEE European Symposium on Security and Privacy (EuroS&P), Paris (France), 26-28
April, 2017, pp. 9-10, DOI 10.1109/EuroSP.2017.47

[38] OWASP, Password Storage Cheat Sheet, https://www.owasp.org/index.php/Password_

Storage_Cheat_Sheetl

[39] GoogleAuthenticator, https://github.com/BrandonPotter/GoogleAuthenticator
[40] System.Security.Cryptography.RSACryptoServiceProvider class, https://

docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.

rsacryptoserviceprovider?view=netframework-4.7.2

93

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775147(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775147(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775147(v=vs.85)
https://docs.microsoft.com/en-us/dotnet/api/system.web.configuration.httpruntimesection.maxrequestlength?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.web.configuration.httpruntimesection.maxrequestlength?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.web.configuration.httpruntimesection.maxrequestlength?view=netframework-4.7.2
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/requestfiltering/requestlimits/
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/requestfiltering/requestlimits/
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.ziparchive?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.ziparchive?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.compression.ziparchive?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.securestring?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rngcryptoserviceprovider?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/it-it/dotnet/api/system.web.httpcookie?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/it-it/dotnet/api/system.web.httpcookie?redirectedfrom=MSDN&view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.web.sessionstate.httpsessionstate?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.web.sessionstate.httpsessionstate?view=netframework-4.7.2
https://github.com/p-h-c/phc-winner-argon2
https://github.com/kmaragon/Konscious.Security.Cryptography
https://github.com/kmaragon/Konscious.Security.Cryptography
https://tools.ietf.org/html/draft-irtf-cfrg-argon2-03
https://tools.ietf.org/html/draft-irtf-cfrg-argon2-03
https://doi.org/10.1109/EuroSP.2017.47
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheetl
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheetl
https://github.com/BrandonPotter/GoogleAuthenticator
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsacryptoserviceprovider?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsacryptoserviceprovider?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rsacryptoserviceprovider?view=netframework-4.7.2

	Introduction
	Present state
	OWASP
	Objectives
	The application: SoD App
	Purpose
	Functionalities
	Structure

	Analysis of the web application
	Black Box analysis
	Understanding the application
	Mapping the Interactions
	Testing the application with unexpected behaviours
	Testing with cyber attack tools
	Analysis results on SoD App

	White Box analysis
	Application configuration
	Input Management
	Authentication and Session Management
	Password Management and Policies
	Data Management
	Keys Management
	Error handling
	Code analysis tools
	Analysis results on SoD App

	Analysis of support tools and environment

	Implementation of risk mitigation actions
	Application configuration
	HTTPS
	HTTP Methods
	HTTP Response Headers

	Input management
	Managing Text Input
	Managing File Uploads

	Authentication and Session Management
	User ID
	Session Management

	Password management and Policies
	Password Strength
	Password Storage
	Password Recovery
	Password Policies
	Alternative Authentication Mechanisms

	Data Management
	Keys Management
	Error handling
	Exceptions
	Resource Release
	Debug Features

	Analysis of support tools and environment

	Review and Maintenance
	Conclusions
	Bibliography

