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Abstract

The topic of this thesis is Deep learning on graphs. Deep learning is the
subfield of machine learning studying algorithms and models constituted by
several layers of functions learning in an increasingly level of abstraction
the representation of a concept. On graphs refers to the application of this
class of methodologies to data that are inherently represented as a graph
structure, requiring ad hoc strategies and theoretical machinery to perform
tasks of various nature over them. In particular, this work studies, from a
compilative point of view, a relatively recent model of deep learning called
Generative Adversarial Network (GAN). GANs are constituted by two neural
networks, the most common form of deep learning, trying to beat each other
in an optimization problem, in which one network, the generator, tries to
deceive the other, the discriminator, producing examples that look similar
to those belonging to a dataset of interest. At the end of the training of
the networks, the generator should have learned the probability distribution
of the dataset, allowing the algorithm to produce new, never seen, realistic
examples. The first two chapters of this thesis are devoted to the description
of these concepts and to the study of the best strategies allowing a smooth
learning process. In the following two chapters, various architectures are
described, referring to specific domains of application of GANs, with the main
focus over the problems that arise when the previously explored concepts are
applied to graph structured data, studying which are the currently available
solutions in the literature.
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Chapter 1

GAN fundamentals

1.1 Introduction

In the machine learning framework, a generative model is a mathemati-
cal model capable of learning the probability density function generating
a dataset of interest. This allows to perform any kind of statistical operation
on the dataset, like: regression, classification, missing data completion and
so on. In particular, Generative Adversarial Networks (GANs) are used to
create previously unseen samples from the distribution. This is done through
an unsupervised learning process consisting in a min-max game between two
learning models: generator and discriminator. The generator is the real gen-
erative part of the algorithm, that will be able to produce new samples. Its
training consists in deceiving the discriminator, producing samples which are
increasingly more realistic (similar to those belonging to the dataset). The
discriminator must decide whether these samples are similar enough to the
real samples taken from the dataset. The feedback from the discriminator
allows the generator to modify its parameters in order to accomplish its task
increasingly better, until the discriminator will not be able to distinguish the
samples created by the generator from those belonging to the dataset (in a
certain statistical sense). At the end of this process, the generator will be
ready to produce new realistic samples. In the following, it will be assumed
that both generator and discriminator are neural networks, unless otherwise
stated. This mechanism finds use in a variety of domains, especially in mul-
timedia. Examples of applications ad related architectures will be addressed
in the following chapters.
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2 CHAPTER 1. GAN FUNDAMENTALS

1.2 GAN definition

Given a n-dimensional dataset, let us define x as a n-dimensional sample
from the dataset. The target of the GAN is to find the prior distribution
pdata generating the dataset, which is x ∼ pdata. To accomplish the task, the
following architecture are employed:

Figure 1.1: Training architecture

Figure 1.2: After training architec-
ture

After the training (Figure 1.2), the Generator should be able to produce
a new sample x ∼ pdata receiving as an input a Gaussian random vector z
(whose distribution is denoted by pz(z)). Actually, what is found is typically
not exactly pdata, but rather an approximation, which in the following will
be referred to as pg. A Gaussian random variable is chosen as input because
it is the distribution with maximum entropy, which means the least possible
amount of information is assumed about the generating distribution, because
typically one does not know anything about it. The role of the training
phase (Figure 1.1) is to find the differentiable function G(z, θg) (where θg
represents the set of parameters defining the neural network) that makes this
possible. First of all, the discriminator functionD(x, θd) (where θd represents
the set of parameters defining the neural network) receives as input an n-
dimensional sample, which is either from the dataset or produced by the
generator; then it outputs the probability (just a simple numerical variable)
that the sample belongs to pDATA. As a consequence, the discriminator must
be trained to minimize the output when the input comes from the generator,
and to maximize the output when the input comes from the dataset. In
the same way, the generator must be trained to maximize the output of the
discriminator (when the discriminator receives the generator output), which
gets inside the generator through the feedback mechanism (in terms of cost
function). Therefore, ascending/descending the gradients of these quantities
with respect to generator and discriminator parameters, will train the two
neural networks to accomplish the task.
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1.2.1 Formalization

Formally, this is equivalent to the min-max problem:

min
G

max
D

Ex∼pdata(x) logD(x) + Ez∼pz(z) log (1−D(G(z))) (1.1)

where Ex∼pdata(x) logD(x) corresponds to the discriminator maximizing the
probability of dataset samples and Ez∼pz(z) log (1−D(G(z))) corresponds at
the same time to the discriminator trying to minimize the probability of
generator samples and to the generator trying to maximize it. Intuitively,
this should led to a generator capable of producing new samples according to
the distribution pdata, but currently there is no guarantee that the min-max
problem admits as an optimum the G(z, θg) such data pg = pdata, neither
that the problem admits any optimum actually.

1.2.2 Optimal discriminator

To prove that the optimum exists and that it is the expected one, the general
expression of the optimal discriminator is found, for a given G(z, θg). First
of all, the object of the optimization can be expressed as:

Ex∼pdata(x) logD(x) + Ez∼pz(z) log (1−D(G(z)))

=

∫

x

pdata(x) logD(x)dx+

∫

z

pz(z) log (1−D(G(z)))dz

=

∫

x

pdata(x) logD(x)dx+

∫

x

pg(x) log (1−D(x))dx

=

∫

x

pdata(x) logD(x)dx+ pg(x) log (1−D(x))dx

(1.2)

Referring to the previous expression as V (D,G), the original problem:

min
G

max
D

V (D,G) (1.3)

can be stated as:
max
D

V (D) (1.4)

becauseG(z, θg) is assumed to be fixed. Using the following notation: D(x) =
y pdata(x) = a pg(x) = b, the maximization can be written as:

max
y

a log(y) + b log(1− y) (1.5)

where the integral can be neglected because the dependence on x is lost.
Imposing the first derivative to zero the problem becomes:

a(1− y)− by

y(1− y)
= 0 (1.6)
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whose solution is:
y =

a

a+ b
(1.7)

or equivalently:

D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
(1.8)

where the notation D∗
G stands for the optimal discriminator given a certain

G(z, θg).

1.2.3 Cost function minimization

Since the expression of the optimal discriminator has been found, the opti-
mization problem now depends on G(z, θg) only, so that it can be formulated
as:

min
G

C(G) (1.9)

where C(G) is V (D,G) with D equal to the optimal discriminator D∗
G, so

that:

C(G) = Ex∼pdata(x) logD
∗
G(x) + Ez∼pz(z) log (1−D∗

G(G(z)))

= Ex∼pdata(x) logD
∗
G(x) + Ex∼pg log (1−D∗

G(x))

= Ex∼pdata(x)

[

log
pdata(x)

pdata(x) + pg(x)

]

+ Ex∼pg

[

log
pg(x)

pdata(x) + pg(x)

]

(1.10)
Now it is possible to show that the original min-max problem, which is now a
minimum one, admits the optimum that was expected. To this purpose, one
must first introduce two similar concepts that give a measure of the similar-
ity between probability distributions. Let P (x) and Q(x) be two distribution
over the same random variable x. Their Kullback-Leibler divergence is de-
fined as:

KL(P‖Q) = Ex∼P

[

log
P (x)

Q(x)

]

(1.11)

which has the property of being non negative and equal to zero if and only
if P (x) = Q(x), but it is not symmetric, so it can not be interpreted mathe-
matically as a distance between distributions. Similarly, the Jensen-Shannon
divergence of P (x) and Q(x) is defined as:

JSD(P‖Q) =
1

2
KL(P‖M) +

1

2
KL(Q‖M) (1.12)

where M = P+Q

2
. From the properties of Kullback-Leibler divergence, it

can be showed that also the Jensen-Shannon divergence is non negative and
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equal to zero if and only if P (x) = Q(x). A relationship between C(G) and
the Jensen-Shannon divergence of pdata(x) and pg(x) can be derived now:

C(G) =

= Ex∼pdata(x)

[

log
pdata(x)

pdata(x) + pg(x)

]

− log
1

2
+ log

1

2
+

Ex∼pg

[

log
pg(x)

pdata(x) + pg(x)

]

− log
1

2
+ log

1

2

= Ex∼pdata(x)

[

log
pdata(x)

pdata(x)+pg(x)

2

]

+ Ex∼pg

[

log
pg(x)

pdata(x)+pg(x)

2

]

+ 2 log
1

2

= KL

(

pdata‖
pdata + pg

2

)

+KL

(

pg‖
pdata + pg

2

)

− log 4

= 2JSD(pdata‖pg)− log 4
(1.13)

This is a fundamental result, because the minimum of this expression is
achieved when JSD(pdata‖pg) is minimum. But as said before, this happens
only if the two distribution are equal, which means that the problem is solved
only if pdata = pg. This is exactly the result expected at the formulation of the
min-max problem: minimizing and maximizing properly the cost functions,
one gets an optimum generator that solves the problem only when it has
learned a generating distribution which is equal to the generating distribution
of the dataset.

1.2.4 Training algorithm

Finally, it can be showed that, given enough capacity to generator and dis-
criminator, the following algorithm performs the optimization in (1.1): for k
times, train the discriminator sampling m times both pz(z) and pdata(x) and
ascend the stochastic gradient

▽θd

1

m

m
∑

i=1

[logD(xi) + log(1−D(G(zi)))] (1.14)

then train the generator sampling m times from pz(z) and descend the
stochastic gradient

▽θg

1

m

m
∑

i=1

[log(1−D(G(zi)))] (1.15)

This is the algorithm proposed in the original article [6], where k must be
set empirically. The choice of k is particularly critical, as it will be shown in
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the following paragraph, because the discriminator must not be trained too
much in order to have an effective training on the generator too.

1.2.5 -log(D) option

In the same article, it is suggested that this problem may be partially solved
by substituting the cost function in (1.15) with:

− log(D(G(zi))) (1.16)

which should improve the performances in the early stage of the training,
when it is easy for the discriminator to distinguish the fake samples from
the real ones. Again, in the following paragraph it will be shown that this
does not actually solve the problem, which requires instead a more radical
modification of the cost function.

1.3 Training difficulties

Despite the success of the original GAN architecture as it is described in the
previous paragraph, its training requires to pay great attention, because it
turns out that a wrong choice of the parameter k leads to an unsuccessful
training of the generator. This paragraph is intended to explain why this
happens, even in the case in which the cost function is modified accordingly
to (1.16), and to provide a first hint to get new strategies to solve the difficul-
ties in the training phase, which will be more deeply investigated in Chapter
2. As said at the end of the previous paragraph, the problem lies in the
training of discriminator. In fact, one may think that training it as much as
possible should guarantee the expected approach to the optimum according
to optimization formulations laid out previously. But this is not actually the
case, because it turns out that the more one gets near to the optimal dis-
criminator, the less the generator will learn. The alternative is then avoiding
to reach the optimum discriminator, but in this way the min-max problem
will not be solved, and as a consequence the condition pdata = pg will not be
reached.

1.3.1 Disjoint distributions

To understand why this happens and if this is always true, some consider-
ations have to be done on the dataset distribution pdata and the generator
distribution pg. A first case of interest is when they have disjoint supports, as
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one may approximately expect when the generator has not been trained suf-
ficiently, so that its generating distribution is still very far from the dataset
one. In this condition, it is quite reasonable that the generator may be very
proficient in distinguishing the samples from the two distributions. In par-
ticular a discriminator is said to have accuracy 1, when it outputs 0 if the
sample lies in the support of pg and outputs 1 in the support of pdata. So
essentially is a discriminator that never commits an error of classification. It
can be demonstrated that in the case under exam, so distributions with dis-
joint supports, there always exist an optimal smooth discriminator D∗ such
that it has accuracy 1 and ▽xD

∗(x) = 0 for any x in the union of distribu-
tions supports. This is one of the two theorems that in [8] are called ”Perfect
discrimination theorems”.

1.3.2 Not continuous distributions

Before evaluating its consequences, another scenario of interest is taken into
account, leading to a similar discrimination theorem. This is the case of pdata
and pg having not absolutely continuous distributions. First of all, a random
variable X is said to be absolutely continuous if given a set A with measure
zero, then P (X ∈ A) = 0 (in the following, the expression ”continuous” will
be used instead of ”absolutely continuous”). It can be showed that if the
support of the distribution of a random variable lies on a low dimensional
manifold, the random variable can not be continuous. This is typically the
case for the distributions of interest. In fact, it is widely assumed to be true
that most of the data of interest in machine learning have their probabil-
ity mass highly concentrated on a low dimension manifold (see for example
5.11.3 in [5]). So it is reasonable that this is the case for pdata too. This
may not be true in general for pg instead, being originally a Gaussian ran-
dom variable, whose dimension is full in its original sample space. But it is
possible if the transformation applied by the neural network of the generator
concentrates the mass of the distribution in a limited region of the output
space. This depends on the kind of the transformation applied, but it can
be demonstrated that in the case of a composition of affine transformations
and pointwise nonlinearities of the type which are typically used in neural
networks (ReLus, leaky ReLus, sigmoids, etc) , the support of the output
lies over a countable union of manifolds whose dimension is equal or smaller
than the input space. As a consequence, if the input space dimension is
smaller than the output one (as is typically the case), the support of pg lies
actually over a low dimensional manifold of its space. This means that the
scenario in which the two distribution are not continuous is what one expects
to have in practice, at least approximately. In order to state the discrimina-
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tion theorem for this case, the concept of perfectly aligned manifolds must
be defined. Simply speaking, two manifold are perfectly aligned when they
overlap enough to be indistinguishable, so that it would not possible to un-
derstand whether a sample is taken from one or the other. Which would
also mean that no discriminator with accuracy 1 could exist. More formally,
given P and M, two boundary free regular submanifold of F , they are said
to intersect transversally in x if:

TxP + TxM = TxF (1.17)

where Tx stands for the tangent space of the manifold in x. P and M are
said to perfectly align if there exists a point x (belonging to their union)
in which they do not intersect transversally. In practice, it can be assumed
that any pair of submanifolds never perfectly align, because any arbitrary
small perturbation of two perfectly aligned manifolds would made them not
aligned. So this can be assumed to be true in the analysis. Granted this,
finally a perfect discrimination theorem can be stated also in the previous
scenario. If:

• pdata and pg lie on two submanifolds P and M (over which they are
continuous)

• P and M do not perfectly align,

then there exists an optimal discriminator D∗ with accuracy 1 such that for
almost any x in P or M, it is smooth in a neighborhood of x and results
▽xD

∗(x) = 0.

1.3.3 Vanishing gradient explained

So in both cases examined, not continuous supports and disjoint supports,
which are at least good approximations of any phase of the training, it has
been proved that when the optimum discriminator is reached, no more learn-
ing is possible, because its gradient goes to zero, so that ascending or descend-
ing it will not result in any modification of the parameters of discriminator
neural network. But this is reasonable, because once the discriminator has
reached its optimum its parameters should not be modified any longer. The
big issue, which is the reason for which the training of the standard formu-
lation of GANs must be carefully approached, is the effect that this has on
the generator. To understand it, it is useful defining a norm which allows to
define the concept of similarity between the discriminator at a certain point
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of the training and the optimum discriminator with accuracy 1 D∗. Among
the possibilities, it can be defined as:

‖D‖ = sup
x

|D(x)|+ ‖▽xD(x)‖2 (1.18)

Given this definition of norm and given that the two perfect discrimination
theorems are valid, it can be demonstrated that:

lim
‖D−D∗‖→0

▽θgEz∼pz(z) [log (1−D(G(z)))] = 0 (1.19)

This is the fundamental result that explains why if one alternates a significant
amount of training of the discriminator to the training of the generator does
not obtain a good result. In fact the meaning of (1.19) is that when the
gradient of the cost function of the generator is descended, the more the
discriminator has been trained (the closer it is to the optimum discriminator
with accuracy 1) the smaller will be the gradient cost function, which means
the less the parameters of the neural network of the generator will be modified
to reach the optimum (the well known ”vanishing gradient problem”). So
one must carefully set the parameter k defining the amount of batches to be
passed to the discriminator, trying to avoid to reach the optimum D∗, which
would essentially stop the training of the generator. But in this way, at the
same time, the min-max problem can not be optimally solved, because it
foresees to obtain the optimal discriminator.

1.3.4 Vanishing gradient for -log(D)

As said in the previous paragraph, one solution that the authors of [6] were
suggesting in order to improve the performances, was the modification of
generator cost function according to (1.16). In this case the following result
can be demonstrated:

E
z∼pz(z)

[

−▽θg log(D∗(G(z))|θg=θ0)
]

= ▽θg [KL(pg‖pdata)− 2JSD(pg‖pdata)] |θg=θ0

(1.20)

where θ0 is any particular set of parameters θg. This results explains what is
seen in practice. In fact the Kullback-Leibler divergence as defined in (1.11)
can be rewritten according to the definition of average:

KL(P‖Q) =

∫

X

P (x) log

(

P (x)

Q (x)

)

dx (1.21)

where P = pg and Q = pdata. From (1.21), one can observe that the Kullback-
Leibler divergence assign an high cost (a high value of the integral) to a sam-
ple x such that pg > 0 and pdata → 0, and a low cost to a sample such that
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pdata > 0 and pg → 0. The first situation corresponds to a fake sample, so
it is unlikely that the generator will output a sample which does not belong
to the original distribution. The second situation is more likely, because it
has a low cost and corresponds to a sample that appears on the original dis-
tribution but that probably will not be generated by the GAN, the so called
”mode dropping”. This is exactly observed in reality. Notice that the Jensen-
Shannon divergence in this case does not unbalance the output distribution,
because it is symmetric, so it can be neglected in these considerations. But
what about the training. It can be proved that the gradient:

Ez∼pz(z)

[

−▽θg log(D(G(z)))
]

(1.22)

is a centered Cauchy distribution with infinite average and variance. The
infinite variance leads to a very unstable training of generator, which makes
the optimization much more difficult. But maybe more importantly, the
same problem of an almost null gradient rises again, because of course the
average can not be infinite but will be bounded; but at the same time being
the distribution centered, the average will be zero, so that in average the
generator will receive no or very small feedback from the discriminator.

1.3.5 Noise adding

In the following chapter, it will be shown that using proper metrics the
performances can be improved, obtaining a training which is much more
confident. One of the hints that [8] suggests, is conceptually simple: breaking
the non continuity of the distributions, that it was demonstrated to be the
original cause of all these phenomena. This can be done by adding noise to
the samples from the dataset to be provided to the discriminator and to the
output of the generator as well (to make the discriminator less vulnerable to
adversarial samples). As expected, with this strategy one can see that the
Jensen-Shannon divergence of the noisy version of pdata and pg is minimized,
contrary to what happens to their standard non continuous versions that
always maximize it.



Chapter 2

Training strategies

2.1 Introduction

In this chapter, several methodologies to improve the training of GANs will
be presented. Starting from the problems analyzed previously, new cost
functions will be presented, solving the problems of vanishing gradient and
instability that arise when the cost functions of the original paper [6] are
employed. After that, some strategies that ease and speed up the process
of training will be shown, dealing more with an algorithmic and conceptual
point of view rather than finding new mathematical improvements of the
architecture.

2.2 Wasserstein GAN

From the discussion of the previous chapter, it is clear that the problem lays
on the choice of the cost function of generator and discriminator. Adding
noise to both, will result in general better performances, breaking the hy-
pothesis that make the standard cost functions fail. Another way to address
the problem consists in a more radical substitution of the cause of problems:
a novel way to measure the distance between the distributions of dataset
pdata and of generator pg, and as a consequence a radical modification of the
cost function.

2.2.1 Convergence

In order to find a way to get new distances/divergences which are suitable to
solve GANs problems, it is useful to think in terms of distribution sequences

11
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convergence. In fact, during the training, pg undergoes to a series of mod-
ifications that should led it to pdata. This corresponds to the definition of
convergence of a distribution. Given:

• ρ(·, ·), a divergence or a distance between two distributions

• (Pn)n∈N, a sequence of distributions parameterized by n

(Pn)n∈N is said to converge if and only if

∃P∞ : ρ(Pn, P∞) → 0 (2.1)

With respect to the GAN analysis, (Pn)n∈N is the sequence of forms assumed
by pg throughout the training phase, that will be denoted by pgθ , to underline
the dependence on θ. Instead, P∞ is the target distribution pdata. The way
the divergence ρ(·, ·) is defined, determines if the convergence is reached and
how much easily it is done. In fact, the weaker is the topology induced
on the compact metric set on which the space of probability measures of
interest are defined, the easier will be the convergence. As a consequence, it
may be useful to compare different divergences and distances to see which
is the weaker (that introduces a weaker topology) one. Until this point, two
divergences have been addressed: the Kullback-Leibler divergence and the
Jensen-Shannon. It turns out that if there is convergence for the first, which
is:

KL(Pn, P∞) → 0 or KL(P∞, Pn) → 0 (2.2)

then there is convergence for the second too:

JSD(Pn, P∞) → 0 (2.3)

This means that the Jensen-Shannon divergence is weaker and most likely
will perform better in the convergence, so that it is should be reasonable
using it as a cost function instead of the Kullback-Leibler, which is actually
done in the original formulation in [6]. Then, one may try to find a diver-
gence which is even weaker than the Jensen-Shannon, which may result in
better performances in terms of convergence and maybe solving the problems
analyzed in the previous chapter. One fruitful chance is the Earth Mover or
Wasserstein-1 distance, defined as follows:

W (pdata, pg) = inf
γ∈Π(pdata,pg)

E(x,y)∼γ [‖x− y‖] (2.4)

where Π(pdata, pg) is the set of all joint distributions whose marginals are
pdata and pg. It can be demonstrated that (2.3) implies the convergence of
Wasserstein distance, which is:

W (Pn, P∞) → 0 (2.5)
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This means that it is the weakest distance/divergence considered until this
point, which suggests that this could be a more suitable metric with respect
to the Jensen-Shannon.

2.2.2 Continuity

When dealing with the convergence of a sequence of distributions, another
important characteristic to be taken into account is the continuity of the
correspondence between the sequence of distributions itself and the sequence
of the parameters defining it. So essentially the continuity in mapping:

θg 7→ pgθ (2.6)

which means that when the set of parameters θg converges to a certain value
θ, then pgθ converges to pθ, the distribution defined by the parameters θ:

θg → θ =⇒ pgθ → pθ (2.7)

This is particularly important, because if it is true, then the mapping be-
tween the sequence of parameters and the distance between the corresponding
distributions and the target distribution:

θg 7→ ρ(pgθ , pdata) (2.8)

is continuous too. The weaker the distance, the most likely this continuity
will be granted.

2.2.3 An example of continuity

To understand continuity’s importance, consider the problem of learning P0,
the distribution of (0, Z) ∼ R

2, with Z being a uniform random variable
Z = U [0, 1]. Let Pθ be the sequence of distributions corresponding to the
functions gθ(z) = (θ, z), which must converge to (0, Z). It results:

KL(P0,Pθ) = KL(Pθ,P0) → +∞ for θ 6= 0 (2.9)

JSD(P0,Pθ) = log 2 for θ 6= 0 (2.10)

W (P0,Pθ) = |θ| (2.11)

This means that trying to use the Kullback-Leibler or Jensen-Shannon diver-
gence to optimize gθ(z) will not work. In fact they are not continuous in the
sense defined in the previous paragraph, because as θ varies, the value of the
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divergence does not change (Jensen-Shannon) or remains infinite (Kullback-
Leibler). This means that taking their derivative results in either a vanishing
gradient (Jensen-Shannon) or does not make sense at all (Kullback-Leibler),
so that they are completely useless in an optimization process. On the con-
trary, Wasserstein distance is continuous with respect to θ, so that while
θ is made vary following its gradient, the distance between Pθ and P0 will
smoothly decrease until to the optimum θ = 0 is reached. As a consequence
the Wasserstein metric is the only that provides convergence for this exam-
ple. This means that in terms of cost function for a neural network trying
to learn P0, it is the only working option. But the point is whether this is
always true, and in what terms, or if it is just a lucky chance.

2.2.4 Continuity of Wasserstein

What has been seen in the previous example is actually valid in an wide
variety of cases. Its demonstration derives from the following theorem, proved
in [9]. Given:

• Pr, a fixed distribution over a metric space X

• Z, a random variable over another space Z

• g : Z × R
d → X , a function denoted as gθ(z)

• Pθ, the distribution of gθ(z)

then:

1. if g continuous in θ =⇒ W (Pr,Pθ) continuous in θ

2. if g is locally Lipschitz and satisfies 1. =⇒ W (Pr,Pθ) is continuous
everywhere and differentiable almost everywhere

3. 1. and 2. are false for JSD and KL

This means that the previous example is actually quite the general case,
given that gθ(z) is continuous. So it is definitely convenient to use it as a
cost function in the GAN architecture, thus substituting the Jensen-Shannon
divergence. Notice that the assumptions of this theorems allows to directly
apply it to any feedforward neural network composed by any common affine
transformations and pointwise nonlinearities.



2.2. WASSERSTEIN GAN 15

2.2.5 The critic

In order to come up with an algorithmic strategy to train the GAN mini-
mizing the Wasserstein metric between pdata and pgθ , one must first solve the
problem of practically exploring all the space of possibilities of the term
Π(pdata, pg) in (2.4), representing the set of all joint distributions whose
marginals are pdata and pg. The first step to overcome this difficulty is to
apply the Kantorovich-Rubinstein duality to the infimum of the formula, so
that (2.4) becomes:

W (pdata, pgθ) = sup
‖f‖L≤1

Ex∼pdata [f(x)]− Ex∼pgθ
[f(x)] (2.12)

where ‖f‖L ≤ 1 is the set of all 1-Lipschitz functions over the compact
metric space X on which the probability distributions are defined. It is
useful to notice that if ‖f‖L ≤ 1 is substituted by ‖f‖L ≤ K, then all
K-Lipschitz functions are found, and with respect to the case K = 1, the
function K W (pdata, pgθ) is obtained. Being K a constant, it can be neglected
in the maximization problem, so that (2.12) can be written as:

max
w∈W

Ex∼pdata [fw(x)]− Ez∼pz [f(x)] (2.13)

where fw is any K-Lipschitz (for some K) function parameterized by a certain
set of parameters w ∈ W . This function, that will be referred to as the critic

according to the notation of [9], corresponds to the discriminator function,
which is now slightly different from the original definition, because it needs
no longer to output a probability. The only characteristic that must be
guaranteed is that fw remains K-Lipschitz. To this purpose, one viable way
is to maintain the weights w, representing the parameters of discriminator
neural network θd, inside a space W which is compact, throughout all the
training phase. A practical way to do this is to clip w inside a symmetric
interval after each gradient update, normalizing the weights of the neural
network after each update. It turns out that even if this strategy works, it
must be addressed carefully, because too small weights lead to the widespread
phenomenon of vanishing gradient, whereas too large weights takes longer to
be optimized. In the following paragraph, an effective regularization will
be added to the cost function, so that almost no hyperparameter tuning is
necessary.

2.2.6 Algorithm

So finally, the algorithmic implementation of what has been said until this
point can be presented. It is similar to the standard one, but with some
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important differences. Given [−c, c] the clipping interval, for k cycles, sample
m times from pz(z) and pdata(x), then ascend the stochastic gradient of the
discriminator:

▽w

1

m

m
∑

i=1

[

fw(x
i)− fw(G

(

zi
)

)
]

(2.14)

where notice that the parameter w could be written as θd and fw as D(),
according to the notation of previous chapter. After that, clip the resulting
weights w to the interval [−c, c]. Then sample m times from pz(z) and
descend the stochastic gradient of the generator:

−▽θg

1

m

m
∑

i=1

fw(G(zi)) (2.15)

There are two big differences with respect to the algorithm in chapter 1,
other than the clipping and a slightly change of notation for the discrimina-
tor. First, logarithms are missing, because the Wasserstein does not require
them. Secondly, and most importantly, the parameter k, which defines how
many times the discriminator undergoes to a phase of training, is completely
free. In fact there is no limitation to how much the discriminator can be
trained before passing to the generator, as the Wasserstein guarantees a use-
ful differentiability almost everywhere, which means that the gradient will
not saturate, unless the parameters will be close enough to the optimum
and there will be anything else to learn. So in practice this means that k
can be as high as preferred, but in particular it is a good idea to bring the
discriminator close to the optimal as possible, because it will provide the
generator with the most reliable gradient possible. So essentially the merit
of the Wasserstein GAN is that the intuitive idea of alternating the full op-
timization of the two neural networks is not broken any longer, as it was in
the standard GAN version.

2.3 Improved Wasserstein GAN

Wasserstein GAN provides a new effective approach to the minimization of
the distance between pdata and pg, but as anticipated before the way the
Lipschitzianity of the critic (alias the discriminator) is assured through the
weights clipping, may lead sometimes to training difficulties. The problems
of this techniques will be laid out and a regularization technique present in
[7] will be shown, allowing to solve in a robust way the difficulties caused by
the clipping.
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2.3.1 Clipping effects

The first category of effects have been already explained previously: if the
weights are clipped to an interval [−c, c] with a c which is too little will lead
to the vanishing gradient phenomenon. In the opposite case, when c is large,
it takes in general longer to bring the weights to their optimum and this can
even lead to too big updates when the gradient is descended, so that the phe-
nomenon of the exploding gradients arises. But the clipping may also have
another harmful effect over the use of the model capacity. In fact experimen-
tal evidences in [7] show that the critic learns an over-simplistic function, so
that generalization problems can arise. This is essentially because the effect
of the clipping makes the large majority of weights approaching the extremes
of the clipping interval, making it harder for the generator to catch complex
distributions.

2.3.2 Gradient penalty

One possible solution to the problem is a form of regularization calledGradient

penalty. The idea behind it derives from a property that the optimal critic
is demonstrated to have under the condition of Lipschitzianity previously
described: the norm of its gradient is 1 almost everywhere under pdata and
pg. If this condition is enforced throughout the training phase, the weights
will converge to a solution that respect it, guaranteeing as a consequence
the Lipschitzianity. A way to accomplish this task consists in introducing a
penalty over the solutions that do not respect it, adding the following penalty
term to the cost function in (2.13):

λ Ex̂∼px̂ (‖▽x̂fw(x̂)‖2 − 1)2 (2.16)

where px̂ is the distribution of the set of samples:

x̂ = ǫx+ (1− ǫ)y (2.17)

with x ∼ pdata, y ∼ pg and ǫ ∼ Uniform[0, 1]. In particular the distribution
px̂ is defining a random variable which is uniformly distributed over points
lying on straight lines between pair of points from pdata and pg, because the
optimal critic contains those kind of lines, having in particular gradient norm
equal to 1. Thus, what changes in the algorithm is that the discriminator
must ascend:

▽w

1

m

m
∑

i=1

[

fw(x
i)− fw(G

(

zi
)

) + λ
(

‖▽x̂fw(x̂
i)‖2 − 1

)2
]

(2.18)
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and of course the clipping is not present anymore. Empirical results show
that avoiding the clipping in flavor of gradient penalty cancel out the prob-
lems described previously, in particular referring to the weights concentrating
on the extremes of clipping intervals. Another notable advantage is that the
tuning of hyperparameters is very easy, so reducing the training time. So
overall the gradient penalty results to perform better than the standard ap-
proach to Wasserstein GAN.

2.4 Progressive growing

Until this point, the analysis over GANs methodologies has been focused on
the mathematical properties of the cost functions and how they relate to the
effectiveness on training. Another approach to improve the performances
of the model is focusing on how the structure of the layers composing the
neural networks of generator and discriminator can be modified. This is
done in [14], which introduces a technique called Progessive growing. This
idea, which is actually applicable to a wide range of domains, has come out
to address datasets composed of high quality images, which exhibit many
levels of scales structures, so that it is difficult, and as a consequence time
consuming, to learn at the same time all the details at all scales. If this is
true for any machine learning algorithm applied to the image generation, in
particular the training for GAN results particularly prone to find difficulties
in starting creating a generator which is able to deceive the discriminator.
In fact, given the high level of detail, the distribution will be particularly
complex, so that it is very easy for the discriminator to understand whether
a sample is fake or not in the initial stage, thus amplifying gradient problems.
Another problem that arises, this time for any kind of algorithm, with an
high dimensional dataset like this, stands in the fact that the batches of
samples for the stochastic gradient descent can not be too large, because of
memory constraints.

2.4.1 Solution

A possible solution for the problem is training progressively the neural net-
works. This means that instead of having generator and discriminator the
respectively outputs and gets as input a full resolution sample, they handle
it at increasing scale. So at the beginning the structure of the neural network
is simple, maybe starting with just one single layer. The samples produced
and taken as input are downsampled versions of the original one, thus the
training in this stage is very fast. And in this phase the high scale details are
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learned. Then, more layer are smoothly added to the networks, so that the
details at higher resolution are considered and the samples are nearer and
nearer to the final format. In the meanwhile, generator and discriminator
learn at each stage of the growth just a limited amount of information, which
just deals with single new resolution scale of details, because the previous
scales have been previously learned. Overall, as demonstrated in [14], a lot
of time is saved, because most of the training is done at lower resolution, in
which the amount of information to learn is limited, and at the beginning
the training results more stable.

Figure 2.1: Progressive growing: z represents the noise taken as input from
the generator, x are the images from dataset. In the first stage just a 4x4
layer is present, which means that the discriminator will receive images down-
sampled to that resolution either from the dataset or from the ouput of the
generator. Then, in the following stages, additional layer are added, until
the full resolution 1024x1024 is reached

2.5 Conditional GAN

To conclude this chapter about training, the concept of conditional GAN
is explained, which allows to use GANs to produce samples with label. In
fact, there may be datasets composed by the samples plus some kind of extra
information about the meaning of that sample. This happens for example for
images, in which it may be useful knowing what kind of objects is present in
the generated sample. The extension of the GAN model to this case is, in its
basic form, quite straightforward: the discriminator receives as an input the
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sample plus the label; the generator receives again the noise but with a label
too, so that it will be trained to find not only the distribution of the samples
from the datset, but also how a certain label is associated to part of that
distribution, so that through the feedback of the discriminator the generator
will shape the output to contain a label too. Referring to the original cost
function, the problem can be now formalized as:

min
G

max
D

Ex∼pdata(x) logD(x|y) + Ez∼pz(z) log (1−D(G(z|y))) (2.19)

where y represents the label. This formalization may find application in a
variety of occasions, for example [11] shows how this can be applied to gen-
erate images with label describing in human language the content, starting
from a dateset which is labelled with words describing the content of the
images.



Chapter 3

Signals over graphs

3.1 Introduction

Signals over graphs, or Graph signal processing, aims at extending signal pro-
cessing techniques to data which can be conveniently represented as graphs.
This finds use in a wide variety of domains, like networks of sensors, social
networks, biological networks and many other. This chapter will present some
fundamental concepts of the theory, in order to provide a useful background
for using deep learning over dataset that can be represented as graphs. In
particular, the central issue is providing a definition of the convolution op-
erator on graphs which is suitable to be employed in a convolutional neural
network.

3.2 Spectral methods for convolution

The idea behind Signals over graphs is to represent the samples of a signal
as nodes of a graph, whose edges formalize some kind of relationship among
the samples. Formally, given an undirected graph G = (V , E ,W ) where:

• V , is the set of vertices of cardinality n

• E , is the set of edges of cardinality m

• W ∈ R
n×n, is the adjacency matrix

a signal over the graph x : V → R
n can be regarded as a vector x ∈ R

n whose
i-th element is the value of x at the i-th node.

21
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3.2.1 Graph Fourier transform

To define the Fourier transform in this setting, it is necessary to express the
idea of frequency domain as it is done in the common signal processing. To
this purpose, the graph Laplacian is defined as:

L = D −W (3.1)

with D ∈ R
n×n being the diagonal degree matrix defined as:

Dii =
∑

j

Wij (3.2)

It is then possible to define a normalized version of the Laplacian:

L = In −D− 1

2WD− 1

2 (3.3)

which, being a real symmetric positive semidefinite matrix, admits n eigen-
vectors {u}n−1

l=0 and the corresponding ordered nonnegative eigenvalues {λ}n−1
l=0 ,

which can be interpreted as the frequency support of the graph. Now, using
the notation of [12], given U = [u0, ..., nn−1] and Λ = diag([λ0, ..., λn−1]),
through which is possible diagonalizing the Laplacian as L = UΛUT , the
Graph Fourier transform of the signal x is defined as:

x̂ = UTx (3.4)

with its inverse being x = Ux̂.

3.2.2 A first definition of convolution

It is now possible to define a convolution operation in an analogous way to
the standard signal processing: the inverse transform of the product between
transforms. So, if x and y are two signals defined on the graph G, their graph
convolution is defined as:

x ∗G y = U(x̂⊙ ŷ) (3.5)

where ⊙ is the the element-wise Hadamard product between two vectors.
The purpose of this explanation relies on the fact that this techniques are
necessary to define those operations that the convolutional layers of convolu-
tional neural networks applies to images, so to grid of samples to be filtered,
which are in this case graph instead. It is then useful to see the previous
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definition in terms of a sample x that undergoes to a transformation acted
by a filter gθ. So the result of filtering can be written as:

y = gθ(L) x

= gθ(UΛUT ) x

= U gθ(Λ) U
Tx

(3.6)

where the last equivalence of (3.6) can be interpreted as a convolution. In
fact UTx is the graph Fourier transform of x and when gθ is a non-parametric
filter, as is typically the case, it is defined as a diagonal matrix whose pa-
rameters are free:

gθ(Λ) = diag(θ) (3.7)

with θ ∈ R
n. This means that the product gθ(Λ) UTx can be actually

interpreted as an Hadamard product, because the resulting vector has on the
i-th row the multiplication of the element on the i-th rows of the two terms.
Thus gθ(Λ) is the spectral form of the filter. But applying the filtering in this
way is not easy, for two reasons. The learning complexity is in the dimension
of data O(n), because all the n elements of θ ∈ R

n must be learned. Also, the
filter is not localized in space, because the whole graph is taken into account
in the spectral domain.

3.2.3 Polynomial filters

To overcome these difficulties, a polynomial filter can be used:

gθ(Λ) =
K−1
∑

k=0

θkΛ
k (3.8)

It solves the problem of the learning complexity because now only the K
parameters of θ ∈ R

K must be learned. Also, it can be demonstrated that
such a filter is localized, around the node which is processed, in a neighbor-
hood whose elements are at distance up to K. So this means that the filter
is localized in space. So this kind of filter is suitable to be learned by a
convolutional neural network. But actually other two problems arise. The
cost in terms of operations to be done is still high,because the expression in
(3.6) has computational complexity O(n2). This can be solved by a recur-
sive reformulation of the polynomial filter, using the Chebyshev expansion,
so that the complexity is highly reduced. But a more important difficulty
comes out when approaching the definition of convolution using the spectrum
of the graph: the graph structure must remain the same, only the values of
the signal can change. This makes it hard to find a way to apply machine
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learning techniques to datasets in which this hypothesis is not true, because
in this case also the structure itself of the graph must be parametrized and
learned. This means that another way to define the convolution must be
found in this kind of domains.

3.3 Edge-Conditioned Convolution

To address non constant graph structures, [10] proposes a novel more suitable
way to define the convolution on graphs, which does not take into account
the Laplacian, so that also the edges of the graph can be learned by a con-
volutional network. To this purpose, to each vertex of the graph will be
assigned not just a single real value but in general a vector of values, also
referred to as labels. The same is true for edges. This approach is specifically
designed to be applied with convolutional networks, so it is assumed that
the signal over the graphs undergoes to a series of transformation defined by
a feedforward neural network whose layers are indexed by l ∈ {0, ..., lmax}.
The function that describes how the original vector of labels for each vertex
is modified through the network is denoted as:

X l : V 7→ R
dl (3.9)

which means that the i-th vertex has, at layer l, a vector of labels X l(i) of
dimension dl, where dl means that the number of labels varies depending on
the particular layer l. So essentially it is a matrix in the space R

n×dl . For
example X0 denotes the initial set of labels assigned to the indices, so the
input. Then it is useful to define a function L : E 7→ R

s which denotes
the labels of the edges of the graph (L in this case has nothing to deal with
the Laplacian). Again, L is essentially a matrix in R

m×s . The notation
N(i) denotes all the neighbors of the vertex i-th plus the vertex i-th itself, or
formally N(i) = {j ∈ (v) : (j, i) ∈ E} ∪ {i}. So for directed graphs it takes
into account only the nodes with edges directed to node i-th.

3.3.1 Convolution definition

Now it is finally possible to define the convolution and understand in which
way this relates to the parameters learned by the feedforward neural net-
work. The idea is that the value of the labels of a vertex, at a given layer,
is a weighted sum of the corresponding labels of the neighbors of the ver-
tex. The advantage is twofold: from one side the commutativity grants that
the way the the vertices are indexed is completely transparent, so that no
ordering is needed; on the other side there is no problem on choosing which
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vertices should be filtered when elaborating a certain vertex, because only
the neighbors are taken into account, independently by their number. The
disadvantage is that using just the neighbors, part of the structural infor-
mation is lost. To recover it, the filter takes into account also the label of
the edges, conditioning in this way the weights of the filter. In this analysis,
the filter is the feedforward neural network and the weights are the neural
network learnable weights and bias. So the network can be represented as a
layer specific function:

F l : R
s 7→ R

dl×dl−1 (3.10)

which given an edge L(j, i) outputs the matrix weights Θl
ji ∈ R

dl×dl−1 defining
how labels of vertex j must be used in the weighted sum to obtain the labels
of vertex i. Thus the Edged-Conditioned Convolution defines how to obtain
the labels of a certain vertex i at layer l:

X l(i) =
1

|N(i)|

∑

j∈N(i)

F l(L (j, i) ;wl)X l−1(j) + bl (3.11)

or equivalently with the output weights matrix:

X l(i) =
1

|N(i)|

∑

j∈N(i)

Θl
jiX

l−1(j) + bl (3.12)

This is the way labels are evaluated through the neural network, then apply-
ing the common learning technique like gradient descent is possible to find
the weights wl and bias bl that optimize the cost function.

3.4 Pooling and coarsening

Until this point, the main topic of this chapter has been the convolution op-
erator on a graph and its use within a convolutional network. But another
fundamental operation in this setting is the pooling. In convolutional neural
network, pooling layers are inserted among convolutional layers to reduce the
amount of parameters to learn, so reducing the risk of overfitting, trying to
summarize sets of adjacent features by typically applying some kind of down-
sampling. But if this operation is straightforward in image domain, where
the features are collected over grids, this is not easy as well when dealing with
graphs, because in this case the concept of downsamping must be properly
defined. It is called Graph Coarsening and in the setting laid out previously,
it consists in a non trivial sequence of operations. First of all, a new setting
of vertices must be created, either by removing some of them or merging
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groups into single ones. After that a new edge structure must be created
among the new nodes, defining in a proper way new edge label. Finally, it
is necessary to map the features of the nodes before the coarsening to the
nodes after the coarsening, by establishing a proper mapping between the
two groups and keeping into account also the new edges. This is the general
idea behind the pooling in the graph environment, but ad hoc solutions must
be considered depending on the type of data and network structure in use.



Chapter 4

GAN specialised architectures

4.1 Introduction

This chapter is devoted to the application of the concepts studied until this
point to special domains of interest, with a special focus on some graphs-
related topics. In general the analysis will be concentrated on a variety of
architectures proposed in relatively recent research papers, studying their
peculiarities and results.

4.2 Learning generative models for 3D point

clouds

A point cloud is a set of unordered points, typically in three dimensions, that
represents a discretization of an object, acquired for example with laser scans.
The fact of having a dataset composed of unordered sets poses major chal-
lenges, because any permutation of a set has the same semantic meaning,
so it must be associated at the same output. As a consequence, the op-
erations performed over the data must be overall permutation-independent.
Also, the distribution of points is very irregular. Within deep learning frame-
work, several solutions were proposed to solve this issues. Among them, the
voxelization of the point cloud (representing the point cloud over a regular
three dimensional grid) and special deep architectures like PointNet, whose
solution is processing singularly each point of the cloud, then applying global
permutation-independent operations. Another approach consists in using the
Edge-Conditioned Convolution described in paragraph 3.3, which has the
great advantage of being by definition permutation-independent, because of
the commutativity of the operations to calculate the convolution. It also

27
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allows to catch the very irregular nature of point clouds exploiting the local
aggregation of features among neighbor nodes (in this case points). But at
the same time, the implementation of this strategy for a generative model
based on a GAN is challenging, because the structure of the graph is not
known in advance to the generator which simply receives a random prior, so
understanding how to handle this local operation is not straightforward.

4.2.1 ECC application

In [2], all of these problems are addressed, proposing a new architecture. The
fundamental operation is the Edge-Conditioned convolution, as said previ-
ously. The idea, referring to (3.11), is to use a fully connected network F l

which is a function of the difference between the features of each pair of
nodes, so that (3.11) becomes:

X l(i) =
1

|N(i)|

∑

j∈N(i)

F l
(

X l−1(j)−X l−1(i)
)

X l−1(j) + bl (4.1)

or similarly using the notation of [2]:

hl+1
i = σ





∑

j∈N l
i

F l
wl

(

hl
j − hl

i

)

hl
j

|N l
i |

+ hl
iW

l + bl



 (4.2)

where:

• hl
i stands for X

l(i)

• σ() is a non linearity

• N l
i does not include the node i any longer

• W is a linear transformation of the nodes themselves

But one problem to solve is deciding which points belong to the neighborhood
of the node under consideration. In fact, being the point cloud the output of
the generator, the generator does not know which is the associated graph to
be used to define the neighborhood during the processing operations. The
proposed solution is to exploit the pairwise distance between nodes features
to find which are the nearest points of the node under consideration. So, if
k is the hyperparameter defining how many points must form a neighbor-
hood, then the k nodes with smallest |hl

j − hl
i| will be those considered in

N l
i of equation (4.2). This means that the building block of the generator is
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a combination of two operations: for each point of the cloud, its k nearest
neighbors are found, building the corresponding neighborhood graph; then
for each node the ECC is applied, exploiting the features of nodes compos-
ing the neighborhood. So the result of each block is a new labeling of the
nodes, with the network learning weights just as a function of pairwise fea-
tures difference. As a consequence, after the block a new representation in
vectorial form of the graph structure is obtained, procedure known as graph
embedding. Putting several blocks one after the other, creates an hierarchy
of graph embeddings, representing increasingly better the graph structure as
one gets farther from the input layer.

Figure 4.1: The architecture of the generator. After a dense layer, a suc-
cession of convolutional layer, composed of a convolutional block and of a
nearest neighbor graph generating block, forms a hierarchy of graph embed-
dings representing the cloud structure

4.2.2 Upsampling

Many typologies of data have a multiresolution representation, that can be
exploit to ease the extraction of information. For example in 2D images, low
frequencies can be properly processed and upsampled to predict higher reso-
lution. This is exaclty what is done by convolutional neural network applied
to images, through convolutional and upsampling layers. If the convolutional
side of the processing has been previously analyzed, it seems reasonable to
try to find a way to represent and exploit the multiresolution properties also
in the case of the point clouds. So what has to be done is finding a way
to implement the generator in such a way that it is able to represent and
process the point cloud at different resolutions, thus a way to provide an
upsampling operation must be defined. The solution proposed in [2] is very
similar to the logic behind the convolution. First of all, to each convolutional
layer l, follows an upsampling layer. In particular, if the convolutional layer
has N l features vectors, corresponding to N points, grouped in a matrix
H l ∈ R

N l×dl , then the upsampling layer creates N l new features grouped
in the matrix H̃ l ∈ R

N l×dl , corresponding to N new points. Concatenating
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the two matrices H l and H̃ l, a new matrix H l,up ∈ R
2N l×dl is obtained, cor-

responding to 2N nodes. So the upsampling layer provide an upsampling
factor of 2. As said, the way new features are found is similar to the ECC.
In fact, a new vector of feature, corresponding to a certain new node i-th
created by the upsamplig layer, is given by:

h̃l
i = σ





∑

j∈N l
i

diag(U l
w̃l

(

hl
j − hl

i

)

)hl
j

|N l
i |

+ hl
iW̃

l + bl



 (4.3)

which can be interpreted exactly as (4.2) apart from the term diag(U l
w̃l),

where U l
w̃l) is again a fully connected network, that differently with respect

to the term F l
wl of (4.2), now does not produce a dense matrix but a diagonal

matrix, which means that the product with hl
i will be row by row, meaning

that each feature is handled independently by the other. This also reduces
the number of parameters to be learned.

Figure 4.2: The generator with the adding of the upsampling layers, com-
posed of the convolutional-like upsampling block and the nearest neighbor
graph generating block

4.2.3 Conclusions

Even if the upsampling layers are not strictly required to obtain the hierarchy
of graph embeddings throughout the generator network, it can be experimen-
tally verified that the performances of the architecture when upsampling is
used outperforms the case without it and also other GAN architectures spe-
cialized in point cloud handling, but that do not use the concept of localized
representation. The reason behind the usefulness of the upsampling is that
without it the convolutional layers need to learn a very large amount of pa-
rameters, working since the first layers on the full dimension of the point
cloud. Applying upsampling, allows to work on smaller dimensional point
clouds, that only in the last stage reach the full dimension of the dataset.
Another interesting phenomena described in [2] is that when new points are
generated, they are typically far from the neighborhood from which they
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were predicted, but the distribution of the new neighbors is the expected
one. This is caused by how the network learn to generate new points, es-
sentially consisting in learning a transformed version of the neighborhood
structure and copying it in another area, so that the structure is preserved,
but new points are generated far from those used for the prediction.

4.3 NetGAN

Many complex systems can be represented as graphs which exhibit char-
acteristics common to a wide number of systems, independently from the
domain of application. Examples of these properties are the small average
distance among nodes, the high clustering coefficient (representing communi-
ties in social networks), an heavy tail distribution of node degrees and many
others. Explicit generative models can model analytically some of these pe-
culiar behaviors, like the Barabasi-Albert and the Watts-Strogatz model,
but catching all of them with just a single model is still a difficult problem.
But having a realistic generative model available is important because it is
needed fo widespread operations like data augmentation, anomaly detection
and recommendation. It is then useful trying to find an implicit (non explicit)
generative model that can be used to catch the structure of the graph for
this kind of operations. But as shown in previous paragraphs, dealing with
discrete objects like graphs is particularly challenging, as their processing
must be done so that some properties are guaranteed (like being invariant to
nodes permutation). In particular, dealing with graphs representing complex
systems represents a peculiar difficulty: typically large datasets coming from
the same exactly distribution are not available, so the model must learn from
a single graph. In [1] a new architecture is proposed to face the problems,
called NetGAN. It is a GAN which is trained using random walks sampled
from the graph. Once trained, the generator is able to produce random walks
whose nodes are distributed accordingly to the structure of the graph. Prop-
erly weighting the number of appearances of an edge into a set of generated
random walks, it is possible to construct the adjacency matrix of a graph,
which has the same topological features characterizing the original one but
which is not the graph itself. Also, it turns out that this architecture is
very effective at link prediction, despite not being specifically trained for this
purpose.
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4.3.1 LSTM

Up to this point only feedforward neural networks have been considered,
where the neurons’ activation flows only in one direction: from input to
output. But the neural networks composing generator and discriminator
of NetGAN exploit another typology of neural network, based on the so
called Long Short-Term Memory (LSTM) cell, which is a form of Recurrent
Neural Network (RNN). RNNs are an extension of feedforward networks
because they allow connections pointing backwards. A very simple example
is a network composed of recurrent neurons. The neuron of any feedforward
network is the basic unit performing the processing operations, which consists
in weighting the input vector x and then applying a point-wise non linearity,
so that the output y is:

y = σ(xWx + b) (4.4)

where Wx is the weights matrix and b the bias. A recurrent neuron, in
addition, also exploit the output of the previous time step (the previous
sample) to evaluate the current time step output, so that, given the input at
time t denoted as x(t), the output at time t is:

y(t) = σ(x(t)Wx + y(t− 1)Wy + b) (4.5)

where Wy defines how to weight the previous time output as an input.

Figure 4.3: On the left, the neuron of a feedforward network. On the right,
a recurrent neuron

This is useful when in the data is present some kind of temporal rela-
tionship, as happens when the input is a time series, so that it is possible to
perform a prediction exploiting the dependence of a sample from the previ-
ous, which are fed to the network as an input. For example NetGAN exploit
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this principle to predict the following node of a random walk given the previ-
ous ones. So the difference with respect to feeforward network is that neurons
own a kind of memory of the past, so that they can be thought as a memory
cell characterized by a certain state. The output is then dependent on the
current input and the previous time step state of the cell. There are many
ways to structure the memory cell, one of the most effective, and the one used
in NetGAN, is the LSTM cell. There are actually various implementations
of LSTM, anyway the structure in NetGAN is in particular the original idea
proposed in [13]. It is shown in the figure below.

Figure 4.4: LSTM cell. FC stands for fully connected networks.

The state of the cell is split in two parts: one keeping into account the
long term state, denoted as c(t), and the other the short term, denoted as h(t).
The network can decide what to store in the long term state using the forget
gate, which drops memory, and with the addition operation which follows on
the right, adding memory. So at each time step some long term memory is
added and some is dropped. After that, c(t) is copied and passed through
the tanh function, and then the result is filtered by the output gate. This
produces the short term state h(t) (which also corresponds to the current step
output y(t)). The gates that allow these operations are regulated by four fully
connected networks, which are fed with x(t) and h(t−1). The main layer is the
one that outputs g(t), which has the role of analyzing the current inputs x(t)

and the previous short term state h(t−1). Its output is then partially stored
in the long term state. The other three fully connected layers directly control
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the gates, since they use a logistic function whose output is directed to an
element-wise multiplication, so that if the ouput is zero the gate is closed, if
it is one it is opened. In particular, f(t) controls which part of the long term
state must be deleted. i(t) controls which part of g(t) must be added to the
long term state. o(t) controls which part of the long term state should be
read and output at this time step. So essentially the ability of the LSTM cell
is to learn to recognize an important input, store it in the long term state
and learn to preserve or remove it when needed.

4.3.2 The architecture

Consider a graph with N nodes described by a binary adjacency matrix A ∈
{0, 1}N×N , a set of random walks of length T is sampled from it. They
will constitute the dataset used to train the GAN, which is in particular a
Wasserstein GAN applying gradient penalty. The choice or random walks
guarantees that the architecture is invariant with respect to permutation of
nodes. Also, it guarantees the exploitation of the sparsity of matrix, because
only its non zero entries are used. Now the structure of the generator is
addressed. As said, its neural network is a RNN with LSTM cells. So the
product of the generator is a ”time series” (v1, ...,vT ), in which the element
vt is a one-hot vector indicating which is the node at the t-th step of the
random walk. If fθ denotes the neural network with parameters θ, then at
each time step t, two quantities are produced:

• mt, the memory state of the model, which is split in the LSTM cells
in the short term state ht and long term state ct, as described in the
previous paragraph

• pt, which is a vector of logits which parametrize the probability distri-
bution of the next node to be sampled (being represent as a one-hot
vector)

In particular, the exact distribution from which vt is sampled is the cate-
gorical distribution Cat(σ(pt)) with σ being the softmax function. For time
step t+1, the input are vt and mt, with the initial state m0 being obtained
by using as an input a Gaussian random variable z (which remains the input
of the generator as in any GAN), passing through a parametric function gθ′ .

Considering that in a real graph the number of nodes N con be quite large,
using a fθ which produces a logistic vector pt ∈ R

N can be computationally
demanding. So, before passing it to the LSTM, the vector is projected to
a space of dimension H ≪ N , by using a proper transformation defined by
Wdown ∈ R

N×H . After the elaboration, the result is then brought back to the
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Figure 4.5: The scheme describes how the parameters are passed from one
time step to the following through the LSTM architecture

original space using the inverse transformation. Another type of problems
derives from the sampling of vt. In fact it is sampled from a categorical dis-
tribution. But sampling from a categorical distribution is a non differentiable
operation, causing issues with the backpropagation. The solution proposed
in [1] is to use the Straight-Through Gumbel estimator, which consists in
obtaining a transformed version of vt:

v∗
t = σ

(

pt + g

τ

)

(4.6)

with g being sampled from a Gumbel distribution and τ a temperature pa-
rameter. vt = onehot(argmaxv∗

t ) is used to be passed to the next time step,
while the gradient will flow through v∗

t during the backpropagation, being
differentiable.

To conclude, also the discriminator owns an LSTM structure. At every
time step t a vector vt is processed, until all the T vectors of the random walk
received as input are analyzed. At the end, the probability of the random
walked to be real is produced.

4.3.3 Adjacency matrix and early stopping

Once the generator has learned the probability distribution of a random walk
over the graph of interest, it can be used to produce the adjacency matrix of
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a new similar one. To this purpose, the first step is to make the generator
produce a large amount of samples (in the paper it is suggested some hun-
dreds thousands) which are exploit to build a score matrix S counting how
many times an edge appears in any random walk. S is then symmetrized im-
posing sij = sji = max{sij, sji}. To obtain the adjacency matrix, S must be
made binary. Because of some possible unbalances in the sampling of nodes,
applying strategies like thresholding or similar, may leave to singletons or
many low degree nodes to be excluded. It is instead applied the following
strategy:

1. for every node i, a neighbor j is sampled with probability pij =
sij∑
v siv

This guarantees that no singletons are present. If and edge has been
already selected, the procedure is repeated.

2. If the number of selected edges at previous point is not equal to the
number of edges of the original graph, new edges are added by sam-
pling them with probability pij =

sij∑
u,v suv

, until the desired number is

reached

As said this procedure makes the sampling of edges more balanced, but does
not guarantee connectivity. There is another issue regarding generalization
capability of the NetGAN. In fact if the solution would converge to the
very same graphs from which the random walked are sampled, which is a
legitimate outcoming of the algorithm, it would be absolutely useless. Then
some strategy should be used to guarantee that the model does not converge
to it. One viable way is to adopt an early stopping strategy which controls
how close the generated graph is to the original one. The authors propose
two ways. The first consists in keeping a sliding window of random walks
while training the GAN, using it to build the matrix S, which is enough
for link prediction purposes. When the ROC curves that allow to evaluate
the link prediction performances satisfy a certain requested precision, the
training is stopped. The other way consists in stopping when the generated
graphs overlaps with a certain percentage to the original graph: depending
on the percentage, the generalization capability is chosen, depending on how
much the generated graph is requested to be similar to the original or not.

4.3.4 Conclusions

[1] provides the results of NetGAN in the generation of new realistic graphs,
showing that its performances are comparable or even better than other
state-of-art algorithm dealing with same datasets that have been tested. A
strong advantage is that no assumption over the data is done for the training
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of this architecture, differently from the other explicit models that catch well
only the characteristics that they model, while struggling with the other that
are not taken into account. As said previously, another interesting property
of NetGAN is that it performs well also on link prediction, even if it not
trained specifically for this purpose, again obtaining comparable results to
other state-of-art models. A final remark is on the hyperparamter tuning.
It turns out that most of them are not critical, if chosen within reasonable
intervals, for the performances (evaluated on link prediction). But the length
of the random walk T is instead quite relevant, showing that the greater it
is the better, even if the improvements saturates after a certain point.

4.4 GraphGAN

In the previous paragraphs of this chapter, two different kinds of graph input
have been addressed. One was a set of point clouds, processed so that they
could be associated to a set of graphs. The second was a single graph, whose
structure had to be learned by NetGAN. In this paragraph, another archi-
tecture proposed in [4] is described, dealing with the second case of study:
GraphGAN. But if the typology of problem studied is similar to the one of
NetGAN, the idea over which GraphGAN relies is much more similar to the
one presented for the point clouds: graph embeddings. In fact, it belong to
the class of model referred to as Graph representation learning, whose ob-
jective is to represent each vertex of a graph as a low dimensional vector, to
facilitate processing tasks over the graph. In particular the GAN mechanism
is exploited to use not only the generator, but also the discriminator network.
In fact GraphGAN is conceived to produce both a generative model, capable
of learning the connectivity distribution ptrue(v|vc) between each node of the
graph vc and all the remaining nodes, and a discriminative model capable of
performing prediction over the link existence, outputting the probability of
the edge presence between two nodes. So the generator G(v, vc; θG), where
θG are the parameters to be learned, produces a neighbor v of a certain input
vertex vc respecting the true distribution ptrue(v|vc), whereas the discrimi-
nator D(v, vc; θD), where θD are the parameters to be learned, outputs the
probability that the edge between the nodes v and vc exists. They play the
well known min-max game described in the first chapter. In particular, if the
graph posses V vertices than the min-max optimization becomes:

min
θG

max
θD

V (G,D) (4.7)
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with the objective function being:

V (G,D) =

V
∑

c=1

(

Ev∼ptrue(·|vc) [logD(v, vc; θD)] + Ev∼G(·|vc;θG) [log (1−D(v, vc, θD))]
)

(4.8)

4.4.1 Discriminator optimization

The role of the discriminator is to correctly recognize pair of nodes which are
connected by an edge or not by maximizing the log probability of assigning 1
to pair extracted from ptrue(v|vc) an zero to those produced by the generator.
In particular, if dv and dvc , belonging to a k-dimensional vector space, are
the representation of v and vc for the discriminator, then:

D(v, vc) = σ(dT
v dvc) =

1

1 + ed
T
v dvc

(4.9)

Properly ascending the gradient of logD(v, vc) when the input comes from
the true distribution and the gradient of 1 − logD(v, vc) when the input
comes from the generator, trains the discriminator.

4.4.2 Generator optimization

On the contrary the generator must maximize the probability assigned to the
pairs of nodes that it produces. To this purpose, the following gradient must
be descended:

▽θGV (G,C) (4.10)

or equivalently:

V
∑

c=1

Ev∼G(·|vc) [▽θG logG(v|vc) log (1−D(v, vc))] (4.11)

But the exact form of G(v, vc) has still to be specified. One straightforward
solution, consists in apply a softmax function to all vertices:

G(v, vc) =
eg

T
v gvc

∑

v 6=vc
eg

T
v gvc

(4.12)

where gv and gvc
, belonging to a k-dimensional vector space, are the repre-

sentation of v and vc for the generator. But this solution presents two major
problems. The first is that the softmax must consider all the vertices to be
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sure to output a probability. And this operation must be repeated for each
sample considered in the gradient descent. This is extremely expensive in
terms of computational cost, considering that typical real graphs have mil-
lions of nodes. The other issue is that locally the graph presents important
structural information, as described in the paragraph regarding point clouds,
but it is not exploited, because all vertices are considered each time and all of
them are treated in the same way. To overcome these difficulties, [4] proposes
a new way to evaluate the softmax function, called Graph softmax. If vc is
the node under consideration, the first step is to perform a Breadth First
Search on the graph staring from vc. The result is a tree Tc rooted in vc.
Now, given any node v, Nc(v) is the set of the neighbors of v in Tc. Then,
given another node vi ∈ Nc(v), its relevance probability give vc is:

pc(vi|v) =
eg

T
vi
gv

∑

vj∈Nc(v)
e
gT
vj

gv

(4.13)

which is a softmax function over Nc(v). Each vertex v is reachable through
a unique path from vc belonging to Tc. Denoting this path as Pvc−→v =
(vr0 , ..., vrm) the Graph softmax for vertex vc is defined as:

G(v, vc) =
(

Πm
j=1pc(vrj |vrj−1

)
)

pc(vrm−1
|vrm) (4.14)

Other than being normalized, it can be demonstrated that the Graph softmax
decreases exponentially with the increase of the distance between v and vc,
thus providing the locality which was previously missing. Also, it can be
demonstrated that its calculation has complexityO(d log V ), with d being the
average node degree, which is typically small, but being the dependence on
V just logarithmic, the complexity is greatly reduced. To conclude, the final
aspect to be defined is the generating(sampling) strategy of the generator.
It can be done either by evaluating the Graph softmax for all vertices v 6=
vc and performing random sampling proportionally to their approximated
connectivity probabilities, or a more effective strategy is using a special online
generating method, which greatly reduces the complexity with respect to the
offline method.

4.4.3 Conclusions

Properly alternating the training of discriminator and generator, according
to the corresponding previous paragraph, results in the training of Graph-
GAN. [4] tests the GraphGAN architecture in three tasks: link prediction,
node classification and recommendation. In all the cases, GraphGAN out-
performs all the other learning techniques which are specifically trained as
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either generative or discriminative models. This is because of the adversarial
training of the two networks, which allows the GAN based architectures to
outperform other techniques in many tasks.

4.5 StackGAN

In this paragraph the attention is shifted to an architecture dealing with im-
ages generation. GANs proved to be very successful in generating realistic
images, using a variety of strategies like the progressive growing presented
in the second chapter. But while it is relatively easy to impose some kind of
constraint on the content of the image, using for example some labeling as
presented in paragraph 2.5 with conditional GAN, it is not easy to provide
an high level interface that allows to constrain the image content based on
an informal relatively complex text description. This would be particularly
beneficial to computer graphics, where the passage from the high level con-
cept to the pixel level details still requires a lot of human effort. In [3] a new
architecture called StackGAN is proposed, with the target to contribute to
solve this issue. The idea is to split the problem in two stages: in the first
one, given the text description, only the corresponding primitive shape and
colors are caught; the second, based on the output of the first stage and again
on the text content, is able to capture text information that were previously
omitted, thus producing higher resolution and photo-realistic details. These
two stages are modeled as two distinct GAN, in which the first stage GAN,
called Stage-I GAN, is used as input for the second, referred to as Stage-II
GAN.

4.5.1 Conditioning Augmentation

Before passing to the aforementioned architectures, [3] proposes a special
condition technique on the generator that helps improving the performances.
In fact, introducing a text content in the training of GAN is equivalent to
exploit the Conditional GAN architecture of chapter 2. So that if generator
and discriminator of a standard GAN are the function G(z) and D(x), where
z is the Gaussian variable and x the data input (in this case an image), then
conditioning of the two to the text is equivalent to write them as G(z, c)
and D(x, c), with c being the text content. Of course the text cannot be
passed as it is, but rather it must be embedded in some kind of vectorial
representation (denoted as t), which is assumed to be done by an external
encoder ϕt, which is pretrained independently from the GAN. In other mod-
els for image generation, the text embedding is nonlinearly transformed to
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generate conditioning latent variables to be fed to the generator. But being
the dimension of the embedding space quite large, this causes typically a
discontinuity in the latent space that as explained in the first chapter is not
desiderable. The Conditioning Augmentation technique aims at solving this
issue. This is done using ϕt not as the conditioning variable itself, but as
a set of parameters through which the variable is produced. In particular,
instead of having a c which is the result of ϕt, it used a variable ĉ which is an
independent Gaussian N (µ(ϕt),Σ(ϕt)). But because the text embedding is
used just to set the parameters of the Gaussian, the number of samples that
can be taken from the distribution can be greater than the embedding itself,
thus producing a major number of pairs (z, ĉ) to be passed to the generator
instead of (z, c). Also, to further improve the smoothness of the conditioning
distribution and to reduce the overfitting, a regularization term is added to
the generator cost function:

DKL (N (µ(ϕt),Σ(ϕt)) ‖ N (0, I)) (4.15)

with DKL being the Kullback-Leibler divergence.

4.5.2 Stage-I GAN

As previously said, the first GAN has the role to produce low resolution im-
ages, just focusing on the rough shape and colors of objects. Starting from
the embedding of the text description ϕt, which corresponds to a certain im-
age I0, the Conditioning augmentation is applied, so that a set of ĉo variables
are sampled from N (µ0(ϕt),Σ0(ϕt)). Then the discriminator, denoted as D0,
and the generator, denoted as G0, are alternatively trained in the standard
way ascending and descending respectively the cost functions:

LD0
= E(I0,t)∼pdata [logD0 (I0, ϕt)] + Ez∼pz ,t∼pdata [log (1−D0 (G0 (z, ĉ0) , ϕt))]

(4.16)

LG0
= Ez∼pz,t∼pdata

[log (1−D0 (G0 (z, ĉ0) , ϕt))] + λ DKL (N (µ0(ϕt),Σ0(ϕt)) ‖ N (0, I))
(4.17)

which are the traditional GAN objective functions but in the conditional
version, with ĉ0 being the conditioning variable and with the regularization
term for the generator, as described in the previous paragraph. Going deeper
in the implementation detail, the functions µ0 and Σ0 are implemented as
two fully connected networks receiving as input ϕt. In particular, of Σ0 is
obtained the diagonal σ0. Then ĉ0 is obtained as µ0+σ0⊙ǫ with ⊙ being the
element-wise Hadamard product and ǫ ∼ N (0, I). Then it is concatenated
with a Nz dimensional noise vector to generate aW0×H0 image using a series
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of upsampling blocks. Speaking of the discriminator, ϕt is compressed in Nd

dimension and then spatially replicated to form a Md × Md × Nd tensor.
Instead the image is reduced to dimension Md × Md using downsampling
blocks and it is concatenated with the previous tensor and the result is fed
to a 1 × 1 convolutional layer. Finally, a fully connected layeer with one
neuron output the decision score.

4.5.3 Stage-II GAN

In the previous stage, low resolution images are produced, missing very prob-
ably also part of text content information. Conditioning Stage-II GAN on
this result and again on the text embedding it is possible to improve the
generated samples up to have them similar to realistic images. So in this
case the input to the generator is not the Gaussian variable z but the result
of the generator s0 = G0(z, ĉ0) and another latent variable ĉ which derives
from the same text encoder of ĉ0 but whose average and variance parameters
are obtained with a different fully connected layer. So the equations of the
objective-functions becomes:

LD = E(I,t)∼pdata [logD (I, ϕt)] + Es0∼pG0
,t∼pdata [log (1−D (G (s0, ĉ) , ϕt))]

(4.18)

LG = Es0∼pG0
,t∼pdata

[log (1−D (G (s0, ĉ) , ϕt))] + λ DKL (N (µ0(ϕt),Σ0(ϕt)) ‖ N (0, I))
(4.19)

where:

• G is the generator of Stage-II GAN

• D is the discriminator of Stage-II GAN

• (I, t) are taken from the real data distribution

Again alternatively optimizing them with gradient descent results in the
training of generator and discriminator. Speaking of the implementation
details of the generator, ϕt is used again to generate the Ng dimensional text
embedding ĉ which is spatially replicated as a tensor in Mg×Mg×Ng. At the
same time, s0 is passed to downsampling blocks until it falls into a Mg ×Mg

space. Once the two tensors have been coupled, they undergo to a series of
residual blocks which learn a multimodal representation of the features in
the text and image domains. At the end, upsamplig blocks brings them into
a W ×H resolution. The discriminator has a similar structure to the one in
Stage-I, but it takes as fake examples both synthetic images with their text
embedding and also real images but with mismatched text embeddings.
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4.5.4 Conclusions

The strategy of splitting the learning is similar to the one of progressive grow-
ing analyzed in chapter 2 (which follows as publication date Stake-GAN),
even if here the domain of application is slightly different, because in this
case the image synthesis is related to the extraction of information from
a text. But again the idea is very successful, producing state of art per-
formances on a number of dataset, competing with or outperforming other
strategies challenging the same problem.
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