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Chapter 1

Introduction

General introduction

Cells are complex and active biological objects, comprising many structures and multiple metabolic processes. The
metabolic processes convert the chemical energy, generally under the form of Adenine TriPhosphate (ATP), presents
in the cell into mechanical work, to perform a wide variety of processes. These biological structures, which comprises
membranes, polymeric filaments and molecular machines, enter the broad class of active matter in physics, which
describes non-equilibrium processes driven by a continuous energy supply [1].

The cytoskeleton is present in most cells, and is a complex network of interlinking filaments and tubules that
extend throughout the cytoplasm. It contributes to the intracellular transport, cellular mobility, structure and
shape of the cell [2]. Filaments of the cytoskeleton belong to three families : actin filaments, microtubules and
intermediate filaments, and are the main semi-flexible polymers.

A polymer is a macromolecule, a molecular assembly of many repeated smaller molecules, the monomers. Polymers
have a biological origin, but can also be synthetic, and they have a key role in the life of a cell. They have multiple
shapes and purposes, from the DNA that encodes the genetic information to the microtubules that drive the division
of the cell. Depending on their structure and molecular assembly, polymers present different mechanical and chemical
features.

A polymer is said to be semi-flexible when its bending energy is of the same order as thermal energy [3]. Semi-
flexible polymers are characterized by their persistence length, the length over which a polymer appears straight
in the presence of Brownian forces, which is of the order of their length. If we consider a filament of length L, the
persistence length `p of this filament can be defined as

〈u(s).u(s′)〉 ∼ exp

[
−|s− s

′|
`p

]
(1.1)

where u(s) is the local tangent vector of the filament, at the curvilinear coordinate 0 ≤ s ≤ L (see Figure 1.1). If the
persistence length is large with respect to |s − s′|, the average orientation correlation is close to 1 and the polymer
is straight on the length |s − s′|. Thus, semi-flexible polymers are an intermediate state between flexible polymers
and rigid polymers (rods), with a� `p < L, a being the fiber diameter. Indeed, flexible polymers have very small
persistence length with respect to their contour length (e.g. DNA is a flexible polymer with 50nm persistence length),
and rods have an infinite persistence length. The shape of a semi-flexible polymer results from the competition
between entropic and bending forces, and at equilibrium this shape fluctuates around a rod-like shape.

Figure 1.1: Schematic representation of a semi-flexible polymer (red). Its total length (contour length) is L and
the projected length is L̄, projected on the mean orientation (dashed-dotted line). The positions r(s), r(s′) and
associated tangent vectors u(s), u(s′) are shown.
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Amongst semi-flexible polymers, actin filament is widely spread in eukaryotic cells. Actin is a family of proteins,
and is an essential element of the cytoskeleton : it determines the shape of the cell’s surface, the cell locomotion, the
pinching of the cell into two during mitosis... It is composed of monomers, the G-actin (Globular actin), that assemble
in presence of a polymerization buffer to form a polar double-helix structure of a = 5 − 9nm diameter, the F-actin
(Filament actin) [4]. The polar ends are a consequence of the G-actin shape : a pointed (-) and a barbed end (+).
Actin filaments are too thin to be directly seen using optical microscopy, but an observation is still possible using
fluorescence techniques and the analysis of their thermal fluctuations leads to measure of their flexural rigidity and
persistence length [5]. In the cell, F-actin undergoes fast polymerization and depolymerization, which plays a critical
role in cell migration for instance [6]. The filament continuously adds and looses monomers at its ends. However,
the barbed end (+) generally has higher concentration of F-actin-ATP and denotes the growing (polymerizing) end
filament, while the pointed (-) end has higher F-actin-ADP and denotes the shrinking (depolymerizing) end filament.
Adjusting the rates of polymerization / depolymerization using chemical enhancers may induce, when the two rates
are equal, a steady-state for the length of the filament. This is an out-of-equilibrium but stationary process for the
filament, the so-called treadmilling filament.

Semi-flexible polymer networks, such as the cytoskeleton, are complex structures, with many components in living
cells : biopolymers, cross-linkers, molecular motors, etc. Experimentally, in-vitro biopolymer networks are reconsti-
tuted gels containing the desired ingredients under well-controlled conditions, in order to study simplified systems.
On a macroscopic scale, semi-flexible polymer networks exhibit viscoelastic properties, due to the entangled nature of
such networks.

State of the art

Single polymer

The study of polymers is an old problem in physics and semi-flexible polymer physics started with a simple model :
the Worm Like Chain (WLC) model [7]. From this model, many equilibrium effects were investigated on theoretically
: the force-extension relation of a filament [8], dynamic light scattering of entangled networks [9, 10], the static [11]
and dynamic thermal fluctuations with power-law behaviors [12, 13], as well as experimental results on the persistence
length of actin [5, 14] for instance. Simulations of theoretical models were also proposed to support experimental
results on the dynamics of a semi-flexible polymer [15, 16]. However, all these effects have been studied at equilibrium,
under very specific conditions : in particular polymerization and depolymerization have not been considered since
it is still experimentally hard to control the disassembly rate of fibers, though it exists and is of critical importance
in multiple phenomena such as cell mobility. The effect of treadmilling on the dynamics of a semi-flexible polymer
remains uncharacterized.

Microrheology

Polymer solutions are a mix of many polymers in a solvent (usually water), than can entangle and interact via
steric interactions. These solutions exhibit very interesting optical, dielectric and mechanical features [17] : from the
mechanical point of view, such solutions are an intermediate between a solid and liquid state, since the polymers may
move inside the network they form and modify its structure. Therefore, polymer solutions exhibit both viscous and
elastic properties. Actin networks are such solutions, and their properties are still studied experimentally, for instance
the effects of cross linkers [18] in this medium or dilute and crystalline solutions [19]. The typical distance between
filaments in an actin network, the mesh size, is ξ ∼ a/

√
φ with a the diameter of a fiber and φ the polymer volume

fraction [3, 18].
Microrheology consists in the measure of the rheological properties, e.g. the viscoelasticity, of a medium. In our

case, we consider entangled actin networks, and we use beads embedded inside the medium to measure its rheological
properties. The size of the beads is choosen such that the bead is large enough to be trapped by the surrounding
network, that forms a cage, and small enough to be sensitive to the forces applied by the fluctuating fibers. Two types
of microrheology can be distinguished : passive and active microrheology. Active microrheology consists in applying
an external force (using optical or magnetic tweezers) on a bead and observing the response of the medium, but we
will not discuss about it here. Instead, we focus on passive microrheology, which is the measure of the mean square
displacement of a bead in the medium, related to its bulk properties. Passive microrheology can also be splitted into
1- and 2-particle microrheology [20, 21]. The second one, which is again not discussed here, tries to cancel the local
disturbance of the bead on the medium by measuring the correlations between two beads separated by a distance
larger than the local disturbance.

One of the fundamental properties of such networks is the shear modulus, G, that describes the viscoelastic
properties of the materials and their mechanical response under a shear stress. Shear modulus is a macroscopic
property, due to the structure of the network : entanglement of polymers, crosslinkers, steric interactions, etc. and to
the termal fluctuations of the filaments. The shear modulus shows a frequency dependence, such as plateau moduli
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Figure 1.2: Dynamics with constraints : one step of the algorithm is shown. The point n(t) is initially at a distance
r = |n(t)− n0| from n0. This constraint defines a sphere of radius r and center n0. Its motion is calculated from Eq.
(1.2) in the tangent plane to the sphere, and the constraint is exactly respected by a projection of the point onto the
sphere, to give the new position n(t+ τ)). From [29].

[22, 23, 24, 25, 26] or power-law behavior [21]. The shear modulus of actin networks has been experimentally measured
with 1- and 2-particle microrheology [27] and active microrheology [28].

However, no previous study of treadmilling filament networks has been carried out, either experimentally or
numerically.

Cytosim

Biological polymer networks are complex systems, hard to understand from a direct theoretical point of view. Sim-
ulations are therefore needed as a tool to test hypothesis and compare experiments to the theory. For instance, the
actin cytoskeleton includes a lot of different elements and active processes, making the analytical treatment sometimes
intractable. Cytosim is a C++ based software, developped by F. Nedelec and others [29], to study the stochastic dy-
namics of an ensemble of various agents such as fibers, molecular motors or other objects. Cytosim generates discrete
objects mimicking real cytoskeletal elements, described by their positions in a pre-defined space. Each object can
be defined with a very large number of tunable parameters, written in a configuration file. The coordinates of each
object are stored in a N.d vector (d the dimension, N the number of points of the object). At the molecular scale, the
equation of motion of an object is given by the (discrete) overdamped Langevin equation ([29, 30]) :

dx = µF (x, t) + dξ(t) (1.2)

with µ a mobility matrix, F the vector of forces (size N.d), dξ(t) a Brownian force (size N.d) with zero mean and

unitary variance. For some objects, such as fibers or beads, distances must be conserved, so an additional constraint
must be included. The dynamics of the Langevin equation is solved with an implicit integration scheme that uses an
Euler backward equation that avoids the appearance of spurious oscillations in the system (see [29]). For a unique
point, its Langevin equation is solved in a plane defined as the tangent subspace to the constraints manifold : this
is the so-called constrained dynamics. The constraint is then included and the positions are projected in such a way
that the constraint is respected exactly (see Fig 1.2).

To simulate microrheology experiments, we will use mostly two objects in Cytosim, fibers and beads, to generate a
network of entangled fibers surrounding a bead, and we will track the position of the bead center. Fibers are modeled
as a collection of points, representing an infinitely thin filament, composed of inextensible segments (rod-like) linking
two successive points of the fiber. The length of each segment is calculated at each step and the number of segments is
adjusted as a function of the total length L in order to respect the segmentation constraint. The bending stiffness of
the filament is calculated as a bloc-matrix and included in the Langevin equation. For simplicity, we will consider the
2D case for single filament (as most papers do). The persistence length of the chain is arbitrarily fixed via the bending
stiffness of the chain in a configuration file, as well as other parameters of the simulation (temperature, viscosity of the
solvent, time step, total simulation time, etc.). Spheres, such as the microbeads used in microrheology experiments
or as approximation of the nucleus of a cell, can also be included in Cytosim. The sphere moves a as a rigid body in
viscous fluid. Steric interactions are implemented as a Hook’s law, and the rigidity of the spring is given as a tunable
parameter.

We want to use Cytosim as a practical tool to perform in silico microrheology experiments.

Objectives and goals

The main purpose of this project is to study microrheology of actin networks, first by reproducing in silico microrheol-
ogy experiments, then including the treadmilling of polymers in the network and quantifying its effects. The rheology
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Figure 1.3: (a) F-actin helical structure, with pointed (top) and barbed (bottom) ends, from [2] ; (b) Cytosim is able
to do many different simulations : here is a 2D contractile actin network (blue filaments) with molecular motors (green
points) and cross linkers (blue points).

of entangled networks is dictated by the diameter of the exclusion tube, itself determined by the amplitude of fluctua-
tions of the filaments [22, 23, 24]. Therefore we want to start our study by considering a single ”classical” semi-flexible
polymer and look at its fluctuations at equilibrium, then introduce the polymerization and depolymerization in order
to quantify their effects on the spectrum of fluctuations of a single semi-flexible polymer and predict the behavior
of turnover entangled networks. At the same time, we want to investigate the microrheology of actin networks, first
considering ”classical” semi-flexible polymer network, then introducing the polymerization of the fibers in the network
to make predictions for the microrheology of actin networks.

Plan

This report is splitted in three parts, the two firsts being independent. In the first part we will first look at the
dynamics of a single semi-flexible polymer, deriving its partition function and the Langevin equation for the position
of the filament. From the Langevin framework, we will focus on the thermal fluctuation properties of the filament.
Then, we will present numerical results and hypothesis on the treadmilling semi-flexible polymer. In a second part, we
will study the microrheology of semi-flexible polymer (actin-like) networks, using the 1-particle passive microrheology
technique. Eventually, we will discuss our results and present what may be the future steps of this project.
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Chapter 2

Single filament study

In this chapter, we will focus on the properties of a single polymer semi-flexible filament : its equilibrium dynamical
fluctuations and preliminary results on a treadmilling polymer.

2.1 Equilibrium properties

2.1.1 Discrete chain model

A polymer consists in a chain of small molecular elements, the monomers, of given length that we will denote `.
In our study, the monomer length is not necessarily the real size of a single monomer, but a coarse-grained length,
typically the smallest value that we can observe. This length will play the role of a cut-off, and in simulations, it will
corresponds to the arbitrary spatial discretization of the polymer.

Let us consider a chain of N monomers, each denoted as Mi (i = 1, ..., N) and of mass m. The positions of the
two ends of a monomers are denoted as ri−1 (first end) and ri (last end), where ri is the position with respect to the
origin. We define r0 to be at the origin of our coordinates system, so that the polymer has no translational degrees of
freedom (translationally invariant model).

Instead of considering the positions ri, we introduce another vector, Ri, describing the orientation of the segment
linking the ends of monomers i and i− 1, such that

∀i = 1, ..., N,Ri = ri − ri−1 (2.1)

Within these conditions, we can write the Hamiltonian of this chain as a kinetic energy for each monomer (except
the monomer i = 0 since it is fixed) plus a harmonic potential that describes the interaction between two monomers

H =

N∑
i=1

p2
i

2m
+
v0

2

N∑
i=1

(|Ri| − `)2
(2.2)

with v0 a stiffness constant, homogenous to a force per unit length. This harmonic potential is a coarse-grained
quantity, where ` is the equilibrium length of a monomer 〈|Ri|〉 = `. In the limit v0 → ∞, the elastic force deriving
from the harmonic potential becomes infinite, and our chain becomes inextensible and rigid.

In semi-flexible polymer physics, a key parameter is the bending stiffness of the chain, that characterizes its
inflexibility. We introduce it as a mean field approximation

∀i = 1, ..., N, 〈Ri.Ri+1〉 = `2.σ (2.3)

Figure 2.1: The discrete polymer model, with N monomers. Coarse grained monomers are labeled as Mi and have
rod-like shape (blue ellipses). Monomer Mi has ends’ positions ri−1 and ri with respect to the origin r0 ≡ 0. The
orientation Ri of monomer Mi is defined as Eq (2.1). The angle cos(θi) = Ri.Ri+1/`

2 is represented.
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where σ = 〈cos(θi)〉 is the stiffness parameter, such that in the limit v0 → ∞, the chain becomes locally rod-like,
and the angle between two consecutive segments Ri and Ri+1 becomes flat (θi = 0) therefore

lim
v0→∞

σ = lim
θi→0

〈cos(θi)〉 = 1 (2.4)

2.1.2 Partition function

At equilibrium, we can write the discrete partition function using the Maximum Entropy Principle (see [31],
Chapter 12.) as

Z =

∫
d3NR

N∏
i=1

δ(|Ri| − `) exp

[
−µ

2

N−1∑
i=1

(Ri+1 −Ri)
2

]
(2.5)

where µ is a Lagrange multiplier for the constraint Eq. (2.3). The derivation of Eq. (2.5) is given in Appendix A.1.
It is customary to use a continous representation of the chain, so that the set of individual monomers positions

{ri} becomes a continous function r(s) where s ∈ [0, L] is the arclength along the filament. In this representation,
the partition function and the Hamiltonian are no more constants, but functionals. This continuum limit is obtained
using the limits

N →∞ `→ 0 N` = L σ → 1 (2.6)

so that we end up with the functional partition function (see derivation in Appendix A.1.4)

Z =

∫
D3R exp

[
−κ

2

∫ L

0

ds

(
∂2r(s)

∂s2

)2
]

(2.7)

D3R = lim
`→0
N→∞

d3NR

N∏
i=1

δ(|Ri| − `) (2.8)

We identify the exponent in the exponential as the - functional - Hamiltonian for a semi-flexible polymer with bending
modulus κ, as usually defined. The bending modulus is given by the relation (A.16), and from it, we can define the
persistence length, as

κ ≡ kBT`p (2.9)

where kBT is the thermal energy. This is equivalent to definition (1.1) of `p for |s− s′| → 0. The persistence length is
the characteristic length over which the filament ”looses” its spatial correlations, ie: the length over which it cannot be
considered as a rod. The typical persistence length for actin polymers is around 9−10nm [14] at 37◦C, corresponding
to a bending modulus of 0.04pN.µm2.

Inside the chain, there is a tension that contributes to the energy, by propagating strain along the chain. In our
expression of (2.7), this is hidden in the integrand (see Eq. (2.8)), which is equivalent to the discrete expression of
Eq. (2.5), with the delta-function that stands for the inextensibility of the segments. Moreover, the total length of
the chain is fixed, and is equal to L, and that is another constraint. Finally, an additional constraint arises from the
mean-field approximation we made in Eq. (2.3). All these constraints are given in Eq. (A.17) - (A.22). Using the
discrete constraints to introduce Lagrange multipliers τ0 and τ(s, t) and taking a continuum limit (cf Appendix A.2.2),
we end up with the final partition function

Z =

∫
D3R exp

{
−
∫ L

0

dsτ(s, t)

(
∂r(s)

∂s

)2

− τ0

[(
∂r(0)

∂s

)2

+

(
∂r(L)

∂s

)2
]
− κ

2

∫ L

0

(
∂2r(s)

∂s2

)2

ds

}
(2.10)

2.1.3 Langevin equation

We want now to consider the motion of the chain in a solvent with a viscosity ζs and at temperature T . Note that we
must now take r(s) as a time dependent function. We first compute the Lagrangian associated with the Hamiltonian
identified in the exponent of (2.10) and we consider also the kinetics of the chain. Using the Euler-Lagrange theorem
- valid since we are at equilibrium - we can find the equation of motion of the chain as (see Part B.2)

ρ∂2
t r − 2

(
∂sτ∂sr + τ(s, t)∂2

sr
)

+ κ∂4
sr = 0 (2.11)

To this equation of motion, we add the viscous force −ζ∂tr(s, t), where ζ = ζ‖∂sr ⊗ ∂sr + ζ⊥
[
I − ∂sr ⊗ ∂sr

]
is a friction tensor, since the longitudinal friction, ζ‖, is different from the transverse friction ζ⊥. Transverse and
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longitudinal frictions are related to the solvent viscosity ζs via ζ‖ = ζ⊥/2 = 2πζs [10]. We also add a brownian force
ξ(s, t), defined such that

〈ξ(s, t)〉 = 0 (2.12)

〈ξi(s, t)ξj(s′, t′)〉 = 2ζi,jkBTδi,jδ(s− s′)δ(t− t′) (2.13)

where i, j designate the components of the vector, δi,j is the Kronecker delta and δ(x) is the Dirac function. We
consider the overdamped regime, so the inertial term ρ∂2

t r(s, t) is negligible, and the Langevin equation for a semi-
flexible polymer with bending modulus κ in a solvent of viscosity ζs at temperature T is

ζ∂tr(s, t) + κ∂4
sr(s, t)− 2∂sτ(s, t)∂sr − 2τ(s, t)∂2

sr(s, t) = ξ(s, t) (2.14)

In absence of tension terms, the above equation ressembles a diffusion equation, but the second order spatial derivative
has been replaced by a fourth order spatial derivative. This may lead the amplitude of fluctuations to follow an
anomalous power-law dynamics, as we shall see.

2.2 Definitions of the relevant parameters

In order to properly define the relevant parameters, we follow the parametrization of [15]. Since we consider chains

such that L . `p, we can define an average orientation at time t, given by û0(t) =
∫ L
0
dsû(s,t)

|
∫ L
0
dsû(s,t)| = r(L,t)−r(0,t)

|r(L,t)−r(0,t)| = R̂(t)

which is nothing but the normalized end-to-end vector R(t) of the filament. The local orientation at point s may be
written

û(s, t) = û0(t) + δu(s, t) (2.15)

where δu is a local perturbation, that can be written in a orthonormal basis {êx(t), êy(t), û0(t)} (see Fig. ??) as

δu(s, t) = ux(s, t)êx(t) + uy(s, t)êy(t) + uz(s, t)û0(t) (2.16)

The local orientation û(s, t) and the filament position r(s, t) are related as û(s, t) = ∂sr(s, t), so that the filament
position also reads, using Eq. (2.15)

r(s, t) = r(0, t) + [s+ rz(s, t)] û0(t) + rx(s, t)êx(t) + ry(s, t)êy(t) (2.17)

where r(0, t) is the position of one of the ends of the filament. Before, we fixed it to be the origin, but in the case
where the filament is treadmilling, we have to release this constraint. The coordinates (x, y) will thus refer to the
transverse direction(s), so that r⊥(s, t) = (ux(t), uy(t)), and the coordinate z will refer to the longitudinal direction,
thus r‖(s, t) = s+ rz(s, t). In 2-d, there is only one transverse direction. The position of the center of mass, denoted
as r0(t) is given by

r0(t) =
1

L

∫ L

0

r(s, t)ds (2.18)

The projected length at time t, L̄(t), is defined as [13]

L =

∫ L̄(t)

0

ds

√
1 + (∂sr⊥(s, t))

2
(2.19)

and the mean projected length is [13]

〈L̄(t)〉 ' L
(

1− 1

6

L

`p

)
(2.20)

2.3 Scaling laws

We want now to calculate the main asymptotic behaviors of a semi-flexible filament, having either temporal or spatial
dependency. We will first consider the spatial static scaling properties at equilibrium of the polymer chain, then the
dynamical scaling properties coming from the Langevin dynamics of the chain.

8



Figure 2.2: The 3d-local frame {êx, êy, û0} for a filament of length L. Time is omitted for clarity. The local orientation
û(s) is represented as decomposition Eq. (2.15), the filament position r(s) as Eq. (2.17). The first end of filament is
denoted r(0), R is the end-to-end vector and r0 the center of mass.

2.3.1 Static scaling laws

From the equation (2.7), we can write the so called Worm Like Chain Hamiltonian

H[r] =
κ

2

∫ L

0

ds

(
∂2r(s)

∂s2

)2

(2.21)

for a continuous chain of length L, with arclength s, and with bending modulus κ. Using the Fourier representation
of r(s) as r(s) =

∫
dq
2πrqe

iqs = 1
L

∑
q rqe

iqs and inserting it into the Hamiltonian, we find

H =
κ

2

∫
dq

2π
q4|rq|2 (2.22)

Note that we do not specify the interval of integration for the Fourier integral, because depending on the characteristic
lengths, the interval may change (and it changes from one article to another in litterature). However, we have two
characteristics lengths in our system : the total length L of the polymer (roughly equal to the projected length L̄ at
first order approximation), and the segmentation of the polymer in the simulations, which is a coarse-grained monomer
length, that we will call b. Therefore, even if we do not specify here, we assume that the interval of integration is
[ 2π
L ,

2π
b ], where b� 1� L. Applying equipartition theorem on this Hamiltonian, 〈H〉 = N kBT

2 , we have

〈|rq|2〉 =
kBTL

κq4
(2.23)

which leads to the following static scaling law, that was first demonstrated by [11] :

〈δr2(`)〉 ∼ `3

`p
(2.24)

This scaling tells us that if we consider the tube formed by the transverse fluctuations of the filament, the exclusion
tube, its typical diameter tube scales as L3/2 .

2.3.2 Dynamical scaling laws

Up until now, we have only described a chain at equilibrium with no external forces. But as seen in Section 2.1.3, we
can include hydrodynamics to our equations, resulting in the Langevin equation (2.14) and makes r(s) time dependent.
Nevertheless, this Langevin equation being rather complicated to treat, we simplify our study using scaling arguments
on a simpler Langevin equation with vanishing tension terms, which is a good approximation for transverse dynamics.
Scaling arguments, give however the correct scaling laws, up to logarithmic corrections. An exact calculation of the
scalings would lead to renormalization group calculation [10], which goes beyond the scope of this report. Using
the spatial and temporal Fourier transformation, we can find the equivalent (simplified) Langevin equation for the
transverse coordinates [12, 13]

iωζ⊥r̃⊥(q, ω) = −κq4r̃⊥(q, ω) + ξ̃⊥(q, ω) (2.25)

Using the characteristic time extracted from this Langevin Equation, τ ∼ ζ⊥
κ `

4, and the relation (2.24), we find in the

asymptotic limit ζ⊥b
4

κ � t� ζ⊥L
4

κ the amplitude of fluctuations to be (see Appendix B.1)
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〈δr2
⊥(t)〉 ∼ kBT

ζ
3/4
⊥ κ1/4

t3/4 ∼ t3/4 (2.26)

This behavior has been experimentally verified [9, 32]. These calculations can be conducted more rigorously (see
Appendix B.3, [13]), considering instead of a local homogenous friction ζ⊥ the Oseen Tensor and neglecting logarithmic
terms, and it gives the following expression for the temporal MSD

〈δr2
⊥(t)〉 =

4kBT

πκ

∫ π/b

π/L

dq

q4

(
1− e−ω(q)t

)
(2.27)

where ω(q) ' κk4

ζ⊥
ln
(

1
qb

)
. However, above this range of time, the MSD saturates to the equilibrium value

〈δr2
⊥〉 =

2

45

kBT

κ
L3 (2.28)

where we have used the explicit summation over the modes for Eq. (2.27) to get the prefactor. We note that we
recover the static scaling in L3/`p, already calculated in Eq. (2.24).

For longer times, the longitudinal fluctuations will follow the same scaling law as the transverse fluctuations : the
static longitudinal fluctuations scale as 〈δr2

‖〉 ∼ `
4
1/`

2
p, and since each section of length `1 is independent, it contributes

to the mean square longitudinal fluctuations with the static longitudinal fluctuations scaling. Therefore, for a filament
of total length L, the L/`1 sections of the filament contribute with that static longitudinal scaling, so that

〈δr2
‖(t)〉 ∼

L

`1
.
`41
`2p

=
Lt3/4

`
5/4
p

∼ t3/4 (2.29)

Another scaling law was also extracted for longitudinal fluctuations on shorter times, using scaling arguments
and the fluctuation dissipation theorem [12], or renormalization group calculations [10] or studying the dynamics of
connected rods [15]. If we consider local and global inextensibility constraints carefully, we must use Eq. (2.14), but
it is rather complicated, so we use a scaling argument. The inextensibility of the segments introduces a tension in
the chain, and this tension propagates longitudinal fluctuations on short time, in competition with the local viscous
longitudinal drag. This gives us the amplitude of longitudinal fluctuations at short times as follow [12] : on one hand,
due to the friction, the entire filament cannot instantaneously moves, but only a length `2 can, with speed v‖ ∼ δr‖/t,
due to a force f‖ ∼ v‖`2, so δr‖ ∼

tf‖
`2

. On the other hand, at equilibrium, the fluctuation dissipation therorem (FDT)

gives, using Eq. (2.29), δr‖ ∼ f‖ 〈δr2
‖〉 ∼ f‖

`2t
3/4

`
5/4
p

. Thus, `2 ∼ t1/8`
5/8
p , and injecting it inside Eq. (2.29) for L = `2,

we find

〈δr2
‖(t)〉 ∼ t

7/8/`5/8p ∼ t7/8 (2.30)

We give the full expression of 〈δr2
‖(t)〉 containing all terms at Eq. (B.7).

2.3.3 Numerical simulations

The predefined contour length L and the segmentation b of the filament are changed so that the number of segments
is constant, and allow the simulations to cover different time scales : from them we can define two characteristic times

tmin = 4π
ζsb

4

κ
tmax = 4π

ζsL
4

κ
(2.31)

used to determine the time step and the duration of the simulation. The relaxation times of the largest modes are of
the order of tmax, so we (arbitrarily) set the time for a filament to be considered as equilibrated as teq = 100.tmax,
while the time step is defined as tstep = 10−2tmin , so that we cover 5 temporal decades. Typical relaxation times for a
filament of the order of 10µm are several tens of seconds. For each configuration of parameters with given fixed length
and segmentation, we generate first 50 equilibrated configurations, then we run 100 simulations for each equilibrated
configuration. Our simulation time is limited to 105tstep, in order to avoid rotational diffusion of the filament at long
times that would break our scaling laws [12] because of the distortion of the ellipsoidal cloud into a ”croissant”-like

cloud. For a filament with length 10µm, the typical rotational time is of the order of [15] τrot ∼ 1
2Dr

= ζsL
3

6kBT
' 1s

(same viscosity and temperature) while our total simulation time is of the order of tsimu ' 10−2s.
We extract the transverse and longitudinal amplitudes of fluctuations 〈δr2

⊥,‖(t)〉 for the two ends of the filament

by calculating the moments of the 2d-clouds in their local basis (see Fig. 2.3). We use diagonalized covariant matrices
to determine this basis, the largest eigenvalue (resp. smallest) of the covariant matrix corresponding to the transverse
(resp. longitudinal) direction. For a given time step of a configuration, a 2d-cloud is composed of the positions of a
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given end for the 100 simulations. The amplitudes of fluctuations in each direction correspond to the MSD along the
local cloud-axis. The MSD of each simulation is computed using the Fast Fourier Transform method (see Part 3.1 and
[33]). MSD are first averaged on all simulations and then on all configurations with the same parameters. In order to
illustrate the power-law scalings, we ”glue back together” the transverse and longitudinal amplitudes of fluctuations
of different lengths and segmentation, covering overlapping time decades (Fig. ??). As predicted in [12], [13], and
demonstrated above, we recover two scaling laws : for transverse amplitudes, the t3/4 scaling is found at large times ;
for longitudinal fluctuations, the t3/4 is found at large times, and t7/8 is found at small times.

Figure 2.3: Schematic representation of the clouds of points at a given time step t in 2D. The clouds are the collection
of ends’ positions (green dots) of the fibers (green fibers) and form ellipses (grey ellipses). Directions of the ellipses
are calculated by diagonalizing the covariant matrices for both ends : the largest (resp. smallest) eigenvalue has
eigenvector corresponding to the transversal (resp. longitudinal) fluctuations (blue direction, resp. red direction).
The eigenvectors give the local orientation of the cloud. θ is the angle of the mean orientation of the fibers (black
dotted line) with one of the vectors of the absolute frame {x̂, ŷ}. Inset : the eigenvectors ê1,2 with associated
eigenvalues λ1,2 of a diagonalized covariant matrix σ of a generic cloud.

2.4 Treadmilling

Now that we have characterized the equilibrium amplitudes of fluctuations of a semi-flexible polymer, we can ask
ourselves : what is the effect of polymerization and depolymerization on the fluctuations ? We consider a simple
model, and we will try to derive some equations to describe the dynamics. We consider a polymer of length L, at
equilibrium, following the same equations we established before, and we add polymerization (resp. depolymerization)
at the (+) (resp. (−)) end, in such a way that the rates of polymerization kp and depolymerization kd are equal. This
is an important hypothesis, that allow us to consider a stationary state where the total length of the polymer remains
constant : the polymer is said to treadmill. Moreover, we assume that the polymerization and depolymerization are
continuous processes in time. From the (de)polymerization rates, we can define the treadmilling speed vp = kp.b = kd.b
where b is the monomer length.

From a kinematic point of view - without thermal motion, and neglecting bending and tension - the equations of
motion for the position r(s, t) and orientation û(s, t )of the polymer is given by

ζ∂tr(s, t) = vpζ∂sr(s, t) = vpζû (2.32)

ζu∂tû(s, t) = vpζu∂sû(s, t) = vpζu∂
2
sr (2.33)

with û(s, t) is the local tangent vector, defined as Eq. (2.15), and we keep the translational local friction tensor,

with ζ⊥ ∼ 2ζ‖ ∼ ζs
ln(`/a) and we introduce ζu ∼ ζs`

2

ln(`/a) a (rescaled) rotational friction coefficient [34]. This describes

a polymer with a ”snake-like” motion, as we can see on Fig. 2.5 with changing orientation. It may seem that the
polymer is subjected to an external force ”pulling” it in a random direction, but the process we have here is different
: the polymer removes monomers at one end and adds monomers at its other end. Therefore, our previous Langevin
equation (2.14) for the position r(s, t), is not valid anymore, and we have to adopt another set of equations to describe
the motion of the treadmilling polymer, using the equations (see Eqs (12, 13) of [15])
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Figure 2.4: Transverse (⊥) and longitudinal (‖) amplitude of fluctuations of a semi-flexible polymer as a function of
time for different lengths (L = 2, 4, 8µm) at constant segmentation (N = 50 segments). Transversal fluctuations scales
as 〈δr2

⊥(t)〉 ∼ t3/4 while longitudinal fluctuations scale as 〈δr2
‖(t)〉 ∼ t7/8 at small times then 〈δr2

‖(t)〉 ∼ t3/4 at large
times. Dashed lines represent the different power-laws.

ζu∂tû(s, t) =
(
I − û(s, t)⊗ û(s, t)

)
. [χu(s, t) + ξu(s, t)] (2.34)

ζ∂tr(s, t) = ∂sχ(s, t) + ξ(s, t) (2.35)

χ(s, t) = −κ∂3
sr(s, t) + τ(s, t)∂sr(s, t) (2.36)

with ξu(s, t) ∼ `.ξ(s, t) random force with zero mean and 〈ξu,i(s, t)ξu,j(s, t′)〉 = 2kBTbζuδi,jδ(t− t′)δ(s− s′), and ∂sχ
is a force term that includes both bending and tension forces.

From those equations we can extract the average properties, i.e : the position of the center of mass r0(t) and the
mean orientation û0(t), as defined in 2.2, and they follow the Langevin equations (Eqs (34, 35) of [15])

ζu∂tû0(t) =
(
I − û0(t)⊗ û0(t)

)
.ξu,0(t) (2.37)

ζ∂tr0(t) = ξ0(t) (2.38)

where ξ0(t) = 1
L

∫ L
0
dsξ(s, t) and ξu,0(t) = 2

∫ L
0
s [ξ(s, t)− ξ0(t)] ds.

Equations (2.37, 2.38) give the dynamic orientation correlations and the MSD of the center of mass [15]

〈û0(t).û0(0)〉 = e−2tDrot (2.39)

〈[r0(t)− r0(0)]
2〉 = 2dDtrt (2.40)

where d is the dimension, Drot = πζskBTL
3

2d [34] is the rotational diffusion of a rod and Dtr the translational diffusion
constant. The MSD of the center of mass of a treadmilling semi-flexible polymer is expected to follow a ballistic
diffusion, as shown on Fig. 2.5.

We propose to include the effect of treadmiling as the kinematic terms of Eqs. (2.32, 2.33) in the above Langevin
equations, such that

ζu∂tû(s, t) =
(
I − û(s, t)⊗ û(s, t)

)
. [ζuvp∂sû(s, t) + χu + ξu(s, t)] (2.41)

ζ∂tr(s, t) = ζvp∂sr(s, t) + ∂sχ+ ξ(s, t) (2.42)

and we obtain the equations for the mean orientation and center of mass:

ζu∂tû0(t) =
(
I − û0 ⊗ û0

)
. [ζuvp(û(L, t)− û(L, t)) + ξu,0(t)] (2.43)

ζ∂tr0(t) = ζvp
r(L, t)− r(0, t)

L
+ ξ0(t) (2.44)
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Figure 2.5: Left : MSD of the center of mass of classical (black circles) and treadmilling (black squares) filaments.
The center of mass of the classical filament follows a diffusive power law, as predicted by Eq. (2.40), while the center
of mass of the treadmilling filament follows a ballistic power law. Dashed lines are a guide to the eye for the two power
laws. Right : treadmilling filament timelapse with regular speckles, the green (resp. the red) end is the growing
(resp. shrinking) end (tstep = 10−3s, L = 8µm). Speckles (white dots on the fiber) are represented for convenience,
but have no physical meaning.
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Chapter 3

Microrheology

3.1 Single bead passive microrheology in a pure solvent

Langevin framework is useful for the study of intracellular and microrheology properties [35]. The Langevin Equation
is the extension of Newton’s second law, but for a stochastic process, in our case for a Brownian particle. If we consider
a particle of mass m, position x(t) at time t, we can write the following equation of motion

mẍ(t) = −γẋ(t) + ξ(t) (3.1)

where γ is a friction coefficient, given by the Stoke’s law for a bead of radius R in a fluid of viscosity η : Fdrag =
−6πηRẋ = −γẋ. ξ(t) is the thermal motion, with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t − t′). This is the so-called
Langevin equation. In cases where inertia is negligible, which is the case in most biological systems, we can write the
overdamped Langevin equation

γẋ(t) = ξ(t) (3.2)

The Mean Square Displacement (MSD) is defined as :

〈∆x2(τ)〉 ≡ 〈[x(t+ τ)− x(t)]
2〉t =

∫ T

0

[x(t+ τ)− x(t)]
2

T
dt (3.3)

It gives us information about the spreading of a particle, if it is only due to diffusion or helped (or slowed down)
by another process, for instance a viscoelastic medium. In a discrete setting, where t = k.tstep, k = 0, ..., n − 1, and
T = (n− 1).tstep, we can write the MSD as

MSD(k) =
1

n− k

n−k−1∑
m=0

[x(k +m)− x(k)]
2

(3.4)

A direct and naive calculation scales as O(n2) and is computationally too costly. Therefore we must find another
method to get it with a smaller complexity. This is done using Fast Fourier Transform (FFT) on trajectory vectors,
as described in [33].

If we want to know which diffusion regime the bead follows, we can compute the MSD from the overdamped
Langevin equation Eq. (3.2) as

〈∆x2(t)〉 =

∫
dω

2π
〈x̃(ω)x̃(−ω)〉

[
1− e−iωt

]
(3.5)

with x̃(ω) the Fourier transform of x(t). From this, the Fourier transformed overdamped Langevin equation from Eq.
(3.2) is

ω2 〈x̃(ω)x̃(−ω)〉 = 〈ξ̃(ω)ξ̃(−ω)〉 = 2d
kBT

γ
(3.6)

with d the dimension (the d directions are independent in Fourier space, hence we have d times the same Fourier
integral). Injecting this result in Eq. (3.5), we can solve the integral (with a contour integration, replacing ω2 by
ω2 + ω2

0 and taking the limit ω2
0 → 0, see [36], Chapter 7.) such that

〈∆x2(t)〉 ∼ 2dDt (3.7)

where we have used the Stokes-Einstein relation D = kBT
γ , and d stands for the dimension. In general, the MSD can

be written as a power-law 〈∆x2(t)〉 ∼ tα. The coefficient α describes the type of diffusion regime : α = 1 is the normal
diffusion, whereas α < 1 is a subdiffusive regime (the diffusion is ”slowed down”) and α > 1 is a superdiffusive regime.
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3.2 Single bead microrheology in an actin network

3.2.1 Complex Elastic Modulus

Using Langevin framework, we can extract macroscopic properties of a polymer network such as the shear modulus.
From Eq. (3.2), and writing x(t), the position of the bead at time t, with the force-displacement relation

x(t) =

∫ t

−∞
dt′χ(t− t′)F (t′)⇔ x̃(ω) = χ̃(ω)F̃ (ω) (3.8)

where F (t′) is the instantaneous external force applied on the bead and χ(t − t′) the mechanical response function,
F̃ (ω) and χ̃(ω) their respective associated Fourier transforms. The Langevin equation for the bead in the network
can be written in Fourier space as

iωγ̃(ω)x̃(ω) = F̃ (ω) + ξ̃(ω) =
x̃(ω)

χ̃(ω)
+ ξ̃(ω) (3.9)

where iωγ̃(ω)x̃(ω) is the viscous part, x̃(ω)
χ̃(ω) is the elastic part and ξ̃(ω) is the thermal part. γ̃(ω) is the Fourier

transform of the time-dependent friction, since we consider the general case.
The shear modulus, G(t), characterizes the reponse of the material to a shear stress and it is the macroscopic

quantity we want to compute. We introduce a complex shear modulus as [34] G∗(ω) =
∫
dteiωtG(t), and we assume

that G∗ has both storage (real) and loss (imaginary) moduli [20], such that G∗(ω) = G′(ω) + iG”(ω). The complex
shear modulus is defined as generalizing the Stokes-Einstein Relation (GSER) to complex material [20]

x̃(ω) =
F̃ (ω)

6πRG∗(ω)
(3.10)

Using the Force-displacement equation (3.8) it can be directly related to the response function χ̃(ω) as

G∗(ω) =
1

6πRχ̃(ω)
(3.11)

We finally introduce the Power Spectral Density (PSD), ie: the time-averaged cross correlation function

C(ω) =

∫
dteiωt 〈x(t).x(0)〉 (3.12)

where 〈x(t).x(0)〉 = 〈x2(t)〉− 1
2 〈∆x

2(t)〉 up to a constant time-independent factor (see Appendix B.3). At equilibrium,
the fluctuation dissipation theorem is expressed as [35]

C(ω) =
2kBT

ω
χ̃”(ω) (3.13)

with χ̃(ω) = χ̃′(ω) + iχ̃”(ω) as for G∗. Therefore, we established a relation between the MSD of the bead and the loss
modulus

C(ω) =
2kBT

ω
= [χ̃(ω)] = − 2kBT

6πRω

G”(ω)

|G∗(ω)|2
(3.14)

and the storage modulus is be obtained using Kramers-Kronig relation

G′(ω) =
2

π

∫ ∞
0

dΩ
ΩG”(Ω)

Ω2 − ω2
(3.15)

3.2.2 Scaling properties

When a bead is surrounded by a network, its MSD is affected, and is related to the macroscopic properties of the
network. In particular, for gels of semiflexible polymers, such as actin networks, the MSD follows three different
regimes [37, 38]

〈∆x2(t)〉 ∼ tα (3.16)

The short times regime is characterized by the interaction of the bead with the closest actin filaments. The
surrounding actin filaments form a cage where the bead is trapped and their fluctuations give an anomalous power
law for the MSD, with exponent α = 0.75, [13, 16, 28]. The long times regime corresponds to the viscous-like regime,
where the MSD of the bead corresponds to the one of the medium, that is normal diffusion, so that the power law has
exponent α = 1, [16]. The intermediate times regime is characterized by the exponent α = 0.5, [20, 37].
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These different regimes can be interpreted in terms of storage and loss moduli, G′(ω) and G′′(ω), which both follow
the same power law [28, 39] in short-time regime

G′(ω) ∼ G”(ω) ∼ ω3/4 (3.17)

3.2.3 Simulations

First, we test single bead of radius R = 1µm in pure water with viscosity η = 0.001pN.s.µm2 at temperature kBT =
0.00428pN.µm. We run 50 simulations with same initial conditions and parameters, in a 3D space. The MSD of the
bead is computed using Fast Fourier Transform method for each simulations and is then averaged over configurations.
We extract from the average the time-exponent α ≈ 0.998 and the diffusion coefficient D ' 2, 3.10−4µm2.s−1. Results
are shown in Fig. 3.1.

In order to simulate microrheology of an actin network, we generate a square volume of side L with periodic
boundary conditions, filled with N actin filaments of length ` and one bead of radius R. A Hook’s law with predefined
spring rigidity describes the filament-filament and bead-filament steric interactions. Simulations start from an initial
state with straight filaments that relax while the bead moves due to the interactions with filament. Positions of all
objects are recorded at every time step, and we extract the MSD of the bead using FFT method. Results are shown in
Fig. 3.1 for an actin network with N = 100 filaments and a bead of radius R. We also test the effect of treadmilling at
different velocities: we assume that all polymer have the same constant polymerization/depolymerization rates. We
investigate four different velocities, the two lowest behing similar to the biological treadmilling velocities.

The MSD of the bead in the passive actin network does not follow any of the predicted scaling laws, which is
surprising. None of our simulations gave the expected power law for the bead MSD, either by changing the number of
fibers, the constant of the steric interaction value, the size of the bead, etc. This may be due to the implementation
of the bead-fiber steric interaction in Cytosim : because of the very nature of the implemented Hook’s law for the
repulsion, some fibers can penetrate the bead and are repelled, generating unphysical movements of the bead.

The MSD of the active networks leads to two observations: the treadmilling of polymers fluidizes the network,
giving a diffusive MSD instead of the expected sub-diffusive. Besides, an increase of the treadmilling velocity increases
the diffusion constant of the NSD, which corresponds to a decrease of the viscosity of the network.
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(a)

(b)

Figure 3.1: a Mean Square Displacement of a bead of radius 1µm in pure water (blue circles) and in an actin network
(black crosses, filaments of length L = 5µm, actin volume fraction φ = 1.5×10−3) versus time (kBT = 0.00428pN.µm,
η = 0.001pN.s.µm−2 ). The power-law exponent of the MSD for pure solvent is α ' 0.998 and the diffusion constant
is D ' 2, 3.10−4µm2.s−1. The dashed-line red power law is a guide to the eye. b a screenshot of an actin network,
generated by Cytosim, with 1000 fibers and a bead of 1µm radius
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Chapter 4

Conclusion

We have seen that Cytosim was able to simulate single semi-flexible polymer, giving the predicted dynamical scaling
laws for the transverse and longitudinal amplitudes of fluctuations over several time decades. We introduced the
problem of the polymerization and depolymerization for the semi-flexible filament, that has never been studied. We
proposed solutions to describe the dynamics treadmilling semi-flexible polymer, as Langevin equations for the mean
orientation and the center of mass that include active terms we explicited. As predicted, the MSD of the center of
mass of a classical filament follows a diffusive law. The MSD of the center of mass of a treadmilling filament follows
a ballistic diffusion, though it should be proved analytically. Analysis of the orientational correlations still has to
be performed, to compare the effect of the treadmill to the classical case. For both, the effect of the polymeriza-
tion/depolymerization speed also needs to be quantified. Besides, the Langevin equations we gave should give us
predictions for the amplitudes of fluctuations of a treadmilling polymer. Further investigation on the analogy between
active polymer and active brownian particles is already on.

Microrheology of actin networks was not successful, since all our simulations of actin networks gave wrong scaling
laws : the MSD of the bead was diffusive, instead of being anomalous as predicted by the theory and experiments. This
may be due to Cytosim itself and to the implementation of steric interactions. Therefore, we need to investigate on the
implementation of the steric interaction, since the spring constant value of the interaction is arbitrary and penetration
of a fiber in the bead is not physically correct. However, this will be a huge work of programming. Another solution to
solve this problem may be to use the 2-bead passive microrheology. When the in-silico microrheology of equilibrium
actin networks will give observed scaling laws, we will carefully adress the treadmilling effect problem, in order to
make predictions on the bulk properties of polymerizing entangled networks.
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Appendix A

Langevin equation derivation

A.1 Rigid rod segments

In this section, we want to find the analytical expression of the partition function of a chain of rigid rod segments,
using the maximum entropy principle [40, 41, 31].

A.1.1 Hamiltonian

Firstly, we will try to express the partition function of a rigid rod chain, in a discrete way. We consider a chain of
N + 1 monomers (r0, r1, ..., rN ), each of mass m, interacting with the harmonic potential :

V =
v0

2

N∑
i=1

(|ri − ri−1| − `)2
(A.1)

where v0 is a constant stiffness (homogenous to a force per unit length) and ` is the equilibrium distance of the points,
standing for the length of the segments. This potential does not describe the rigid rod model, but a ”soft” rigidity
model, useful for the calculations. However, taking the limit v0 → ∞, the constant stiffness being very large implies
that the segment are effectively rigid. The first monomer, r0 is fixed at the origin, so that we remove the translational
degrees of freedom, not relevant for the partition function, since the model is translationnally invariant.

Secondly, denoting Ri = ri − ri−1, and considering both the kinetic and the potential energies, we end up with
the following discrete Hamiltonian :

H =

N∑
i=1

p2
i

2m
+
v0

2

N∑
i=1

(|Ri| − `)2
(A.2)

The bending stiffness of our chain is described by the constraint :

〈Ri.Ri+1〉 = `2σ, i = 1, ..., N − 1 (A.3)

where σ is the stiffness parameter, equal to 〈cos(θi)〉 with θi the angle between Ri and Ri+1.

A.1.2 Partition function

Taking into account the constraint on the bonds (A.3), and using Lagrange multipliers, the partition function
of the chain can be straightforwardly written as

Z =

∫
d3NRd3Np exp

[
−βH+

N−1∑
i=1

µiRi.Ri+1

]
(A.4)

where β = 1/kBT and {µi} are a set of Lagrange multipliers for the constraint Eq. (A.3). Using the expression of
the hamiltonian (A.2) we get a simple Gaussian integral that we integrate
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Z =

∫
d3NRd3Np exp

[
−β

N∑
i=1

(
p2
i

2m
+
v0

2
(|Ri| − `)2

)]
exp

[
N−1∑
i=1

µiRi.Ri+1

]

=

∫ N∏
i=1

d3pi exp

[
−β p

2
i

2m

] ∫
d3NR exp

[
−β

N∑
i=1

v0

2
(|Ri| − `)2

]
exp

[
N−1∑
i=1

µiRi.Ri+1

]

=

(
2πm

β

)3N/2 ∫
d3NR exp

[
−β

N∑
i=1

v0

2
(|Ri| − `)2

]
exp

[
N−1∑
i=1

µiRi.Ri+1

]

=

(
2πm

β

)3N/2(
2π

βv0

)N/2 ∫
d3NR exp

[
N−1∑
i=1

µiRi.Ri+1

](
βv0

2π

)N/2
exp

[
−β

N∑
i=1

v0

2
(|Ri| − `)2

]

−−−−→
v0→∞

C(m,β, v0)

∫
d3NR exp

[
N−1∑
i=1

µiRi.Ri+1

]
N∏
i=1

δ (|Ri| − `)

where we used the Gaussian representation of the delta function

δ(x) = lim
σ→0

√
1

2πσ2
e−

x2

2σ2 (A.5)

The term C(m,β, v0) is a constant that disappears when taking averages or if we consider the free energy, since it
does not depend on the µi. Therefore we set it equal to 1.

Finally, we have

Z =

∫
d3NR

N∏
i=1

δ(|Ri| − `) exp

[
N−1∑
i=1

µiRi.Ri+1

]
(A.6)

the partition function of a chain of rodlike segments, as in [10]

A.1.3 Evaluation of the partition function

The partition function (A.6) can be evaluated : the delta function imposes that |Ri| = `, so we have

µiRi+1.Ri = µi`
2 cos(θi); d

3Ri = `2 sin(θi)dθidφi

hence

Z =
N∏
i=1

∫ 2π

0

dφi

∫ π

0

dθi sin(θi) exp
[
µi`

2 cos(θi)
]

= (2π`2)N
N∏
i=1

[
exp(µi`

2 cos(θi))

µi`2

]0

π

= (4π`2)

N∏
i=1

sinh(µi`
2)

µi`2

We can now find an expression for the Lagrange multipliers µi with the following reasoning : let be an averaged
quantity 〈hk〉 with average value φk. According to the maximum entropy principle [31], the average value is equal to

〈hk〉 = φk =
∂

∂λk
ln(Z) (A.7)

where Z is the partition function and {λk} is a set of k Lagrange multipliers.
In our case, we have, using Eq. (A.3):

〈Ri+1.Ri〉 = σ`2 =
∂

∂µi
ln(Z) = `2 coth(µi`

2)− `2

µi`2
(A.8)

hence

µi`
2 = L−1(σ),∀i = 1, ..., N (A.9)

where L−1 is the inverse of the Langevin function, defined as L(x) = coth(x)− 1
x .

Since L−1(σ) does not depend on i, the Lagrange multipliers are the same and we simply write them as µ.
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A.1.4 Path integral expression of the partition function

We also write the partition function in the formalism of path integral, taking the continuum limit. First, observing
that 2Ri+1.Ri = 2`2 − (Ri+1 −Ri)

2, and injecting it in Eq.(A.6), we have

Z = e2µ(N−1)`2
∫
d3NR

N∏
i=1

δ(|Ri| − `) exp

[
−µ

2

N−1∑
i=1

(Ri+1 −Ri)
2

]
(A.10)

As before, the prefactor is not important, since it will disappear for averaged quantities, so we discard it. Since
we’re in the discrete case, we need to take the continuum limit of our model, such that

N →∞ `→ 0 N` = L σ → 1 (A.11)

with L the total length of the filament. Thus the discrete vectors ri become continuous vectors r(s), where s ∈ [0, L]
is the arclength, and we can identify the continuous derivative as :

∂r

∂s
= lim
`→0

ri − ri−1

`
(A.12)

∂2r

∂s2
= lim
`→0

(
ri+1 − 2ri + ri−1

`2
)2 (A.13)∫ L

0

ds... = lim
`→0
N→∞

`

N−1∑
i=1

... (A.14)

so, using the definition Ri = ri − ri−1, we have

µ

2

N∑
i=1

(Ri+1 −Ri)
2 =

µ`3

2
`

N∑
i=1

(
Ri+1 −Ri

`2
)2 = lim

`→0
N→∞

κ

2

∫ L

0

ds

(
∂2r(s)

∂s2

)2

(A.15)

where we have defined the bending modulus κ as

lim
`→0

µ`3 ≡ κ (A.16)

Therefore, the partition function of Eq. (A.10) becomes the one written in Eq. (2.7).

A.2 Continuous persistent chain

A.2.1 Equivalence between discrete and continous constraints

From the discrete model, we have a set of constraints as follow :

〈
N−1∑
i=2

R2
i 〉 = (N − 2)`2 (A.17)

〈R2
1〉 = 〈R2

N 〉 = `2 (A.18)

〈
N−1∑
i=1

Ri.Ri+1〉 = (N − 1)`2σ (A.19)

that can be respectively mapped in the continuous version using Eqs. (A.11) :

〈
∫ L

0

ds

(
∂r(s)

∂s

)2

〉 = L (A.20)

〈
(
∂r(s)

∂s

)2

s=0,L

〉 = 1 (A.21)

lim
`→0

` 〈
∫ `

0

ds

(
∂2r(s)

∂s2

)2

〉 = 4pL (A.22)

where N` = L and
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lim
`→0
σ→1

`

1− σ
=

1

2p
= `p (A.23)

is the persistence length.
Indeed, taking Eq. (A.3), and using the definition Ri = ri − ri−1, we have

〈(Ri+1 −Ri)
2〉 = `4 〈

(
Ri+1 −Ri

`2

)2

〉 = 2`2(1− σ)

` 〈
(
ri+1 − 2ri + ri−1

`2

)2

〉 = 2
(1− σ)

`

if we now go to the continuum limit, using Eq. (A.13), we obtain

lim
`→0
σ→1

` 〈
(
∂2r(s)

∂s2

)2

〉 = lim
`→0
σ→1

2
(1− σ)

`
=

(A.23)
4p⇒ lim

`→0
`

∫ L

0

ds 〈
(
∂2r(s)

∂s2

)2

〉 = 4p

∫ L

0

ds = 4pL = 2
L

`p
(A.24)

which is Eq. (A.22)

A.2.2 Continous partition function under constraints

We have four different constraints for the discrete model, so we need four different Lagrange multipliers : λ, λ1, λN
and µ. Discarding all constant prefactors (with respect to space), we start with the following partition function :

Z =

∫
d3NR exp

[
−λ

N−1∑
i=2

R2
i − λ1R

2
1 − λNR2

N + µ

N−1∑
i=1

Ri+1.Ri

]
=

∫
d3NReg({R}) (A.25)

Considering only the exponent in the exponential, we have :

g({R}) =− λ
N−1∑
i=2

R2
i − λ1R

2
1 − λNR2

N +
µ

2

N−1∑
i=1

[
R2
i +R2

i+1 − (Ri+1 −Ri)
2
]

=− λ
N−1∑
i=2

R2
i − λ1R

2
1 − λNR2

N

+
µ

2

[
R2

1 +R2
N + 2

N−1∑
i=2

R2
i −

N−1∑
i=1

(Ri+1 −Ri)
2

]

=− (λ− µ)

N−1∑
i=2

R2
i − (λ1 −

µ

2
)R2

1 − (λN −
µ

2
)R2

N+

− µ

2

N−1∑
i=1

(Ri+1 −Ri)
2

=− (λ− µ)`2
N−1∑
i=2

(
ri − ri−1

`

)2

− (λ1 −
µ

2
)`2
(
r1 − r0

`

)2

− (λN

− µ

2
)`2
(
rN − rN−1

`

)2

− µ

2
`4
N−1∑
i=1

(
ri+1 − 2ri + ri−1

`2

)2

and using relations (A.12, A.13, A.14), we obtain by taking the limit of the partition function :

Z = lim
`→0
N→∞
σ→1

∫
D3R exp

[
−τ
∫ L

0

ds

(
∂r(s)

∂s

)2

− τ0

[(
∂r(0)

∂s

)2

+

(
∂r(L)

∂s

)2
]
− κ

2

∫ L

0

(
∂2r(s)

∂s2

)2

ds

]
(A.26)

where

τ = lim
`→0
N→∞

(λ− µ)` τ0 = lim
`→0
N→∞

(λ1, N − µ

2
)`2 κ ≡ lim

`→0
N→∞

µ`3 D3R = lim
N→∞

d3Nx (A.27)

22



A.3 Langevin equation

A.3.1 Equation of motion

Considering the partition function of Eq. (A.26), we can identify the part in the exponant as the potential energy of
an Hamiltonian. Until now, we discarded the kinetic part of the Hamiltonian, since it was not relevant for averaged
quantities, but we want to find what is the equation of motion of our chain. Therefore, we must now include the
kinetic part in our Hamiltonian and thus in the partition function :

Z ′ = Z.
∫
D3p exp

[
−β
∫ L

0

ds
p2

2ρ

]
(A.28)

where ρ is the lineic mass. With these two parts (kinetics and potential) of the Hamiltonian we can write the
Lagrangian of our system as :

Lτ =

∫ L

0

ds
ρ

2
ṙ2(s, t)−

∫ L

0

dsτ(s, t)

(
∂r(s, t)

∂s

)2

− τ0

[(
∂r(0, t)

∂s

)2

+

(
∂r(L, t)

∂s

)2
]
− κ

2

∫ L

0

ds

(
∂2r(s, t)

∂s2

)2

(A.29)

with Lτ = Lτ (r, ṙ, t) and τ(s, t) a local instantenous Lagrange multiplier [10]. The derivatives of Lτ with respect to
r and ṙ are

δL [τr]

δr
= 2

(
∂sτ∂sr + τ∂2

sr
)
− κ∂4

sr and
δLτ [ṙ]

δṙ
= ρṙ (A.30)

with boundary conditions [
2τ(s, t)∂sr − κ∂3

sr
]L
0

=
[
2τ0∂sr ± κ∂2

sr
]L
0

= 0 (A.31)

Using the Euler-Lagrange theorem :
δLτ [r]

δr
− d

dt

δLτ [ṙ]

δṙ
= 0 (A.32)

we find the deterministic equation of motion for the chain as :

ρ∂2
t r − 2

(
∂sτ∂sr + τ(s, t)∂2

sr
)

+ κ∂4
sr = 0 (A.33)

A.3.2 Langevin equation

We consider that the chain is in a solvent with friction ζs, at temperature T . We neglect the inertial terms, since we’re
in an overdamped regime, so ρ∂2

t r = 0. We must add to the deterministic equation of motion (A.33) the viscous force

Fdrag(s, t) = −ζ∂tr(s, t) (A.34)

where ζ is a friction tensor, and a stochastic force, ξ(s, t), due to the brownian motion, defined as Eqs. (2.12, 2.13).

Writing the balance equation, we find the Langevin equation as Eq. 2.14

ζ∂tr(s, t) + κ∂4
sr(s, t)− 2∂sτ(s, t)∂sr − 2τ(s, t)∂2

sr(s, t) = ξ(s, t) (A.35)

Here, we do not include hydrodynamics in our considerations, since their contribution is logarithmic and thus
negligible.
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Appendix B

Scaling Laws derivations

B.1 Worm Like Chain Hamiltonian

From Eq. (A.26), we can write the associated Hamiltonian, which is the so called (continuous) WLC Hamiltonian.

H[r] =
κ

2

N∑
i=1

Ri.Ri+1 =
κ

2

∫ L

0

ds

(
∂2r(s)

∂s2

)2

(B.1)

These expressions are the discrete and continous versions of the Hamiltonian, introduced by Kratky and Porod [7],

where Ri is a tangential vector, equivalent to u(s) = ∂r(s)
∂s in the continous framework.

Using the Fourier representation of r(s), we have

H =
κ

2

∫ L

0

ds

(
∂2
s

∫
dq

2π
rqe

iqs

)
.

(
∂2
s

∫
dp

2π
rpe

ips

)
=
κ

2

∫ L

0

ds

(∫
dq

2π
(−q2)rqe

iqs

)
.

(∫
dp

2π
(−p2)rpe

ips

)
=
κ

2

∫
dq

2π

∫
dp

2π
(−p2)rp(−q2)rq

∫ L

0

ei(q+p)sds

=
κ

2

∫
dq

2π
q4rqr−q =

κ

2

∫
dq

2π
q4|rq|2

where we used the fact that
∫ L

0
dsei(q+p)s = 2πδ(p−q) and that the modes are not decoupled, because the Hamiltonian

is real, hence they obey the relation r−q = r∗q . The Hamiltonian being quadratic, we can use the equipartition theorem

〈H〉 = N kBT
2 . Switching to the discrete fourier representation of r(s), we obtain

N
kBT

2
= N

κ

2L
q4 〈|rq|2〉

hence

〈|rq|2〉 ∼
L

`pq4
(B.2)

where we used Eq. (2.9) for the persistence length `p. We can now define the mean square displacement as for Eq.

(3.3) but in space, 〈δr2(`)〉 = 〈[r(s+ `)− r(s)]
2〉 where 〈...〉 = 1

L

∫ L
0
ds... is an average over the configurations.
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〈δr2(`)〉 =
1

L− `

∫ L−`

0

ds [r(s+ `)− r(s)]
2

=
1

L− `

∫ L−`

0

ds

[
1

L

∑
q

rqe
iq(s+`) − 1

L

∑
q

rqe
iqs

]2

=
1

L− `

∫ L−`

0

ds

[
1

L2

∑
q

∑
p

rqrpe
i(q+p)(s+`) +

1

L2

∑
q

∑
p

rqrpe
i(q+p)s − 2

L2

∑
q

∑
p

rqrpe
i(q+p)seiq`

]

=
2

L2(L− `)

[
L

2

∑
q,p

rqrp
(
1− eiq`

)
δq,−p

]
=

1

L(L− `)
∑
q

[
|rq|2

(
1− eiq`

)]
=

1

L(L− `)
kBTL

κ

∑
q

1− eiq`

q4

=
L�1�a

1

(L− `)
kBT

κ

∫ 1/a

1/L

dq

2π

1− eiq`

q4
∼ `3

`p

where we integrated at first order, and we obtain the scaling relation Eq. (2.24).

B.2 Langevin equation

We may now be able to calculate the dynamical temporal scaling law of the fluctuations. Starting with the Langevin
equation (A.35) for transverse fluctuations, we can set the Lagrange multiplier τ(s, t) to zero since tension is negligible
in transverse directions, such that

ζ⊥∂tr⊥(s, t) = −κ∂4
sr(s, t) + ξ⊥(s, t) (B.3)

and using the Fourier representation of r⊥(s, t) in frequency and wavenumber space, we find the equivalent Langevin
equation in Fourier space for the transverse fluctuations

iωζ⊥r̃⊥(q, ω) = −κq4r̃⊥(q, ω) + ξ̃⊥(q, ω) (B.4)

With Eq. (B.4), and neglecting thermal fluctuations, we can write a first scaling relation in Fourier space then in
real space

ζ⊥ω ∼ κq4 ⇒ τ` ∼
ζ⊥
κ
`4 (B.5)

where τ` is a typical relaxation time, associated to the length `. Using Eq. (B.5) in Eq. (2.24), we find

〈δr2
⊥(t)〉 ∼ kBT

ζ
3/4
⊥ κ1/4

t3/4 ∼ t3/4 (B.6)

The longitudinal amplitudes of fluctuations scale as 〈δr2
‖(t)〉 ∼ t7/8/`

5/8
p (Eq. (2.30)), so if we include friction and

temperature, the scaling is

〈δr2
‖(t)〉 ∼

(kBT )5

ζ
35/8
‖ κ5/8

t7/8 ∼ t7/8 (B.7)

B.3 Oseen Tensor

Instead of considering a constant friction ζ⊥, we may consider a local friction with the Oseen tensor as in [13], so that
we can write the Langevin equation for transverse fluctuations as

∂tr⊥(s, t) = −
∫
ds′Λ(|s− s′|)κ∂4

s′r⊥(s′, t) + ξ⊥(s, t) (B.8)

where Λ(|s− s′|) is the Oseen tensor, such that [34, 13, 9]

Λ(|s− s′|) =
1

8πζ⊥|s− s′|
(B.9)

and its spatial Fourier transform is [42]
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Λ(q) =
1

4πζ⊥

∫ π/L

π/a

ds
cos(qs)

s
=
a→0
L→∞

− 1

4πζ⊥

[
−γE − ln(

1

qa
)

]
(B.10)

where γE is the Euler constant and a is the cut-off length of our system. For qa → 0, Λ(q) diverges logarithmically.
Therefore, introducing the time-dependent spatial Fourier transform of r⊥(s, t) as r⊥,q(t) =

∫
dq
2πr⊥(s, t)eiqs, we obtain

the Langevin equation

∂tr⊥,q(t) = −ω(q)r⊥,q(t) + ξq(t) (B.11)

where ξ⊥,q(t) is the spatial Fourier transform of the Gaussian White Noise ξ⊥(s, t) and ω(q) is asymptotically [13] :

ω(q) ' κk4

ζ⊥
ln

[
1

qa

]
(B.12)

so the long-range hydrodynamic interaction has marginal effect, and we can neglect it. We find the time dependent
undulation correlation function as

〈r(i)
⊥,q(t)r

(j)
⊥,−q(0)〉 = δi,j

kBT

κq4
e−ω(q)t (B.13)

Thus, the transverse MSD is (in 3D) the sum of two transverse components, and is, using the discrete Fourier
representation

〈δr2
⊥(t)〉 = 〈[r⊥(s, t)− r⊥(s, 0)]

2〉

= 〈 1

L2

∑
q,p

r⊥,q(t)e
iqsr⊥,p(t)e

ips +
1

L2

∑
q,p

r⊥,q(0)eiqsr⊥,p(t)e
ips − 2

L2

∑
q,p

r⊥,q(t)e
iqsr⊥,p(0)eips〉

=
2

L2

∑
q

[〈r⊥,q(t)r⊥,−q(t)〉 − 〈r⊥,q(t)r⊥,−q(0)〉]

hence, the MSD is the sum of a static and dynamical components, so with Eq. (B.2) and Eq. (B.13), we obtain

〈δr2
⊥(t)〉 =

4kBT

πκ

∫ π/a

π/L

dq

q4

(
1− e−ω(q)t

)
(B.14)

For t→∞ the MSD saturates to the equilibrium value, such that

〈δr2
⊥〉 ≡ lim

t→∞
〈δr2
⊥(t)〉 =

8kBT

κL

∑
k

L4

k4π4
=

2

45

kBT

κ
L3 =

2

45

L3

`p

with
∫
dq
2π = 1

L

∑
q and

∑
q=1,2,...

1
q4 = π4

90 . Note that integrating for [0, `], we recover Eq. (2.24)
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