
FANTASY FOOTBALL
FORECASTS

an evolutionary algorithm

Candidate: Christopher Dedominici
Professor: Edgar Ernesto Sanchez Sanchez
Collaboration: startup Teamies

ABSTRACT

The aim of the thesis is to improve an already existing application used to forecast the

best formation that a player (fantasy manager) can line up in the game of the fantasy

football.

The work has been done in collaboration with the startup Teamies.

Teamies already had a fully working platform but the process on how they used to

collect and manage the data was not so efficient and performing. So, they wanted to

create the same system but in a more reliable way.

Moreover, they also wanted to increase the precision of their forecasts finding the

best parameters to use in their algorithm in order to better combine and weigh players

and teams statistics used to generate these forecasts.

The main tasks I had to do during my thesis were:

● To redesign the database structure and its implementation

● To create several web scrapers to collect all the information needed to calculate

the forecasts from different websites

● To create the scripts to insert/update the downloaded information inside the

database

● To rewrite the original forecast algorithm in C++

● To evaluate the best parameters to use to improve the forecast results using an

evolutionary algorithm

The choice of using an evolutionary algorithm has been dictated from the fact that

Teamies already had a proprietary algorithm to evaluate players performances and

they just wanted to optimize specific parameters. So the need was to have a search

1

technique to find exact or approximate solutions to optimize the search problems and

the most suitable solution in this case was to use this type of approach.

● The main languages and environments used to develop the application are:

● Database: MySQL relational database

● Scrapers: JavaScript scripts executed on the run-time environment Node.js with

the npm package “Puppeteer” provided by Google

● Database scripts: JavaScript scripts executed on the run-time environment

Node.js with the npm package “mysql”

● Forecasts algorithm: C++

● Evolutionary algorithm: MicroGP evolutionary algorithm, C++, bash scripts

2

FANTASY FOOTBALL FORECASTS

an evolutionary algorithm

1 INTRODUCTION

1.1 QUICK OVERVIEW 5
1.2 THE AIM OF THE THESIS 5

2 BACKGROUND THEORY
2.1 THE GAME OF FANTASY FOOTBALL 7
2.2 STATISTICS CONSIDERED 9
2.3 APPLICATION GENERAL STRUCTURE 10

3 PROPOSED APPROACH
3.1 QUICK OVERVIEW 11
3.2 THE APPLICATION IN DETAILS 14

3.2.1 Job Scheduler: Cron 14
3.2.2 Web automotion: the scrapers 15

➢ Intro 15
➢ Puppeteer overview 16
➢ Puppeteer components 17

3.2.3 The database scripts 22
3.2.4 The database 27
3.2.5 The C++ software 30

➢ Indexes 30
➢ Main classes overview 33

3.2.6 MicroGp 35
➢ Intro 35
➢ How it works 35
➢ General population settings 37
➢ Evaluation options 38
➢ Stopping conditions 39
➢ Fitness function 40

3.3 THE DATASET 41
3.4 GENERAL TESTS CONSIDERATIONS 44

3.4.1 Data training and testing 44
3.4.2 Model fitting problems 45

3.5 MICROGP PARAMETERS SETTINGS 47

3

4 RESULTS ANALYSIS
4.1 INTRO 49
4.2 SINGLE DAYTIME TESTS 51

4.2.1 Intro 51
4.2.2 Results 52
4.2.3 Tests conclusions 58

4.3 ALL DAYTIMES TESTS 59
4.3.1 Intro 59
4.3.2 Results 60
4.3.3 Tests conclusions 67

4.4 ALL DAYTIMES TESTS WITH FILTERS 68
4.4.1 Intro 68
4.4.2 Probability larger than 70% 69
4.4.3 Probability between 45% and 70% 76

5 CONCLUSIONS
5.1 TESTS RESULTS 80
5.2 WHAT COULD BE IMPROVED 82
5.3 NEURAL NETWORK: ANOTHER APPROACH 83

6 BIBLIOGRAPHY

4

INTRODUCTION

1.1 QUICK OVERVIEW

I collaborated with the startup Teamies in order to improve their software which is

able to try to predict the best possible formation that a player (fantasy manager) could

use to win the game of the fantasy football. The player has several footballers on his

team and for every match he has to select 15 of them to play. We wanted to boost the

performance of the current suggestion system to further increase the chance of the

players to choose the best formation according to our software advices.

1.2 THE AIM OF THE THESIS

The thesis has two main purposes:

● to redesign all the application structure:

○ the redesign and the implementation of the database

○ the development of scrapers to collect all the information

● to rewrite and improve the forecast algorithm

The startup Teamies in the past years has used a proprietary algorithm to try to

predict the best formation that a player could line up. This algorithm uses several

different players and teams statistics that are combined together using various

parameters that were studied and chosen by who designed the algorithm.

Furthermore, these parameters were chosen by a human being instead of a software

5

so they probably could have had several improvements therefore we wanted to

increase the correctness of this process finding more reliable parameters. To achieve

this we decided to use an evolutionary algorithm.

6

BACKGROUND THEORY

2.1 THE GAME OF FANTASY FOOTBALL

GENERAL DESCRIPTION

Fantasy football is a game in which all the players have to assemble a team of

footballers from the same championship and score points according to their real

performance on the field. In this case I considered the Italian championship.

TEAMS

In the Italian fantasy football usually players have to choose (buy) at the beginning of

the championship 25 players. They have a fixed amount of “fantasy money” so they

have to plan carefully all the purchases (or the bids if more than one player wants the

same footballer) in order to maximize the combination cost-footballer performance.

A team is usually composed by 3 goalkeepers, 8 defenders, 8 midfielders and 6

strikers.

POINTS SCORING

Points are gained or deducted depending on the players' performance. Points systems

vary between games: for example Fantagazzetta scores are different from the

Gazzetta ones. But in general points are awarded for some or all of the following

achievements:

● playing in a match or a part of it

● scored goals (or conceded goals if the player is a goalkeeper)

● assists

● the winning of the team

7

As well as the above, points can be deducted for some or all of the following:

● conceded goals (if players are goalkeepers or defenders)

● yellow or red cards

● missing a penalty

● self goals

● getting substituted

● the defeat of the team

8

2.2 STATISTICS CONSIDERED

The main statistics we took into account on how players or their teams have

performed are:

Players

● match grade

● match grade with bonus and malus (e.g.: if a player scored a goal)

● scored goals

● conceded goals

● missed penalties

● scored penalties

● rejected penalties (if a player is a goalkeeper)

● yellow cards

● red cards

● assists

● shots on goal

● recovered balls

● market value

● role

Teams

● ranking

● points

● matches played

● number of won, tie and lost matches

● scored goals

● conceded goals

● bets on their performance

9

2.3 APPLICATION GENERAL STRUCTURE

The application can be divided in four main components:

● The database structure

The application runs on a MySQL relational database. There are several tables

created to contain and connect all the statistics previously explained. All the

values are inserted or updated using several scripts which read the values from

several files created by various scrapers.

● The scrapers

To collect all the information needed from the websites there are several

scrapers. All the scrapers executions are launched at specific times using

Chron, a time-based job scheduler in Unix.

● The forecast software

The software (written in C++) is used to create the players forecasts and to

provide the fitness function values to the evolution algorithm so that it can

evaluate the quality of a specific solution.

● The evolutionary algorithm

An evolutionary algorithm (MicroGP) is used to iterate many times over the

several forecasts in order to find the best parameters to obtain (hopefully) the

optimal solution to the problem.

10

PROPOSED APPROACH

3.1 QUICK OVERVIEW

The application is composed by several independent softwares which run at different

times. A quick overview of them is provided in the following pages.

CRON

Cron is the software which decides what software runs and when it runs.

It can launch three different types of applications:

● the scrapers

● the database scripts

● the C++ software

THE SCRAPERS

The scrapers are written in JavaScript and executed on the run-time environment

Node.js, they will collect all the players and teams statistics from the web and store

them in JSON files.

THE DATABASE

The database scripts are written in JavaScript and executed on the run-time

environment Node.js, they read the players and teams statistics from the JSON files

created by the scrapers and insert/update them in the SQL database.

11

THE C++ SOFTWARE

The C++ software performs 2 main tasks:

● to evaluate the best players for the next matches reading the information

needed for the the forecast from the database

● to provide the quality of the solution (how far the forecasts were from

the real footballers performances) to the evolution algorithm so that it

can iterate to improve the forecasts.

MICROGP

MicroGP is used to run many evaluations to find the best parameters to get the best

forecast about the players. It generates several random parameters in a JSON file and

then using a C++ function it checks the quality of the solution.

12

Application general structure:

13

3.2 THE APPLICATION IN DETAILS

3.2.1 JOB SCHEDULER: CRON

“The software utility Cron is a time-based job scheduler in Unix. It is used to

schedule jobs (commands or shell scripts) to run periodically at fixed times, dates, or

intervals. It typically automates system maintenance or administration though its

general-purpose nature makes it useful for things like downloading files from the

Internet and downloading email at regular intervals.”¹

As said before Crone is used to launch three different type of applications:

● the scrapers

● the database scripts

● the C++ software

In this application the scrapers and the database scripts are run every day in order to

check every minimum change like player’s accidents, formation changes, etc.

14

3.2.2 WEB AUTOMATION: THE SCRAPERS

INTRO

To collect all the information needed various websites had to be scraped.

To achieve this goal several web-scrapers written in JavaScript with the npm packet

Puppeteer provided by Google were coded. Puppeteer is a product for browser

automation: when installed, it downloads a version of Chromium, which it then drives

using puppeteer-core. All the information collected from the web pages are stored in

different JSON files that will be used by several scripts to insert/update the

information inside the database.

A JSON file is a file that stores simple data structures and objects in JavaScript

Object Notation (JSON) format, which is a standard data interchange format. It is

primarily used for transmitting data between a web application and a server. JSON

files are lightweight, text-based, human-readable, and can be edited using a text

editor.

15

PUPPETEER OVERVIEW

The API provided by the Puppeteer npm package are extremely powerful and easy to

use. They give the possibility to manipulate the headless browser like a real human

being so, for this reason, in the following pages the main features used in this

application are reported to give a general idea about how they work.

The official Puppeteer documentation is used, you can find it at the following link:

https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md​.²

The Puppeteer API is hierarchical and mirrors the browser structure.

16

https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md

The main components of Puppeteer are:

● Browser​​ instance can own multiple browser contexts

● BrowserContext​​ instance defines a browsing session and can own multiple

pages

● Page​​ has at least one frame: main frame. There might be other frames created

by iframe or frame tags

● Frame​​ has at least one execution context - the default execution context -

where the frame's JavaScript is executed

● Worker​​ has a single execution context and facilitates interacting with

WebWorkers

PUPPETEER COMPONENTS

class: Puppeteer

Puppeteer module provides a method to launch a Chromium instance. The following

is a typical example of using Puppeteer to drive automation.

Example: how to launch Puppeteer.

const​ ​puppeteer​ ​=​ ​require​(​'puppeteer'​);

puppeteer.​launch​().​then​(​async​ browser ​=>​ {

 const​ ​page​ ​=​ ​await​ browser.​newPage​();

 ​await​ page.​goto​(​'https://www.google.com' ​);

 ​// other actions...

 ​await​ browser.​close​();

});

17

puppeteer.connect(options)

● options <Object>

○ browserWSEndpoint <string> a browser websocket endpoint to connect

to.

○ ignoreHTTPSErrors <boolean> Whether to ignore HTTPS errors during

navigation. Defaults to false.

○ defaultViewport <?Object> Sets a consistent viewport for each page.

Defaults to an 800x600 viewport. null disables the default viewport.

■ width <number> page width in pixels.

■ height <number> page height in pixels.

■ deviceScaleFactor <number> Specify device scale factor (can be

thought of as dpr). Defaults to 1.

■ isMobile <boolean> Whether the meta viewport tag is taken into

account. Defaults to false.

■ hasTouch<boolean> Specifies if viewport supports touch events.

Defaults to false.

■ isLandscape <boolean> Specifies if viewport is in landscape

mode. Defaults to false.

■ slowMo <number> Slows down Puppeteer operations by the

specified amount of milliseconds. Useful so that you can see what

is going on.

● returns: <Promise<Browser>>

18

class: Browser

A Browser is created when Puppeteer connects to a Chromium instance, either

through puppeteer.launch or puppeteer.connect.

Example: using a Browser to create a Page.

const​ ​puppeteer​ ​=​ ​require​(​'puppeteer'​);

puppeteer.​launch​().​then​(​async​ browser ​=>​ {

 const​ ​page​ ​=​ ​await​ browser.​newPage​();

 ​await​ page.​goto​(​'https://example.com'​);

 ​await​ browser.​close​();

});

class: BrowserContext

BrowserContexts provide a way to operate multiple independent browser sessions.

When a browser is launched, it has a single BrowserContext used by default. The

method browser.newPage() creates a page in the default browser context.

If a page opens another page, e.g. with a window.open call, the popup will belong to

the parent page's browser context.

Puppeteer allows creation of "incognito" browser contexts with

browser.createIncognitoBrowserContext() method. "Incognito" browser contexts

don't write any browsing data to disk.

Example: create a new incognito browser context.

const​ ​context​ ​=​ ​await​ browser.​createIncognitoBrowserContext​();

// Create a new page inside context.

const​ ​page​ ​=​ ​await​ context.​newPage​();

// ... do stuff with page ...

await​ page.​goto​(​'https://example.com'​);

19

// Dispose context once it's no longer needed.

await​ context.​close​();

class: Page

Page provides methods to interact with a single tab or extension background page in

Chromium. One Browser instance might have multiple Page instances.

Example: creates a page, navigates it to a URL, and then saves a screenshot.

const​ ​puppeteer​ ​=​ ​require​(​'puppeteer'​);

puppeteer.​launch​().​then​(​async​ browser ​=>​ {

 ​const​ ​page​ ​=​ ​await​ browser.​newPage​();

 ​await​ page.​goto​(​'https://example.com'​);

 ​await​ page.​screenshot​({path​:​ ​'screenshot.png'​});

 ​await​ browser.​close​();

});

The Page class emits various events (described below) which can be handled using

any of Node's native EventEmitter methods, such as on, once or removeListener.

Example: log a message for a single page load event.

page.​once​(​'load'​, () ​=>​ ​console​.​log​(​'Page loaded!'​));

class: Frame

At every point of time, page exposes its current frame tree via the page.mainFrame()

and frame.childFrames() methods.

20

class: Worker

The Worker class represents a WebWorker¹. The events workercreated and

workerdestroyed are emitted on the page object to signal the worker lifecycle.

Example: create and destroy workers.

page.​on​(​'workercreated'​, worker ​=>​ ​console​.​log​(​'Worker created: '​ ​+​ worker.​url​()));

page.​on​(​'workerdestroyed'​, worker ​=>​ ​console​.​log​(​'Worker destroyed: '​ ​+

worker.​url​()));

console​.​log​(​'Current workers:'​);

for​ (​const​ ​worker​ ​of​ page.​workers​())

 ​console​.​log​(​' '​ ​+​ worker.​url​());

¹WEB WORKER: A Web Workers makes it possible to run a script operation in a

background thread separate from the main execution thread of a web application. The

advantage of this is that laborious processing can be performed in a separate thread,

allowing the main (usually the UI) thread to run without being blocked/slowed down.

21

3.2.3 THE DATABASE SCRIPTS

The scripts are written in JavaScript for the run-time environment Node.js and use the

npm package “mysql” which makes it possible to insert or update information stored

in the JSON file (created by the web scrapers) into the database.

Through this npm package many operations can be performed, the most important in

this case are:

● establishing connections

● set connection options

● terminating connections

● performing queries

● error handling

The API provided through this npm package are very powerful and extremely easy to

us so, for these reason, in the following pages the main features used in this

application are reported in order to give a general idea on how they work. The official

mysql documentation is used, you can find it at the following link:

https://www.npmjs.com/package/mysql​.³

22

https://www.npmjs.com/package/mysql

Establishing connections.

let​ mysql ​=​​ ​require​(​'mysql'​);

let​ connection ​=​​ ​mysql​.​createConnection​({

 host ​:​​ ​'localhost'​,

 user ​:​​ ​'me'​,

 password ​:​​ ​'secret'​,

 database ​:​​ ​'my_db'

});

connection​.​connect​(​function​(​err​) {

 ​if​​ (err) {

 console.​error​(​'error connecting: '​ ​+​​ ​err​.​stack​);

 ​return​​;

}

console.​log​(​'connected as id '​ ​+​​ ​connection​.​threadId​);

});

However, a connection can also be implicitly established by invoking a query:

let​ mysql ​=​​ ​require​(​'mysql'​);

let​ connection ​=​​ ​mysql​.​createConnection​(​...​​);

connection​.​query​(​'SELECT 1'​, ​function​ (​error​, ​results​, ​fields​) {

 ​if​​ (error) ​throw​​ error;

 ​// connected!

});

23

Connection options

There are several connection options that can be set while creating a new connection,

some of them are:

● host: The hostname of the database you are connecting to. (Default: localhost).

● port: The port number to connect to. (Default: 3306).

● localAddress: The source IP address to use for TCP connection. (Optional).

● user: The MySQL user to authenticate as.

● password: The password of that MySQL user.

● database: Name of the database to use for this connection (Optional).

● timezone: The timezone configured on the MySQL server. This is used to type

cast server date/time values to JavaScript Date object and vice versa. This can

be 'local', 'Z', or an offset in the form +HH:MM or -HH:MM. (Default: 'local').

● connectTimeout: The milliseconds before a timeout occurs during the initial

connection to the MySQL server. (Default: 10000).

● ssl: object with ssl parameters or a string containing name of ssl profile.

T ​​erminating connections

There are two ways to end a connection. Terminating a connection gracefully is done

by calling the end() method:

connection​.​end​(​function​(​err​) {

// The connection is terminated now

});

This will make sure all previously enqueued queries are still before sending a

COM_QUIT packet to the MySQL server. If a fatal error occurs before the

COM_QUIT packet can be sent, an err argument will be provided to the callback, but

the connection will be terminated regardless of that.

An alternative way to end the connection is to call the destroy() method. This will

24

cause an immediate termination of the underlying socket. Additionally destroy()

guarantees that no more events or callbacks will be triggered for the connection.

connection​.​destroy​();

Unlike end() the destroy() method does not take a callback argument.

Performing queries

The most basic way to perform a query is to call the .query() method on an object

(like a Connection, Pool, or PoolNamespace instance).

The simplest form of .query() is .query(sqlString, callback), where a SQL string is the

first argument and the second is a callback:

connection​.​query​(​'SELECT * FROM `books` WHERE `author` = "David"'​,

function​ (​error​, ​results​, ​fields​) {

 ​// error will be an Error if one occurred during the query

 ​// results will contain the results of the query

 ​// fields will contain information about the returned results fields (if any)

});

The second form .query(sqlString, values, callback) comes when using placeholder

values (see escaping query values):

connection​.​query​(​'SELECT * FROM `books` WHERE `author` = ?'​, [​'David'​],

function​ (​error​, ​results​, ​fields​) {

 ​// error will be an Error if one occurred during the query

 ​// results will contain the results of the query

 ​// fields will contain information about the returned results fields (if any)

});

25

The scripts use the second form:

● the sql query is created with the information needed (name of the table,

which information are wanted) and then stored inside a string passed as

first argument.

● then an array is created and all the value that will replace the “?”

character in the string are stored inside it; then it will be passed as the

second argument.

Error handling

This module comes with a consistent approach to error handling in order to write

solid applications.

Most errors created by this module are instances of the JavaScript Error object.

Additionally they typically come with two extra properties:

● err.code: Either a MySQL server error (e.g.

'ER_ACCESS_DENIED_ERROR'), a Node.js error (e.g. 'ECONNREFUSED')

or an internal error (e.g. 'PROTOCOL_CONNECTION_LOST').

● err.fatal: Boolean, indicating if this error is terminal to the connection object. If

the error is not from a MySQL protocol operation, this properly will not be

defined.

● err.sql: String, contains the full SQL of the failed query. This can be useful

when using a higher level interface like an ORM that is generating the queries.

● err.sqlState: String, contains the five-character SQLSTATE value. Only

populated from MySQL server error.

● err.sqlMessage: String, contains the message string that provides a textual

description of the error. Only populated from MySQL server error.

26

3.2.4 THE DATABASE

The database used in support to the application is a MySQL relational database.

Both to design and create the database MySQL Workbench has been used. It is a

visual database design tool that integrates SQL development, administration, database

design, creation and maintenance into a single integrated development environment

for the MySQL database system.

The database contains several tables in which all the statistics of the players and their

teams are stored with their relative relations.

The tables are:

● championship

contains all the championships available in the application (only the Italian one

for the thesis purpose)

● daytime

contains the numbers of all the daytimes played in a specific championship

● real_team

contains the information of the team

● teams_match

 contains all the played matches with the relative most important information

like teams ids, match results and the value of the bets

● real_teams_statistics

contains all the statistics of the teams update daily. For example the ranking of

the teams, their total points, the total number of their scored or conceded goals,

the number of win/lose/tie matches

27

● membership

contains the information relative to which player plays in which team in which

daytime with his probability to actually enter in the field

● player

contains all the information about the players

● performance

contains the information relative to every single match for every player. For

example his grade, his bonus-malus grade, how many goals he scored (or

conceded if he is a goalkeeper), his market value, etc.

● player_statistics

contains all the statistics of the players, update daily. For example his average

grade and average bonus-malus grade during the year, the total number of his

scored goals (or conceded if he is a goalkeeper), his total number of played

matches, etc.

28

Database design:

29

3.2.5 THE C++ SOFTWARE

INTRO

The startup Teamies had several excel worksheets with all the statistics saved on and,

always on the same worksheets, they used specific math formulas to evaluate players

performance. Of course this approach was not very efficient and optimized so we

decided to move the data elaboration process in a C++ program and the data storage

into the database (see database section).

To create the forecasts there are many indexes that combined together will give the

player evaluation.

The software strategy is carried out in the following order:

1. evaluate teams indexes

2. evaluate players indexes considering the current player statistics

combined with his team indexes and his opponent team indexes

3. evaluate the prediction using the players indexes

30

INDEXES

Team indexes

● [IS] = team index

Index evaluated considering the current team ranking

● [IGSF] = scored and conceded goals index

Index evaluated considering the total scored goals and the total conceded goals

of the team

● [IA] = strike index

Index evaluated considering the total sum of scored goals of a team until the

last played match

● [ID] = defense index

Index evaluated considering the total sum of conceded goals of a team until the

last played match

● [ITOT] = total index

Index evaluated combining the ​IS​​ and the ​IGSF ​​indexes

● [IAC] = strike home index

Index evaluated considering the total sum of scored goals of a team until the

last played match when playing home

● [IDC] = defense home index

Index evaluated considering the total sum of conceded goals of a team until the

last played match when playing home

● [IAF] = strike away index

Index evaluated considering the total sum of scored goals of a team until the

last played match when playing away

● [IDF] = defense away index

Index evaluated considering the total sum of conceded goal of a team until the

last played match when playing away

31

● [IF] performance index

Index evaluated considering how the team has performed in the previous

matches

● [IB] = bet index

Index evaluated considering the value of the bets placed on the team

Player indexes:

● [IT] frequency index

Index evaluated considering how many matches a player has played

● [IG] player index

Index evaluated combining the past players’ grades, grades with bonus and

malus and the ​IT​​ index

● [ICF] match away or match home index

Index evaluated considering if the team plays at home or away

● [ISc] match index

Index evaluated considering the team’s indexes ​IAC ​​or​ IAF ​​and ​IDC​​ or ​IDF

used in different ways accordingly if the player’s team plays at home or away

● [IFo] performance index

Index evaluated considering the current player’s team ​IF ​​index and the current

player’s opponent team’s​ IF ​​index

● [BW_fix] best week fixed index

Index evaluated considering the current player’s team indexes (​IG​​, ​IB​​) and his

indexes ​ISc​​ and ​IFo

● [BW] best week index

Index evaluated considering the player’s probability to play and the player’s

index ​BW_fix. ​​This index will be the forecast on how the player will perform.

32

MAIN CLASSES OVERVIEW

The main classes of the software are:

● Team

Contains all the team information (and the methods to get/set them) like

team id, team name and more importantly it contains the float array of

all the values of its indexes.

● Player

Contains all the player’s information (and the methods to get/set them)

like player id, player name, his team, his probability to play and more

importantly it contains the float array of all the values of its indexes.

Moreover it also contains the error about his prediction (the software

compares its prediction with the actual player’s performance to see how

close they are).

● Various Classes: performances indexes

All the players and teams indexes have their specific classes but all of

them are inherited from the parent class “Index” which provides default

standard methods like “compute()” (used to calculate the value of the

index).

● Comparator

The comparator is used to return the total forecast error of the software

prediction (considering all the players errors) in order to understand how

good the software predicts the best players.

The single player error is retrieved from the class “PlayerComparator”.

● PlayerComparator

This class is used to calculate the error between the predicted

performance of the player and his real performance.

33

C++ software general structure:

34

3.2.6 MICROGP

INTRO

MicroGP​ is an optimizer used to find the optimal solution of difficult problems.

Given a task, it first generates a set of random solutions, then iteratively refines and

try to improve them. Analysing the results of the fitness function it can explore the

solution space searching for the best solutions and hopefully find the optimal one.

MicroGP​ is an evolutionary algorithm, it generates at every iteration a new

population of individuals combining the results of the previous generations using

specific strategies. Both the best and the worst solutions at every step are taken into

account, of course the more efficient solutions will have a better chance to be chosen

in order to reproduce.

HOW IT WORKS

The main steps in order to run the optimization are:

● bash main script

A main bash script controls the execution of the MicroGP. As it will be

discussed later, the forecasts are made dividing the footballers into their roles

and probabilities to play. Therefore these parameters, along with others, have

to be passed to the script so it will be able to launch the specific tests through

MicroGP. In addition it will also automatically generates several CSV files

containing the statistics results and a JSON file with the best parameters found.

● MicroGP

As explained in the previous point MicroGP is launched by a bash script.

MicroGP will generate a JSON file with the parameters and after that to

evaluate the quality of this solution it will run a fitness function (see next

point).

35

The iterative process, until a stop condition is reached, is to:

1. generate the JSON parameters files

2. run the fitness function to evaluate the solution

3. go to point 1 until a stop condition is reached

● bash fitness evaluation script

This script is used by MicroGP to evaluate the quality of the current solution. It

launches the C++ software to receive the total players’ errors values (standard

deviation and average error).

36

In the following pages the main configuration settings used in this application are

reported using the official MicroGP documentation at the following link:

http://ugp3.sourceforge.net​.⁴

GENERAL POPULATION OPTIONS

● mu: ​​is the size of the population. At the beginning and at the end of each
generation, there will be exactly mu individuals.

● nu​​: is the size of the initial randomly-created population. After the first

generation, the number of individuals will be reduced (or incremented) taking

into account ​mu​​.

● lambda​​: is the number of genetic operators that will be applied at each step.

Note that each genetic operator may create more than one individual, so the

offspring size at each generation is usually bigger than lambda.

● sigma​​: regulates the strength of the genetic operators. As a rule of thumb, if

sigma is high (> 0.5), the offspring of an individual will be more different from

the original individual than when sigma is low (< 0.5). In our case sigma can

be self-adapted to be higher in the beginning of the evolutionary process (when

exploration of the search space is needed), and lower at the end (when

exploitation is better). See inertia, below.

● inertia​​: is used to tune the self-adapting mechanism. The idea of

self-adaptation is that the algorithm itself modifies its behavior as the evolution

goes on, trying to always have the best performance given the current situation.

Inertia, like real-world inertia, represents the resistance of the system to the

self-adapting push towards new values. Inertia is a number between 0 and 1.

The bigger it is, the slower the changes are. As a rule of thumb, inertia should

always be around 0.9.

37

http://ugp3.sourceforge.net/

EVALUATION OPTIONS

● fitnessParameters​​: is the number of fitness parameter that MicroGP expects

for this problem. Fitness value can be an array of floating point numbers.In our

case they will be evaluated hierarchically, with the first one more important

than the second.

● cloneScalingFactor​​: is a way to manage "clones", individuals that are exact

(genotypical) copies of individuals already evaluated. Basically, the fitness of

each clone will be multiplied by cloneScalingFactor (which is usually lower

than 1) times the number of clones already existing in the population. So, if

cloneScalingFactor=0.5, the original individual will retain its complete fitness,

its first clone will have that fitness multiplied by 0.5, the second clone will

have (0.5​0.5) = 0.25 times the original fitness, the third clone will have

(0.5​0.5*0.5) = 0.125 times the original fitness, and so on.

38

STOPPING CONDITIONS

● maximumFitness​​: indicates that MicroGP will stop when it will find an

individual having a fitness value equal to or higher than maximumFitness.

● maximumSteadyStateGenerations​​: is a stagnation condition. If the best

fitness value in the population does not improve for the value specified with

this option, MicroGP terminates.

● maximumGenerations​​: simply means that the execution of MicroGP will be

terminated after a set number of generations.

● maximumEvaluations​​: implies that the evolution will be stopped at the end of

the generation where a certain number of total calls to the evaluator have been

reached. This is not equivalent to maximumGeneration, because MicroGP has

not a fixed offspring size produced at each generation (see above for more

details). Useful if you need to compare performance against other approaches.

● maximumTime​​: specify the maximum time (wall clock) MicroGP can be

allowed to run. If the maximumTime tag appears, it must be specified in hours,

minutes and seconds: none is mandatory, but at least some time must be

specified. E.g., <maximumTime minutes="5" seconds="30"/>. When MicroGP

is stopped, it stores the elapsed time. If it is restarted, the elapsed time is

displayed and used for calculating the limit that will include all previous runs.

39

FITNESS FUNCTION

The error between the players predictions and the real players’ performances is

evaluated for every daytime accordingly to the following formulas.

Variable needed

The following variables are used to calculate every single player error.

● GRADER = real match player grade

● GRADEbmR = real match player grade with bonus and malus

● GRADEP = previous match player’s grade

● GRADEbmP = previous match player’s grade with bonus and malus

● PP = player’s prediction value

Error calculation

For every player the idea is to calculate the difference between the real result and the

predicted one.

● geometric average of GRADER and GRADEbmR (GAGGR)

GAGGR = (GRADER ✕ GRADEbmR)^½

● geometric average of GRADEP and GRADEbmP (GAGG)

GAGG = (GRADEP ✕ GRADEbmP) ^ ½

● expected match value (EMV)

EMV = GAGG ✕ PP

● prevision error (PE) = GAGGR - EMV

For every daytime and for each role (goalkeeper, defender, midfielder and striker)

will be calculated the total players’ average error and the standard deviation.

Obviously the more these two values will be close to zero the better the prediction

will be. The evolution algorithm will receive these two results as parameters to

improve the quality of the solution.

40

3.3 THE DATASET

The dataset used in this case is composed by all the teams and all the players in the

Italian football championship. For every match the number of total playing teams is

20 while the total number of playing footballers for every single team is 11 plus an

average of 3 possible substitutes. So usually we have between 220 and 280 total

players to analyze per daytime (range calculation: 11*20 - 14*20).

After this consideration we can quickly estimate the total number of players and

teams for all the matches in the championship: there are 38 total matches during the

whole year so we have a total amount of 760 statistics for the teams and around

8360-10640 statistics for the players (the range varies depending on the

substitutions). Unfortunately in this case the statistics in the database for the

championship 2017-2018 (previous championship, not the current one), started from

the 6° daytime so our dataset is restricted to only 33 matches (6-38).

So the real dataset has a total of 660 teams statistics and between 7260 and 9240

players statistics.

The dataset is then evaluated splitting the players by role which are goalkeepers,

defenders, midfielders and strikers. In this case the number of players per match

became quite different depending on the role. The reason is, obviously, that in a team

there are, for example, more defenders than goalkeepers playing in a match.

 To give a quick and rough example on how the size of the dataset changes

accordingly to the role we can imagine an example scenario using a quite classic

formation (4-4-2) with and without a possible player substitution for every role.

41

Possible scenario using the classic 4-4-2 formation:

1 goalkeeper per team

● full championship (38 matches):

○ no substitution:

1 ✕ 20 teams ✕ 38 matches = 760

○ supposing 1 substitution

2 ✕ 20 teams ✕ 38 matches = 1520

● our available dataset (33 matches):

○ no substitution:

1 ✕ 20 teams ✕ 33 matches = 660

○ supposing 1 substitution

2 ✕ 20 teams ✕ 33 matches = 1320

4 defenders per team

● full championship:

○ no substitution:

4 ✕ 20 teams ✕ 38 matches = 3040

○ supposing 1 substitution

5 ✕ 20 teams ✕ 38 matches = 3800

● our available dataset (33 matches):

○ no substitution:

4 ✕ 20 teams ✕ 33 matches = 2640

○ supposing 1 substitution

5 ✕ 20 teams ✕ 33 matches = 3300

42

4 midfielders per team:

● full championship:

○ no substitution:

4 ✕ 20 teams ✕ 38 matches = 3040

○ supposing 1 substitution

5 ✕ 20 teams ✕ 38 matches = 3800

● our available dataset (33 matches):

○ no substitution:

4 ✕ 20 teams ✕ 33 matches = 2640

○ supposing 1 substitution

5 ✕ 20 teams ✕ 33 matches = 3300

2 strikers per team

● full championship:

○ no substitution:

2 ✕ 20 teams ✕ 38 matches = 1520

○ supposing 1 substitution

3 ✕ 20 teams ✕ 38 matches = 2280

● our available dataset (33 matches):

○ no substitution:

2 ✕ 20 teams ✕ 33 matches = 1320

○ supposing 1 substitution

3 ✕ 20 teams ✕ 33 matches = 1980

43

3.4 GENERAL TEST CONSIDERATIONS

3.4.1 DATA TRAINING AND DATA TESTING

The dataset has been split into two main parts, the training set (75%) and the testing

set (25%). The training data includes both input and output and is the information

used to “train” MicroGP to understand, evaluating the quality of the solutions, which

are the finest parameters to obtain the best solution.

The testing data includes only the input data and not the expected output so it is

possible to estimate how good our model properties are. Usually, as a rule of thumb,

only the 10-25% of the total data is used as data testing. Of course it is important not

to have any overlapping between the training data and the testing one otherwise the

accuracy results will be wrong.

The reason is that any algorithm that is tested on the same data used to train it will

perform in an optimum way because it already knew the correct output for that

information.

[image and information]⁵

44

3.4.2 MODEL FITTING PROBLEMS

In statistics a fit refers to how well you approximate a target function.

Our goal is to find parameters for our predictions that “fit” to provide the best results;

to estimate how god our model is we have to compare the results with the optimal

ones. In doing so we have to be aware that two main situations exist where the

solution could have problems: overfitting and underfitting.

Overfitting

Overfitting refers to a model that generalizes the training data too well. That happens

when the model learns all the details and the noises in the training dataset, we could

say that it becomes too good to approximate our training data. The problem in doing

this is that this approximation fits perfectly during the training but it cannot be

extended to new datasets, so it is not possible to generalize.

Underfitting

Underfitting refers to a model that can neither model the training dataset nor

generalize the new data. It will have poor performance both in training and in testing.

Usually underfitting is easy to detect compared to overfitting because the forecasts

have very bad results.

Good fit

Ideally the concept is to have a model between the underfitting and the overfitting, a

model able to perfectly generalize the fit function. The goal is very simple to explain

but quite complex to reach. To better understand when the results are getting close to

a good fit it is possible, for example, to look at the performance of our model on both

the training and testing data while we are running it.

At the beginning the training and testing errors will be quite high (we are in an

underfitting situation) while as soon as both errors start to decrease we can

45

understand that we are moving towards a good fit. But at a certain point if we

continue to reduce our training errors we can see that our test errors start to increase.

This is the clear sign of an overfitting model, in fact our algorithm is learning all the

irrelevant details and noises in the training set.

[image and information]⁶

46

3.5 MICROGP PARAMETERS SETTINGS

In the the application description, under the section relative on MicroGP, the

parameters that we were able to set in order to achieve our goal were introduced.

Here it is possible to read which values we decide to attribute to them. The

parameters that are not considered were left in the default settings.

Parameters configuration:

● fitnessParameters value = 2

This is the number of dimensions of the fitness, in our case it is equal to 2.

We decided to improve both the error average and the standard deviation of all

the players.

● maximumFitness value = 1000 1000

We wanted to reduce the errors as close as possible to zero. To evaluate how

close we were to our goal, considering that MicroGP cannot receive negative

values, our approach was to set a maximum value (something so big that the

error could never be bigger) and then subtract from it our prediction error. The

more the result was close to the “maximumFitness” the better the fitness.

● maximumSteadyStateGenerations value = 5

If the best fitness value does not change for maximumSteadyStateGenerations

generations, the evolution stops. In our case, after some experiments, we

experienced that after 5 cycles of equivalent generations very rarely MicroGP

was able to improve; for this reason we set the value to 5.

● mu value = 250

The maximum size of the population was set to 250 considering that we had to

evaluate around 40 different parameters.

47

● nu value = 700

Also the initial size of the population was set considering the number of

parameters that we had to evaluate (around 40 parameters). Moreover we

wanted to have a quite large number of children at the beginning of the

simulation in order to guarantee a big variance among the individuals.

● lambda value = 150

In order to guarantee a strong variance of the the numbers of genetic operators

applied at every step of the evolution we decided to set this parameters to 150.

● inertia value = 0.9 and sigma value = 0.9

Considering that we wanted to have a high variance in the population but only

at the beginning and then slowly reduce this variance in order to converge on

the best individuals we decided to set both the inertia and sigma at 0,9.

48

RESULTS ANALYSIS

4.1 INTRO

We decided to run several tests to well understand the right strategy to use in order to

reach a solution able to improve the original parameters of the algorithm.

As anticipated before the analysis have been carried out splitting the dataset in four

different parts accordingly to the players’ roles so these divisions will be implied in

the next pages. Of course the whole dataset has been splitted also in two additional

parts: a training one and a test one.

The main approaches used are:

● to run tests splitting the dataset for every single championship daytime (20

matches per day).

E.g: run tests only on championship daytime 6, then only on the daytime 7, etc.

● to run tests on all the championship daytimes together, from daytime 6 to

daytime 38, with of course the exceptions for the test datasets.

● to combine the previous tests with more “restrictive categories” like splitting

the datasets accordingly to the players’ probability to play.

E.g: test in one group only striker footballers with more than 70% of

probability to play and test in another group striker footballers but with the

probability to play between 45% and 70%.

49

For all the tests carried out the errors considered in the fitness function were the

average error for all the players and the standard deviation for all the players too (see

section about C++ software for more detailed info).

For space reason when explaining the results and and when showing the relative

charts not all the roles or daytimes are reported. The reason is that, usually, the

experiments have all the same trends independently from the role so it would be

useless to repeat the same analysis on different groups. Of course when a role will act

strangely in comparison with the others a more profound discussion would be

present.

50

4.2 SINGLE DAYTIME TESTS

4.2.1 INTRO

In performing single daytime tests we wanted to analyze how the model would have

performed on all the matches in one daytime championship at a time for all the

daytimes. Before starting I was aware that this approach could have ended up in an

overfitting model in fact the parameters found, even if extremely good, could not be

used on different championship daytimes or on the same championship daytime in the

following years. The reason is that the model would be incredibly optimum only for

the current data and not for others because it would have learned too many details

and, moreover, every daytime has various differences from the others; in other words

so precise parameters could not be applied in all these possible different scenarios. So

the goal I wanted to achieve running these tests was not to find values to use for

every daytime but to have a general idea on how the parameters vary in different

daytimes and in different roles, to see if some of them are always in a specific range

or change between the beginning of the championship and the end of it.

51

4.2.2 RESULTS

Mean error and standard deviation

After running some tests on a portion of the daytimes I could observe a significant

general improvement for the error average and rather good improvements in the

standard deviation error.

Comparison between the original errors and the new ones:

52

Percentage improvements: a negative value describes how much the original error has

been decreased (positive result) while a positive value describes an increasing

compared to the original value (negative result).

Percentage improvements:

53

Parameter observations

Quite a lot of parameters range in specific intervals, although sometimes values

deviate for a large percentage. But besides these “outsiders” it is possible to see that

many daytime values range close to specific intervals. You can see an example of this

trend in the following pages where for the defender and the striker roles various

interesting charts are reported.

VAL_MAX

It is a parameters which is used to weigh the team statistics according to the current

team ranking compared to all its opponents. As you can see for both the defenders

and the strikers its value ranges around 50 and 80 although it is possible to see that

there are outsider values like the daytimes near the value 40.

Defenders chart

54

Striker chart:

I_best_week_params

These parameters weigh how the footballer’s probability to play will influence the

forecast. Also in this case we can see that the parameters always range around

specific values.

Defenders chart

55

Strikers chart

56

Of course some parameters were very different between distinct daytimes and distinct

roles, also with quite a lot of variations. You can see an example in the following

charts, always plotted considering the defender’s and striker’s role.

Defender: bonus_array

The bonus_array​ ​​are the parameters used to weigh how the bonus and malus grades

will impact on the forecast of the current player.

57

Striker: i_team_performance_param_1

i_team_performance_param_1​ ​​is the parameters that take into account how the

current player team has performed in the previous daytimes.

4.2.3 TESTS CONCLUSIONS

After running these tests it is easy to observe that a good improvement has been make

by our model (reduction of the error average and standard deviation). Moreover, the

general trend is, for most of the parameters, to converge around specific values. This

means that a possible optimization that can generalize all the championship daytimes

is probably achievable. Moreover such generalization, being runned on multiple

daytimes, will have a good probability not to end up in an overfitted model like in

this test case.

58

4.3 ALL DAYTIME TESTS

4.3.1 INTRO

The idea of Teamies was to find the most efficient single set of parameters able to

give good forecast results on all the championship daytimes. This request was

dictated by the need of a “more simple model” to use during all the matches of the

year, in order not to have to change too many parameter sets on different daytimes.

To achieve this goal I run the next tests considering all the championship daytimes

except for the 25% of the data used as testing set, hoping to find common parameters

for our model.

The set for the tests has been run considering the daytimes in the range from 6° to 35°

with the exception of the daytimes 6, 11, 15, 20, 25, 30 and 35 used as a testing set.

59

4.3.2 RESULTS

At first sight it is possible to observe that both the error average and the standard

deviation improved quite well, with a better optimization on the error average.

In this analysis the results for the strikers and goalkeepers are reported.

Strikers

In the following graph it is possible to observe the percentage improvement for the

error average and the standard deviation. The average is always reduced except in one

case while the standard deviation has worsened in few occasions. A negative value

means that the error was reduced by a certain percentage amount compare to the

original forecast (positive result) while a positive value means it has been increased

(negative result) .

60

In the following two graphs it is possible to observe how the error average and the

standard deviation changed in comparison to the original parameters values.

61

Goalkeepers

In the following graph it is possible to observe the percentage improvement for the

error average and the standard deviation. It is interesting to observe that the average

error is always reduced (more than the striker role) and also the standard deviation

has good results with only a worsening value in one occasions. A negative value

means that the error was reduce by a certain percentage amount compare to the

original prevision (positive result) while a positive value means it has been increased

(negative result) .

62

In the following two graphs it is possible to observe how the mean error and the

standard deviation changed compared to the original parameters

63

Distinct player’s improvements

Considering the error average and the standard deviation it is easy to understand that

a general improvement has been achieved but looking closely on how many players

have a lower error compared to their evaluation with the original parameters it is

possible to notice that they are not so many. Even in this case it is possible to see an

improvement but it is still not enough. The reason is that in these tests we evaluated

together all the players with probability to play from 0% to 100%. So the dataset

presents values, when that probability to play is low, with a large variation due to the

high chance not to play. Moreover, a lot of players with a 0% probability to play were

considered in the optimization even if it was not necessary; actually it could even

worsen the results. It is possible to see these statistics in the following charts for some

of the daytimes used as data test (11° - 15° - 20°). The results are relative to the

strikers role with the numbers of improved, worsened, and unchanged error values.

64

Daytime 11

Total number of improved players: 59/104. Percentage: 57%

Total number of worsened players: 22/104. Percentage: 21%

Total number of unchanged players: 23/104. Percentage: 22%

Daytime 15

Total number of improved players: 57/104. Percentage: 55%

Total number of worsened players: 26/104. Percentage: 25%

Total number of unchanged players: 21/104. Percentage: 20%

65

Daytime 20

Total number of improved players: 55/100. Percentage: 55%

Total number of worsened players: 22/100. Percentage: 22%

Total number of unchanged players: 23/100. Percentage: 23%

66

4.3.3 TESTS CONCLUSIONS

After running these tests we were able to understand that a general optimization for

all the championship daytimes is fully achievable as shown from the good results

obtained by the improvement of both the error average and the standard deviation.

Moreover, considering that lowering down the average error was easier than lowering

down the standard deviation, we decided to give more importance to the last one in

the next experiments. Our idea was to force the deviation in a better way compared to

the average. Furthermore it was also possible to notice that even if the general result

was quite good the number of players with a prediction better than the one with the

old parameters could be improved. In order to do so all the data with a lot of

uncertainties (probability to play lower than 70%) should be avoided or analysed in a

separate way. One example on why they could give a great impact on the model is

that some players with a probability of 45% (very unlikely to play), could actually

enter in the field and perform quite well. In doing so the model would find a great

difficult to adapt because this situation is not easily predictable.

To sum up, after these tests I was able to understand two main things:

1. It is possible to find parameters that can optimize the original algorithm for all

of the championship daytimes

2. The players with probability lower than 70% cannot be analyzed with the

players with a probability bigger or equal to 70%. That is because of their

variations, caused by their uncertainty to play, make it more difficult to create a

good model.

67

4.4 ALL DAYTIME TESTS WITH FILTERS

4.4.1 INTRO

After running all the previous tests and after all the considerations taken into account,

especially on the division of the dataset according to the probability to play, we

decided to run more tests splitting the dataset into 2 parts: the first one with a

probability to play bigger than or equal to 70% and the second one with a probability

to play between 45% and 70%. Moreover we decided to give more importance to the

standard deviation in the optimization because we wanted to try to lower down as

much as possible this result considering that lowering down the average was quite

easy. The set for the tests has been run considering the daytimes in the range from 6°

to 37° with the exception of the daytimes 7, 11, 15, 19, 23, 27, 31 and 35 used as

testing set.

68

4.4.2 PROBABILITY LARGER THAN 70%

The results for these groups are very positive, it is possible to see that a very strong

improvement has been made for all the roles with a very high success percentage. As

a matter of fact a lot of players’ performances forecasts are better than the ones with

the original parameters. Moreover, thanks to the more importance given to the

standard deviation in the fitness function the improvements achieved for this specific

error are very significant. On the other hand the error average has been improved but

a bit less compared to all the previous tests. In the following charts all these statistics

are shown.

Error mean and standard deviation

The following two graphs show the percentage improvements for the standard

deviation and the error average for all the roles. Negative values describe a reduction

of the error compare to the ones obtained with the default parameters (positive result)

while positive values indicate an increase compare to the original error (negative

results).

Improvements in the standard deviation:

69

Improvements in the mean error:

70

Distinct players’ improvements

In the following chart one can see the percentage of the improvements for the players

with a better forecast compared to the old ones obtained with the original parameters

for all the roles.

It is possible to see that all the roles have improvements over the 60%-70%.

Goalkeepers

Defenders

71

Midfielders

Strikers

72

To give a general idea on the success of the model, the results for the total number of

improved players of these tests were compared to the results of the tests without

filters regarding the striker’s role for the same daytimes previously analyzed (11, 15,

20).

Daytime 11

Total number of improved players: 26/32. Percentage: 81%

The old percentage was 57%.

Total number of worsened players: 5/32. Percentage: 16%

The old percentage was 21%.

Total number of unchanged players: 1/32. Percentage: 3%

The old percentage was 22%.

73

Daytime 15

Total number of improved players: 23/31. Percentage: 74%

The old percentage was 55%.

Total number of worsened players: 8/31. Percentage: 26%

The old percentage was 25%.

Total number of unchanged players: 0/31. Percentage: 0%

The old percentage was 20%.

74

Daytime 20

Total number of improved players: 20/28. Percentage: 71%

The old percentage was 55%.

Total number of worsened players: 7/28. Percentage: 25%

The old percentage was 22%.

Total number of unchanged players: 1/28. Percentage: 4%

The old percentage was 23%.

75

4.4.3 PROBABILITY BETWEEN 45% AND 70%

Running the same tests used for the range with a probability larger than equal to 70%

(giving more importance to the standard deviation compare to the error average) for

the dataset ranging from 45% to 70% did not give the same good results. The

problem is that in this range of values players are very unlikely to play so, usually,

the best advice is not to line them up for the match. But of course during the matches

there are a lot of possible, unpredictable, variations and if some of these players enter

the field and take quite good grades the forecasts errors can become rather high.

Considering that I decided to run tests giving more importance within the fitness

function to the error average instead of the standard deviation. The reason is that I

wanted to try to lower down the error which could become quite big if a lot of players

did not perform as they usually do.

The result were quite good, there were improvements for almost all the daytimes in

compare to the original forecast.

76

Error average and standard deviation

The following chart reports the percentage improvements for both the error average

and the standard deviation compare to the original results.

Negative values describe a reduction of the errors compare to the ones obtained with

the default parameters (positive result) while positive values indicate an increase

compare to the original errors (negative results).

77

Distinct players’ improvements

In the following pages the results are reported which show the percentage of

improved, worsen and equal distinct players errors compared to the original values.

The results are improved but the percentage of success is not so high considering, as

already said before, that these players are very difficult to model with a proper

generalization function. To show the percentage results the test daytimes are used.

Daytime 7

Total number of improved players: 33/54. Percentage: 61%

Total number of worsened players: 19/54. Percentage: 35%

Total number of unchanged players: 2/54. Percentage: 4%

78

Daytime 23

Total number of improved players: 28/51. Percentage: 55%

Total number of worsened players: 20/51. Percentage: 39%

Total number of unchanged players: 3/51. Percentage: 6%

Daytime 35

Total number of improved players: 37/54. Percentage: 69%

Total number of worsened players: 17/54. Percentage: 31%

Total number of unchanged players: 0/54. Percentage: 0%

79

CONCLUSIONS

5.1 TESTS RESULTS

After all the tests carried out it is possible to observe that all the errors with the

original parameters were improved with the new ones. The mean error and the

standard deviation have significantly lower down their values; moreover, the

percentage of players with a better forecast has strongly increased.

For this reason is definitely possible to say that the goal of improving the original

forecasts has been successfully achieved. The original parameters have been

improved allowing the Teamies’ algorithm to provide its customers with better

forecasts.

For the players with higher probability to play (bigger than equal to 70%) the

forecasts have been strongly improved. This is positive not only for the better

precision but also because these players are the ones who need a more precise

forecast compared to other players with a lower probability. The reason is that these

are the footballers which impact the most on the total amount of points that a fantasy

manager can gain during a championship daytime, so having high precise results on

them is far more important compared to players with lower probabilities who usually

have a very small impact on the total final result.

For the players with lower probability to play (between 45% and 70%) the results are

also positive but not as much as the probability range starting from 70%. This results

less optimized do not have, however, a relevant negative effect on the forecasts

80

provided to the Teamies’ customers because selldom these players are chosen to be

line up. Furthermore in the event that a regular player (player with probability larger

or equal to 70%) is removed before the beginning of the match from the original

formation for special occasions, such as an accident, the probability of non regular

players that are going to substitute him are updates and a more reliable forecast can

be calculated. So the problem with the range 45%-70% is only present when players

who are not supposed to play actually enter in the fields during a match and perform

quite well.

As we can understand the probability for a player to be lined up is a very important

parameter to forecast the best footballers. For this reason all the fantasy managers in

order to get the best predictions from the Teamies platform should wait for the last

advice provided before the matches (according to the rule of the fantasy football

game they are playing).

It is also very important to keep in mind that trying to forecast what could happen is

always difficult especially when the aim is to try to evaluate the performance of

football players. In fact as a human being a lot of non statistical variables could affect

the performance in unpredictable ways.

81

5.2 WHAT COULD BE IMPROVED

Of course a lot of improvements can be applied to this application because like in

every software development situation very often there are different solutions that can

be used to achieve the same goals. But in this case the most important optimization

that could be applied would be to further reduce the errors for players with a

probability to play ranging between 45% and 70%.

To achieve that more tests should be carried out to understand if this range could be

described by a better model or if changing the algorithm and the math formulas could

give better results. Of course a deeper analysis would take a lot of time and for the

aim of the thesis this was not possible.

But to give a quick overview on a possible strategy to improve the results a solution

could be to try to create a new algorithm specifically studied for these types of

footballers. One idea could be to try to predict when a regular footballer could be

substituted during a match and predict which other player could enter in the field in

his place. To understand which regular footballer could be changed a possible

procedure could be to collect information about his physical state (e.g: if he has some

small injury) in order to forecast his ability to play for all the length of the match and,

if substitute, to provide a more accurate forecast for the players who will substitute

him.

82

5.3 NEURAL NETWORK: ANOTHER APPROACH

To solve the problem the approach was to use a evolution algorithm because Teamies

already had a proprietary algorithm to evaluate players performances and they just

wanted to optimize specific parameters. So the need was to have a search technique

to find exact or approximate solutions to optimize the search problems and the most

suitable solution in this case was to use an evolution algorithm.

But of course there are other different techniques that can be used to try to improve

the forecasts. Following today’s trends one approach could be to use a Neural

Network. Neural Networks are brain-inspired systems which are intended to replicate

the way that humans learn. Neural networks consist of input and output layers, as

well as (in most cases) a hidden layer consisting of units that transform the input into

something that the output layer can use. They are excellent tools for finding patterns

and model complex relationships which are far too complex or numerous for a human

to extract and teach the machine to recognize them.

[image and information]⁷

83

If Teamies would have wanted to try to optimize the forecast using Neural Network

the approach could have been, in short:

1. to set as input the players statistics and their teams statistics (and probably also

the ones of their opponents)

2. to set as output values the real players performances.

Of course several possible strategies should be taken into consideration and tested but

this could be a good starting point.

But the problem with a Neural Network is that it is notoriously difficult to figure out

what they have learned, i.e. to extract the knowledge from them once trained, and

reuse the knowledge. So as a first attempt, considering that Teamies wanted to

understand the relationships between a player statistics and their performances, they

prefered to start with an evolution approach.

84

BIBLIOGRAPHY

¹ ​​Wikipedia contributors. Wikipedia, The Free Encyclopedia. ​“​​Cron”.

Retrieved on: 18 Oct. 2018, ​ from:

https://en.wikipedia.org/wiki/Cron​.

 ² Various contributors, Google Puppeteer official documentation. “Puppeteer”.

Retrieved​ on: 20 Oct 2018, retrieved from:

https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md​.

³ Various contributors, Mysql npm package official documentation. “Mysql-npm”.

Retrieved​ on: 22 Oct 2018, retrieved from:

https://www.npmjs.com/package/mysql​.

⁴ Various contributors, µGP (MicroGP) official documentation. “µGP (MicroGP)”.

Retrieved​ on: 24 Oct 2018, retrieved from:

http://ugp3.sourceforge.net​.

⁵ Various contributors, Quora answers. “What is the difference between training data

and testing data?”. ​Retrieved ​ on: 26 Oct 2018, retrieved from:

https://www.quora.com/What-is-the-difference-between-training-data-and-testing-dat

a​.

⁶ Anup Bhande, Medium answers. “What is underfitting and overfitting in machine

learning and how to deal with it”. ​Retrieved​ on: 26 Oct 2018, retrieved from:

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learni

ng-and-how-to-deal-with-it-6803a989c76​.

⁷ Wikipedia contributors. Wikipedia, The Free Encyclopedia. ​“​​Artificial neural

network”. ​Retrieved on: 26 Oct. 2018, ​ from:

https://en.wikipedia.org/wiki/Artificial_neural_network​.

85

https://en.wikipedia.org/wiki/Cron
http://ugp3.sourceforge.net/
https://www.quora.com/What-is-the-difference-between-training-data-and-testing-data
https://www.quora.com/What-is-the-difference-between-training-data-and-testing-data
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://en.wikipedia.org/wiki/Artificial_neural_network

