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Chapter 1

Introduction

1.1 Thesis motivation
Convolutional Neural Network gained lots of success in 2012 thanks to AlexNet,
a Neural Network capable of good performance on the ImageNet dataset. Since
then numerous variants of CNNs have been developed, pushing the limits of the
architecture for image classification.

At the end of 2017 S. Sabour, N. Frosst and G. Hinton published a paper named
"Dynamic Routing Between Capsules", in which a new architecture for object recog-
nition was proposed: the Capsule Network. The idea behind this architecture
is to give the classifier a deeper understanding of the objects contained inside the
image, encoding the entities that form the object inside vectors of instantiation
parameters, representing the pose of the entity. This is achieved using groups of
neurons, named capsules, representing the entities present in the image. Moreover,
a new algorithm for the training of layers of capsules is presented. The "Routing-
by-Agreement" algorithm is an iterative algorithm which "routes" the activations
from one layer of capsules to the next, based on the prediction that each capsule
of one layer makes about the pose of the entity encoded in the capsules of the next
layer.

1.2 Thesis goal
The original paper about Capsule Networks only describes results obtained in small
and simple datasets such as MNIST and CIFAR-10. The goal of this thesis is
to verify the possible applications of Capsule Networks in place of Convolutional
Neural Networks. CNNs are used today in a variety of applications; in this thesis
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1 – Introduction

we will discuss about Image Classification, Image Segmentation and Generative
Adversarial Networks. The experiments presented in this thesis concern aspects of
Capsule Networks that were never discussed in the original paper, including big
input images, different datasets, time of training and different applications.

This project has been developed in collaboration with AddFor Srl company,
which has provided important support ando collaboration.
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Chapter 2

Deep Learning Concepts

2.1 Artificial Neural Networks

An Artificial Neural Network(ANN) is a computational model that tries to
approximate a function f* [1], which maps an input vector x to an output vector
y. Artificial Neural Networks derive their name and structure from the biological
neural networks. They are composed of artificial neurons organized in layers.
The first layer is called the input layer and it receives the input vector x, the
last layer is called the output layer and returns the output vector ; the layers in
between the input and output layers are called hidden layers. In a standard ANN
architecture each neuron of each layer is directly connected to each neuron of the
next layer, and a weight is associated to each connection.

Figure 2.1: A 3-layer ANN. The hidden layer is composed of 3 neurons.
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2 – Deep Learning Concepts

ANNs can be classified into Feedforward Networks and Recurrent Net-
works. In the first case the information flows directly from the input layer to
next layers, until it reaches the output layer. Recurrent Networks instead contain
also feedback connections. In this thesis we will discuss only about Feedforward
Networks.

ANNs are also usually called Deep Neural Networks, indicating that the number
of hidden layers is more than two, making the network "deep".

2.1.1 Artificial Neuron
The artificial neuron is the basic unit of computation inside a Neural Network.
Each neuron has a bias associated to it. Every neuron of each hidden and output
layer performs a weighted sum of its inputs. At the result is added the bias, forming
the output z. Before passing the output to the next layer, an activation function
is performed on z. Common activation functions used are binary step, sigmoid,
tanh, ReLu.

Figure 2.2: An artificial neuron with 2 inputs.

2.1.2 Learning algorithms
The function that the ANN tries to approximate is associated to a particular task.
The most common tasks delegated to a Neural Network are regression and clas-
sification. For the regression task, the ANN is asked to predict a numerical value
associated to the input. For the classification task, the ANN is asked to classify
the input in one of the predefined categories.

Each task is strictly linked with the input data provided to the network. As a
matter of fact, in order to execute its task and approximate as accurately as possible
the function associated to the task, the Artificial Neural Network needs to learn the
weights and bias of each neuron. An ANN is called a learning algorithm because

10



2.1 – Artificial Neural Networks

it learns to approximate a function based on some data. This set of data is called
a training set. Learning algorithms can be classified into unsupervised and su-
pervised learning algorithms. Unsupervised algorithms learn particular properties
of the training data, while supervised algorithms learn from data associated to a
target, which can be a numerical value or the class associated to the input.

We need some kind of way to describe how far the output of the ANN is from
the desired output. This is achieved defining a cost function, also called loss
function. This function gives us the estimate of how our network is performing
compared to the original training data. An high value corresponds to a bad model,
while an high value corresponds to a model that has learned correctly the training
data. Common loss functions used include mean absolute error, mean squared error,
cross entropy.

In order to improve the performance of the ANN, we need to minimize the cost
function. This is done by calculating the gradient of the loss function, which
describes how the function’s output reacts to small changes in the input. The
direction of the gradient points to the direction of steepest increase in the function,
therefore to minimize the function we need to take small steps to the opposite
direction of the gradient. The learning rate regulates how big the steps are.
This method of minimizing a function is called gradient descent. Over time
several methods have been developed to improve gradient descent, such as stochastic
gradient descent, gradient descent with momentum, adam.

Figure 2.3: Gradient descent method. Source: https://saugatbhattarai.com.
np/what-is-gradient-descent-in-machine-learning
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2 – Deep Learning Concepts

2.1.3 Backpropagation algorithm

While the problem of minimizing the loss function is solved through gradient de-
scent, calculating the gradient of the cost function of an ANN is not a trivial task,
because of the structure of the network. We need to compute the derivative of the
loss function with respect to each of the weights and biases of the network. For
neurons of the output layers this is straightforward because they have a target and
the loss function applies directly to their output, meanwhile for hidden neurons the
derivative of the loss function depends from the parameters of the previous and
following layers.

A solution to this problem comes from the Backpropagation algorithm[3].
Using the chain rule, which allows the computation of the derivative of composed
functions, the error at the output layer is propagated backward to each of the hidden
neurons, allowing the evaluation of the gradient through the entire network. Each
of the weights and bias is then updated with a value that is the negative of the
partial derivate of the error function with respect to the parameter, multiplied by
the learning rate.

2.1.4 Training process

ANNs need to see the training data several times in order to fully understand the
patterns between the input and the target. The process of training is usually split
up in epochs. The training process starts with the forward pass, where the
output of each neuron is calculated and the output of the last layer is compared
to the target. This is repeated for each sample inside the batch, a subset of the
entire training set. The total error of a batch is calculated as the mean error over
each sample in the batch. At the end of the forward pass, the backward pass is
executed, consisting in the computation of the new weights and biases through the
backpropagation algorithm. The entire process is reapeated for each batch in the
training set, marking one epoch. In order for the network to learn correctly, several
epochs are usually needed. Selecting the right number of batches and epochs is a
process of trial and error.

Particular care must be taken in avoiding the phenomenon of overfitting, which
happens when the network is trained too much and it is unable to perform well
on data outside the training set. For the evaluation of the performance of a model
are usually used a validation and test set, including samples not present in the
training set. The first one is used during the training phase for the evaluation of the
model when tuning the hyperparameters such as batch size, number of epochs,
learning rate, while the second one is used to provide an unbiased evaluation of the
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2.2 – Convolutional Neural Networks

final model.

2.2 Convolutional Neural Networks
A Convolutional Neural Network(CNN) is an Artificial Neural Network archi-
tecture specialized for processing data with a grid-like topology[1]. One particular
application of CNNs that has been greatly successful is images, which can be seen as
a grid of pixels, leading them to become the de facto standard for image processing
in the Deep Learning area. The name "convolutional" comes from the mathematical
operation convolution, used instead of the matrix multiplication of ANNs.

The need for CNNs is given by the difficulty to scale to large images of reg-
ular ANNs, due to the nature of full connectivity. To solve this problem, CNNs
introduce the convolutional layer, that together with pooling layers form a scalable
architecture.

2.2.1 Convolutional layers
Convolutional layers are the core of CNNs. The weights of a neuron inside
a convolutional layer are called kernels or filters, and they are organized in 3
dimensions: width, height, channels. Width and height are usually small integers,
while the channels extend through the full depth of the input volume, that is an
input image or another convolutional layer. Each filter is slided across the width
and height of the input, computing the element-wise multiplication bewtween the
filter and the input; this constitutes the operation of convolution. Convolving a
filter over all the input creates a feature map, which gives the localized response
of the input to the filter. A convolutional layer is composed of different filters of
the same size, so the output of this layer comprises a number of stacked feature
maps. The peculiarity of convolutional layers is the connectivity among layers: in
fact a neuron in a layer l + 1 is connected only to neurons in layer l that are in its
receptive field of height x width. Just like ANNs, convolutional layers also apply a
nonlinear activation function to the output of the convolutions. This kind of design,
consisting of local connectivity through receptive field and parameter sharing
through shared filters across all the input, allows for substantial improvements to
the scalability of CNNs.

2.2.2 Pooling layers
Common CNNs implementations insert pooling layers in-between convolutional
layers. The goal of a pooling layer is to reduce the size of the layers, resulting

13



2 – Deep Learning Concepts

Figure 2.4: A convolutional layer. Source https://brilliant.org/wiki/
convolutional-neural-network/

in fewer parameters to train. It replaces the output of a convolutional layer at a
certain location with a summary, applying a function over a spatial rectangle ph×pw

to each channel. A popular pooling function is max pooling, which computes the
maximum inside the rectangle.

Another benefit given by pooling is the invariance to small translations of the
input. This happens because pooling computes a local summary of the input, so
small perturbations will not affect the output of pooling. This is useful because
allows the network to identify more easily some feature in the input. However
the application of pooling layers loses information about the exact location of the
features inside the input, and this can be an important factor for particular images.
We will see in chapter 4 how pooling will be replaced inside Capsule Networks.

Figure 2.5: Max pooling layer. Source https://towardsdatascience.com/
applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
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Chapter 3

CNNs applications

In this chapter we will present some applications of Convolutional Neural Networks.
CNNs were originally developed for image classification, specifically for handwrit-
ten digit recognition [6]. The charateristics of Convolutional Networks were then
successfully applied to a variety of tasks involving images. Image segmentation is a
natural follow-up for application of convolutional models. In 2014 Ian Goodfellow
came up with the idea of training two different networks one against the other,
resulting in a Generative Adversarial Network. CNNs quickly found their place in
both of the networks present in the GAN architecture, generating realistic images.
In general, these days Convolutional Neural Networks represent the standard for
any Computer Vision task.

In this chapter we will also describe the methods for evaluation of the algorithms
presented, an important step to benchmark the differents models available.

3.1 Image classification

Image classification refers to the task of assigning an input image to an output label
representing a class. Common datasets for image classification include MNIST[11],
a database of handwritten digits, and ImageNet[12], a database of hundreds of
thousands images of 1000 different objects. Classical Machine Learning algorithms
such as Support Vector Machine and K-Nearest Neighbors have been used for image
classification, however since the pubblication of the LeNet[11] architecture, CNNs
have become the standard approach.

15



3 – CNNs applications

3.1.1 Evaluation
Just like any other type of classifier, the evaluation of an image classifier is based
on its ability to recognize the class of the input image. Therefore, classifiers can be
ranked evaluating the error rate calculated over a test set.

3.2 Image segmentation
Image segmentation consists in partitioning an input image into different seg-
ments. Image segmentation is often referred to as semantic segmentation, as the
term semantic refers to the attribution of each pixel of the image to a particular
class. In this way an image segmentation algorithm is able to distinguish the outline
of different objects present inside an image.

Many methods are available for image segmentation, however here we will con-
centrate on methods involving CNNs. In 2014 CNNs for image segmentation were
popularized by the Fully Convolutional Networks[7]. The application of pooling
in CNN-based architectures for segmentation removes the precise spatial informa-
tion inside the image. To overcome this problem, architectures like U-Net[8] and
SegNet[9] adopted an encoder-decoder structure, in which the encoder learns a
representation of the input into low resolution feature maps, and the decoder up-
samples them into full input resolution feature maps. This kind of strategy is also
used inside SegCaps[10], the architecture for image segmentation based on Capsule
Networks that we will explore in chapter 5.

3.2.1 Evaluation
Image segmentation algorithms outputs an image of the same size as the input,
where each pixel corresponds to a class.

The evaluation of these algorithms must take in account the overlap between the
prediction output and the target mask of each class. This is done by the Jaccard
index or Intersection over Uniov (IoU):

Jaccard Index = |target ∩ prediction|
|target ∪ prediction|

It measures the number of pixels present in both the prediction and the ground
truth, divided by the total number of pixels present across the target mask and the
prediction.

A similar metric is given by the Dice coefficient:

Dice coefficient = 2 |target ∩ prediction|
|target|+ |prediction|
16



3.3 – Generative Adversarial Networks

Figure 3.1: An example of image segmentation with SegNet.

It measures the number of pixels present in both the prediction and the ground
truth multiplied by two, divided by the total cardinality of pixels of the target and
the prediction.

3.3 Generative Adversarial Networks
Generative Adversarial Networks were introduced by Ian Goodfellow in 2014[13].
This architecture consists in two different models being trained simultaneously: a
generative model G, called the Generator, learns the distribution of the data start-
ing from a latent vector sampled from a prior distribution, while a discriminative
model D, called the Discriminator, learns to distinguish the original data from the
generated data. CNNs are commonly used both in G and D for image-generating
GANs. The Generator is created mixing Convolutional layers with Transposed
Convolutions, an operation that does the opposite of a normal convolution. The
Discriminator is usually implemented through a classic CNN. In 2015, Deep Convo-
lutional Generative Adversarial Networks (DCGANs) came out as a class of CNNs
for image generation, detailing certain architectural constraints, such as the use of
LeakyReLU and the removal of fully connected layers.[14]. In chapter 5, we will
compare a DCGAN architecture against a GAN using CapsNets as discriminator,

17



3 – CNNs applications

on a dataset consisting of 20 objects depicted in different viewpoints.

Figure 3.2: An example of image generation from the original GAN paper. The
last column shows the nearest training example of the neighboring sample, in order
to demonstrate that the model has not memorized the training set.

3.3.1 Evaluation
The task of evaluating a GAN model is not as easy as for a regular Deep Learning
model. Being a generative model, comparing the quality of images produced is a
highly subjective matter. The argument of finding good metrics for evaluation of
GAN models is still under debate, however some standard approaches exist.

Inception Score (IS)[15] tries to measure the performance of a GAN through
the quality of the generated images and their diversity. To measure the quality, the
images are classified using an Inception-v3 model[16][17], a particularly successful
CNN architecture, trained on ImageNet, then the entropy related to the prediction
is evaluated. Low entropy correponds to a highly predictable gerated image, stating
that this is an high quality image. This is exactly as evaluating the conditional
label distribution p(y|x). To measure the diversity of the images the marginal
label probability p(y) is evaluated. High entropy corresponds to the absence of a
dominant class. KL-divergence is used to measure the divergence between the two
distributions; higher scores of IS are better because they imply a larger divergence.

IS(x) = exp(Ex

[
KL

(
p(y|x)||p(y)

)]
)

Fréchet Inception Distance (FID)[18] builds upon the IS, using the Inception
network to extract features from an intermediate hidden layer, the 2048-dimensional
activations of the pool3 layer. These features are modelled using a multivariate
Gaussian distribution with mean µ and covariance Σ for both the generated and
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3.3 – Generative Adversarial Networks

real images. Final FID score is calculated comparing the means and summing all
the diagonal elements of the covariance matrices. Lower FID scores corresponds
to better image quality and diversity.

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2)

Other common metrics used are precision, for measuring the quality, recall for
the capacity to generate any sample in the training set, and F1 score to give a
summary of precision and recall in one statistic.
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Chapter 4

Capsule Networks

In this chapter we will describe the main concepts about Capsule Networks, starting
from the motivations behind this idea and the drawbacks of CNNs, then analyzing
the architecture in detail.

4.1 Motivation
A capsule is a group of neurons whose activity vector represents the instantiation
parameters of a specific type of entity such as an object or an object part[4].

The idea of capsules was first described by Hinton et al. in Transforming Auto-
encoders[5]. In this paper they describe how Convolutional Neural Networks are
capable of recognizing objects but incapable of knowing their position in space.
This is due to the usage of Pooling layers, which are capable of giving the model
the translational invariance, as discussed in section 2.2.2. Instead of aiming for
viewpoint invariance, artificial neural networks models should aim for viewpoint
equivariance. This can be done by the usage of capsules, which represent a single
entity present in the image, and outputs a vector of instantiation parameters rep-
resenting the characteristics of the entity, together with the probability that this
entity is present within its limited domain [5].

4.1.1 Inverse graphics
In a talk given by Geoffrey Hinton at MIT in 2014 [19], he described how the human
brain is capable of rendering the visual information received by the eyes, creating
a parse tree from the objects and their parts. While computer graphics programs
contruct the image starting from geometric representation of the entities, building
an hierarchical model through viewpoint-invariant matrices, the human brain does
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4 – Capsule Networks

exactly the opposite, leading to the term inverse graphics. The representations
of the entities that the brain constructs do not depend from the viewpoints. To
construct a learning algorithm that matches the capabilities of the human brain
and be able to become viewpoint equivariant, inverse graphics should be the main
goal.

4.2 Routing-by-agreement algorithm
As low level capsules represent basic entities of an object, we need a way to transfer
information to the appropriate parent capsule representing the right whole in the
next layer. This is made possible by a dynamic routing algorithm, the routing-
by-agreement, which decides where the outputs from low level capsules should
go to the next layer through an iterative process. This mechanism is based on a
prediction given by the low level capsule for the the instatiation parameter of the
higher level capsule. This prediction is calculated through a transformation matrix,
and when multiple predictions from low level capsules agree with the output of the
high level capsule, this gets activated.

The probability of existence of the entity represented by the capsule is given by
the length of output vector. A non-linear squashing function is used to ensure
that the length stays in range 0 to 1, shrinking the short vectors to almost zero and
the long vectors to almost one.

vj = ||sj||2

1 + ||sj||2
sj

||sj||

where vj is the vector output from capsule j and sj its input vector. sj deriving
from a previous layer of capsules is calculated through a weighted sum over all
the prediction vectors ûj|i, obtained multiplying the output ui of a capsule i by a
learned transformation matrix Wij.

ûj|i = Wijui

sj =
∑

i

cijûj|i

cij are the coupling coefficients determined by the iterations of the dynamic routing.
Coupling coefficients between one capsule and all the others in the next layer sum
to 1 and they derive from a routing softmax.

cij = exp(bij)∑
k exp(bik)
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4.3 – CapsNet architecture

bij represent the log prior probabilities that capsule i should be coupled to capsule
j. For some cases like MNIST they are initially set to 0 so at the first iteration
all the prediction gets sent to all the parent capsules. Coupling coefficients are
then refined through a iterative process, measuring the agreement aij between the
current output vj of the parent capsule jand the prediction ûj|i given by capsule i.
This is calculated by the scalar product of those two.

aij = vj · ûj|i

bijs gets updated with the agreement aij, and leads to an update of the coupling
coefficients.

The full routing-by-agreement algorithm is shown in figure 4.1

Figure 4.1: Routing-by-agreement algorithm.

4.3 CapsNet architecture
The original Capsule Network architecture is shown in figure 4.2. It has been
developed to work with the MNIST[11] dataset. It uses a first layer of convolution
with 256, 9 × 9 filters, with stride 1 and ReLU activation. This layers in needed
to transform the activities of local feature detectors into primary capsules. The
second layers constitutes the Primary Capsules, which is a convolutional capsule
layer with 32 channels of 8D capsules, organized in 6 × 6 grids. This is done by
applying 8 9 × 9 filters with stride 2 to the 256 feature maps in input from the
previous layer. Each of the capsule in the same 6× 6 grid shares the weights with
each other. The application of the squashing function functions as a non-linearity
for this layer. The next layer is the DigitCaps, which contains one 16D capsule
per class and constitutes the output layer. The increase in capsule dimension is
justified by the increase in complexity of the entities represented by the capsules
in the layer above. The routing-by-agreement algorithms happens between the
PrimaryCaps and the DigitCaps.
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4 – Capsule Networks

Figure 4.2: Capsule Network architecture.

A decoder is attached to the DigitCaps layer to reconstruct the the input image,
in order to encourage the digit capsules to encode the instantiation parameters
(figure 4.3). This is done by masking all but the output vector of the correct digit
capsule.

Figure 4.3: Capsule Network decoder.

4.4 CapsNet results
CapsNet for MNIST has been trained using a margin loss, one for each digit capsule
k, to allow the presence of multiple digits inside the same input image. This
margin uses the length of the instantiation vector to represent the probability that
a capsule’s entity exists.

Lk = Tkmax(0,m+ − ||vk||+ λ(1− Tk)max(0, ||vk −m−||)2

Tk = 1 when a digit of class k is present, while m+ = 0.9 m+ = 0.1. λ = 0.5 is
a down-weighting parameter for absent digit classes that stops the initial learning
from shrinking the lengths of the activity vectors of all the digit capsules. The loss
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for the reconstruction is given by the sum of the squared differences between the
output of the decoder and the input’s pixel intensities. Total loss used for training
is the sum of all margin losses for each digit, with the addition of the reconstruction
loss, scaled down by 0.0005.

On MNIST the CapsNet is trained against a CNN baseline, consisting of three
convolutional layers of 256, 256, 128 channels, each with 5x5 kernels and stride of
1. The last convolutional layers are followed by two fully connected layers of size
328, 192. The output layer is a 10 class softmax layer, using dropout and a cross-
entropy loss. This baseline is designed to achieve the best performance on MNIST
while keeping the computation cost as close as to CapsNet. In terms of number of
parameters the baseline has 35.4M while CapsNet has 8.2M parameters and 6.8M
parameters without the reconstruction subnetwork. Figure 4.4, shows the results,
where a CapsNet using the reconstruction and three iterations of routing is able
to outperform the baseline, reaching a 0.25% test error achieved only by deeper
convolutional architectures.

Figure 4.4: Capsule Networks against CNN baseline on MNIST.

Thanks to the decoder it is possible to visualize what the 16 dimensional vector
given by the DigitCaps layer is encoding, introducting perturbations to the param-
eters of the vector and feeding it to the decoder network. Figure 4.5 shows some
features encoded by the parameters.

Figure 4.5: Features encoded by the activation vector of the DigitCaps.
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4 – Capsule Networks

Training a CapsNet and a CNN on padded and translated MNIST achieving
both around 99% test accuracy, and testing on the affNIST dataset (containing
affine transformation of MNIST samples) gave 79% test accuracy for the CapsNet
model, while only 66% for the CNN model.

Using the same architecture for MNIST on smallNORB achieved a 2.7% test
error rate, on par with other state of the art models.
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Chapter 5

Experiments and results
using Capsule Networks

Throughout this chapter the methods used for the experiments on Capsule Net-
works will be described. Each section describes the dataset and the architectures
analyzed, then the results obtained.

Each of the tests performed in this chapter has been done using the Python
programming language and Keras Application Programming Interface[20]. Keras
provides an high-level API for neural networks, allowing for fast experimentation.
It runs on top of TensorFlow[21] and Python. A Nvidia GTX 1080 with 8GB of
memory has been used to conduct all tests.

As a side note, unless otherwise indicated each of the neural networks layers
described in this chapter use a ReLU activation.

5.1 Image classification
The experiments with Capsule Networks regarding image classification are done
using the COIL-100 dataset[22](see figure 5.1). It consists of 128 × 128 RGB
images of 100 different objects, each represented in 72 different angles, for a total
of 7200 samples.

The tests presented in this chapter aim to evaluate the performance of CapsNets
in modeling the instantiation parameters of objects present in the input, using this
dataset to exploit their charateristics. The original dataset has been rescaled into
32×32 images, and divided in training and test set. The training set contains only
one third of the total images, while the testing is done on the remaining two thirds
of the dataset. This particular choice has been made to evaluate the ability of the

27



5 – Experiments and results using Capsule Networks

Figure 5.1: Some samples taken from the COIL-100 dataset

model to generalize on new viewpoints.
The architecture of the Capsule Network used for this task is similar to the one

presented to classify MNIST images[4], but in order to model additional complexity
of the dataset, the channels of Primary Capsules layer have been increased to 64
(see table 5.1). The decoder is still present to perform regularization.

Layer Description
Input 32× 32× 3 input shape

Convolution 256 filters, 9× 9 kernel, stride 1
Primary Capsules 8-dimensional capsules, 64 channels, 9× 9 kernel, stride 2
Output Capsules 100 16-dimensional capsules, 3 routing iterations
Decoder dense 1 512 neurons
Decoder dense 2 1024 neurons

Reshape 32× 32× 3 output shape

Table 5.1: Capsule Network for image classification.

This CapsNet is compared against a Convolutional Neural Network using max
pooling. The architecture is similar to the one used to compare CNNs against Cap-
sNets in the original Dynamic Routing paper. It consists of a series of convolutional
layers, interleaved with max pooling layers. A dropout layer is placed after the fully
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connected classifier to prevent overfitting (see table 5.2).

Layer Description
Input 32× 32× 3 input shape

Convolution 1 256 filters, 5× 5 kernel, stride 1
Max pooling 2× 2 window
Convolution 2 256 filters, 5× 5 kernel, stride 1
Max pooling 2× 2 window
Convolution 3 128 filters, 4× 4 kernel, stride 1
Max pooling 2× 2 window

Fully connected 1 328 neurons
Fully connected 2 192 neurons

Dropout 0.4 rate
Output 100 neuron, sigmoid

Table 5.2: Convolutional Neural Network for image classification.

5.1.1 Training
The Capsule Network model has been trained using an Adam[23] optimizer with
a learning rate of 0.0001. The same optimizer and learning rate is used for the
Convolutional Neural Network. The loss used is the margin loss, with the recon-
struction loss scaled by 0.0005; batch size is set to 32. For the CNN the categorical
cross-entropy is used as loss, with a batch size of 32 as well. The training has been
done using a Capsule Network implementation in the Keras framework by Xifen
Guo.[24].

Figure 5.2 shows a stable training for the CNN, maintaining a test accuracy of
around 0.85. Figure 5.3 shows training data for the CapsNet model, with classifier
and decoder networks.

5.1.2 Results
The CapsNet model is able to achieve a test accuracy of 0.87625 after 79 epochs.
The best CNN model reaches 0.87021 after 767 epochs.

Both model reach a good test accuracy of 0.80 after few epochs, 16 for the CNN
and 19 for the CapsNet. However the CapsNet is quickly able to reach 0.86 after
47 epochs, while the CNN reaches the same performance after 123 epochs.

Overall the Capsule Network model outperforms the Convolutional Neural Net-
work model by a very small margin, but is able to reach the peak of performance
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after few epochs. At the end this convergence speed is counterbalanced by the slow-
ness of the entire CapsNet architecture, which requires about 10 times the time of
the CNN model to complete one epoch.

The decoder of the CapsNet architecture allows us to analyze the instantiation
parameters of the capsules of the last layer. This is made possible by introducing
perturbations in the 16-dimensional activation vector that each capsule outputs,
and feeding it to the decoder network which is able to reconstruct the image from it.
Figures 5.4, 5.5, 5.6 and 5.7, show some examples of activation vector manipulation
for output capsules. Each row corresponds to one element of the vector, and the
rows represent the final reconstruction when tweaking that single element. The
perturbations are in range -0.5 to 0.5. It is possible to see how the capsule is able to
model the different viewpoints of the input objects. In fact in each of those capsules
there is at least one parameter out of the sixteen which encodes the perspective of
the object. In particular, figures 5.6 and 5.7 show how the capsules associated to the
most complex classes to learn are much more susceptible to parameters variation
than the capsules associated to easier classes. This could be due to the the fact
that the capsules try to model all the possible viewpoints for complex classes.

This is also confirmed by figures 5.8 and 5.9 which show the reconstruction
for capsules associated to classes easier to learn. In fact although those classes
present some unique details among the samples, those are not reflected into the
reconstructions, which appears all the same for each parameter variation.
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5.1 – Image classification

Figure 5.2: CNN: Training and test metrics
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Figure 5.3: CapsNet: Training and test metrics
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Figure 5.4: CapsNet: Manipulation of output capsules’ instantiation parameters.

Figure 5.5: CapsNet: Manipulation of output capsules’ instantiation parameters.
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Figure 5.6: CapsNet: Manipulation of output capsules’ instantiation parameters.

Figure 5.7: CapsNet: Manipulation of output capsules’ instantiation parameters.
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Figure 5.8: CapsNet: Manipulation of output capsules’ instantiation parameters.

Figure 5.9: CapsNet: Manipulation of output capsules’ instantiation parameters.
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5.2 Image segmentation

5.2.1 SegCaps
The usage of Capsule Networks for image segmentation has been analyzed by R.
LaLonde and U. Bagci, resulting in the architecture named SegCaps[10]. It follows
the same design of U-Net[8] and FCN[7], consisting in a encoder-decoder CNNs
model. Their work includes also a revision of the architecture of CapsNets to deal
with the explosion of parameters caused by a deep Capsule Network, utilizing some
traits derived from Convolutional Neural Networks, such as a local connectivity and
parameter sharing. In the paper is proposed a new locally-constrained version of
the Dynamic Routing algorithm, in which children capsules are routed to parents
only within a local window. Moreover, the transformation matrices are shared
among each member of the grid, but only for capsules of the same type. These
improvements allow SegCaps to handle large images of 512 × 512 pixels, while
reducing the number of parameters.

This architecture has been tested on a dataset depicting human lungs, achieving
performances on par with U-Net and Tiramisu[25], while using few parameters
(figure 5.11).

Figure 5.10: SegCaps architecture.

For our evaluation of this architecture we used the UFBA UESC DENTAL
IMAGES dataset[26], consisting of X-ray images of teeths and their correspondant
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Figure 5.11: SegCaps segmentation results.

teeth masks (figure 5.12). This dataset contains 1500 image of resolution 1991 ×
1127. Just like for the dataset of lungs, the goal of segmentation for this dataset
is to classify the single pixel to classes teeth or background. The entire dataset
has been divided into training and test set using three quarters of the samples for
training, and then a validation set has been obtained using one tenth of the training
set. Final sizes of those sets are 1013 for the training set, 112 for the validation set
and 375 for the test set.

5.2.2 Training

In order for the input images to be feedable to the 3 different models, they have
been rescaled and cropped into images of 512x256. The size of the input and of the
networks required a batch size of 2 for U-Net and Tiramisu and of 1 for the SegCaps
case, in order to fit inside the 8GB of memory of the used GPU. Dice score has been
used as a evaluation metric during training. All models have been trained for 200
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epochs using Early Stopping with a patience of 25 epochs, monitoring the validation
dice score. As optimizer Adam has been used with a learning rate of 0.0001, that
is reduced by a factor 0.05 if the validation dice score does not improve after 5
epochs. The loss used is the weighted binary cross-entropy, that weights the ratio
between pixels of the two classes. Data augmentation has also been performed,
using rotations, shifts, shear, zoom, image flips and noises.

Figures 5.13, 5.14, 5.15 show results of training and validation for loss and dice
score. Both U-Net and Tiramisu models stopped at 54 epochs, while SegCaps took
118 epochs, even though the improvements stopped after around 50 epochs.

5.2.3 Results
Test scores displayed in table 5.3 show the Tiramisu model as the winner among
the three, obtaining top performances in Dice and Jaccard scores. SegCaps model
was the worse performer of the three, although not by a big margin.

Analyzing the segmentation results, most of the times U-Net and Tiramisu out-
put a clearer segmentation mask compared to the one given by SegCaps. Figures
5.16 and 5.17 show those cases, where the Dice score for SegCaps still gives a pretty
high score compared to the Tiramisu and U-Net models, but the Jaccard punishes
more this situation. Figure 5.18 shows a more visible case of this phenomenon,
where the mask of SegCaps goes completely off in the top-left corner.

However SegCaps were much more robust in particularly complex situations,
such as the ones in figures 5.19 and 5.20. In those cases both U-Net and Tiramisu
missed entire portions of teeths, while SegCaps performed regularly. Those samples
were badly judged especially by the Jaccard index, restoring the balance among the
models in average scores and bringing SegCaps closer to the other two.

Model Average Dice Coefficient Average Jaccard Index
U-Net 0.8815 0.8015

Tiramisu 0.8892 0.8103
SegCaps 0.8783 0.7892

Table 5.3: Segmentation models average test scores
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5.2 – Image segmentation

Figure 5.12: UFBA dental dataset samples.
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Figure 5.13: U-Net training. First row represents training data, second row valida-
tion data. First column is loss, second is dice score.

Figure 5.14: Tiramisu training. First row represents training data, second row
validation data. First column is loss, second is dice score.
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Figure 5.15: SegCaps training. First row represents training data, second row
validation data. First column is loss, second is dice score.
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Figure 5.16:
1: U-Net Dice: 0.897, Jaccard: 0.813;

2: Tiramisu Dice: 0.901, Jaccard: 0.820;
3: SegCaps Dice: 0.877, Jaccard: 0.781
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Figure 5.17:
1: U-Net Dice: 0.923, Jaccard: 0.856;

2: Tiramisu Dice: 0.918, Jaccard: 0.849;
3: SegCaps Dice: 0.899, Jaccard: 0.816
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Figure 5.18:
1: U-Net Dice: 0.927, Jaccard: 0.864;

2: Tiramisu Dice: 0.908, Jaccard: 0.831;
3: SegCaps Dice: 0.888, Jaccard: 0.799
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Figure 5.19:
1: U-Net Dice: 0.650, Jaccard: 0.482;

2: Tiramisu Dice: 0.812, Jaccard: 0.683;
3: SegCaps Dice: 0.900, Jaccard: 0.819
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Figure 5.20:
1: U-Net Dice: 0.694, Jaccard: 0.532;

2: Tiramisu Dice: 0.699, Jaccard: 0.538;
3: SegCaps Dice: 0.8669, Jaccard: 0.763
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5.3 Generative Adversarial Networks

For the evaluation of CapsNets inside Generative Adversarial Networks models we
will use them as the Discriminator D. The general architecture tested follows the
best practises of DCGANs[14]. In particular in this chapter we compare an almost
vanilla DCGAN against a GAN created with the same generator as the DCGAN,
but using a CapsNet discriminator. The goal of this test is to generate images
from the COIL-20 dataset[27], consisting of 20 objects depicted in 72 different
viewpoints. This dataset is a subset of the COIL-100 dataset used in section 5.1,
however the samples included in COIL-20 are grayscale images. The choice of
this dataset instead of the full COIL-100 is dictated by the renowned difficulty of
training of GANs models. Moreover the grayscale input images match the MNIST
dataset on which the original CapsNet architecture has been defined. The original
COIL-20 images of 128 × 128 × 1 pixels are rescaled to 32 × 32 × 1 for our tests
involving GANs. Just like image classification, this dataset has been chosen for
the presence of different viewpoints, which should highlight the characteristics of
the CapsNets. One particular constraint is the number of training examples, only
1440, which can cause overfit.

The architecture of G uses a projection into a space of 16×16×128, followed by
a series of Convolution layers with 256 5× 5 kernels, with in-between a Transposed
Convolution layers using 256 4 × 4 kernels, stride 2, for upsampling to 32 × 32
pixels. For each of these layers the padding is set to same, and the activation is
a LeakyReLU. The last layers consists of a convolution with 1 7 × 7 kernel, using
same padding and tanh activation (see table 5.4).

Layer Description
Input latent dimension input shape

Fully connected 128× 16× 16
Reshape 16× 16× 128

Convolution 1 256 filters, 5× 5 kernel, LeakyReLU
Transposed convolution 1 256 filters, 4× 4 kernel, stride 2, LeakyReLU

Convolution 2 256 filters, 5× 5 kernel, LeakyReLU
Transposed convolution 2 256 filters, 4× 4 kernel, stride 2, LeakyReLU

Convolution 3 256 filters, 5× 5 kernel, LeakyReLU
Convolution 4 1 filter, 7× 7 kernel, tanh

Table 5.4: DCGAN generator
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The architecture of the CNN discriminator follows the best practises of DC-
GANs, using only convolutional layers and LeakyReLU activations. A dropout of
0.6 is added in order to facilitate training and prevent the discriminator to overcome
the generator (see table 5.5).

Layer Description
Input 32× 32× 3 input shape

Convolution 1 128 filters, 3× 3 kernel, LeakyReLU
Convolution 2 128 filters, 4× 4 kernel, stride 2, LeakyReLU
Convolution 3 128 filters, 4× 4 kernel, stride 2, LeakyReLU
Convolution 4 128 filters, 4× 4 kernel, stride 2, LeakyReLU

Dropout 0.6 rate
Output 1 neuron, sigmoid

Table 5.5: CNN discriminator

The CapsNet discriminator uses the exact same architecture used for MNIST
training in the original paper about dynamic routing, making use of a decoder for
regularization (see table 5.6).

Layer Description
Input 32× 32× 1 input shape

Convolution 256 filters, 9× 9 kernel, stride 1
Primary Capsules 8-dimensional capsules, 32 channels, 9× 9 kernel, stride 2
Output Capsules 20 16-dimensional capsules, 3 routing iterations
Decoder dense 1 512 neurons
Decoder dense 2 1024 neurons

Reshape 32× 32× 1 output shape

Table 5.6: Capsule Network discriminator

5.3.1 Training

In order to achieve a stable training for a GAN architecture, several hyperparam-
eters must be tuned. All models have been trained with Adam optimizer, using
β0 = 1 and gradient clipping at 1.0.

The first thing that has been tested is the latent space dimension in input to
the generator. After a series of tests, a latent dimension of 200 was chosen as a

48



5.3 – Generative Adversarial Networks

compromise. In fact models trained with dimensions less than 200 resulted in poorer
image quality, while increasing the size over 200 did not result in improvements.

Batch size was tested in values 16, 32 and 64. Regarding discriminator and
generator learning rate, a preliminary step has highlighted the ranges of values for
CNN and CapsNet. For the generator the values 0.00005, 0.0001 and 0.0005.

As far as the discriminator is concerned, different models required different learn-
ing rates. The CNN discriminator allowed a stable training with learning rates of
0.00001, 0.00002, 0.0001, 0.0005, while the CapsNet one preferred lower values of
0.00001, 0.00002, 0.0001.

All those different models have been trained for 10000 steps. During those steps
the stable models were able to maintain in equilibrium both losses at around 0.7.
During training CapsNets models have proven to be more stable to train, being
able to maintain the equilibrium in the losses for all the time of training, while the
losses of most of DCGANs models diverged after 6000 to 7000 steps, leading to the
automatic discard of those models.

5.3.2 Results
For each possible combinations of batch size, discriminator and generator learning
rate, each model has been evaluated after a fixed number of steps, but only for steps
larger than 6000, based on the quality of generated images. Due to their variability
in generated image quality, CapsNets models have been evaluated after 150 steps,
compared to the 200 steps for CNNs models. Lots of models have been discarded
because of completely black or white generated images, caused by the divergence
of the generator and discriminator losses.

For the evaluation of the selected models, Inception Score and Fréchet Inception
Distance have been used. These two metrics however use an InceptionV3 network,
which has been conceived for large RGB images. The calculation of Inception Score
has been possible using the same concept, but with the usage of a specific CNN
trained on this specific dataset, having the same structure of the network described
in table 5.2. The calculation of FID has been done replicating the single input
channel and scaling the resolution to achieve the need input shape of 299×299×3.

The entire process of evalaution selected 6 CapsNets models and 8 CNNs models.
The results are available in tables 5.7 and 5.8.

On average, DCGANs performed better both on Inception Score and FID. An-
alyzing the generated images for the two architectures in figures 5.21 and 5.22, the
motivation of those scores should be attributed to the better diversity of generated
images deriving from the DCGANs. Images from CapsNets GANs however result
in better overall quality.
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Model IS FID
batch=16 disc_lr=0.0001 gen_lr=0.0001 step=8700 3.9354029 3.1004
batch=32 disc_lr=0.0001 gen_lr=0.0001 step=9000 3.9195573 3.1423
batch=32 disc_lr=0.00002 gen_lr=0.0001 step=9900 5.243708 3.2289
batch=64 disc_lr=0.0001 gen_lr=0.0001 step=8250 4.1814694 3.20337
batch=64 disc_lr=0.0001 gen_lr=0.0001 step=9750 5.4388456 2.8140
batch=64 disc_lr=0.00002 gen_lr=0.0001 step=9900 4.64521 3.16186

Table 5.7: CapsNet discriminator

Figure 5.21: CapsNet generated images

Model IS FID
batch=16 disc_lr=0.0005 gen_lr=0.0001 step=9800 6.0332246 2.9204
batch=16 disc_lr=0.0005 gen_lr=0.00005 step=10000 5.3966613 3.2121
batch=16 disc_lr=0.00001 gen_lr=0.00005 step=9000 8.058795 3.0304
batch=16 disc_lr=0.00002 gen_lr=0.00005 step=9400 5.051762 3.1601
batch=32 disc_lr=0.0005 gen_lr=0.00005 step=9400 2.8316786 3.3522
batch=32 disc_lr=0.00001 gen_lr=0.00005 step=9800 6.610988 3.1083
batch=32 disc_lr=0.00002 gen_lr=0.00005 step=10000 8.551685 2.1765
batch=64 disc_lr=0.00001 gen_lr=0.00005 step=10000 6.4365435 3.0838

Table 5.8: CNN discriminator
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Figure 5.22: DCGAN generated images
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Chapter 6

Conclusion and future work

In view of the results presented in the previous chapter, Capsule Networks ap-
pear as a promising but still very immature architecture for object recognition.
Performance-wise they showed some interesting feature that can be further devel-
oped and exploited. During the analysis of image classification, CapsNets proved
to be the ideal solution when dealing with dataset involving affine transformations.
This scenario also apperead in complex cases for image segmentation, where Seg-
Caps was able to delineate a complete mask for each of the samples. Regarding
GANs, the Capsule Networks discriminator allowed the generation of good quality
images, but lacking diversity. Digging deeper, the analysis of instantiation param-
eters of the output capsules confirmed the benefits deriving from using a vector as
output instead of a single scalar.

Even though the goal of this thesis was to test Capsule Networks in more prac-
tical contexts, differently from the environment on which they have been originally
tested, our analysis had to deal with limitations deriving from time, computing
power and the architecture itself. The evaluation of each CapsNet model has al-
ways to deal with the overall slowness of the Dynamic Routing algorithm: it is
in fact an iterative algorithm, which adds consistent time during training and in-
ference phases, leading to the need of a lot of computing power in order to tune
the hyperparameters of the networks. Current implementations of Capsule Net-
works do not run directly on GPU hardware but are implemented on high level
programming languages, reducing the performances of these models. Moreover,
this situation led to the impossibility of use of large images inside this architecture,
both for time and memory issues. To cope with this problem, SegCaps introduced
a method for training large images using layers containing capsules. A similar ap-
proach has been proposed by the same authors of the original paper with Matrix
Capsules with EM routing[28], although its source code is still not available and
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current implementations do not fully respect the original architecture presented in
this paper.

Tests involving Capsule Networks against adversarial examples[29] proved the
framework to be very robust against white box attacks[28]. Further research re-
garding adversarial attacks has been conducted with the goal to prevent attacks
using the decoder derived from a Capsule Network[30].

Future research should be focused on improving the scalability of this architec-
ture, allowing for large input images training and deeper networks. The purpose
of an architecture of this kind is to give an artificial neural network a better un-
derstanding of the relationships among the elements present inside an image, with
the final goal to achieve the best overall accuracy. In this situation training and in-
ference times do not play a crucial role, however performance optimization should
be definitively considered, especially regarding situations where hyperparameter
tuning is a considerable factor.

In conclusion, deep learning models that use capsules with Dynamic Routing
algorithm are not ready to replace Convolutional Neural Network in the current
state. The small improvements deriving from the adoption of capsules do not justify
the high price in term of performance of the model and limitations to datasets. Still,
capsules provide a different and successful approach for dealing with generalization
on new viepoints compared to a standard convolutional model. The design of
capsules constitutes an important starting point for models able to distinguish
objects using insights deriving from the characteristichs of the objects themselves,
rather than introducing artificial information and increasing the network size.
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