
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Automated Content Generation
with Semantic Analysis

and Deep Learning

Supervisor:
Prof. Maurizio Morisio

Candidate:
Thai Hao Marco VAN

Internship Tutor

Dr. Giuseppe Rizzo

Academic Year 2017-2018

This work is subject to the Creative Commons License

Contents

1 Introduction 1
1.1 Natural Text Generation . 2
1.2 Goals . 3
1.3 Thesis Structure . 3

2 State of the art 5
2.1 Text Generation . 5
2.2 Language Model . 5
2.3 Artificial Neural Networks . 6
2.4 Feedforward Networks . 7
2.5 Recurrent Neural Networks . 10

2.5.1 Vanilla RNN . 11
2.5.2 Long-Short Term Memory . 12
2.5.3 Gated Recurrent Unit . 14
2.5.4 Independently RNN . 15
2.5.5 Attention Mechanism in RNN 16
2.5.6 Bidirectional . 17

2.6 Convolutional Neural Networks . 17
2.6.1 CNN for Text classification 18
2.6.2 CNN for Text generation . 19

2.7 Word representation . 19
2.7.1 One-hot encoding . 20
2.7.2 Word Embeddings . 21

2.8 Generative Adversarial Networks . 23
2.9 SeqGAN . 26

3 Approach 29
3.1 Baseline . 29
3.2 Implementation . 30

3.2.1 Attention-based Bidirectional LSTM 32
3.2.2 A structured self-attentive sentence embedding 33

III

3.3 Motivation . 33
3.4 Training process . 35

4 Experimental Setup 37
4.1 Implementation . 37
4.2 Datasets . 37

4.2.1 Image COCO . 38
4.2.2 EMNLP News . 41
4.2.3 Amazon Reviews . 42

4.3 Metrics . 44
4.3.1 BLEU . 44
4.3.2 POS-BLEU . 45
4.3.3 SELF-BLEU . 46
4.3.4 Flesch Reading Ease . 46
4.3.5 Coleman-Liau . 47
4.3.6 Gunning Fog Index . 47

5 Results 49
5.1 Test Image COCO . 49

5.1.1 Image COCO samples . 50
5.2 Test EMNLP News . 52

5.2.1 EMNLP News samples . 52
5.3 Test Amazon Reviews . 54

5.3.1 Amazon Reviews samples . 56
5.4 Discussion . 57

6 Conclusions 63
6.1 Future works . 64

Bibliography 65

IV

List of figures

2.1 Feedforward neural network . 7
2.2 Feedforward neural network training process 9
2.3 Recurrent neural network and the unfolding operation. 10
2.4 Vanilla RNN . 12
2.5 LSTM gating mechanism . 13
2.6 GRU gating mechanism . 14
2.7 IndRNN structure . 16
2.8 Attention mechanism in RNN . 17
2.9 Convolutional Neural Network . 18
2.10 Convolutional Neural Network applied in text classication 20
2.11 One-hot encoding . 21
2.12 Word Embeddings . 22
2.13 Generative Adversarial Network. 23
2.14 SeqGAN architecture . 27

3.1 RNN language model based on LSTM 30
3.2 Structure of the implementation . 31
3.3 Attention-based Bidirectional LSTM structure 32
3.4 Self-attentive sentence embedding structure 34
3.5 Exposure Bias . 34

4.1 Image COCO example . 38
4.2 Image COCO words distribution . 40
4.3 Image COCO words count distribution 40
4.4 EMNLP News words distribution . 41
4.5 EMNLP News words count distribution 42
4.6 Amazon Reviews wods distribution 43
4.7 Amazon Reviews words count distribution 43

5.1 Image COCO - Generator and Discriminator loss 59
5.2 EMNLP News - Generator and Discriminator loss 60
5.3 Amazon Reviews - Generator and Discriminator loss 61

V

VI

List of tables

4.1 Example of data pre-processing. 39
4.2 Image COCO dataset statistics. 39
4.3 EMNLP News dataset statistics. 41
4.4 Amazon Reviews dataset statistics. 42

5.1 Metrics results - Image COCO . 51
5.2 Metrics results - EMNLP News . 53

VII

VIII

Chapter 1

Introduction

Natural language is the basis of how humans communicate and understand each
other. The fundamental skills required in human communication are the ability to
understand the language and the ability to use the language. These are natural
tasks for humans but are considered as one of the most challenging problems to be
solved by machinery.

Natural Language Processing (NLP), also known as computational linguistic, is
the research field that combines linguistic and artificial intelligence to study and
analyze the human language. The goal is to develop systems to enable machines
to communicate with humans making these believe they are interacting with other
humans. During its evolution natural language has been approached in several ways.

Rule-based algorithms were commonly used at the beginning. They require to
define a set of rules to handle the characteristics of human language. Despite being
easy to interpret the amount of rules that has to be hand-crafted is very large, so
it is not efficient. Also it is evident that this approach has a lot of limitations due
to the fact that natural language contains a lot of ambiguities and exceptions that
can lead to contradictions. An early attempt to build a system able to interact with
humans was made by [61] with ELIZA. It is based on pattern matching technique, by
which given an utterance from a human, the system would search for compatible pre-
defined answer templates and then it replaces the placeholders. This system has no
knowledge about the language so it execute commands without really understanding
what have been asked. Hence, the limit of ELIZA is that it cannot handle all the
questions made by the user, as a result a lot of answers are generic and repetitive.

Recent advances in the field of artificial intelligence allowed to tackle the problem
with a new point of view. The new solutions are based on neural network techniques,
which offer the advantage of automatically create a set of rules without the necessity
to be defined explicitly. They are therefore more efficient since they learn on their
own, and they can capture patterns in the data that could be hard to describe.

In the last years, the interaction with technology has increased substantially.

1

1 – Introduction

For this reason the necessity of having intelligent systems capable to interact with
people is growing. Many tasks are getting automated and some of them involve
text generation. For instance, numerous companies are using generative tools to
periodically put together structured data into reports written in natural language
that have to be readable by other people.

In this work, we explore the process of text generation by modelling the language
with neural networks, since these have shown promising results in many applications.

1.1 Natural Text Generation

Natural text generation is the computational task of producing text in natural lan-
guage. It has gained a lot of attention in the last years thanks to the many applica-
tions in which it can be employed. Some of the most common are neural machine
translation, text summarization and dialogue generation.

Text generation is approached by building language models that aim to represent
the probability distribution of the words in a text, in order to predict the next word
given the words that precede it. The current state of the art language models are
developed using neural networks. Even though a lot of progress has been made in
this field, the most popular solutions still have limitations. There are several aspects
to take into account, from syntax and semantic to how to express global meaning
within the sentence. Syntax structures can be learned by statistical models, for
instance how to structure a sentence with subject, predicate and object. But the
main issues are related to how composing the sentence in a meaningful way, and
how to maintain coherence throughout the sentence. Current approaches generate
text that tends to not be coherent, in other words they start with a topic and then
switch completely to another topic in the middle of the sentence.

Text generation is considered as a sequence prediction problem. The common
approach for this kind of problem is to use recurrent neural networks and maximize
the likelihood to predict the observed data [27]. This approach has some limits
as described by [4], one is called exposure bias. During the training process the
network is feeded with the training data, but during the inference time it uses its
own predictions as input. As a result when the network makes a prediction mistake
the error is accumulated and propagated throughout the sequence, causing the model
to being unable to work properly. To address this issue [4] proposed the Scheduled
Sampling technique, which consists of randomly alternating the input during the
training process by feeding the real data or its own predictions, but [24] showed
that this method is inconsistent.

The introduction of generative adversarial networks (GANs) [20] opened the
doors to a new way of how generative tasks can approached. In the specific, the
previous approaches are based on having an explicit likelihood function, whereas

2

1 – Introduction

GANs likelihood function is implied by having two components with two different
objective function [13]. For this reason these networks have all the characteristics to
alleviate the exposure bias problem. GANs were designed to deal with continuous
data such as images, while natural language is based on discrete tokens and therefore
a different implementation is required, this will be discussed more in the detail in
the next chapter.

1.2 Goals

GANs have demonstrated to be successful in the image domain, also some recent
implementations showed that they can be applied in the natural language domain.
The goal of this work is to implement GANs to generate readable text. Before this
we first explore the capabilities of the most used generative models based on neural
networks. Then we focus on the generative adversarial networks (GANs) applied in
the natural language domain.

The thesis works on the following research questions:

Research Question 1: how effective are the generative models GAN-based?

Research Question 2: how effective are the quantitative metrics used to
evaluate the generated text?

1.3 Thesis Structure

The thesis is organized as follows.

In Chapter 2, we review the current state of the art algorithms used for text
generation. It starts with an explanation of the text generation problem and how
to model it. It follows the review of the most common generative models such as
Recurrent Neural Networks and Generative Adversarial Networks.

In Chapter 3, we present the models we have used for our experiments. In
detail, we try to use different discriminator implementations to test whether the
results would improve.

In Chapter 4, we describe the experimental setup, this includes the datasets used
for the experiment along with the metrics used for the evaluation.

In Chapter 5, we present and explain the results of the experiments. In addition
we discuss about the advantages and drawbacks of the different implementations.

As conclusion, in Chapter 6, we present a summary of this work and discuss
about the direction for future work.

3

4

Chapter 2

State of the art

The following chapter gives a background of the current approaches used for text
generation. Section 2.1 and Section 2.2 describe the text generation task and lan-
guage model respectively. Then, from Section 2.3 the discussion focuses on neural
network based models.

2.1 Text Generation

As introduced in the previous chapter, text generation consists of generating human
language. The ability of generating syntactically correct and meaningful text is
important for many tasks. We also attribute semantic meaning to words, which
sometimes can also be ambiguous. We can think of machine translation systems in
which the word-by-word translation is not enough, they must take into account how
the words are used and how to structure sentence in order to be meaningful in the
translated language. Or text summarization where other than extracting portions
from the source it must compose the summary in a concise and meaningful way.
There a lot of challenges to face when we want to generate text through algorithms.
Machines are good at dealing with structured data and well defined rules, on the
contrary natural language has many characteristics hard to describe. So it is not
trivial to build a model that can capture all the language traits.

2.2 Language Model

In order to approach the text generation problem, the first requirement is to ap-
proximate the human language with a language model.

A language model (LM) is defined as the probability distribution of a sequence
of words, see Equation 2.1. In other words, given a text T how likely is a given
sentence S be part of T .

5

2 – State of the art

w = (w1, w2, . . ., wn) (2.1)

P (w) =
l∏

t=1

P (wt| w1, . . ., wt−1) (2.2)

Equation 2.2 defines the problem of predicting the next word given the previous ones.
In the specific, given a sentence w = {w1, w2, . . . , wt, . . . , wl}, where wt is the
word at position t within the sentence of length l, the language model is expressed
as the product of the conditional probabilities of each word wt given W1:t−1.

There are text generation problems that other than depending on the previous
words they also depend on the context. Context is referred as a variable that
conditions the outcome of the prediction. This kind of problems are defined with
conditional language models, see Equation 2.3.

P (w| x) =
l∏

t=1

P (wt| x, w1, . . ., wt−1) (2.3)

P (w) =
l∏

t=1

P (wt| wt−(n−1), . . . , wt−1) (2.4)

Language modelling is considered as the core of many NLP tasks, those which
require to approximate the probability distribution of an observed dataset. We can
distinguish two main approaches for language modelling: statistical-based [10, 40]
and neural networks based.

The common approach of statistical language models is to learn the probability
distribution of n-grams (n words at a time) within a corpus, see Equation 2.4. N-
gram-based techniques have been quite successful in the past [31], but are limited
because they are not able to generalize given a limited corpus. The main problem, as
stated by [5], is the curse of dimensionality, which cause the model to being unable
to manage unseen sequences. In other words, if the model is tested on different data
than the training data, it will perform very poorly. On the other hand language
models based on neural networks [5] are more flexible, since they can represent the
words in the vector space and learn dependencies between them. Therefore they can
handle cases not observed in the corpus, for this reason they perform better than
statistical language models.

2.3 Artificial Neural Networks

Artificial neural networks [41] are system models created after the observation of
how the human neural networks are structured. These models are known for their

6

2 – State of the art

ability to learn from experience like human brain, they modify themselves through a
training process and they get better as they are fed with more information about the
world. The strength of these systems is the ability to describe complex phenomena
by recognizing patterns in the data and deriving a related function. The basic
structure of an artificial neural network consists of a set of weights and an activation
function. It takes an input and use the weights to generate a signal. The neural
network produces an output only if the signal reaches a threshold defined by the
activation function. This behaviour allows the neural network to model nonlinear
relationships between the input and the output.

The introduction of more powerful hardware, such as GPUs, has made possible
to implement multiple layers of artificial neural networks. With the result of having
deep neural networks able to abstract at an higher level the pattern within the data
and consequently learn more complex functions, hence the name Deep Learning. As
of today, these networks are used for a variety of tasks in computer vision, natural
language processing, data processing, robotics etc.

2.4 Feedforward Networks

Feedforward networks (FFNs) are the basic category of neural networks. The main
characteristic of these networks is that the information flows through the layers only
in one direction, so the output depends exclusively by the input. These models have
the capability to approximate any nonlinear function. To achieve this, every neuron
is provided of an activation function that allows the passage of the information only
if it goes above a threshold.

Figure 2.1. Feedforward neural network

Figure 2.1 shows the layers in a FFN, the operation process can be summarized by

7

2 – State of the art

the formula ŷ = f(W ·x+ b). x is the input vector with size n×m (n inputs and m
is the single input vector representation size). W is the weight matrix of the hidden
layer that is learned through training. b is the bias, which is a learnable value used
to adjust the predicted output so that it is close to the expected output. f is the
activation function. ŷ represents the predicted outputs.

Backpropagation

FFNs learn to improve their prediction through a learning process in a supervised
environment, this means the network needs to know what the expected output
should be. The most common mechanism used as learning technique is called back-
propagation (BP) [15]. The technique derives the changes that have to be made to
the weights with the goal of minimizing the error of the prediction. FFNs training
process is divided in two steps:

• Forward propagation: given the input x the model produces an output
ŷ, next the model computes the error between the predicted output ŷ and
the expected output y, the error also called loss is used during the backward
propagation.

• Backward propagation: the network computes the partial derivatives of the
loss with respect to the weights, also known as gradients, these derivatives are
then used by the gradient descent algorithm whose objective is to minimize
the loss by updating the weights.

As shown in Figure 2.2, the input flows through the network with the forward
propagation. The output produced by the network is compared with the expected
output. A loss function computes the error between the actual output and the
expected output. This error E is backpropagated through the network using gradient
descent algorithm, which consists of computing the gradients with respect to the
network weights.

Overfitting problem

Training a neural network on a limited dataset could lead to the problem of overfit-
ting, which means that the network has adapted too much to the training data and
therefore is unable to handle correctly unseen data. In short, the model has mem-
orized the training data instead of learning the underlying pattern. To overcome
this problem, [54] has introduced the Dropout technique. The idea is to randomly
disable some neural units, in order for them to be not too much dependent on each
other. Consequently the network improve its ability to generalize.

8

2 – State of the art

Figure 2.2. Feedforward neural network training process

Application in Text Generation

In early stages neural language models were learned through feedforward networks
[46, 1]. FFNs applied to the task of text generation learn the probability distribution
over a sequence of words by taking into account a fixed length context, in short the
prediction depends on the previous n − 1 words, where n is the context size. The
noticeable drawback is that it lacks of a mechanism that can catch dependencies
between the present and the past and keep a memory of it. This issue is addressed
by the recurrent neural networks, which will be explained in the next section.

Softmax

The softmax function is important when working with discrete data such as words.
It is used to represent a probability distribution over a set of classes, so that the
sum of the probabilities is equal to 1. It is often used as the last layer of the network
to determine the probability of the outputs. Then in order to select the most likely
output over the distribution the argmax operation is used.

softmax(xi) =
exi∑k
j=0 e

xj
for i = 0, 1, . . . , k (2.5)

9

2 – State of the art

2.5 Recurrent Neural Networks

Recurrent neural networks (RNN) [16] are an extension over feedforward networks.
Their main advantages over FFNs are the ability to handle data of variable length
and to deal with time sequence problems. To achieve this, they introduce a loop
in the network that allows the neurons to be fed with the output of the previous
timestep, making the current output not only be dependent by the input but also by
the previous ones. In order to remember the previous input values they are provided
of a hidden state, which is used as a memory that keeps all the information about
the past.

Figure 2.3. Recurrent neural network and the unfolding operation.

Figure 2.3 shows the RNN structure, in the specific the unfolding operation, which
is how the network process an input stream of data. As shown, given as input a
sequence x = {x1, x2, . . . , xT}, where xt corresponds to a word in input at timestep
t, the network state ht is updated using the input xt and the previous hidden state
ht−1 using the following formula ht = (W ·ht−1+U ·xt−1), then the output distribution
is generated as ŷt = softmax(V · ht).

Backpropagation Through Time

In RNNs the training process is called Backpropagation Through Time (BPTT)
[62]. The backpropagation is done in two steps: the network during the unrolling
process make a prediction at each timestep, so the errors between the predicted and

10

2 – State of the art

the expected output are computed. The errors are then accumulated during the
timesteps and used to update the network weights.

Application in Text generation

RNNs achieve particularly good results in sequence prediction, which make them
ideal to be used for natural text generation [27, 43, 56, 44]. RNNs predict the
next word by taking into account the history of previous seen words. The ability
to remember the input history is very important: for instance consider the phrase:
“He is from Italy. His first language is ”, in order to correctly fill the blank the
model has to recall the previous words to get a hint on which language to use, in
this case “Italian”.

Text generation task is considered as a multiclass prediction problem, where at
each timestep the model has to estimate the probability distribution of the words
in the vocabulary that fit the observed data. The vocabulary is defined as the set
of unique word within the data. Given a corpus of T words w = {w1, . . . ,wT},
the training process consists of minimizing, at each timestep t, the cross-entropy
loss between the predicted output distribution ŷ(t) and the expected output y(t), as
defined in Equation 2.6. V represents the vocabulary.

H(yt, ŷt) = −
|V |∑
i

yti log ŷti (2.6)

Recurrent Neural Networks have several implementations, the most commons are
RNN, LSTM and GRU. These implementations are explained in the next sections.

2.5.1 Vanilla RNN

Vanilla RNN is the basic implementation. It has two learnable matrix weights U
and W , and a learnable bias b. It takes the single input xt and the previous hidden
state ht−1 as input, then it produces the new state ht = tanh(U · xt +W · ht−1 + b).
The state ht can be used to produce a probability distribution ŷt by applying the
softmax operation.
This implementation is not used in practice. The reason is due to the backpropa-

gation process, in which the gradients are multiplied through the timesteps making
them susceptible to the vanishing gradient problem [22, 6] or the exploding gradient
problem.

Vanishing gradient: the values of the gradients become so small that get near
to 0, therefore the weights will not be updated and the model stops to learn. This
issue can be solved with the LSTM cell implementation discussed in the next section.

11

2 – State of the art

Figure 2.4. Vanilla RNN

Exploding gradient: in this case the gradients become very large causing the
network to make unexpected updates, with the consequence that the model is not
going to converge. This issue is alleviated by using the LSTM cell or can be ad-
dressed with the gradient clipping technique, which consists of limiting the gradient
to a certain threshold.

2.5.2 Long-Short Term Memory

Long-Short Term Memory (LSTM) [23] implementation is an improvement over
vanilla RNN. It prevents the vanishing gradient problem by applying a gating mech-
anism [18], allowing the model to learn long-term dependencies. LSTM gating mech-
anism consists of three gates which select the data that should be forgotten and the
data that should be learned or updated in the memory.

The LSTM memory differs from the RNN implementation. It consists of the cell
state (C) and hidden state (h). The former is the memory that contains the infor-
mation about the past, whereas the latter contains the information used to produce
the output.

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/

12

2 – State of the art

Figure 2.5. LSTM gating mechanism. Source1

C
′

t = tanh(Wc · [ht−1, xt] + bc) (2.7)

it = σ(Wi · [ht−1, xt] + bi) (2.8)

ft = σ(Wf · [ht−1, xt] + bf) (2.9)

Ct = ft ∗ Ct−1 + it ∗ C
′

t (2.10)

ot = σ(Wo · [ht−1, xt] + bo) (2.11)

ht = ot ∗ tanh(Ct) (2.12)

The LSTM operations can be divided into 4 stages:

• First stage, candidate vector creation, a tanh layer squash the input between
−1 and 1 creating a vector of new candidate values C

′
t [2.7] that could be

added into the memory.

• Second stage, select relevant information, the input gate it [2.8] decides which
information from the input are going to be added into the memory. The
candidate values are multiplied by the input gate, which consists of a sigmoid
layer that output values between 0 and 1.

• Third stage, forget irrelevant information, the forget gate ft [2.9] decides which
information from the previous hidden state are going to be discarded from the
previous state, this also uses a sigmoid activation. t produces a new state Ct.

13

2 – State of the art

• Final step, output relevant information, the output gate ot [2.11] decides what
values from our cell state Ct are going to be part of the hidden state ht [2.12].

The reason why vanishing gradient does not occur in LSTM can be found in the
Equation [2.10]. The cell state in this case has as activation function the identity
function, therefore the derivative is equal to one. Since the term multiplied by Ct−1
is ft, when the forget gate is equal to 1, the information from Ct−1 can pass through
unchanged.

2.5.3 Gated Recurrent Unit

Gated recurrent unit (GRU) [12] is also an improvement over vanilla RNN. GRUs
are similar to LSTMs because they are also provided of a gating mechanism, which
allows to address the vanishing gradient problem as well. A noticeable difference
from LSTM is that the memory is only managed by the hidden state, so there is no
cell state. This implementation therefore allows to reduce the number of parameters.

Figure 2.6. GRU gating mechanism. Source 2

zt = σ(Wz · [ht−1, xt]) (2.13)

rt = σ(Wr[ht−1, xt]) (2.14)

h̃t = tanh(W · [rt ∗ ht−1, xt]) (2.15)

2http://colah.github.io/posts/2015-08-Understanding-LSTMs/

14

2 – State of the art

rt = σ(Wr[ht−1, xt]) (2.16)

The gating mechanism, unlike LSTM, is composed of two gates:

• Update gate: given the new input, it selects which information from the pre-
vious hidden state should be passed through. The result is then squashed
between 0 and 1 with sigmoid activation function [2.13].

• Reset gate: given the new input, it decides which information from the previ-
ous hidden state should be forgotten [2.14].

The hidden state is updated by selecting which information should be forgotten [2.7]
and then by selecting the information that should be used for future reference [2.16].

2.5.4 Independently RNN

Independently RNN (IndRNN) is an implementation proposed by [36]. As the au-
thor points out all the neurons in a RNN are fully connected, so their behaviour
is hard to interpret, in particular it is not trivial to understand the roles of each
neuron. To address this problem the neurons in an IndRNN cell are independent
from each other and they are connected only to themselves, making each neuron
have its own history.

This structure provides multiple advantages such as:

• Each neuron is specialized on a specific task since they are independent to
each other.

• Ability to stack a large number of layers because they do not receive “noise”
from other neurons.

• They can work with non-saturated activation function such as ReLU , therefore
preventing the vanishing gradient problem.

ht = σ(W · xt + U ∗ ht−1 + b) ht = σ(W · xt + U · ht−1 + b) (2.17)

The Equation [2.17] shows how the hidden state in IndRNN is computed. The
weight matrix U is multiplied with the previous hidden state ht−1 using the element-
wise operation (∗) instead of the dot product.

15

2 – State of the art

Figure 2.7. IndRNN structure
As shown the neurons within the hidden layer are connected only to themselves over the

timesteps

2.5.5 Attention Mechanism in RNN

The attention mechanism, introduced by [3], is a technique based on the visual at-
tention of humans, which can be explained as being able to focus on a particular
part of a view while ignoring the surrounding. Hence, the basic idea of the mecha-
nism is to pay “attention” only on a relevant part of the input in order to select the
appropriate output.

The first implementation has been made by [3] for the neural machine translation,
which can be defined as a conditional language modelling task [45]. A machine
translation model is based on the Sequence to Sequence (Seq2Seq) architecture [57].
It has two components an encoder and a decoder. The encoder, based on RNN, is
responsible of generating a hidden state that have all the information of the phrase
in the source language encoded. The decoder, also based on RNN, will perform the
translation by decoding the encoder hidden state. The drawback of this system is
that the encoder hidden state could be cause of bottleneck, since all the information
have to be compressed in a sense. The attention mechanism gives support to the
decoder by providing an alignment system that keeps track of the position of the
word being currently translated.

Figure [2.8] shows an example of the attention mechanism. It helps the RNN to
make the next prediction by accessing all the previous states of the network. In this
way the network other than having access to the current state it can also directly
use the past to get more relevant information, since using only the current state
can be cause of bottleneck. In the example, for the task of sentiment analysis, the
network puts more emphasis on relevant part of the sentence in order to predict its

16

2 – State of the art

Figure 2.8. Attention mechanism in RNN: example of sentiment analysis.

sentiment. In that case by focusing on “enjoyed”, the network is able to classify
with high confidence the sentence as positive.

2.5.6 Bidirectional

RNN models are often implemented in a forward setting, so they read the input
sequence starting from the first symbol to the last one. However, for some tasks it
could be important for the model to know the future state as well. For this reason
Bidirectional RNN (Bi-RNN) was introduced by [52]. The network is provided of two
hidden states of opposite direction, one forward and one backward. This structure
allows to capture more information and is commonly in machine translation models
or classification models.

2.6 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [34] are popular models, based on feedfor-
ward networks, commonly used for image recognition tasks. CNNs are inspired by
how receptive field works in our vision. A receptive field is a neuron in a specific
region of the retina that is activated by an event. Similarly, CNN neurons behave in
the same way, each neuron captures a specific feature of the image, and as a whole
the network use all these features to distinguish an image from another.

17

2 – State of the art

CNNs are made of a sequence of layers:

• Convolutional layer: it consists of filters used for the convolution operation on
the input. It is used to extract features from the input.

• Activation layer: the data coming from the convolutional layer passes through
an activation function. Usually ReLU is used, which corresponds to max(0, x).

• Pooling layer: performs a downsampling in order to reduce the dimensionality.

• Fully connected layer: given the feature map it produces the scores for each
output class.

Figure 2.9. Convolutional Neural Network. Source3

CNNs are known for their ability to extract features, which make them good
for classification tasks. Initially they have been used in image domain but their
capabilities allowed them to obtain good results in NLP tasks as well.

2.6.1 CNN for Text classification

A successful implementation of CNN for text classification has been introduced by
[28]. In this model the input is represented as the concatenation of the words within
a sentence. Multiple filters of several dimensions are used for the convolution oper-
ation to extract the feature maps. Then a pooling layer is applied over the feature
maps to make a downsampling operation. At the end, a fully connected layer is
used to generate the probability for each output class.

Figure 2.10 shows the text classification process using a CNN:

• Each word within the sentence is represented with a vector of size d and
concatenated following Equation 2.18.

3https://skymind.ai/wiki/convolutional-network

18

2 – State of the art

• Three filter of size 4, 3, 2 (starting from the top), each type of quantity equals
to 2 are used for the convolution operation.

• Each convolution operation gives as result a feature, see Equation 2.19. By
translating the filter more features are extracted producing a feature map, see
Equation 2.20.

• A 1-max pooling operation ĉ = max{c} is performed to capture the most
important feature within each feature map.

• The processed features are concatenated and a fully connected layer output
the probability for each class.

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn (2.18)

ci = f(W · xi:t+h−1 + b) (2.19)

c = [c1, c2, . . . , cn−h+1] (2.20)

2.6.2 CNN for Text generation

Apart from classification tasks, CNNs have also been used for language modelling.
[29] used CNN in combination with LSTM to represent characters to feed as input.
[14] introduced the Gated Convolutional Networks, which takes advantage of the
hierarchical architecture of CNNs to extract features over large contexts and use
these features to generate text, showing performances comparable to RNNs. [26]
and [17] use CNNs to build neural machine translation models that have competitive
results compared to the RNN based counterparts.

2.7 Word representation

Words in their natural form can not be used as input for the models previously
described, since they have no meaning to machines. Therefore, to make them inter-
pretable by the neural network models, they have to be transformed in a numerical
representation that identify them. While images and audio have high-dimensional
data information, with the common property of being representable in the continu-
ous space, words are considered discrete symbols and need to be handled differently.
There are two ways to represent words: on character-level or on word-level. The first
method has the advantage of using a small vocabulary, but in addition to learning

19

2 – State of the art

Figure 2.10. Convolutional Neural Network applied in text classication. Source
[68]

the sentence structure it needs to learn the spelling. The second method does not
have the spelling problem, but in this case the vocabulary is limited.

2.7.1 One-hot encoding

A simple method to represent discrete variables is the one-hot encoding technique,
in which each word is mapped to a different vector. Given a text, this technique is

20

2 – State of the art

accomplished by extracting a vocabulary. The vocabulary is a set of unique words
in the text. Each word, according to its position in the vocabulary, is associated
with a vector. The vector consists of values equal to 0, except one value set to 1, at
position i, which corresponds to the position of the word within the vocabulary.

Figure 2.11. One-hot encoding. Source4

One-hot encoding presents two main drawbacks:

• Sparsity problem: this situation occurs when there are a large number of
discrete variables to be represented, so the space required is not manageable.
For instance, suppose we have n words, it needs to create n vectors of size n,
so a space complexity of n2, which is very expensive in term of memory.

• Semantic problem: related or similar meaning words are not placed nearby
making this method not useful for many NLP tasks.

2.7.2 Word Embeddings

To address the previous issues, we use word embeddings, which are continuous vector
representation of discrete variables. They provide the properties of dimensionality
reduction and semantic representation of words. Dimensionality reduction is pro-
vided by making the vector size not dependent on the number of words, so for n
words the space required is n ×m where m is the embedding dimension, which is
of fixed length. Semantic representation is achieved by mapping words with related
or similar meaning close to each other in the vector space. The positions in the
space of the word embeddings are learned through machine learning techniques in
a supervised environment.

4Marco Bonzanini, 2017

21

2 – State of the art

Word embedding are employed for several tasks, such as:

• Input of machine learning models: embeddings can be reused, so after they
have been trained it is possible to use them in different implementations.

• Finding nearest neighbors in the embedding space: words are placed in the
multidimensional vector space based on their relations, this property allows to
obtain, given a word, the most similar words.

• Find relations through algebra on the embeddings, for instance if we compute
“king − man + woman” the result would be “queen”, see Figure [2.12].

Figure 2.12. Word Embeddings: relationships between words. Source5

Implementations

The simplest method to learn word embeddings is Word2Vec [42], which is a predic-
tive model. The basic idea is based on the assumption that the meaning of a word
is determined by the words around it. For each word we compute its embeddings by
looking at its surrounding (context words) and determine the value. This process is
done in a supervised environment, where the embeddings can be adjusted overtime,
in order to improve their representation.

Global vectors (GloVe) introduced by [49] are embeddings create through a count-
based method. It is based on the same premises of Word2Vec, so words in the same
context have similar meanings. But instead of using a predictive model it computes

5https://www.tensorflow.org/tutorials/representation/word2vec

22

2 – State of the art

a co-occurrence matrix.

FastText [7] is an extension of Word2Vec, it introduces the concept of n-grams,
it considers n characters at a time during the process of creation of the embeddings.
The resulting word embedding is the sum of the n-gram embeddings. This method
allows to represent words that did not appeared in the training data.

2.8 Generative Adversarial Networks

Generative adversarial networks (GAN) are a type of network, of the family of gen-
erative models, introduced by [20] and have become very popular for their ability
to synthesize images. Given a target data distribution, called real data, GANs ob-
jective is to produce data that resembles that distribution. Instead of having an
error function that computes the error between the produced data and the expected
data like common generative models, GANs take advantage of the capabilities of
the models to learn by themselves how likely is the generated data. GANs have
two components: a generator and a discriminator. The basic idea is to have these
two models competing against each other like a minimax game. The generator tries
to produce realistic data to fool the discriminator into thinking they are not fake,
whereas the discriminator does its best to identify the fake data.

Figure 2.13. Generative Adversarial Network.

23

2 – State of the art

Generator

The generator is a model represented as a function G with differentiable parameters
θ. It takes as input a noise z from the distribution Pz and outputs samples Gθ(z).
The sample Gθ(z) is derived by the generator’s distribution Pg. The generator’s
objective is to generate samples from Pg that are close to the distribution of real
data Pdata. The samples are then fed to the discriminator and evaluated, a feedback
signal is returned to the generator to guide the update process.

Discriminator

The discriminator is a model represented as a function D with differentiable parame-
ters φ. It takes as input x which is a sample obtained from the generator distribution
Pdata or from the real data. Then it produces a scalar Dφ(x) as output, for instance
the output could be a value between 0 and 1, where 0 denotes the input as fake,
whereas 1 as real. Hence, Dφ(x) represents the probability of the input being from
the real data Pdata. Since all the real data instances are labeled as 1 and the fake
data are labeled as 0, the discriminator is trained in a supervised environment with
cross-entropy as loss function.

Training

As introduced before, GAN exploits the idea of minimax game between two players
based on zero-sum non-cooperative game, in short, if one wins the other loses. Both
want to undermine the other, a Nash equilibrium [47] happens when a player will
not change its action regardless of what the opponent may do. In other words, it is
a state where the action of the opponent does not matter, because it will not change
the outcome of the game.

The training process can be summarized as a minimax game with value function
V (Dφ, Gθ).

minGθ maxDφ V (Dφ, Gθ) = Ex∼Pdata(x)[logDφ(x)] + Ez∼Pz(z)[1− logDφ(Gθ(z))]
(2.21)

Ex∼Pdata(x) is the expected value of Pdata: the log probability of D predicting that
the sample from Pdata distribution is real.
Ez∼Pz(z) is the expected value of Pz: the log probability of D predicting that the
sample from Pz distribution is fake.

The two players work against each other, in detail:

• The generator G minimize the probability of making the discriminator recog-
nize the generated data as fake data.

24

2 – State of the art

• The discriminator D maximize the probability of correctly distinguish the gen-
erated data and the real data.

The optimization of the Equation 2.21 is equivalent to minimize the Jensen-Shannon
divergence between the distribution Pdata and Pg :

JS(Pdata, Pg) = DKL

(
Pdata

∣∣∣∣∣∣∣∣Pdata + Pg
2

) +DKL(Pg

∣∣∣∣∣∣∣∣Pdata + Pg
2

)
(2.22)

where DKL is the Kullback-Leiber divergence which denotes the difference between
two distributions. Therefore the solution for [2.22] is for Pg to be close to the
distribution Pdata, in other words the generator have to produce Pg = Pdata.

Issues

GAN models present some major problems due to being highly susceptible to hyper-
parameters change and training instability [2], such that an improvement made to a
model might cause the worsening of the other one. The convergence happens when
the Nash equilibrium is reached and the discriminator cannot distinguish the gener-
ated data from the real one anymore. However to reach this state, GANs optimize
the Equation [2.22], this means the models keep updating to improve themselves
and an update of the discriminator might lead the generator in the opposite direc-
tion and vice versa, causing a non-convergence situation. GANs training unbalance
is a common problem. As the discriminator accuracy gets higher it becomes more
confident in recognizing the fake data. This scenario cause the gradient to vanish [2],
therefore the generator in unable to improve. Mode collapse is another issue that
can prevent the model to generate useful data. It occurs when the generator maps
multiple input z to the same output x, causing lack of variation in the generated
samples. The reason is that the discriminator feedback has pushed the generator
to generate a limited set of sample, with which the generator is able to fool the
discriminator.

Application in Text generation

The main difference between the common generative models and GANs is that the
first are directly exposed to the real data with the objective of maximizing the
likelihood function that represent that data. Instead in GAN models, the generator
has no direct access to the real data, but it is guided by the discriminator, which
has access to both the generated and real data. This combination allows GANs to
synthesize novel samples.

GANs were originally designed to deal with continuous data, where the discrimi-
nator can directly give a feedback signal to the generator via gradient descent, telling

25

2 – State of the art

how to slightly change the synthetic data to make it more realistic [19]. Since natu-
ral language is based on discrete data applying these kind of update is not possible.
The main reason is that the sampling process of the sequences based on multinomial
are not differentiable, therefore the gradient cannot backpropagate.

An attempt to overcome the differentiability problem has been made by [32], their
model exploits the Gumbel-Softmax distribution [25], which is a way to approximate
discrete variables as softmax distributions. With this trick is possible to directly
backpropagate the gradient from the discriminator to the generator. A different
approach to the problem has been proposed by [65] with SeqGAN, see Section [2.9].

2.9 SeqGAN

SeqGAN [65] is a model based on GAN for discrete sequence generation. It manages
the discrete nature of natural language by using policy gradient [58]. It considers
the problem of predicting the next word as a reinforcement learning problem:

• the state is the current generated sequence at the current timestep:
s = (y1, y2, . . . , yt−1)

• the action is the next word to be selected: yt

• the policy model applied is based on REINFORCE algorithm [63] and it is
denoted by Gθ(yt| s)

Generator

The generator used is an LSTM model defined as G with parameters θ, this model
takes as input the sequence embeddings {x1, x2, . . . ,xn} and produces a sequence
of hidden states {h1, h2, . . . , hn}, this process is denoted as the function ht =
Gθ(ht−1, xt), a softmax layer produces the token probability distribution for the
output. The common objective of the generative models in GAN is to maximize
the probability of generating a sequence that it is classified by the discriminator as
real, in the case of SeqGAN the generator’s objective is to generate a sequence to
maximize the expected reward, see Equation [2.23].

Discriminator

The discriminator model used is a CNN classifier denoted as D with parameters φ.
It is based on [28] and improved with the highway architecture [55], which can be
defined as a gating mechanism that adjusts how the information flows through the
network. In simple, it prevents the loss of information in deep neural networks by
having a connection from low level layers to high level layers. The discriminator’s

26

2 – State of the art

objective is to minimize the cross-entropy between the ground truth label and the
predicted label, in other words it has to correctly classify the real data as real and
the generated data as fake.

Figure 2.14. SeqGAN architecture: on the left the discriminator training process,
on the right the generator training process. Source [65]

Policy Gradient

SeqGAN uses reinforcement learning to deal with the problem of discrete data. It
exploits the policy gradient method REINFORCE to encourage the generator to
take the actions that fool the discriminator by maximizing the expected rewards.

J(θ) = E[RT | s0, θ] =
∑
y∈γ

Gθ(y1| s0) ·QGθ
Dφ

(s0, y1) (2.23)

The expected reward RT can be summarized by the formula [2.23], y1 is the action
taken from the state s0, Q

Gθ
Dφ

(s0, y1) is the action-value which is the expected reward

given by Dφ by taking action y1 from state s0 and following policy Gθ(y1| s0). γ
represents the action space, in this case the vocabulary.

Since the rewards are given only when the generations have been completed, in
order to evaluate each action, SeqGAN uses Monte Carlo search [8] with a rollout
policy. Given a sample S = {w1, w2, . . . , wn}, for each word wt, it generates via MC
search n samples, the discriminator D evaluates the samples and assign to the word
wt a reward that suggest how much wt contributed to make the sample classified as
real.
The reward given by Monte Carlo search is defined as:

QGθ
Dφ

(Y1:t−1, yt) =

{
1
N

∑N
n=1 Dφ(Y n

1:T) Y n
1:T ∈MCG(Y1:t, N) for t < T

Dφ(Y1:T) for t = T
(2.24)

27

2 – State of the art

Where:

Dφ(Y n
1:T): is the probability of the n-th sentence being from the real

Y n
1:T : is the n-th sentence sampled with MC search

T : is the length of the sentence sampled with MC search

N : is the number of sentences sampled with MC search

Once the reward has been computed, the generator is updated via policy gradient,
defined in Equation 2.25. In other words the generator maximize the expected
reward Equation 2.23 by minimizing the loss of the generator OθGθ multiplied by
the reward QGθ

Dφ
.

OJGθ =
T∑
t=1

∑
yt∈γ

QGθ
Dφ

(Y1:t−1, yt)OθGθ(yt| Y1:t−1) (2.25)

28

Chapter 3

Approach

The goal of this work, as formulated in the introduction, is to use generative models
to test their capabilities in the text generation task. In this chapter we describe the
models used for our experiments, in particular we build multiple implementations
of SeqGAN with different discriminators and compare their performances. Section
3.1 describes the model we have used to define a baseline for our comparisons. Then
Section 3.2 introduces the models used in the experiments and Section 3.3 discuss the
motivation of our decisions. Section 3.4 explain the training process of a SeqGAN
model.

3.1 Baseline

As baseline we create a language model based on a RNN. We use the LSTM im-
plementation since it performs better for long term dependencies. The model is
represented as π with differentiable parameters θ. It is trained using the maximum-
likelihood estimation (MLE) method, which consists of optimizing the model param-
eters in order to fit the observed data. In practice, MLE is computed by minimizing
the cross-entropy loss over a given corpus between the predicted output distribution
ŷ and the expected output y see Equation 3.1, where T is the number of words in the
corpus. The cross-entropy loss for each timestep is defined in Equation 3.2, where
|V | is the vocabulary, which is the set of unique words within a corpus.

J(θ) =
1

T

T∑
t=1

H(ŷt, yt) (3.1)

H(yt, ŷt) = −
|V |∑
i=1

yti log ŷti (3.2)

29

3 – Approach

Figure 3.1 shows, with an example, the structure of the model. It has an embedding
layer that takes as input the words (w1, w2, . . . , wn) of a sequence and outputs the
word embeddings (e1, e2, . . . , en). These are used as input for the LSTM network,
which at each timestep t takes as input et and ht−1 and produce a new hidden state
ht. The hidden state is processed by a fully connected layer that produce raw values
that are converted in probability distribution by the softmax layer. Lastly, the
most likely word is chosen with the argmax function.

Figure 3.1. RNN language model based on LSTM

3.2 Implementation

For the experiments we have developed a framework based on SeqGAN, Figure 3.2.
It implements as generator a LSTM network with the same structure showed in
the previous Section 3.1. For the discriminator part, we use four different models
including the one used in the original implementation, which is a CNN classifier.
The other three models are based on RNN and attention mechanism. The goal is
to test the ability of the RNN-based classifier to provide meaningful rewards to the
generator. Therefore we use the following discriminator implementations:

• Convolutional neural network for text classification, this is the same discrimi-
nator implemented in the original SeqGAN described in Section 2.9. Hence, it

30

3 – Approach

is based on [38] with the improvements brought by the highway networks [55].

• Attention-based Bidirectional LSTM introduced by [69]. Given that the author
showed this model effectiveness when compared to the RNN-based models
without attention and CNN-based models, we chose to implement it. The
architectural implementation is discussed in Section 3.2.2.

• A structured self-attentive sentence embedding introduced by [39]. We imple-
ment this model because it showed good results in a variety of classification
tasks compared to other models. This model structure is described in Section
3.2.1.

• Bidirectional IndRNN classifier with attention. This model has the same struc-
ture as “Attention-based Bidirectional LSTM” with the only difference that
instead of using LSTM implementation it uses IndRNN. The reason we have
added this implementation is because the author [36] showed that they work
well in classification tasks achieving a low error rate with respect to the coun-
terpart based on LSTM.

The above implementations will be referred as SeqGAN with CNN, SeqGAN with
LSTM, SeqGAN with SELF and SeqGAN with IndRNN respectively.

Figure 3.2. Structure of the implementation: LSTM generator and four discrim-
inator implementations.

31

3 – Approach

3.2.1 Attention-based Bidirectional LSTM

This classifier model has been proposed by [69]. It is based on [67], which uses a
bidirectional RNN model as classifier, but as explained in Section 2.5.1, a vanilla
RNN implementation is prone to be affected by the vanishing gradient problem.
To solve this issue, this model uses a bidirectional LSTM implementation. The
structure can be seen in Figure 3.3.

• An embedding layer transforms the input sentence into word embeddings.

• The LSTM layer takes the word embeddings as input and computes the hidden
states H = {h1, . . . , hn}, where n is the sentence length.

• An attention layer produces the attention weights denoted as α = softmax(wT ·
tanh(H)), where w refers to a learned matrix weight.

• The context vector is created as r = H · αT .

• The sentence representation is then obtained as h∗ = tanh(r).

• A fully connected layer is used to produce the probability distribution for the
output classes.

Figure 3.3. Attention - Based Bidirectional LSTM structure [69]

32

3 – Approach

3.2.2 A structured self-attentive sentence embedding

This model proposed by [39] is also based on bidirectional LSTM and attention
mechanism. The main difference is how the attention is applied. Figure 3.4 shows
the architecture of the model and the structure of the attention mechanism, which
the author refers as self-attention. The strength of this model is the ability to
represent a variable length sentence into a fixed size representation.

• An embedding layer converts the input sentence into word embeddings and
processed by the LSTM network.

• The hidden states are represented as H = {h1, h2, . . . , hn}, where n is the
sentence length and the size of each hidden state is denoted as 2u.

• The attention mechanism produces the attention weights as follows: A =
softmax(Ws2 tanh(Ws1 H

T)), where Ws1 size is equal to da ∗ 2u and Ws2 size
is equal to r ∗ da, da is an hyperparameter and r is the number of features to
extract.

• Then the sentence representation is obtained as M = AH.

• By using a fully connected layer is possible to obtain the probabilities for the
output classes, for instance in our case the class 0 represents fake data and
class 1 represents real data.

3.3 Motivation

The main reason we used GAN is because it has been demonstrated to be effec-
tive in text generation. Also its training process allows to overcome the exposure
bias problem [65]. This problem [4] occurs to RNN language models due to the
inconsistency between the training stage and the inference stage. The first stage,
also known as “teacher forcing” [33], expects the training data as input, so it has
a direct exposure to the real data. The inference stage, known as “Free Running”
[33], use the model prediction at the previous timestep as current input, so an error
could cause subsequent errors in later timesteps. GANs are not affected by this
problem, because their exposure to the real data is indirect [13]. In other words,
the generator training process is not based on explicitly maximizing the likelihood
of the real data. Instead they use their own prediction and the feedback received by
the discriminator to improve themselves in order to approximate the real data.

The ability of the generator to mimic the real data depends on the feedback
of the discriminator, which basically is a text classifier. Its goal is to learn what
are the features that define a realistic text. Classifiers based on CNN or RNN lead

33

3 – Approach

Figure 3.4. Self-attentive sentence embedding structure [39]

Figure 3.5. Exposure bias problem: on the left the training state known as
“Teacher Forcing”, on the right the inference stage known as “Free Running”

to different results in terms of accuracy [64] and amount of information captured,
since they operate in a different way. The first model extracts features following
a hierarchical schema while the second one computes a representation of the input

34

3 – Approach

sequentially.
There are several GAN models implementation based on SeqGAN. RankGAN

[37] uses an adversarial ranker as discriminator to provide a better feedback signal to
the generator. MaliGAN [11] introduces variance reduction techniques by rescaling
the reward and uses a discriminator based on a bidirectional GRU. LeakGAN [21]
implements an advanced architecture based on hierarchical reinforcement learning
[60] and uses a CNN discriminator to provide information to the generator.

Based on the fact that there are not many implementations based on RNN as
discriminator, we tried to use different discriminators based on RNN and attention
mechanism to test their effectiveness.

3.4 Training process

In this section we describe the training process of the model based on SeqGAN.
SeqGAN has two components a generator G with parameters θ and a discriminator
D with parameters φ. Algorithm 1 shows the training process.

Algorithm 1 SeqGAN training procedure.

1: Initialize Gθ and Dφ with random weights θ and φ
2: Pre-train Gθ on real data S = {X1:T} using MLE
3: Generate samples Z = {E1:T} using Gθ

4: Pre-train Dφ on {S : 1, Z : 0} by minimizing the cross-entropy loss
5: N number of adversarial training epochs
6: M number of discriminator training epochs
7: E interval for interleaved training
8: for i = 1, 2, . . ., N do
9: Generate a sequence Y1:T using Gθ

10: Compute the rewards of Y1:T using Monte Carlo search, Equation 2.24
11: Update generator via policy gradient, Equation 2.25
12: if i % E == 0 then
13: Train Gθ on real data S = {X1:T} using MLE
14: end if
15: for j = 1, 2, . . ., M do
16: Generate samples Z = {E1:T} using Gθ

17: Train discriminator Dφ on {S : 1, Z : 0}
18: end for
19: end for

As [65] points out, SeqGAN requires a pre-training process in order to start the
adversarial training. The reasons is that if the generator does not reach a good

35

3 – Approach

quality in its generated text, the discriminator can, since the beginning, distinguish
the real data from the generated data with high accuracy. This means that the
feedback signal emitted by the discriminator is not able to guide the generator in
the right direction. The discriminator also has to be pre trained to not be fooled by
the generator, otherwise it cannot provide any meaningful feedback signal.

During the adversarial training the generator is trained to maximize the expected
reward given by the REINFORCE algorithm 2.23. To achieve this it exploits Monte
Carlo search to generate multiple samples to be evaluated by the discriminator. The
discriminator produces a reward using Equation 2.24 and the generator use that
feedback to update itself via Equation 2.25. After that the discriminator use the
real data and generated data labeled as real and fake respectively to improve itself
by minimizing the cross-entropy loss between the predicted label and the expected
label.

An issue to take into account is when the discriminator provide a wrong update
signal, leading the generator to the wrong direction. As suggested by [35], we also
test the Teacher Forcing technique [33]. It consists of alternating the adversarial
training process with the MLE training using the real data. So in case the generator
has received a misleading update it is redirected to the right path. A similar sug-
gestion has been made by [21], which refers this technique as “interleaved training”,
in this case after a predefined number of adversarial epochs follows a predefined
number of MLE training epochs.

36

Chapter 4

Experimental Setup

In this chapter we provide the information about the tools we have used for our
experiments. Section 4.1 lists the framework and libraries used to implement our
models and metrics. Section 4.2 describes the datasets used and the pre-processing
applied to them. Then Section 4.3 shows the metrics used for the evaluation.

4.1 Implementation

For the experiments we used PyTorch (0.4.1)1, which is a popular deep learning
framework developed by Facebook. It allows to create models using high level API
and also it provides low level API for custom implementations. Metrics are im-
plemented with the help of Natural Language Toolkit (NLTK) library based on
Python.

4.2 Datasets

For our experiments we use three datasets: Image COCO [38], EMNLP News 2 and
Amazon Reviews 3. We test the models with different dataset, each one with its own
characteristics. The first dataset is used to test the ability to generate short text,
the second is used to test medium length generation, while the last is for testing the
generation of long sentences.

1https://www.pytorch.org
2https://github.com/geek-ai/Texygen/tree/master/datal
3https://snap.stanford.edu/data/web-FineFoods.html

37

4 – Experimental Setup

4.2.1 Image COCO

Image COCO [38] is a dataset developed by Microsoft used for object detection and
captioning. The dataset consists of annotated images, see Figure 4.1, such that
each image has a description of the objects illustrated or the actions performed by
the subjects in the image. Since we need only to work on text, we use only the
annotations.

For this experiment we extract a sample made of 10,000 sentences for the training
set and other 10,000 sentences as test set for the evaluation. The captions are
converted in lowercase and we divide the words from the punctuation (e.g. “A
bathroom with a toilet, sink, and shower.” → “a bathroom with a toilet , sink , and
shower . ”), so that the models can learn how to appropriately use punctuation.

Since the sentences are of variable length, we apply special tokens to define the
start and the end of the sentence, we also add a padding token to uniform all the
sentences length because it is a requirement for them to be processed in parallel by
the generative models, see Table 4.1.

For this dataset we use the pre-trained GloVe embeddings [49] because they
cover the majority of the vocabulary. These embeddings have been created with a
training on Wikipedia articles and on Gigaword 5 archive, for a total of 6 billion
tokens and 400,000 distinct words.

Figure 4.1. Image COCO example [38]

38

4 – Experimental Setup

A man enjoys cooking food in a pan.
A man and a dog.

<sos> a man enjoys cooking food in a pan . <eos>
<sos> a man and a dog . <eos> <pad> <pad> <pad>

Table 4.1: Example of data pre-processing.

Image COCO dataset Train set Test set
Number of sentences 10,000 10,000
Number of tokens 113,790 112,108
Number of words 4,642 4,237
Sentence average length 11.38 11.21
Sentence max length 25 34
Sentence min length 7 7
Max word count 16,977 16,177
Min word count 1 1
Word count equal to 1 2,066 1,896
GloVe 6B coverage 95.58% 95.93%

Table 4.2: Image COCO dataset statistics: number of words refers to the number
of unique words and tokens refers to the total number of words

39

4 – Experimental Setup

Figure 4.2. Image COCO words distribution: it shows the number of occurrence
of the first 100 words.

Figure 4.3. Image COCO words count distribution: it shows the how many words
per count, e.g. there are about 2000 words which occurrence is equal to 1.

40

4 – Experimental Setup

4.2.2 EMNLP News

EMNLP news 2017 is a dataset that contains sentences of medium length. Since
the dataset has 278,586 rows we extract a sample of 10,240 rows having maximum
length 25. For this dataset we do not perform a lower case processing because it
contains proper nouns and we want to preserve the meaning of those words. The
punctuation is divided as before and the special tokens are applied to uniform the
sentences. In this case we use learnable word embeddings since GloVe does not offer
good coverage.

EMNLP News Train set Test set
Number of sentences 10,240 10,000
Number of tokens 222,197 278,141
Number of words 5,119 5,134
Sentence average length 21.7 27.8
Sentence max length 24 49
Sentence min length 21 21
Max word count 10,321 12,769
Min word count 1 1

Table 4.3: EMNLP News dataset statistics.

Figure 4.4. EMNLP News words distribution: it shows the number of occurrence
of the first 100 words.

41

4 – Experimental Setup

Figure 4.5. EMNLP News words count distribution: it shows the how many words
per count, e.g. there are about 400 words which occurrence is equal to 1.

4.2.3 Amazon Reviews

This dataset contains reviews of fine foods from Amazon. We parse the dataset and
discard all the products information but the text reviews. We leave the upper case
and lower case as it is. We perform the punctuation pre-processing and apply the
special tokens. Also in this case we use learnable embeddings because GloVe does
not offer good coverage.

Amazon Reviews Train set Test set
Number of sentences 10,240 10,240
Number of tokens 302,899 302,485
Number of words 12,880 12,609
Sentence average length 29.57 29.53
Sentence max length 48 50
Sentence min length 24 12
Max word count 13,721 13,710
Min word count 1 1

Table 4.4: Amazon Reviews dataset statistics.

42

4 – Experimental Setup

Figure 4.6. Amazon Reviews words distribution: it shows the number of occur-
rence of the first 100 words.

Figure 4.7. Amazon Reviews words count distribution: it shows the how many
words per count, e.g. there are about 6600 words which occurrence is equal to 1.

43

4 – Experimental Setup

4.3 Metrics

The evaluation of generative models is not a trivial-task. The current available
metrics are based on word-overlapping methods, word embedding and readability
analysis. Readability is defined as the effort needed for a reader to understand a
written text. The complexity of a text depends on multiple factors such as the
vocabulary used and the syntax structure. The objective of a written text is to be
able to communicate the content in order to engage the reader. Since these metrics
do not consider all the aspects of the natural language, they still suffer from not
having a strong correlation with human judgment. In this work we use a set of
metrics that measure different aspects of the generated text:

• BLEU

• POS-BLEU

• SELF-BLEU

• Flesch Reading Ease

• Coleman-Liau

• Gunning Fog Index

4.3.1 BLEU

Bilingual Evaluation Understudy-[48, 50, 65] is a metric introduced with the intent
of evaluating the performances of the machine translation systems. This metric
requires a human quality corpus used as reference for comparison to produce a
numerical value that suggest the translation closeness. BLEU is based on word-
overlapping and uses weighted geometric mean, see Equation 4.3, multiplied by a
brevity penalty, see Equation 4.2 to combine the n-grams precision, see Equation
4.1, between the candidate translation and the reference translation. N-gram preci-
sion is obtained by counting the number of n-gram matches in relation to the total
number of n-gram within the reference. Brevity penalty is used as a counterweight
to avoid giving high scores to short candidates. The metric outputs a value between
0 and 1, a value close to 1 means a higher number of n-grams are matching the
reference, so the quality is better.

pn =

∑
n∈cand countmatched(n)∑

n∈cand count(n)
(4.1)

BP = min
(
1,
candidate length

reference length

)
(4.2)

44

4 – Experimental Setup

BLEU−n = BP
(n∏
i=1

pi
) 1
n

for i = 1, . . . , n (4.3)

Where:

• n is the n-gram target.

• cand is the candidate phrase.

• pn is the precision for n-gram.

• BP is the brevity penalty.

Example: BLEU score

Reference: ‘The’, ‘quick’, ‘brown’, ‘fox’
Candidate: ‘The’, ‘fast’, ‘brown’, ‘fox’
n-grams: 4

precision-1 = 3 / 4 → (‘The’) (‘brown’) (‘fox’)
precision-2 = 1 / 3 → (‘brown’, ‘fox’)
precision-3 = 0
precision-4 = 0
BP = 1
BLEU-4 = 0.707

4.3.2 POS-BLEU

POS-BLEU [50], part-of-speech BLEU, computes the BLEU score, which ranges
between 0 and 1, using part-of-speech (POS) tags instead of the words. It takes
into account the syntax aspects of a sentence. It is used to measure the structure
similarity between the candidate phrase and the reference phrase. It first runs a
part-of-speech tagging on both the reference and candidate text, then it uses the
BLEU metric to evaluate their similarity.

45

4 – Experimental Setup

Example: POS-BLEU score

Candidate: ’He’ ’is’ ’going’ ’on’ ’holiday’
Part-of-speech candidate:
- ’He’ → ’Pronoun’
- ’is’ → ’Verb’
- ’going’ → ’Verb’
- ’on’ → ’Preposition’
- ’holiday’ → ’Noun’
Reference: ’She’ ’was’ ’eating’ ’pizza’
Part-of-speech reference:
- ’She’ → ’Pronoun’
- ’was’ → ’Verb’
- ’eating’ → ’Verb’
- ’pizza’ → ’Noun’
n-grams: 4

precision-1 = 4 / 5
precition-2 = 2 / 4
precision-3 = 1 / 3
precision-4 = 0
BP = 1
POS-BLEU-4 = 0.604

4.3.3 SELF-BLEU

SELF-BLEU is a metric proposed in [70], it is used to measure the diversity of
the generated text with respect to itself. The main reason is that GANs tend to
be affected by the mode collapse problem, which cause the models to generate a
limited set of outputs. The score is computed in the same way as BLEU, therefore
it has the same range of values, but with the difference that it uses the generated
text as reference. So each sentence of the generated text is used as candidate against
the whole generated text. A higher score means that the samples from the model
often repeat themselves in some part, while a lower score means the model tends to
generate different words.

4.3.4 Flesch Reading Ease

Flesch Reading Ease [51] is a readability test introduced in 1948. It gives a score
between 1 and 100 to suggest which level of education is needed to be able to

46

4 – Experimental Setup

understand a text. A higher value means that a lower level of education is necessary.

206.835− 1.015

(
total words

total sentence

)
− 84.6

(
total syllables

total words

)
(4.4)

4.3.5 Coleman-Liau

Also this metric is used to compute the grade level necessary to read a text. Unlike
the other metrics it considers characters instead of syllables.

CLI = 0.05888L− 0.269S − 15.8 (4.5)

L represents the average number of letters per 100 word, S represents the average
number of sentences per 100 word. The value of CLI ranges between 6 and 17,
suggesting the education level required. For instance a value of 8 means the text is
for .

4.3.6 Gunning Fog Index

This readability test is used to evaluate text of about 100 words, so not for entire
text but paragraphs. It takes into account the number of complex words. A word
is complex if it consists of three or more syllables and it is not a proper noun. It
outputs a value between 6 and 17 as Coleman-Liau index.

0.4

[(
words

sentences

)
+ 100

(
complex words

words

)]
(4.6)

47

48

Chapter 5

Results

In this chapter we present the results of our experiments. We use the datasets and
metrics described in the previous section. Section 5.1 describes the results using the
dataset Image COCO, which consists of short sentences. Section 5.2 contains the
results for EMNLP News dataset, in this case we evaluate the ability to generate
more complex sentences of medium length. Section 5.3 presents the results of the
Amazon Reviews dataset, which is made of long sentences. For each section, we
first describe the model setting we have used for the experiment, then we show the
results obtained from the metrics, after that we comment the quality of some samples
generated by the models. In Section 5.4 we discuss and make some consideration
about the results.

5.1 Test Image COCO

This first experiment tests the capability of generating short text sequences using
the annotations of Image COCO dataset.

We use pre-trainined GloVe of size 100 as embeddings for both the generator and
discriminators, this gives a slight improvement thanks to the semantic information
that GloVe embeddings provide. The generator and discriminator hidden layers
dimension are set to 100. The maximum length for the generation is capped to 20,
because as shown in Table 4.2, the sentences within the dataset have an average
length of less than 20. Monte Carlo search roll-out policy, as explained in Section
2.9, consists of sampling multiple times sub-sequences of a sentence, this process
is particularly time consuming. For instance, consider a sentence of length l for
x times, it would require l × x sampling operations to get the reward. Therefore,
we set Monte Carlo search rollout policy to 16 samples, which is a good trade-off
between the produced results and execution time. All the training processes use
Adam optimizer algorithm [30]. The generator pre training process consists of 60

49

5 – Results

epochs and batch size of 64. The discriminator pre training process consists of 5
epochs, this choice has been made because for more training epochs the discriminator
becomes to accurate in distinguishing the data. The adversarial training runs for
100 epochs.

The results are obtained, after the training process has completed, by randomly
sampling 300 sentences for 3 times and averaging the scores. Table 5.1(a), 5.1(b),
5.1(c) show the BLEU, POS-BLEU, SELF-BLEU score respectively, for the pre
trained model, the RNN baseline and the SeqGAN implementations. Table 5.1(d)
presents the readability metrics that put into comparison the test data and the
generated data. Figure 5.1(a) reports the loss of the generator and Figure 5.1(b)
shows the loss of the discriminator during the adversarial training.

5.1.1 Image COCO samples

This section shows some random samples generated by the models. As shown, the
models managed to generate sentences with good syntax structure and reasonable
coherence. The models learned how to link entities and actions in a meaningful
way. Also the contexts within the sentences have been respected in most of the
cases, although there are some bizarre mixes that require some interpretation. For
instance, some good results are shown with the association of “airplane” with “blue
sky” and the action of “sitting” with “in a white bathroom sink”.

SeqGAN with CNN

- a street full of motorcycles and people walking with their surf boards .
- a counter with wooden floor and a flat screen tv .
- a bathroom with white tile and white walls .

SeqGAN with SELF

- an airplane flies overhead in a clear blue sky .
- two people sitting on a desk with a motorcycle by it .
- a toilet sitting next to a brick wall with a green wall .

SeqGAN with LSTM

- a picture of a boat full of rowers .
- a man riding a motorcycle next to a red motorcycle .
- a bathroom with a sink and mirror with a black seat .

50

5 – Results

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

BLEU-2 0.7464 0.7481 0.7837 0.7850 0.7749 0.8077
BLEU-3 0.5122 0.5319 0.5380 0.5682 0.5306 0.5990
BLEU-4 0.3202 0.3423 0.3401 0.3641 0.3334 0.3927
BLEU-5 0.1945 0.2166 0.2120 0.2239 0.2098 0.2456

(a) BLEU score - Image COCO: comparison of the BLEU score for 2-gram to 5-gram

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

POS-BLEU-2 0.9995 0.9974 0.9970 0.9988 0.9987 0.9968
POS-BLEU-3 0.9950 0.9934 0.9925 0.9957 0.9941 0.9936
POS-BLEU-4 0.9812 0.9808 0.9816 0.9826 0.9806 0.9840
POS-BLEU-5 0.9550 0.9495 0.9583 0.9587 0.9554 0.9645
POS-BLEU-6 0.9095 0.8959 0.9174 0.9230 0.9119 0.9284
POS-BLEU-7 0.8394 0.8229 0.8547 0.8659 0.8475 0.8742

(b) POS-BLEU score - Image COCO: comparison of the POS-BLEU score for 2-gram to 7-gram

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

SELF-BLEU-2 0.6745 0.6782 0.7636 0.7259 0.7498 0.7602
SELF-BLEU-3 0.4501 0.4567 0.5771 0.5117 0.5536 0.5693
SELF-BLEU-4 0.2968 0.2898 0.4232 0.3361 0.3955 0.3994
SELF-BLEU-5 0.1983 0.1884 0.3090 0.2160 0.2866 0.2791

(c) SELF-BLEU score - Image COCO: comparison of the SELF-BLEU score for 2-gram to 5-gram

Real RNN SeqGAN SeqGAN SeqGAN SeqGAN
Data with CNN with SELF with LSTM with IndRNN

Flesch Reading Ease 75.74 77.87 80.06 79.37 78.18 79.32
Coleman-Liau 6.38 5.34 4.58 5.15 5.12 4.16
Gunning Fog Index 11.30 10.91 9.84 10.13 10.84 10.25

(d) Image COCO - Readability metrics

Table 5.1: Metrics results - Image COCO

51

5 – Results

SeqGAN with IndRNN

- a person riding a dirt bike on a city street .
- a bunch of bananas hanging on a small table .
- a small kitten sitting in a white bathroom sink .

5.2 Test EMNLP News

This dataset is made of sentences that have a more complex structure compared
to Image COCO, this is due to the vocabulary used, which contains proper nouns
and several types of punctuation. Also, as shown in Table 4.3, the sentences have
more word diversity, in the sense that, unlike Image COCO where few words have
high occurrence, EMNLP News has a few more words with high occurrence, we
assume that this makes it harder for the model to predict the next word with high
confidence.

In this case we use learnable embeddings of size 400. The generator hidden layer
size is set to 400, while the discriminator hidden size is set to 100. Monte Carlo
search rollout policy is set 16 samples with maximum length of 25. The pre training
epochs are set to 150 and 1 respectively for the generator and discriminator. The
other parameters are left as in the previous experiment.

Table 5.2(a), 5.2(b), 5.2(c) provide the results of the word-overlapping metrics
for each implementation. Table 5.2(d) shows the readability metrics. Figure 5.2(a)
and 5.2(b) report the generator and discriminator loss respectively.

5.2.1 EMNLP News samples

This section shows some random samples generated by the models about EMNLP
News. In this case, we immediately notice that the sentences are not fluent. These
sentences are hard to interpret because they lack of global coherence as we often
see that they start with a topic and then change the course of the sentence to an
unrelated topic. Also they feel incomplete, since by changing the topic, the sentence
is meaningless.

SeqGAN with CNN

- The team continued to spend a weekend after the start of a public have two places
to say .
- By 2001 , there ’ s also has more than 100 million in each year , and the employment
market .

52

5 – Results

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

BLEU-2 0.7770 0.7834 0.8370 0.8300 0.7994 0.8071
BLEU-3 0.5231 0.5265 0.5947 0.6002 0.5742 0.5664
BLEU-4 0.2921 0.2911 0.3489 0.3731 0.3565 0.3342
BLEU-5 0.1599 0.1620 0.1917 0.2225 0.2187 0.1894

(a) BLEU score EMNLP News: comparison of the BLEU score for 2-gram to 5-gram

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

POS-BLEU-2 0.9116 0.9228 0.9495 0.9414 0.9044 0.9158
POS-BLEU-3 0.9047 0.9160 0.9420 0.9348 0.8985 0.9086
POS-BLEU-4 0.8718 0.8804 0.9110 0.9041 0.8709 0.8758
POS-BLEU-5 0.7906 0.7971 0.8365 0.8340 0.8016 0.7995
POS-BLEU-6 0.6602 0.6658 0.7105 0.7139 0.6798 0.6715
POS-BLEU-7 0.4913 0.4943 0.5468 0.5482 0.5237 0.5051

(b) POS-BLEU score EMNLP News: comparison of the POS-BLEU score for 2-gram to 7-gram

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

SELF-BLEU-2 0.5290 0.5155 0.6371 0.6442 0.6303 0.5972
SELF-BLEU-3 0.2641 0.2443 0.3803 0.4139 0.4010 0.3511
SELF-BLEU-4 0.1413 0.1229 0.2130 0.2637 0.2665 0.2062
SELF-BLEU-5 0.0847 0.0727 0.1279 0.1678 0.1840 0.1232

(c) SELF-BLEU score EMNLP News: comparison of the SELF-BLEU score for 2-gram to 5-gram

Real RNN SeqGAN SeqGAN SeqGAN SeqGAN
Data with CNN with SELF with LSTM with IndRNN

Flesch Reading Ease 61.07 64.41 66.65 67.03 67.22 66.75
Coleman-Liau 8.47 7.32 6.16 5.90 6.49 6.26
Gunning Fog Index 15.84 14.76 14.38 13.85 13.77 13.87

(d) EMNLP News - Readability metrics

Table 5.2: Metrics results - EMNLP News

53

5 – Results

- The deal were was a huge change they are going to get out of their open - plan for
a product of any EU asylum .

SeqGAN with SELF

- The data being offered to go through for another two hours to play that more than
you ’ ve asked how they were
- That ’ s how to improve the court charged today , I have to think of this process .
- The other thing now is how to improve , otherwise didn ’ t get a big win over
Christmas cost one .

SeqGAN with LSTM

- I ’ m not saying the EU , just two goals and so many other players that the great
exist .
- If you need to pay the rent of what he just can win his name , you ’ re going to
take them with their
- At the time of 2015 , the project could be on track to change .

SeqGAN with IndRNN

- While I can start again , and I ’ m sorry and she may give up to give you about
an effective message .
- I ’ m just here because there is a lot to be seen over - that ’ s the attention of Mr
Adams .
- By the end of which you ’ re living as great as conditions in the UK for that
newspaper article .

5.3 Test Amazon Reviews

This experiment tests the capability of generating long sentences using Amazon
Reviews. This dataset has a larger vocabulary than the previous datasets, see Table
[4.4].

We use the same configuration as in the EMNLP News experiment, with the
only difference that Monte Carlo search rollout has a maximum length of 35. The
results are displayed in Table 5.3(a) 5.3(b) 5.3(c) 5.3(d). Figure 5.3(a) shows the
generator loss and Figure 5.3(b) display the discriminator loss.

54

5 – Results

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

BLEU-2 0.8804 0.8676 0.8904 0.8953 0.9064 0.9003
BLEU-3 0.6791 0.6551 0.6860 0.7001 0.7282 0.7174
BLEU-4 0.4481 0.4157 0.4437 0.4719 0.5040 0.4850
BLEU-5 0.2598 0.2328 0.2456 0.2792 0.2991 0.2827

(a) BLEU score - Amazon Reviews: comparison of the BLEU score for 2-gram to 5-gram

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

POS-BLEU-2 0.9996 0.9982 0.9992 0.9994 0.9995 0.9969
POS-BLEU-3 0.9955 0.9943 0.9948 0.9944 0.9944 0.9922
POS-BLEU-4 0.9723 0.9720 0.9700 0.9701 0.9716 0.9709
POS-BLEU-5 0.9105 0.9087 0.9043 0.9071 0.9139 0.9160
POS-BLEU-6 0.7957 0.7971 0.7885 0.7954 0.8105 0.8152
POS-BLEU-7 0.6273 0.6421 0.6266 0.6388 0.6574 0.6682

(b) POS-BLEU score - Amazon Review: comparison of the POS-BLEU score for 2-gram to 7-gram

RNN RNN SeqGAN SeqGAN SeqGAN SeqGAN
pre-train with CNN with SELF with LSTM with IndRNN

SELF-BLEU-2 0.6544 0.6281 0.7116 0.6884 0.7346 0.7147
SELF-BLEU-3 0.3946 0.3497 0.4790 0.4416 0.5200 0.4919
SELF-BLEU-4 0.2013 0.1736 0.2909 0.2444 0.3418 0.3024
SELF-BLEU-5 0.6273 0.0967 0.1712 0.1345 0.2103 0.1776

(c) SELF-BLEU score - Amazon Reviews: comparison of the POS-BLEU score for 2-gram to 5-gram

Real RNN SeqGAN SeqGAN SeqGAN SeqGAN
Data MLE with CNN with SELF with LSTM with IndRNN

Flesch Reading Ease 65.19 75.44 80.41 78.81 81.41 76.76
Coleman-Liau 7.82 6.37 5.25 5.42 4.08 5.26
Gunning Fog Index 15.30 12.58 11.27 12.15 10.94 12.72

(d) Amazon Reviews - Readability metrics

55

5 – Results

5.3.1 Amazon Reviews samples

In this section we present the samples generated from Amazon Reviews. Since
the dataset contains the reviews from the customers, the language used is pretty
informal so the vocabulary used and the sentences structure are less complex than
the previous dataset EMNLP News, we can also see this in Table 4.4, where the
words distribution is less uniform with few words used very often. As shown, each
sample, in most of the cases, is made of multiple sentences. Taken singularly they
could have a proper meaning, but if considered as a whole, they sometimes contradict
each other. For instance, in the first sentence generated by SeqGAN with CNN, we
can see that the first part gives a positive sentiment and suddenly after, it follows a
negative comment. Therefore these sentences are hard to make a sense out of them.

SeqGAN with CNN

- My dogs love it . It’s disgusting . They are expensive , but it’s more
- These chips were very good and a good way to be on the go so fast and delicious
, and some really were fun . ! They are smaller like .

SeqGAN with SELF

- This is my favorite . I am not a fan of flavored coffee , but the decaf was still a
thick , bitter aftertaste you can buy
- I enjoyed this one drink when I paid 3 times hard . I like the flavor and it is very
hard to find .

SeqGAN with LSTM

- I don’t know if it’s one of all time I have ordered anything I say I had some one
dog that has this one food for it .
- These chips taste average . There have a very sensitive to anything , and I can’t
bring them pretty gross .

SeqGAN with IndRNN

- My son really enjoys a huge flavor of the instant Hot Cocoa mix , we have lots of
all the other bags of coffee in this drink , but clearly solution price for him .
- I have been very disappointed with this product five stars , this can be of my first
son . It’s a good tasting tasting product.It , but I don’t eat it because I like it .

56

5 – Results

5.4 Discussion

The implementation of GANs with different discriminators have shown, from the
results, some improvements according to the metrics used. We have to consider that
for the word-overlapping metrics, higher n-grams give a more significant measure
because they compare the quality of longer sequences of words, which is a challenge
for the model since it has to learn the dependencies between them.

By analyzing the BLEU and POS-BLEU score in the short text generation task,
SeqGAN with IndRNN has obtained the best scores for every n-gram. While in the
medium text generation task, if we consider the higher n-grams, SeqGAN with SELF
has better BLEU scores over the others, but SeqGAN with CNN has better POS-
BLEU scores. In the long sentences generation the results have shown better scores
for the model SeqGAN with LSTM . The results show that in most of the cases,
the adversarial training improve these results over the traditional RNN using MLE
training, but we have to keep in mind that the baseline has been used without
applying any relevant optimization technique.

We also notice that GAN models suffer from mode collapse according to the
SELF-BLEU metric, an assumption is that after the models have found a way to
fool the discriminator they tend to generate those samples with little modification.

The readability metrics give us a hint of how complex is the generated text, in
this case the generated samples from the GANs seem to have reduced the structure
complexity compared to the test data. These metrics though may be limited due to
the fact that their application imply that the sentences are semantically correct.

The loss charts show that, as the discriminators get more accurate the genera-
tor loss increase, the reason of this is that the generator is forced to explore other
possibilities because the current generations are being classified as fake. In all the
experiments, the CNN discriminator tends to become too accurate during the early
stages of the training causing the generator loss to spike. From this situation, it
seems that the generator is unable to improve itself in order to fool the discrimi-
nator, so both losses remain in the same range for the rest of the training. The
discriminators RNN-based have a slower convergence, as a result the generator loss
increases at a slower rate. In the end, by looking at the charts, in all the imple-
mentations, the generator is unable to fool the discriminator, as once the latter
gets accurate the generator does not manage to improve itself in order to lower the
discriminator accuracy, so the Nash Equilibrium is not reached.

Despite some results obtained may appear positive, we have to remember that
these metrics cannot fully evaluate all the aspects of the generated text. For instance,
below the two sentences give similar results even though the first is taken from the
training data while the second is generated and by looking at it, it does not provide
a meaningful message:

57

5 – Results

• He told The Sun : ’ I have waited long enough for this - it ’ ll be a great start
to the new year . [BLEU-4: 0.5539]

• It ’ s been a very safe , but appear will a New Year ’ s resolution at a time on
the paper . [BLEU-4: 0.5527]

Not having exhaustive metrics is still a problem for the generative models based on
GAN for the task of text generation. There is not a common clear evaluation system
like the traditional models based on RNN language models, which use perplexity
[66]

58

5 – Results

(a) Image COCO - Generator Loss during adversarial training

(b) Image COCO - Discriminator Loss during adversarial training

Figure 5.1. Image COCO - Generator and Discriminator loss

59

5 – Results

(a) EMNLP News - Generator Loss during adversarial training

(b) EMNLP News - Discriminator Loss during adversarial training

Figure 5.2. EMNLP News - Generator and Discriminator loss

60

5 – Results

(a) Amazon Reviews - Generator Loss during adversarial training

(b) Amazon Reviews - Discriminator Loss during adversarial training

Figure 5.3. Amazon Reviews - Generator and Discriminator loss

61

62

Chapter 6

Conclusions

In this work, we show how generative adversarial networks can be used for the task of
text generation. The main goals were to test the capabilities of these models to gen-
erate realistic text and evaluate the generated text with the available metrics. The
architecture used is based on SeqGAN, which overcome the differentiability problem
of discrete data by using REINFORCE algorithm. We experiment SeqGAN with
four different implementations of the discriminator, three of which based on recur-
rent neural networks and attention mechanism to test whether they would give a
better feedback signal to the generator compared to the CNN-based discriminator.
We have seen that by using the same training setting, the results changed depending
on the which discriminator have been used. In some cases the discriminators based
on RNN obtained a better score than the one based on CNN. But further investiga-
tion is necessary to study the optimal hyperparameters for each implementation, in
order to achieve the best score for each one with its own setting. A point to take into
account is that we have trained the models for 100 adversarial training epochs, it
may be interesting to analyze the losses behaviour with more training epochs to test
whether the generator and the discriminator are able to reach the Nash equilibrium.

From the results, in particular from the generated samples, we have seen that
SeqGAN model still need to be improved in order to generate realistic text. The best
performance can be seen in the short generation task, where the model managed
to generate some meaningful sentences. But in the other experiments the model
showed not to be able to preserve global coherence throughout the sentence. As
discussed in the previous chapter the metrics provide a comparison system between
similar models, but are not always reliable, the reason is that they are based on
word overlapping methods, which do not consider all the semantic aspects of natural
language. Therefore, human judgment it is still necessary to accurately asses the
text quality.

63

6 – Conclusions

6.1 Future works

As future work, since we have used different discriminators and we have seen that
they behave differently, we would like to use multiple discriminators, for instance
a CNN and an RNN, to provide different feedback to the generator. By having a
discriminator specialized at evaluating an entire sequence, while the other one in
evaluating intermediate states the model could provide more information on how to
correctly update the generator.

We would like to try to improve the language model by implementing it at
character level, this method has been quite successful and could make the model
less complex since the vocabulary is limited to the single symbols. Despite this
advantage, we have to keep in mind that the model will also have learn how to
generate the words other than the sentences. Another option would be to use a
language model that is pre-trained on a large corpus and then apply a transfer
learning technique in order to adapt the model to our datasets, after that we test
whether the adversarial training would improve the model.

Recent researches, at the time of writing this thesis, introduced new metrics
with which have shown that traditional RNN language models, if correctly trained
with the appropriate optimization techniques, perform better than the GAN-based
models [53, 59, 9]. Therefore, we would like to carry out more experiments to verify
whether the adversarial training improve the results of an optimized RNN language
model.

64

Bibliography

[1] Arisoy, E., Sainath, T. N., Kingsbury, B., and Ramabhadran, B.
Deep neural network language models. NAACL-HLT (2012), 20–28.

[2] Arjovsky, M., and Bottou, L. Towards principled methods for training
generative adversarial networks. ICLR 2017 (2017).

[3] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by
jointly learning to align and translate. arXiv:1409.0473 (2014).

[4] Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Scheduled sam-
pling for sequence prediction with recurrent neural networks. arXiv:1506.03099
(2015).

[5] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. A neural prob-
abilistic language model. Journal of Machine Learning Research 3 (0 2003),
1137–1155.

[6] Bengio, Y., Simard, P., and Frasconi, P. Learning long-term dependen-
cies with gradient descent is difficult. IEEE transactions on neural networks 5
(3 1994), 157 – 166.

[7] Bojanowski, P., Grave, E., Arm, J., and Mikolov, T. Enriching word
vectors with subword information. arXiv:1607.04606 (2016).

[8] Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P. I.,
Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and
Colton, S. A survey of monte carlo tree search methods. IEEE (1999),
1–43.

[9] Caccia, M., Caccia, L., Fedus, W., Larochelle, H., Pineau, J., and
Charlin, L. Language gans falling short. arXiv:1811.02549 (2018).

[10] Charniak, E. Statistical language learning. MIT press (1996).

[11] Che, T., Li, Y., Zhang, R., Hjelm, R. D., Li, W., Song, Y., and
Bengio, Y. Maximum-likelihood augmented discrete generative adversarial
networks. arXiv:1702.07983 (2017).

[12] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Schwenk, F. B., and Bengio, Y. Learning phrase representations us-
ing rnn encoder-decoder for statistical machine translation. arXiv:1406.1078
(2014).

65

Bibliography

[13] Danihelka, I., Lakshminarayanan, B., Uria, B., Wierstra, D., and
Dayan, P. Comparison of maximum likelihood and gan-based training of real
nvps. arXiv:1705.05263 (2017).

[14] Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Language mod-
eling with gated convolutional networks. arXiv:1612.08083 (2016).

[15] David E. Rumelhart, G. E. H., and Williams, R. J. Learning
representa- tions by back-propagating errors. Nature (9 1986), 533–536.

[16] Elman, J. Finding structure in time. Cognitive Science 14 (2 1990), 179–211.

[17] Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N.
Convolutional sequence to sequence learning. arXiv:1705.03122 (2017).

[18] Gers, F. A., Schmidhuber, J., and Cummins, F. Learning to forget:
Continual prediction with lstm. Neural computation 12 (10 2000), 2451–2471.

[19] Goodfellow, I. Generative adversarial networks for text. https:

//www.reddit.com/r/MachineLearning/comments/40ldq6/generative_

adversarial_networks_for_text/, 2016. [Online; accessed 10-November-
2018].

[20] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative
adversarial networks. NIPS (2014), 2672–2680.

[21] Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., and Wang, J. Long text
generation via adversarial training with leaked information. arXiv preprint
arXiv:1709.08624 (2017).

[22] Hochreiter, S. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzzi-
ness , Knowledge-Based Systems 6 (2 1998), 107–116.

[23] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural
computation 9 (8 1997), 1735–1780.

[24] Huszár, F. How (not) to train your generative model: Scheduled sampling,
likelihood, adversary? arXiv:1511.05101 (2015).

[25] Jang, E., Gu, S., and Poole, B. Categorical reparameterization with
gumbel-softmax. arXiv:1611.01144 (2016).

[26] Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord, A.,
Graves, A., and Kavukcuoglu, K. Neural machine translation in linear
time. arXiv:1610.10099 (2016).

[27] Karafiàt, M., Burget, L., C̆ernocký, J., and Khudanpur, S. Recur-
rent neural network based language model. INTERSPEECH (2010).

[28] Kim, Y. Convolutional neural networks for sentence classification.
arXiv:1408.5882 (2014).

[29] Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. Character-aware
neural language models. AAAI 2741-2749 (2016).

66

Bibliography

[30] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization.
arXiv:1412.6980 (2014).

[31] Kneser, R., and Ney, H. Improved backingoff for m-gram language model-
ing. Acoustics, Speech and Signal Processing (1995).

[32] Kusner, M. J., and Hernández-Lobato, J. M. Gans for sequences of dis-
crete elements with the gumbel-softmax distribution. arXiv:1611.04051 (2016).

[33] Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A., and Ben-
gio, Y. Professor forcing: A new algorithm for training recurrent networks.
arXiv:1610.09038 (2016).

[34] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86 (1998),
2278–2323.

[35] Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D.
Adversarial learning for neural dialogue generation. arXiv:1701.06547 (2017).

[36] Li, S., Li, W., Zhu, C. C., and Gao, Y. Independently recurrent neural
network (indrnn): Building a longer and deeper rnn. arXiv:1803.04831 (2018).

[37] Lin, K., Li, D., He, X., Zhang, Z., and Sun, M.-T. Adversarial ranking
for language generation. arXiv:1705.11001 (2017).

[38] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R.,
Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and Dollár, P.
Microsoft coco: Common objects in context. arXiv:1405.0312 (2014).

[39] Lin, Z., Feng, M., dos Santos, C. N., Yu, M., Xiang, B., Zhou, B.,
and Bengio, Y. A structured self-attentive sentence embedding. Conference
paper in 5th International Conference on Learning Representations (2017).

[40] Manning, C., and Schütze, H. Foundations of statistical natural language
processing. MIT press 999 (1999).

[41] McCulloch, W., and Pitts, W. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics 5 (4 1943), 115–133.

[42] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation
of word representations in vector space. arXiv:1301.3781 (2013).

[43] Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudan-
pur, S. Recurrent neural network based language model. INTERSPEECH 2
(2010), 3.

[44] Mikolov, T., and Zweig, G. Context dependent recurrent neural network
language model. SLT (2012), 234–239.

[45] Mikolov, T., and Zweig, G. Context dependent recurrent neural network
language model. SLT (2012), 234 – 239.

[46] Morin, F., and Bengio, Y. Hierarchical probabilistic neural network lan-
guage model. AIS-TATS’05 (2005), 246–252.

[47] Nash, J. Equilibrium points in n-person games. Proceedings of the national
academy of sciences 36 (1 1950), 48–49.

67

Bibliography

[48] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a method for
automatic evaluation of machine translation. Computational Linguistics (July
2002), 311–318.

[49] Pennington, J., Socher, R., and Manning, C. D. Glove: Global vectors
for word representation. Empirical Methods in Natural Language Processing
(2014), 1532–1543.

[50] Popovic, M., and Ney, H. Syntax-oriented evaluation measures for machine
translation output. Proceedings of the Fourth Workshop on Statistical Machine
Translation (Mar 2009), 29–32.

[51] Rudolf, F. A new readability yardstick. Journal of Applied Psychology 35
(5 1948), 333–337.

[52] Schuster, M., and Paliwal, K. K. Bidirectional recurrent neural networks.
IEEE TRANSACTIONS ON SIGNAL PROCESSING 45 (11 1997).

[53] Semeniuta, S., Severyn, A., and Gelly, S. On accurate evaluation of
gans for language generation. arXiv:1806.04936 (2018).

[54] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research 15 (2014), 1929–1958.

[55] Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway networks.
arXiv:1505.00387 (2015).

[56] Sutskever, I., Martens, J., and Hinton, G. Generating text with re-
current neural networks. Proceedings of the 28th International Conference on
Machine Learning (2011).

[57] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning
with neural networks. Neural Information Processing Systems (2014), 3104–
3112.

[58] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. Pol-
icy gradient methods for reinforcement learning with function approximation.
NIPS (1999), 1057–1063.

[59] Tevet, G., Habib, G., Shwartz, V., and Berant, J. Evaluating text
gans as language models. arXiv:1810.12686 (2018).

[60] Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg,
M., Silver, D., and Kavukcuoglu, K. Feudal networks for hierarchical
reinforcement learning. arXiv:1703.01161 (2017).

[61] Weizenbaum, J. Eliza–a computer program for the study of natural language
communication between man and machine. Communications of the ACM 9 6
(1966), 36–45.

[62] Werbos, P. J. Backpropagation through time: what it does and how to do
it. Proceedings of the IEEE 78 (10 1990), 1550 – 1560.

[63] Williams, R. J. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning (1992), 229–256.

68

Bibliography

[64] Yin, W., Kann, K., Yu, M., and Schütze, H. Comparative study of cnn
and rnn for natural language processing. arXiv:1702.01923 (2017).

[65] Yu, L., Zhang, W., Wang, J., and Yu, Y. Seqgan: Sequence generative
adversarial nets with policy gradient. AAAI (2017), 2852–2858.

[66] Zhang, D., and Wang, D. Perplexity a measure of the difficulty of speech
recognition tasks. The Journal of the Acoustical Society of America 62 (1977).

[67] Zhang, D., and Wang, D. Relation classification via recurrent neural net-
work. arXiv:1508.01006 (2015).

[68] Zhang, Y., and Wallace, B. A sensitivity analysis of (and practi-
tioners’ guide to) convolutional neural networks for sentence classification.
arXiv:1510.03820 (2015).

[69] Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., and Xu, B.
Attention-based bidirectional long short-term memory networks for relation
classification. ACL (2016).

[70] Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J., and
Yu, Y. Texygen: A benchmarking platform for text generation models.
arXiv:1802.01886 (2018).

69

