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Abstract

Within the context of radio site maintenance, there is a
requirement to perform periodical inspections and troubleshooting
of radio sites in order to ensure the correct functioning of the site
equipment and of the systems depending on it. The main problems
related to traditional base stations’ inspections are related to the high
costs and risks involved in the operation. This is principally because
the radio site’s equipment is usually positioned at high altitude and
this makes the manned inspection process particularly complex and
dangerous. Also, the high level of heterogeneity and complexity of the
cell tower topology and lack of knowledge about the inspected radio site
equipment can make the inspection task difficult and require multiple
visits in order to solve the problems that are found.

This thesis will design, develop, and evaluate a system where an
Unmanned Aerial Vehicle (UAV) assists field engineers performing
the inspection of radio sites by detecting and tracking base-station
equipment in real-time while collecting aerial data about the hardware
status. The solution relies on the integration of a state-of-the-art
Convolutional Neural Network (CNN) object detection algorithm,
providing high detection accuracy (in terms of mean Average Precision
(mAP)), with an object tracker running at high Frames Per Second
(FPS). The implemented algorithm is computationally lightweight and
suited for power-constrained computing platforms.

Ideally, this solution works independently of the radio site ar-
chitecture, by automatically detecting and tracking the base station
hardware component to inspect. This system will help operators cope
with the large architectural and structural variability of the radio sites
and provides a further step towards the autonomization of base station
inspection practice.

Keywords: Radio site inspection, cell tower inspection, telecommu-
nications tower inspection, UAV, Unmanned Aircaft System (UAS),
drone, computer vision, CNN, object detection, object tracking.



Sommario

Nell’ambito della manutenzione di base stations, si presenta la
necessitd di effettuare ispezioni periodiche per assicurare il corretto
funzionamento delle apparecchiature hardware e dei sistemi che da esso
dipendono. I principali problemi legati alla tradizionale manutenzione
delle torri di telecomunicazioni sono relativi agli alti costi e rishi
che Voperazione comporta. Cido ¢ dovuto principalmente al fatto
che l'equipaggiamento delle base stations & solitamente posizionato
ad altezze elevate, e questo rende l'ispezione fisica particolarmente
complessa e rischiosa. Inoltre, a rendere complicata l’ispezione
pud concorrere l'alto grado di eterogeneitd strutturale delle torri
di telecomunicazioni, nonché la scarsa conoscenza relativa al loro
equipaggiamento; in questo caso, infatti, potrebbero rendersi necessarie
diverse visite, prima di risolvere i problemi rilevati.

L’obiettivo del presente lavoro & quello di progettare, sviluppare
e valutare un sistema UAV, che possa coadiuvare il lavoro di is-
pezione di base stations di tecnici e ingegneri specializzati; un sistema
che, nello specifico, sia in grado di individuare (object detection) e
tracciare (object tracking), in tempo reale, apparecchiature installate
nella base station, durante la raccolta di dati relativi allo stato
dell’equipaggiamento hardware.

Il sistema é basato sull’integrazione di un algorithmo di object de-
tection che utilizza reti neurali convoluzionali (CNN) con un algoritmo
di object tracking. L’algoritmo implementato & leggero dal punto di
vista computazionale (in termini di Frames Per Second (FPS) ed ha
un elevata accuratezza (in termini di mean Average Precision (mAP)).
Per questi motivi, 'algoritmo pud essere eseguito su dispositivi con
una potenza di calcolo limitata, come ad esempio uno smartphone.

Il sistema ideato ¢ in grado di funzionare indipendetemente dalla
architettura della base station, inidividuando e tracciando le compo-
nenti hardware da ispezionare. Questo sistema puo essere di aiuto agli
operatori di telecomunicazioni per gestire la variabilita strutturale nei
siti radio durante le ispezioni. Il suddetto sistema, inoltre, rappresenta
un ulteriore passo verso l'automazione delle pratiche di ispezione di
base stations.

Keywords: Radio site inspection, cell tower inspection, telecommu-

nications tower inspection, UAV, UAS, drone, computer vision, CNN,
object detection, object tracking.
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Chapter 1

Introduction

This chapter presents general concepts concerning the area of interest in which the
thesis project is framed, defines the purpose and objectives of the project, formulates
the problem and the research questions, and discusses contributions and limitations.

1.1 Overview

The traditional manned inspection practice for radio sites involves skilled technicians
visiting the site and climbing the cellular tower to reach the hardware, typically located
at a great height. This inspection methodology may require multiple visits to the site
before solving all of the issues, especially when there is the need for additional tools or
equipment to fix the problem.

During recent years the drone sector has experienced astonishing growth and this
trend is expected to continue into the future [15], despite the restrictions of international
drone regulations [16]. There exists a huge variety of case-studies involving Unmanned
Aerial Vehicle! (UAV) technology being applied in different applications. The sector on
which this work focuses is visual-based infrastructure inspection. A study conducted by
Goldman Sachs [17] predicts that within the period 2016-2020, US $1.1 billions will be
spent on UAV systems for infrastructure inspection and that the commercial segment
would be the fastest-growing market segment within this application area.

There are many benefits related to employing the UAV technology for radio site
inspection. Firstly, drones can collect imagery in dangerous places, hence they can
substantially improve safety, and this represents a major issue affecting manned cell
tower inspections. In fact, according to a recent study by Ryan Knutson and Liz Day
[18], between 2003 and 2011 only in the United States, 50 climbers died working on cell
sites, and in more recent years the statistics concerning cell-towers fatalities do not seem
to have improved.

In this thesis, the term drone is used interchangeably with UAV.

1



2 Chapter 1. Introduction

The statistics concerning the number of tower fatalities in the U.S. from 2003 to 2017
are shown in Figure 1.1.

Number of fatalities per year

20 T T T T

fatalities

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

year

Figure 1.1: Tower fatalities by year - data from |[1]

The use of UAVs for inspecting a radio site also offers a large cost reduction in the
maintenance of the site. J. Karpowicz has estimated that the cost for a manned
inspection can be reduced by up to 50% by taking advantage of unmanned inspection
technology [19]. This cost reduction could lead to an increased frequency of inspection
of each site, allowing a better understanding of the conditions of the structures and
systems present at the radio site. Additionally, UAV systems can collect data in a
much more effective way than an operator could ever do since nowadays there exist
UAV systems which can acquire high-resolution multimedia content and process them
in real-time thanks to the recent advance in Artificial Intelligence (AI) and increased
computational capabilities of computing hardware platforms. These beneficial factors
led to the adoption of the UAV inspection technology by large telecommunications
companies. For example, the world’s largest telecommunications company AT&T [20],
is employing drone technology to inspect its 65,000 cell towers using Al to automate the
radio site inspection [21].

However, there are many problems that field engineers face during the cell tower
inspections. Currently, UAV systems can only acquire data that might be used to detect
a fault, but fixing the fault requires human presence at the site since the technology
for remote repair is not yet mature. Mazin Gilbert, vice president of the advanced
technology at AT&T labs, affirmed: "The ultimate goal is full automation, but we are
not there yet. With regulatory changes and further research, we hope that automated
inspections will be possible" [21]. The development of technologies aiming at assisting
and automating the base-station inspection practice is very valuable since employing a
drone system saves a lot of resources and reduces dangers related to the inspection when
compared to manned inspections.



1.2. Purpose 3

The prototype developed during this thesis project aims to assist radio site engineers
during the unmanned inspection by employing real-time object detection and object
tracking algorithms. The knowledge about which radio site equipment to inspect is
of paramount importance for the efficacy of each inspection. The distance between
the physical operator represents a challenging obstacle to the identification and correct
classification of the equipment. Object detection techniques can overcome this obstacle
by directing the control of the physical operator towards the correct hardware.
Also, identifying the equipment to inspect is essential for the development of future
autonomous UAV radio site systems able to carry out an autonomous inspection
mission and for this reason it can be considered an important milestone towards the
autonomization of the system.

1.2 Purpose

The main purpose of this work is to reduce the high costs and risks for the current
base-station inspection practice by facilitating unmanned inspections by employing an
assisted drone system controlled by technicians on the ground. Also, the potential to
develop a novel inspection system for the detection of hardware equipment in radio
towers and the prospect of finding adopters in the industrial base-station inspection’s
sector are additional motivations for this project. Finally, the possibility to expand the
object detection system in the future for control tasks based upon the object detection
algorithm is also considered a good reason to implement the proposed system.

1.3 Problem statement

Although unmanned inspection is becoming more popular because of the benefits it
provides, there exist different problems that field service engineers still face during
UAV inspection activity. One of the main challenges is represented by the cell tower
heterogeneity (see Figure 1.2) at different levels:

e Architecture heterogeneity concerns the physical structure of the base-station and
the different positions in which the equipment is mounted.

e Equipment heterogeneity relates to the presence of different components on the
radio site such as Remote Radio Unit (RRU), antennas, feeder cables, etc.

e Model heterogeneity involves the presence of different models and operators’ brands
of the same hardware equipment within the cellular tower.

This high level of diversity usually hinders the unmanned inspection task as the radio
site technicians do not have sufficient information on which radio equipment to inspect.



4 Chapter 1. Introduction

Figure 1.2: Examples of base-station heterogeneity. Images credits: public domain work by
Wikimedia Commons users [2-5]

Also, the pilots carrying out unmanned visual inspections have limited time, are
constrained by different factors such as the UAV battery life or the number of radio tower
to be inspected in a limited amount of time, and need to be aware of the equipment to
be inspected in order to efficiently collect efficiently useful visual inspection data.

1.4 Research question

The principal research question that this thesis addresses is:

Which technologies can be used to implement an UAS assisting field engineers to detect
radio site hardware equipment during unmanned inspections?

This main question can be divided into three sub-questions that will be addressed within
this thesis and will lead to the implementation of a prototype UAV system. These sub-
questions are:

1. Which capabilities and characteristics should the system have to assist field engineers
to effectively inspect the radio site equipment?

2. Which unmanned hardware platform is best suited to provide these capabilities?
3. Which software platform and algorithms can be used to provide the needed object

detection and tracking functionalities and how to effectively integrate this with the
hardware platform?
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1.5 Limitations

This thesis involves the development of an autonomous UAV cell tower inspection
system. This ultimate goal goes beyond the scope of this project and the technology to
develop a fully-autonomous UAV system is yet immature. For these reasons, this work
limits its scope, focusing mainly on the design, development and evaluation of a drone
vision algorithm for the detection and tracking of radio site equipment. In particular,
it applies a cutting-edge object detection algorithm based on CNNs combined with an
object tracking algorithm to the field of base-station hardware inspection. This result
represents a milestone and a novelty in the field of base-station inspection and constitutes
a further development towards fully autonomous of the radio site inspection.

1.6 Contributions

The contributions of this thesis project are threefold:

1. It explores technologies and UAS platforms suitable for base-station unmanned
inspections by reviewing scientific literature in the area and similar applications.

2. It proposes a real-time architecture for detecting and tracking base-station hardware
integrating it with a low cost UAV platform on a power-constrained platform.

3. It develops an Android application to realize the proposed architecture and test it.

1.7 Structure of the Thesis

e Chapter 2 outlines the main theoretical concepts involved in this project and provides
the reader with a general understanding of the framework within which this thesis
is developed. It also reviews the current literature in UAV inspection systems and
explores the employed object detection and tracking technology.

e Chapter 3 presents the overall system architecture and the methodology used to
design, implement, and test the proposed system.

e Chapter 4 discusses the realization of the architecture of the implemented prototype
and analyzes its constitutive part. It also describes implementation technicalities
about the algorithms and its integration with the UAV system.

e Chapter 5 performs an analysis of the collected experimental data and presents them.

e Chapter 6 draws conclusions on the basis of the results presented in Chapter 5
and suggests future directions to explore based upon the results of this project and
describes limitations.






Chapter 2

Background and related works

This chapter establishes the theoretical framework used in this thesis project by
presenting the key concepts on which the proposed system will be developed. Also,
it reviews the current literature in the area and presents the state of the art of similar
UAV inspection systems employing object detection and tracking that are relevant for
this thesis.

2.1 Unmanned Aircraft System

UAS, also referred to as Remotely Piloted Aererial System (RPAS), is a term coined in
2005 by the U.S. Department of Defense (DoD) [22] and consists of three components
[23], namely:

1. A UAV defined as "a pilotless aircraft |...| which is flown without a pilot-in-command
on-board and is either remotely and fully controlled from another place (ground,
another aircraft, space) or programmed and fully autonomous" [24].

2. A Ground Control Station (GCS), that is an autonomous or human-operated,
stationary or transportable hardware /software system to monitor and command the
unmanned aircraft.

3. A communication system that links the UAV to the GCS.

2.1.1 UAS classification

UASs can be categorized in a variety of ways based on different attributes. A detailed
UAS classification can be found in [25]. Since the level of detail of such classification
goes beyond the scope of this thesis, it will not be reported in the following and only
the most relevant classifications useful for this project will be reported in the following.

7



8 Chapter 2. Background and related works

2.1.1.1 Aircraft type

Based on the aircraft structure, a UAV has a twofold classification:

e Rotary wing UAVs are made of a central body and multiple rotors that power
propellers to control the UAV flight. The number of rotors may vary from one, two,
three, and four (quadcopter) to six (hexacopter), eight (octocopter) or even more.
However, the most common category is the quad-rotor aircraft. The control of the
aircraft’s motion is realized by varying propeller’s blade angular speed.

e Fixed wing UAVs consist of platforms with a rigid wing that makes flight capable
by generating lift generated by the UAV’s forward airspeed generated by a forward
thrust.

Figure 2.1: Left: example of rotary wing UAV. Right: example of fixed wing UAV. Images
credits: public domain work by Flickr Users (6, 7|

2.1.1.2 Aircraft size

A possible classification based on the aircraft’s size is proposed by Fahlstrom and Gleason
[26], in which UAVs are grouped into four categories, namely:

e very small UAV having dimensions in the order of 30-50 cm,
e small UAV having dimensions up to 2 m,
e medium UAV having dimensions up to 10 m, and

e large UAV having dimensions larger than 10 m.
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2.1.1.3 System autonomy

The classification of UAS autonomy takes into account the level of human involvement.
Dalamagkidis [27] proposes the following classification:

e Remotely piloted UAS (non-autonomous) that are remotely controlled by a pilot
either within Line of Sight (LOS) or with feedback from the UAV sensors such as a

camera.

e Remotely operated UAS (semi-autonomous) in which high-level commands are
given to the system (waypoints, objects to track, etc.), and the UAS performance is
monitored by an operator in the field. In this case, the flying is performed by the
UAS itself, but all the decision-making is delegated to a human operator.

e Fully autonomous UAS in which general tasks are given to the aircraft and the
system is capable of determining how to accomplish them, even at the face of
unforeseen events. Since human presence the site is not strictly required for this
class of UAVs, they can operate in Beyond Line Of Sight (BLOS) mode.

Multirotor platform is by far the most diffused type of UAV platforms for commercial
applications. For example, a study conducted by DroneDeploy [28] shows that 97% of
the commercial drone sector for mapping is occupied by multirotor platforms, while fixed
wing UAVs have only the 3% market share for commercial UAV mapping applications.
Also, concerning applications similar to infrastructure inspection and maintenance, rotor
crafts are more suitable due to their hover capabilities and agile maneuvering, while fixed
wing vehicles better fit aerial surveillance and mapping of large areas from greater heights
[29]. Usual sizes for UAS infrastructure inspection applications fall in the categories of
very small and small UAVs [30-32|. This is mainly due to their ability to fly in hard-to-
reach environments and their ease of use and transportation. Different levels of autonomy
have been experimented within UAS for inspection applications but for the application
concerned in this thesis, the focus is on remotely piloted and remotely operated UAS.

2.1.2 UAS regulation

There exist different international regulations, such as the ones issued by the Inter-
national Civil Aviation Organization (ICAO) [24] and the European Aviation Safety
Agency (EASA) [33]. The use of UAVs is generally more strictly regulated by the
national aviation authority of each country who supersede these international directives
via national laws. For this reason, in the following text, the focus is on national drone
regulation in Sweden, as this is the state in which this project was performed. On
February 1, 2018, the Swedish Transport Agency (Swedish: Transportstyrelsen) issued
the new regulation TSFS 2017:110 [34] on unmanned aircraft.
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All drones weighing less than 150 kg are covered by these rules with no differentiation
between private and commercial flight. Other regulations applying to UAVs in Sweden
are: the European Union’s Regulation EU 923/2012, the Swedish Transport Agency’s
Regulation TSEFS 2014:71, the general guidelines for aviation TSFS 2014:94, along
with the Swedish Aviation Act 2010:500, and Aviation Ordinance 2010:770. The most
important behaviours to be observed according to the above rules when flying a UAV
are:

(i) The UAV shall be marked with the operator’s name and telephone number.

(ii)) The UAV’s maximum flying altitude must be below 120 m from ground in
uncontrolled air.

(iii) License and permissions are needed for drones weighing more than 7 kg and flying
in BLOS conditions.

(iv) Fly at least 5 kilometers from any airport runway. It is still possible to fly within
the control zone of the airport without any special permission provided that the
flight altitude is below 50 meters, the speed lower than 90 km/h.

For UAVs weighting more than 150 kg, other regulations are in place but they will not
be given here as are outside the scope of this thesis project. Regarding the regulations
for the communications bands assigned for UAV applications, in 2012 at the World
Radiocommunication Conference (WRC) the 5030-5091 MHz band was allocated for
UAV Radio Frequency (RF) communication systems. Also, many UAS in the commercial
category uses Wi-Fi technology for communication (typically in bands around 2.4 GHz).

2.2 UAS vision

UAS inherently require sensing the surrounding environment. Among the different
possible types of sensors, cameras represent one of the cheapest and most effective data
sources. For this reason Computer Vision* (CV) plays a central role in UAS automation
and the literature is rich with methods, algorithms, and use-cases concerning UAS visual
inspection applications.

The concept of feature is a key element in CV. Features are representative points
with certain invariance characteristics such as invariance to rotation, resizing, change
in brightness, viewpoints, and other image transformations. Based on this concept,
computer vision techniques can be classified in two macro-categories, namely:

*Computer Vision is a multidisciplinary field that studies and reproduces computational models
of the human visual system and build autonomous systems to perform tasks which the human visual
system can perform [35]
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1. Hand-crafted features algorithms that are based on the extraction of a set of
features from the image, apply a series of image-processing operations performed on
the extracted feature image [36] and represents the traditional approach to computer
vision developed since the 1960s.

2. Machine learnt features algorithms, based on the use of Machine Learning (ML)
techniques and CNNSs, process the image through different layers of neurons that
are able to extract features from the image. This type of approaches have been
developing since 2012 when the first CNN algorithm for object detection, AlexNet,
[37] outperformed all hand-crafted feature methods for object detection developed
until then.

The following presents the major contributions and describes CV algorithms useful for
this project. In particular, the discussion will focus on hand-crafted feature approaches
for object tracking, while focusing on the machine learnt feature approach for object
detection. The former is a CV function that deals with detecting instances of objects
of certain classes (e.g. people, towers, cars, etc). The latter detects motion of
salient points, thus allowing tracking of the temporal object movement in consecutive
video frames. These two tasks constitute a crucial function for UAS-based visual
infrastructure inspection applications. Moreover, these tasks are particularly challenging
due to drone motion and consequent noise and blurring in the image. Also, another
problem currently facing UAS inspection operations is performing the detection and
tracking tasks in real-time in order to receive an immediate feedback or utilize visual
control algorithms. This is especially challenging on embedded hardware platforms with
constrained computational capabilities such as smartphones.

2.2.1 Hand-crafted feature algorithms

The following presents a theoretical introduction on the techniques to implement the
object tracking technique used within this project. There exist two main classes of
feature tracking methods based on handcrafted feature: the first approach uses the
KLT tracker [38] which uses spatial intensity information to search for a feature match.
The second approach involves the use of descriptors, such as Scale Invariant Feature
Transform (SIFT) [39], for features extracted from subsequent frames in the video
sequence and then the matching of these representative points. KLT is the preferred
method when computational resources are limited since extracting and matching feature
descriptors is significantly more computationally expensive. Since the application
developed for this thesis project involves the development of the algorithm in an
embedded device context the background knowledge to describe the KLT tracking
algorithm will be presented, while the complete algorithm will be presented in Section
3.7 together with the choice of the object detection algorithm.
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2.2.1.1 Harris corner detector

The Harris corner detector is a particular type of feature detector algorithm introduced
by Chris Harris and Mike Stephens in 1988 [40]. Feature detection is the image-
processing operation that refers to detecting a set of representative features inside the
image. The most representative features of an image are edges and corners because
they delineate the boundaries of objects and have good invariance characteristics. The
primary origin of edges is the presence of a discontinuity, that is an abrupt change in the
pixel intensity in the image data. Corners are constituted by the intersection of edges
and have discontinuities in two orthogonal directions.

Let I(x,y) be a grayscale image, w(z,y) a 2-D window function that selects a patch
of pixels, and a displacement vector (u,v). The basic idea behind the Harris corner
detector is that corner points have strong differences in appearance when compared to
all regions in its neighborhood (see Figure 2.2).

Figure 2.2: Multiple patch windows on a corner point. Image credits Aseel M. [§|

For this reason, the Harris detector imposes the maximization of the Sum of Squared
Differences (SSD) between the pixels’ intensity of the image and the replica of the image
displaced by (u,v) in all directions:

E(u,v) = Y w(z,y)[I(z +u,y+v) - I(z,y)] (2.1)
(z.y)
This is because the Harris detector looks for points that have big changes in all directions.
By applying Taylor series expansion, and stopping at the first order term, it is possible
to write:
E(u,v) = Zw(w, y) (WL + 2wl I, 4+ v°I7) =

x?y

(u, v) <Zw(:c,y) [IZ}, [;gyD <Z> = (2.2)

o (°
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where I, and I, denote the partial derivatives of the Image pixel intensity with respect
to the z and y directions. The Matrix M is a structure tensor and characterizes the
pixels within the windows. It can be proven that the information of the presence of the
corner is contained in the eigenvalues (A1, \y) of M [41]:

e if \; =~ 0 and Ay = 0, then this pixel (z,y) has no features of interest.
e if A\; =~ 0 and )\, has some large positive value, then an edge is found.
e if A\ and )\, have large positive values, then a corner is detected.

In order to avoid computing the eigenvalues which are computationally expensive, a
score R is computed and used to determine the presence of the corner:

R = det(M) — k(trace(M))* = Mg — k(A1 + Ap)? (2.3)

where k € [0.04,0.06] is a constant determined empirically. J. Shi and C. Tomasi, in
their paper "Good Features to Track" [42], proposed a new score function which exhibits
better results

In the end, the value of R is compared to a threshold \,,;, which represents the minimum
value of R in order to be considered as a corner.
2.2.1.2 Optical flow

Optical flow is defined as the relative motion between a camera and the scene between
consecutive frames in a video [43|. Optical flow outputs a set of vectors representing the
motion of a point from the first frame to the second. Assumptions have to be made in
order to ensure good performances of optical flow algorithms, these are [44]:

1. Brightness and feature constancy: only the movement of the object with respect to
the camera can cause local changes in image intensity

2. Spatial smoothness: the motion is uniform over a small neighborhood of pixels

3. Small motion: the sampling frequency of the video is fast enough to represent the
image motion gradually over time

By denoting the intensity of the (z,%) pixel of the ¢ frame in grayscale with f(z,y,1),
it is possible to express the first hypothesis as

f(z,y,t) = f(x + de,y + dy,t + dt) (2.5)
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assuming that in the next dt time, the pixel moves by (dz,dy) the intensity remains
constant in consecutive frames. Expanding the right-hand side of the equation using a
Taylor series, it is possible to write (to the first order)

af of of

flz,y,t) = f(z,y,t) + %daz + E)_ydy + Edt (2.6)

Dividing both sides of the equation by dt it is possible to write the Optical Flow equation:

Unfortunately this equation has two unknowns (u,v) and this problem is underdeter-
mined. One of the most widely used methods to solve this equation is presented in the
upcoming section.

2.2.1.3 Lucas-Kanade Method

The Lucas-Kanade method overcomes the problem of the optical equation being
underdetermined by assuming that pixels in a 3 x 3 neighborhood have the same optical
flow. In this way, it is possible to expand the optical flow equation (Equation 2.7) to all
these pixels:

fxlu + fylv + ftl =0

(2.8)
Jeot + fyov + fro =0
The previous equation can be rewritten in matricial form as
for [ —fu
: : {u]: : — A-u=b (2.9)

. . v
Jao fyo —feo

Ais a9 x 2 matrix, u is a 2 X 1 column vector, and b is a 9 x 1 column vector. Ideally,
to solve the system, it is sufficient to multiply by A~! on both sides of the equation.
However, since A is not a square matrix, the pseudo-inverse of A is considered:

(AT A)u = ATb (2.10)

Since (AT A) is a square matrix, it is possible to take its inverse:

et =[][R] TR ew
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This can be simplified by taking the inverse as:

M _ ! il L fmfyi} [— > fmfn} (2.12)

Solving for u and v:

U — Zz Jaifyi Zz fyifri — Zz 51 Zz Jaifti

(2.13)
v = Zz f:):zfyz Zz f:):zftz - Zz x27, Zl fyzftz
The values for all the f,;, f,;, and f;; are known at this point and it is possible to find
the values of u and v for each pixel.

2.2.2 Machine learnt features algorithm

This section introduces concepts used to implement the object detection algorithm
used within this thesis project. In particular the output of the object detection
consists in the classification and localization of the object to be recognized, resulting in
multiple bounding boxes around the detected objects. Recently, increased computational
capabilities and developments in Al have allowed the development of new approaches
based on CNNs. Today CNN approaches represent the state of the art methods in
object detection models and outperforms the hand-crafted object detection techniques
by enhancing the accuracy of image classification and extracting image features in a more
efficient and complete way [45-48]. However, CNNs are very computationally expensive
and require a lot of data in the training phase with respect to traditional feature-based
approaches and there is the need to adopt appropriate techniques to overcome such
limitations. In this section, CNNs are described in the context of this thesis following
an introductory section on ANN, on which CNNs are based.

2.2.2.1 Artificial Neural Networks

An ANN is a computational processing system inspired by the way biological nervous
systems operate. The fundamental elements in ANNs are interconnected artificial
neurons and connections between them. These units are organized in a multi-layered
structure with D input units (z1, ..., zp), C output units (y§L+l), s y(CLH)), and L hidden
layers (Figure 2.3). Each artificial neuron has connections with the previous and the
next layer and wz(l,z is the weight of the connection between k™ neuron at layer (I — 1)

and 7""neuron at layer (1).
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1% hidden layer L™ hidden layer
input layer o o output layer

=y

O

Figure 2.3: Topological structure of an ANN

The i*" artificial neuron at layer (I) is also characterized by a bias, bz(l) that describes
how easy it is to get the neuron to fire, and an activation function g(-) that generates a
non-linear mapping between its input and output value. Early choices for the activation
function were inspired by biological neuron activation processes such as the Sigmoid
function (Figure 2.4 left) or the Heaviside function (Figure 2.4 center). However, using
these activation functions made the learning process very slow and new functions such
as the Rectified Linear Unit function (ReLU) were proposed (Figure 2.4 right).

Sigmoid function Heaviside function Rectified Linear Unit

1 1 5
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Figure 2.4: Examples of activation functions. Left: Sigmoid function. Center: Heaviside
function. Right: ReLU function
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The output of the i’ artificial neuron at layer (1) is computed as

m=1) mi=1

l ) (I-1 l l
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By defining the following quantities:

1. Layer weight matrix w) : [wll)]; , = wfl,i collect all the weights at layer (I).

no0 n 17
2. Layer bias vector b = [bé) bg) ! } collect all the biases at layer (1).

m®
l ! n 1"
3. Layer output vector y() = [y(()) yg) e yfn)(l)} collect all the outputs at layer (I).

4. Weighted input vector at the (I)-th layer z® = wy(=1) 4 p®

it is possible to write the Equation 2.14 in vector form:

v =g <W(l)y(H) n b(l)) = g (z) (2.15)

where the vector function ¢(-) acts on the vectors elementwise.

2.2.2.2 Learning process

The weights and biases of an ANN can be tuned by a process called learning which is
governed by a learning algorithm. The aim of the learning algorithm is to find weights
w and biases b that minimize a certain cost function that represents a measure of the
distance between the desired output and the actual network output. By defining the
vectorization® of the weight tensor as w = vec(w) and the vector containing both weights
and biases as u = [W b”], the cost function will depends only on this vector C'(u). There
exist two major learning paradigms in ANN in the object detection context:

e Supervised learning paradigm aims to find network weights and biases to approxi-
mate a specific target mapping ¢, through a training set Ts = {(z,,t,) : 1 <n < N}
includes both input values z,, and desired output values t,, = ¥(x,).

e Unsupervised learning paradigm finds similarities and regularities within the data
by itself and the training set does not include any labels or target value, but only the
input values Ty := {x, : 1 <n < N}

This thesis project focuses on supervised learning because most object detection tasks
usually depend on classification using supervised learning [49]. The strategies used to
tackle the problem of minimizing the cost function are mainly based on two techniques:
gradient descent and backpropagation.

*The vectorization of an ng-dimensional tensor A € R"1Xm2%--X"d jg defined as:
vec(A) = [am

1 G211 0 Apypi,...1 A121,...1 " Opyony

.....



18 Chapter 2. Background and related works

2.2.2.3 Gradient descent

A closed-form solution of the high-dimensional minimization problem of the cost function
arising in the learning process is very difficult to find and different iterative approaches
have been proposed to solve this issue. Gradient descent is an iterative algorithm that
aims to minimize the cost function C'(u) starting from a configuration of weights and
biases u[0] and progressively updating this configuration through a variation of weights
and biases u[n + 1] = u[n] + Au[n], where u[n] denote the weight vector at the n-th
iteration. This will generate a variation in the cost function AC(u). The gradient
descent algorithm updates the configuration in the direction of the steepest descent
(i.e. the one that causes the maximum decrease of the cost function), that is expressed
mathematically by the direction of the negative gradient VC'(u)

Auln| = —yVC(u) (2.16)

The parameter v is named learning rate. It is an hyper-parameter in the design of the
ANN and it is chosen such that the algorithm converges to a minimum in a reasonable
time.

2.2.2.4 Mini-batch stochastic gradient descent

The gradient descent procedure presented in the last subsection, also named batch
gradient descent, computes the gradient of the loss function for all training samples
N before executing a single weight update. Since the number of training samples can
be relatively big, the standard gradient descent can take a long time to converge to a
solution, and is unusable when the number of training samples does not fit in memory.

Stochastic mini-batch approximates the gradient descent by executing a parameter
update after a number of training samples equal to the mini-batch size B. Mini-batch
SGD reduces the variance of the parameter updates, which can lead to more stable
convergence. Stochastic Gradient Descent (SGD) is the case where the mini-batch size
B = 1, named also online learning because the parameters are updated for each training
sample.

2.2.2.5 Backpropagation

What is missing in the procedure presented in the previous sections, is a way to compute

the gradient of the cost function. Backpropagation computes the gradient VC(u) =

[% %] with respect to any weight w and bias b in the network. The total cost is

computed by averaging the cost functions of N training examples

C(u) = Nch(u) (2.17)
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where C), represents the cost for the n-th training example. Without loss of generality,
from now on, it is considered a single training example C, £ C. In order to compute

partial derivatives a%) and a‘?ﬁ) through backpropagation, an auxiliary quantity is
Wik j

introduced (5;. = aa% defined as the error in the j** neuron at the [** layer. The
A
J

backpropagation algorithm is composed of the following steps:

1. Propagate the input value x,, through the network to get the actual input and output
of each unit.

2. Calculate the so called errors (5§L+1) for the output units (5§L+1) = xs-g (z(-LH))
Y

J

3. Determine (55.1) for all hidden layers 1 by using error backpropagation

l l m+D - (141) (141
5 = g (=) o VY

4. Calculate the required derivatives a_c(l) o ,ilH)
8wjk J

2.2.2.6 Convolutional Neural Networks

CNNs are a particular subclass of ANN used to solve image-driven pattern recognition
tasks. Traditional ANNs are not employed for image recognition due to the fact that full
connectivity between layers of artificial neurons do not scale well to higher resolution
images and requires a lot of computational power. A typical CNN structure is presented
in Figure 2.5.

Feature maps

Input layer

Convulational layer Pooling layer Convulational layer Pooling layer Fully connected

Figure 2.5: CNN typical architecture. Image credit: public domain work by Wikimedia
Commons user [9]

The data entering the I** layer of the CNN are order 3 tensors of the type: x® €

R XW!XC that represent images with H column pixels, W row pixels, and C' channels.

Typically C' = 3 and represents components of a color model (e.g. RGB, YUV, etc.).
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Each image pixel is identified by a triplet (i!, 5!, ¢!) that refers to the j* column and "
row of the ¢'* color channel at the [ layer. The input image is processed by a CNN
through several layers of artificial neurons, where each layer represents a processing step
that transforms an input tensor x to an output tensor y.

The CNN takes as input a tensorial image representation that goes through different
types of layers, responsible for making certain types of transformations on the input. The
network output is a tensor of predictions that expresses the confidence with which each
class of object has been predicted by the CNN. The following discusses the function that
each CNN layer has in the object detection task and the main concepts behind CNNs.

2.2.2.7 Input layer

The input layer simply presents the raw pixel values of the image to the CNN and has
the same dimension as the input image tensor x(©),

2.2.2.8 ReLU layer

The ReLU layer returns a tensor y of the same dimension of the input x where each
element of the vector is transformed according to a ReLLU transformation (represented
in Figure 2.4) of the type:

Yije = Max (x; ., 0) (2.18)

There are no parameters inside the ReLLU layer, hence no need for parameters learning in
this layer. This layer is used to increase the non-linearity of the CNN. There is the need
to increase non-linearities in the detection network because there exists a semantic gap
between the digital representation of the image and the image’s semantic information
that is created by a non-linear mapping between these two representations. For this
reason, there is the need for a non-linear mapping from the CNN’s input to its output.

2.2.2.9 Convolutional layer

The convolutional layers play a central role in the CNN’s architecture. In these layers,
artificial neurons consist of tensors that represent learnable filters acting as feature
extractors. The CNN learns the feature representations of the input image by tuning
the filter’s weights, i.e. their coefficients. These learnable kernel filters usually are of
reduced dimension with respect to width W and height H dimension and extends in the
depth dimension for the whole depth C! of the input tensor. Assuming that D kernels
are used at each layer and each kernel is of spatial span H x W, the fourth-order kernels’

tensor is denoted by f € RFxWxC'xD



2.2. UAS vision 21

Intuitively, the learning algorithm change the filter’s weights such that the filters activate
when they receive as input pieces of images that contain some type of visual features,
such as oriented edges or patterns. Stacking many convolutional layers creates non-
linear filters that become increasingly global (i.e. responsive to a larger region of pixel
space) so that the network first creates representations of small parts of the input, then
assembles from them representations of larger areas detecting features at a higher level
of abstraction.

Since images are usually high-dimensional inputs it is impractical to have full
connectivity between layers of neurons as is done for standard ANNs. Instead, in CNNs
each neuron is connected only to a local region of the previous layer. The spatial extent
of this connectivity is a hyper-parameter named the neuron’s receptive field and is
equivalent to the neuron’s kernel filter size. Another characteristic of convolutional
layers is the fact that the learnt filter’s weights and biases are shared by the whole
layer and form what it is called a feature map. In each feature map (convolutional
layer) all the artificial neurons respond to the same feature within their specific receptive
field (portion of the image). This allows detection of the same features regardless of its
position in the visual field (translation invariance) and greatly reduce the number of
learnable parameters in each layer.

Besides the receptive field size F' and the depth D introduced before, CNNs have
other important hyper-parameters that influence the performance. D represents the
number of filters used in the convolutional layer, to capture different types of features in
the input image at the same scale. The stride hyper-parameter S represents the discrete
step size with which the kernel filter is slid across the image. For example, when the
stride is 1 the filter is moved one pixel at a time, while when the stride is 2 then the filter
jumps 2 pixels at a time along each axis. This will produce a smaller output tensor.
The zero padding hyper-parameter P is used to reduce the discontinuity effect near
the picture’s border and to control the spatial size of the output tensor. In many cases,
this parameter is used to preserve the spatial size of the input volume so the input and
output width and height are the same. Formally, the operation that is performed on
the input tensor by the convolutional layer is a tensorial convolution with the neurons’
kernel filters.

H W C
Yije = Z Z Z = Thuwk * fi—h,j—w,c—k (219)

h=0 w=0 k=0

This convolution operation is repeated for all the D kernel filters of the {** layer. In
order to give a better understanding of this operator and the meaning of the convolution’s
hyper-parameters, a 2-D convolution example (i.e. with C = D = 1 corresponding to
the case of grayscale image convolution) is shown in Figure 2.6. The example shows the
convolution of a 4 x 4 matrix with a 3 x 3 kernel filter. In this example the stride is
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Figure 2.6: Example of grayscale image convolution. Image credit: public domain work by
Wikimedia Commons user [10]

S =1, the depth is D = 1, and zero-padding is not used (hence P = 0). The output is a
2 X 2 matrix, where each entry is given by the sum of the products of the input matrix
and kernel’s entries progressively shifted with respect to the entries of the input matrix.

2.2.2.10 Pooling layer

The purpose of the pooling layers is to reduce the spatial resolution of the feature maps
by downsampling the input tensor. This allows the CNN to achieve spatial invariance
with respect to input distortions and translations. It is also used to reduce the number
of parameters and computation in the CNN. The depth dimension of the input tensor D
remains unchanged after the pooling operation. There exist different ways to do pooling,
but max pooling is the most widely used type of pooling operator. In max pooling, the
pooling operator maps a sub-region to its maximum value, while the average pooling
maps a sub-region to its average value. Formally, max pooling selects the largest element
within each receptive field such that:

Yid = i IMAX . Vi (2.20)
For example, a pooling layer with filters of size 2 x 2 applied with a stride of 2,
downsamples every depth slice of the input tensor by a factor of 2 along both width
and height. In this case, every maximum operation would be computed over a receptive
field of size 4 (see Figure 2.7).
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Figure 2.7: Max pooling example. Image credit: public domain work by Wikimedia Commons
user [11].
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Note that this layer has no parameters to be trained since it computes a fixed function
of the input, hence there is no need for training in pooling layers.

2.2.2.11 Fully Connected layer

The Fully Connected (FC) layer consists in a layer in which neurons have a full
connection to all activation in the previous layer, as seen in a regular ANN, shown in
Section 2.2.2.1. Their activation can be computed with a matrix multiplication followed
by a bias offset. The fully connected layer in analogy with the brain interprets the feature
representations constructed in the layer before and performs the function of high-level
reasoning [50].

2.2.2.12 Output layer

The output layer is the CNN’s final layer and assigns to each input image a probability
value that represents the class detection confidence.

2.2.2.13 Dataset

In the object detection context, the dataset is a collection of images used to train,
test, and validate the CNN model. More in particular, the training set is composed by
target values for the classes of each element in the training set and the coordinates of
the localization for the bounding box around the image (ground truth box). Choosing
a proper dataset for a given detection task is of paramount importance. In fact, the
model’s performance is highly dependent on the quality of the underlying dataset. For
any supervised machine learning task, it is common to split the entire dataset into three
subsets, namely:

1. Training set contains data used for learning, i.e. to find the CNN parameters
(weights and biases) during the backpropagation process. It usually contains the
majority of examples contained in the dataset.

2. Validation set contains data used to tune the hyper-parameters of the CNN model
and should follow the same probability distribution as the training dataset. Using
only the training set to train the model would lead to overfitting, i.e. to produce a
model that corresponds too closely to training set but one that may fail to reliably
detect future generalized data.

3. Test set contains data used to assess the performance of the trained model and is
not used during training. The test set is usually employed only once the model’s
parameters and hyper-parameters are fully specified in order to assess the model’s
generalized performance. The test set is independent of the training dataset, but is
assumed to follow its same probability distribution.
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2.2.2.14 Validation-based early stopping

Early stopping [51] is a regularization technique used during training to decide the
optimal point to stop training. It is used to avoid overfitting and to minimize the
generalization error. The generalization error is a measure of how accurately the CNN
model is able to predict outcome values for previously unseen data. It may happen that
the best result in terms of results is not achieved by the last training epoch. The error
on the validation set is used as an indicator for the generalization error in determining
when overfitting has begun.

2.2.2.15 Hyper-parameters

Hyper-parameters choice is key in the design of neural networks. These are parameters
that are not optimized through the learning process and needs to be tuned independently
of the model’s parameters. They are typically initialized before the learning process
begins and empirically adjusted using the validation set according to heuristics and
experimentation. By contrast, the values of other parameters are derived via training
(weights and biases). The following provide an overview of the most important hyper-
parameters for CNNs trained with backpropagation and SGD:

1. Learning rate is a constant used to control the rate of learning. If the learning
rate is too large, the optimization procedure to diverge, while if it is too small, the
learning process might take much longer to train the network and reach the same
minimum it could have reached with a higher learning rate in less time.

2. Learning rate decay refers to the rate of annihilation of the learning rate over
time. If this parameter is reduced too quickly this can lead to sub-optimality in
computational time while bouncing around the desired minimum, while reducing it
too aggressively causes the system to stop before reaching that minimum.

3. Momentum is the parameter that controls learning rate improvement. Momentum
helps to determine the direction of the next step with the knowledge of the previous
steps. It helps to prevent oscillations. A typical choice of momentum is between 0.5
to 0.9.

4. Batch size refers to a number of training examples in one forward/backward pass
of the CNN. The impact of the batch size is mostly of a computational nature since
modern hardware can parallelize matrix multiplications and convolutions.

5. Epoch numbers, that is defined as a single forward/backward step of the entire
dataset through the neural network, is the number of times the whole training data is
shown to the network while training. Since the family of gradient descent algorithms
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are iterative, multiple forward /backward pass of the algorithm in the training process
are needed to minimize the cost function.

6. Detection threshold regulates the confidence level with which a given instance of
an object is considered as correctly detected.

7. Kernel, stride, and padding size discussed in Section 2.2.2.9

8. Input network dimension that corresponds to the size of the input image that will
be processed by the CNN

9. Activation function (e.g. Sigmoid, Heavyside, ReLLU) as discussed in Section 2.2.2.1

10. Cost function as discussed in Section 2.2.2.3

2.2.2.16 Transfer Learning

Within the context of object detection, transfer learning is a ML method in which a
CNN pre-trained model, developed for a given task, is reused as the starting point for
a model on a second task. This reduces the computational time and enables to training
the network with a smaller training dataset. Quoting Yosinski et al. [52|: In transfer
learning, we first train a base network on a base dataset and task, and then we repropose
the learned features, or transfer them, to a second target network to be trained on a
target dataset and task. Different CNNs trained on natural images exhibit a common
phenomenon: on the first layer, they learn non-specific and similar low-level features to
recognize edges, corners and other low level characteristics of the image. For this reason,
the weights and biases learned in these first layers are reusable for many. Instead of
training the entire CNN from scratch, it is common to start from a CNN model that
has been pretrained on a very large image dataset (e.g. ImageNet dataset [53], which
contains 14 million images of 20,000 categories), and then re-use the pretrained CNN
model applying transfer learning. The two major transfer learning scenarios are [54]:

1. Fixed feature extractor: starting from a pretrained CNN model, the last fully-
connected layer is removed and retrained, while the rest of the CNN is treated as a
fixed feature extractor for the new dataset with the same pretrained weights.

2. CNN fine-tuning: the weights and biases of the pretrained CNN are fine-tuned by
continuing the backpropagation. It is possible either to fine-tune all the layers of the
CNN, or to keep some of the earlier layers and only fine-tune some higher-level portion
of the network since the earlier features of a CNN contain more generic features (e.g.
edges, corners, blobs, etc.), but later layers of the CNN becomes progressively more
specific to the details of the classes contained in the original dataset.
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Three main benefits are related to the use of transfer learning [55]. First, the initial
performance achievable in the target task is higher using only the transferred knowledge,
before any further learning is done, as compared to the initial performance of a non-
pretrained model. Second, the amount of time it takes to fully learn the target task given
the transferred knowledge compared to the amount of time to learn it from scratch is
much lower. Third, the final performance level achievable in the target task compared
to the final level without transfer is higher.

2.3 Related works

The current state of the art in UAS object detection and tracking offers a plethora
of case studies related to very different applications [56-61]. Surveillance, inspection,
and reconnaissance are among the most common UAV-based operations. In these
applications, object search, detection, and classification are key tasks, which usually are
still manually performed. Automatic object detection and classification offers benefits
both during the drone operations and during the posterior data analysis. At the time of
this writing, there are no contributions in the scientific literature specifically addressing
cell site inspections or cell site equipment detection, the main areas of interest for this
thesis. However, techniques used in the general sector of UAS object detection and
tracking can be adapted and reused in the framework of cell tower inspection.

2.3.1 Kanade-Lucas-Tomasi object tracker

Tanathong and Lee 62| performed a preliminary experiment to measure the performance
of KLT for real-time feature tracking from UAV image sequences. They concluded that
the tracker can identify corresponding features in consecutive images with greater than
80% accuracy if the displacement is small.

Jabar, Fraokhi, and Sheikh [63] proposed a semi-automatic object tracking method
by combining SIFT and KLT tracker for UAV-based applications. In their approach,
the user selects the region of interest and KLT is then used to track the specified object
in consecutive frames. To overcome rapid changes in appearance, occlusion, or dis-
appearance from the camera view, they employ forward-backward error compensation.
Through experimental results, they showed that their proposed method exhibits higher
performance when compared to similar algorithm employed in the field.

Michael and Vani [64] attempt to find the efficiency of SIFT and SURF features in
a semiautomatic object tracking method based on KLT for UAV applications. In this
approach, the region of interest is specified by the user and the interest points are found.
Two promising approaches were used to detect the robustness; The outcome is applied
to KLT for further video tracking. SIFT provides a higher matching rate than SURF
when applied to a KLT tracker.
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2.3.2 YOLO-based object detection

Various CNN real-time object detection applications employing UAV have been devel-
oped, such as the ones presented in [65-67|. Many of these applications are based on
the YOLO [12] ("You Only Look Once") algorithm running on the darknet CNN [68].

Tijtgat et al. [67] compared the YOLOv2 [69] algorithm, the successor of YOLO,
with a hand-crafted feature detector named Aggregated Channel Features (ACF) in
the context of a UAV Warning System. Accuracy and speed of both detectors were
tested and YOLOvV2 outperformed ACF for both inference time and detection accuracy.
They also presented a method to choose the optimal object detection configuration given
specific frame rate and detection accuracy requirements.

Radovic, Adarkwa, and Wang [70] employed a CNN algorithm based on YOLO
to detect, classify, and track objects from real-time video feeds supplied by UAVs.
They presented in details a procedure to choose the hyperparameters used to train
the CNN on a set of aerial images in order to realize efficient and automated object
recognition. They showed how CNNs accuracy depends on the selection of operational
hyperparameters. They detect and classify objects with a high level of accuracy (97.5%)
and high computational efficiency (150 FPS). Their method allows UAVs to perform
real-time and complex object detection tasks in an efficient and accurate manner.

Maher et al. [71] proposed a real-time human gesture identification scheme for
controlling a Micro Aerial Vehicle (MAV) by exploiting cutting edge CNN real-time
object detection algorithms based on the state-of-art YOLOv2. They also built a new
dataset to train or fine-tune the deep neural networks for human gesture detection and
proposed to infer the gesture from detection results, in which each interpreted gesture
is equivalent to a UAV flying command.

2.3.3 Mobilenet-based object detection

Anar et al. [72] implemented a general purpose object detection module on a DJI
phantom 3 UAV with a TensorFlow (TF) MobileNet implementation running on an
Android device. Also, they used the InceptionV3 model for classification and reported
accuracy and time performance results for 10 classes of objects such as cats, laptops,
cars, etc. They claim to reach an inference time of 851 ms with the highest accuracy
obtained equal to 28.74% on a Samsung Galaxy S2 tablet.

Bonatti et al. 73] present a novel algorithm for actor detection. They tested SSD
Mobilenet, Faster R-CNN [74], and YOLOv2 and conclude that MobileNet |75] is suited
for their application due to its low memory usage and fast inference speed (around
300 ms) even though Faster R-CNN exhibits a higher accuracy. Finally for tracking,
they used a KCF tracker [76] due to its real-time performance.
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Budiharto et al. [77] presented a UAV object detection application to deliver medical
aids for patients in emergency situations. They exploited the drone for transporting
items efficiently, detecting the object target through an object detection module that
combines a MobileNet [75] architecture with the SSD [78] framework. They run the
object detection algorithm on the Parrot AR drone 2.0, a UAV with low specification
computing on-board hardware, achieving a processing speed of about 14 FPS. The
MobileNet SSD was first trained on the COCO dataset [79] and then fine-tuned on
PASCAL VOC [80] on 20 classes reaching 72.7% mAP.

2.3.4 CNN transfer learning

CNNs perform well for analyzing large datasets, but the performance may become worse
when dealing with data sets of smaller dimension. For these scenarios, it is useful to
employ CNN transfer learning doing only fine-tuning on the custom dataset, given the
pre-trained CNN model, thus reducing both the needed data set size and training time.
Some of the most significant to the development of this project are described below.

Marmanis et al. [81] used a pretrained CNN to generate an initial feature
representation of the remote sensing images being analyzed. They reshaped the outputs
of the last two fully connected layers into 2-D arrays and trained a new CNN composed
of two convolutions and two fully connected layers followed by a softmax classifier. They
improved the overall accuracy from 83.1% up to 92.4%.

Kucuksubasi and Sorguc [82] investigated the problem of transfer learning in the
context of an autonomous UAV system for surface crack detection. They implemented
a fine-tuning of the InceptionV3 model [83] that had been pretrained on the Imagenet
dataset [53]. They fine-tuned the CNN with a custom dataset containing 582 images
with cracks (positive samples), and 458 images without cracks (negative samples). After
20 epochs of training, they obtained an accuracy of 97.382%.

Finally, Othman et al. [84] generated an initial feature representation of the scenes
being analyzed from a CNN that had been pre-trained on a large amount of labeled
data from an auxiliary domain. Then, the convolutional features are fed as input to a
sparse autoencoder to learn a new feature representation. After this pre-training phase,
they build a classification system adding a softmax layer on the top of the autoencoding
encoding layer and then fine-tune the resulting network in a supervised manner using
the target training images available at hand.
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Methodology

This chapter starts with the description of the high level system architecture in Section
3.1. Subsequently, it describes the procedure used for the dataset collection (Section 3.2)
and dataset augmentation (Section 3.2), the experimental methodology (Section 3.3),
the model training (Section 3.5), and the evaluation metrics (Section 3.6). Finally, in
Section 3.7 the choice of the object detection and tracking algorithms is discussed.

3.1 System architecture

The high level system architecture is shown in Figure 3.1.

Wireless
connection
UAYV platform N Mobile computing

=N platform USB,

% ? : connection
Object detection
DJI SDK Object tracking
Radio Controller (RC) Development platform
Radio USB CNN Training
connection connection App Development

Figure 3.1: System architecture

The fundamental system components are:

29
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1. The UAV platform,
2. The mobile computing platform,
3. The RC, and

4. The development platform.

The purpose of the UAV system is to assist with the aid of object detection and tracking
modules the radio-site engineers during unmanned radio site inspections. These modules
are designed as support to cope with the inherent heterogeneity of base stations (see
Section 1.3). As described earlier, this heterogeneity makes the identification of the
target hardware equipment to be inspected hard and hinders the inspection itself. More
specifically, the UAV platform, controlled by a technician from the ground, is flown near
the equipment to be inspected through commands given via RC. The DJI SDK allows
the connection between the embedded mobile and the drone platform and to send the
video stream via a Wi-Fi link. The mobile device will run the object detection and
tracking algorithm in real-time in order to discriminate which is the equipment of interest
for the inspection. The result of the detection consists of bounding boxes around the
equipment of interest denoted with an object label and a confidence level. These results
are displayed on a mobile platform to the site technician, allowing them to make real-time
decisions regarding which radio equipment to inspect. The development platform is used
for training the CNN model and developing of the mobile detection /tracking application.
The proposed architecture is the result of multiple design decisions, described in the
following subsections.

3.1.1 UAV platform

In this subsection, the choice of the UAV hardware platform is discussed. The choice
was based on the following design constraints:

1. The dimensions constraint has been set while considering two main aspects. First,
the system’s dimensions should allow the radio tower technicians to easily transport
the system to the site without any special transport equipment. Second, the UAV
dimensions should allow indoor flight for laboratory tests in an area of a few square
meters and the aircraft should be able to fly in hard to reach environments with very
limited operating space. Keeping in mind the fact that other tools will be carried
to the site along with the aircraft and looking at standard toolbox manufacturers’
dimension (e.g. 40,64 x 29,21 x 19,05 cm [85]), and the dimension of the testing
environment, the longest dimension requirement is fixed to be less than 30 cm.
Thus, the dimension requirement restricts the potential choice of aircraft to the very
small UAV category (see Section 2.1.1.2).
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2. The weight is set according to the ease of transport criteria. By looking at the
recommendations released by the department of public and environmental safety at
Tufts University [86], i.e. the maximum load carried must be lower of 15% of body
weight. For example, an 80 kg person should limit their carry weight to 12 kg.
Considering the weight of other equipment and tools, the maximum weight is fixed
to 2 kg.

3. The cost requirement is set by Ericsson,as the main stakeholder and funder of the
project. The maximum cost was set to 7000 kr. This requirement further restricts
the field of choice to very low-cost UAV platforms. A particular focus is put on
quad-rotor platforms because they are the cheapest in the multi-rotor category.

4. The flight time should be long enough to allow for a complete inspection of the
radio site. This requirement was set by consulting Field Service Operations (FSO)
engineers at Ericsson who are doing drone site surveys in U.K. They have stated
that the average time for a UAV site inspection is around 10 min. Also they stated
that the longest UAV inspection they experienced lasted around 20 minutes. For this
reason the the flight time requirement is fixed at 20 minutes.

5. The flight range should be such that the communication system is able to support
connectivity for the duration of the inspection. It is determined primarily by the
vertical range, i.e. the cell cite’s height. According to a study [87|, with a database
of approximately 285.000 cell cite location in the U.S., the maximum height of a
base-station is around 1000 ft that is 300 m circa. The horizontal range is not
considered as a constraint because it usually has a smaller extent than the vertical
range.

6. The camera equipment is set by considering the required object detection and
tracking tasks that this project aims to implement. The camera sensor specifications
were chosen based on the camera payload of similar studies presented in Section 2.3
and other consideration on algorithms such as [88]. Based upon these studies, the
minimum resolution is set to 8 Megapixel (MP), the aspect ratio to 1280x720
and the frame rate at 24 FPS.

7. The software developing environment must ensure the availability of appropriate
Application Programming Interface (API) and Software Development Kit (SDK) in
order to integrate the proposed object detection algorithm with the UAV flight and
control modules.
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These requirements narrow down the field of choice for the UAV. A further restriction,
is the fact that Ericsson is interested in a DJI™ product because FSO engineering are
already carrying out unmanned inspections using DJI UAVs and the reusability and
integrability of the new solution with their base-station inspection framework is a key

requirement. These factors led to the choice of DJI Mavic AirT™*

as flight platform
employed in this project, a low-end and ready-to-fly customizable commercial quadrotor
UAV. The UAV’s specifications are listed in Table 3.1. As can be observed from the

specifications table, the UAS platform satisfies all the project’s requirements.

Table 3.1: UAS platform specifications

Characteristic

Value

Takeoff weight

430 g

Dimensions (unfolded)

16.8 x 18.4 x 6.4 cm

Price

6699 kr (Swedish krona)

Max flight time 21 minutes
Max flight distance 10 km
Max speed 68.4 kph

operating frequency range

2.400-2.4835 GHz / 5.725-5.850 GH z

Camera pixels

12 MP

Frame rate

24/25,/30,/48,/50,/60,120 FPS

Minimum resolution

1280 x 720

Camera gimbal range

—90° to +17°

Software development environment

Mobile SDK

3.1.2 Mobile computing platform

The embedded mobile platform must be able to receive the video stream from the UAV
platform and support the computational cost for the real-time object detection and the
control of the UAV. The prototype is based on the Android development framework [89]
and the SDK provided by DJI [90]. The Android testing platform is a Xiaomi Mi Al.
According to the Android Benchmarks performed by PassMark [91], the Xiaomi Mi A1l
is a mid-range device, ranked at the 347" position in computational performances out of
the 4687 evaluated devices. It is worth noting that the limited computational power of
the embedded device is the most challenging aspect for the design of a real-time object
detection system based upon CNNs and it is the main reason that makes necessary the
integration of the object detection module with a real-time object tracking module. On
the other hand, the fact that the testing device is not a top of the line device reduces
costs and allow for easier adoption of the solution as there are more potential target
platforms that could be used.

*https://www.dji.com /mavic-air
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The computational specifications of interest for this project are reported in Table 3.2.

Table 3.2: Mobile platform specifications

Characteristic Value
Operating System | Android 8.1.0 (Oreo)
CPU Octa-core Qualcomm Snapdragon 625 at 2.0GHz
GPU Adreno 506 at 650 MHz
RAM 4GB

3.1.2.1 Android

Android is the most popular Operating System (OS) for mobile devices. Android was
developed by Google [92]. It is based on a Linux kernel [93| and a Java [94] based
framework. The open source Android SDK provides a set of tools for application
development and testing. The Android Native Development Kit (NDK) [95] allows
modules of an application to be implemented in native code, using languages such as
C and C++ [96, 97|. Hence NDK will be used to create the object detection module.
Details of the Android OS and its SDK are outside the scope of this thesis. However, the
details needed for the development of the prototype system will be discussed as needed
in the implementation described in Chapter 4.

3.1.2.2 DJI SDK

The DJI mobile SDK offers a framework to create customized mobile applications by
managing different functions of the UAV, such as high and low level flight control,
telemetry and sensor data, camera and gimbal control, live camera video feed, and
support for basic communication and control functionality. The SDK simplifies the
application development process by taking care of lower level functionality such as flight
stabilization, battery management, signal transmission, and communication. In order
to allow the developer to focus on the application the DJI product is integrated without
considering the low level control robotics or embedded system details. Specifically, in
the SDK includes:

1. A set of libraries that can be imported into an Android project to access the UAV
and its module,

2. A UAV simulator and visualization tool, and

3. SDK and API documentation.
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3.1.2.3 TensorFlow

TF [98] is a popular software library for ML developed by Google [92]. TF is able to run
on heterogeneous systems, including mobile devices. As ML tasks are computationally
expensive, model optimization is used to improve performance when running on mobile
embedded devices by using Tensorflow’s mobile optimized mobile version: TensorFlow
Mobile (TFM). The minimum hardware requirements of TFM in terms of Random
Access Memory (RAM) size and Central Processing Unit (CPU) speed are low, hence the
primary bottleneck is the calculation speed as the desired latency for mobile applications
is low. TensorFlow Lite (TFL) is an evolution of TFM, which supports deployment on
mobile and embedded devices. TFL was born from the necessity to further optimizing
TFM for lightweight mobile use as there is a clear trend to incorporate ML in mobile
applications. Some of the optimizations included in TFL are hardware acceleration
through the silicon layer and frameworks such as the Android Neural Network API.
TF-trained models are converted to the TFL model format by TF.

3.1.2.4 OpenCV

OpenCV [99] is open source CV and ML software library designed for computational
efficiency and with a strong focus on real-time applications. OpenCV was launched in
1999 by Intel. The library has more than 2500 optimized algorithms, which includes
a comprehensive set of both classic and state-of-the-art computer vision and machine
learning algorithms. It was originally written in C/C++ [96, 97| with bindings in Python
[100] and Java [94] languages and supports Windows, Linux, Mac OS, iOS, and Android.
OpenCV is widely adopted and has more than 47 thousand people in its user community
and the estimated number of downloads exceeds 14 million.

3.1.3 Radio controller (RC)

The RC has two main functions. Firstly, the RC is used to physically pilot the UAV
platform to the radio equipment to be inspected through a radio connection to RC.
Secondly, the Android device is connected to the RC by a USB connection in order to
register the device and to the SDK platform made available by DJI. This will allow to
establish a Wi-Fi connection between the aircraft and the mobile platform and receive
the video stream from the UAV camera that will be processed by the android application
to display the detected hardware.
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3.1.4 Development platform

The main requirement of the development platform is the ability to train the proposed
CNN in a limited amount of time. The use of a GPU in the training process significantly
reduces the amount of time needed for this operation, therefore this is considered to be an
essential requirement. The computing platform also implements the Android application
that will run the detection algorithm during the inference.

The computing platform used as development environment is an ASUS VivoBook Pro
15 N580VD whose specifications are listed in Table 3.3.

Table 3.3: Development platform specifications

Characteristic Value
OS Ubuntu 16.04.5 LTS (Xenial)
CPU Intel Core i7-7700HQ at 3.80 GHz
GPU NVidia GeForce GTX 1050 at 1.345 MHz
RAM 16GB

3.2 Dataset

The total dataset is composed 1024 images containing two models of Ericsson RRU,
namely Radio 4415 and the Radio 2219 (Figure 3.2).

Figure 3.2: Left: RRU 4415. Right: RRU 2219

This baseline dataset has been acquired at Ericsson Studio (Gronlandsgatan 8, 16440
Kista, Sweden), where different demo base-stations are installed. Since a single image
may contain more than 1 RRU, the total number of RRUs present in these images
amounts to 1969. Figure 3.3 shows the histograms associated to the dimensions (width
and height) of the RRUs in the scenes.
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Figure 3.3: Dataset dimensions histograms

The camera used for the acquisition has a resolution of 12 MP camera with regular
wide-angle with 26mm {/2.2 lens and 1.25 pm pixels. This camera is different from the
drone camera that will be used at inference time. The reason behind this choice lies
in the fact that using an hand-held camera (i.e. not mounted on a drone platform) to
acquire the dataset facilitates the acquisition greatly and provides a scalable acquisition
methodology to other types of radio site equipment. However, other works focusing on
UAV object detection applications [101-103] highlight the pitfalls in using hand-held
camera images for training versus those captured by a drone during the operational
detection phase. Difficulties in detecting objects in data from a drone may arise due to
the positioning of the camera compared to images taken by a human with an hand-held
camera. Due to the specificity of the object classes to be detected, it was impossible
to use publicly and privately accessible databases to compose the dataset. This factor
imposes a huge limitation on the dataset size since the number of images that can be
acquired is limited and there are no previously established datasets containing the radio
equipment of interest. However, transfer learning and data augmentation (see Section
3.3) overcomes these limitations by reducing the dataset size needed to properly train
the model and enhancing the data with realistic transformations. The method with
which the dataset is prepared included the following steps:

1. Videos are acquired at 1080 x 1920 and 24 FPS of different lengths and with different
backgrounds, scaling, and point of views.

2. Video frames are extracted from the recorded videos at 6 FPS.
3. Redundant and blurred video frames are manually discarded.

4. Each video frame is labeled by manually drawing bounding boxes around the objects
of interest.
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The extraction rate (6 FPS) is chosen empirically, finding a good trade-off between
difference in frames appearance in terms of orientation, luminosity, and size of the radio
site equipment. Finally, 70% of the complete dataset is reserved for use as the training
set, while the remaining 30% is used as test set and validation set. The implementation
details and the complete procedure to build the dataset is presented in Section 4.1.

3.3 Data Augmentation

Data augmentation is a regularization technique that allow to increase the dataset variety
and size by applying transformations on the original data. In general, the larger and more
diverse the dataset is, the better generalization performance are achieved by the model.
In the context of image detection, the augmented dataset is obtained through image
processing operations that alter the content of the image data. In order to be effective,
the resulted augmented dataset must remain realistic and the set of transformation
applied to the image should be selected in a way to not create unrealistic images. In
order to determine what type of transformations should be used on the RRU dataset,
some considerations on the current use-case need to be made. The major challenges that
may hinder detection during the UAV inspection activity are:

1. Brightness change: the video feed may be too bright or dark based on the
UAV camera exposition to sources of light (e.g. camera facing the sun). This is
overcomed by using a brightness modifications augmentation technique. This consists
in increasing or decreasing the brightness of the image by changing each pixel image
according to the formula

xaug<x7 y) = xbase(xu y) : 5 (31>

where ¢ represents the brightness change factor.

2. Occlusion: there may be obstacles between the UAV camera and the objects of
interests that partially or totally hide them. The techniques used to overcome
occlusion is to insert zero padding areas in the frames in order to partially hide
(occluding) objects of interests.

3. Blurring: fast motion of the UAV or the excessive proximity of the UAV with respect
to the equipment to inspect may cause blurring and out of focus images. The blurring
effect is faithfully reproduced by the Gaussian Blur, that is a filtering (convolution
operation for each channel ) with a Gaussian kernel:

1 _ 22 4y?

e 202 (3.2)

xaug<x> y) = xbase(l‘a y) * )
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4. Corrupted data: it may happen that some of the frames received by the mobile
computing platform are corrupted and distorted due to transmission errors. A
possible model for this corruption is given the addition of white Gaussian noise

n ~ N, o)
zaug(-ry y) = xbase(xa y) +n (33)

Along with these transformations, other images are generated starting from standard
RRU sample images that are resized and rotated on different backgrounds images to
further increase the dataset. The complete image augmentation pipeline is shown in
Figure 3.4.
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Figure 3.4: Image augmentation pipeline

Some examples of augmented images are shown in Figure 3.5.

Figure 3.5: Sample images from the augmented dataset
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3.4 Experimental methodology

The main purposes of experiments are to assess the performance of the object detection
algorithms and to evaluate their viability for execution environments with limited
computational capabilities (e.g. smartphones) in terms of execution speed. The
prototype system is tested through two main experiments:

1. Single-class detection: the CNN model is trained on both the model of Ericsson
RRUs present in the dataset, and there is no distinction between Radio models, to
which the semantic label 'RRU’ is assigned. This experiment consists in a binary
classification task, i.e. the result gives information only about the presence or the
absence of an object of interest in the scene. It does not give any information about
the presence of classes of objects in the scene different from the one on which the
model has been trained. In this way, the misdetection probability is reduced to zero
and it is possible to isolate the model’s performance from misleading classifications.

2. Multi-class detection: the CNN model is trained on two models of Ericsson
radio with separate semantic labels, namely 'RRU 4415" and 'RRU_2219’. This
experiment takes into consideration the classification of different models of the same
piece of equipment present in the scene. It is a multi-classification problem and the
misdetection probability is different from zero, since there is the possibility to assign
an incorrect label to an object. This experiment investigates the detection granularity
at which is possible to distinguish different models of the same piece of hardware.

Due to the limited computational capability of the device on which the algorithm will
run, the time performances of the detection and tracking algorithms running on a mobile
computing platform will be measured. Also, when the object detection model is re-
trained on the augmented dataset, a gain in terms of accuracy is expected. This gain
is measured by repeating the same experiments on the same test-set and measuring the
accuracy gain with respect to the training on the baseline dataset.

3.5 CNN model training

The tiny YOLOv2 model is trained using the open-source library Darknet [68]. The fine-
tuning transfer learning approach is employed (see Section 2.2.2.16). In particular, the
tiny YOLOv2 base model, originally trained on the Imagenet dataset [53], is fine-tuned
by loading the pre-trained model weights and retraining the network with the custom
dataset described in Section 3.2. The darknet framework has a corresponding Python
framework named Darkflow*, that is compatible with the TF environment. Darkflow

*https:/ /github.com /thtrieu/darkflow
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allows export of the Darknet model to TF for deployment on mobile devices, which was
necessary to implement the proposed solution. The MobileNetV2 model is trained using
the TF Object Detection APT [104], an open source framework built on top of TF that
allow to construct, train and deploy object detection models. Fine tuning is executed
on the MobileNetV2 weights pre-trained on the COCO [79] dataset, from the TF API’s
model zoo. The training is conducted on the development platform described in Section
3.1.4, while the actual detection will run on the mobile platform described in Section
3.1.2. The implementative details of the training procedure are further discussed in
Section 4.2.

3.6 Evaluation methodology

Each model is evaluated by its performance over the test set using different statistics
(accuracy, precision, recall, etc.). For this project, the metrics to evaluate the detection
performances are primarily detection accuracy and inference time (computed in FPS at
which the algorithm is running on the mobile computing platform). The most common
metrics used in the context of object detection and classification, based on the PASCAL
VOC competition [80], will be presented in the following text.

3.6.1 Intersection over Union IoU

The IoU is a measure based on Jaccard’s Index [105] that evaluates the overlap between
two bounding boxes. It requires a ground truth bounding box B, (i.e. a hand labeled
bounding box that specifies where the target object is located in the training set image)
and a predicted bounding box B, (i.e. the bounding box as predicted by the object
detection model).

Figure 3.6: IoU on a dataset sample
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In Figure 3.6 the predicted box (in red) and the ground truth box (in green) are shown
on a sample image from the project’s dataset with the union of the boxes indicated in
light blue and the intersection in white. Formally, the IoU is defined as the ratio between
the area of the intersection and the area of the union of the ground truth bounding box
and the predicted bounding box:

(3.4)

3.6.2 Detection classification

Each detection event is classified according to four categories, namely: true positive,
true negative, false positive, and false negative. These categories are used to compare
the results of the object detector under test with trusted external judgments. The terms
positive and negative refer to the actual detection (expectation), and the terms true and
false refer to whether that detection corresponds to the external judgment (observation).
In the context of this project, the following definitions will be used:

e True Positive (T'P) represents a correct detection event, i.e. a detection of an
instance that is actually present in the image.

e False Positive (F'P) represents an incorrect detection event, i.e. a detection of an
instance that is not present in the image.

e False Negative (F'N) represents a missed detection event, i.e. the instance of an
object is present in the image but is not detected.

e True Negative (T'N) is inapplicable in this context. It would represent a correct
misdetection. In the object detection task there are many possible bounding boxes
that should not be detected within an image. Thus, TN would represent all possible
bounding boxes that were correctly not detected (so many possible boxes within an
image). For this reason, this category is not used in this context.

In order to determine whether a prediction is a T'P, F'P or F'N a threshold ¢,y is set
on the IoU to identify if the object is actually detected or not. This means that if
the IoU > t1,y the detection is considered detected, otherwise it is considered as non
detected. Different threshold values have been used in the literature: the PASCAL
VOC evaluation metric [106] suggests a threshold value tj,y = 0.5 while the COCO
evaluation metric [79] recommends measurement across various IoU thresholds ranging
from 0.05 to 0.95. In this project the PASCAL VOC approach is employed. Another
factor affecting performance is the confidence level of each detection P[det] and the
detection confidence threshold t4.;. All detections with a confidence level higher than
this threshold P[det] > t4e4 are considered as positive detection, otherwise they are
considered as false detection.
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3.6.3 Precision and Recall

Precision, also named positive predictive value (PPV), measures how accurate the
predictions are, i.e. the percentage of positive predictions that are correct. Precision is
defined mathematically as the ratio between the number of true positives # (7'P) and
the number of total detected instances # (T'P) + # (F'P)

# (TP) __ #(T1P)
# (TP)+ # (FP)  all detections

Precision = (3.5)
The main limitation of this metric is the fact that does not give any information about
how many actually existing objects are undetected in the scene.

Recall, also named True Positive Rate (TPR) or sensitivity, measures how many
relevant objects are detected in the scene. Recall is defined mathematically as:

# (T'P) _ # (T'P)

Recall = _
T Y (TP)+ #(FN)  all ground truths

(3.6)

The main limitation of this metric is the fact that does not give any information about
the actual number of T'Ps that are correctly detected.

Precision and recall metrics are related by an inversely proportional relationship
and in order to overcome their respective limitations, they are discussed together. It
is desirable to maximize both precision and recall, so that few instances are incorrectly
classified while at the same time few instances that should have been classified are left
out. For these reasons, the precision versus recall curve is a good way to evaluate the
performance of an object detector. An object detector is considered good if it can
identify only relevant objects (# (F'P) = 0 means high precision), finding all ground
truth objects (# (F'N) = 0 means high recall). A bad object detector needs to increase
the number of detected objects (increasing (# (F'P) to lower the precision) in order to
retrieve all ground truth objects and obtain high recall. This is the reason why the
Precision-Recall curve starts with high precision values, decreasing as recall increases.

3.6.4 mean Average Precision mAP

The mAP is a good performance metric for the object detection task because it
summarizes the Precision and Recall metrics in a single scalar value to evaluate the
detection capabilities of the model. The mAP metric was first introduced in the context
of the PASCAL VOC recognition challenge [80] and has become the de facto standard
for the evaluation of object detection algorithms. This metric is computed as a mean
across all the classes C' of the AP

C
mAP =) AP (3.7)
i=1
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The AP summarizes the shape of the precision-recall function p(r) that is computed for
each class at eleven recall levels £ = {0,0.1,...,1} and is defined as:

1 1
AP =3 AP, = — > Pinterp(r) (3.8)
i Rl
The precision at each recall level r is interpolated by taking the maximum precision
measured for which the corresponding recall exceeds r on the precision-recall curve.

pinterp('r) = n’;>a£<p(7:) (39)
AP is related to the area under a precision-recall curve. It is desirable for this area to
be large in order for both precision and recall to be maximized.

3.6.5 Model inference time

The inference time T}, is the time taken to execute the detection task on a single frame of
the video sequence. It is one of the key parameters to evaluate the model’s performance,
especially for embedded device applications with limited computational resources. It is
usually expressed in terms of statistical mean p and standard deviation o by considering
a large number of measurements of the inference time.

Ideally, to have a smooth real-time experience, the object detection algorithm should
run at the same speed at which the human visual system perceives the sequence of
frames as a continuum, thus it should occur at the FPS rate at which the video is
recorded. For example, if a video is recorded at 24 FPS the inference time should be
Tint = 7535
unfeasible. For this reason, the integration of the object detector with the object tracker

= 41.6ms. Reaching such a speed in a typical embedded device is considered

is necessary. As shown in the results in Chapter 6, the chosen tracker algorithm is able
to run in real-time and thus compensate for the object detection inference time.

3.7 Choice of Object Detection and Tracking
algorithms

In this section the choice of the object detection and tracking algorithms is discussed
on the basis of the system functionalities that the final system must provide and of the
platform limitation and constraints. Also the proposed algorithms are discussed in detail
in the next subsections. In order to effectively assist the radio-site engineers to detect
the correct hardware, the object detection and tracking algorithms have to satisfy two
essential requirements:

1. The detection system needs to run in real-time to support the cell-site engineers’
decision making process of which hardware equipment they wish to inspect.
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2. The algorithm has to run on a low power embedded mobile system (Android device)
and hence must be computationally lightweight.

The main challenge consists in realizing a system satisfying these two conflicting
requirements, while achieving an acceptable level of detection accuracy. Considering
these requirements and looking at the use-cases for similar systems (as reviewed in
Section 2.3), two object detection algorithms are tested, namely Tiny YOLOv2 [69] and
SSD-MobileNetV2 [13]. Although the proposed object detection models are considered
lightweight and fast with respect to other CNNs, such as region-based algorithms (R-
CNNs) [48, 58|, they are still unable to run in real-time on a low-powered embedded
device. For this reason, the proposed solution integrates the object detection module
with a real-time KLT tracker [38], that is able to run at a much higher FPS with respect
to the object detector.

Figure 3.7 shows the processing pipeline for the detection and tracking of the radio-
site hardware and the high-level interaction between tracker and detector.

Object
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Figure 3.7: Hardware inspection processing pipeline

The object detection and tracking algorithms run in parallel on separate threads. As
soon as a detection instance is successfully processed, the results in terms of bounding
boxes and confidence level it is displayed. The object tracking role is to compute the
optical flow vector generated by the relative movement between the objects in the scene
and the UAV, during the computation of the detection instance. Since the employed
tracking algorithm is able to run in real-time (see Section 5.2), the overall algorithm will
also run in real-time because the time performance will be determined by the speed of
the tracking algorithm. The detector is assisted by the tracker that shifts the previous
bounding boxes related to the previous detection by the optical flow vector computed
by the object tracking algorithm. The tracker is reset each time a detection is executed
and also the optical flow vector is reset to zero. This will allow the tracker to achieve
better accuracy since new updated feature points are re-computed each new detection
on the same frame where detection is executed.
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3.7.1 YOLO and YOLOv2

The YOLO algorithm was developed in 2015 by J. Redmon and A. Farhadi [12]. It was
able to detect bounding boxes and associate class probabilities to each bounding box
using a single CNN directly from full images in one evaluation. The original YOLO
architecture is shown in Figure 3.8
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Figure 3.8: YOLO architecture (Image courtesy of Joseph Redmond [12])

The original architecture has 24 Convolutional layers followed by 2 connected layers and
was designed for use in the Pascal VOC dataset [80] with C' = 20 objects’ classes. The
YOLO CNN takes as input a 448 x 448 x 3 tensor representing the color image and
outputs a 7 x 7 x 30 prediction tensor. The algorithm divides the input image into a
S x S grid (S = 7 in the original architecture), if a grid cell contains the center of an
object, then the grid cell is responsible for detecting that object. Each grid cell predicts
B bounding boxes (B = 2 in the original architecture) and computes the box confidence
scores U for all the boxes. The output has dimensions S x S x (5+ C). The confidence
scores reflect how confident the model is that a given box contains the object and is
expressed by the following equation:

U = P{Object} - IoU (3.10)

The first term on the right-hand side is the probability that the box contains an object,
while the second term is named Intersection Over Union (IoU) and it is used as a
metric for evaluating the algorithm’s performance. From each bounding box the YOLO
algorithm outputs 5 predictions: (z,y,w,h,p(c)), where (x,y) represent the center of
the bounding box, (h,w) are the width and height from the center coordinates’ and p(c)
is the class confidence. Given the number of classes C', the conditional class probability
given that the object is detected per each grid cell is computed P{Class;|Object}.
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Then YOLO computes the class confidence score for each prediction box p(c) as:
p(c) = P{Class;|Object} - ¥ = P{Class;|Object} - P{Object} - IoU (3.11)

The activation function used in each layer is the leaky ReLLU, defined as:

o) = {x ifz>0 (3.12)

0.1z otherwise

and the final layer uses a linear activation function (g(z) = = Vz). The cost function
C used in the YOLO algorithm is the following:

S? B
C = Aoord Z Z ]lfjl?j [(-Tz - j:i)2 — (yi — Qz)z} +
i=0 j=0
S? B '] 2
s 33180 [ (V5 ~ V&) = (VA - VE) +
i=0 j=0
’ S? B ' .2
Sy ap(e-a)+ (3.13)
i=0 j=0
/\noobj Z Z ]IZ‘OOIU <CZ - Cz) +
i=0 j=0

52
Z ]l?jF)Obj Zceclasses (pl (C) - ﬁl (C))2
1=0

It is composed of different parts:

1. The first term computes the loss related to the predicted bounding box position (Z, )
with respect to the true positions (z,y)

2. The second term computes the loss related to the predicted bounding box width
and height (w, il) with respect to the true positions (w, h). The square root is used
because the error metric should reflect that small deviations in large boxes matter
less than in small boxes as explained in the paper [12]

3. The third and fourth terms represent the loss associated with the confidence score
for each bounding box predictor. C is the confidence score and C' is the IoU of the
predicted bounding box with the ground truth box provided in the labeled examples

4. The last term is the classification loss. It looks similar to a normal sum-squared error
b

o

and 0 elsewhere and is used to avoid penalizing classification error when there is no

for classification, except for the 17,7 term that is 1 when there is an object in cell i

object in the cell.
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The terms ]lfjl.’j = 1 if an object is present in the " grid cell and the j** bounding
box predictor is responsible for that prediction, otherwise ]1;?]’?3' = 0 and ]IZ"OM is the
exact opposite. The A hyper-parameters represent penalties given to each term and are
necessary to increase model stability. YOLO is able to obtain an accuracy of 63.4%
on a variety of objects but exhibits several limitations: YOLOv2 is build on top of the
concepts introduced for the YOLO algorithm. However a set of modifications were made
to the original architecture to overcome some of YOLQO’s limitations and further improve
performances. These modifications are:

e Batch normalization [107| is added at the input of each convolutional layers.
This batch normalization normalizes each dimension of the input tensor before it
is processed by the convolutional layer. Batch normalization allows use of a higher
learning rate during training and makes the system less sensitive to the weights used
at initialization.

e Multi-Scale Training performs training on various input dimensions in order to
achieve a good trade-off between accuracy and speed depending on the requirements
of the application.

e Convolution with anchor boxes predicts the coordinates of bounding boxes
through anchor boxes, in contrast to YOLO where this was done through a fully
connected layer and the initial boxes dimensions were randomly initialized. In
YOLOvV2, 5 anchor boxes are defined and offsets with respect to the dimensions of
these standard boxes are predicted. This increases the variability of the bounding
boxes and allows to detect smaller objects in the scene.

e k-means clustering [108] exploits correlation between bounding boxes. This allows
the network to learn and adjust the anchor box’s dimension appropriately according
to the detected objects’ dimensions.

As YOLOvV2 requires large amounts of computational power for inference, an architecture
developed and optimised for use on embedded systems and mobile devices is employed,
specifically the Tiny YOLOv2 network [69]. Tiny YOLOv2 network is inferior to the
full YOLO networks in terms of accuracy but runs at significantly higher FPS. As
computational power is a limiting factor for mobile devices, the Tiny YOLOv2 network
is a good candidate for the application this thesis aims to realize The proposed Tiny
YOLOv2 CNN structure is presented in Table 3.4. The input images are resized from
their original size to a dimension of 416 x 416 x 3, as that is the input tensorial size for
the YOLOvV2 model, and the total number of layers is reduced from 24 to 15. This allows
faster detection and reduces the computational complexity of the networks in terms of
bias and weights to optimize during the training process.
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Table 3.4: Tiny YOLOv2 CNN architecture

Layer name | Kernel size | Output size | Layer name Kernel size | Output size
Conv0 3x3x16 416x416x16 | Conv8 3x3x256 26x26x256
MaxPooll 2x2x16 208x208x16 | MaxPool9 2x2x256 13x13x256
Conv2 3x3x32 208x208x32 | Conv10 3x3xH12 13x13x512
MaxPool3 2x2x32 104x104x32 | MaxPooll1 2x2x512 13x13x512
Conv4 3x3x64 104x104x64 | Conv12 3x3x1024 13x13x1024
Max5 2x2x64 52x5H2x64 Conv13 3x3x1024 13x13x1024
Conv6 3x3x128 52x5H2x128 | Convl4 1x1x30 13x13x30
MaxPool7 | 2x2x128 26x26x128 | Detection (FC) / /

3.7.2 SSD MobileNet

SSD-Mobilenet is an efficient CNN architecture specifically designed for object detection
on mobile applications. It is based on the combination of two sub-networks: MobileNet
[75], used as feature extractor for classification of the objects present in the image, and
SSD [78], used for localization of the classified objects. The combination of classification
and localization provides object detection.

MobileNets are a class of CNNs developed by Howard et al. [13, 75] at Google.
The key idea behind the efficiency of this network architectures is to reduce the
computational cost of the convolution operation, that is considered the most expensive
operation during inference. The authors of MobileNets achieved this by proposing a new
form of convolution named depthwise separable convolution. The depthwise separable
convolution factorizes a standard convolution into a depthwise convolution and a 1 x 1
pointwise convolution. The depthwise convolution applies a single filter to each input
channel (input depth). The 1 x 1 pointwise convolution is then used to create a linear
combination of the output of the depthwise layer. This factorization has the effect of
drastically reducing computational cost and model size.

Considering the input feature map x € RW*W*¢ and assuming the use of square
kernel filters f € R¥*SXC*DP the standard tensorial convolution presented in Equation
2.19 has a computational complexity equal to:

ne8-8-C-D-W-W (3.14)
The depthwise separable convolution is expressed by the following formula
S S
Ykl = Z Z fige ® Thti-1ti-1, (3.15)
i=1 j=1

where f is the depthwise convolutional kernel of size S x S x C' where the c* filter in f
is applied to the ¢ channel in z to produce the ¢* channel of the filtered output feature
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map y. The computational cost for this operation is S-S - C - W - W. However, this
operation only filters input channels and does not combine them to create new features.
The additional layer that computes a linear combination of the output of depthwise
convolution via 1 X 1 convolution is needed in order to generate these new features and
the total computational cost will be:

We2S-S-C-W-W+C-D-W-W (3.16)
The reduction in computation is given by:

11
202 _ -4 (3.17)

K 71_D S?

Since MobileNet uses 3 x 3 kernel filters, the reduction in terms of computation is between
8 and 9 times. Also, batch normalization [107] and ReL.U6 activation function (same as
ReLU but saturates at the value 6) are used after both depthwise and pointwise layers.

Their model uses two global hyper-parameters, width multiplier o and the resolution
multiplier p, in order to tune the design requirements for mobile and embedded
vision applications. The former has the goal of thinning the network uniformly at
each layer by a factor «; the latter parameter concerns the choice of the input
resolution and is implicitly defined by setting the input resolution to a certain value.
Different combinations of these hyper-parameters were experimented by the authors
of MobileNets, and offer compromises between computational speed and detection
accuracy. The original MobileNet architecture has an input size of 224 x 224 x 3
and is composed of 28 layers, counting pointwise and depthwise as separate layers,
and achieves 70.6% of detection accuracy on the ImageNet dataset (with a = 1) with
approximately 569 million Multiply-Add (MAdd) operations and 4.2 million parameters.
MobileNet V2 improves the performance of MobileNet by introducing two new features to
the architecture: inverted bottleneck blocks and residual connections. The combination
of the two is named inverted residual blocks. Standard residual blocks [109] connect
the beginning and end of a convolutional layer with a skip connection, by following a
wide-narrow-wide approach while inverted residual blocks follow the opposite approach
i.e. narrow-wide-narrow (see Figure 3.9).

Figure 3.9: Left: Residual blocks. Right: inverted residual blocks [13]).
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Inverted bottleneck blocks are composed by three convolutional layers represented in
Figure 3.10: the expansion layer (1 x 1), the depthwise layer (3 x 3), and the pointwise
convolution layer (1 x 1).

input Expansion uncompress Depthwise filter the data Projection compress  |output
tensor |ayer { |ayer |ayer the data tensor

Figure 3.10: Inverted bottleneck blocks. (Image courtesy: Matthijs Hollemans [14])

The last two blocks are the same that are found in the MobileNetV1 architecture. In the
MobilenetV2 case, the pointwise convolution makes the number of channels smaller and
is also known as projection layer because projects higher dimensional data structures
number into tensors with a lower number of dimensions. The purpose of the first block
is to expand the number of channels before the data go into the depthwise convolution,
i.e. has the opposite role with respect to the projection layer.

Residual connections take inspiration from the ResNet architecture [109] and are
only active when the number of channels at the input of the inverted residual block is
the same as the number of the output channels. These connections have proved to be
a good technique to increase the depth of the network: similarly to traditional residual
connections, shortcuts enable faster training and better accuracy. The MobileNetV2
architecture is shown in Table 3.5

In table 3.5, the parameter t stands for expansion rate of the channels (factor of 6),
c represents the number of input channels, n how many times the block is repeated, and
S indicates the stride of the first repetition of a block (all the others use S = 1). Also,
all the convolution kernels have 3 x 3 dimension.

SSD Multibox detector [78] is a CNN designed to be independent of the base network
and is able to run on top of MobileNet as detector. SSD MultiBox loss function is
composed by two main components:

1
Ltot = NLconf + OéLloc (318)

where L;,. is the localization loss that takes into account the positions ground truth
and the predicted box, and the confidence loss Lo, this measures of the objectness of
the computed bounding box. The alpha term is an hyper-parameter that balances
the contribution of these two losses. The author of MobileNet developed a mobile
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Table 3.5: MobileNetV2 CNN architecture

Layer name Input size t ¢ [n|S
Conv 224 x 224 x3 |/ 32112
Bottleneck | 112 x 112 x 32 | 1 6111
Bottleneck | 112 x 112 x 16 | 6 24 12| 2
Bottleneck | 56 x 56 x 24 6 32|32
Bottleneck | 28 x 28 x 32 6 64 | 4|2
Bottleneck | 14 x 14 x 64 6 9% |3 |1
Bottleneck | 14 x 14 x 96 6| 160 | 3 |2
Bottleneck | 7 x 7 x 160 6| 320|111
Conv 7 x 7 x 320 /11280 | 1|1
Avg Pool | 7 x 7 x 320 /) 1]/
Conv 1 x1x 1280 / k 1]/

friendly variant of regular SSD named SSDLite that replaced all the regular convolutions
with depthwise separable convolutions in the SSD prediction layers. In this way they
dramatically reduces both parameter count and computational cost from 1.25 billions
of MAdd to 0.35 billions of MAdd for the SSDLite. In order to integrate the two
architectures, the first layer of SSDLite is attached to the expansion of layer 15.

3.7.3 KLT tracking algorithm

The KLT tracker implements an optical flow to track points detected through Harris
corner detection algorithms in consecutive frames of a video, producing an optical flow
vector for each detected corner point. The steps of the algorithm are the following:

1. Detect Harris corners (Section 2.2.1.1) in the first frame of the video. This step is
used to reduce the amount of processed data for motion tracking, since the number
of corners found through the Harris detector is only a small percentage of the image.

2. For each detected Harris corner, compute the optical flow between consecutive frames
using the Kanade-Lucas method (Section 2.2.1.3). The optical flow vectors are
computed for each detected Harris corner point, and then all the motion vectors
are averaged to obtain the mean motion vector.

3. Link the motion vectors from frame to frame to track for all the corners.

4. Generate new Harris corners after a specific number of frames to compensate for new
points entering the scene or to discard the ones going out of the scene. This step is
executed every time a new detection is available.

5. Track the new Harris points.






Chapter 4

Implementation

This chapter presents the implementation of the system architecture introduced in
Section 3.1 and describes the detailed procedure for the dataset preparation (Section
4.1), the object detection model training (Section 4.2), and the application development
process (Section 4.3). The implementation procedure is exemplified on a specific type
of hardware equipment, namely the Ericsson Radio models 4415 and 2219, but aims to
be a general procedure that could be extended to different objects typologies.

4.1 Dataset preparation

The dataset preparation is a crucial step in the development of the object detector
employed in the project solution. The dataset is the primary source of information for
the detector and allow to train, validate and test the developed CNN model. The main
steps for the preparation of this dataset are reported in this section.

4.1.1 Frames extraction

The raw dataset consists of videos with an aspect ratio of 1080 x 1920 at 24 FPS in
MP4 format. Since the training process takes as input training samples of image data,
individual frames need to be extracted from these videos. In order to extract these
frames an open source software library named FFmpeg [110] (used to handle multimedia
files streams) was used to extract the frames from the video named video name.mp4.
The form of the command is the following:

ffmpeg -i video_name.mp4 -vf fps=6 frame’,04d.jpg -hide_banner

This command produces as output all of the frames of the video ranked in ascending
numerical order as individual files numbered with four digits. The speed at which the
frames have been extracted from the stream (6 FPS) has been determined empirically
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by trying different values of FPS extracted and trading off low redundancy across frames
and large number of dataset samples. A further selection is made of the frames before
being labeled, in order to discard blurred and redundant frames.

4.1.2 Dataset labeling

The labeling operation consists in delimiting object instances of the classes to be detected
with bounding boxes and then assigning a semantic label to each of these boxes. The
number of labels is equal to the number of possible object classes to detect. In the
present case, two class of objects are considered for detection the semantic labels assigned
to these classes are 'RRU 4415" and 'RRU 2219’ from based upon Ericsson’s radio
hardware names. The boxes generated at this step are the ground truth boxes used for
the computation of the IoU (see Section 3.7.1). The labeling process has been executed
with Ericsson proprietary software provided by Volodya Grancharov and his research
team. The tool creates a bounding box around the detected object and stores the
labeling result either in the standard tzt YOLO format (see Equation 4.1) or in the
MobileNetV2 label format, that is a zml file, whose structure is presented in Listing 4.1.

image height | | image width | | image height

X center y center box width box height (4.1)
image width '

[class number] [

Listing 4.1: MobileNetv2 label format

<annotation>
<folder>folder_name</folder>
<filename>file_name</filename>
<path>path_to_file</path>
<size>
<width>width_size</width>
<height>heigth_size</height>
<depth>depth_size</depth>
</size>
<object>
<name>object_name</name>
<bndbox>
<xmin>\textit{x_min_bounding_box}</xmin>
<ymin>y_min_bounding_box</ymin>
<xmax>x_max_bounding_box</xmax>
<ymax>y_max_bounding_box</ymax>
</bndbox>
</object>
</annotation
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The labeling tool provided by Ericsson speeded up the labeling procedure by means
of a tracking algorithm that allowed to label objects in consecutive video frames semi-
automatically. The first frame was manually labeled by drawing bounding boxes around
the objects of interest. Subsequently, the expected position of the box in the next frames
were computed. When the detection of a given object was lost, it should be inserted
again through the manual procedure. Figure 4.1 presents examples of labeled images
used in this project.

Figure 4.1: Examples of labeled images

Once all the frames are labeled, the dataset should be split into training set, test set,
and validation set. An ad hoc python script was developed to randomly take 70% of the
dataset samples of training, 15% for validation, and 15% for test. This is

4.1.3 Dataset augmentation

In order to make the object detection algorithm more robust against different situations
in which the UAV may operate the available images are manipulated as presented
in Section 3.3 to extend the dataset. An open-source Python library for image
augmentation named imgaug* is used in for this purpose. The library functions used to
augment the dataset for the current case are the following:

*https://github.com/aleju/imgaug


https://github.com/aleju/imgaug

56 Chapter 4. Implementation

o Multiply(§min = 0.5, &max = 1.5) is used to randomly increase or decrease the
brightness of the image between 50% and 150% of the original value.

o AdditiveGaussianNoise(L = 0, S = 33.15, P[ch] = 0.7) adds white Gaussian noise
from a normal distribution n ~ N(L, S) pixelwise to the baseline image. P[ch] is
the probability that the sampled noise values is different for each image channel.

e Sharpen(a = [0.3, 1],L = [0.75, 1.5]) and Emboss(a = [0, 1],8 = [0.3, 2]) runs a
sharpening or embossing kernel with lightness L or with strength S. Mixes the result
with the original image using «.

e GaussianBlur(c = [1.3,3.3]) blurs the input image by applying a Gaussian kernel
with variance o, that randomly varies between the specified values for each image.

e CoarseDropout(Pldrop] = (0.03,0.15),S = (0.02,0.05)) sets pixels to zero with
probability P[drop]. Samples the locations of pixels that are to be set to zero randomly
on the image with area is between 2% and 5% of the whole image.

4.2 Training

The training is the key process that enables the CNN model to learn to detect objects
in the video data feed produced by the UAV. This section presents the steps to carry
out the CNN model training procedure. It describes the configuration of the training
parameters and present the output of the training procedure .

4.2.1 YOLO setup

The first step to train the YOLOv2 CNN model is to download and install Darknet, the
YOLO CNN framework [69] used for training and detection, on the computing platform
to be used for training. Darknet is cloned from the AlexeyAB’s GitHub repository*.
The setup instructions, together with the dependencies and requirements to be satisfied
are extensively described at the repository’s website. In particular, for this project the
requirements listed in Table 4.1 have been satisfied.

Table 4.1: Darknet requirements

Requirement Version
Linux GNU Compiler Collection (GCC) [111] 5.4.0
Compute Unified Device Architecture (CUDA) | 9.0.176
CUDA Deep Neural Network library (cuDNN) 7

*https://github.com/Alexey AB /darknet
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4.2.2 MobileNet setup

The MobileNet training and testing environment is based on the TF Object Detection
APT*, an open source framework built on top of TF. First, the TF requirements are
satisfied (see Table 4.2) and the setup instructions were performed as described in the
repository.

Table 4.2: TensorFlow requirements

Requirement | Version
Tensorflow-GPU 1.9
Python 3.6.6
Protocol buffer 3.0.0

4.2.3 YOLO training

The YOLO framework makes available different types of CNN architectures, which differ
in their choice of hyper-parameters (such as number of layers, stride, padding, number
of filters per layer, etc.). As stated earlier, pre-trained weights from the training of
the Tiny YOLOv2 algorithm on the Imagenet dataset [53] are used. These weights are
downloaded from the official YOLO website by the following command:

$ git wget https://pjreddie.com/media/files/darknet19_448.conv.23

These weights are based upon the training of a modified version of GoogleNet [112] and
will be the starting point for fine-tuning the model on the actual training dataset. The
configuration files needed for this training are:

1. The cfg file contains the CNN’s structure and the network’s hyper-parameters (the
complete cfyg file is provided in Appendix ?7).

batch=64
subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
learning_rate=0.001
scales=.1,10,.1,.1

*https://github.com/tensorflow /models /blob /master /research /object _detection
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The major changes that are done to this configuration file are the following: the
number of classes is set to the actual number (2 classes for the multi-label case, 1 for
the case of single-class training), the filters variable of the last convolutional layer is
set to filters = (C'+5) -5 in order to resize the network coherently with the number
of classes.

2. The data file contains information about the number of classes, training dataset,
validation dataset, class labels, and output directory to save the results of the training
(in the backup variable).

classes=2

train=/path_to_training label_file
valid=/path_to_validation_label_file
names=/path_to_label_name_file
backup=/path_to_training_weights_backup

3. The names file contains the objects’ names, i.e. the label associated with each
bounding box.

RRU_4415
RRU_2219

The input size is 416 x 416 and any image is resized to this dimension before being
processed by the CNN. The YOLO architecture is able to efficiently and accurately
perform the object detection task. However, the correct choice of hyper-parameters
needs to be done in order to train the CNN effectively. Batch learning (see Section
2.2.2.4) is used as the learning method. Since the computing platform can run out of
memory during the training process, the batch size is further split in subdivisions. These
subdivisions are used to divide the work and limit memory usage. In general, if the batch
size is B and the subdivision is &, then the GPU will process % images at a time but
will update weights only after S batches.

The hyper-parameters tuning process for the training of the YOLO model has been
executed mostly on the batch, subdivision, and learning rate parameters. When the
batch size is reduced, worse performance are achieved in terms of accuracy of the model.
Increasing the subdivision size, leads to faster training, as more images are processed
at once. However, by using the computing platform presented in 3.3 for training, batch
with sizes greater than 8 lead to out of memory error. Different values of learning rate
are also tested (n = [0.0005 : 0.0005 : 0.005]) and tests are run for the first 2000 steps,
choosing the learning rate that shown the higher decrease of the cost function. After
these trials the final configuration chosen for the considered hyper-parameters is B = 64,

S =8, and n = 0.001.
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The command used to start the training process is:

./darknet detector train cfg/obj.data cfg/obj.cfg \
cfg/darknet19_448.conv.23 >> training.log

In this way the training log will be saved in the file training.log. The training is split
according to the values of the parameters batch and subdivisions. Each row of the log
file contains both a line for each batch (Figure 4.2) and for each subdivision (Figure
4.3).

5, 0.001000 rate, 1.007266 seconds, 798912 images Loaded:

Figure 4.2: YOLO batch log line

In the batch log line are reported the current training iteration (12358), the instantaneous
loss (0.084428), the average loss (0.088587), the learning rate (0.001000), the iteration
processing time (1.007266), and the number of processed image (equal to the training
iteration number multiplied by the batch size B (in the figure this is 790912)).

Region Avg I0U: ©.829022, Class: 0.999215, Obj: 0.827858, No Obj: 0.814415, Avag Recall: 1.000008, count: 1]

Figure 4.3: YOLO subdivision log line

For each batch line, there are S subdivision lines containing the following information:
Region Avg IoU: average of the IoU of every image in the subdivision

Class: average of the probabilities that the class of the detected objects in
this subdivision belong to their correct classes

Obj: confidence that the bounding boxes that must contain an object
(ground truth) actually detected an object in them. The higher
the better.

No Obj: same idea as Obj, but for locations where there must be no object.

Avg recall: computed as presented in Section 3.6

Count: number of objects detected in the current subdivision of images.

The parameters that are considered for training and evaluation are the batch and
subdivision size, the number of iterations, the average IoU, and the detection threshold
(that regulates the number of True Positives). The structure of the CNN is the same as
described in Table 3.4. The training process is stopped when the loss reaches a given
threshold and an early stopping technique was adopted for the validation set.
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4.2.4 MobileNet training

The MobileNetV2 training procedure has been executed through the TF APIs. The pre-
trained weights for MobileNetV2 are downloaded from the official TF API model zoo
repository*. This collection contains different models pre-trained on different popular
datasets. The one chosen for this project is the ssd_ mobilenet _v2_coco pre-trained on
the COCO [79] dataset. The model is supposed to achieve mAP = 22% and inference
speed T}, = 31 ms on 600 x 600 input image using a Nvidia GeForce GTX TITAN
X GPU [75]. The input files for the training are record files, generated from the zml
file described in Listing 4.1. Finally, the object detection training pipeline must be
configured. This file defines which model and what parameters will be used for training.
Two record files are created one for the training set (train.record) and another one for
the test set (test.record). For training, a .pbtzt file is also created that contains the
mapping of class names to class ID numbers. The file contains the following lines:

item {

id: 1

name: 'RRU_4415'
}
item {

id: 2

name: 'RRU_2219'
}

Finally, the configuration of the the object detection training pipeline file is executed
(reported in appendix. This pipeline file defines which model and what parameters will
be used for training, similarly to the YOLO cfy file (the complete cfyg file is provided in
Appendix ??). The following changes are made to the original pipeline file in order to
fine-tune the network on the custom dataset:

1. Change the variable num_ classes to 2.

2. Specify in the variable fine tune checkpoint the .ckpt file downloaded from the TF
model zoo.

3. In the train_input reader section, change input path and label map path vari-
ables to the path to the .pbtxt file created for the label map and the train.record
file.

4. In the eval wnput reader section, change input path and label map path variables
to the path to the .pbtat file created for the label map and the test.record file.

*https://github.com/tensorflow /models /blob/master /research /object detection/g3doc
detection _model zoo.md
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Training is started by running the following command

python train.py --logtostderr --train_dir=training/ \
--pipeline_config_path=training/ssd_mobilenet_v2.config

It is possible to check the progress of the training process by using TensorBoard. To
do this, it is sufficient to enter the following command inside the TF object detection
directory:

tensorboard --logdir=training

This will create a web page displayed on the local server on TCP port 6006. This
page provides information and graphs that show how the training is progressing. The
hyper-parameters considered for the training of the MobileNet architecture are mainly
batch size B = 24 and learning rate = 0.004 after some trial resulted to achieve the best
training loss.

4.3 Android Application

The Android application has been developed using the Android Studio (version
23.0) Integrated Development Environment (IDE). Information about the Android
requirements that are satisfied for this project are reported in Table 4.3.

Table 4.3: Android requirements

Requirement Version
Android API | Android 8.1 API level 28
Android NDK 17.1.4828580
Android SDK 26.1.1

The application developed is named Radio Site Assistant (RSA) and this section provides
a modular description of this application.

4.3.1 Registration/Connection module

This module is responsible for both the DJI SDK registration and the connection with
the DJI product. These are essential steps that enable the use of the SDK in the Android
application and allow to connect the application to the UAV. This module is implemented
by the ConnectionActivity Java Class, whose GUI is shown in Figure 4.4. This activity is
launched when the RSA application starts. As soon as the Android device is connected
to the RC, the activity status changes from "No Product Connected" to "DJI Aircraft
Connected" displaying the model and ID number of the connected UAV.
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- -
ERICSSON £ ERICSSON £
RADIO SITE ASSISTANT RADIO SITE ASSISTANT
Status: No Product Connected Status: DJI Aircraft connected
Connection
Product Information Mavic Air
Model Not Available 01.00.0400
DJI SDK Version: 4.7 DJI SDK Version: 4.7

Figure 4.4: Connection Activity GUI

Also, when the connection is established it is possible to launch the MainActivity
(described in the following sections) by clicking the open Button graphical element. The
implementation of the registration is done by creating a new application on the DJI’s
developers website*. This will generate a 24-digit SDK activation key that is entered
in the meta-data of the Android application manifest, inside the android:value field as
shown in Listing 4.2.

Listing 4.2: DJI SDK application code

<meta-data
android:name="com.dji.sdk.API_KEY"
android:value="Enter_App_Key_here"

/>

4.3.2 Streaming acquisition module

The streaming acquisition module receives the raw YUV video stream from the UAV
camera, converts it to RGB and passes it to a TextureView object to display the
stream on screen of the Android device. After streaming is initialized in the method
initStreaming, the acquisition and display occur by overriding the DJI callback method
named onSurfaceTextureAvailable that is updated each time a frame is received.

*https://developer.dji.com /mobile-sdk
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4.3.3 Streaming pre-processing module

The streaming pre-processing module manages the video stream to create a suitable
object for both the detection and tracking modules. A frame of streaming video is
extracted directly from the TextureView object, transformed into a Bitmap object and
resized to the object detection model input size (S x S). There exists two main ways in
which a Bitmap element can be resized to the input dimension:

1. Crop mode: the input frame, having an input dimension of W x H, is resized by
taking a square portion of the window with dimensions min(W, H) x min(W, H) and
scaled to the input detector size (S x 5).

2. Pad mode: In order to avoid losing information contained in the resized frame, zero
padding is used at the borders of the shortest frame dimension. For an input frame
size of W x H, the min(W, H) a zero padding of P = maX(W’H);min(W’H) pixels per
border is executed in such a way the resulting frame has a dimension of max(W, H) x

max(W, H) — min(W, H) and is subsequently resized to S x S.

Unfortunately the padding method, creates spurious information content at the border
and reduces the size of the object to be detected, achieving worse performance than with
crop mode. While the crop method achieves better precision accuracy, it reduces the
visual region on which detection is executed. The processing pipeline is shown in Figure
4.5

. Frame Object
Frunenaddineg selector detection
Pad mode
Input frame Frame resize . Results
t - Mode { Bounding box
RGB) WxH i
( ) SxS coordinates display
Crop mode
= ] ) Frame Obje.ct
rame cropping ToFs s tracking

Figure 4.5: Application processing pipeline

The input RGB frame, after padding or cropping, is resized to the object detection input
dimensions and used for both detection and tracking. The frame selector discards all
the frames arriving at the detector when the detector is already working on a frame,
while the tracking module, turns the Bitmap element into a grayscale image before being
processed (this is done because the KLT algorithm works on one-channel images). The
tracker takes as input the bounding box coordinates and tracks the boxes during the new
detection inference. Finally, the results are displayed on the TextureView superimposed
on the UAV video stream.
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4.3.4 Detection module

The detection module is responsible for detecting and displaying the detection results,
superimposed on the same Surface Object where the original stream is displayed. This
module is implemented through the TFL library as an ad hoc thread, and is partly
adapted from the official TF Android example*. The YOLO detector is enclosed in the
TensorflowYoloDetetor Class, while the MobileNetV2 detector is implemented by the
TensorFlowObjectDetectionAPIModel Class within the Android project. The method
recognizelmage is used to run the object detection CNN on a Bitmap Object and returns
a List of Recognition Objects. Each recognition object has the following parameters:

id: unique identifier for what has been recognized.

title: name for the recognition.

confidence: score for how good the recognition is.

location: location within the source image for the location of the recognized
object.

Next, the detection results are filtered based on the detection threshold, scaled to the
correct size, and then displayed on the application Surface Object.

The model, trained as explained in Section 4.2, is imported into the assets’ folder of
the Android project. After the TFL object detector is initialized, it starts the detection
process on the first available frame. The frame is pre-processed as presented in Section
4.3.3 and the detectors can run in both padding mode or cropping mode. An example of
a detection instance is presented in Figure 5.5

Figure 4.6: Mobile object detection inference example

*https://github.com /tensorflow /tensorflow /tree /master /tensorflow /examples /android
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4.3.5 Tracking module

The KLT tracking module is responsible for following the tracked hardware equipment
detected with the object detection module. The tracking module is always active during
the mainActivity and computes the relative motion between the UAV camera and
the scene. The tracker is implemented through the OpenCV3.4.3 javacv library [99].
The core functions of this module are the openCV functions goodFeaturesToTrack that
implements the Shi-Tomasi detector [42| and the calcOpticalFlowPyrLK that contains
the pyramidal implementation of the KLT tracker [113|. Tt is important to mention the
arguments of the GoodFeaturesToTrack function, because by adjusting these parameters
different performance of the tracker can achieved. These arguments are:

image Mat Object containing the grayscale input frame on which the Shi-
Tomasi corner detector will be run.

corners output vector of detected corners.

maxCorner maximum number of corners to return. If there are more corners
that are found, the strongest of them are returned.

qualityLevel parameter characterizing the minimal accepted image corners qual-
ity. This parameter determines the number of tracked points.

minDistance minimum possible Euclidean distance between the tracked corners.

The most decisive parameter is the qualityLevel because once this parameter is fixed,
increasing the parameter maxCorners or reducing the minDistance parameter will have
no effect on the number of tracked points. Figure 4.7 shows an example of the optical
flow computation for different values of the parameter qualityLevel = [0.5,0.05,0.005]
for a fixed choice of the parameters maxCorners = 1000 and minDistance = 0.01.

Figure 4.7: KLT sparse optical flow example. Left: qualityLevel = 0.5. Center:
qualityLevel = 0.05. Right: qualityLevel = 0.005
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Increasing the number of tracked points leads to dense optical flow and is more
computationally expensive (because there are more points on which the Kanade-Lukas
method will be applied) and vice-versa. However, decreasing qualityLevel, may cause
incorrect computation of motion vectors since it is more difficult to track points. The
calcOpticalFlowPyrLK parameters are:

previmg first input image on which the optical flow is computed.

nextImg second input image corresponding to the next frame with respect to
previmg.

prevPts vector of 2-D points for which the flow needs to be found.

nextPts output vector of 2-D points containing the calculated new positions

of input features in nextImg.

status output status vector where each element of the vector is set to 1 if
the flow for the corresponding features has been found, otherwise, it
is set to 0.

err: output vector of errors where each element of the vector is set to an

error value for the corresponding feature. Type of the error measure
can be set in the flags’ parameter.

The tracker module tracks the object during the detection time interval for which the
detection is not ready to be displayed and displays the shifted box. Also, it computes the
shift for the detected bounding boxes from the frame on which the detection has been
run to the current frame in order to shift the box once the new detection is ready. Once
the motion of each point is computed, the computed motion vectors V = {vy, va, ..., un }
are averaged, and the mean motion vector v

v = Zvi (4.2)

is used to translate the bounding boxes associated to the Recognition Objects detected
by the detection module (see Section 4.3.4). This is done in order to increase the
algorithm’s robustness to image noise and misleading motion vectors. In fact, if the
motion does not satisfy the optical low assumptions presented in Section 2.2.1.2 there
could be motion vectors that do not correspond to the actual relative motion between
the UAV’s camera and the scene. By averaging over the whole set of motion vectors V,
the effect of these misleading motions are smoothed and the overall motion estimate is
still acceptable.
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Results

This chapter presents the evaluation of the performance of the proposed object
detection/tracking system and discusses the tests’ results. In particular, the experiments
are carried out according to the experimental methodology discussed in Section 3.4,
and the metrics presented in Section 3.6 are considered for the evaluation. Section 5.1
presents the training loss of the object detectors together with the choice done during
the training process. Section 5.2 shows the results about time performances of the object
detector and tracker algorithm, while Section 5.3 discusses the mAP results.

5.1 Training loss

Training loss is the most important parameter to monitor when training a CNN model.
The value of this parameter is considered indicative of when to decide to stop the training
process. It also gives hints about the quality of the trained model and the correctness
of the training procedure. The following subsections report the results of the training
process in terms of training loss for both the YOLO and the MobileNetV2 models, in
the case of multi-class and single class training.

5.1.1 YOLO training loss

The YOLO training loss is computed by averaging the loss function (Equation 3.13)
at each training step. The YOLO authors suggest to train the model for at least
2,000 iterations for each class and more generally to stop training when the average
loss no longer decreases. Thus, according to them, the training should be executed for
a minimum of 2, 000 iterations for the single-class training case and for 4, 000 iterations
in the multi-class training case. However, from Figure 5.1, it is possible to observe that
the training loss for both multi-class and single-class cases continues to decrease after
this number of iterations, hence the training was executed for 30,000 iterations.

67
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Figure 5.1: YOLOv2 training loss. Top: multi-class training loss. Bottom: single-class
training loss

The overall loss curve exhibits a decreasing behaviour, as expected. The single-class
case presents higher variance in the oscillations with respect to the multi-class. Figure
5.1 shows that after approximately 20,000 iterations the value of the average loss
stops decreasing, for both single-class and multi-class training, showing even a small
increase for the latter case. The minimum value of the average loss is achieved at the
POInt Pruiti—ciass = (22520,0.043851) for the multi-class training and at pingie—ciass =
(24883, 0.257462) for the single-class training. Once the training is stopped, the decision
as to which model weights to use is done by adopting the validation-based early stopping
technique (see Section 2.2.2.14). In particular mAP and IoU are evaluated on the training
set every 1000 iterations. The results are presented in Figure 5.2
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Figure 5.2: YOLOv2 mAP and IoU on the validation set. Left: multi-class training. Right:
single-class training
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It is insufficient to look only at the minimum of the average loss to select the model with
the best performances. According to the early-stopping technique, it is necessary to look
at the results on the validation to avoid overfitting the data and achieve performance
generalization. By looking at the data from the validation set (Figure 5.2), the joint
maximization of the mAP and IoU is achieved at the 19,000 iteration for the multi-
class training and at at the 23, 000" iteration for the single class training, and thus these
weight models are selected for further evaluation on the test set (see Section 5.3).

5.1.2 MobileNetV2 training loss

The results for the MobileNet loss are shown in Figure 5.3 It is possible to make some
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Figure 5.3: MobileNetV2 training loss

observation based on these two plots of the loss function. First of all, the loss for the
MobileNetV2 does not converge to zero but and keeps its value higher with respect
to the YOLO loss. The training is executed for 10° steps, i.e. a greater number of
iterations with respect to the YOLO-based model in order to check that the average loss
has converged. The loss for this model is composed by the classification and localization
loss and the total loss is given by TotalLoss = Classi ficationLoss + LocalizationLoss
and Tensorboard shows that the dominant loss contribution is due to the classification
loss term. The minimum for the two losses are located at puiti—ciass = (91748, 0.74625)
and Pgingle—class = (96845,0.75154), indicated with the red circle in Figure 5.3. The
evaluation on the validation dataset is shown in Figure 5.4.
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Figure 5.4: MobileNetV2 mAP on the validation set. Top: multi-class training. Bottom:
single-class training

The best models are selected based on the best performance on the test set that is
achieved at step 40366 and 24257 (denoted in blue in Figure 5.4) respectively for multi-
class and single-class training.

5.2 Time performance

The time performance greatly determines the algorithms’ quality, especially in embedded
device applications with limited computational resources were real-time execution is
required. The trained models were evaluated based on their execution time, inherently
determining the FPS. The object detection and tracking tasks were executed in a
separate thread on the mobile computing platform. This data was later analyzed and
assessed to evaluate the viability of the model in terms of FPS performance. During
the execution of these algorithms, the inference time was measured in ms and logged
in a text file (stored in the memory of the mobile device). It is clear that the time
performance is invariant with respect to the number of classes on which the model is
trained. For this reason, the time performance measurements will be performed only on
the multi-class model.
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5.2.1 Object detection inference time

In order to measure the object detection time performance on the Android mobile
platform, 10* detection instances are run for both the YOLOv2 and the MobileNetV2
models. The results of these measurements are shown in Figure 5.5 for both the YOLOv2
model and the MobilenetV2 model (for the sake of clarity only 3000 detection instances
are shown in the figure).
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Figure 5.5: Left: inference time YOLOv2 model. Right: inference time MobilenetV2 model.

The statistics in terms of mean and standard deviation of the inference time for the two
models are reported in Table 5.1.

Table 5.1: Inference time statistics

CNN model Hdet O det FPS
YOLOv2 1079.31 ms | 164.21 ms | 1.08
MobileNetV2 | 382.23 ms 15.67 ms | 2.61

As can be observed, The MobileNetV2 model outperforms the YOLOv2 with respect
to inference time. By considering the average inference time pg4e, the average FPS at
which the detection algorithm is able to run is equal to FPSyoro = 1.08 FPS, while the
MobileNetV2 model has an average FPS equal to FPSyopitener = 2.61 FPS. However,
none of the two algorithms is able to run in real-time on the mobile computing platform,
since the input video stream runs at 24 FPS.
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5.2.2 Object tracking time performance

The time performance of the KLT tracker was determined by measuring the time needed
to execute the tracking task while running on a separate thread with respect to the object
detector. In order to obtain the tracking statistics, almost 10° tracking instances are
recorded and the results are shown in Figure 5.6. By considering the average tracking
execution time .40, the average FPS at which the tracking algorithm is able to run
is equal to FPSgrr = 89.04 FPS. Thus the tracking algorithm is widely able to run
in real-time (because its greater than 24 FPS), assisting the object detection algorithm
during the execution of the detection inference.
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Figure 5.6: KLT time performance

Note that all the samples are below 70 ms. The tracking time statistics are reported in
Table 5.2.

Table 5.2: Tracking time statistics

Tracking algorithm Hirack Ctrack FPS
KLT Tracker 11.23 ms | 8.23 ms | 89.94

The KLT thus allows for real-time tracking of the detected object on the proposed
computing platform, since it is able to run at an higher frame rate with respect to the

input video FPS. Thus the combination of object detection and object tracking algorithm
satisfy the real-time requirement.
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5.3 mean Average Precision (mAP)

The mAP is the most important indicator for quantifying the performance of the object
detection model’s precision. The AP for each class is reported, together with the number
of true and false predictions, as computed on the test set. The test set contains only
baseline dataset (no augmented images) for a total of 153. Around 50% of this test
set is acquired from drone flight within the Ericsson studio, and the remaining 50% is
acquired with the hand-held camera described in Section 3.2.

5.3.1 YOLOv2 mAP

The model at training iteration 19,000 for the multi-class training and at the 23, 000"
iteration for the single-class training are considered for these experiment, as described in
Section 5.1.1. For the YOLOvV2 model at these training step, the precision/recall curve
per class are computed and the results are shown in Figure 5.7.
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Figure 5.7: Precision-Recall curves for the multi-class case

The area under these curves represent the AP for both classes, and the results on the
test are reported in Table 5.3 in terms of AP, True Predictions (True Positives) and
False predictions (True Negatives+False Positives)

Table 5.3: YOLOv2 multi-class AP

Class name AP
RRU 2219 | 87.79%
RRU 4415 | 90.10%

True predictions | False predictions

Considering these values, the model’s is mAP= 88.96%. The highest precision is achieved
by the RRU 4415 class; a possible reason for this result could be that this is the class
that has most examples in the dataset and thus achieves better performances.
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The single-class mAP is computed similarly to the multi-class case by computing the area
under the precision-recall curve (Figure 5.8) and in this case the AP= mAP= 85.49%,
as only one class is considered.
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Figure 5.8: YOLOv2 multi-class AP
In Table 5.4 the number of false and positive predictions is reported.

Table 5.4: YOLOV2 single-class AP

Class name | mAP | True predictions | False predictions
RRU 85.49%

Comparing this result with the multi-class case, it is possible to affirm that there no
improvement in terms of mAP is obtained from the experiment in the single-class training

case. Thus, in this case, the multi-class training is preferred because allow for a greater
precision and a finer classification of the hardware equipment based on the model and
not only on the hardware typology.

5.3.2 MobileNetV2 mAP

The mAP for the MobileNetV2 is analyzed in a similar way as done with YOLOv2
model. The model at training iteration 40, 366" for the multi-class training and at the
24,257 iteration for the single-class training are considered for these experiment, as
described in Section 5.1.1. The mAP is computed real-time during training, varying the
iteration number. The mAP is shown in Figure 5.9.
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Figure 5.9: MobileNetV2 mAP varying training step. Left: multi-class case. Right: single-
class case

As expected, the mAP values are much lower than the ones achieved for the YOLOv2
model for both single-class and multi-class case. This result confirms the existence of a
trade-off between computational inference time and precision of the model. The values
of mAP for the chosen models are reported in Table 5.5

Table 5.5: MobileNetV2 mAP results

Case mAP | True predictions | False predictions
multi-class | 66.87%
single-class | 65.24%

Similar results for the YOLOv2 model are obtained for the single-case versus multi-case
training. In particular, the best performances are achieved for the multi-case model
confirming that also for the MobileNetV2 the results suggest to use a finer granularity
when labeling the dataset.

5.3.3 Augmented training mAP

This section present the results in terms of mAP obtained on the augmented dataset (see
Section 3.3). Given the results obtained in the previous experiments, the combination
YOLOv2 and multi-class case is chosen since the best results in terms of mAP are
obtained for this case. The training loss presents a very similar behaviour to the baseline
dataset, but the mAP increases with respect to the baseline training. For the augmented
dataset an analogous training procedure to the one followed for the base-line dataset is
employed (Section 5.1.1).
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The model weights are chosen according to the early stopping technique, by selecting the
model weights at step number 26,000. The results in terms of Precision-Recall curves
are shown in Figure 5.10.
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Figure 5.10: Precision-Recall curves for augmented dataset YOLOv2 multi-class training

The results of the tests are reported in Table 5.6 in terms of AP and number of true
and false predictions. By averaging out these values, a mAP = 91.08% is obtained.

Table 5.6: YOLOv2 multi-class AP augmented dataset

Class name AP
RRU 2219 | 96.56%
RRU 4415 | 85.61%

True predictions | False predictions

The test set used in this experiment, is the same as the baseline dataset case and thus
the mAP results for the augmented dataset are comparable. The highest precision is
achieved by the RRU 2219 class showing an inverse trend with respect to the non-
augmented dataset.



Chapter 6

Conclusions and future works

This chapter draws conclusions on the basis of the conducted experiments (Section
6.1), gives final remarks about the limitations of the developed solution (Section 6.2),
indicates future research directions and further development opportunities (Section 6.3),
and discusses ethical and sustainability issues (Section 6.4).

6.1 Final outcomes

This thesis presented an investigation of object detection and tracking algorithms suited
for UAV applications on power-constrained mobile computing platforms. In particular,
it took into consideration the case of hardware detection and tracking applied to
UAV-based telecommunication tower inspections. Even though the proposed system
and methodology has been exemplified on a particular area of interest (base-station
inspection), and on a particular object category (RRUs), it can be adapted more in
general to any application where detecting and tracking objects can be useful with few
modifications. The final outcomes concern both the scientific and technical aspects:

e From the scientific point of view, this work explored the combination of two object
detection algorithms based on CNNs with the KLT tracker based on traditional hand-
crafted feature approach. Among the possible combinations, the preferable algorithm
is the one that maximizes the accuracy in terms of mAP while satisfying the real-
time constraint. Also, this thesis tested and evaluated (i) the detection granularity
at which the model is able to run by taking into consideration a single-class versus
multi-class detection evaluating the possibility to categorize similar object categories
with different labels, (ii) the possibility to increase the mAP through augmentation
techniques, applying realistic transformations to the baseline dataset, in order to
increase the dataset size and achieve better generalization performances.

7
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e From the technical and practical point of view, it provided an operational methodology
to acquire and augment a dataset, training two different types of CNN-based object
detection algorithms (YOLOv2 and SSD MobileNetV2). This methodology will allow
to expand the prototype by re-training the CNN in the future as needed (e.g. different
type of equipment). It also developed an Android application with a modular structure
that is able to detect and track a particular category of hardware equipment in real-
time. The modularity of the solution allows for future expansions and integration
with other modules, or the substitution of the tracking and detection modules with
the future state of the art algorithms.

From the results, no substantial differences, in terms of mAP, arise for what concerns
the single-class and multi-class training cases. A slightly lower performance is achieved
by training both hardware models with the same label (single-class). For this reason,
the results suggest that a better choice is to train the CNN with a multi-class approach.
Since the performance in terms of running FPS is set by the tracking algorithm that runs
at very high speed the most accurate object detection model (YOLOvV2) is employed in
the proposed algorithm. In fact, even if YOLO needs more time for inference, the KLT
algorithm is able to overcome this pitfall by tracking the previously detected boxes.

The chosen solution is able to detect and track different models of the target
equipment (multi-class detection) at about 90 FPS with a mAP of 91.07% on the
evaluation dataset (augmented training case).

6.2 Limitations

The main limitation of the prototype concerns primarily the image input size of the
object detector, which poses a big limitation in the field of view of the UAV. In order to
avoid distortion or spurious contents in the input image (padding areas), which greatly
degrades the performances, the area on which the UAV is able to successfully detect
and track the targeted object is reduced to a square image having a size equal to the
shortest dimension of the image when operating in pad mode.

Also, another limitation is due to the fact that the results found on the training
granularity have been tested only on two models of hardware. Tests on a greater number
of categories would lead to generalized results that can confirm or confute the results
found in this work.

6.3 Future works

The current proposed implemented system is successfully able to detect and track
equipments in real-time during base station inspections. Based upon the results of
this work, possible future research directions are the following:
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1. Apply the proposed algorithm to detect anomalies in radio towers such as uncompliant
cable bendings, loose or unsupported jumpers (e.g. check whether jumpers are
weatherproofed), structural abnormalities (e.g. rust, subsidence), loose or missing
hardware, etc (see Figure 6.1).

2. Build upon the information gained through the hardware identification, design
control-based algorithms to navigate the base-station autonomously, without the need
of a technician on the ground to execute the inspection.

Figure 6.1: Future applications of the proposed algorithm in the field of base-stations
inspection

6.4 Ethics and sustainability

The use of Al-powered UAS for commercial inspection applications is questionable
because of the issues it raises for what concerns privacy, ethics, and safety. Considering
the impact on the employment, the wide adoption of UAV and Al technologies might
cause a higher rate of unemployment as drones allow to operate in a more fast and
efficient way with respect to the human counterpart, and many jobs could be replaced
by drones operating instead of humans. The Federal Aviation Administration estimates
that only in the U.S. there will be more than 450.000 commercial drones by 2018 [114].
However, it is likely that other jobs will be created by this technological evolution.



80 Chapter 6. Conclusions and future works

Also, from the privacy point of view, drone-based inspections may raise issues for
what concerns the acquisition of sensible third-party data (e.g. private citizens), even if
that is unintentional. Specifically, for the current inspection use case, privacy issue may
arise in the case of base-stations placed nearby or inside private areas (e.g. at the top
of private buildings). In these cases, there is the need to carefully asses privacy issues
that could arise from the drone operations before carrying them out. This is necessary
to be sure that any operation that involves the collection of personal data must comply
with legal obligations and restrictions related to the specific cases.

From the safety perspective, the use of drones represents a huge leap in the reduction
of accidents related to dangerous inspection as the statistics in Section 2.1.1.1 point out.
However, there may still be issues related to the misuse of the UAV or to unpredictable
events that may happen during the inspection.
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Appendix A

YOLOvV2 configuration file

[net] size=3 batch_normalize=1 size=3

batch=64 stride=1 filters=256 stride=1
subdivisions=8 pad=1 size=3 pad=1

width=416 activation=leaky stride=1 filters=1024
height=416 [maxpool] pad=1 activation=leaky
channels=3 size=2 activation=leaky [convolutionall]
momentum=0.9 stride=2 [maxpool] size=1
decay=0.0005 [convolutionall size=2 stride=1

angle=0 batch_normalize=1 stride=2 pad=1
saturation=1.5 filters=64 [convolutionall filters=35
exposure=1.5 size=3 batch_normalize=1 activation=linear
hue=.1 stride=1 filters=512 [region]
learning_rate=0.001 pad=1 size=3 anchors=1.08,1.19,3.42,
policy=steps activation=leaky stride=1 4.41,6.63,11.38,9.42,
scales=.1,10,.1, .1 [maxpool] pad=1 5.11,16.62,10.52
[convolutionall size=2 activation=leaky bias_match=1
batch_normalize=1 stride=2 [maxpool] classes=2
filters=16 [convolutionall size=2 coords=4

size=3 batch_normalize=1 stride=1 num=5

stride=1 filters=128 [convolutionall softmax=1

pad=1 size=3 batch_normalize=1 jitter=.2
activation=leaky stride=1 filters=1024 rescore=1
[maxpool] pad=1 size=3 object_scale=5
size=2 activation=leaky stride=1 thresh = .5
stride=2 [maxpool] pad=1 random=1
[convolutionall size=2 activation=leaky

batch_normalize=1 stride=2 [convolutionall

filters=32 [convolutionall batch_normalize=1
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Appendix B

MobileNetv2 configuration file

model { decay: 0.999700009823
ssd { center: true
num_classes: 1 scale: true
image_resizer { epsilon: 0.0010000000475
fixed_shape_resizer { train: true
height: 300 }
width: 300 by
} use_depthwise: true
X b
feature_extractor { box_coder {
type: '"ssd_mobilenet_v2" faster_rcnn_box_coder {
depth_multiplier: 1.0 y_scale: 10.0
min_depth: 16 x_scale: 10.0
conv_hyperparams { height_scale: 5.0
regularizer { width_scale: 5.0
12_regularizer { }
weight: 3.99999989895e-05 }
+ matcher {
} argmax_matcher {
initializer { matched_threshold: 0.5
truncated_normal_initializer { unmatched_threshold: 0.5
mean: 0.0 ignore_thresholds: false
stddev: 0.0299999993294 negatives_lower_than_unmatched: true
} force_match_for_each_row: true
b }
activation: RELU_6 }
batch_norm { similarity_calculator {
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Appendiz B. MobileNetv2 configuration file

iou_similarity {

}
}
box_predictor {

convolutional_box_predictor {

conv_hyperparams {
regularizer {
12_regularizer { +

max_scale: 0.949999988079
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0

aspect_ratios: 0.333299994469

weight: 3.99999989895e-05 post_processing {

}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294

+ }
activation: RELU_6
batch_norm {
decay: 0.999700009823
center: true
scale: true
epsilon: 0.0010000000475
train: true

+
+
min_depth: O
max_depth: O

num_layers_before_predictor: 0O
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 3

box_code_size: 4
apply_sigmoid_to_scores: false

}
anchor_generator { +
ssd_anchor_generator { }
num_layers: 6 }

min_scale: 0.20000000298

train_

batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100

}

score_converter: SIGMOID

normalize_loss_by_num_matches: true
loss {

localization_loss {
weighted_smooth_11 {
b

+

classification_loss {
weighted_sigmoid {
b

+

hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.990000009537
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 3

+

classification_weight: 1.0

localization_weight: 1.0

config {
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batch_size: 24 fine_tune_checkpoint_type: "detection"
data_augmentation_options { +
random_horizontal_flip { train_input_reader {
+ label_map_path:
} "/object_detection/training/labelmap.pbtxt"
data_augmentation_options { tf_record_input_reader {
ssd_random_crop { input_path:
+ "/object_detection/train.record"
} }
optimizer { }
rms_prop_optimizer { eval_config {
learning_rate { num_examples: 153
exponential_decay_learning_rate { max_evals: 153
initial_learning rate:0.004 }
decay_steps: 800720 eval_input_reader {
decay_factor: 0.949 label_map_path:
} "/object_detection/training/labelmap.pbtxt"
} shuffle: true
momentum_optimizer_value: 0.899 num_epochs: 1
decay: 0.899 num_readers: 1
epsilon: 1.0 tf_record_input_reader {
+ input_path: "/object_detection/test.record"
} }
fine_tune_checkpoint: sample_1_of_n_examples: 1
"/object_detection/model.ckpt" by

num_steps: 200000
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