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Summary

In this thesis an ASIC design of an hardware GMM-Based Speaker Classifier is

presented. The Classifier is a fundamental component of a Speaker Identification

system, that is able to associate an unknown incoming speech signal to its unknown

speaker, which is part of a previously modeled group of speakers. The design flow fol-

lows a software-to-hardware approach, since the whole system is firstly implemented

in Matlab, then increasingly transformed from high-level to machine-level until its

hardware description. Innovative techniques that avoid any memory accesses to per-

form hardware exponentials and logarithms are presented. All the computations are

executed on-chip and this gives extra performances and extra security to the system.

Thanks to its low power demand, it is suitable to be integrated in many IoT devices

to personalize the user experience without compromising the power budget of the

device.
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Chapter 1

Introduction

1.1 Text-Independent Speaker Identification

Speaker identification is the process of determining an unknown speaker’s identity

by performing a comparison 1:N between an unknown voice sample and previously

modelled speakers. This practice is di↵erent from speaker verification or authentica-

tion which, instead, operates a 1:1 check between one speaker’s voice and one model.

These two areas are the major applications of the more general field that goes by

the name of Speaker recognition, that generally refers to recognizing people from

their voice. As explained in [1], Speaker recognition can also be classified as text-

dependent or text-indipendent (1.1). In text-dependent systems the users are allowed

to pronounce only a pre-fixed set of phrases in order to be recognized, for example

determined password-phrases such as “Hey Siri ”or “Ok Google ”. In this work, a

more challenging and flexible task is tackled: text-independent speaker recognition,

which assumes that the identification operation happens regardless of which word is

spoken by the user. This also implies that the the train utterances, used for building

the speakers models, may have to be completely di↵erent from the test ones. More

precisely, it is convenient to chose not to use the same phrases for the training and

the testing phase in order to avoid introducing unwanted text-dependencies, thus to

give robustness to the system.

The utility of identifying a person from his/her voice is increasing with the grow-

ing use of speech interaction with computers. The ability of implementing an auto-

matic identification of a speaker has multiple applications in forensic sciences since

a lot of information is exchange via telephone between to parties, including criminals

for instance. Not only forensic specialists but also ordinary people can benefit from

speaker recognition technology: telephone-based services already implement speech

and speaker recognition algorithms and the developing of these technologies will

1



1 – Introduction

Speaker 
Recognition

Text-
dependent

Text-
independent

Speaker 
Verification

Speaker 
Identification

Speaker 
Verification

Speaker 
Identification

Figure 1.1: Speaker Recognition Classification
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1.2 – Purpose & Motivations: a low power-oriented design

supplement or even replace human-operated telephone services in the near future.

Recently Pradeep K. Bansal and his team [2] invented a Speaker-verification digital

signature system that allows a party to provide a signature by speaking a phrase.

This provides a greater confidence in communications because the signing party can

speak a di↵erent phrase for each document, since the technology is text-independent,

making very hard any falsification, that are still possible with the digital signature.

1.2 Purpose & Motivations: a low power-oriented

design

1.2.1 Power in Digital systems

In the contemporary era of portable digital electronics, where many devices are

battery powered, the energy demand of the systems has become a crucial aspect of

a digital design.

The total power of a digital system can be divided in Leakage power and Dy-

namic power. The leakage power refers to the “stationary ”consumption of a device

when it is powered. This type of consumption mainly depends on the amount of

resources employed and the area of the device, hence a way to reduce it is to apply

techniques that are finalized to the reduction of the hardware, like resource sharing,

and parallelism minimization. The leakage power also depends on the transistor

threshold voltage V
th

: with a low V
th

the MOS requires less voltage to be activated,

hence the transistor is faster, but it is also closer to an active stage from an electrical

point of view and this cause it to have more current “leaks ”, which are equivalent

to an higher leakage power; on the other hand, a transistor with an high threshold

voltage is less sensitive to current leaks (lower leakage power), but requires more

energy to be activated (slower).

The Dynamic (or Active) power is related to the activity of the system, and it

can be express as:

P
dyn

= E
sw

C
L

V 2
DD

f
clk

(1.1)

where C
L

is the capacitance load and E
sw

is the switching probability of the load,

3



1 – Introduction

commonly known as Switching Activity. We can note the quadratic dependency

of the power from the voltage supply and the linear dependency from the clock

frequency, that is actually a design parameter. Later in the document, we will see

how the the system allows us to reduce of the clock frequency, and so the dynamic

power. Every switch from 0 to 1 in a digital system corresponds to a cycle of charge-

discharge of a load capacitance, that is modeled with C
L

and depends of the amount

of resources that are electrically connected to the wire that is switching: this is why

the more the system switches the more it consumes, therefore the dynamic power is

related to the activity of the system. The reduction of the dynamic power is a more

wide task, and it can be done reducing the power supply of the system, reducing

the frequency and reducing the switching activity applying algorithm optimization

techniques.

1.2.2 Applications and target features

The purpose of this work is to design the hardware for a Maximum Likelihood

Classifier, essential component of an Speaker Identification System targeted for ap-

plications related to domestic Internet Of Things (IoT) environments.

Jack Anna Mike Alex

Bob

Bob

Figure 1.2: Application example
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1.2 – Purpose & Motivations: a low power-oriented design

1.2 shows a general application example of the system: in the case of a do-

mestic scenario, the integration of a speaker identification system inside every day-

electronics like smart-phones, smart-watches, smart-TVs, and smart-hubs, would

allow a much higher control, for example personalizing certain actions depending

on who is interacting with the device. With an integrated speaker identification

system, the ability to validate the identity of a speaker via a pre-determined set of

words (i.e. “Ok Google ”or “Hey, Siri ”) would be extended to the recognition of

a group of speakers and without any constraints on the phrase to be pronounced.

An other strength of the system is that it operates completely on-chip, without the

need to communicate with a remote server: this gives high reliability and security to

the system, since it would not need an internet connection to work and the speech

data would be kept locally safe. Other possible application areas where this kind of

system could be employed are reported in 1.1 ([3]).

This application scenarios requires the system to be real-time, low-power and

portable. Looking at 1.1, we can understand the order of magnitude of the power

IoT Edge Active Mode Potential new capabilities with
Platforms Power speech processing

Wearable activity ⇠ 9.5mW Environment tracking based on its
tracking sound. Log activity by speech.

Security, Smart ⇠ 400µW Voice enabled unlocking. Speaker
locks verification.

Surveillance ⇠ 20mW Intruder detection based on sound.
Environment ⇠ 5mW Voice enabled HVAC control using

control remote and distributed devices.
Healthcare, Hearing ⇠ 100− 2000 Record conversation as text.

aids µW
Body-area ⇠ 140µW Voice-enabled control.
monitoring

Smart ⇠ 10mW Record conversation as text using
meeting/classroom distributed and remote devices.

Table 1.1: KEY IOT EDGE PLATFORMS’ POWER BUDGETS

consumption of some IoT devices. Most of them requires around tens of milli-Watts

of power, therefore a good achievement for this work would be to have total power

consumption for the Classifier that does not go beyond 1 mW. In this way the

5



1 – Introduction

integration of a Speaker Identification system in a pre-existent IoT Device would

not compromise the energy requirements.

Later we will discuss how the speed of the system is not a critical parameter in

this kind of application, since the time available to process one single frame is 10

ms, which is not a restrictive constrain.

1.2.3 FPGA V.S. ASIC

Traditionally, SI Systems where implemented via software, whose sequential com-

piling causes the system to be slow. Recent FPGAs have a very high logic capacity

and contain embedded Arithmetic Logic Units (ALUs) to optimize signal process-

ing performance, and they are usually employed for high throughput real-time signal

processing applications. However, the fine grain programmability of the FPGA is

paid for by poor energy performances.

Figure 1.3: Power dissipation of commercial FPGAs

1.3 shows the power dissipation of commercial FPGAs. In a portable environ-

ment with a power budget of the order of mWs, the present FPGA architectures

will dominate the power budget allocation. For this reason an Application Specific

Integrated Circuit (ASIC) is chosen. The reprogrammability cost of the FPGA is

cut by implementing ad-hoc circuit to execute a specific purpose. In fact, the circuit

can be synthesized with the wanted technology scale and low-power techniques can

be easily applied at algorithm,circuit and device level. Moreover, the ASIC unit size

is significantly lower than that of the FPGAs.

6



1.3 – Document structure

1.3 Document structure

This document is structured following the logic process that has been used in order

to obtain the final hardware system. Three main logic steps were followed:

• High level coding of the Classification algorithm. This first step is

deepened in Chapter 3 and consists in studying and understanding how the

algorithm and the di↵erent phases of the Speaker identification process, writing

the system by means of high level functions in Matlab, testing its logical

functioning and analyzing constraints and performances.

• Conversion of code from high level to low level. Once the function-

ing of the system is validated, it is necessary to re-write and re-structure the

code with the final purpose of easily go through the fixed-point conversion.

This requires the study of every single function of the high level code, localize

the bottle-neck operations that require high computational e↵ort, high stor-

age demand and high decimal precision and re-model them in a low power

hardware-oriented design style. This crucial phase of the design with all the

innovative techniques, such as the Linear Piecewise Approximation Unit or

the Shifting Register Files, are discussed in Chapter 4.

• Hardware Design, Simulation and Synthesis. The final stage of the

process is dealt in Chapter 5. It consists in designing the actual hardware

blocks that execute the classification starting from the previously obtained

low-level Matlab code. In this section the Data Path and the Control Unit

are designed on paper, then described in VHDL language in the Libero SoC

Environment, simulated using Altera Modelsim and finally synthesized with

the RC Compiler tool by Candence.

• Reports and final results. At the end of Chapter 5, all the synthesis

results (power, area and timing) are reported and commented. A comparisons

between the performances of the software and the hardware version of the

speaker classifier is done.

7



Chapter 2

Backround theory

2.1 Mel-Frequency Cepstrum Coefficients (MFCCs)

A speech signal, from a spectrum analysis point of view, is an audio signal with a

frequency band that ranges approximately from 100 Hz to 17 kHz, including both

male and female voice capabilities. However, since this type of sound is generated

by a very specific apparatus of the human body, it has very unique and particular

acoustic characteristics, generally called features that can be very meaningful in

certain fields as linguistics, speech recognition or, such in the case of this work,

speaker recognition. Speech signals contains an high number of features whose

nature can be relevant or not depending on the application. Only specific types of

features are important in order to recognize a speaker. As explained in [1] ideal

features should

• have a large variability between di↵erent speakers and a small variability within

the same speaker

• be robust against noise and distortion

• occur naturally and frequently in speech

• be reasonably easy to extract from the speech signal

• be difficult to mimic

• not be a↵ected by long-term voice variation due to speaker’s health or other

human conditions.

Moreover, the number of feature should not be too high, since is proved that the

GMM cannot handle high-dimensional data. In this work, for instance, 12 features

8



2.1 – Mel-Frequency Cepstrum Coefficients (MFCCs)

for every 20 ms speech frames are extracted. From a physical point of view the

features can be classified as shown in 2.1.

High-level features

Phones,
Accent, semantics, 
pronunciation.

Prosodic and spectro-
temporal features

Pitch, energy, duration, 
rythm.

Short-term spectral 
features

Spectrum, glottal pulse 
features

+ Robust
- Difficult to extract
- Large training dataset
- Slow decision making

+ Easy to extract
+ small amount of data needed
+ Real time recognition
- Affected by noise and mismatch

Figure 2.1: Physical classification of speech features

The choice of the type of features depends on the application: generally high-

level features are used for capturing conversational-level data, while short-term ones

are suitable for describing the short-term envelope which can be used to discriminate

a voice timbre from an other. For this reason short-term spectral features are the

most suitable feature for a classic Speaker Recognition task, also due to their simple

nature and low storage demand. Since the speech signal is continuously changing

because of articulation movements, it is convenient to slice them in time frames

of 20-30 ms duration. Within these intervals the the signal is assumed to remain

stationary and a spectral features vector is extracted for each frames. The Mel-

Frequency Cepstrum Coefficient(MFCCs) are the result of a dimension reduction

applied to the actual spectral feature extracted, and they are a well-known to be

e↵ective in speaker recognition task. The extraction process of the MFCCs is dealt

later in the document.

9



2 – Backround theory

2.2 The Gaussian Mixture Model (GMM )

2.2.1 Model description

In order to perform a text-independent speaker identification, it is necessary to create

an acoustic model that describes the features of the speaker’s voice. The model

chosen for this work is the Gaussian Gaussian Mixture Model, a well-known method

first applied to speaker recognition by Reynolds, D. A in 1992 [1]. It consists in a

statistical process that models the distribution of each speaker’s acoustic features,

called MEL-Frequency Spectrum Features (MFCC), in a multidimensional space.

The Gaussian Mixture Model is the result of the fitting of a Gaussian Mixture

Density over a series of observations, that in this applications corresponds to the

phrases pronounced by the speakers.

A Gaussian mixture density is a weighted sum of M components. Its equation,

given the GMM, can be expressed as follow:

p(~x|λ) =
MX

m=1

p
m

b
m

(~x) (2.1)

where ~x is a D-dimensional vector, b
m

(~x), m = 1,...,M, are the component densities

and p
m

are the mixture weights. Each component density is a D-variate Gaussian

Function of the form,

b
m

(~x) =
1

(2⇡)D/2|⌃|1/2 e
− 1

2 (~x−~µm)0⌃−1
m (~x−~µm). (2.2)

The complete GMM Model λ is described by three parameters: the mean vector µ,

the covariance matrix ⌃ and the mixture weights p:

λ = {p
m

,µ
m

,⌃
m

} where m = 1,...,M. (2.3)

.

In order the mixture to be a true probability function, the weights must satisfy

the constraint that
P

M

m=1 pm = 1. In this application, every component of the

GMM represent an acoustic class, namely a distinct group of phonetic events, such

as vowels, nasals or fricatives. Thus, the mean vector µ
m

represents the average

10



2.2 – The Gaussian Mixture Model (GMM)

features for an acoustic class and the covariance matrix ⌃
m

indicates the variability

of features within the acoustic class.

2.2.2 GMM Parameters estimation (Training)

Building the GMM Model is equivalent to find the optimal values of its three pa-

rameters with respect the input observation (2.3). This stage is commonly known

as the Training phase of the model. It is based on the Maximum Likelihood Esti-

mation (MLE) of the parameters, a general method for estimating the parameters

of a stochastic process starting from a set of observations. More precisely is a max-

imization problem, since its purpose is to find the parameters that maximize the

model’s probability function over a set of observed samples. The probability func-

tion for a model λ is defined as the joint probability density of a set of observations

X = {~x1,~x2,..,~xF

} considered as a function of λ. Indeed p(X|λ) (2.1) is called prob-

ability function when is treated as a function of λ. In order to be able to apply the

maximum likelihood parameters estimation, the likelihood equation([4]) has to be

satisfied:
@p(X|λ)

@λ
= 0 (2.4)

Finding the GMM parameters

λ = {p
m

,µ
m

,⌃
m

} where m = 1,...M

that solve 2.4 from an analytic approach resulted in having non-closed form solu-

tions. This is why the maximum likelihood parameters can be found via an iterative

estimation procedure based on the Expectation Maximization (EM) . The basic idea

behind the EM algorithm is summarized as follows:

1. Initialize λ, set convergence threshold th
c

2. Estimate new model λ̄ such as p(X|λ̄) > p(X|λ)

3. Use estimate λ̄ as new model

4. It th
c

is reached, go to 5, otherwise go to 2

5. End

11



2 – Backround theory

2.2.3 Maximum Likelihood Classifier (Identification)

In the identification phase, the parameters found in the previous Training phase

are used to discriminate the speakers. The objective of this stage is to associate an

input test utterance to a previously modeled speaker. The structure dedicated to this

purpose is called Maximum Likelihood Classifier, and its design and implementation

is the focus of this thesis. The main action of the unit is fairly simple:

1. Compute the posterior probability (2.1) of the test utterance over each speaker

modeled in the training phase.

2. Declare the winner speaker selecting the maximum probability value.

In this segment the assumptions behind these two operations are shown.

Let’s consider the case of identifying a speaker from a unique feature vector ~x.

Recalling the Bayes’ Theorem

P (A|B) =
P (B|A) · P (A)

P (B)
(2.5)

the probability that ~x was pronounced by the speaker s is given can be expressed

as

P (λ
s

|~x) = P (~x|λ
s

) · P (λ
s

)

P (~x)
(2.6)

where P (λ
s

)is the a priori probability of speaker s to be the unknown speaker and

p(~x) is the probability density function for the observation ~x. As introduced earlier,

the winner speaker is the one that has the highest probability. The classification

rule is expressed as follows:

P (~x|λ
s

) · P (λ
s

)

P (~x)
>

P (~x|λ
t

) · P (λ
t

)

P (~x)
where t = 1,...,S (t 6= s) (2.7)

It is possible to simplify the terms P (~x) and assume that P (λ
s

) = P (λ
t

) meaning

that all the speakers have equal probabilities to be the unknown speaker. These two

assumptions yield

P (~x|λ
s

) > P (~x|λ
t

) where t = 1,...,S (t 6= s). (2.8)
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2.3 – TIMIT Acoustic-Phonetic Continuous Speech Corpus

The classification is now based only on evaluating each speaker’s probability density

function for the observation vector ~x and choosing the maximum value. Extending

the equation for many subsequent statistically independent observations {~x
r

}R
r=1 we

obtain:
RY

r=1

P (~x
r

|λ
s

) >
RY

r=1

P (~x|λ
t

) where t = 1,...,S (t 6= s). (2.9)

The left term is known as the probability function and in the following chapter it

will be explained its relationship with the logarithmic domain.

2.3 TIMIT Acoustic-Phonetic Continuous Speech

Corpus

All the speech samples used in this work comes from the TIMIT Acoustic-Phonetic

Continuous Speech Corpus([5]), a collection of phonemically and lexically tran-

scribed speech of American English speaker of di↵erent sexes and dialects. The

database was design to provide speech data to acoustic-related studies. TIMIT was

built under sponsorship from the Defense Advanced Research Projects Agency- In-

formation Science and Technology Office (DARPA-ISTO) and it is the result of the

joint e↵ort of Institute of Technology (MIT), Stanford Research Institute (SRI), and

Texas Instruments (TI).

The corpus contains a total of 6300 sentences, 10 sentences spoken by each of

630 speakers from 8 major dialect regions of the United States. 2.1 shows details

about the male/female and dialects distribution in the corpus. As illustrated in 2.2,

three type of sentences are present for each speaker:

• SA: dialect sentences meant to expose the dialectal variants of the speakers.

They are read by all 630 speakers.

• SX: phonetically-compact sentences, designed to provide a good coverage of

pairs of phones, with extra occurrences of phonetic contexts thought to be

either difficult or of particular interest. Each speaker read 5 of these sentences

and each text was spoken by 7 di↵erent speakers.

• SI: phonetically-diverse sentences, selected from existing text sources - the

13



2 – Backround theory

Table 2.1: DIALECT DISTRIBUTION OF SPEAKERS IN TIMIT

Dialect Region Directory # #Male #Female Total
New England 1 31 (63%) 18 (27%) 49 (8%)
Northern 2 71 (70%) 31 (30%) 102 (16%)
North Midland 3 79 (67%) 23 (23%) 102 (16%)
South Midland 4 69 (69%) 31 (31%) 100 (16%)
Southern 5 62 (63%) 36 (37%) 98 (16%)
New York City 6 30 (65%) 16 (35%) 46 (7%)
Western 7 74 (74%) 26 (26%) 100 (16%)
Army Brat (moved around) 8 22 (67%) 11 (33%) 33 (5%)

Brown Corpus (Kuchera and Francis, 1967) and the Playwrights Dialog (Hultzen,

et al., 1964) - so as to add diversity in sentence types and phonetic contexts.

Each speaker read 3 of these sentences, with each sentence being read only by

a single speaker.

Table 2.2: TIMIT SPEECH MATERIAL

Sentence Type #Sentences #Speakers Total #Sentences/Speaker
Dialect (SA) 2 630 1260 2
Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3
Total 2342 / 6300 10
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Chapter 3

GMM-based Classification

Algorithm

3.1 Code overview and structure

At the beginning of the work a software version of the system was implemented in

order to test the correctness of the operations from a logical point of view, without

dealing with precision, resources or power consumption. To do so, it is necessary to

first design and build the system in a developing environment where is easy to ex-

periment and test and, possibly, with built in high level functions. For this purpose,

the Matlab environment was chosen. Since probability calculations involve complex

computations like exponentials and logarithms, having a fully working software code

is crucial in order to have a solid base where to start designing the hardware from,

and be aware of the problems that are related to the functional point of view. The

choice to work in Matlab has many motivations:

• A scripting language, so it gives the possibility to either run commands through

scripts automatically or to alternatively execute them one-by-one by a human

operator, which is very helpful in the debug test and for testing quick com-

mands on the go.

• A wide set of built-in functions available and fully documented that fits the

first need to set up a code that is working without dealing too much about the

efficiency or the implementation of that particular function.

• A straightforward Input/Output. It is relatively easy both to import and

process external data and export results and draws plots.

• Useful toolboxes.
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3 – GMM-based Classification Algorithm

As shown in 3.1 The speaker identification process is made up of two consecutive

phases: the Training phase and the Identification phase.

MEL Features 
Extraction Training

Classification

Utterance A 
from Speaker 1

Utterance B
 from Speaker 2

Utterance C
 from Speaker 10

.

.

.

MEL Features 
Extraction

Utterance x
 from Unknown 

Speaker
.
.

Speaker # ID

Speaker M
odels

LPF Param
eters

 OFFLINE Software Training Phase

 ONLINE Hardware Identification-Phase

Figure 3.1: High-level representation of the Speaker Identification process

As the image shows, the identification phase is designated to be implemented in

hardware. This work, in particularly, is focused on the design of hardware classifier,

hence it will be assumed to have the online MFCC features ready. However, in this

preliminary design stage, both of the phases are executed by software functions in

the Matlab environment. In the training phase the Gaussian Mixture Models of a

specific set of speakers are built by extracting the MFCCs features form sentences

pronounced by each individual user. This preliminary stage is executed o✏ine and

it is necessary to provide the system the tools to perform the classification in the

identification phase. In the identification phase the actual classification happens:

an unknown input phrase is analyzed, the MFCCs are extracted and, using the pre-

computed speakers model, the probability that the phrase belongs to the Speaker

s (s = 1,...S) is computed. The winner speaker is the one that produced an higher

probability among the other. In order to give a clearer understanding of the flow, a

simplified pseudo-code of the algorithm is presented below:
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3.2 – Frame partitioning and logarithmic domain

1 f o r i = 1 : n speake r s {
2 t r a i n sp e e ch = read aud io f rom speake r ( i ) ;

3 t r a in mfc c = extract MFCC( t r a i n sp e e ch )

4 GMM( i ) = create GMM( t ra in mfc c ) ;

5 }
6 t e s t s p e e ch = read input aud io ( ) ;

7 t e s t m f c c = extract MFCC( t e s t s p e e ch )

8 f o r i = 1 : n speake r s {
9 l og prob ( i ) = compute prob ( te s t mfcc , GMM( i ) )

10 }
11 winner = find max ( log prob )

3.2 Frame partitioning and logarithmic domain

All the speech data used in this project come from the TIMIT database. As pre-

viously introduced, the database is organized in di↵erent folders, that corresponds

to di↵erent American English dialects. Since the phrases pronounced by the dif-

ferent speakers have di↵erent durations, it is convenient to fix the length of both

the test and the train phrase. The train speech length is usually set to 5 seconds,

and the test speech length can be set from 2 to 5 seconds. The variation of this two

parameters influences the accuracy and the speed of the system. Since computing

5 seconds of speech at the same time would require an enormous storage demand

and a huge latency, the audio sample is sliced in Tw = 20 ms duration frames (3.3).

In order to give more robustness to the frame partition and be sure not to lose any

voice articulation, the frames are overlapped by a time Ts that is usually set at 10

ms. In this way if an important feature occurs right at the end of the first frame,

for instance, it would be captured during the processing of the second. Doing so the

posterior probability is not calculated over the entire voice sample, but over every

single frame. Indeed the theory of the Maximum Likelihood Classifier treated in the

previous Chapter applies, since each frame can be considered statistically indepen-

dent observations of the unknown speaker. Hence, being X the set of subsequent

observations X = {~x1,~x2,..,~xF

},
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3 – GMM-based Classification Algorithm

P (X|λ
s

) =
FY

f=1

P (~x
f

|λ
s

) f = 1,...,F. (3.1)

Where F is the number of frame, X is the entire unknown speech sample, x
f

is the

current frame and λ is the GMM of speaker s calculated in the training phase. Now

it is clear how 2.8 applies to the current scenario. However, since the probability

values of each frame is a number very close to zero, the multiplication of the values of

many frames would lead to an extremely small number that would be very difficult

to represent. Moreover, thinking in an hardware perspective, multiplying such small

numbers, for hundreds of times would be computationally very expensive. For these

reasons it is more convenient to shift into a logarithmic domain. Thanks to the

logarithm property :

log(A · B) = log(A) + log(B) (3.2)

Hence, taking the logarithm on both terms on 3.1, we obtain:

L(λ) = log(P (X|λ
s

)) = log
$ FY

f=1

P (~x
f

|λ
s

)
%
=

FX

f=1

log
$
P (~x

f

|λ
s

)
%

(3.3)

The right term is known as the log probability function. In this way it is possible

to adopting a standard accumulation method, after having computed the logarithm

of every frame probability. It is interesting to notice that, although it would be

necessary to return in the linear domain in order to obtain the correct probability

value, for our purpose this operation is not necessary, since it only matters the

relative comparison between the probability values and not the single value itself.

Hence, the identification is performed in a logarithmic probability domain. as shown

in 1.1
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3.3 – Training

log(p( ·| λ1 ))

log(p(· | λf ))

ACCUMULATE 
FRAME

ACCUMULATE 
FRAME

SE
LE

CT
 M

AX

x1,…,xf Winner . . .

Figure 3.2: Block diagram of the Maximum likelihood classifier

=  Overlapping time (Ts )  
 = Frame duration (Tw)

Speech_length} { } {
Frame 1

Frame 2

Frame 3

Frame 4
. . .  . {Frame F

Figure 3.3: Overlapping frame explanation

3.3 Training

In the first section of the code, the parameters are defined. Analyzing them before

going through the code, is useful and helps understanding some of the important

parameters of the code whose modification can cause variations in performances.

The most relevant parameters are reported in 3.1. As mentioned in section 4.2, the

frames are 20 ms long and they are overlapped by 10 ms. In this way a 5 s speech

sample would be divided in 500 frames.

The purpose of the training phase is to build the models of the selected set of

speakers. This operation is executed in the code by the function:
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3 – GMM-based Classification Algorithm

Parameters name Value Description
M 20 Number of Gaussian Mixture Components
D 12 Number of MFCCs
Tw 20 analysis frame duration (ms)
Ts 10 analysis frame shift (ms)
Fs 16000 sampling frequency
Train speech length 2000 train speech length (ms)
Test speech length 5000 Test speech length (ms)

Table 3.1: SYSTEM CONSTANTS

1 Create GMModel ( speech ,M, D, f s , Tw, Ts )

that takes as inputs: the entire speech sample, the number of GMM components of

the wanted model, the number of feature to be extracted, the sampling frequency of

the speech sample, the duration of the single frame and the duration of the frame

overlapping. Inside the function two main operation are executed:

1. MFCCs Extraction

2. GMM Training (EM algorithm)

The features extraction is executed by the following Matlab built in function:

1 [CC, FBE, frames ] = mfcc ( . . . )

The process of the coefficients extraction involves filtering, short-term Fourier trans-

form, magnitude spectrum computations and compression. For the purpose of this

work is not necessary all the steps of the MFCCs extraction process, however an

in-depth analysis is reported in the appendix A. The mfcc() function returns three

parameters: CC is the matrix of Mel-Frequency Cepstral Coefficients (MFCCs) with

feature vectors as columns, FBE is a matrix of filterbank energies with feature vec-

tors as columns, FRAMES is a matrix of windowed frames. We are only interested

in the CC matrix.

After having obtained the coefficients, only D=12 of those are selected:
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3.3 – Training

1 MFCC = CC( ( 1 :D) , : )

The resulting MFCC matrix has as many columns as the number of frames (F )

and D rows. In this way every column of D coefficients correspond to the set

of observations for each frame. The GMModel is then trained with the built-in

function fitgmdist(X,k)

1 G=f i t gmd i s t (MFCC,M, ’ CovarianceType ’ , ’ d iagona l ’ , ’ Regu lar i za t ionVa lue ’

, 0 . 0 1 ) ;

The function fitgmdist(X,K) fits a k-components Gaussian mixture distribution to

the data X using the Expectation Maximization (EM) algorithm. The matrix X in

this application is the MFCCs features matrix of dimensions [D x F ]. Two directives

are added to the inputs of the function:

• ’CovarianceType’: ’the covariance matrix is restricted to be diagonal. This

reduces the complexity of the system and allows semplifications to the hard-

ware.

• ’RegularizationValue’ A non-negative regularization value is added to the di-

agonal of each covariance matrix to ensure that the estimates are positive-

definite.

The output of the function is a Matlab structure G that contains the param-

eters of the GMM Model.

Finally the parameters are extracted from the structure and saved in the proper

directory:

1 Save GMM Model ( GMModel .mu, GMModel . Sigma , GMModel .

ComponentProportion , f i l e name , mode l d i r )
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3 – GMM-based Classification Algorithm

3.3.1 Identification

The section dedicated to the identification executes the following operations

1. Extract the MFCCs of the unknown input utterance X = {~x1,...,~xF

}, with
the same function presented in the last section.

2. For every speaker s compute the posterior probabilities of every frames (ob-

servations of the unknown speakers) P (λ
s

|~x
f

) (2.3). Compute the logarithm

of the probabilities of each frame (3.3) and accumulate them (3.2).

3. Select the maximum probability to declare the winning speaker.

3.4 Performance considerations

In order to understand if the system is actually working, the classification is applied

in multiples directories of the TIMIT database. As illustrated in 2.1, every directory

contains three di↵erent type utterances for each speaker, labeled as “SA ”, “SX ”and

“SI ”. In [1] is explained that the SI and SX-type utterances are more suitable for

the training, while the SA-type are more suitable for the testing. 3.4 shows the

performance di↵erence between two system: both of them are trained with the SI

and SX files, but the first system is only tested with the SA2 utterances, while

the second is tested with both SA1 and SA2 samples concatenated. The better

performances of the second system demonstrates that, not only the length of the

training sample is relevant, but also the amount of input data. Is intuitive to think

that if the unknown user talks for a longer time is more likely to be recognized.
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3.4 – Performance considerations

Classification success with "SA2"-type testing samples
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Figure 3.4: % of success: SA2 only train samples (up); SA1+SA2 (down)
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Chapter 4

From Software to Hardware

4.1 Introduction

Now that the functioning of the algorithm is tested using Matlab high-level func-

tions, it is necessary to unroll all the computations and write a low level code that

only executes a series of simple operations in order to step towards the hardware

implementation. From now on the focus of the work is shifted on designing the

Maximum Likelihood classifier only, since is the purpose of this thesis. Recalling

1.1, the training phase executed o✏ine by the software that has just been designed.

The following chapter is going through the steps taken for the transformation of

the code from high-level to low-level code.

4.2 Hardware’s computational requirements

Putting together 2.1, 2.2 and 3.3 it is possible to write a single equation that shows

all the computations behind the posterior log-probability calculation.

p(X|λ
s

) =
FX

f=1

log

⇢
MX

m=1


p
s,m

2⇡
D
2

p
|⌃

s,m

|
exp(−1

2
(~x

f

− ~µ
s,m

)0⌃−1
s,m

(~x
f

− ~µ
s,m

))

)*

(4.1)

After having applied 4.1 to each speaker s = 1,...,S it is necessary to select the

maximum probability, that indicates the unknown speaker. The calculation in-

volves a lot of complex operations such as exponentials, logarithms, multiplications,

divisions, matrix determinant, vector-matrix multiplications and square roots. Al-

though implementing all these operations in hardware can seem intimidating and

computationally too expensive, it is possible to reduce the computational load by
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4.2 – Hardware’s computational requirements

making some considerations about the nature of the variables, in order to under-

stand which operation must be executed real-time by the classifier and which one

can be pre-computed o✏ine. Referring to 4.1, all the parameters labeled with the

subscripts s are derived from the speakers’ models λ
s

that are computed in the

training phase. Let’s re-write 4.1 as follows:

p(X|λ
s

) =
FX

f=1

log

⇢
MX

m=1


K

s,m

· exp(−z
f,s,m

)

)*
(4.2)

where

K
s,m

=
p
s,m

2⇡
D
2

p
|⌃

s,m

|
, (4.3)

z
f,s,m

=
1

2
(~x

f

− ~µ
s,m

)0⌃−1
s,m

(~x
f

− ~µ
s,m

) (4.4)

4.2.1 Ks,m computation

The factor K
s,m

only depends on numeric constants and factor derived from the

speakers’ models: D is the number of the selected MFCC’s features, set to 12; p
s,m

is the proportion factor from the GMM Model; ⌃
s,m

is the diagonal covariance

matrix also derived from the GMM Model:

⌃
s,m

=

2

66664

σ
s,m

(1) 0 0 . . . 0

0 σ
s,m

(2) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . σ
s,m

(12)

3

77775

For this reason K
s,m

can be precomputed in the o✏ine training phase and stored

on-chip. In this way the multiplications,the division, the determinant calculation

and the square root necessary to calculate the parameter don’t have to be executed

real-time by the actual hardware. This consistently reduce the hardware complexity.

However, the value ofK
s,m

changes for every GMM components and for every speak-

ers so actually a vector of numeric values has to be stored. This storage overhead

will be discussed in Chapter 6.
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4 – From Software to Hardware

4.2.2 zf,s,m computation

Unlike K
s,m

, z
f,s,m

does depend on the input MFCC vector extracted from the

unknown speech ~x
f

, therefore its value cannot entirely be pre-computed o✏ine.

Since a matrix-vector multiplication is involved, it is useful to further lower the

complexity by expanding the calculation. Since every frame of the unknown input

is described by D = 12 MFCC components we have:

0

BBBB@

x
f

(1)

x
f

(2)
...

x
f

(12)

1

CCCCA
−

0

BBBB@

µ
s,m

(1)

µ
s,m

(2)
...

µ
s,m

(12)

1

CCCCA
=

0

BBBB@

x
f

(1)− µ
s,m

(1)

x
f

(1)− µ
s,m

(2)
...

x
f

(1)− µ
s,m

(12)

1

CCCCA
=

0

BBBB@

y
f,s,m

(1)

y
f,s,m

(2)
...

y
f,s,m

(12)

1

CCCCA
(4.5)

re-writing the parameter z
f,s,m

expliciting the matrix-vector multiplication we have:

z
f,s,m

=
1

2
·

0

BBBB@

y
f,s,m

(1)

y
f,s,m

(2)
...

y
f,s,m

(12)

1

CCCCA

T

X

0

BBBBB@

1
σs,m(1) 0 0 . . . 0

0 1
σs,m(2) 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1
σs,m(12)

1

CCCCCA
X

0

BBBB@

y
f,s,m

(1)

y
f,s,m

(2)
...

y
f,s,m

(12)

1
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(4.6)

Expanding the computation we obtain:

z
f,s,m

=
1

2

✓
y
f,s,m

(1) · 1

σ
s,m

(1)
· y

f,s,m

(1)

◆
+ ..+

✓
y
f,s,m

(12) · 1

σ
s,m

(12)
· y

f,s,m

(12)

◆
=

=
1

2

✓
(y

f,s,m

(1)2 · 1

σ
s,m

(1)

◆
+ ..+

✓
y
f,s,m

(12)2 · 1

σ
s,m

(12)

◆
=

=
1

2

D=12X

d=1

y
f,s,m

(d)2 · 1

σ
s,m

(d)

Developing the vector-matrix multiplication it is possible to get rid of multi-dimentional

arithmetics (that would required dedicated hardware) by adding an other stage of
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4.3 – Computational Challenges: exponentials and logarithms

accumulation. We can re-write z
f,s,

in the following way.

z
f,s,m

=
1

2

DX

d=1

(x
f

(d)− µ
s,m

(d))2 · 1

σ
s,m

(d)
(4.7)

In this way, by simply re-arranging the equation, we decided to execute the vector-

matrix multiplication using a serial approach. This results in an additional simpli-

fication of the hardware and considerably lower power consumption. An alternative

high-speed solution is proposed in [6], consisting in a serial-parallel multiplier that

allows to execute the vector-matrix product in parallel. However, is important to

remark that our timing constraint is very relaxed (10ms) hence every step of the

design is thought to prioritise the power consumption over the performance.

From 4.7, it is possible to notice that the factor 1
σs,m(d) can be pre-computed

o✏ine. We can now express the re-arranged equation for the posterior probabil-

ity calculation, which highlight the low-level operations that the hardware would

execute:

p(X|λ
s

) =
FX

f=1

log

⇢
MX

m=1


K

s,m

· exp(−z
f,s,m

)

)*
(4.8)

where

K
s,m

=
p
s,m

2⇡
D
2

p
|⌃

s,m

|
(4.9)

is going to be entirely precomputed o✏ine and stored on-chip and

z
f,s,m

=
1

2

DX

d=1

(x
f

(d)− µ
s,m

(d))2 · 1

σ
s,m

(d)
(4.10)

is going to be calculated online by the hardware units.

4.3 Computational Challenges: exponentials and

logarithms

4.8 explicits the main arithmetics of the classifier, which involves
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4 – From Software to Hardware

• 1 Subtraction

• 1 Square root

• 2 Multiplications

• 3 Accumulations

• 1 Exponential

• 1 Logarithm

Note that the list above does not include the multiplication for 1
2 that can be ex-

ecuted by only shifting the wires to the left by one position, without any need of

hardware resources. This is valid for every multiplication or division for a factor that

is a power of two, and this consideration will be the core of further optimizations

that will be introduced later.

One of the harder challenge of this thesis, is to find a clever solution to implement

the exponential and the logarithm in hardware, without impacting the power too

much. A classic and well-known method for implementing complex function in

hardware is using Look Up Tables (LUT). Unfortunately LUT- based approximations

su↵ers from large on-chip storage demand([6], [7]). Moreover, since in a digital

design they are usually implemented by means of ROM or FLASH memories, the

high number of accesses would hardly a↵ect the power demand of the classifier.

In addition, the input values of the logarithm, are probability values that goes

from 0 to 1. This means the slice of logarithmic domain that the data occupies is

very non-linear and steep. This means that, in order to have a sufficiently precise

grid of discrete values that would be stored in the LUT, a very high precision is

required in order to avoid saturation phenomena. This is due to the intrinsic nature

of the logarithm. This also excludes the possibilities to use a series of well-known

approximation techniques ([?]) based on the Mitchell Approximation, that approx-

imates the logarithm with a reasonably low error only in the part of the domain

where x is greater than one, in fact the formulation is usually expressed as the

approximation of y = log(1 +m).
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4.3 – Computational Challenges: exponentials and logarithms

4.3.1 The Log-Add algorithm

In this section the log-Add algorithm is presented and the reasons why was not

chosen for this application are discussed. In [7] an other technique that simplifies

the problem of the logarithm and the exponential computation is presented: the

log-add technique exploits a logarithm property to avoid the computation of the

exponential. 3.3 shows the basic principle behind the algorithm.

log(A+B) = logA

✓
1 +

B

A

◆
= logA+ log

✓
1 +

B

A

◆
, (4.11)

where A > B. If A < B A and B has to be switched in the formula. In the solution

proposed in [7], the system obtains the term log(1 + A

B

) by calculating

log(
B

A
) = logB − logA, (4.12)

and using a LUT to convert log(B
A

) to log(1 + B

A

). In the paper is explained that

the dimension of the lookup table used for this mapping is much smaller than the

one required for computing the exponential, that in this case doesn’t need to be

computed, since logA and log B in this application corresponds to the logarithm of

the posterior probabilities, whose exponential is cancelled by the logarithm:

logA ! log(p
m

b
m

(~x
f

)) = log(p
m

)−D

2
log(2⇡)−1

2
log(|⌃

m

|)−1

2
(~x

f

−µ
m

)0⌃−1
m

(~x
f

−µ
m

)

(4.13)

In this way the problem of the exponential is bypassed in a smart way, but the

following resource overhead is introduced

• Log-add look up table

• Hardware logic to verify A > B made with a comparator, an adder, a subtrac-

tor and a multiplexer (see Figure 7 in [7])

Although this is a straightforward and very used in the speaker recognition ar-

chitectures, the need of accessing a LUT many times can result in a higher power

consumption, for this reason the focus is shifted to an other technique called Linear

Piecewise Function(LPF)-based approximation.
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4 – From Software to Hardware

4.4 Linear Piecewise Function-based (LPF) ap-

proximation

In the article “An Efficient Digital VLSI Implementation of Gaussian Mixture Models-

Based Classifier”form Minghua Shi and Amine Bermak ([6]) the LPF-based imple-

mentation is proved to be much more hardware-friendly. This technique is not based

on a mathematical re-structuring of the posterior probability equation, but is based

on the straight piecewise approximation of the exponential function. It is impor-

-4,8 -4 -3,2 -2,4 -1,6 -0,8 0 0,8 1,6 2,4 3,2 4 4,8

-2,4

-1,6

-0,8
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2,4

1

a b e cc db’ c’

Figure 4.1: Four segment-LPF approximation of the exponential

tant to notice that even if we have to compute an exponential and a logarithm, we

are interested in approximating the exact same function since the logarithm is the

inverse function of the exponential. 4.1 shows an example of LPF approximation.

In this case four segment are used to approximate the function and, clearly the

greater is the number of segment used, the more accurate the approximation would

be. Performing this type of operation, e↵ects the whole Gaussian Mixture Model: in

fact, the gaussian’s shape would be e↵ected as well however, the decision boundaries

mismatch is minimum, hence the classification capability of the system would not be

compromised(??) . This statement can be false depending on the variability of the

input data, in fact the complexity of the LPF, hence the number of segments used

for the interpolation may vary depending on the application. In [6], the authors

presented an hardware LPF unit that can perform the approximation using three

di↵erent level of complexity: one, two or three segments. In this way the system

is reusable for di↵erent type of data that requires di↵erent precision. Since we are

dealing with only speech data, we are not interested in providing this flexibilty. For
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4.4 – Linear Piecewise Function-based (LPF) approximation

this reason the complexity is set to two segments, and it would be eventually in-

creased if a lack of accuracy is observed. The value of the approximated exponential

would have a value depending in which segment the input value is located. Referring

to 4.2 that shows a two segment-lpf, the output is calculated as follows:

LPF (z) =

8
>>><

>>>:

1, for z < a

m1(b− z), for a  z < b

0, for z ≥ b

(4.14)
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Figure 4.2: two segment-LPF

From 4.14 it’s clear that the computation of the approximated exponential cor-

responds to executing basic operations such as comparisons, subtractions and mul-

tiplications, that does not require any memory access. It is interesting to notice

that, even if we are heavily distorting the exponential function, hence the GMM

gaussians, we are not compromising the functioning of the system, since we are not

interested to the actual values posterior probabilities for the input samples over each

individual speaker, but only on finding the maximum one. This means that the val-

ues of the actual likelihoods are wrong and meaningless but their classification is

still valid (if the decision boundaries are not compromised).

4.4.1 Parameters estimation and data localization

In order to be able to implement the LPF, it is first necessary to find its parame-

ters that are the junction points between the segments (a,b,c ...) and the angular

coefficients of the segments (m1, m2, ...). The number of parameters to find de-

pends on the level of complexity of the LPF. As previously said, the complexity
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is initially set to two segments to avoid possible useless complications, hence the

parameters to be found are: a,b and m1. Since this operation is not supposed to

be executed by the hardware, it is possible to rely to the computational power of

Matlab. In [6], the parameters a and b are obtained by performing a grid-search

that selects the two parameters that give the lowest performance mismatch with re-

spect the original GMM. However, since we also need to approximate the logarithm,

that would require a di↵erent set of LPF parameters, the operation of minimizing

a performance cost-function resulted too complex to implement. Moreover, in this

phase of the project we are not interested in finding the optimal parameters combi-

nation, but we just need a combination that provides a reasonably low performance

loss with respect the original GMM classifier. Hence, an alternative solution based

on data localization is performed as follows: the same data used for building the

GMM during the training phase (SI and SX audio samples from TIMIT database)

are used to find the optimal parameters. More precisely all the values of z in every

training-classification process are concatenated and ordered in a vector z training.

This operation has a double purpose: firstly, allowed us to understand the order

of magnitude of the LPF Unit input z ; secondly, it defines the slice of exponential

domain that actually needs to be approximated: since we are using a very rough

approximation of the exponential in order to minimize the hardware required, it is

not possible to approximate the exponential function over a wide portion of domain,

since the approximation would be very poor and all the data would be saturated

to the same probability. In 4.3 the location of the training input samples is shown.

Note that they are not the actual values that are going to be used as LPF inputs in

the actual identification phase, but, since they come from the same speakers, they

give a trustable domain localization for the test data.

Once the vector z training is sorted, the domain of interest is established. The

parameters a and b are chosen by setting the wanted percentage of data correspond-

ing to their position. In order to better explain this concept an example is shown

below:

Let’s consider the case of a four segments-LPF (4.1), the function would be
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4.4 – Linear Piecewise Function-based (LPF) approximation

computed as follows:

LPF (z) =

8
>>>>>>>>><

>>>>>>>>>:

1, for z < a

m1(b0 − z), for a  z < b

m2(c0 − z), for b  z < c

m3(d− z), for c  z < d

0, for z ≥ d

(4.15)

The critical areas of the approximation are where the inputs are saturated to the

same output value, that is to say where z < a (LPF(z) = 1) and where z ≥ d (LPF(z)

= 0). This would result in the same posterior probability value, so the decision

boundary mismatch would be mainly determined form the two saturation areas.

For this reason is reasonable to chose to saturate a low percentage of the data, in

order to spread most of the values between a and d, where they are weighted through

the segments in a monotonic decreasing way. The following choice of percentages

resulted efficient :

• a ! 2%

• b! 30%

• c! 75%

• d ! 95%

In this way we can control the amount of saturated data and or fitted data, being

sure that our approximation is actually acting on the data in an efficient way.

It is interesting to analyze a numerical example, to have a quantitative idea of

what explained above: The z training vector for 10 speakers in the directory DR4

has 59001 components. The range of values is

0  z  5533

, hence if we don’t consider any type of percentage we would start approximating

from 0 till 5333. However, 4.3 shows that the 95% of the data are included in the
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interval (0 : 190), which is a 30 times smaller domain than the one containing the

100% of the data (0:5533). This means that we are compromising 5% in order to

concentrate the domain where most of the data are, obtaining a more accurate fit.

4.3 also illustrate an other challenge of the hardware implementation: most of

the data are in an area of the domain where the value of the exponential is very

close to zero. This introduce the problem of dealing with very small numbers and

very small slope coefficients. This problem will be tackled in the last section of this

chapter.

0 25 50 75 100 125 150 175 200

0,25

0,5

0,75

1

a 
(2%)

b
(30%)

c
(75%)

d
(95%)

Figure 4.3: DR4, 10 Speakers’ training data percentage distribution

In 4.4 a simplified overview of the functions used to implement the parameters’

selection is illustrated.

The process for the logarithm is not explicitly described because is exactly the

same procedure and the same considerations applies, with the di↵erence that the

domain and the co-domain are switched with respect to the exponential.
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4.4 – Linear Piecewise Function-based (LPF) approximation

MFCC Extraction

[pos_percentage] = 
Find_percentage(z_training,wanted_percentage)

[a,b,c,d,m1,m2,m3] = 
LPF_parameters_extimation(z_training) 

Z_training

%a,%b,%c,%d,z_training Pos_a, pos_b pos_c, pos_d

LPF Unit

a,b,c,d,m1,m2,m3

  z computation

Training Input speech

Test input speech

MFCC Extraction
Winner extimation

LPF parameters

Z_training 
computation and 

sorting

TRAINING

IDENTIFICATION

Figure 4.4: Overview of the LPF parameter extraction

4.4.2 LPF complexity and results

After many tests it turned out that a two-segments approximation is enough to

have a performance very close to the one of system implemented with the original

exponential function. For the logarithm instead, at least a three segments-LPF

is necessary to make the system work, under three segments the logarithm is not

evaluated properly. Moreover, as shown in 4.1, the complexity of the exponential

System % of success (10 speakers)
Unbounded exponential 97.5
Two-segment LPF() 97.1
Three-segment LPF() 97.1

Table 4.1: % OF SUCCESS WITH DIFFERENT EXP. APPROXIMATIONS

function was not crucial to the classification percentage. A comparison between the

classification success varying the length of the test speech length is reported in 4.5,

for ten speakers tested and in 4.6 for twenty speakers. We can note that longer is

the test speech, higher is the success percentage. It is interesting to note that a

shorter test speech length the lower the number of frames to be computed is, hence

the system is faster, but also the amount of dat processed is less and this is the

reason of the lack of precision when short voice samples are used. We can note from

4.7 that the success when analyzing 20 speakers is significantly lower. This happens

because the more are the speakers and the smallest are the decision boundaries, that
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might be violated from a weak LPF approximation; moreover, the LPF parameters

are estimated using only the train data from the first ten speakers, so the parameters

are related only to half of the speakers’ data. It is possible to include all the speaker

in the parameter estimation, but this required a considerable amount of time due

to the need to compute a concatenation of very large vectors. since the hardware

is going to be designed for the classification of 10 speakers. In the following section

the precision needed for all the variables are studied and the code is finished so that

the transition to the hardware is possible and clear.
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Figure 4.5: % of success: two segment-LPF and di↵erent speech lengths (10 Sp.)

4.5 Precision analysis

For the whole design process until now the number of digits or the precision of

the computations employed, were not taken into account. Now that we have an

hardware-like low level code, the last step is to adapt the code to a numeric format

compatible with an hardware implementation. Working in Matlab a floating-point

double precision was used; the purpose of this design stage is to cut all the un-

necessary digits of every parameter of the classifier so that a conversion to fixed

point is feasible without significant performance loss. Even if in the system are in-

volved numbers that di↵ers by many orders of magnitude, the idea of implementing
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Figure 4.6: % of success: two segment-LPF and di↵erent speech lengths (20 Sp.)
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Figure 4.7: % success comparison: 10 Sp. VS 20 Sp. VS speech length

a floating point data-path is excluded due to the complexity overhead that would

be introduced, that is possible to overcome by adapting some precision technique

that will be shown later. Since we are dealing with fractional, positive and negative

numbers, a signed format will be necessary in the hardware implementation. More-

over, the signed binary number will need an integer part and a fractional part, the

following notation is used to represent the number of integer and fractional digits in
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Figure 4.8: Decision boundaries illustration

a binary number:

[integer digits].[fractional digits] ! IIII.FF ! 4.2

The arithmetic rules behind a fractional binary number will be discussed in the

next chapter.

In order to have an idea of how many bit the system requires in general, we used

the Matlab tool “Fixed Point Converter ” that runs the code and calculates the

ranges of all the variables involved in the program. In order to do so the code had

to be restructured so that the main work as a test-bench for the invoked function.

The data analysis performed from the tools applies to all the function called from

the main. Hence the GMM-based classifier that we derived was re-arrange so that

it could have been written as a function, in order to be processed from the tool.

?? shows a screen-shot where it is possible to observe the range of values that the

previously mentioned variable z can assume.

With a trial and error process, all the input parameters are truncated to the

minimum number of decimals that keep unchanged the performance.

The number of bit required using a signed representation is computed with the

38



4.6 – Numeric Hardware Optimizations

Figure 4.9: “Fixed Point Converter”tool showing the range of z values

following equations:

n bit = dlog2(| range |)e+ 1 (4.16)

4.6 Numeric Hardware Optimizations

With the LPF-based approximation of the exponential and logarithm we avoided

the use of any look up table, and the only parameters that have to be stored are

found for every set of speaker, hence the storage required is one register for each

LPF parameter. However, a potentially expensive operation is introduced: the

multiplication for the slope coefficients of the approximation segments. In addition

to this problem, the coefficient are very small (m1 = −1.4 · 10−4) in the case of the

exponential since, as previously shown, the samples are located in a domain area

where the exponential function is very close to zero. Viceversa, for the logarithm,

the slope coefficient would be very high (ml1 = 6.7 · 1014, ml2 = 1.2 · 1016). This

would require a multiplication with very di↵erent order of magnitude, so with a

large number of bits to cover the all range.

For this reason, since we can manipulate those parameters in the training phase,

the problem of dealing with too large or too small numbers was solved by intro-

ducing multiplications constants so that all parameters were in a reasonable range.

Recalling the main log-probability equation

L(λ
s

) =
FX

f=1

log

⇢
MX

m=1

K
s,m

exp(−z
f,s,m

)

*
(4.17)

and substituting the exponential and the logarithm function with the LPF-based

approximation (in a case where both the slope coefficients are involved), we obtain:

L(λ
s

) =
FX

f=1

ml1

✓
MX

m=1

K
s,m

m1(z
f,s,m

− b)

◆
− bl

)
(4.18)
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At this point, a multiplication constant 240 is used to compensate too big or too

small coefficients:

L(λ
s

) =
FX

f=1

ml1

240

✓
MX

m=1

240 ·K
s,m

m1(z
f,s,m

− b)

◆
− 240 · bl

)
(4.19)

In this way all the coefficient are compensated and the global result is not

changed.

We still have to deal with all the multiplication introduced. In [6] the slope

coefficient are approximated to the closest power of two, so that the multiplication

does not requires an actual hardware multiplier, but only a wires shift. This idea was

tested, and the system didn’t show any precision loss, therefore the same technique

is applied to all the multiplication constant introduced: ml1,ml2, K
s,m

, m1.

Doing is is not necessary to save the actual values on-chip, but only the number

of shifts that corresponds to the multiplication for the closest power of two of the

parameter. This resulted feasible in terms of precision, and gives a double optimiza-

tion: small numbers to store (the shifts can go from -16 to 16) and no multipliers

needed. This requires the implementation of a programmable shifter, that will be

studied in the next chapter.
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Chapter 5

Hardware GMM-based Classifier

5.1 Architecture

The final stage of this thesis is the actual hardware implementation of the classifier.

In this chapter a top-down approach is used to analyze the system:

5.1.1 Top view

5.1 shows the top-view of the classifier.

CONTROL UNIT
(FSM)

Testbench

GMM-Based Classifier

LPF parameters          GMM Models

Parameters 
Memory

Input shifting-
Register File

Input MFCC

LPF and GMM parameters

Input MFCC

Clk, Rst, GMM parameters

WINNER

DATAPATH

Control Signals

Offline
 Training

Figure 5.1: Top view of the Hardware GMM-Classifier

It consists of an execution unit or Datapath and a Control unit. This last is im-

plemented as a Finite State Machine (FSM) and it communicates with the datapath

exchanging control signals. A testbench reads all the LPF and GMM parameters and

provides them to the datapath. Moreover it replaces the Online MFCC extractor

that is necessary to complete the identification system providing, with the proper
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5 – Hardware GMM-based Classifier

timing, the MFCC of the input speech, that for this purpose are pre-computed and

stored in a file, like all the parameters. The implementation of the MFCC extractor

is subject of future works.

5.1.2 Control Unit

A good way to understand the system behavior, is to present the Control Unit first,

so that the reader has an understanding of the logical processes that compose the

classification process, before analyzing the hardware needed. The Control Unit was

realized as a Finite State Machine, meaning that the unit goes through the states

following certain conditions, that can be established by control signals coming from

the Datapath, or from the simple clock event.

5.2 illustrates the entire control unit:

RESET

LOAD Frame x(f)

LOAD u(f,s,m,d), 
EPS(f,s,m,d)-1

LOAD ELPF Unit
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COMPUTE Z>a
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LOAD ml2, bl

LOAD ml1, bl’
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COMPUTE (x(f)-u(f,s,m,d))2
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Figure 5.2: Control Unit states diagram

42



5.1 – Architecture

The rectangular blocks represent states, while trapezoidal blocks represent con-

ditional branches derived from control signals coming from the execution unit. The

elevated number of states makes the representation of the diagram tricky to follow,

hence a color code is used. In the following section of the chapter the flow of the

operation is described, and an explanation of every state is given. The reader shall

also refer to 5.3 in order to understand the main hardware involved along the states.

All the units mentioned in this section will be treated in depth in the next Datapath

section.

The control unit can be divided in five consecutive stages, that are color coded in

5.2: the first big portion of states (grey) is dedicated loading of the LPF parameters :

these are fixed for every set of speakers so the loading only happens in the beginning

of the classification process. This phase strictly depends on the type of memory

where the parameters are stored, but this is not a problem treated in this project,

and all the values are stored in files that are read from the testbench during this

stage.

The following group of states (orange) are committed to the calculation of z
f,s,m

(4.2). This is done processing the d = 12 components singularly, executing arith-

metical operations by means of an Arithmetic Logic Unit and a Programmable

Shifter. At the end of this stage the components are accumulated from the ac-

cumulator Acc d.

The next stage is colored in yellow, and it represents the computation of the

exponential. The main character of this stage is the Exponential Linear Piecewise

Function (ELPF) Unit. An algorithmic optimization is done in this stage: when

z
f,s,m

is greater than b, the output of the exponential is zero, meaning that there

is no need of any probability calculation in the current accumulation cycle, so the

control unit skips the accumulation cycle, saving energy and time. On the other

hand, when z
f,s,m

is lower or equal to a the output is one, and the value is directly

loaded in the register Acc M IN by means of the multiplexer mux6 (5.3). At the end

of this stage the probability of a single GMM component is ready and is accumulated

over the M components.

The green set of states is dedicated to the logarithm computation of the frame

probability of the current speaker, just calculated over all the M GMM components.

It is possible to notice an higher number of states in comparison with the ELPF
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computation, and this is because the hardware of the LLPF uses half of the resources,

hence, a greater control is needed. In fact, the LLPF unit checks the position of the

input by comparing it with its parameters once at time, and this is why the signal

log lower is checked two times in two di↵erent moments. This can be more efficient

since the if z
f,s,m

is lower than b, then the second comparison is not performed,

saving dynamic power. A similar “bypass ”optimization is implemented here: if

the output of the LLPF is zero the value is directly loaded in the Acc f In register

trough mux5.

This whole cycle is performed for every GMM component with every Speaker

models for every frame.

Finally, when the last frame is processed, the Winner Takes All (WTA) stage

(blue) comes into play. This stage selects the maximum speaker’s probability over

all the probabilities, that were saved in separate registers thanks to the shifting

register-file architecture that will be presented later.

States description

A brief explanation of the main function of the states is already written inside the

box of each state. However, in order to have a full understanding, in this section

all the thirty-four states of the control unit are described. The reader can use the

following list as a reference when the datapath is studied. The names of the states

are reported on the upper side of the state blocks 5.2.

• RESET: wait until the start signal is asserted.

• LD AB: load the ELPF parameters a and b into the ELPF registers.

• LD M1 CL: load the ELPF slope coefficient shifts m1 and the LLPF param-

eter cl.

• LD ML2 BL: load the LLPF slope coefficient shifts ml2 and the LLPF pa-

rameter bl.

• LD ML1 BLS: load the LLPF slope coefficient shifts ml1 and the LLPF

parameter bl’.
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• LOAD FRAME: parallel load of the current frame MFCC vector x in the

Input shifting-Register File

• LOAD MU EPS X: load the current speaker’s GMM parameters µ
s,m

(d)

and 1
σs,m

(d)

• X MU2: calculate (x
f

(d)− µ
s,m

(d))2

• SIGMA X MU2: calculate (x
f

(d)− µ
s,m

(d))2 · 1
σs,m(d)

• WAIT D: wait the acc D In to sample the data.

• ACC D: Accumulate over d and check if the d-counter has asserted its ter-

minal count signal D TC

• INCR D: Enable the d-counter, enable the Input shifting-register File so that

the next component of x
f

is available on the next clock cycle.

• LAST ACC: Wait the last accumulation addition to be stored.

• LOAD EXP: Enable the Exp in register.

• EXP LPF: load K
s,m

(d); compare z
f,s,m

, a and b and establish ELFP Unit

output. Check if the signals exp zero or exp one are asserted.

• M1 SH: perform a shift of the ELPF Unit output by m1.

• K SH PREP: enable the one and the K FBK registers.

• K SH:compute the probability of the current GMM component by shifting

the partial result by K
s,m

(m).

• ACC M: Accumulate over M and check if the m-counter has asserted its

terminal count signal M TC.

• INCR M: Enable the M-counter ; Enable the d-counter ; clear d ; enable the

Input shifting-register File so that the next component of x
f

is available on

the next clock cycle.

• LOAD LOG: enable the register Log In.
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• LOG LPF: clear M; compare the probability data with the LLPF parameter

bl and check if the signal log lower is asserted.

• BLS: subtract the LLPF parameter b0 to the input of the LLPF unit.

• ML2 SH: shift the output of the LLFP unit by the value ml2 ; enable the

Acc Fr In register.

• SUB C: compare the probability data with the LLPF parameter cl and check

if the signal log lower is asserted.

• CLS: subtract the LLPF parameter c to the input of the LLPF unit.

• ML1 SH: shift the output of the LLFP unit by the value ml1 ; enable the

Acc Fr In register.

• LOAD ZERO: enable the registers zero and Acc Fr In.

• ACC FR: Accumulate over F and check if the S-counter and the F-counter

have asserted their terminal count signals S TC and F TC.

• INCR SP: enable the S-counter ; enable theM-counter ; enable the d-counter ;

clear d ; clear M ; enable the Input shifting-register File so that the next com-

ponent of x
f

is available on the next clock cycle; enable the Speaker Shifting-

Register File to shift the active speaker for the next cycle.

• INCR FR: enable the F-counter ; enable theM-counter ; enable the d-counter ;

clear d ; clear M ; clear S ; enable the parallel load signal of the Input shifting-

register File so that the next frame can be loaded in the next clock cycle;

enable the Speaker Shifting-Register File to shift the active speaker for the

next cycle.

• WTA PREP: enable the Speaker Shifting-Register File to shift the active

speaker so that its output is loaded in the WTA Unit.

• WTA: compare the new probability with the old one and keep the higher.

• WINNER: load the winner register.
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5.1.3 Datapath

Overview

The datapath is nothing more than the implementation of 4.2 that was derived be-

fore. It is crucial to start with the following premise: the purpose of this design is

not to provide an ultra-low power and highly optimized architecture, but to create a

solid and functioning base that shows the possibilities that this type of implementa-

tion approach can have. The system was highly optimized from the algorithm point

of view, in order to provide a minimal and low power data-path, however we will

still see an optimization range that was not fully exploited in this work; for instance,

some of the blocks, like the multiplier or the shifter, were built using a behavioural

VHDL description that may not be the most efficient.

5.3 illustrates the Datapath block diagram. The blocks are color-coded:

• Green: Main units. They will be explained one by one in this chapter.

• Orange: Accumulation elements.

• Blue: Counters.

• Yellow: Multiplexers.

• Grey: Storage unit and registers. In the block diagram the sequential blocks

are marked with a triangle on the bottom left of the box, to indicate the

clock signal. The flow of the operations and the parallelism arrangements

are highlighted, and for clarity reasons most of the names of the signals are

omitted.
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The initial part of the datapath, before the ELPF Unit, is dedicated to the

computation of z
f,s,m

(refer to 4.1). We shall recall that the computation of z
f,s,m

is

accomplished by calculating the vector-matrix product components-by-components

and then accumulating the partial results over d. Then, a shift by one position to

the right is performed (multiplication by 1
2) and only nine bits of the integer part of

the number is kept. It is important to notice that the nine bits-number that we are

keeping is the result of the 16 bits-arithmetic happening in the ALU, therefore the

fact that we are only keeping 9 bits does not mean that the ALU can work over nine

bits as well, because the final integer would be di↵erent. This is a crucial concept that

also resulted from the precision analysis previously carried out in the software. Once

z
f,s,m

is ready, it processed by the Exponential Linear Piecewise Function (ELPF)

Unit that executes the exponential following the technique explained in the previous

chapter. The central part of the architecture is based on the Programmable Shifter

that takes as inputs the value to be shifted and the number of shifts to be executed,

that are saved in registers and multiplexed. The output of the shifter goes both to

the frame accumulation section and to the Mixture component section, but clearly,

by means of the registers Acc F In and Acc M In, it is possible to discriminate the

signal path by enabling only one register from the control unit; in fact, the signals

goes in di↵erent paths depending on the current state, even if the actual bus is

routed to both the paths; this is an efficient way to de-multiplex a signal without

using an actual de-multiplexer, that would be useless.

When the exponential is calculated, it is multiplied by K, using the shifter and

then accumulated over M. At the end of the accumulation the Logarithm Linear

Piecewise Function (LLPF) Unit computes the logarithm of the probability of the

current frame against the current speaker, using a slightly di↵erent hardware com-

pared to the ELPF Unit that will be discussed later. Once the log-probability of the

frame is computed, it is accumulated in the frame accumulation section (bottom-

right of 5.3). Notice that the accumulation it is not performed over a single register,

but over a Speaker Shifting-Register File that updates the current speaker’s proba-

bility; this is necessary since, as mentioned earlier, we are calculating the probability

of the current frame over each speaker every time, so a proper storing mechanism is

required to keep saved all the speakers’ probabilities while the test speech is being

processed. This means that, for example, the first frame is compared with all the 10
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speakers, the probabilities related to that frame are stored, then the cycle repeats for

the second frame and so on till the wanted frame is reached. This workflow allows

the speech frame to be computed real-time, without the need to store it and it is

versatile, since it allows to stop the classification process at the wanted frame just

by changing the module of the f-counter. This is a freedom that allows frame-related

optimizations, such as Frame Skipping. Finally when all the frames are evaluated

for all the speakers, the Speakers Shifting-Register File sequentially load the WTA

circuit with the final probabilities. The number coming from CNT S corresponding

to the maximum speaker’s probability is kept to indicate the winner speaker.

Input Shifting-Register File

Since we are comparing the same 12-components MFCC input vector x with ten

speakers, the same twelve values has to be compared with ten di↵erent set of GMM

parameters. The component of x are involved in the calculation one by one, hence it

is necessary to find a structure that allows to load of the MFCC vector every frame

cycle and then provide every component to the ALU for every speaker’s GMM

parameters. A shift register is what we would need if we wanted bit-by-bit shift,

but since we want to shift an entire number at a time (7 bits), we need a Shifting-

Register File. As we can see from 5.4 the architecture is an extended shift registers

in a feedback configuration; by controlling the select signal of the multiplexers it is

possible to choose to perform a parallel load (when a new frame has to be processed)

or to loop back the coefficients to expose them to the next speaker.

From 5.5 it is possible to observe how, when a new frame is counted, the signal

ld sh n is set to asserted and twelve new values are loaded in parallel in the unit. In

the following clock cycle it is possible to notice the shift operation: the signal load

shift is now set to zero and the numbers shifts from one position.

ALU

5.6 illustrates the Arithmetic Logic Unit of the system: The purpose of the unit

is to compute the components of z
f,s,m

(d) so that they can be accumulated in the

d-accumulation section of the datapath. A seven bits integer subtractor is used to

compute (x
f

(d)−µ
s,m

(d)). The result is squared by means of a multiplier, that is also
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Figure 5.4: Shifting Register File architecture

... ACC... INC... load_... load... X_MU2 SI... WAI... AC... INC... load... X_MU2 SI... WAI... AC... INC... ...

1 2

1 1 -9 3 ...

2 1 -9 ...

1 2 -8 1 ...

-2 1 -1 -8 ...

-2 0 -1 ...

-4 -2 0 ...

-2 -4 0 -2 ...

-2 3 0 ...

-3 -2 -3 3 ...

-2 -3 -4 -3 ...

0 -2 -6 -4 ...

-11 0 3 -6 ...

4584000000 ps 4585000000 ps

/gmm_testbench/clk

/gmm_testbench/state ... ACC... INC... load_... load... X_MU2 SI... WAI... AC... INC... load... X_MU2 SI... WAI... AC... INC... ...

/gmm_testbench/DUT/DP/shregX/ld_sh_n

/gmm_testbench/DUT/DP/fr_cnt 1 2

/gmm_testbench/DUT/DP/shregX/s_in 1 1 -9 3 ...

/gmm_testbench/DUT/DP/shregX/int1 2 1 -9 ...

/gmm_testbench/DUT/DP/shregX/int2 1 2 -8 1 ...

/gmm_testbench/DUT/DP/shregX/int3 -2 1 -1 -8 ...

/gmm_testbench/DUT/DP/shregX/int4 -2 0 -1 ...

/gmm_testbench/DUT/DP/shregX/int5 -4 -2 0 ...

/gmm_testbench/DUT/DP/shregX/int6 -2 -4 0 -2 ...

/gmm_testbench/DUT/DP/shregX/int7 -2 3 0 ...

/gmm_testbench/DUT/DP/shregX/int8 -3 -2 -3 3 ...

/gmm_testbench/DUT/DP/shregX/int9 -2 -3 -4 -3 ...

/gmm_testbench/DUT/DP/shregX/int10 0 -2 -6 -4 ...

/gmm_testbench/DUT/DP/shregX/int11 -11 0 3 -6 ...

Entity:gmm testbench Architecture:behavioral Date: Fri Jul 06 23:00:18 CDT 2018 Row: 1 Page: 1

Figure 5.5: Timing snapshot of the load and the shifting phases

used to perform the multiplication by the inverse of the diagonal covariance matrix

components 1
σs,m(d) , that cannot be performed with shift technique since its decimal
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Figure 5.6: Arithmetic Logic Unit architecture

part resulted crucial; the system required a precision of four decimal digits to keep

the classification success unchanged, that can be represented with nine fractional

bits. Furthermore, it is known that multiplying two N-Bits number the result would

be represented with 2N bits in order to avoid overflow. In this case the parallelism

of the multiplier input is set equal to the output and this is due to the following

fact:

The input of the multiplier is a 23 bits-fractional binary number with 14 integer

bits and 9 fractional bits, hence, their multiplication yields a 46 bits-output:

23[14.9] · 23[14.9] = 46[28.18]

Since it is sure that the numbers can be represented in 23 bits without any

overflow, it is possible to keep the firsts 14 integer bits and the firsts 9 fractional
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bits from the decimal point. It is possible to look at the VHDL description below:

entity multiplier is

2 generic(N : integer := 16);

port (a : in signed(N-1 downto 0);

4 b : in signed(N-1 downto 0);

mult_out: out signed(N-1 downto 0));

6 end multiplier;

architecture behaviour of multiplier is

8 signal mult_out_full: signed (2*N-1 downto 0);

begin

10 mult_out_full <= (a * b);

multOut <=multOut_full (31 downto 9);

12 end behaviour;

ELPF Unit

The next block in the system is the Exponential Linear Piecewise Function Unit.

As deeply described in the previous chapter, its purpose is to approximate the

exponential using segments (5.7).

The two subtractors are used in parallel in order to assign the proper output

depending on where he inputz
f,s,m

located, as according the following equation.

ELPF (z
f,s,m

) =

8
>>><

>>>:

1, when z < a

m1(z − b), when a  z < b

0, when z ≥ b

(5.1)

It is possible to show that a comparison between two numbers A and B can be

implemented by performing the subtraction S = A − B and by looking at the

produced carry out C
out

and at the di↵erence S:

• if A ≥ B then C
out

= 1

• if A < B then C
out

= 0

• if A = B then C
out

= 1 and all the bits of S are 0.

Having this knowledge, it is possible to build the logic shown in 5.7 that discriminates

the three cases. Note that the signal exp m1 that is high when a  z < b, is the

enable signal of the ExpOut register, that in this case would store the subtraction
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ELPF Unit
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Figure 5.7: ELPF Unit architecture

(b − z) that is used to compute the value of the ELPF (5.1), otherwise this value

does not have to be stored. The signals exp one and exp zero are sent to the Control

Unit in order to perform the conditional branch previously described.

WAIT_D ACC_D last_acc LOAD_EXP EXP_LPF K1_SH C1_SH ACC_M ..

6
0 19
26
26 7

7600000 ps 7800000 ps 8000000 ps 8200000 ps

/gmm_testbench/clk
/gmm_testbench/state WAIT_D ACC_D last_acc LOAD_EXP EXP_LPF K1_SH C1_SH ACC_M ..

exp_m1
a 6
z 0 19
b 26

/gmm_testbench/DUT/DP/sub3Out 26 7

Entity:gmm testbench Architecture:behavioral Date: Sun Jul 08 22:36:17 CDT 2018 Row: 1 Page: 1

Figure 5.8: Timing snapshot of the ELPF Unit in the case a  z < b
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WAIT_D ACC_D last_acc LOAD_EXP EXP_LPF C1_SH_PREP C1_SH ACC_M

6
34 1
26
-8 25

46000000 ps 46200000 ps 46400000 ps 46600000 ps

/gmm_testbench/clk
/gmm_testbench/state WAIT_D ACC_D last_acc LOAD_EXP EXP_LPF C1_SH_PREP C1_SH ACC_M

/gmm_testbench/DUT/DP/exp_one
a 6
z 34 1
b 26

/gmm_testbench/DUT/DP/sub3Out -8 25

Entity:gmm testbench Architecture:behavioral Date: Sun Jul 08 22:48:05 CDT 2018 Row: 1 Page: 1

Figure 5.9: Timing snapshot of the ELPF Unit in the case z < a

WAIT_D ACC_D last_acc LOAD_EXP EXP_LPF INCR_M load_mu_... X_MU2

6
7 49
26
19 -23

69200000 ps 69400000 ps 69600000 ps 69800000 ps

/gmm_testbench/clk
/gmm_testbench/state WAIT_D ACC_D last_acc LOAD_EXP EXP_LPF INCR_M load_mu_... X_MU2

/gmm_testbench/DUT/DP/exp_zero
a 6
z 7 49
b 26

/gmm_testbench/DUT/DP/sub3Out 19 -23

Entity:gmm testbench Architecture:behavioral Date: Sun Jul 08 22:49:32 CDT 2018 Row: 1 Page: 1

Figure 5.10: Timing snapshot of the ELPF Unit in the case z ≥ b

Programmable Shifter

As previously mentioned, some of the multiplication parameters in 4.2 can be ap-

proximated to the closest power of two without having substantial changes in the

classification performances of the system. In this way a complex and power consum-

ing structure as the multiplier is, can be replaced with a programmable shifter. The

shift operation itself is a resources-free operation since it corresponds to shift to the

right or to the left the binary number. In our case the number of shifts to perform

is not fixed, but varies depending on the di↵erent multiplication factors. For this

reason, a multiplexing structure is needed to obtain the “programmability ”that we

need.

5.11 shows the programmable shifter structure. Since it was built with a be-

havioural description, its structure is established by the synthesizer, but we are only

interested in its behaviour. It is a combinatorial structure that takes as external in-

put the number of shifts to be performed. From the precision analysis treated in the

software, it turned out that a range of 16 right and left shift is enough to cover every

shift requirements. There is a di↵erence between logical and arithmetical shifts: in

the case of a right shift, both logical and arithmetical are executed in the same way,

adding a zero on the as new LSB; in the case of a left shift instead, in the case of

a logical shift a zero is added as new MSB, while in the arithmetical shift, the new

MSB is a copy of the previous MSB, so that the sign (and so the arithmetical value)
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Programmable
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SHIFTER

from mux4

25[9.16]

25[9.16]
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Figure 5.11: Programmable Shifter architecture

of the number is preserved. An example is shown in 5.12.

1 0 1 1 10 0 0

01 0 1 1 01

LSB

LSB

0 01 0 1 1 10

1 1 01 0 01

MSB

MSB

Right Arithmetic Shift

Right Logical Shift

1

0

Figure 5.12: Arithmetic and Logic right shift example
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Clearly, the shifter performs arithemtic shifts since we are interested in preserving

the arithmetical value of the number.

LLPF Unit

The Logarithmic Linear Piecewise Function Unit is dedicated to the execution of

the logarithm of the posterior probability. It is interesting to point out that making

two separate units for the computation of the exponential and the logarithm is a

trade o↵ between the complexity of control unit and datapath: since the number

of states is already high, merging the ELPF and LLPF unit would substantially

increase the control over the execution of the two operations. For this reason we

decided to implement the ELPF unit with two subtractors and the lpf unit with one

subtractor, so that it is possible to understand on the ratio resources-complexity of

the control. Moreover, the logarithm and the exponentials work on two di↵erent

order of magnitude, therefore two separate units resulted a more natural implemen-

tation. From 5.13 we can observe the structure of the LLPF Unit. Since only one

subtractor was used, the comparison with the LLPF parameters bl and cl cannot

be executed in parallel, as in the case of the ELPF Unit, but has to happen in two

di↵erent states, since we only have one control signal available (log lower). This is

possible thanks to the multiplexer mux7 that provides di↵erent input to the sub-

tractor. The comparison principle is exactly the same of the ELPF Unit with the

only di↵erence that, referring to 5.2, the second comparison is only done if necessary

(refer to 5.2).

Speakers Shifting-Register File

The Speakers Shifting-Register File architecture comes from the need of having a

structure that allows to access di↵erent registers periodically. As previously ex-

plained, the system processes the speech in real time, hence the probabilities of all

the speakers are updated frame by frame separately. Using the structure presented

in 5.14 it is possible to accumulate the probabilities of all the speakers separately,

but using only one active register. The speakers’ probabilities are not fixed to a

register, but they shift so that they reach the active speaker register periodically.

From the outside the system is not aware about this shifting mechanism, since the
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LLPF Unit

adj+pad

17[1.16]

LogIn

SUB 4

9[9.0]

LogOut

log_lower

c_out4

17[1.16]
17

from mux7

to mux3

from Acc_M_out

17

17[1,16]

CLK

Figure 5.13: LLPF Unit architecture

accumulation is always done on the active speaker register. The shift is performed

by switching the multiplexer to the right position and by enabling both the idle

registers (idleSP EN ) and the activeSP EN and it happens in the states INCR SP

and INCR FRAME, so whenever a new speakers comes in the cycle or whenever a

new frame has to be loaded and so the configuration has to come back to the initial

one (Speaker 1 on the active speaker register).

WTA

The Winner Takes All circuit architecture (derived from [6]) sequentially compares

the probabilities with each other and saves the speaker index corresponding to the

maximum probability. 5.15 shows the WTA architecture. Using the same compari-

son technique employed in the LPF units, the content of reg A is compared with the

content of reg B, and if B is greater than A, meaning that the current probability
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Figure 5.14: Speakers Shifting-Register File

is larger than the previous one, then reg A is loaded with the new probability value

and the winner register is loaded with the speaker number corresponding to that

probability.

5.1.4 Testbench

A testbench was created in order to replace a I/O structure that reads the parameters

and the MFCC data and provide them to the system. Referring to the Control Unit

chapter, the testbench has its peak of activity in the loading stage of the workflow.

As we can see from 5.16, three buses were used to send the data from the testbench

to the datapath. The .txt files were generated by the Matlab code as a result of

the training phase. We can notice that the file x.txt in an complete identification
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SUB

reg_a reg_b

WTA

EN
EN

wta_EN
winner

EN

cnt_SP

winner
from active speaker register

5[5.0]

5[5.0]

15[15.0]

15[15.0]

15[15.0]

Figure 5.15: Winner Takes All Circuit

Testbench Input MFCC DATAPATH

x.txt

log_const
.txt

ms.txt

mu.txt K.txt

exp_const
.txt

Inv_eps.t
xt

Bus Data 2
23 bit

Bus Data 1
9 bit

MFCC Bus
84 bit

CONTROL UNIT

STATE

READ

DATA FROM TRAINING

Figure 5.16: Testbench structure

system should be the real-time output of the MFCC extractor, that is not designed

in this work. The files are structured as data-vector of a fixed parallelism. From

table 5.1, we can understand the content of the files and also the dimensions demand
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that their storage would require. It is important to understand the very low storage

demand overhead that we are introducing with the LPF units, since the storage of

the extra parameters only requires 10.5 Byte in addition to what we already needed

to store, which is approximately 7KB.

File Data # elements Parallelism (bit) Storage (Byte)
exp const.txt a,b 2 9 2.25
log const.txt al,bl,bls 3 16 6
ms.txt m1,ml2,ml2 3 6 2.25
mu.txt µ

s.m

3600(30 x 12 x 10) 7 3150
inv eps.txt ⌃−1

s,m

3600(30 x 12 x 10) 9 4050
K.txt K

s,m

300 (30 x 10) 6 225
x.txt xf 6000 (12 x 500) 7 /

7435.5

Table 5.1: DATA ANALYSIS

In the following table we can understand the data distribution over the di↵erent

buses:

State Bus data 1 Bus data 2 MFCC Bus
LD M1LC m1 cl /
LD ML2BL ml2 bl /
LD ML1BLS ml1 bls /

LOAD FRAME / / x
f,d=1,...xf,d=12

LD MU EPS X mu inv eps /
EXP LPF K / /

Table 5.2: BUSES DATA DISTRIBUTION

The Bus Data 2 parallelism is 23 bits because the variable inv eps is stored with a

16 bit zero-padding that is needed in the datapath, the reader may refer to 5.3. The

MFCC Bus is 84 bits wide so that a parallel load of twelve 7 bits-mfcc components

is possible.
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5.2 Results

5.2.1 Simulation

The software Altera Modelsim was used for the testing phase. The purpose of the

testing process is to debug the system and bring it to its correct functioning. After

a debugging stage, where parallelism and logic errors were adjusted, the correct

working principle of the system was verified. As a debug technique, the Matlab

code was used as a reference for the expected results of every partial operations. A

good starting point to test most of the hardware, is to analyze the computation of

the probabilities of the first two frames, so that the simulation time is not too large

and a complete control unit cycle is performed. In 5.17 the expected output for both

frames is reported, while in 5.18 and 5.19 the postscripts of the actual outputs can

be observed (the first speaker is marked with the signal int10 ).

Figure 5.17: Matlab snapshot of the first two frames speakers’ probabilities

We can see that the values of the Matlab-implemented system (5.17) are very

close to the result that the designed hardware provides (5.18 and 5.19). They are

not identical since the Matlab code works in floating points and with a similar

precision but not exactly the same as the hardware. Now that we know that the

first two frames give a reasonable result, the system is tested for 400 frames. In 5.20

the speakers’ probabilities at each frame are plotted: the input phrase comes from
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Figure 5.18: Hardware probability values (first frame)
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Figure 5.19: Hardware probability values (second frame)

SPEAKER 2 from DR4 in the TEST directory of TIMIT database. It is interesting

to observe the relationship between the di↵erent speakers probabilities: in this case

we can see that the speaker number two is the winner from, approximately the

300th frame, which means that in this case the identification process could have

been stopped before the end of the entire speech sample. This is one example

of a possible frames-level optimization that this type of design allows. Moreover,

the probability values are negative, since they are actually the logarithm of the
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probabilities, so the logarithm of a value between zero and one.
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Figure 5.20: Speakers’ probabilities over 400 frames (expected winned: Speaker 2)

5.21 a comparison between the software and the hardware results of the same

samples against the same set of speakers is illustrated. We can note how, in this case,

the hardware probabilities are more widely spaced between each other, probably due

to the bit quantizations. The relative error between the two outputs with respect

to the software values is illustrated in 5.22. In the bottom figure we can appreciate

how the average error between the hardware and the software tends to zero.

5.2.2 Synthesis

The final section of this work consists in the actual synthesis of the circuit. Since

this is a ASIC implementation, all the components are mapped to a standard library

In this case the design is synthesized using the open-source 45 nm library gscl45nm

using the Encounter RTL Compiler by Cadence. In order to reduce the power, a

very convenient technique that we can use is to reduce as much as we can the clock

frequency, since the dynamic power linearly depends with the clock frequency (1.1),
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Figure 5.21: Comparison between Software and Hardware-generated probabilities
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as explained in the introductory chapter.

For this reason, it is useful to make some considerations about the timing con-

straints that the operations imposes in order to understand how low the clock fre-

quency can be: the system processes the input speech real-time, breaking it in 20

ms frames with a 10 ms overlapping (3.3). Hence, we can suppose to have a new

frame every 10 ms (without considering the delay that the MFCC extractor would

introduce). Therefore each frame has to be processed in approximately less than 10

ms. Referring to the control unit, for each frame five clock cycles are needed for the

loading part, six for the z
f,s,m

computation, six for the logarithm computation and

finally ten clock cycles for the WTA stage. Therefore we have a total of

5 + ((((6 · 12) + 6) · 30) + 6) · 10 + 11 = 23476

clock cycles for each frames, to be run in 10 ms hence the minimum frequency

required is

f
min

=
23476

0.01
= 2.35 MHz

Doing this analysis we know that approximately we cannot go slower that 2.5

MHz.

The VHDL code was adjusted to make it compatible with the synthesizer. We

shall remember that the Testbench was only created for testing the system, but it

does not represent an actual digital device that the synthesizer can build. A clock

frequency of 10MHz was chosen since the timing evaluation that has just been done

only refers to a portion of the entire system, so the actual minimum frequency of

the system might result higher than 2.5 MHz. Choosing 10 Mhz, the dynamic power

would be sacrificed to give more timing robustness. The design was synthesized and

the results are presented below:

The total power of the system at f
clk

= 10 Mhz is:

Cells: 5121

Leakage Power: 124.68 µW

Dynamic Power: 477408.896 µW

Total Power: 602.1 µW
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We can see that, even if the clock frequency is much higher than the estimated mini-

mum frequency, the power is already substantially lower than one mW, thanks to the

design choices that were employed. This means that without applying any synthesis-

level low power techniques such as power gating or clock gating, and providing a

clock frequency that can be potentially lower, the system dissipates around 0.6 mW

of total power. It is necessary, however, to make the following considerations: since

we are not providing any information about the input data, the synthesizer is not

aware about the switching activities of the inputs. This causes the dynamic power

estimation not to be precise at all, since the synthesizer, by default, considers that

all the primary inputs have a 50% switching activity, that for our system is clearly

a worst case scenario. For this reason all the control signals that the Control Unit

generates, are set as primary inputs in the top-level design, so that the system can

attribute a 50% switching activity to all the signals (5.23). This corresponds in
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Figure 5.23: Snapshot of the top view of the system
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having a datapath where all the components are active in every state, but clearly,

each state only uses the portion of the datapath usefull to accomplish the task of

the state. Moreover, some of the states might be not executed at all thanks to

conditional branching optimizations introduced in the control unit, hence we have

to be aware that the dynamic power estimation is not realistic, but represents an

upper bound. This is enough for the purpose of this work, since the constraint of

one mW is met also working in a worst case scenario. However, in order to have a

proper and significant power estimation, the switching activity of the inputs should

be stored in a SAIF file in the simulation stage, that should be given as input to

the synthesizer. In this way, the synthesizer is aware of the switching activities of

the inputs, and the resulting power estimation would be accurate. However, this

process requires time and good knowledge of the synthesizer, and it is not crucial

at this stage of the design, since the memory and the MFCC feature extractor are

yet to be designed and the classifier still have optimization dynamics. In 5.24 the

power consumption of all the units is reported. The system is divided in groups that

does not necessary corresponds to the units presented in 5.3, but their composition

is illustrated in 5.3.

It is possible to observe that the ALU has the higher power demand, which

is reasonable since the multiplier is known to be a very expensive structure. In

addition, we can see in 5.3 that the consumption of the multiplier is more that seven

times higher than the shifter, and this is a substantial proof that validate the choice

of replacing the multiplier with a programmable shifter. It is also interesting to note

the power di↵erence between the LLPF and the ELPF Units: the computation of

the logarithm uses an higher set of complexity but one subtractor unit instead of

two, and it is still more consuming than the exponential unit. This is also mainly

because the LLPF operates on an higher parallelism with respect the ELPF unit,

and this is why the its leakage power is almost the double of the ELPF one.

An other important result of the synthesis, is the Timing Slack. The slack

time can be defined as the amount of time an operation can be delayed without

causing the next operation to be delayed. In other words, having a negative Timing

Slack means that the clock frequency imposed is too high for the system to operate

without timing violations. In an optimized system, the slack time should be a

positive number close to zero, meaning that the operations are properly distributed
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Figure 5.24: System power consumption for f
clk

= 10 Mhz

along the clock cycle. Having a positive slack means that the system is running

faster than what required, so the operation is ended in advance of the clock edge.

From an design point of view the positive slack represent an optimization room: if

the design is performace-oriented, the system can run on an higher clock frequency,

and so the troughput of the system would be higher; if, as in this case, the design

is low power-oriented, the system can be optimized from a power perspective, for

example operating at a lower voltage supply or with higher threshold voltages that,

as explained in the introduction chapter, slows the system and reduces the leakage

power.

With a frequency of 10 Mhz, the system resulted in a positive slack,

Timing slack : 92420 ps

This result is not surprising, since 10 Mhz is still a fairly low frequency for a 45 nm
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technology and it gives even more optimization dynamics and space for low power

techniques that can decrease even more the power consumption of the classifier.

Finally, the cell area of the circuit is

Total Area: 18926 µm2

But this data does not take into account the net area, that usually depends on

the type of the interconnections and the wire-load.
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Group Component Cells Leakage (nW) Dynamic (nW) Total (nW)
ALU mult 1364 22664 55311 77975

sub1 15 406 2192 2598
regMU 28 1041 3698 4738
m1 40 334,4 6425,704 6760,104
m2 40 334,4 3503,921 3838,32
regMult out 92 3419 27162 30.581
regINV SIGMA 92 3419,146 11950,501 15369,647

ELPF regExpIn 36 1337,927 5033,64 6371,566
reg exp out 36 1337,927 4625,235 5963,162
rega 36 1337,927 5679,711 7017,638
sub2 21 317,633 1535,53 1853,163
regb 36 1337,927 5851,206 7189,133
sub3 20 389,992 1803,226 2193,218

LLPF reg log in 68 2527,195 9503,441 12030,636
reg log out 68 2527,195 8160,325 10687,52
reg bls 64 2378,536 9604,838 11983,374
reg bl 64 2378,536 9997,618 12376,154
reg cl 64 2378,536 8795,111 11173,647
sub4 36 720,38 3474,29 4194,67
m7 69 567,722 1320,568 1888,289

SHIFT. sh 414 4471,912 5807,938 10279,851
reg K fbk 100 3716,463 13666,34 17382,804
reg K 24 891,951 3082,912 3974,863
reg m1 24 891,951 4066,014 4957,965
reg ml1 24 891,951 3644,103 4536,054
reg ml2 24 891,951 4311,796 5203,747
m4 47 493,891 544,807 1038,698
m6 26 390,027 334,011 724,038
m3 90 897,316 807,004 1704,32

ACC. reg Acc m out 68 2527,195 9203,379 11730,574
reg Acc m In 68 2527,195 9217,854 11745,049
regAcc d in 40 1486,585 10099,204 11585,789
regAcc d out 40 1486,585 7332,638 8819,223
acc m 17 674,931 2303,888 2978,819
reg accFr In 36 1337,927 5480,957 6818,884
m5 10 142,195 314,021 456,215
acc fr 15 596,51 1961,615 2558,126
acc d 10 400,458 2370,673 2771,132

COUNT. fr counter 74 1052,47 5907,655 6960,125
M counter 45 631,089 2934,437 3565,526
sp counter 35 488,682 2741,477 3230,16
d counter 29 436,995 2612,965 3049,96

SP RF RF 630 22603,158 83484,701 106087,859

FR RF shregX 504 14191,839 48980,307 63172,146

WTA wta block 168 5660,551 21387,957 27048,508

CU CU 239 3427,045 22486,682 25913,727

Table 5.3: DETAILED POWER REPORT AT F
CLK

= 10MHZ
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Chapter 6

Conclusion

6.1 Achievements

In this work a complete software-to-hardware design workflow of a low power LUT

free GMM-based speaker classifier was presented. The main achievements of this

work are:

• Elimination of any memory access for the computation of the exponential and

the logarithm in the hardware system.

• Application of algorithm-level power optimization techniques.

• Frame-level optimization “friendly ”design.

• Fulfillment of power constraint: the system requires 0.6mW at f
clk

= 10MHz

with further optimization margin due to a positive slack time.

• Solid and working hardware foundation for future works.

6.2 Future goals

As discussed in the document, this design was though to be a solid starting point

to obtain a fully optimized speaker identification system. The following works can

be realized starting from this design:

• Design of the storage unit for the GMM parameters.

• Design of the hardware MFCC features Extractor.
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6.2 – Future goals

• Datapath restructuring and optimization: Include the parameters memory

and study of possible interconnection-level power optimization such as bus-

encoding, between the memory and the Datapath.

• Accurate power estimation with SAIF back-annotation technique.

• Application of frame-level optimization, such as Frame-skipping.

• Application of low power technique such as power gating and clock gating to

further reduce the power exploiting the positive slack.
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