
Key Management Unit for RISC-V Secure
Processor

By

FABIO CASTAGNO
S242018

MASTER DEGREE THESIS

Department of Electronic Engineering
Embedded systems

POLITECNICO DI TORINO

Supervisors:

- Andrea Calimera

- Anupam Chattopadhyay

- Jawad Haj-Yahya

DECEMBER 2018





ABSTRACT

Nowadays many embedded applications need to be secure and demand low power operations.
The power consumption of designs varies with the implementation choices made by designers.
Speed increasing is a key parameters for today’s processor but usually this means more power
consumption. A trade-off between these 2 parameters must be found.

Secure communications is mandatory when we have to deal with cryptographic mechanisms,
the secure key management is one of the top aspect and must be taken into account. Even a well
elaborate security concept become weak if the key management is not properly handled. One way
of providing isolation between the secure environment and the non-secure environment by using
the TEE. The Trusted Execution Environment must be protected with its software structure and
this is one of the main research area in cyber-security field. A good way to do this is with the use
of Physical Unclonable Functions (PUF).

The operating principle of these devices is pretty simple, it exploits the variability of a device
and extracts a unique identifications. It is relatively easy to evaluate and behaves like a random
function. Thanks to this property this function is unpredictable and so very difficult to reproduce
even when there is a direct access to the system and the functionality is known.

This thesis work involves the development of the Key Management Unit (KMU) based on
a new PUF module. This component is responsible for the generation and distribution of the
cryptographic keys. The starting point for the development of the Key Management Unit is the
design of the single components, each of them has been then tested alone before using inside
the KMU. This approach enables to exhaustive test a single instance being sure that the desired
behavior is the expected one. Next step is the Synthesis and Implementation phase, where an
analysis of different implementation choices with different constraints is made. The provided
results including energy are compared to evaluate the savings as well as the latency and area. We
prototype our design on NEXYS 4 DDR FPGA. Results show up-to 89% dynamic energy reduction
in design with a saving in area.
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1
INTRODUCTION

IoT security is growing rapidly and users realize more their vulnerabilities. Studies say that

by 2020 there will be more than 20.7 billion connected things. Security is now a priority for the

developers but, somehow, people are worried about implementing security features. They think

that these new functionalities could hurt speed, performance and battery life. The principle of

the secure processor is to make cracking and reverse engineering of the firmware running on it a

very hard, long and expensive task. The aim of this project is to build ITUS secure processor. The

processor is based on RISC-V ISA, and will include several security features, among which:

• Platform integrity
This will be achieved by secure/authenticated boot

• Secure storage
Several features for securing the memory, beside memory encryption, ITUS includes ad-

vanced memory protection features such as, memory integrity and oblivious RAM (ORAM)

• Isolated execution
To enable running trusted applications as secure world, ITUS is crafted with Trusted

Execution Environment (TEE) that is achieved with dedicated co-processor

• Secure IO and Debug
ITUS enabled secure IO and Debug protection

• Device identification and authentication
All ITUS Devices will have unique identity that will be assigned to them after fabrication,

ITUS will enable authentication process for the device

Physical side channel attacks are not considered for ITUS and will be left for future generation.

1



CHAPTER 1. INTRODUCTION

To better understand the nature of this project a quick overview is presented here.

• ITUS Secure SoC

– Based on the modern RISC-V architecture, a fast growing eco-system with industry

support (Samsung, Nvidia, etc.)

– The Soc maintain low power design by adding power-management features and

optimizing IPs for low power

– ITUS will include state of the art security features that guarantees system confiden-

tiality, integrity and availability

• Components in proposed ITUS SoC

1. Cryptographic Primitives

2. A Coprocessor for handling the TEE

3. Secure boot based on PKI

4. Key Management Unit based on PUF

5. Memory protection unit (MPU) for handling encryption, integrity and ORAM

6. Secure debug controller (SDC) and secure IO (SIO) units

The KMU is the core of this project, without this module the cryptographic keys could not

exist. In this thesis a new Key Management Unit is proposed. It is based on the use of a new

configurable LFSR based PUF. My thesis work is focused on this unit, from the design of the

single modules forming the KMU to the Synthesis and Implementation phase. For each step

an exhaustive testing phase has been performed to be sure that the desired behavior of each

component was the expected one. A thorough analysis of the Key Management Unit and the work

related to this module is reported in section 8.

The remainder of this thesis document is organized as follows. Sections from 2 to 7 are

dedicated to explain the single components used in ITUS (to have a clearer idea of the whole

system). Section 8 describes the KMU and all the components belonging to it are deeply analyzed.

Results and analysis are presented are the end of this section. Section 9 gives a quick overview of

the SoC used. Section 10 summarizes the results and presents the conclusions.

2



1.1. SYSTEM OVERVIEW

1.1 System overview

In Figure 1.1 an overall view of the the system is presented. My work is focused on the implemen-

tation and testing of the Key Management Unit. The meaning and the characteristics of this unit

are presented in section 8.

Figure 1.1: ITUS system

The system has the following main features:

1. RISC-V ISA

2. 2 cores, main processor and co-processor (secure processor)

3. Set of IOs

a. 2 ports of NIC + WIFI

b. SD-interface

c. Keyboard

d. VGA-compatible text display

e. USB

f. UART

4. Runs Linux OS

5. Runs JAVA 8

3
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2
CRYPTOGRAPHIC PRIMITIVES

Cryptographic primitives are the basic blocks used to build security system protocols. Reliability

is the fundamental property for this primitives, in fact if they are easily breakable every related

protocol will eventually become vulnerable. For example, according to their specifications, if

an encryption routine results breakable with a lower number of computer operations than the

declared one, that primitive results to fail.

The combination of cryptographic primitives results in the creation of security protocols.

The cryptographic functions employed in the ITUS project are quickly presented in the following

subsections.

2.1 Secure Hash Algorithm 3 (KECCAK-256)

KECCAK algorithm was selected by NIST as the winner of the SHA-3 Cryptographic Hash

Algorithm Computations in 2012 and SHA-3 was later announced as the hashing standard in

2015. The SHA-3 family is composed of 4 cryptographic hash functions (SHA3-224, SHA3-256,

SHA3-384 and SHA3-512). In this project, SHA3-256 is chosen to perform the hashing function

in the secure processor.

Two parameters characterize the Keccak function: bitrate r and capacity c. The sponge

construction for hash function is as depicted in the following figure, where Pi are the input and

Zi are hashed output. The width of the Keccak-f permutation used in the sponge constructions is

determined by the sum of r + c. For 256-bit hash output, that is required in this project, the bit

rate and capacity of r = 1088 and c = 512 is required.

5



CHAPTER 2. CRYPTOGRAPHIC PRIMITIVES

Figure 2.1: Sponge Construction for Hash Function

The sponge construction of Keccak hash function can be divided into three phases: initiation,

absorbing and squeezing phases. The first phase initialize the state matrix with zero. In SHA-3

we have 5 x 5 array of 64-bit words (1600 bits). Next, in absorbing phase, there is an XOR of

the r-bit with the current matrix state and followed by a series of 24 round of Keccak block

transformation (compression functions). Last, the squeezing phase enables the truncation of the

state matrix into the final output hash length.

Figure 2.2: State Matrix

Keccak compression function consists of five steps: theta (θ), rho (ρ), pi (φ), chi (χ) and

iota (ι). These computations are permutation that uses Boolean logics XOR, AND and NOT. Each

of the compression step of Keccak consists of 24 rounds.

6



2.1. SECURE HASH ALGORITHM 3 (KECCAK-256)

• theta (θ) The parity of two nearby columns is added (XORed) to each column

• rho (ρ) All the lanes are bitwise rotated by a defined offset

• pi (φ) The 25 lanes are transposed in a fixed pattern, where the bits of each slice are

permuted

• chi (χ) The 5 bits of each row are non-linearly combined using AND fates and inverters

and the result is added to the row

• iota (ι) A round constant is added (XORed) to a single lane

Figure 2.3: Keccak Compression Functions

7



CHAPTER 2. CRYPTOGRAPHIC PRIMITIVES

In terms of hardware implementations, the proposed datapath of Keccak is a depicted as fol-

lowing figure. The Matrix A represent the state matrix on which the Keccak block transformation

will take place. For efficient architecture design, Keccak compression steps are combined during

the implementation as well. theta (θ), rho (ρ), pi (φ), chi (χ) and iota (ι). There are three

Boolean equations in theta (θ) step, of which all can be implemented using 5x64 LUT primi-

tives. The LUT is instantiated for 64 times to compute five XOR of 64-bit operands of the equation.

Next, the last two equations of theta step can be combined and executed using 25x64 instantia-

tion of LUT primitive. The step is ended with one bit rotation which can be performed through

rewiring. rho (ρ) and pi (φ) permutations can be obtained by simply hardware rewiring. In this

case, no hardware resources is required. The constant r [x,y] is fixed and known for each position

of Matrix A, also in this case is implemented by means of rewiring.

Figure 2.4: SHA-3 (Keccak) Hardware Architecture

8



2.2. ADVANCED ENCRYPTION STANDARD (AES-128)

chi (χ) step uses 3 logical operations: XOR, NOT and AND. The final step iota (ι) is an XOR

of the least significant 64 bits of Matrix A with a round constant. The round constant (RC) are

stored in a ROM memory.

This Keccak round is composed of 5 steps and it is performed in one clock cycle.

After the completion of a message block (24 rounds), the resulting r-bits of state of Matrix A and

the next message block are XORed together. This process is repeated until the last message block

has been completed. Last but not the least, at the final state the Matrix A is truncated accoriding

to the desired length of the hash output.

2.2 Advanced Encryption Standard (AES-128)

The NIST established the Advanced Encryption Standard (AES), also known as Rijndael, as a

specification for encryption of electronic data in 2001.

The processed data blocks length is 128 bits while key length can be different (128, 192 or 256

bits). These lenghts lead to a 3 different AES variants respectively named AES-128, AES-192

and AES-256. In this project, we use the AES-128, this means a key lengths of 128-bits and a

number of computation rounds equal to 10.

The first step is the copy of the input into an array (State). State is a 16 bytes array made of 4

rows and 4 columns. The encryption begins by copying the input to an array, named as State. The

State is an array of 16 bytes arranged in four rows and four columns (4x4). On each of the State

blocks a transformation is performed.

The input value in the initial round is then added to the initial key. After this, 9 identical

rounds take place (the final one is a little bit different with respect to the others). The AES

computation round (9 rounds) is made of four transformations:

• SubBytes

• ShiftRows

• MixColumns

• AddRoundKey

The final round differs from the one above because the MixColumns transformation is missing.

The following figure shows the alghoritme structure.
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Figure 2.5: AES-128 Encryption Algorithm

2.2.1 SubBytes

A substitution box (S-box) is used by symmetric key cryptography to achieve confusion and

diffusion properties. For AES during the first transformation (SubBytes) the S-box is performed.

The S-box replaces each Sr,c byte in the State matrix with a new S0
r,c subbyte.

Figure 2.6: SubBytes Transformation

10
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2.2.2 ShiftRows

ShiftRows transformation operates on the State rows, here the bytes are shifted according to an

offset. In particular the offset associated to each row is 0, 1 and 2 respectively (first row is not

shifted). This step is important so as to avoid the columns in the state being linearly dependent.

Figure 2.7: ShiftRows Transformation

2.2.3 MixColumns

This invertible linear transformation is the matrix multiplication among each State column. It is

composed of multiplication and then addition of the entries.

Figure 2.8: MixColumns Transformation
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2.2.4 AddRoundKey

In the AddRoundKey the subkey and the state are combined together. Rijndael’s key schedule is

used to derive the subkey from the main key. An XOR operation is used to add the byte of the

subkey with the corresponding byte of the State.

Figure 2.9: AddRoundKey Transformation

The bottleneck of the AES cipher is the SubBytes transformation. To deal with the complex

computation problem, our project will look into composite field arithmetic (CFA) technique for

AES S-box. Exploitation of CFA enable pure combinational circuit design in order and hence will

result in low hardware cost (area and power consumptions).

If a high speed implementation is needed, there is the possibility to imply pipelining. This is

a huge advantage in order to speed-up the process. In terms of implementations, the proposed

datapath of AES with pipelined CFA S-box is a depicted as following figure.

Figure 2.10: AES-128 hardware architecture
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2.3 Elliptic Curve Cryptography (ECC)

In addition to symmetric block cipher (also known as private-key cryptographic scheme), public

key cryptography also plays important role in providing highly secured channel for digital data

transaction. Public key cryptography comes in handy especially in the circumstances where

storing numerous symmetric keys is not feasible. Elliptic Curve Cryptography (ECC) is chosen

because its security is comparable with respect to the traditional public key cryptographic

schemes such as RSA with a much smaller key and is computationally more efficient.

In public key cryptographic scheme, Elliptic Curve Discrete Problem (ECDLP) is defined such

that given the key pair (P, Q), the scalar point k that satisfies Q = k∗P is determined. P is the

base point of the elliptic curve, k is the scalar used as the private key and Q, the resultant point,

is used as the public key. Hence, the ECC security level is determined by the intractability of the

ECDLP.

Scalar point multiplication is the most complicated and crucial operation in ECC. This is because

it involves a repetitions of point additions and doublings.

A suitable field for ECC computation is the most essential step to taking into account in order to

design an ECC hardware module. As an end result, an improved ECC module that is accustomed

to suit our processor’s the system requirements will be developed in this project.

Two public-key algorithms based on ECC are employed in this project: ECDH (Elliptic curve Diffie-

Hellman), employed for key exchange protocol, and ECDSA (Elliptic Curve Digital Signature

Algorithm), who plays a role for digital signing.
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3
SECURE BOOT

Secure boot means that at each stage of the boot process a cryptographic check is added. The

purpose of this operation is to maintain the boot software image integrity and also prevents an

unauthorized or malicious program from running.

A simple implementation would be to encrypt the entire boot code with the private key , known

only to Original Equipment Manufacturer (OEM). However, public-key cryptography is slow and

the confidentiality of the boot code component is not our interest, we are concerned about the

authentication of the executed code. The concept of cryptographic signatures is used here.

3.1 Cryptographic signature protocol

RSA or ECC public-key signature algorithm are the most logical protocol to be applied.

In these protocols a trusted vendor uses a Private key to generate a signature of the code.

This signature is pushed in the device with the software binary. The public key of the vendor

is contained into the device and can be used to verify the authenticity of the binary code (no

modification occurred). The public key must be stored inside the device but there is no need to

keep it confidential.

In ITUS we will use the ECDSA for digital signature. ECDSA is a transposition of the DSA

(Digital Signature Algorithm) to the elliptic curve. Nowadays it is one of the most widely used

numerical signature because is able to offer smaller keys with respect to the same level of security.
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Figure 3.1 below illustrated this flow, the protocol details are shown in section ??.

Figure 3.1: Boot code signing and verification flow

3.2 Boot ROM structure

The boot code will be stored in the Boot ROM, the code will be signed as discussed previously, the

Boot ROM structure is as followed:

Figure 3.2: Boot ROM structure
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At the beginning of the ROM the Header will be located, it will include data about the code

size and the Algorithm used for signing and hashing (e.g. SHA2, RSA, etc.), the header will be 4

bytes fixed size. The Boot Code will be located next, the size of the code is as determined in the

Length field at the Header. Directly after the boot code, the Signature will be located, its size

depends on the algorithm that was used.

3.2.1 Preventing rollback attacks

A rollback attacks is when an attacker tries to update device ROM (by replacing it with other

ROM chip in case it’s external), for example an older signed boot code with a known vulnerability,

we will add a revision number (Rev.) at the Header. Where the at the verification process, we

verify the revision number meets the number burned into the chip fuses, or, alternatively the

revision number can be stored into TPM’s Not volatile memory.
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4
TRUSTED EXECUTION ENVIRONMENT

We can see an execution environment as a software layer running on top of a hardware layer. A

device can have two separated execution environment, TEE (Trusted Execution Environment)

that will run in the trusted area and a REE (Rich Execution Environment) associated to the

untrusted area. The main operating system and the application will be associated to the REE

while all the trusted software components will be associated to the TEE.

Figure 4.1: Trusted Execution Environment
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4.1 TEE components

The TEE is built as co-processor with the main processor (Rocket-chip) as shown in Figure 4.2,

the main-processor that is running at the REE will request to move to TEE in order to execute

trusted application, once transition to the TEE is performed the trusted application will be

authenticated be verifying its digital signature, in addition the application will be copied to the

secure storage. Once verified and copied to the TEE, the trusted application will run and once

finished it will notify the REE.

Figure 4.2: TEE as co-processor with the Rocket chip main processor

20



4.2. THE ROCC INTERFACE

4.2 The RoCC Interface

The Rocket chip provides dedicated interface, Rocket Custom Coprocessor (RoCC), that can pass

instructions from Rocket to the co-processor.

In general, 32-bit RoCC instructions extend the RISC-V ISA and are formatted as shown in

Figure 4.3.

Figure 4.3: The RoCC instruction encoding

The xs1, xs2, and xd bits control how the base integer registers are read and written by the

coprocessor instruction. If xs1 is a 1, then the 64-bit value in the integer register specified by rs1

is passed to the coprocessor. If the xs1 bit is clear, no value is passed over the RoCC interface.

The xs2 bit similarly controls whether a second integer register specified by rs2 is read and

passed to the RoCC interface. If the xd bit is a 1 and rd is not x0, the core will wait for a value

to be returned by the coprocessor over the RoCC interface after issuing the instruction to the

coprocessor. rd specifies the integer register where the value will be written.

If the xd is 0 or rd is x0, the core will not wait for a value from the coprocessor.
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5
MEMORY PROTECTION

In order to run a trusted software an trusted environment, a cryptographic protection of memory

is mandatory and essential.

An assumption is made, only the DRAM untrusted is included in the security perimeter of the

processor package.

5.1 Memory Protection Unit

Memory Protection Unit (MPU) is a hardware unit, whose role is to protect freshness, integrity

and confidentiality of the processor and DRAM traffic over some memory range.

MPU delivers the required protection for the DRAM. Its design is based on the following compo-

nents:

• Cryptographic primitives that realize the encryption

• An integrity tree

• Message Authentication Code (MAC)

• Anti-replay mechanism

In addition, the MPU support Oblivious RAM (ORAM) for higher memory protection.
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6
SECURE DEBUG

This secure processor provides a method to control the JTAG access, the debug access control is

done by the secure-debug-controller (SDC), we have three access modes as followed:

1. No Debug, No Boundary-Scan (BS)

2. No-Debug, allow BS – No debug allowed, BS allowed

3. Secure-Debug - high security

4. JTAG Enabled. Low security (default)

One Time Programmable fuses enable to configure the JTAG mode.

6.1 Secure-Debug mode

JTAG access is performed by using challenge/response-based authentication mechanism, SDC is

in charge to perform the access control. JTAG port access is checked every time. If a device is not

authorized to access the JTAG, the SDC denied the access attempt.

External debugger tools are needed for this debug feature. Usually the JTAG mode is not enabled

on development boards while it is enabled during design manufacturing.
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6.2 Debug flow when Secure JTAG mode is enabled

JTAG access authentication uses the challenge/response mechanism (a secret response key is

associated to a challenge value). eFuses inside the chip have the task to store the keys.

This is the authentication process during Secure Debug:

• challenge key shifted through the test data output by the JTAG (target side)

• response key generated by the debug tool (host side)

• shift back of the response key through test data input

• if there is a match between the shifted key and the expected internal response, JTAG access

is enabled

The flow is described in figure 6.1.

Figure 6.1: Secure Debug mode authentication process
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7
KEYS GENERATION

Cryptographic protocols and algorithms require secret/private keys and, therewith, it is needed to

generate, store and manage the necessary keys on embedded devices. Typically, keys are generated

based on physical or seeded pseudo-random number generators and are then permanently stored

in a protected memory area (e.g. nonvolatile memory (NVM)).

Embedded systems often do not provide a secure memory. Separate security ICs that would offer

secure key management and memory are typically not available, commonly due to cost limitation

requirements especially in Internet-of-things devices (IoT).

7.1 Public-Key Infrastructure (PKI) and Secure Boot

In ITUS project a PKI is employed to establish system authenticity. Two purposes are achieved:

a. Trust for execution of previously boot modules, this operation is performed during the boot

phase

b. Authenticate service request like change or update the firmware or the boot modification

27



CHAPTER 7. KEYS GENERATION

PKI is made of:

• digital certificates (certificate authority CA)

• registration authority, whose job is to verify the user identity requesting a certificate

• central directory, for keys index and storing

• certificate management system

7.1.1 ITUS Certification Authority

For ITUS we use a Hardware Security Module HSM as Certification Authority (CAs). The HSM

will generate, store and manage the PKI for our processor. We will have public-key for each

device, the mapping between the device and the public key will be stored inside the HSM, and

each device will have dedicated identity (ITUS-SOC-ID).

7.1.2 Key generation and storage

The root of trust of the system is formed by key pairs. CA is responsible for the keys generation

and for sign the allowed operations (legitimate). For each key there is a correspondent public key

embedded into the code and used to check if the signature is correct or not. Instead of fusing the

public key into the SoC fuses, a hash of the public key will be fused into the SoC fuses to save

space.

Figure 7.1: Secure Debug mode authentication process

28



C
H

A
P

T
E

R

8
KEY MANAGEMENT UNIT

In ITUS processor we will build a lightweight key generation and management for embedded

devices based on Physical Unclonable Functions (PUFs).

This mechanism will be used to generate the following keys:

a. Symmetric key – for permanent usage in the embedded system (e.g., for memory encryp-

tion)

b. Asymmetric Private Key - for permanent usage for device-bound digital signatures (e.g.,

for public-key based certificates)

c. Asymmetric session specific private keys – for short term usage (e.g., in communica-

tion protocols, for key negotiation or as ephemeral key in digital signature schemes)

d. Session specific symmetric keys – for short term usage (e.g., for data encryption, mes-

sage authentication in communication protocols)

For the Asymmetric keys the ECC protocol will be used and not RSA.
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The main components of the Key Management Unit (KMU) are:

• LFSR based PUF

• True Random Number Generator (TRNG)

• Storage memory

- Challenges

- OTP, One Time Programming memory for public key fusing

• Request Handler

• Isolated bus for delivering the keys

The unit structure is reported in Figure 8.1.

Figure 8.1: Key Management Unit scheme

Each unit will be analyzed and explained in the following sections.

The core of this unit is the PUF module. It accepts 16 bit input data and gives 128 bit data output

response. This is the private key that will be distributed through the AXI-lite interface.

The main challenge was to put all this components together and make them work with the Rocket

Chip in the proper way.
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8.1 Key management for Secure-Debug

Access to a secure-debug is protected by knowledge and proof-of-possession of some kind of

credential (numerical pin or password). An embedded system often operates in an unattended

way without a possibility to enter a pin or password, so that the credential needs to be stored in a

secure way on the insecure embedded system.

8.1.1 Device initialization

A fixed pairing between the target chip (ITUS) and the debug controller is needed and, hence, the

establishment of a secure channel connecting both.

This fixed and secure pairing can be achieved with by using the PUF for key provision at the

beginning of the device life-cycle and could be realized in the following way:

• The ITUS device is inserted into a secure environment

• The PUF in ITUS is activated, a random challenge Cdbg will be entered to the PUF, the

output will be Kdbg which is the resulting symmetric key, this key is transferred the Host

machine and will be permanently stored in the security NVM of HSM at the host

• The ITUS device is removed from the secure environment and ready for operational use

• The challenge Cdbg will be saved in non-secure memory inside ITUS

Figure 8.2: Debug key generation process
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8.1.2 Debug mode usage

In operational service of the embedded device, PUF is activated on Cdbg challenge and produces

again the key Kdbg.

Using a challenge-response protocol based on a symmetric authentication algorithm AUTH, the

ITUS verifies whether the host debugger knows the key.

1. ITUS generates a random challenge C, computes RITUS = AUTH(C,Kdbg) and sends C to

the host (debugger)

2. On receipt of C the host computes R = AUTH(C,KP,sym) and sends R back to ITUS

3. If the received response R equal to RITUS then the debug is allowed (unlocked) otherwise

the debug is prohibited
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8.2 LFSR based PUF

In ITUS project and particularly inside the KMU a new configurable LFSR based PUF is

employed. In this architecture the response bits from the ring oscillators are selected by the

control signals generated from the LFSR states. Using this design, is possible to use the same

hardware even if we want to extend the response length (LFSR state numbers are increased).

This is possible because the control signals are generated from the LFSR with the given challenge.

Any delay-based PUF can adopt this concept of costant-resource scalability.

This new PUF design has a 128-bit response and was tested on NEXYS 4 FPGA (Artix-7). The

obtained results are 49.2% uniqueness, 48.5% uniformity and 47.8% bit-aliasing. BCH error

correction scheme has been adopted to recover the noisy bits obtaining a final 99.99% reliability

response.

8.2.1 PUF overview

The use of secret keys is a must in device authentication and cryptographic applications. Usually

a memory can have the task to store a secret key (non-volatile) or an integrated circuit can

generate it. Some problems arise when a key is stored into a memory such as safety. A further

alternative could be the key generation through a circuit which is irreproducible.

The particularity of a Physical Unclonable Function (PUF) is that the key output depends on

the manufacturing variation of the device (timing, delay). In this way there is no mathematical

correlation between response and challenge and it is very hard to reproduce the same function.

This is the reason that stands behind the word unclonable. Physical variations in delay and logic

are the only responsible for the PUF output. A lot of PUF design can be found, each using a

different physical variation.

Some limitations can be found in the existing PUFs. For example in some of the delay-based PUF

there is a fixed number of response pairs. This happens because of comparator circuit and is

related to its size. In this case an increasing of the length corresponds to an increasing of the

hardware. In order to find a solution for this problem, this new design is able to generate a new

temporary challenge using a Linear Feedback Shift Register (LFSR) whose output is a new input

challenge to the PUF.

The new control signals (coming from the original challenge), are derived using the LFSR. In our

case a 16-bit challenge produces a 128-bit response. The biggest advantage of this solution is that

without any hardware addition, the response length can be extended. Different control signals

can be generated can be generated from different states of the LFSR.
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Due to the fact that PUF is based on manufacturing variations, same input challenge could

lead to a different response, this means different keys. This means that different operating

conditions could affects the voltage levels (ambient temperature etc.) introducing some noise. An

error correction scheme must be taken into account in order to take action on this problem. The

proposed solution is to use the BCH error correction.

8.2.2 Design

Figure 8.3: Configurable LFSR based PUF

Figure 8.4: Ring Oscillator

In Figure 8.3 we can see the component block diagram. As we can notice the response is

generated through the use of ring oscillators.

The Figure 8.4 shows a configurable ring oscillator (5 stages), it is composed of 8 inverters and 4

mpx (2 to 1). The LFSR task is to drive the select signals (S) of the multiplexers. These signals

are directly responsible of the operating frequency of the ring oscillator. It possible to notice that

different oscillators can achieve different frequencies (as other design), but within the same ring

oscillator, different select signals lead to a different frequency. This is the main advantage of this

configuration.

34



8.2. LFSR BASED PUF

This design uses a Linear Feedback Shift Register (the previous state determines the new

input bit) with 16 bits parallelism. The linear function of the polynomial is : x16+x14+x13+x11+1.

A new state is computed every clock cycle. To obtain a consistent response output, the difference

frequency between two ring oscillators must be as constant as possible. In order to do this, the

LFSR must contain a constant value. During the response generation phase, the LFSR must be

in idle state.

256 ring oscillators are needed in this design and they are capable to obtain a 128 bits response.

32 counters are used to derive the response bits.

8.2.3 Experimental results

The Figure 8.5 shows the experimental setup of this module. The FPGA used for testing purposes

is the NEXYS-4.

Figure 8.5: FPGA prototype

Each challenge must be associated to a unique response and the device must be able to

produce all the possible output combination with a 16 bit challenge. The response distribution

can be verified thanks to the Hamming distance plot.

(8.1) IntraHammingDistance =
kX

i=1

HD(Ri,Ri+1)
n

∗100

k represent the number of challenges while Ri and Ri+1 are the challenges response.

35



CHAPTER 8. KEY MANAGEMENT UNIT

Figure 8.6 reports the Intra Hamming Distance.

Figure 8.6: Hamming Distance

The response is uniformly distributed (maximum at 64). Noise free and uniformity distribution

are some of the parameters that a key must have.

Uniqueness, uniformity, bit-aliasing and reliability are defined as PUF parameters.

A. Uniqueness

If we have 2 device with the same configuration, the uniqueness is how much the PUF is

able to dinguishthe 2 different outputs. This can be simple read like 2 different device with

the same configuration must produce a different output.

Inter chip Hamming distance is used to understand the uniqueness of the design.

(8.2) Uniqueness =
k−1X
i=1

kX
j=i+1

HD(Ri,R j)
n

∗100

The experimental setup for this purpose involved the use of 2 equal FPGA with the same

configuration.

The plot in Figure 8.7 shows the obtained inter chip Hamming distance.
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Figure 8.7: Inter Hamming Distance

B. Uniformity

The number of 1 and 0 used to create a cryptographic key must be the same. This PUF

parameter is known as uniformity. The following Equation 8.3 shows how this parameter is

calculated.

(8.3) Uni f ormity= 1
n

nX
k=1

R[k]∗100

C. Bit-aliasing

If, more some reason, a bit is permanently connected to the same logic value (1 or 0), a

phenomenon of bit-aliasing occurs. If this situation take place, no matter what the physical

hardware is, the produced bit response will always be the same. The Equation 8.4 shows

how bit-aliasing is calculated.

(8.4) Bit−aliasingp = 1
n

kX
i=1

Ri[p]

Ri[p] is the pth-bit of the response. 50% of bit-aliasing is the ideal value, this would mean

that the output is not correlated to 1 or 0.
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D. Reliability

Nowadays reliability is considered a must almost in all electronic systems and devices.

Reliability means the confidence level on how different situation can reproduce the same

response.

(8.5) IHD = 1
m

Pm
t=1 HD(Ri,R t

i)

n
∗100

(8.6) reliabil ity= [100− IHD]∗100

PUF reliability is related to the intra Hamming distance. Equation 8.5 and equation 8.6

are used to calculate it. Figure 8.7 shows the PUF reliability (probability density function).

Using a 128 bits response, a maximum error of 20 bits arises in this design. An error

correction scheme must be used to recover it obtaining th original response.

Figure 8.8: Probability Distribution Function
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8.2.4 Error correction (BCH)

An error correction scheme is needed in this design because of the temperature variation that

can affect the PUF response. Figure 8.9 shows how it works.

This binary error correction scheme uses 3 parameters BCH(n,k,d):

n encoded message

k message length

d error that can be corrected

Figure 8.9: PUF error correction scheme

BCH(15,7,2) is employed in this design. This configuration is able to solve up to 2 errors in

any position. In particular 5 bits are concatenated to the 128 bits of the key in order to use 19

encoders (7 bit each).

There is the possibility to use 19 pairs of encoder and decoder but in this case a resource sharing

approach is adopted. Only one pair is used repetitively. The main advantage of this configuration

is the hardware reduction (directly linked to a cost reduction) that reaches the 95%. At the end,

the logic is able to correct up to 38 errors (2 errors every 7 bits).

This is the employed polynomial: (1+ x+ x4)(1+ x+ x2 + x3 + x4).
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3 steps are necessary for the BCH decoder:

1 syndrome calculation

2 error locator polynomial (ELP) finding

3 bit correction solving error locator polynomial

If the word associated to the BCH code increase, also the syndromes number increases

alongside with the ELP order.

For this design a uniqueness of 49.2%, uniformity of 48.5% and 47.8% bit-aliasing are achieved.

This solution can be easily integrated into existing PUF scheme because there is no hardware

increasing.

The response is obtained with a 99.99% reliability. This solution can be used both to generate

cryptographic keys or for device authentication.

8.3 True Random Number Generator

Application Specific Integrated Circuit (ASIC) were usually the main target to implement the

cryptographic algorithms. Nowadays another solution is taking the lead for this kind of applica-

tions, FPGA (Field Programmable Gate Array). A lot of reasons are responsible for this kind of

choice, in particular an FPGA is reprogrammable, this ensure a lot of flexibility in order to modify

and change the algorithm as well as fixing bugs. Moreover the development of an algorithm in

ASIC is more difficult and takes more time to be done with respect to a FPGA.

For today’s cryptographic systems, a True Random Number Generator (TRNG) is basically manda-

tory. The typical use of a TRNG are: random sequences generation, keys generation, vectors

initialization etc. In a cryptographic system the TRNG is normally responsible of the generation

of private or secret parameters. This means that the generation of a random sequence is one of

the most important things that must be taken into account and should be unpredictable.

In the KMU a TRNG based on ring oscillators is implied. The output of this component is used

as PUF input. The architecture of this component is based on the one published in this paper:

Analysis and Enhancement of Random Number Generator in FPGA Based on Oscillator Rings -

2009
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8.3.1 TRNG Based on Oscillator Rings

The structure of a TRNG is quite simple. It consists of a fixed number of oscillator (they must

be equal length) connected to an XOR. The output of the logic gate is the input of a D flip-flop

used for sample the incoming signal. The D flip-flop output must be processed to remove bias and

increase the entropy from the random signal.

The oscillator rings are responsible for the jitter creation. This jitter is the TRNG entropy source

and has the property to have a Gaussian distribution between 0 and 1 (logic low and logic high

level) for each clock transition. The jitter is also responsible for the phase drift accumulation in

each ring and this lead to a different times transition in the sampling period. The assumption of

a uniformly distributed transition region in the sampling period is made.

Figure 8.10: TRNG based on oscillator ring

The randomness of the TRNG is improved thanks to the addition of an extra D flip-flop after

each ring (Figure 8.10). The overall output randomness is improved thanks to the addition of this

D flip-flop without altering the randomness collection of each ring.

The number of the ring inverters must be odds and it directly affects the oscillation frequency ( f i).

They are inversely proportional, if the number of inverters decrease, the oscillation frequency

increases and viceversa. Small and fast TRNG means that the sampling frequency ( fs) should be

as low as possible if compared to the ring frequency.

This configuration ensures that the sampling clock and input XOR signals are synchronous. This

is a very important advantage of this configuration. Moreover the setup and hold times in the

internal logic of the FPGA is improved.

The switching activity of the XOR-tree inputs is reduced thanks to the adding of the extra D

flip-flop. The randomness is collected by the sampling of the free running oscillator rings while

the XOR calculation becomes deterministic. Unfortunately a problem of metastability in the D

flip-flop can occurs causing its output to be neither in high or low state for a short period of time.
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If a transition occurs during the setup and hold time of the D flip-flop, metastability can arises.

In order to avoid this situation and the consequently propagation of the metastable state into

the XOR tree, another D flip-flop could be added to sample the oscillator ring output. A bigger

oscillator rings number lead to a deeper XOR tree logic.

In our case we need a 8-bit output response. This means a 3-level logic depth. This structure

cannot be simulated (combinatorial loops) and to reproduce its behaviour an LFSR is implied.

8.3.2 LFSR for simulation

Since a TRNG cannot be simulated as it uses ring oscillators, a Linear Feed-back Shift Register

(LFSR) has been implied to check the correct behavior of the other parts of the circuit.

Actually some tool allows the simulation of combinatorial-loops but the correctness would be far

from ideal. The only way to test is to make a wrapper top module, implement the design on FPGA

and to collect/process data or transfer to a PC for analysis.

A shift register whose input bit is a linear function of its previous state is called LFSR. The most

common logic used for the linear function is the XOR (eclusive OR). All the outputs that are

connected to the XOR gate are called TAP.

The LFSR must have an initial value different from all zero (XOR with all 0 equal 0 and the input

will always be 0) called seed. Whereas the shift register operation is deterministic, also the output

values are completely determined (this means that the produced output is pseudo-random). The

cycle will repeat after all the register states have been reached. In order to have an output

sequence that appears random with a very long cycle, a good feedback function must be chosen.

Figure 8.11: Example of an LFSR
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The circuit can be initialized with a different seed from Null vector. In the example in Figure

8.11 of the three Flip-Flops are connected to the XOR, which is a input to the other Flip-Flop.

Let’s suppose that all bits are initialized to ’1’ after the reset. At each clock cycle the rotation

continues and runs a sequence of pseudo random bits on the Flip Flop’s outputs, which will be

repeated at a given frequency. In this case the sequence will have a length of 7 as shown in the

Table 8.1.

Q1 Q2 Q3
1 1 1
0 1 1
0 0 1
1 0 0
0 1 0
1 0 1
1 1 0
1 1 1

Table 8.1: LFSR sequence

It can be demonstrated that the length of sequence is 2n −1. The sequence is often associated

to a polynomial where the terms different from zero are those with a position corresponding to

the TAP.

In this case P = 1+ x2 + x3.

LFSRs most typical applications are fast digital counters, pseudo-noise sequences, whitening

sequences and pseudo-random number generation.

In Figure 8.12 it is possible to see the behavior of this pseudo-random generator numbers.

A clock gate is present for power saving purposes.

Figure 8.12: Pseudo Random Number Generator
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8.4 Challenges Storage

The challenges storage is a memory whose job is to store the challenges coming from the TRNG

and the Syndromes coming from the PUF.

At each entry corresponds a different unit that has requested a private key. It is organized in the

following way:

• ID Unit identifier

• Challenge 16 bit coming from the TRNG and used as PUF input

• Syndrome 152 bit coming from the PUF and used for the error correction

The PUF Key output is never stored anywhere. Once it is available is only sent to the buffer

for the right amount of clock cycles that are needed. In this way the possibilities to stole this

information are minimized.

Every time that a unit needs again the same key, this has been recalculated using the previous

challenge and syndrome for error correction.

In the following picture is possible to see the interface of this memory. It works on the negative

edges of the clock (only element on the KMU), in this way there are no problems of time setting

and time hold.

Figure 8.13: Challenges Storage

As you can see the data_input is 8 bit and not 16 bit. This is because the TRNG’s output is 8

bit, so the memory needs 2 clock cycle to fill every challenge entry.
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8.5 Request Handler

The request handler is responsible of the correct behavior of all the components belonging to the

KMU. It is basically a Finite State Machine (FSM) where from each state is possible to go to

every other state.

These are the 4 states:

• IDLE no operation are requested, this is the waiting state

• GENERATE a new challenge must be generated

• FETCH a new key must be generated and then sent through the buffer, the output

syndrome must be stored back into the storage memory

• DISTRIBUTE a key must be re-generated (challenge and syndrome must be sent to the

PUF module) and then sent through the buffer

Once the machine goes into a state, the input becomes transparent, that means no matter if

there is a request, this will be served only once the current job will be done.

Figure 8.14: Request Handler FSM
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8.6 Design approach

The primary objective of the Key Management Unit is to generate the cryptographic keys and

distribute them to the consumers (other units) such as Debug, Memory, Boot etc.

In order to accomplish to this task, all the previously seen components are needed. The starting

point was the block scheme scheme presented in Figure 8.1. The first thing to do was the design

of the single components, each of them has been tested alone before using inside the KMU. This

approach enables to exhaustive test a single instance being sure that the desired behavior is the

expected one.

The hardware description language used is Verilog while the emplyed software for this project is

Vivado, developed by Xilinx.

The main characteristics of the single components are reported here below:

• TRNG - based on ring oscillators. It was not possible to simulate its behavior (for this

purpose a pseudo-random number generator has been used) so it has been synthesized and

physically tested on the NEXYS 4 DDR FPGA. It is composed of 108 ring oscillators (16

for each output bit generated) with an output parallelism of 8 bits. The challenge must

be 16 bits so two iterations are needed in order to generate the final output, obtained by

concatenating the output of the 2 iterations.

• Challenges Storage - this memory has 16 entries (this parameter can be easily modified

if more memory lines are needed) and each of them is associated to a single consumer.

Every consumer is identified by an ID (4 bits) that is associated to a challenge (16 bits) and

the corresponding syndrome (152 bits).

• PUF - This module contains both the Col-PUF and the BCH error correction mechanism.

The 16 bits challenge is the input of this unit alongside the syndrome (only if needed). The

2 outputs are the 128 bits cryptographic key and the 152 bits syndrome (sent back to the

challenge storage)

• Request Handler - This FSM (Finite State Machine) controls and manages the previous

components and it is responsible for the correct behavior of the whole KMU.
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8.7 Simulation results

In order to simulate the overall behavior of the KMU I have used Vivado software. As stated

above, it is not possible to simulate the TRNG and the PUF (key generation) so some changed

were necessary. The TRNG has been replaced with the LFSR while the key generation module

inside the PUF has been replaced with a small memory. The syndrome generation module can be

simulated so no changes were applied.

The first step was to test each unit independently and then go up in the hierarchy. In Figure

8.15 we can see a test-bench case where the challenges storage is filled with pseudo random

number generated by the LFSR.

It is also possible to notice that for each entry 2 clock cycle are needed to fill the 16 bit.

Figure 8.15: Challenges storage filling

As we can see, the challenges storage is sensible to the negative edge of the clock. This choice

has been made both for speed improvement and easier management.

In Figure 8.16 the behavior of the whole unit is simulated. As we can see after the key

generation request even if another request occurs, it is simply ignored until the previous one has

been satisfied.
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Figure 8.16: KMU behavior

These pictures are captured during the simulation phase. Even if 2 modules cannot be

simulated (TRNG and PUF are based on ring oscillators), we can have a realistic idea of the

overall behavior of the unit.

The clock constraint of 10 ns is largely met (more accurate measurements are made after the

synthesis and implementation phases).
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8.8 Synthesis approach

Also in this case the divide et impera approach has been followed. For each component a first

synthesis took place to have an idea of the consumed power, speed and occupied area. In particular

a detailed RTL report is produced in this phase, to see the real FPGA occupation, and to know

the characteristics of the single components employed in the unit.

A lot of synthesis have been performed for each component first and for the Key Management Unit.

Each time some parameters have been modified to see the behavior under different constraints.

In particular the clock constraints was more restrictive from time to time.

The collected data related to power (static and dynamic), slack, number of Slice LUTs and number

of flip-flops have been grouped in some tables. The final stage was to take these data and to build

some graphs to have a better understand of these quantities behavior.

Once the synthesis was complete, a further action was needed in order to generate the bit-

stream and consequently physically test the components on the FPGA.

The approach in this implementation phase was very similar to the adopted previous one. Also in

this case a lot of different implementation have been performed for each component. Alongside

with the clock constraints modification, two more option have been added during this phase:

route and placement optimization with power saving.

In this case the design has been modified in order to find the best solution in terms of area and

power consumption. The final tables and graphs shows the effects of these choices.

The final step is the bitstream generation and its download on the FPGA. At this point a

physical test of the units have been performed with the help of indicator leds or serial UART

connection for the output data collection.
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8.9 Synthesis results

The synthesis has been done for 3 different modules: TRNG, PUF and the whole KMU. A lot of

synthesis have been performed with different clock constraints to see the affections on power

consumption and slack. The number of LUTs involved is also a useful parameter to have an idea

of the occupied area on FPGA.

During this phase a detailed RTL component usage has been made. All the results are

summarized in tables and images below.

8.9.1 PUF synthesis

The results coming from the synthesis phase are grouped in the following table. Starting from

a clock constraints of 229 MHz several synthesis have been performed decreasing the clock

frequency.

clk[Hz] Period[ns] Power[mW] Dyn[mW] Stat[mW] slack[ns] SLICE LUTs FF

2.29 ·108 3 135 51 84 -1.351 670 549

2.09 ·108 4 122 38 84 -0.351 662 549

2.00 ·108 5 115 31 84 0.649 596 549

1.67 ·108 6 109 25 84 1.649 596 549

1.43 ·108 7 106 22 84 2.649 596 549

1.25 ·108 8 103 19 84 3.649 596 549

1.11 ·108 9 101 17 84 4.649 596 549

1.00 ·108 10 99 15 84 5.649 596 549

6.67 ·107 15 94 10 84 10.649 596 549

5.00 ·107 20 92 8 84 15.649 596 549

3.33 ·107 30 89 5 84 25.649 596 549

2.50 ·107 40 88 4 84 35.649 596 549

2.00 ·107 50 87 3 84 45.649 596 549

This results have been plotted to see the behavior of the unit and to better understand how

the clock frequency affects the power, slack and LUTs number.
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Figure 8.17: PUF dynamic power

This first graph shows how the clock affects the PUF power consumption. In this case only the

dynamic power have been plotted cause the static power is still the same (84 mW). As expected

stricter constraints led to a higher power consumption and viceversa. Is interesting to notice how

fast the dynamic power decreases with respect to the period.

Figure 8.18: PUF slack
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The difference between the required time and the arrival time grows linearly. The slack

become negative only when the period is shorter than 5 ns. This unit can operate at 200 MHz.

Figure 8.19: PUF LUTs

Once the slack is positive the number of LUTS remains the same for all the configuration

(596).

8.9.2 TRNG synthesis

Also in this case the results coming from the synthesis phase are grouped in the following table.

In this case in order to get a negative slack I started from a clock constraints of 249 MHz down to

20 MHz.
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clk[Hz] Period[ns] Power[mW] Dyn[mW] Stat[mW] slack[ns] SLICE LUTs FF

2.29 ·108 2 231 134 97 -0.447 408 136

2.29 ·108 3 186 89 97 0.553 408 136

2.09 ·108 4 164 67 97 1.553 408 136

2.00 ·108 5 151 54 97 2.553 408 136

1.67 ·108 6 142 45 97 3.553 408 136

1.43 ·108 7 135 38 97 4.553 408 136

1.25 ·108 8 131 34 97 5.553 408 136

1.11 ·108 9 127 30 97 6.553 408 136

1.00 ·108 10 124 27 97 7.553 408 136

6.67 ·107 15 115 18 97 12.553 408 136

5.00 ·107 20 110 13 97 17.553 408 136

3.33 ·107 30 106 9 97 27.553 408 136

2.50 ·107 40 104 7 97 37.553 408 136

2.00 ·107 50 102 5 97 47.553 408 136

Also in this case this results have been plotted to see the behavior of the unit and to better

understand how the clock frequency affects the power and slack. As we can notice the LUTs

number is not affected by the clock constraint and it is always constant to the value 408.

Figure 8.20: TRNG dynamic power
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This first graph shows how the clock affects the TRNG power consumption. Only the dynamic

power have been plotted cause the static power is still the same (97 mW). As expected stricter

constraints led to a higher power consumption and viceversa. Also in this case the dynamic power

drops drastically with respect to the period. The power consumption of this module impacts a lot

on the performance of the KMU, for this reason a clock gating is present for this module when

implemented inside the KMU. In this way a lot of power is saved.

Figure 8.21: TRNG slack

Also here the difference between the required time and the arrival time grows linearly. The

slack become negative only when the period is shorter than 2 ns.
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8.9.3 KMU synthesis

These are the results coming from the synthesis of the whole KMU.

clk[Hz] Period[ns] Power[mW] Dyn[mW] Stat[mW] slack[ns] SLICE LUTs FF

2.00 ·108 5 266 182 84 -0.830 6394 4235

1.67 ·108 6 236 152 84 -0.330 6394 4235

1.43 ·108 7 214 130 84 0.170 6322 4235

1.25 ·108 8 198 114 84 0.670 6316 4235

1.11 ·108 9 185 101 84 1.170 6316 4235

1.00 ·108 10 175 91 84 1.670 6316 4235

6.67 ·107 15 145 61 84 4.170 6316 4235

5.00 ·107 20 129 45 84 6.670 6316 4235

3.33 ·107 30 114 30 84 11.670 6316 4235

2.50 ·107 40 107 23 84 16.670 6316 4235

2.00 ·107 50 102 18 84 21.670 6316 4235

This results have been plotted to see the behavior of the unit and to better understand how

the clock frequency affects the power, slack and LUTs number.

Figure 8.22: KMU dynamic power
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This first graph shows how the clock affects the KMU power consumption. Also in this case

only the dynamic power have been plotted cause the static power is still the same (84 mW).

As expected stricter constraints led to a higher power consumption and viceversa. Also here

is interesting to notice how fast the dynamic power decreases with respect to the period. In

particular for a period equal to 50 ns, the dynamic power consumption is more than 7 times less

with respect to a period of 7 ns.

Figure 8.23: KMU slack

The difference between the required time and the arrival time grows linearly. The slack

become negative only when the period is shorter than 7 ns (143 MHz).
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Figure 8.24: KMU LUTs

Also here once the slack is positive the number of LUTS remains almost the same for all the

configuration (6316). There is one value that differs from the others when the clock constraint is

set at 7 ns of period. In this case 6 more LUTs are needed.

8.9.4 Components usage

A more detailed resource usage of the single units is presented here below. These results came

from Vivado software after having performed the synthesis phase.

8.9.4.1 PUF usage

Report

Detailed RTL Component Info :
+---Adders :

2 Input 32 Bit Adders := 1
2 Input 8 Bit Adders := 33
2 Input 5 Bit Adders := 7
2 Input 4 Bit Adders := 3
2 Input 3 Bit Adders := 1
2 Input 2 Bit Adders := 1

+---XORs :
2 Input 4 Bit XORs := 2
4 Input 1 Bit XORs := 1
2 Input 1 Bit XORs := 22
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3 Input 1 Bit XORs := 6
+---Registers :

152 Bit Registers := 3
133 Bit Registers := 3
128 Bit Registers := 3
15 Bit Registers := 3
8 Bit Registers := 33
7 Bit Registers := 2
5 Bit Registers := 6
4 Bit Registers := 9
3 Bit Registers := 1
2 Bit Registers := 2
1 Bit Registers := 86

+---Muxes :
2 Input 152 Bit Muxes := 6
2 Input 133 Bit Muxes := 7
2 Input 128 Bit Muxes := 7
2 Input 15 Bit Muxes := 10
4 Input 15 Bit Muxes := 1
3 Input 15 Bit Muxes := 1
2 Input 8 Bit Muxes := 34
2 Input 7 Bit Muxes := 2
2 Input 5 Bit Muxes := 27
4 Input 5 Bit Muxes := 1
3 Input 5 Bit Muxes := 1
2 Input 4 Bit Muxes := 9
4 Input 4 Bit Muxes := 1
2 Input 2 Bit Muxes := 1
7 Input 2 Bit Muxes := 1
5 Input 2 Bit Muxes := 1
2 Input 1 Bit Muxes := 140
4 Input 1 Bit Muxes := 2

8.9.4.2 TRNG usage

Report

Detailed RTL Component Info :
+---XORs :

16 Input 1 Bit XORs := 8
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8.9.4.3 KMU usage

Report

Detailed RTL Component Info :
+---Adders :

2 Input 32 Bit Adders := 1
2 Input 8 Bit Adders := 33
2 Input 5 Bit Adders := 7
2 Input 4 Bit Adders := 3
2 Input 3 Bit Adders := 1
2 Input 2 Bit Adders := 2

+---XORs :
2 Input 4 Bit XORs := 2

16 Input 1 Bit XORs := 8
4 Input 1 Bit XORs := 1
2 Input 1 Bit XORs := 22
3 Input 1 Bit XORs := 6

+---Registers :
152 Bit Registers := 3
133 Bit Registers := 3
128 Bit Registers := 4
64 Bit Registers := 1
15 Bit Registers := 3
8 Bit Registers := 33
7 Bit Registers := 3
5 Bit Registers := 6
4 Bit Registers := 10
3 Bit Registers := 1
2 Bit Registers := 4
1 Bit Registers := 96

+---Muxes :
2 Input 152 Bit Muxes := 6
2 Input 133 Bit Muxes := 7
2 Input 128 Bit Muxes := 7
2 Input 64 Bit Muxes := 2
2 Input 16 Bit Muxes := 48
2 Input 15 Bit Muxes := 10
4 Input 15 Bit Muxes := 1
3 Input 15 Bit Muxes := 1
2 Input 8 Bit Muxes := 50
2 Input 7 Bit Muxes := 2
4 Input 7 Bit Muxes := 1
2 Input 5 Bit Muxes := 27
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4 Input 5 Bit Muxes := 1
3 Input 5 Bit Muxes := 1
2 Input 4 Bit Muxes := 9
4 Input 4 Bit Muxes := 1
4 Input 3 Bit Muxes := 1
2 Input 2 Bit Muxes := 4
7 Input 2 Bit Muxes := 1
5 Input 2 Bit Muxes := 1
3 Input 2 Bit Muxes := 1
4 Input 2 Bit Muxes := 2

17 Input 2 Bit Muxes := 1
2 Input 1 Bit Muxes := 174
4 Input 1 Bit Muxes := 15
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8.10 Implementation results

The implementation phase has been done for 3 different modules: TRNG, PUF and the whole KMU.

Also in this case the clock constraints have been modified in order to see the affections on power

consumption and slack. In this phase both power optimization and place and routing optimization

have been made. The number of LUTs involved is the one that is physically implemented in the

NEXYS 4 FPGA.

8.10.1 PUF implementation

The approach is very similar to the one adopted for the synthesis phase. The results coming from

the implementation are grouped in the following table. Starting from a clock constraints of 229

MHz several implementation have been performed decreasing the clock frequency.

clk[Hz] Period[ns] Power[mW] Dyn[mW] Stat[mW] slack[ns] SLICE LUTs FF

2.29 ·108 3 122 38 84 -0.360 658 549

2.09 ·108 4 112 28 84 -0.318 651 549

2.00 ·108 5 106 22 84 0.695 586 549

1.67 ·108 6 102 18 84 1.933 585 549

1.43 ·108 7 100 16 84 1.959 585 549

1.25 ·108 8 98 14 84 3.793 585 549

1.11 ·108 9 96 12 84 4.361 585 549

1.00 ·108 10 95 11 84 5.222 585 549

6.67 ·107 15 91 7 84 10.121 585 549

5.00 ·107 20 89 5 84 15.683 585 549

3.33 ·107 30 88 4 84 25.556 585 549

2.50 ·107 40 87 3 84 33.829 585 549

2.00 ·107 50 86 2 84 44.564 585 549

This results have been plotted to see the behavior of the unit and to better understand how

the clock frequency affects the power, slack and LUTs number.
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Figure 8.25: PUF dynamic power implementation

This first graph shows how the clock affects the PUF power consumption. Only the dynamic

power have been plotted cause the static power is still the same (84 mW). As expected stricter

constraints led to a higher power consumption and viceversa. Is interesting to notice how fast the

dynamic power decreases with respect to the period.

Figure 8.26: PUF slack implementation
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The difference between the required time and the arrival time grows almost linearly. The

slack become negative only when the period is shorter than 3 ns. The optimization phase has

improved the maximum clock frequency of the device reaching 209 MHz.

Figure 8.27: PUF LUTs implementation

The number of LUTS remains the same (585) for all the configuration except the the one with

period equal to 4ns. As we can notice the unit is able to reach a higher operating frequency but

with 76 more LUTs (area increasing).

8.10.2 TRNG implementation

Also in this case the results coming from the implementation phase are grouped in the following

table. Inn order to get a negative slack the clock constraints started from 249 MHz down to 20

MHz.
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clk[Hz] Period[ns] Power[mW] Dyn[mW] Stat[mW] slack[ns] SLICE LUTs FF

2.29 ·108 2 230 133 97 -0.002 290 136

2.29 ·108 3 186 89 97 0.770 290 136

2.09 ·108 4 164 67 97 1.521 290 136

2.00 ·108 5 150 53 97 2.450 290 136

1.67 ·108 6 141 44 97 3.458 290 136

1.43 ·108 7 135 38 97 4.458 290 136

1.25 ·108 8 130 33 97 5.130 290 136

1.11 ·108 9 127 30 97 6.138 290 136

1.00 ·108 10 124 27 97 7.064 290 136

6.67 ·107 15 115 18 97 12.130 290 136

5.00 ·107 20 110 13 97 17.138 290 136

3.33 ·107 30 106 9 97 27.138 290 136

2.50 ·107 40 104 7 97 37.138 290 136

2.00 ·107 50 102 5 97 47.130 290 136

Also in this case this results have been plotted to see the behavior of the unit and to better

understand how the clock frequency affects the power and slack. As we can notice the LUTs

number is not affected by the clock constraint and it is always constant to the value 290.

Figure 8.28: TRNG dynamic power implementation
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This first graph shows how the clock affects the TRNG power consumption. Only the dynamic

power have been plotted cause the static power is still the same (97 mW). As expected stricter

constraints led to a higher power consumption and viceversa. Also in this case the dynamic power

drops drastically with respect to the period.

Figure 8.29: TRNG slack implementation

Also here the difference between the required time and the arrival time grows almost linearly.

The slack become negative only when the period is shorter than 2 ns.
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8.10.3 KMU implementation

These are the results coming from the implementation of the whole KMU.

clk[Hz] Period[ns] Power[mW] Dyn[mW] Stat[mW] slack[ns] SLICE LUTs FF

2.00 ·108 5 149 65 84 -0.839 3176 4235

1.67 ·108 6 138 54 84 0.057 3175 4235

1.43 ·108 7 126 42 84 0.047 3104 4235

1.25 ·108 8 122 38 84 0.072 3119 4235

1.11 ·108 9 116 33 84 0.354 3090 4235

1.00 ·108 10 113 29 84 0.516 3086 4235

6.67 ·107 15 104 20 84 1.900 3093 4235

5.00 ·107 20 99 15 84 1.951 3105 4235

3.33 ·107 30 94 10 84 6.697 3098 4235

2.50 ·107 40 92 8 84 9.786 3105 4235

2.00 ·107 50 90 6 84 14.441 3120 4235

This results have been plotted to see the behavior of the unit and to better understand how

the clock frequency affects the power, slack and LUTs number.

Figure 8.30: KMU dynamic power implementation
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This first graph shows how the clock affects the KMU power consumption. Also in this case

only the dynamic power have been plotted cause the static power is still the same (84 mW).

As expected stricter constraints led to a higher power consumption and viceversa. Also here

is interesting to notice how fast the dynamic power decreases with respect to the period. In

particular for a period equal to 50 ns, the dynamic power consumption is around 9 times less

with respect to a period of 6 ns.

Figure 8.31: KMU slack implementation

The difference between the required time and the arrival time does not grow very linearly.

The slack become negative only when the period is shorter than 5 ns (200 MHz). We have similar

values of slack when the period is set to 6, 7 and 8 ns respectively. What changes in these

3 configurations are the dynamic power consumption and the number of LUTs used. Here is

where the power consumption optimization and place and routing optimization leads to have the

greatest benefits.
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Figure 8.32: KMU LUT implementation

The behavior here is not linear. For every clock constraint the place and routing optimization

tries to do the best best placement. As result it may happens that higher operational frequency

is associated to a lower number of LUTs and viceversa. The best achieved result is with a clock

constraint of 10 ns with a number of used LUTs equal to 3086.
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8.11 AXI interface

The ARM Advanced Microcontroller Bus Architecture (AMBA) is an open standard, mainly used

in SoC design. It is able to manage connection and specification of functional blocks.

The main features of this protocol are:

• data phases and address/control are separated

• byte strobes are used to support unaligned data transfer

• low-cost Direct Memory Access (DMA) is possible thanks to two separated data-channel

(read and write)

• out-of-order transaction completion

A lot of benefits derives from using AMBA, it enables efficient IP re-use, is suitable for

low-power operations and offers a wide flexibility to work with very different SoCs.

8.11.1 Architecture

AXI is a burst-based protocol transaction. Write and read data channels are separated, one of

each goes from the master and the slave (write) and viceversa (read). During the write operation,

the slave must be able to communicate the end of the write transaction. In order to do this an

additional response is added.

The following figures shows the behavior of read and write operations.

Figure 8.33: read transaction
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Figure 8.34: write transaction

8.11.2 Interface and Interconnect

The Figure 8.35 shows a typical example of this architecture, a consistent number of masters and

slaves are interconnected through their interfaces.

Figure 8.35: Interconnection

There is a single interface definition for the different kind of interconnections (master and

slave, master and intercon., slave and intercon.)
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ROCKET-CHIP

System-on-chip (SoC) is able to boost efficiency by using integration and customization. It is an

open source technology, that can be obtained under a BDS licence on Github, developed at UC

Berkeley for both industrial and research aims. Rocket Chip is not a single instance of an SoC

design. On the contrary it is a design generator that allows to produce from a single source a

lot of different design instances. Thanks to the high numbers of parameters that can be set it

can be customized for any particular application. With the aim of enlarge its modularity a lot of

component libraries are provided as independent repositories.

9.1 Background

Starting from RISC-V Instruction Set Architecture (ISA) researchers at UC Berkeley have

developed the Rocket Chip. One of his strong point is the fact that it is open and free meaning

that it can be easily used in all the environments, from open-source to commercial.

Thanks to its modular design RISC-V is extremely flexible. This modularity is represented by

the existence of approximately 40 integer instructions that must be implemented by all cores

and by the wide opcode space that has been left over in order to support optional extensions,

even if, among these optional extensions, the most conventional have already been standardised.

Multiply and divide, atomics, single-precision and double-precision floating point are existing

extensions called common extensions (IMAFD) and are enclosed into the extension that provides

a general-purpose, scalar instruction set.
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There are different options regarding the address mode (32, 64 and 128 bits plus 16-bit

compressed extension used to reduce static code size). Non-standard extensions are located in the

opcode space instead. This division has been made in order to allow designers to add new features

to processors without generating a conflict between them and existing compiled software.

Chisel is an open-source hardware construction language embedded in Scala and it is used to

implement Rocket Chip. Chisel is directly responsible of the circuits and, since it is part of Scala,

it makes available its full programming language to generate circuits, provide functional and

object-oriented descriptions of circuits. Moreover, the advantage of Chisel is the availability of a

higher number of features with respect to those found in Verilog. By using Chisel, it is possible

to generate both a synthesizable Verilog code and a RTL simulator implemented in C++. The

two are equivalent but while the first is compatible FPGA and ASIC design tools the second is

significantly faster and a complete Rocket Chip instance can be simulated using it.

9.2 Rocket Chip Generator

Figure 9.1: The Rocket Chip instance
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The Rocket Chip generator is made of several sub-components generator (core, cache, RoCC-

compatible coprocessor, Tile, TileLink) and some peripherals.

The programming language Chisel and the RISC-V-based platform represent the basis for the

development of the Rocket Chip generator. This generator includes a collection of parametrized

chip-building libraries that allow to produce different variations of the SoC.

Figure 9.1 represents a Rocket Chip. It is possible to notice that 2 tiles are connected to a 4-bank

L2 cache. An AXI interface is responsible for the interconnection between the memory system

and the external I/O.

The aim of the Rocket Chip is to support a different variety of workloads and to enhance energy

efficiency, for these purposes, heterogeneity is supported. Indeed, it can be made of different tiles

and, more important, it can even support the addiction of custom accelerators. In order to do this,

it is able to support three different mechanisms. Which one to choose depends from the extent of

the involvement between the accelerator and the core. The easiest option is also the one referring

to the most tightly coupled option.

If the purpose is more decoupling it is then necessary to make the accelerator work as a coproces-

sor so thanks to the RoCC interface the processor can send to it data and commands. When the

aim is fully decoupled accelerators it is possible to instantiate them in their own tiles and then to

connect them, in a coherent way, using TileLink. It is possible to combine these techniques, and

so interim solutions can be reached.
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CONCLUSIONS

In this thesis document a new Key Management Unit for RISC-V secure processor is presented.

This approach has been tested on NEXYS 4 FPGA and is now under testing on Kyntex FPGA.

Results showed savings up to 89% dynamic power in Artix-7 under different constraints. We can

also notice that the optimal placement in terms of area is obtained with a clock period equal to

10 ns. The new adopted PUF solution has been tested on an Artix-7 Nexys 4 FPGA board and

results inuniqueness of 49.2%, uniformity of 48.5% and 47.8% bit-aliasing. The noisy bits are

recoveredusing BCH error correction scheme that allow to obtain final response with a reliability

of 99.99%.

Future work is the implementation of this unit with the rocket chip whit a full immersive

testing. The same team with which I worked is now doing this operation.
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