

POLITECNICO DI TORINO
Master degree course in Electronic Engineering

Master Degree Thesis

Optimized VLSI architectures for
bilateral filtering in future video

coding

Supervisor
prof. Maurizio Martina

Candidate
Marco Lavena

Accademic Year 2017-2018

Summary

By 2021 it is expected that 82% of total IP traffic will be IP video traffic. This
percentage includes live internet video, video surveillance, video-on-demand and
internet TV. It must also be considered that, following the current trend, the de-
mand for higher video resolutions and a better overall quality is expected in the
future. As well as expected an increase in traffic on mobile devices. All this can
not be sustained without considerable technological progress in video encoding in
order to maximize data compression.

To address this problem over the years, different research groups like ISO/IEC
and ITU-T have proposed innovative video coding standards. In 2013 an ISO/IEC
and ITU-T joint group called JCTVC released HEVC standard which marked a
new frontier in video coding. Since then, the two groups have joined again in a
new workgroup named the Joint Video Exploration Team to lay the foundations
for the study of a new standard capable of achieving even higher performance and
overcoming the technological challenge. This is how the Joint Exploration Model
(JEM) was born, which conveys all the efforts and ideas for improvement.

The inclusion of a particular processing unit in the filtering stage has been
proposed for the elimination of artefacts due to the compression of the information.
This level of frame processing is called Bilateral Filter, which performs an average
of the intensity of the pixels, weighed on the geometric and photometric distance
among them and preserves the edges. Numerically it acts as an High-Pass filter,
suppressing small intensity variations and preserving bigger ones. It is a topic that
has only recently been considered to be implemented in the new model, although
its original formulation dates back to 1998. As a consequence, it has aspects that
are still unexplored, for which this work undertakes to analyze.

Indeed this thesis aims to study an architectural solution for the filter in order to
obtain the target performance that allows real-time video processing of an at least
60 frames per second sequence at FHD (1920 x 1080) and UHD4K (3840 x 2160)
resolutions. Starting from previous work, the design has been optimized in terms
of used resources reduction. In particular the task has been focused on memories
involved into the architecture with the purpose of better values compression and
area freeing. The main result has been to evolve from a value-based LUT for every
filter weights, to an index-based one that replaces numerical values with addresses.

3

Final weights are then obtained through comparisons between memory input in-
dexes and cells from the new one. This suggests a theoretical size compression of
63.9%. Some further actions have been done in order to decrease resources usage
in other smaller LUTs present inside the architecture.

Found solutions, synthesized with commercial purpose UMC Low Leakage 65
nm library, led to a memory area reduction up to 61.7% and a full architectural
one up to 42.9%. On the other hand, maximum frequency reached 1.47 GHz (1.47
GPixel/s), with an increment of 11.8% respect to original performance, widely
satisfying FHD and UHD4K requirements. An advanced filter architecture able to
double the throughput has been also proposed, with a maximum clock of 1.37 GHz
(2.74 GPixel/s) and and area just 54.6% bigger.

4

Acknowledgements

Al professore Maurizio Martina, per l’infinita cortesia e disponibilità offertami
durante l’intero lavoro di questa tesi, per tutta la pazienza dimostrata e per avermi
indirizzato tutte le volte sulla giusta strada nella ricerca delle soluzioni.

Ai miei genitori, per avermi concesso l’opportunità di intraprendere e portare
a coronamento questo percorso senza avermi fatto mai mancare il sostegno e la
fiducia, per essermi stati sempre accanto nonostante la distanza e per avermi fatto
sentire veramente a casa ogni volta che sono tornato.

A mia sorella, per tutta la sensibilità e il supporto in questi cinque lunghi anni,
per avermi saputo dare costantemente i giusti consigli e per avermi guidato nel
prendere le decisioni più importanti.

A mio cugino, per aver condiviso con me questa avventura lontano da casa e
dalla nostra terra dandomi la possibilità di avere sempre vicino qualcuno su cui
contare.

A tutti i miei amici più stretti, per avermi immeritatamente sopportato e per
essere stati la migliore via di fuga dallo stress dello studio.

Ai colleghi, ai parenti e a chiunque mi abbia aiutato nel corso di questi anni.

Un sentito grazie.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction 13
1.1 Background . 13
1.2 Motivations . 14
1.3 Work Organization . 15

2 Video Coding 17
2.1 Standards . 17
2.2 Overview . 18

2.2.1 Video Frame . 19
2.2.2 Picture Partitioning . 21
2.2.3 Prediction . 22
2.2.4 Transformation and Quantization 23
2.2.5 In-Loop filters . 24
2.2.6 Entropy Coding . 26

3 Bilateral Filter 27
3.1 Purpose and Role . 27
3.2 Classical Definition . 28

3.2.1 Gaussian Case . 29
3.3 JEM . 30
3.4 Improving Classical Approach . 33

4 Architecture Development 39
4.1 First Order Bilateral Filter . 40
4.2 Higher Order Bilateral Filter . 44
4.3 Improving Memories . 46

4.3.1 Coefficients LUT . 46
4.3.2 Value-Based . 47

6

4.3.3 Index-Based . 52
4.3.4 Division-Free LUT . 58

5 Results 63
5.1 Coefficients LUT . 63
5.2 Division LUTs . 66

6 Conclusions 69

Bibliography 71

7

List of Tables

3.1 Table of values assumable by ωC for H and W dimensions of the filter
support, and the prediction mode. 35

5.1 Area and timings results of the LUT Coefficients optimizing architec-
tural solutions synthesis. Nangate Open Cell 45nm and UMC 65nm
Low-K Multi-Voltage Low Leakage have been used. The percent-
age difference between each solution and the reference value-based is
indicated between brackets. 64

5.2 Area and timings synthesis results of first and second order bilateral
filter architectures. All the solutions in table 5.1 have been con-
sidered. On the other hand, the optimization applied to the LUTs
related to the division is not included. The percentage difference
between each solution and the reference value-based is indicated be-
tween brackets. 65

5.3 Area and timings of the architectural synthesis results for first and
second order bilateral filter, including the optimization of the Mul-
tiplier factor and Scale factor LUTs. All solutions in table 5.1 have
been considered.The percentage difference between each solution and
the reference value-based in table 5.2 is indicated between brackets. 66

8

List of Figures

1.1 Growth rate of IP traffic per month. [2] 13
2.1 JEM simplified diagram. All main stages are individually repre-

sented. Gray ones are related to the decoding chain. [4] 19
2.2 Visual example of 4:2:0 subsampling. A single value of Cb and Cr is

sampled every squared block 2×2 of Y values. Therefore the chromi-
nance channels have dimensions W/2 × H/2. [16] 20

2.3 HEVC picture partitioning scheme. Example for the partitioning of
a 64 × 64 CTU into CUs of 8 × 8 to 32 × 32 luma samples. On
the rigth the quadtree structure is shown. The numbers indicate the
coding order of the CUs.[15] . 21

2.4 Example of QuadTree-plus-Binary-Tree partitioning structure in JEM.
Zero value node determines a symmetric vertical division, whereas
one value node signal horizontal split. [19] 22

2.5 Pre-defined directional modes used to capture the arbitrary edge di-
rections presented in natural video when intra-prediction is enabled.
[19] . 23

2.6 Diagram of the components in the In-Loop Filters stage. The first
one is the Bilateral Filter, then the Deblocking and Sample Adaptive
Offset filters, and the Adaptive Loop Filter at the end of the chain. 25

3.1 Example of a demonstration chart for the application of the bilateral
23x23 filter. (a) Input. (b) Spatial filter function. (c) Range filter
function. (d) Bilateral filter function (a · b). (e) Output. [27] 30

3.2 Geometry of the bilateral filter in the JEM model on the right. The
pixels name defines their position: Central, Above, Below, Righr,
Left. On the left a TU 8x8 is shown as a classical application support
for the filter. [19] . 31

3.3 Trend of the coefficients value for each QP. As can be seen, they
assume a limited quantity in the interval between 0 and 31. Beyond
the abscissa 197 all the coefficients are equal to zero. 33

9

4.1 Architecture of the first section of the bilateral filter. On the left are
the adders that make the difference between the values of Ix and IC .
The coefficients memory is in the center. Finally, on the right are
the two final compressors that perform q

ωx∆Ix and q
ωx. 41

4.2 Graphical example of how spatial correlation can be used to avoid
having to make four evaluations when raster scan processing is adopted.
Indeed IR(i) = IC(i+1) and IC(i) = IL(i+1), where i is the absolute
position of the central pixel within the row, due to the fact that the
two considered pixels belong to the same row. 42

4.3 Graphical example of how spatial correlation can be used to avoid
having to make four evaluations when raster scan processing is adopted.
Indeed IB(i) = IC(i + 1) and IC(i) = IA(i + 1), where i this time
identifies the position inside a column, due to the fact that the two
considered pixels belong to the same column. 42

4.4 Architecture of the first section of the bilateral filter with introduc-
tion of registers ωL, ωL∆IL, ωA and ωA∆IA that save respectively
ωR, ωR∆IR, ωB and ωB∆IB in order to reduce complexity. 43

4.5 Architecture of the second section of the bilateral filter with divider
replaced by multiplier. divLUT and shiftLUT are memories respec-
tively for denominator reciprocals and for scale factors. 44

4.6 Complete architecture of the bilateral filter. 45
4.7 Geometry of the second order bilateral filter. It is the sum of two

simple cross scheme of the single order filter. Central pixels overlap
a below and an above cell, reducing the total number of considered
pixels to eight. 46

4.8 First half of the second-order bilateral filter architecture. 47
4.9 Example of a linear fitting of the coefficients for QP equal to 51 and

the related residuals using a full precision arithmetic. 49
4.10 Example of a linear fitting of the coefficients for QP equal to 51 and

the related residuals using an integer arithmetic. 50
4.11 Coefficients memory architecture with five reduced parallelism sub-

memories. On the left there are the four registers containing the
address of first lower parallelism number for each QP . The central
block computes the comparisons and signals to multiplexers which
sub-memory must be addressed. Address offset adjustment is shown
in the bottom left area. 51

4.12 Organization of the index-based memory. There are 34 rows because
QP can assume value from 18 to 51. The amount of columns is 31
due to the fact that coefficients reach a maximum value of 31 but
the addresses of 31 itself are ignored because always zero. Looking
the table by columns. 53

10

4.13 Index-based memory architecture with a 32-comparators array and
a priority encoder. 54

4.14 Index-based memory architecture with a 16-comparators array and
a priority encoder. With a multiplexer signalled by a comparison,
which half of the row is chosen. A last adder restores the parallelism
adding an offset depending on the sub-row. 56

4.15 Index-based memory architecture with a 8-comparators array. The
quarter used is chosen comparing ∆I to the LSCs of the first three
slices, that in this picture are named r1, r2 and r3. 57

4.16 Architecture example of the index-based memory subdivided in 8
sub-tables, each one with its own parallelism. Three multiplexer
and QP valuations are needed. 58

4.17 Architecture example of the index-based memory subdivided in 16
sub-tables, each one with its own parallelism. Three multiplexer and
QP valuations are needed. 58

4.18 Diagram of values contained in Multiplier factor LUT. They rep-
resent the denominator reciprocals of the fraction in (3.18) which
avoids the arithmetical division operation. 59

4.19 Diagram of values contained in the three sections in which Multiplier
factor LUT has been divided. They have been translated so that the
curves have overlapping origins. 60

4.20 Optimized architecture of the Scaling factor LUT. There are just
three cells for a total of 4 bit. Two comparators signal a pair of
multiplexers in order to address the right value. 62

5.1 Area vs delay diagram of the architectural synthesis results in 5.3
for first and second order bilateral filter, including the optimization
of the Multiplier factor and Scale factor LUTs. Each dot represent
a specific solution. The acronyms i.b. and v.b. mean respectively
index-based and value-based. 67

11

12

Chapter 1

Introduction

1.1 Background
Since Tim Berners-Lee proposed the World Wide Web in March 1989 [1], he gave
birth to a revolution in the information world. Internet was born and all the
connected data traffic with it. The world was beginning to connect and the demand
for access to the new technological reality was increasing more and more.

Nowadays we have come to a lot of data exchanged through the network that
needs 21 digits to be sized. According to the latest Zettabyte Cisco Report [2]
in 2016 the incredible threshold of 1.2 ZB of IP traffic was reached through the
Internet, and this number is expected to almost triple by 2021. The diagram in
figure 1.1 illustrates the growth rate of IP traffic per month.

Figure 1.1. Growth rate of IP traffic per month. [2]

The document also claims that by 2021 it is expected that 82% of total IP
traffic will be IP video traffic. This percentage includes live internet video, video
surveillance, video-on-demand and internet TV. It must also be considered that,

13

1 – Introduction

following the current trend, the demand for higher video resolutions and a better
overall quality is expected in the future. As well as expected an increase in traffic
on mobile devices.

All this can not be sustained without considerable technological progress in
video encoding in order to maximize data compression. To address this problem
over the years, different research groups have proposed innovative video coding
standards. In the last two decades, for example, the MPEG-1 and 2 issued by the
ISO/IEC group, and the H.261 and 263 standards issued by ITU-T, deserve to be
mentioned. Great progress has been made with the joint work of these two teams,
starting with the AVC up to the 2013 HEVC standard which marked a new frontier
in video coding.

Since then the two groups have joined a new workgroup called the Joint Video
Exploration Team to lay the foundations for the study of a new standard capable
of achieving even higher performance and overcoming the technological challenge.
This is how the Joint Exploration Model (JEM) was born, which conveys all the
efforts and ideas for improvement. As happened in the past, a software test model
of the studied algorithm has always been realized. For this thesis the last available
version corresponding to JEM 7.1 has been considered [3].

1.2 Motivations
For the JEM model the insertion of a particular element in the filtering stage
has been proposed for the elimination of artefacts due to the compression of the
information. To the already present Deblocking Filter and Sample Adaptive Offset,
a previous level of frame processing called Bilateral Filter has been added, which
performs an average of the intensity of the pixels weighed on the geometric distance
between them and preserves the edges.

It is a topic that has only recently been considered to be implemented in the
new model, although its original formulation dates back to 1998, in fact the HEVC
standard does not include it. As a consequence, it has aspects that are still unex-
plored, for which this work undertakes to analyze. In particular, its application to
the world of image processing has frequently been studied, where the limits due to
real-time performance and the amount of data are not present or extremely strin-
gent. As a result, many of the approaches presented in the past have favoured
aspects related to the final quality of the output or to the scalability of the filter
among the resolutions that an image can reach. Now it is allow to sacrifice the
achievement of a total defects absence but it is not possible to go below certain
processing speeds, in order to avoid total incompatibility with the purpose of use
of and therefore the trivial technological uselessness.

It is also important to have a thorough study on the optimization of this element
as it is a mandatory stage for loop decoding. Every time a frame is reconstructed,
the Bilateral Filter is activated even before all other filters. Even in some cases it

14

1.3 – Work Organization

is applied before the end of the prediction algorithm, and in particular every time
frames already decoded are necessary for what is currently being decoded.

1.3 Work Organization
The thesis presented here is divided into six chapters that deal with the essential
topics of the discussion. They are presented in the following order.

1. Introduction Brief description of the background and the purpose of the pre-
sented work.

2. Video Coding This chapter summarizes the JEM coding algorithm working
principles. The fundamental steps in the encoder and decoder chain are de-
scribed, along with their characteristics and the path pursued by the ITU-T
and ISO/IEC research groups in the previous standards presentation.

3. Bilateral Filter Being the main topic of this thesis, an entire chapter was
assigned to its mathematical formulation and then to operational development,
as well as the approaches taken for JEM arrangement.

4. Architecture Development If in the former chapter the theoretical characteris-
tics of the filter have been discussed, in this case a valid hardware implementa-
tion is developed. Starting from an architecture already proposed, we worked
on optimizing the resources used.

5. Results The results achieved by the actual synthesis of the studied architecture
are illustrated.

6. Conclusions Finally, the conclusions on the performance that a device can
achieve using the presented architecture are discussed.

At essay end there are also appendices showing the listing of the realized VHDL
codes starting from what described in the architectures chapter, and the JEM
Common Test Condition (CTC).

15

16

Chapter 2

Video Coding

This chapter summarizes the essential topics of the JEM (Joint Exploration Model)
encoding and decoding algorithm. Starting from a brief chronicle of the standards
adopted so far, it continues with the main features of the model.

2.1 Standards
In [4] it is well shown by G. Sullivan how the standards of video coding arose over
time from the work of two specific research groups: the ITU-T Video Coding Ex-
perts Group (VCEG) [5] and the ISO/IEC Moving Picture Experts Group (MPEG)
[6].

The ITU-T published for the first time in 1988 the H.261 [7] standard, to be
finally updated in 1993 [8]. It has been designed to reach speeds between 40 kbit/s
and 2 Mbit/s. In 1996 the same group released the standard H.263 [9], with sub-
sequent modifications in the following years. It was mainly thought for low-bitrate
video conferencing, but has also found wide use in the compression of multimedia
content on the web.

Meanwhile, ISO/IEC has been the author in 1991 of the MPEG-1 [10] standard,
and in 1998 of MPEG-4 Visual [11].

But the standards that have found the most diffusion over time are the H.262/MPEG-
2 Video [12] and the H.264/MPEG-4 Advanced Video Coding (AVC) [13]. They
was born from the joint work of both the ITU-T and ISO/IEC research groups.

The H.262/MPEG-2 Video was released for the first time in 1995, and then it
was upgraded to a second version in 2000. It has been fundamental for TV and
satellite broadcasting thanks to interlaced video support. It was also the main
compression format for DVD-Video media due to the ability to reach 9.8 Mbit/s.

Eventually, H.264/MPEG-4 has been initially released in 2003 and received ma-
jor updates and amendments until today. It has almost completely covered every
area by replacing the old standards thanks to the superior performance. It has

17

2 – Video Coding

found application in high definition TV and satellite broadcasting, cable trans-
missions, digital video capture and editing, as well as in most online multimedia
and video chat applications, and in high density media like the Blue-Ray Disc [4].
However, due to the increasing amount of data traffic caused by video-streams at
resolutions that are often beginning to outgrow HD, and which are now increasingly
concentrated on mobile devices, has led to the need to develop a new standard level.

Hence from the joint work commitment of the ITU-T and MPEG groups which
has been realized in a partnership under the name of Joint Collaborative Team on
Video Coding (JCT-VC) [14], the High Efficiency Video Coding (HEVC) [15] [16]
has been released in 2013. The goal is to improve the performance allowing higher
resolutions and to increase the processing parallelization. The attempt is to be
able to halve the bit-rate of previous H.264/MPEG-4. In order to give maximum
exploration capacity for optimizations, it has been decided to standardize only the
syntax, the structure of the bit-stream and the mapping for the generation of the
decoded images [4].

Since the release of the last standard, an exploration model has been defined in
order to try innovative and experimental approaches. A new group called JVET
(Joint Video Exploration Team) [17] was founded in October 2015 by the usual
ITU-T VCEG and ISO/IEC MPEG. In this way a new test model called JEM was
elaborated. After a short time and some proposals, in 2018 the group was renamed
the Joint Video Experts Team, with the aim of design a new standard.

2.2 Overview
The JEM video encoding algorithm can be divided into intermediate stages, each
defined by a specific operation. It largely reflects the model of the HEVC, the
differences are made to the characteristics of the operations carried out.

The goal pursued in coding is to remove any possible redundancy from the
information processed [18]. This redundancy can be of type:

• spatial Linked to the local correlation of intensity and color saturation that
can occur between adjacent or close pixels, for example in uniform areas of
the video frame;

• temporal Linked to the correlation of intensity and color saturation that can
take place between pixels belonging to consecutive frames in a sequence, as
they may have been acquired by the video source in short time intervals;

• statistic Linked to the probability that certain symbols of the bit-stream have
to appear on most real occasions, and the encoder should work with the target
of assigning a limited number of bits to the most common ones;

• visual Linked to the limits of human vision.

18

2.2 – Overview

Assuming to have a non-coded input signal, it is initially divided into regions
called Coding Tree Units (CTU). Subsequently, information is collected and is then
used to perform a prediction of the picture with the aim of compressing similar
contents due to one of the mentioned redundancies. Finally the Discrete Cosine
Transform (DCT) and its quantization, which allow to achieve high performance
in the compression of the input signal, is operated. This last action, however,
determines particular artefacts that can ruin the actual quality of the output signal.
This is why a special stage called In-Loop Filters able to specifically remove these
defects is inserted in the decoding section of the algorithm.

In figure 2.1 is shown an algorithm simplified diagram.

Figure 2.1. JEM simplified diagram. All main stages are individually represented.
Gray ones are related to the decoding chain. [4]

The blocks that in the figure 2.1 are called Motion Estimation, Motion Compen-
sation and Intra-Picture Estimation contribute to the prediction operation. The
CABAC stage, on the other hand, is used to estimate decoding entropy.

2.2.1 Video Frame
A frame of a video sequence is defined as a matrix of pixels each one having its own
value and which together make a picture. Typically it is rectangular with dimen-
sions W (width) × H (height). The most known pairs of values, which determine
the resolution of the frame, are typically 1280 × 720 (HD), 1920 × 1080 (FHD) and

19

2 – Video Coding

3840 × 2160 (UHD4K). The JEM is designed to achieve high performance with the
last two resolutions.

Commonly the YCbCr color space is used and with a progressive 4:2:0 sampling
[4]. The color space is divided into three separate channels: luma (Y) component
that identifies the shade of gray assumed by a pixel in the entire tonal range that
goes from white (maximum) to black (minimum); chroma (Cb and Cr) components
that define the how much the color deviates from gray in blue and red respectively.
Luminance and chrominance are treated separately within the algorithm. The
4:2:0 sub-sampling indicates the relationship between the samples of the luma and
chroma components of the frame. More precisely, a single value of Cb and Cr
is sampled every squared block 2×2 of Y values. Consequently, the chrominance
channels will have dimensions W/2 × H/2. This choice depends on the greater sen-
sitivity that the Human Visual System (HVS) has towards the luma, thus allowing
to reduce the bit-rate of the color channels. In figure 2.2 a visual example of 4:2:0
sub-sampling is illustrated.

Figure 2.2. Visual example of 4:2:0 subsampling. A single value of Cb and Cr is
sampled every squared block 2×2 of Y values. Therefore the chrominance channels
have dimensions W/2 × H/2. [16]

JEM typically uses a 10-bit depth, resulting in a range from 0 to 1023 of values
assumable by each pixel and for each channel.

20

2.2 – Overview

2.2.2 Picture Partitioning
In HEVC the input signal frames are partitioned into macroblocks called Coding
Tree Units (CTUs) with dimension defined by the encoder. A CTU consists of
a luma coding tree block (CTB) and two chroma CTBs. The CTBs are squared
structures of samples with side L that can have a value equal to 16, 32 or 64,
depending on the compression to be obtained. Each CTB is then further subdivided
into a quadtree-like structure containing luma Coding Block (CB) and chroma CBs.
One luma CB and two chroma CBs form a Coding Unit (CU). As a consequence a
CTB can contain one or more CUs. Each CU is also composed of Prediction Units
(PUs) and Transform Units (TUs). The PUs can be from 4 × 4 to 64 × 64 samples.
TUs can be from 4 × 4 to 32 × 32 samples [4]. In figure 2.3 an explanatory scheme
of the HEVC picture partitioning is shown.

Figure 2.3. HEVC picture partitioning scheme. Example for the parti-
tioning of a 64 × 64 CTU into CUs of 8 × 8 to 32 × 32 luma samples.
On the rigth the quadtree structure is shown. The numbers indicate the
coding order of the CUs.[15]

With JEM the separation of CU, PU and TU is removed and with them the
concept of multiple partition types. This allows greater flexibility for the size and
shape of a CU, which can now also assume a rectangular shape. The introduction
of a new block structure called QuadTree-plus-Binary-Tree (QTBT), which divides
each CTU into a quadtree structure and each leaf further into a binary tree struc-
ture. The binary tree allows a horizontal or vertical subdivision based on the value
assumed by the division node, 0 for the first case and 1 for the second. An example
is shown in figure 2.4. The leaves of the binary tree are CUs. A QTBT parti-
tioning scheme defines the following parameters: CTU size, the root node size of a
quadtree; MinQTSize, the minimum allowed quadtree leaf node size; MaxBTSize,
the maximum allowed binary tree root node size; MaxBTDepth, the maximum al-
lowed binary tree depth; MinBTSize, the minimum allowed binary tree leaf node
size [19]. The maximum size of a CTU is 256 × 256. JEM and HEVC also define
the slice as a set of CTUs processed in raster scans for which a single encoding

21

2 – Video Coding

method is defined.

Figure 2.4. Example of QuadTree-plus-Binary-Tree partitioning structure in
JEM. Zero value node determines a symmetric vertical division, whereas one value
node signal horizontal split. [19]

2.2.3 Prediction

The prediction within the encoding algorithm of a video sequence arises from the
need to eliminate the information redundancy. The operation carried out is to
gather clues about correlation from frames in order to obtain a more reliable pre-
diction, then a subtraction of this with the original content is performed and only
the difference, or residual, obtained is actually sent so that it can be added again
to the prediction and precisely reconstruct the information in the decoding phase
[4]. There are two types of prediction: intra-prediction and inter-prediction.

Intra-prediction works in the perspective of reducing spatial redundancy, and
therefore the correlation between pixels belonging to the same frame. To do this it
is necessary to identify any more or less geometrical ordered arrangement of pixels
within each block. Pre-defined directional modes have therefore been introduced,
which amount to a total of 67 for the JEM. In figure 2.5 these modes are shown.

22

2.2 – Overview

Figure 2.5. Pre-defined directional modes used to capture the arbitrary edge
directions presented in natural video when intra-prediction is enabled. [19]

Inter-prediction instead acts on the removal of the temporal redundancy and
tries to eliminate the correlation between pixels belonging to consecutive frames.
The complexity of this operation requires estimating the movement of the pixels
over time and collecting the information in a structure called motion vector, which is
then sent together with the residues and allows to perform a motion compensation.
In JEM it is possible to estimate the motion at sub-PU level and with adaptive
resolution, up to an accuracy equal to 1/16 of luma sample and 1/32 of chroma
sample [19].

Inter-prediction typically allows to achieve greater compression factors than
intra-prediction, thereby reducing the bandwidth required to transmit the encoded
bit-stream. However, it takes more encoder and decoder computational time be-
cause the algorithm must consider multiple frames simultaneously.

Based on which prediction paradigm it has been chosen, slices [4] are classified
in:

• I-slice Slice in which all CUs are coded using only intra-prediction;

• P-slice Slice in which some CUs can be coded with inter-prediction method,
as well as intra, using information from previous frames;

• B-slice Slice in which some CUs are coded with inter-prediction, as well as
intra, using frames that precede and succeed the one to which the slice belongs.

2.2.4 Transformation and Quantization
Already from the H.261 standard it was considered to apply to the algorithm a
stage able to performing the transformation the prediction residues in order to
reduce the statistical correlation. In fact, converting the working domain into that

23

2 – Video Coding

of the transformed, through the use of the Discrete Cosine Transform (DCT) [20],
it is possible to reduce to a limited set of coefficients the amount of data necessary
to represent the information. Furthermore, this transformation does not lose any
information as it is a lossless compression.

In order to further reduce the amount of data we can proceed with a quantiza-
tion of the transform coefficients. It is done a normalization of each value of the
coefficients to the Quantization Step (Qstep) defined as

Qstep = 2
QP−4

6

and where QP is the Quantization Parameter that can vary in the interval [0,51].
Therefore, a high QP implies a high compression and therefore an imprecise recon-
struction by the decoder. It is necessary to find a compromise between quality and
transmission band. For this reason, since the implementation x264 [21] of standard
H.264, the Variance-based Adaptive Quantization (VAQ) has been introduced.

The VAQ allows to adjust the quantization on the basis of a given block pixels
variance. In particular, if the variance is low, so the block appears sufficiently
uniform, QP is limited in order to avoid the onset of compression artefacts. If
instead the variance of the block is high, it is possible to increase QP without
compromising the quality. To signal to the decoder which corrections to make to
QP it is calculated

QPoffset = QPCU −QPframe

where QPCU is the quantization calculated for a single CU starting from the variance
of its CB, and QPframe it is actually the value defined a priori for the sequence.

2.2.5 In-Loop filters
In the decoding phase, further operations are needed in order to correctly recon-
struct the encoded information and to remove all the artefacts introduced by the
quantization and by the division into blocks of the frame. In this way, the stage
called In-Loop Filters is introduced into the algorithm, which in the JEM is com-
posed of a chain of four different filters: the Bilateral Filter (BF), the Deblocking
Filter (DBF), the Sample Adaptive Offset (SAO) and eventually the Adaptive Loop
Filter (ALF). In figure 2.6 a diagram of the components in the In-Loop Filters stage
is shown.

The individual filters are briefly described below.

• BF The bilateral filter is a non-linear filter with spatial weighted mean but
with edge preservation, and it works in the removal of quantization artefacts.
It substantially removes, in the areas where it is applied, the low frequencies
preserving the high ones. Being the main topic of this thesis is better explained
in its personal chapter 3.

24

2.2 – Overview

• DBF The deblocking filter [22] acts on the pixels at the edges of adjacent
CUs in order to mediate differences related to different parameters between
partitioning or other encoding artefacts. The result must be a smooth profile
instead of strong transitions.

• SAO The sample adaptive offset [23] acts to remove a constant difference in
intensity between the reconstructed and the original sample. In order to do
this, these offsets are evaluated for each CTB during the coding phase and
some flags that determine which value must be added or subtracted from the
decoded samples are signalled to the decoder.

• ALF The adaptive loop filter is the last and most complex of those present.
It also acts to reduce artifacts such as ringing and blurring through the multi-
plication of coefficients determined through Wiener-Hopf equations. In order
to avoid having to calculate them each time, 25 classes of coefficients are pre-
defined and in the coding phase the most suitable for each block is chosen
based on evaluations on horizontal, vertical and diagonal gradients, and n sig-
nalled. After identifying the class that best matches the entity of the defect to
be removed, any geometric transformations can be applied to make the ALF
more accurate [19].

Figure 2.6. Diagram of the components in the In-Loop Filters stage. The first
one is the Bilateral Filter, then the Deblocking and Sample Adaptive Offset filters,
and the Adaptive Loop Filter at the end of the chain.

25

2 – Video Coding

2.2.6 Entropy Coding
In this last stage of the JEM algorithm a compression of the data containing all
the information necessary to reconstruct the sequence stream actually signalled
by the encoder to the decoder is performed. For example, the partitioning block
structure and the calculated residuals, the coefficients related to the transformation
and to the correction filters applied, data about quantization and prediction, and a
whole series of general controls are sent. In order to reduce the amount of bits and
therefore the occupied band, an encoding is performed through the Context-based
Adaptive Binary Arithmetic Coding (CABAC) system.

26

Chapter 3

Bilateral Filter

In this chapter it is explained and discussed the theoretical approach of the bilateral
filter and its role in the processing and decoding of pictures and video. It shows
an in-depth description of the model that best reconciles with the use context and
the objectives to be achieved, examining all the applicable improvements to get
closer to the state of the art of the topic. The entire work of this research thesis
is indeed oriented to the development of a computing architecture that maximizes
the performance and minimizes the resources used, therefore the same theoretical
approach is carried out focusing on an approach "hardware-friendly".

3.1 Purpose and Role
The bilateral filter arises from the need to have a versatile and reasonably simple
tool to perform a smoothing action of the information contained in a matrix of
numerical values, or in this case pixels, while preserving the edges between high-
contrast regions. Filtering is indeed a hinge process in all contexts involving opera-
tions on pictures or video, as it is necessary that the final product is in accordance
with the natural human perception. The problem arises from the presence of spu-
rious information superimposed on the original one, and that can be treated as a
type of noise originated by mechanisms of acquisition of the image itself or as a
collateral consequence of previous operations on it.

Particularly in the video decoding field it is essential to remove the artifacts
produced by the quantization in the transform domain during the source stream
coding phase, applied since the H.261 standard [8]. The effect that most of all
needs to be suppressed is the ringing. In this way the filter tries to reconstruct the
original signal as accurately as possible. This produces a final product higher qual-
ity as a first and obvious effect, but if we think about the decoding algorithm inter
prediction which uses temporally related information present on already decoded
frames, it is natural to will that the absence of noise on them should be guaranteed

27

3 – Bilateral Filter

in order to avoid propagation, or worse, unwanted amplification.
Several solutions to the problem have been proposed over time, being a subject

of similar interest in pictures and videos. For example, the process of Anisotropic
diffusion [25] allows to obtain an effective smoothing with good preservation of the
high contrast edges, but which, however, exploits a mathematical approach that
includes the resolution of differential equations through iterative methods. This
makes the stability of the filter and its efficiency precarious. Another technique
often mentioned and reporting good results is presented by Nosratinia [26], who
proposes an average between a compressed image information and the same one
shifted, exploiting the idea that the original signal is sufficiently preserved in the
two cases while the artefacts do not show appreciable correlation. The defect of
this process is the high time required for processing which becomes unsustainable
with video target.

3.2 Classical Definition
The classical definition of the bilateral filter originally presented in [24] is that of a
non-linear method based on a location principle that combines intensity values of
the individual elements in the application domain. This allows to mediate the small
variations between neighboring points, that is to filter low frequencies, preserving
instead strong edges and avoiding therefore to reduce the photometric contrast. It
is formulated as the combination of two filters in the spatial domain and in the
range domain.

The spatial domain relates to the geometric closeness between the central pixel
and the neighbouring pixels involved. The spatial filter is formulated as:

hd(x) = k−1
d (x)

Ú −∞
∞

Ú −∞
∞

ωd(ξ, x) I(ξ) dξ. (3.1)

With ωd(ξ, x) function linked to the geometric distance between x and the near
pixel ξ, with I(ξ) intensity value for ξ, and with

kd(x) =
Ú −∞
∞

Ú −∞
∞

ωd(ξ, x) dξ. (3.2)

But if the filter is shift-invariant (discrete case for time-invariant) it is possible
to assert that ωd(ξ, x) = ωd(ξ − x).

The range domain relates instead to the photometric closeness between the cen-
tral pixel and the neighbouring pixels involve. The range filter is formulated as:

hr(x) = k−1
r (x)

Ú −∞
∞

Ú −∞
∞

ωr(ξ, x) I(ξ) dξ. (3.3)

28

3.2 – Classical Definition

With ωr(ξ, x) function linked to intensity difference between x and the near pixel
ξ, and with

kr(x) =
Ú −∞
∞

Ú −∞
∞

ωr(ξ, x) dξ. (3.4)

So, the spatial filter is exclusively based on the relative position of the considered
pixels, a quantity that does not depend on what is actually represented in the frame.
While the range filter is introduced to preserve the high contrasts and to modulate
the ωr coefficients such that give a greater weight if there is a high photometric
similarity between the pixels involved.

Combining them we have the bilateral filter :

h(x) = k−1(x)
Ú −∞
∞

Ú −∞
∞

ωd(ξ, x) ωr(ξ, x) I(ξ) dξ (3.5)

with
k(x) =

Ú −∞
∞

Ú −∞
∞

ωd(ξ, x) ωr(ξ, x) dξ. (3.6)

3.2.1 Gaussian Case
The most common and generally used case is the Gaussian filter, both for the spatial
filter and the range filter. In this way the functions ωd e ωr(ξ, x) are formulated
as the Gaussian function of the Euclidean distance of the arguments, and can be
written respectively:

ωd(ξ, x) = e
− 1

2 (d(ξ,x)
σd

)2
(3.7)

with
d(ξ, x) = d(ξ − x) = ||ξ − x||, (3.8)

ωr(ξ, x) = e−
1
2 (r(I(ξ),I(x))

σr
)2 (3.9)

with
r(I(ξ), I(x)) = r(I(ξ), I(x)) = ||I(ξ)− I(x)||. (3.10)

Figure 3.1 shows a graphical example of the application of a bilateral filter with
23x23 square geometry starting from input (a) to the processed output (e).

29

3 – Bilateral Filter

Figure 3.1. Example of a demonstration chart for the application of the bilateral
23x23 filter. (a) Input. (b) Spatial filter function. (c) Range filter function. (d)
Bilateral filter function (a · b). (e) Output. [27]

From the parameters σd and σr at the exponent denominator depends on the
value of the Gaussian functions, and it is through them that the filter strength is
defined. Specifically, with σd the width of the averaging window is determined.
The greater the value, the greater the distance from the center where the last
pixel considered by the filter is located. It is also dependent on the size of the
filter application support, if it increases it is necessary to change the value of the
parameter in order to have the same results. The value of σr is instead related to
the maximum photometric difference to be considered. In fact, if this is greater
than twice σr, the exponent in (3.9) assumes an absolute value greater than one
and consequently the Gaussian itself result is very small. This means that the
pixel involved does not contribute significantly to the filter product. Vice versa
when the difference in intensity between the two pixels considered is lower than
the denominator. This is consistent with the purpose of edges preserving of the
bilateral filter.

3.3 JEM

The bilateral filter implemented in the JEM algorithm [19][28][3] is very basic. It
has a diamond-shaped geometry that only involves five pixels: one central and the
other four distributed in a cross, one above, one below, one on the right and one
on the left. The filter geometry is shown in figure 3.2.

30

3.3 – JEM

Figure 3.2. Geometry of the bilateral filter in the JEM model on the right. The
pixels name defines their position: Central, Above, Below, Righr, Left. On the
left a TU 8x8 is shown as a classical application support for the filter. [19]

The support of the filter is always a rectangular or squared TU of side L equal to
4, 8 or 16. Grater structure are not allowed. There is not a pre-defined or imposed
filter directional flow, any choice depends on target performance. Typically the
raster scan mode, starting from the top left pixel, is the most efficient way.

Also it is to be considered that the integration domain (3.5) it is discretized,
and so formulation becomes:

h(x) = IF (i, j) =
q

k,l ω((i, j)(k, l)) · I(k, l))q
k,l ω((i, j)(k, l)) (3.11)

with (i, j) coordinates of the central pixel subject to the filtering operation; (k, l)
coordinates of a generic pixel belonging to the spatial domain of the filter, or in
other words, element of the diamond geometry in figure 3.2; with IF (i, j) output
value of the coordinate filter (i, j); and with

ω((i, j)(k, l)) = e
− (i−k)2−(j−l)2

2σ2
d

− (I(i,j)−I(k,l))2

2σ2
r = e

− 1
2σ2
d

−∆I2((i,j)(k,l))
2σ2
r . (3.12)

In the JEMmodel the spatial and range parameters of the Gaussian denominator
are defined as:

σd = p− 1
40min(H, W, 16) (3.13)

31

3 – Bilateral Filter

σr = max(QP − 17
2 ,

1
100) (3.14)

with p depending on the type of prediction, it is equal to 0.92 for intra prediction
and 0.72 for inter prediction; with H and W respectively height and width of the
TU wherein the filter is applied, 16 represents the maximum value that the two
dimensions can assume; with QP quantization parameter, included in the range of
integer values [18, 51].

If QP assumes a value below 18, the bilateral filter is not applied at all. The
motivation behind the possibility that p can take two values is related to the filter
strength for the two predictions: in fact it is necessary to reduce its intensity in
the inter prediction case since the frames used by the prediction itself have already
been previously filtered and over-filtering needs to be avoided.

Looking at figure 3.2, equation (3.11) can be rewritten as:

IF = ωC · IC + ωA · IA + ωB · IB + ωR · IR + ωL · IL

ωC + ωA + ωB + ωR + ωL

(3.15)

Clearly ωC , which represents the coefficient associated with the central pixel,
has a unitary value because geometric and photometric distances are null. This is
consistent with what is expected from the behaviour of the filter.

The algorithm shown, however, presents a discretization exclusively of the spa-
tial domain, preserving continuity for the range one. This hardly allows numerical
development on digital devices, that’s why some specifications have been better
defined. Intensity values I(x) can only assume integer quantities greater than or
equal to zero, within a contingent limit depending on target performance. Also co-
efficients undergo an equal discretization, which requires a scale factor in order to
represent the values lower than one. It should be noted that this last consideration
does not increase the complexity of the method just because in (3.15) coefficients
ω are present in both members of the fraction, thus involving an automatic simpli-
fication of the scale factor.

More precisely, 65 has been chosen to represent one. This means that the max-
imum value assumed by the coefficients is 31. In figure 3.3 the trend of the coeffi-
cients for each QP is shown.

32

3.4 – Improving Classical Approach

Figure 3.3. Trend of the coefficients value for each QP. As can be seen, they
assume a limited quantity in the interval between 0 and 31. Beyond the abscissa
197 all the coefficients are equal to zero.

3.4 Improving Classical Approach
The bilateral filter contained in the JEM model has been improved over time to
meet efficiency and resource saving requirements looking to an implementation on
digital support. In this section are presented improvement techniques prosed in [28]
and [29]. More precisely, the effect of the integer rounding error introduced by the
discretization of the range domain was first considered. Starting from the equation
(3.15) we get that by rounding up we have

IF = round(ωC · IC + ωA · IA + ωB · IB + ωR · IR + ωL · IL

ωC + ωA + ωB + ωR + ωL

), (3.16)

but so that it is possible to obtain a correct result even in integer arithmetic, we
must rewrite it as

IF = floor(
ωC · IC + ωA · IA + ωB · IB + ωR · IR + ωL · IL + ωC+ωA+ωB+ωR+ωL

2
ωC + ωA + ωB + ωR + ωL

).
(3.17)

Algebraic Variation

Also, observing once again (3.15), it can be noted that with a few algebraic steps
it is possible to reformulate it as

33

3 – Bilateral Filter

IF = IC + ωA · (IA − IC) + ωB · (IB − IC) + ωR · (IR − IC) + ωL · (IL − IC)
ωC + ωA + ωB + ωR + ωL

.

(3.18)
The main advantage of this variation, which at first sight might appear to worsen

the computational complexity, is that now the numerator of the fraction is in almost
every case smaller than the previous formulation. This is due to the fact that
∆Ix = (Ix − IC) is statistically lower than Ix and IC . The only situation in which
we do not have an advantage is when IC assumes the smallest representable value,
that is zero, and Ix the greatest one.

However, this change forces to reconsider (3.17). To have a correct rounding,
we have to keep in mind that now the numerator of the fraction can also take
negative values. As a result it is no longer sufficient to operate as before but must
be calculated instead

IF = IC + s · floor(
s ·N + D+m

2
D

). (3.19)

where

N = ωA · (IA − IC) + ωB · (IB − IC) + ωR · (IR − IC) + ωL · (IL − IC) (3.20)

D = ωC + ωA + ωB + ωR + ωL (3.21)

s = sign(N)

m =
−1, if N < 0

0, else

Coefficients Table Reduction

It has previously been shown (3.12) that the value of the coefficients is dependent
on the parameter σd. But the latter is related to the geometric dimension of the
filter support itself, as well as the type of prediction (3.13). This should imply the
need to have a three-dimensional memory, having QP , ∆I and σd as inputs. This
situation needs to be well researched in order to limit the use of resources that
would otherwise be unsustainable.

Fortunately, a solution has been presented to solve the problem. If, starting from
the equation (3.15) and multiplying both members of the fraction by the value

sx = e−
1

2·0.822

e
− 1

2σ2
d

(3.22)

and thus obtaining

34

3.4 – Improving Classical Approach

IF = IC+sx · ωA · (IA − IC) + sx · ωB · (IB − IC) + sx · ωR · (IR − IC) + sx · ωL · (IL − IC)
sx · ωC + sx · ωA + sx · ωB + sx · ωR + sx · ωL

,

(3.23)
we have that all the coefficients have the value normalized to a single and con-

stant σd equal to 0.82 as can easily be verified

sx · ωx = e−
1

2·0.822

e
− 1

2σ2
d

· ωx = e−
1

2·0.822

e
− 1

2σ2
d

· e
− 1

2σ2
d

−∆I2
2σ2
r = e

− 1
2·0.822−

∆I2
2σ2
r . (3.24)

Now the problem previously exposed is transferred on sx. And on closer inspec-
tion, in (3.23) this parameter is multiplied by ωC that has a constant value of 65,
so it becomes

ωC · sx = 65e−
1

2·0.822

e
− 1

2σ2
d

. (3.25)

The final effect is that instead of having a memory of the three-dimensional
coefficients, we have a separate memory for ωC that is now function of σd. Taking
a few considerations, there are two prediction modes, and the values assumable by
the width and height of the filter support are three (the dimensions are prefixed
and can be 4, 8 o 16). This brings to 6 the count of the possible ωC . However,
H and W can not assume the size 16 for inter prediction, lowering the count to 5.
The final table of the values of ωC is shown in 3.1.

prediction H, W
4 8 16

intra 65 81 196
inter 113 196 /

Table 3.1. Table of values assumable by ωC for H and W dimensions of the filter
support, and the prediction mode.

As can also be seen in the figure 3.3, the value of the coefficients is a decreasing
monotone function, being a branch of a Gaussian, as well as piecewise constant,
due to the discretization. This means that if the address of the first occurrence of
a zero is stored separately, it can be compared with the actual calculated difference
in intensity and select the smallest one, since the associated coefficient would be
identical in any case. In doing so, there is a considerable saving of otherwise
useless resources. More precisely, the new memory must have a total of 3468 cells,
compared to an original value of 34816, implying an efficiency of the ∼ 90%.

35

3 – Bilateral Filter

Division-Free

An operation that typically requires a great deal of time to complete is the divi-
sion, because both in hardware and in software it is often done with an iterative
technique. There are some architectures that allow to execute it in a single cycle
without needing to memorize intermediate steps, but they are also very slow and
far too expensive in terms of occupied area.

This is why the division is often replaced with a multiplication operation, in
which the second factor is nothing but the inverse of the original denominator. In
order to do this, a memory of dimensions equal to the entire range of values that
the denominator can take is naturally necessary.

In the case of the JEM the denominator (3.21) can be at most equal to max(ωC) +
4 · max(ωx) = 196 + 4 · 31 = 320. As a result a 321 elements table would be
required. But if we remember that ωc is constant because it is always equal to one,
net of the scale factor, and that the minimum value it can take is 65, memory can
be reduced to 256 elements (1

65 to 1
320).

But working with integer arithmetic it is not possible to represent quantities
smaller than one, so in this case it is also necessary to apply a scaling factor to
the second member of the substitutive multiplication. The product must then be
rescaled by the same value. It has been decided to apply a scale factor of 214. In
this way the division becomes:

N

D
= N · 214

D
· << 14 (3.26)

with << arithmetical shift operator.

However, again due to rounding, it may result in a non-constant error for each
element of the memory, since the smallest values suffer a greater information loss.
Reason why we can think of having a dynamic scale factor, which grows propor-
tionally to the denominator. To do this the algorithm from [3] has been used and
it is shown in Alg.1. Where Multiplier_factor_Lut is the multiplication factor
memory while Scaling_factor_Lut is the dynamic scaling factor one.

36

3.4 – Improving Classical Approach

Algorithm 1 Division-Free memories values algorithm
1: one← 214

2: for n← [1, 320] do
3: tryLut← one/n
4: tryshift← 0
5: while tryLut ≤ one do
6: Multiplier_factor_Lut(n)← tryLut
7: Scaling_factor_Lut(n)← tryShift
8: tryShift← tryShift + 1
9: tryLut← (one/2tryShift)/n
10: end while
11: if Multiplier_factor_Lut(n) · n/(one/2Scaling_factor_Lut(n)) then
12: Multiplier_factor_Lut(n)←Multiplier_factor_Lut(n) + 1
13: end if
14: end for

The scale factor is a value in the range 14+[6, 8], or better in [20, 22]. Therefore
the division is now replaced by

N

D
= N · 220+k

D
<< (20 + k) (3.27)

with k ∈ [0, 2].
The side effect that this approach involves is the need for a second memory that

contains the scale factor applied to every possible multiplication factor.

37

38

Chapter 4

Architecture Development

After analyzing the theoretical aspects of the bilateral filter, the time to study
an architectural solution that allows to obtain the desired results has come. The
reference target is a level of performance that allows real-time video processing of
an at least 60 frames per second sequence at resolutions FHD (1920 × 1080) and
UHD4K (3840 × 2160). The possibility of presenting a working architecture for
the UHD8K (7680 × 4320) is also considered, although actually it is still a fact far
from the market standard.

Taking in account that reference video streams are composed of three channels
(Luma, ChromaB and ChormaR) and encoded according to the chrominance sub-
sampling of the type 4:2:0, theoretical counts can be made: the minimum pixel-rate
to be observed is equal to W ·H · 60 + 2 · (W

2 ·
H
2 · 60), so for the three resolutions

we have

• FHD 186.624 MPixel/s

• UHD4K 746.496 MPixel/s

• UHD8K 2985.984 MPixel/s

Assuming to realize an architecture capable of processing a pixel by clock, it
is necessary to reach the thresholds of the 190MHz for FHD and the 750MHz for
UHD4K. In order for this to be possible, it is mandatory to think of an ASIC-type
solution due to the fact that it is the only one currently capable of easily achieving
such performance. FPGA and µP alternatives would be respectively limited by the
difficulty in achieving these frequencies and by the instructions overhead needed to
process even one pixel.

The basic scheme of the filter, shown in the chapter 3, is taken from what is
described in [28] and [3]. However, good architecture also takes into account the
actual resources used. This is why the main objective of this work has been to

39

4 – Architecture Development

maximize efficiency and minimize the occupied area. The task has been aimed at
the memories present, being the first items in the final resources count.

4.1 First Order Bilateral Filter
The architecture of the bilateral filter faithfully follows the algorithm described in
the previous chapter. With Order we want to classify the pixel-rate of the filter:
First Order implies the processing of a pixel per clock, Second Order of two per
clock, and so on.

The architecture consists of two parts: the first calculates the differences in
intensity of the pixels involved in order to address the coefficients memory and thus
to obtain the quantities in the numerator (3.20) and in the denominator (3.21); the
second one makes the division between the two members of the fraction through a
multiplication, as already illustrated above.

Coefficients and ∆I evaluation

Assuming to be able to simultaneously obtain the intensity values of all five pixels
involved in the filter which are shown in the figure 3.2, the differences can be
now calculated through four separate adders. ∆IA, ∆IB, ∆IR and ∆IL are so
obtained. Remembering that they have a threshold for every QP such that the
value of the associated coefficient is zero, it is correct to think to make a direct
comparison with this limit and use the lesser between the two as the address of
the memory. This allows to reduce its dimensions, as previously shown. By using
the coefficients obtained from the memory, the value of the product ωx∆Ix can be
calculated. Finally, compressors are used to calculate the sums q

(A,B,R,L) ωx∆Ix

and q
(A,B,R,L,C) ωx. In this last summation there is also the contribution of ωC

which is obtained from its own memory holding values shown in the table 3.1.
However, there is a problem with applying the filter to the edges of the support

window. Looking at figure 3.2 the margins are considered as the outer ring of pixels.
In these cases, in fact, there is no information for each four pixels surrounding the
central one. Whatever the strategy one choose to use, the filter needs an assigned
value for the missing pixels. This value must however be carefully evaluated as it
must not compromise the final result. That is, it is necessary that the contributions
arriving at the two final sum compressors are zero. Although it is known that a
coefficient has an inverse proportionality with the associated intensity difference,
there is no economic way to evaluate a priori what value the input should assume to
obtain a zero weight. The most convenient and almost obligatory choice is to place
a multiplexer that dynamically selects whether to pass the real coefficient value
or zero. With a counter that iterates for each pixel of the support, it is possible
to evaluate if the filter is pointing to the outer ring or not, and accordingly act

40

4.1 – First Order Bilateral Filter

on the control signal of the multiplexers. In this way both q
ωx∆Ix and q

ωx do
not contribute if the center pixel belongs to a margin. At this point it is not even
more important what is the actual intensity of outside pixels. One can think, for
example, to add an additional virtual ring with of predetermined values, . The
architecture described is shown in figure 4.1.

Figure 4.1. Architecture of the first section of the bilateral filter. On the left are
the adders that make the difference between the values of Ix and IC . The coeffi-
cients memory is in the center. Finally, on the right are the two final compressors
that perform

q
ωx∆Ix and

q
ωx.

But focusing better, we can think of using the spatial correlation principle to
avoid having to make four evaluations for all four pixels around the central one
each time. For two adjacent cells belonging to the same row it is true that

IR(i)− IC(i) = −(IL(i + 1)− IC(i + 1)),

where i is the absolute position of the central pixel within the row. This is shown
by the fact that

IR(i) = IC(i + 1)
and

IC(i) = IL(i + 1),
as illustrated in the figure 4.2. The same consideration can be made for two adjacent
cells belonging to the same column, for which it can be argued that

IB(j)− IC(j) = −(IA(j + 1)− IC(j + 1))

due to
IB(j) = IC(j + 1)

41

4 – Architecture Development

and
IC(j) = IA(j + 1),

where j this time identifies the position inside a column, as can be seen in the figure
4.3.

Figure 4.2. Graphical example of how spatial correlation can be used to avoid
having to make four evaluations when raster scan processing is adopted. In-
deed IR(i) = IC(i + 1) and IC(i) = IL(i + 1), where i is the absolute position
of the central pixel within the row, due to the fact that the two considered
pixels belong to the same row.

Figure 4.3. Graphical example of how spatial correlation can be used to
avoid having to make four evaluations when raster scan processing is adopted.
Indeed IB(i) = IC(i + 1) and IC(i) = IA(i + 1), where i this time identifies
the position inside a column, due to the fact that the two considered pixels
belong to the same column.

Assuming to apply the filter starting from the top left position of the support
and proceeding in raster scan line by line, it is possible to exploit the advantage

42

4.1 – First Order Bilateral Filter

given by this condition by using registers that save ωR and ωR∆IR values for each
iteration, and a registers array of length equal to that of the support (W) in order
to save ωB and ωB∆IB from the processed line. It is not necessary to perform
a check when these values are evaluated for pixels outside the support because
the previously introduced multiplexers automatically solve the problem. The new
architecture is shown in figure 4.4.

Figure 4.4. Architecture of the first section of the bilateral filter with introduction
of registers ωL, ωL∆IL, ωA and ωA∆IA that save respectively ωR, ωR∆IR, ωB and
ωB∆IB in order to reduce complexity.

Division through Multiplication

The division in (3.19) can be transformed into a multiplication for the reciprocal
of the denominator as shown in(3.27). The resources necessary to perform the new
calculation are first of all a multiplier and a memory containing all the possible
values of the reciprocals. As already illustrated, this memory consists of 256 ele-
ments (1

65 to 1
320). A third fundamental element is the right shifter which allows

to remove the scale factor from the multiplication product. However, the factor is
not constant in order to limit the error caused by rounding. This implies the need
for additional memory to know how many times to perform the shift. It is also
composed of 256 elements. The just discussed architecture of the second section of
the filter is shown in figure 4.5. While the complete architecture for a first order
filter can be seen in figure 4.6.

43

4 – Architecture Development

Figure 4.5. Architecture of the second section of the bilateral filter with di-
vider replaced by multiplier. divLUT and shiftLUT are memories respectively
for denominator reciprocals and for scale factors.

4.2 Higher Order Bilateral Filter
Naturally, it is possible to realize higher filters order to increase the pixel-rate, for
example to achieve the performance required for very high resolutions.

Not all possible orders are allowed. If the geometrical dimensions of the filter
support have side equal to the powers of the two (4, 8, 16), it is clear that even the
number of pixels processed per clock must be an identical power. Otherwise there
would be no support subdivision in equivalent sub-section.

The architecture of a filter of this type would result in a repetition of the one
presented in 4.6 as many times as the chosen order. The case of a second order
filter is illustrated as an example.

Second Order Bilateral Filter

The filter is applied simultaneously on two pixels, therefore a total of ten intensity
values should be involved at most. But based on the relative positions of the two
central pixels considered, this number can be reduced. If in fact we always proceed
with a raster scan processing and the pair of central points is such that they are two
adjacent cells belonging to the same column, the amount of pixels actually involved
is equal to eight. Figure 4.7 shows which pixels are considered and illustrates that

44

4.2 – Higher Order Bilateral Filter

Figure 4.6. Complete architecture of the bilateral filter.

reduction is possible. The advantage is given by the fact that the intensity values
of the central pixels are actually shared between the upper and the lower geometry,
indeed

IC(j) = IA(j + 1)
and

IC(j + 1) = IB(j),
with j absolute position of the central pixels within a single column.

45

4 – Architecture Development

Figure 4.7. Geometry of the second order bilateral filter. It is the sum of two
simple cross scheme of the single order filter. Central pixels overlap a below and
an above cell, reducing the total number of considered pixels to eight.

Obviously there is only one shared coefficient memory and same situation for
memories related to division-free multiplication. Introducing also the same registers
of the first order case we obtain that the intensity values to be analyzed for each
iteration are only five(IC1 , IR1 , IC2 , IR2 and IB2).The architecture of the second-
order bilateral filter is shown in figure 4.8.

4.3 Improving Memories
The memories relating to the coefficients and to the division-free multiplication
are the elements that occupy more area within the architecture, and which can be
investigated for the reduction of resources used. This operation has been the hinge
work of this thesis.

4.3.1 Coefficients LUT
The memory of the coefficients contains the weights associated with each intensity,
or more precisely, the difference in intensity, which makes it possible to modulate
the filter strength and preserve the micro-contrast of the image.

There are several ways to store this information. The classic one based on the
extensive storage of the weight values is presented here, with a total number of cells
equal to the set of all the possible combinations of QP and ∆I. Subsequently it is
shown how it is possible to apply a compression of the occupied area thanks to a
memory containing the indices within the coefficients are constant.

46

4.3 – Improving Memories

Figure 4.8. First half of the second-order bilateral filter architecture.

4.3.2 Value-Based

The memory originally proposed by [29] and [28] provides a row addressing for QP
and columned one for ∆I. It contains exactly the values of the coefficients for each
pair of coordinates.

Considering that 34 values of QP and 1024 of ∆I are allowed, we would have
in theory a memory of 34816 cells. Knowing also that the coefficient range goes
from 0 to a maximum of 31, it can be deduced that 5 bits are necessary for the
representation. This leads to a memory of 174080 bits (21.76kB). But as already
illustrated, each line contains null values from a certain position onwards, suggesting

47

4 – Architecture Development

that it is possible to implement a comparison system of the column address with
the limit value in which the first zero of each row appears. This stratagem allows
to significantly reduce the size of the memory, bringing it to a total of 3468 cells
and therefore 17340 bits (2168 B).

One aspect that should not be underestimated in this solution is that not all
rows have the same number of elements, because the first occurrence of a zero
appears at a growing address the larger is QP . The result is a trapezoidal memory,
hard to manage and implement. Addressing decoders are not classic.

Least Square Regression

An idea to reduce the area occupied by the memory is to perform a polynomial
fitting of the values contained in each of its lines. In this way it would be necessary
to memorize only the fitting numeric parameters and recalculate the weight each
time through ∆I value. In the first degree polynomial case the fitting would be

ω(QP) = α(QP) ·∆I + β(QP). (4.1)

The total memory occupied in this case would be equal to 3 · 34 = 102 cells, the
parallelism is not of immediate deduction, but it can be demonstrated experimen-
tally that it can not exceed 6 bits. The final bill leads to a total of 612 bits (77
B). Obviously the area overhead introduced by the arithmetic operators must be
considered, which however would confirm the hypothesis as advantageous.

However, the results of the linear fitting in (4.1) approximate the exact value of
the coefficients, so an additional memory is required for the residuals. Furthermore,
by operating in an integer arithmetic condition, the fitting parameters require a
rounding which inevitably leads to the value of residues being increased. Figures
4.9 shows an example of a linear fitting of the coefficients for QP equal to 51 and
the relative residuals using a full precision arithmetic, while 4.10 illustrate the same
fitting with rounding caused by integer arithmetic.

It is shown that replacing the memory of the coefficients with that of the resid-
uals, in the best case does not determine reductions in area occupancy because
at least 5 bits are always necessary for the numerical representation. Rather, it
increases if we consider having to save the fitting parameters as well. Furthermore,
the delay and the complexity, although small, of the arithmetic operators are added.

Fitting with greater degree polynomials presents even more disappointing re-
sults.

Reduced Parallelism with Sub-memories

A more promising solution than polynomial fitting is to act by subdividing the
memory into sub-units with less parallelism. The advantage of this strategy lies in
the distribution of the coefficients in each row. They have a decreasing monotone

48

4.3 – Improving Memories

Figure 4.9. Example of a linear fitting of the coefficients for QP equal to 51 and
the related residuals using a full precision arithmetic.

trend, and being only integer values, they are also piecewise constant. It is certainly
not surprising if we remember that they originate from a branch of a Gaussian
function.

As the numeric value of each cell decreases, the number of bits necessary to
represent it decreases as well. It can be said that each line can be divided into 5
segments of unequal length, each having an ever smaller parallelism, starting from
the 5 bits necessary for the value 31 up to the single bit for the 0. If this concept is
extended to the entire memory and the segments of equal parallelism are grouped,
five sub-units are obtained. This simple trick leads to a total of 12347 bits (against
the original 17340) equal to a saving of 28.8%. But in order to have a transparent
addressing of these memories to the rest of the bilateral filter, we need to add
some more elements. More precisely, we need to know from which sub-memory
to extract the coefficient, and to do this the idea is to compare ∆I with the ends
of the constant parallelism intervals. Again, thanks to the decreasing monotone
trend, it is sufficient to make a comparison with the address of the first occurrence
of a number with a bit length smaller than the previous ones. Four registers where
this address is stored for each QP are defined:

• R_4bit: register containing the address of first number less than 16 occurrence
for each QP ;

49

4 – Architecture Development

Figure 4.10. Example of a linear fitting of the coefficients for QP equal to 51 and
the related residuals using an integer arithmetic.

• R_3bit: register containing the address of first number less than 8 occurrence
for each QP ;

• R_2bit: register containing the address of first number less than 4 occurrence
for each QP ;

• R_1bit: register containing the address of first number less than 2 occurrence
for each QP ;

The overhead of these additional registers is 1020 bits, which brings the actual
savings to 22.9%.

Weights ω can be got addressing the right sub-memory through the following
comparisons:

ω =

M5bit(QP, ∆I), if 0 ≤ ∆I < R4bit(QP)
M4bit(QP, ∆I −R4bit(QP)), if R4bit(QP) ≤ ∆I < R3bit(QP)
M3bit(QP, ∆I −R3bit(QP)), if R3bit(QP) ≤ ∆I < R2bit(QP)
M2bit(QP, ∆I −R2bit(QP)), if R2bit(QP) ≤ ∆I < R1bit(QP)
M1bit(QP, ∆I −R1bit(QP)), if ∆I ≥ R1bit(QP)

(4.2)

50

4.3 – Improving Memories

Subtractions ∆I − R(QP) act as an adjustment of the address offset caused
by the subdivision. Otherwise, addresses would be outside the effective permitted
range. Also QP should undergo a rescaling equal to 18, this being the first value
that can be assumed, but it has been chosen not to represent it in (4.2) in order to
avoid more complex formulation. Figure 4.11 shows the sub-memories architecture
described.

Figure 4.11. Coefficients memory architecture with five reduced parallelism sub-
-memories. On the left there are the four registers containing the address of first
lower parallelism number for each QP . The central block computes the compar-
isons and signals to multiplexers which sub-memory must be addressed. Address
offset adjustment is shown in the bottom left area.

It is still possible to perform optimizations for each of the sub-memories:

M1bit This sub-unit contains only the coefficients having a value of 1 and 0. Ap-
plying the same strategy, we can reduce the occupied area until we have just two
cells, one per value. A new register is required in order to save the address of the
first occurrence of a zero. But this register is already present because it is used to
pre-calculate which is the maximum ∆I address to be used before having just zero
coefficients.

M2bit The same technique can be easily applied, since this memory also contains
only values 2 and 3. With a simple register containing the address of the first
occurrence of 2, this sub-unit can be reduced to just two cells.

M3bit The observation for optimizing this memory lies in the number range rep-
resented. In fact, it goes from 4 to 7, being numbers that can be represented with

51

4 – Architecture Development

3 bits. It may be a good idea to extract the offset of this interval and add it just
after the memory. In this way it is reduced to two bits of parallelism, ranging from
3 to 0 and needing a plus 4 offset.

M4bit e M5bit The paradigm is the same as M3bit. For M4bit can reduced to 3 bit
parallelism by adding an offset of 8. With M5bit we change from 5 to 4 bits and the
offset is equal to 16.

This further optimization, doing some math, leads to a theoretical area reduction
equal to 43.9%, since only 9729 bits are needed (1217 B). We can think of having
achieved a good result, but trying to bring the technique presented to the extreme
for all the individual values of the coefficients can be achieved much more important
reductions. This solution has been named Index-Based.

4.3.3 Index-Based
Given any row of the original coefficients memory, it is not known a priori what
the exact content of each cell is, but it is certain that the values are ordered in
decreasing way and that they are piecewise constant.

Assuming to consider a register that contains the address of each first occurrence
of a new coefficient in a specific memory row. Consequently, for example, the first
cell has the first address in which 31 appears, 30 in the second cell, and so on.
Note that the addresses of the new register are in ascending order. In this way
32 memory cells, one for different coefficient, for each QP are needed. It is also
possible to reduce the amount by one unit since the first occurrence of the value 31
is always at the zero address of a row.

Summarizing, a memory of 34 rows, equal to the possible values of QP , and 31
columns is needed. In this way the resources used are equal to 34 · 31 = 1054 cells.
Experimentally it is shown that 8 bits are enough for the content representation,
which brings the effective area to 8432 bits (1054 B). The saving compared to the
original value-base memory is 51.4%.

Just to give an example, we consider the coefficient vector of the original memory
for QP equal to 25:

31, 31, 30, 30, 29, 29, 28, 27, 26, ...

The new row related to the same quantization would have a content equal to:

2, 4, 6, 7, 8, ...

In addition, the last column of the new table, which contains the address of the
first occurrence of 0, is actually a vector already used in the general architecture
of the filter, as it serves to evaluate which values of ∆I are certainly equal to 0. It
can be said that a horizontal compression of the data has been applied. In figure
4.12 the organization of the index-based memory is shown.

52

4.3 – Improving Memories

Figure 4.12. Organization of the index-based memory. There are 34 rows because
QP can assume value from 18 to 51. The amount of columns is 31 due to the fact
that coefficients reach a maximum value of 31 but the addresses of 31 itself are
ignored because always zero. Looking the table by columns.

In order to actually use this new table, however, it is necessary to have compara-
tors that determine which adjacent values include ∆I. The idea is that the new
table is addressed by QP , and a vector of 31 elements is extracted. The values con-
tained in the read line are used as the second argument of an array of 31 minority
comparators, where the first argument is ∆I. The output of the 31 comparators
is a 31-bit bus, in which the first occurrence of a 1 indicates exactly which is the
value of ω.

Having for example the bus of the comparison results equal to

0, 0, 0, 0, 1, 1, ...

the first occurrence of 1 is at the address equal to 4, this implies that ω must be
31− 4 = 27. If every comparators output is negative, it means that ∆I is greater
than the first zero occurrence address and ω has a null value.

But more simply we can think of connecting the bus to a 32-bit priority encoder
(taking care to add a last signal always asserted indicating 0). The encoder output
is exactly the value of ω encoded on 5 bits. Figure 4.13 illustrates the architecture
with comparators and the encoder.

But what happens if every single value between 31 and 0 is not contained in
a specific row? For example, with QP equal to 18, we have just six non null

53

4 – Architecture Development

Figure 4.13. Index-based memory architecture with a 32-comparators
array and a priority encoder.

coefficients. So a solution need to be found in order to fill the new table with right
indexes. The answer is easy: the address of a coefficient first occurrence is always
placed in the column related to that specific weight value, any vacuum interval
caused by a discontinuity in the integer range 31 to 0, is filled with the index of
the nearest smaller coefficient that exists, or in other word, with the first existing
address to the right. In order to be more clear an example is shown. If a row in
the original value-based memory is

31, 31, 30, 29, 27, 25, 23...

54

4.3 – Improving Memories

the result in the new table is

2, 3, 4, 4, 5, 5, 6, 6...

In the example we have that 28 is absent, so its position in the new memory row is
filled with the index of 27, that is the nearest smaller coefficient. Full algorithm to
derive index-based memory from the value-based one is shown in Alg.2.

Algorithm 2 Index-based memory derivation algorithm
1: value_based_Table[34][] ó full value-based coefficients LUT
2: w[32]← {30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, ...
3: ...11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0} ó coefficients possible values
4: max_pos[34]← {6, 12, 18, 23, 29, 35, 41, 46, 52, 58, 64, 69, 75, 81, 87, 92, 98, ...
5: ...104, 110, 115, 121, 127, 133, 138, 144, 150, 156, 161, 167, 173, 179, 184, 190, ...
6: ...196} ó last value_based_Table address for each row
7: mem← 0
8: for i← [0, length(w)− 1] do
9: mem← value_based_Table[i][0]
10: for j ← [0, max_pos[i]] do
11: if value_based_Table[i][j] < mem then
12: for n← [0, mem− value_based_Table[i][j]]− 2 do
13: index_based_Table[i].push(j) ó a.push(b): add b to end of a
14: end for
15: index_based_Table[i].push(j)
16: mem← value_based_Table[i][0]
17: end if
18: end for
19: end for

Less comparators

The solution presented requires at least 32 comparators. Their number can be
reduced through a subdivision of the row extracted from the index-based memory.
For example, comparing only the first or second half of the vector 16 comparators
are sufficient, but then the parallelism of the encoder must be restored according to
which of the two parts has been chosen. In order to do this, however, it is necessary
to know a priori in which of the two sub-rows ∆I is included. This knowledge can
be obtained with a direct comparison between ∆I and the last cell of the first half
vector, if the former is less than the latter one, the first 16 row values are used,
otherwise the second ones. Since the second half has 15 cells, repetition of the LSC
(Least Significant Cell) is needed to full the array. However, in this way there is a
4-bits bus output from the priority encoder. To restore the parallelism and have the
correct coefficient ω it is necessary to add an offset equal to 16 if the first half has

55

4 – Architecture Development

been used, otherwise the result is already correct and it is sufficient to extend the
value to 5 bits. It can be concluded that the offset can be calculated dynamically
as a four times right shift of the direct comparison result. Figure 4.14 shows the
complete architecture of the memory with a reduction to sixteen comparators.

Figure 4.14. Index-based memory architecture with a 16-comparators array
and a priority encoder. With a multiplexer signalled by a comparison, which
half of the row is chosen. A last adder restores the parallelism adding an
offset depending on the sub-row.

Obviously the same mechanism can be applied again to reduce the comparators
to only 8 elements. In this case 4 sub-vectors are obtained from the addressed
memory row and the selection of which quarter to send is defined by three multi-
plexers signalled by three controls result of a comparison among the LSCs of the
three slices (0 to 7), (8 to 15), (16 to 23). Again basing on of the same controls the
offset to add is chosen among 0, 8, 16 or 24. In figure 4.15 the complete architecture
of the memory with a reduction to eight comparators is shown.

This approach has a logarithmic reduction of the number of comparators in the
array, but at the cost of adding complexity in the sub-vector and offset to be added
to restore parallelism selections. More than any other aspect, the reduction of area
implies longer critical path and therefore worse timings. However, pipelining can
be applied to improve the situation.

Sub-Tables

Considering the divisions applied to the row extracted from the memory in case
of a comparators reduction, we can think of directly dividing the main memory.

56

4.3 – Improving Memories

Figure 4.15. Index-based memory architecture with a 8-comparators array. The
quarter used is chosen comparing ∆I to the LSCs of the first three slices, that in
this picture are named r1, r2 and r3.

An increasing values distribution for rows and columns is globally present, so the
parallelism can be reduced by isolating some sections. The concept is that smaller
numbers need fewer bits to be represented. The vertical division can therefore be
realized in 2 or 4 parts according to the degree of optimization to be achieved. It
is not necessary to introduce any additional complexity if the defined sub-vectors
intervals used to reduce comparators is followed.

We can also think of operating horizontal subdivisions of the same memory:
dividing it into 4 specific rows sets (0 to 4), (5 to 10), (11 to 21), (22 to 33) the
occupied area is further reduced. However, this change is not free and requires
three valuations of QP and multiplexers.

The hypothesis of subdivision into eight sub-tables, as shown in figure 4.16,
determines a total of 6710 bits (839 B) used, equal to a reduction of 61.3% compared
to the original memory.

Considering to subdivide in sixteen sub-tables, as shown in figure 4.17, a total
of 6268 bits (784 B) are used, equal to a reduction of 63.9%.

57

4 – Architecture Development

Figure 4.16. Architecture example of the index-based memory subdivided in
8 sub-tables, each one with its own parallelism. Three multiplexer and QP
valuations are needed.

Figure 4.17. Architecture example of the index-based memory subdivided in
16 sub-tables, each one with its own parallelism. Three multiplexer and QP
valuations are needed.

4.3.4 Division-Free LUT

In the architecture of the bilateral filter there are two other memories as already
discussed and illustrated in figure 4.6. These two units, referred to hereinafter as
Multiplier factor LUT and Scaling factor LUT, contain respectively the denomina-
tor reciprocal values of the fraction in (3.18) which avoids the division arithmetic

58

4.3 – Improving Memories

operation, and the scale factor dynamic offsets that allow to keep the approximation
error due to the reciprocal calculation quite constant and reduced as possible.

Multiplier factor

The Multiplier factor LUT contains the reciprocal of the values included in the
numerical range from 65 to 320. Since the representation must be integer and these
values are fractional, they must be suitably rescaled. In figure 4.18 all the values
contained in the memory are represented.

Figure 4.18. Diagram of values contained in Multiplier factor LUT. They rep-
resent the denominator reciprocals of the fraction in (3.18) which avoids the
arithmetical division operation.

As can be seen, the graph shows a discontinuous trend, which can be divided
into three intervals. The first one goes from 65 to 127, a second from 128 to 255,
and finally the last one up to 320. At first sight it might seem difficult to find
a correlation among them, but just making some transformations, the question is
immediately resolved. In fact, if for example the three sections are translated so
that the curves have overlapping origins, as illustrated in figure 4.19, it can be seen
that the they appear qualitatively similar, but with different compression factors.

By trying to compare the three ranges numerically, the correlation is soon dis-
covered: we have that the first one, that is the curve that goes from 65 to 127, is
made up of the elements with even co-ordinates of the second interval, excluding

59

4 – Architecture Development

Figure 4.19. Diagram of values contained in the three sections in which
Multiplier factor LUT has been divided. They have been translated so that
the curves have overlapping origins.

zero. Likewise, it can be shown that this second curve can also be represented by
the even points of the third and last interval from 256 to 320. Wanting to better
formulate what is written, it can be argued that

A(i) = MultiplierfactorLUT (i) ∀i ∈ [0, 62]

B(i) = MultiplierfactorLUT (i + 63) ∀i ∈ [0, 127]

C(i) = MultiplierfactorLUT (i + 191) ∀i ∈ [0, 64]

and then

A1(i) = MultiplierfactorLUT (i) ∀i ∈ [0, 15]

A2(i) = MultiplierfactorLUT (i) ∀i ∈ [16, 62]

B1(i) = MultiplierfactorLUT (i + 63) ∀i ∈ [0, 32]

B2(i) = MultiplierfactorLUT (i + 63) ∀i ∈ [33, 127]

A = A1 ∪ A2

B = B1 ∪B2,

60

4.3 – Improving Memories

finally getting

A1(j) = B1(2j + 2) = C(4j + 4) ∀j ∈ [0, 15]

A2(j) = B2(2j + 2) ∀j ∈ [16, 62]

B1(j) = C(2j) ∀j ∈ [0, 32].

In other words it is possible to derive the entire interval from one subsections
equal to about two thirds of the original, that is, to the last 160 elements (Multiplier
factor LUT(97 to 256)). Thus there is a reduction of 37.5%.

Scaling factor

The Scaling factor LUT also contains 256 2-bit cells as shown in (3.27), for a total
of 512 bits (64 B). But we must consider that the values actually are only three,
more precisely 0, 1 and 2. They are also ordered in an increasing way, making the
memory piecewise constant.

It is immediate to think of applying the same technique used for the coefficients
memory. If the address is previously compared to the positions of the first occur-
rences of a new value, the exact scale factor offset can be obtained without further
calculation. It is indeed that

k =

0, if D < 127
1, if D < 255
2, otherwise

with D from (3.27).
The area occupied by the new memory is now equal to 4 bits, with a saving of

99.2%. Figure 4.20 shows the optimized architecture of the Scaling factor LUT.

61

4 – Architecture Development

Figure 4.20. Optimized architecture of the Scaling factor LUT. There are just
three cells for a total of 4 bit. Two comparators signal a pair of multiplexers in
order to address the right value.

62

Chapter 5

Results

Finally, the results obtained from the architectural synthesis of the solutions de-
scribed in the chapter 4 are presented in this chapter. The Synopsys Design Com-
piler software has been used for analysis, with the Ultra Compiler setting enabled.
Through it, information concerning area and timings of each proposed architec-
ture has been extracted. For the synthesis the educational library Nangate Open
Cell 45nm [30] and the commercial one UMC 65nm [31] Low-K Multi-Voltage Low
Leakage have been used. Last one should give more realistic and reliable results,
but there are no direct comparisons between the two libraries because would not
make sense to compare educational items to commercial ones. The values of both
are shown only for academic purposes. Initially, results of the Coefficients LUT
optimization for first and second order bilateral filter cases are discussed, followed
by the Multiplier factor and Scale factor LUTs compression. To obtain combina-
torial delays correct evaluations, an X4 buffer of the respective libraries has been
connected to the filter outputs.

5.1 Coefficients LUT
Concerning the Coefficients LUT, results related to the following optimizing archi-
tectural solutions were collected and shown in table 5.1:

• value-based: Original solution with value-based memory.

• index-based 32 : Solution with index-based memory and array of 32 compara-
tors, as shown in the figure 4.13.

• index-based 16 : Index-based memory solution with subdivision in 8 sub-units
lower parallelism and 16 comparators array, as shown in figures 4.14 and 4.16.

• index-based 8 : Index-based memory solution with subdivision in 16 sub-units
lower parallelism and 8 comparators array, as shown in figures 4.15 e 4.17.

63

5 – Results

coefficients LUT NanGate 45 nm UMC 65 nm
architecture area [µm] max delay [ns] area [µm] max delay [ns]
value-based 3377.67 2.23 6161.04 2.43

index-based 32 1435.34 2.20 2570.76 2.15
(-57.5%) (-13.5%) (-58.3%) (-11.5%)

index-based 16 1500.51 3.73 2624.40 4.43
(-55.6%) (+67.3%) (-57.4%) (+82.3%)

index-based 8 1293.29 3.59 2356.92 3.78
(-61.7%) (+61.0%) (-61.7%) (+55.6%)

Table 5.1. Area and timings results of the LUT Coefficients optimizing archi-
tectural solutions synthesis. Nangate Open Cell 45nm and UMC 65nm Low-K
Multi-Voltage Low Leakage have been used. The percentage difference between
each solution and the reference value-based is indicated between brackets.

The architecture for the Coefficients LUT index-based 8 is certainly the best
among the solutions presented in terms of saving resources and reducing the occu-
pied area. The decrease is in fact equal to 61.7% compared to the original value-
based memory. The cost to be paid is a greater combinatorial delay due to the
additional control logic inserted, with an increase of 61% (55.6%) with Nangate
(UMC) library compared to the same reference. However, the problem can be
solved through the pipelining technique, which is not actually considered because
the device does not have a clock, and consequently the synthesis software is not
able to insert intermediate registers.

The index-based 32 solution has a peculiarity: given an area gain of 57.5%
(58.3%), there is a reduction of the maximum delay equal to 13.5% (11.5%). This
implies higher reachable frequencies and shows how the compression of the memory
has advantages also from the point of view of performance, in fact shorter bit and
word-lines have a lower parasitic capacity, and therefore a reduced intrinsic delays.

Finally, it can be argued that the results of index-based 16 are the most disap-
pointing, showing no quantitative advantage over index-based 8.

The table 5.2 shows instead the synthesis results of first and second order bi-
lateral filter architectures, for all the above mentioned memory solutions. On the
other hand, it does not include the optimization applied to the LUTs related to the
division yet.

We have that index-based 8 solution still reaches best performance and area
reduction for both filter order. The total area occupation decrease from 9344.58

64

5.1 – Coefficients LUT

(17522.28) µm to 7085.27 (13569.12) µm in the first order case and using Nan-
gate (UMC) library, bringing to a compression equal to 24.2% (22.6%). Since now
pipelining can be applied due to sequential units physical presence, timings results
are basically unaffected by added complexity. It is clear that considering the entire
bilateral architecture, the effective gains are quantitatively pulled down. Anyway,
coefficients memory optimization outcomes are definitely positive. On the con-
trary, even though index-based 32 and index-based 16 architectures achieve good
area reduction however lower than the 8 comparators version, on the other hand
performance is worse and leads to not considering as valid these solutions.

Second order filter results are qualitatively similar to the first case. Area perfor-
mance reaches a compression of 31.7% (30.4%) for the index-based 8 architecture.
It is worthy of attention the maximum delay decrease of 6.3% using the UMC
library.

bilateral filter order NanGate 45 nm UMC 65 nm
architecture area [µm] max delay [ns] area [µm] max delay [ns]
value-based I 9344.58 0.98 17522.28 0.76

index-based 32 I 7283.35 1.00 13741.56 0.80
(-22.1%) (+2.0%) (-21.6%) (+5.3%)

index-based 16 I 7413.42 0.97 14018.04 0.78
(-20.7%) (-0.1%) (-20.0%) (+2.6%)

index-based 8 I 7085.97 0.97 13569.12 0.76
(-24.2%) (-0.1%) (-22.6%) (+0%)

value-based II 15502.75 0.99 30091.68 0.80

index-based 32 II 11019.58 1.02 20964.96 0.80
(-28.9%) (+3.0%) (-30.3%) (+0%)

index-based 16 II 11195.14 1.04 21060.72 0.81
(-27.8%) (+5.1%) (-30.0%) (+1.3%)

index-based 8 II 10591.06 1.00 20955.60 0.75
(-31.7%) (+1.0%) (-30.4%) (-6.3%)

Table 5.2. Area and timings synthesis results of first and second order bilat-
eral filter architectures. All the solutions in table 5.1 have been considered. On
the other hand, the optimization applied to the LUTs related to the division is
not included. The percentage difference between each solution and the reference
value-based is indicated between brackets.

65

5 – Results

5.2 Division LUTs
Eventually, the Multiplier factor and Scale factor LUTs optimization results applied
to the bilateral filter are shown in table 5.3. The values are related once again to all
solutions for the first and second order cases. The figure 5.1 graphically illustrates
the distribution of the results of table 5.3 on an area vs delay diagram.

optimized BF order NanGate 45 nm UMC 65 nm
architecture area [µm] max delay [ns] area [µm] max delay [ns]

value-based I 8558.55 1.05 15405.12 0.75
(-9.2%) (+6.7%) (-13.7%) (-1.3%)

index-based 32 I 6546.53 0.96 12601.80 0.70
(-42.7%) (-2.1%) (-39.0%) (-8.6%)

index-based 16 I 6474.17 0.95 12638.88 0.72
(-44.3%) (-3.2%) (-38.6%) (-5.6%)

index-based 8 I 6388.26 0.98 12265.92 0.68
(-46.3%) (+0%) (-42.9%) (-11.8%)

value-based II 14695.17 1.00 28438.56 0.75
(-5.5%) (+1%) (-5.8%) (-6.7%)

index-based 32 II 10160.93 0.98 19161.72 0.75
(-52.6%) (-1%) (-57.0%) (-6.7%)

index-based 16 II 10408.85 1.03 20409.48 0.73
(-48.9%) (+3.9%) (-47.4%) (-9.6%)

index-based 8 II 10119.97 1.01 18959.76 0.73
(-53.2%) (+2.0%) (-58.7%) (-9.6%)

Table 5.3. Area and timings of the architectural synthesis results for first and
second order bilateral filter, including the optimization of the Multiplier factor
and Scale factor LUTs. All solutions in table 5.1 have been considered.The per-
centage difference between each solution and the reference value-based in table 5.2
is indicated between brackets.

In this last optimized configuration we can observe that the Multiplier factor
and Scale factor LUTs has a proper impact in area compression between 9.2% and
13.7% for first order, and between 5.5% and 5.8% for the second one, respect to the
table 5.2. This percentages should be quite constant for any solution. Comparing
the original value-based architecture to the index-based 8 one in table 5.3, the
compression reaches total values from 42.9% up to 58.7%.

66

5.2 – Division LUTs

Timings are quite similar for the NanGate library, they instead turn to be way
better with the UMC one, due to the probably lower intrinsic delay of the new
smaller memories. The index-based 8 architecture confirms to be the best one
among the others. The area reduction is the greater one for each case of order and
library. Maximum delay reaches really good results for the first order filter, with
a value less than 11.8% respect to the value-based solution, and less than 9.6% for
the second order.

Figure 5.1. Area vs delay diagram of the architectural synthesis results in 5.3 for
first and second order bilateral filter, including the optimization of the Multiplier
factor and Scale factor LUTs. Each dot represent a specific solution. The acronyms
i.b. and v.b. mean respectively index-based and value-based.

67

68

Chapter 6

Conclusions

In this thesis we presented an optimized architecture for the bilateral filter stage
inside the JEM decoding loop. The original idea was to find a way to reduce
area without sacrificing performance, but if possible, to increase it. The target
throughput for desired resolutions and frame-rate, as already discussed in chapter
4, are:

• FHD 186.624 MPixel/s

• UHD4K 746.496 MPixel/s

• UHD8K 2985.984 MPixel/s.

The UHD8K is not exactly part of the purpose of this work, since it is a emer-
gent world but the moment when it will become standard is still far away, and the
related technology is actually on an early stage. Anyway, some considerations can
still be done.

In the results chapter 5, we illustrated as the optimization operations on the
involved LUTs have led to significant outcomes. In the best case, Coefficients LUTs
has been compressed by a factor of 61.7%, allowing a global reduction between
24.2% (22.6%) and 31.7% (30.4%) for NanGate (UMC), depending on the filter
order. The work on Multiplier factor and Scale factor LUTs has given a proper
average area gain between 5.5% (5.8%) and 9.2% (13.7%), pulling down the total
value up to 53.2% (58.7%). Furthermore, even timings got better, with NanGate
there are some fluctuations around the reference value, but with UMC library they
decrease up to 11.8% for first order and 9.6% for second one.

It has been show that the proposed index-based 8 approach for the bilateral
filter architecture, using the UMC 65 nm library, is promising since it allows an
area reduction of 42.9% respect to the original one, reaching a total value equal to
12265.92 µm. Moreover, the critical path has a delay equal to 0.68 ns, enabling a

69

6 – Conclusions

maximum frequency of 1.47 GHz. And since the unit can process a pixel for clock
cycle, its throughput is 1.47 GPixel/s. So, FHD and UHD4K requirements have
been widely satisfied and the filter is able to handle these high resolutions.

Anyway, in this work a second order filter it has also been presented. With just
an area 54.6% larger than the first order case, we reach a double throughput. The
related maximum delay is 0.73 ns, so the achievable frequency is 1.37 GHz. It is
clearly slower, but the number of processed pixels for clock cycle is equal to 2.74
GPixel/s. Thus the maximum resolution allowed is 7357 × 4138, still insufficient
for UHD8K. This means that better technology nodes are requested, or, in another
way, a fourth order bilateral filter attempt can be pursued.

However, higher frequencies are not useless at all. Just for example, with the
second order filter a throughput of 2.74 GPixel/s can be reached with 1.37 GHz,
so, since for UHD4K just 746.496 MPixel/s are necessary, the clock can be slowed
of 3.65 times. This has a huge impact in power consumption since it decrease of the
same factor. Therefore, power estimation can be the next step for this architectural
proposal, and low consumption techniques applied to it are eligible as future work.

70

Bibliography

[1] Tim Bemers-Lee, Information Management: A Proposal CERN DD/OC, March
1989. [Online] http://cdsweb.cern.ch/record/1405411/files/ARCH-WWW-4-
010.pdf

[2] Cisco, The Zettabyte Era: Trends and Analysis June 2017. [Online]
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/vni-hyperconnectivity-wp.pdf

[3] [Online] https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/branches/HM-
16.6-JEM-7.1-dev/

[4] G. Sullivan, J. Ohm, W. Han and T. Wiegand,Overview of the High Efficiency
Video Coding (HEVC) Standard, IEEE Transaction on Circuits and Systems for
Video Technology, vol. 22, no. 12, pp 1649-1668, December 2012.

[5] [Online] https://www.itu.int/en/ITU-T/studygroups/2017-
2020/16/Pages/video/vceg.aspx

[6] [Online] https://mpeg.chiariglione.org/
[7] Video codec for audiovisual services at p x 384 kbit/s - Recommendation H.261

(11/88), ITU-T Std., 1988.
[8] Video codec for audiovisual services at p x 64 kbit/s - Recommendation H.261

(30/93), ITU-T Std., 1993.
[9] Video coding for low bit rate communication - Recommendation H.263 (01/05),

ITU-T Std., 2005.
[10] Coding of moving pictures and associated audio for digital storage media at up

to about 1,5 Mbit/s - Part 2: Video - ISO/IEC 11172-2, ISO/IEC, 1993.
[11] MPEG-4 Overview - (V.21 – Jeju Version) - ISO/IEC JTC1/SC29/WG11

N4668, ISO/IEC, March 2002.
[12] Information technology – Generic coding of moving pictures and associated

audio information: Video - Recommendation H.262 (02/00), ITU-T Std., 2000.
[13] D. Marpe, T. Wiegand and G. Sullivan, The H.264/MPEG4 Advanced Video

Coding Standard and its Applications, IEEE Communications Magazine, 2006.
[14] [Online] http://phenix.int-evry.fr/jct/
[15] G. Sullivan, M. Bugadavi and V. Sze, High Efficiency Video Coding (HEVC)

Algorithms and Architectures, Springer, 2014.

71

Bibliography

[16] High efficiency video coding - Recommendation H.265 (02/18), ITU-T Std.,
2018.

[17] [Online] http://phenix.it-sudparis.eu/jvet/
[18] W. Gao and S. Ma, Advanced Video Coding Systems, Springer, 2014.
[19] J. Chen, E. Alshina, G. Sullivan, J. Ohm, J. Boyce, JVET-G1001: Algorithm

description of Joint Exploration Test Model 7 (JEM7), ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, July 2017.

[20] K. Ramamohan Rao and P. Yip, Discrete cosine transform: algorithms, ad-
vantages, applications, Accademic Press, 2014.

[21] L. Merrit and R. Vanam, x264: A high performance H.264/AVC encoder, 2006.
[22] A. Norkin, G. Bjøntegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Anders-

son, M. Zhou and G. Van der Auwera, HEVC deblocking filter, IEEE transaction
on Circuits and systems for Video Technology, vol. 22, no. 12, pp. 1746-1754,
2012.

[23] C. Fu, E. Alshina, A. Alshin, Y. Huang, C. Chen, C. Tsai, C. Hsu, S. Lei,
J. Park and W. Han , Sample adaptive offset in the HEVC standard IEEE
transaction on Circuits and systems for Video Technology, vol. 22, no. 12, pp.
1755-1764, 2012.

[24] C. Tomasi and R. Manduchi, Bilateral Filtering for Gray and Color Images,
Proceedings of the 1998 IEEE International Conference on Computer Vision,
Bombay, India, 1998.

[25] G. Sapiro and D.L. Ringach, Anisotropic diffusion of color images, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (Volume: 12 , Issue: 7 ,
Jul 1990).

[26] A. Nosratinia, Enhancement of JPEG-Compressed Images by Re-application
of JPEG, Journal of VLSI signal processing systems for signal,image and video
technology, vol. 27, pp. 69–79, Feb. 2001.

[27] F. Durand and J. Dorsey, Fast bilateral filtering for the display of high-dynamic-
range images, ACM Transactions on Graphics (TOG), Volume 21, Issue 3, Pages
257-266, July 2002.

[28] J. Strom, K. Andersson, P. Wennersten, M. Pettersson, J. Enhorn and
R. Sjoberg, JVET-F0096, EE2-JVET related: Division-free bilateral filter, ITU-
T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, April 2017.

[29] P. Wennersten, J. Strom, Y. Wang, K. Andersson, R. Sjoberg and J. Enhorn,
Bilateral Filtering for Video Coding, 2017 IEEE Visual Communications and
Image Processing (VCIP), December 2017.

[30] [Online] http://projects.si2.org/openeda.si2.org/projects/nangatelib
[31] UMC, UMK65LSCLLMVBBR_B UMC 65nm Low-K Multi-Voltage Low Leak-

age RVT Tapless Standard Cell Library Databook, 2014.

72

	List of Tables
	List of Figures
	Introduction
	Background
	Motivations
	Work Organization

	Video Coding
	Standards
	Overview
	Video Frame
	Picture Partitioning
	Prediction
	Transformation and Quantization
	In-Loop filters
	Entropy Coding

	Bilateral Filter
	Purpose and Role
	Classical Definition
	Gaussian Case

	JEM
	Improving Classical Approach

	Architecture Development
	First Order Bilateral Filter
	Higher Order Bilateral Filter
	Improving Memories
	Coefficients LUT
	Value-Based
	Index-Based
	Division-Free LUT

	Results
	Coefficients LUT
	Division LUTs

	Conclusions
	Bibliography

