
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Design and implementation of a
data-driven system for bus

crowding analysis

Supervisor
prof. Giovanni Malnati

Candidate
Francesco Palma

Academic year 2017-2018

invisibile

Summary

Public transport planning is a crucial aspect for companies, operating in the public
transport, which seeks to improve their quality of service. In the last years, the
trend of using IT solutions has been increasing due to the advancement of IoT
technologies. Indoor localisation is one of those technologies allowing to locate the
position of devices, such as smart phones, in closed environments. Locating and
counting each device in an area allows estimating the crowing level of the area.
If the area is a bus, then the count will indicate the number of people on board.
This thesis work aims at designing and implementing a software solution built on
top of a passive device detection system installed on several buses that collects and
transmits the data of each device detected on board to a remote server.
The built solution analyses the data on the remote server doing two main operations
that involve classification. The first operation is recognising the line the bus is
following based on the path followed by the bus where the sensors are installed.
The second operation consists in determining for each valid device detected on the
bus the ascent and descent time. Combining the results of this two operations what
is obtained is the utilization of a line. In addition to the calculation of metric, it
has also been developed a graphical representation of the bus utilization for each
line followed by the buses where the system is deployed.
The error of classification has been calculated for both operations resulting in low
error levels that prove the metric is reliable and ready to be used to improve and
support the creation of a public transport plan.

3

Contents

List of Tables 6

List of Figures 7

1 Introduction 9

2 Problem description 11
2.1 Public transport planning . 11

2.1.1 Transport costs . 11
2.1.2 Demand and offer . 12
2.1.3 Counting techniques . 13

2.2 Context of the project . 14
2.2.1 Starting point . 14

3 Architecture 16
3.1 Existing system architecture . 16

3.1.1 Overview . 16
3.1.2 Endpoint data model devices 18

3.2 Objectives and requirements for the software extension 21
3.2.1 Requirements of the software extension 22

3.3 Software architecture . 23
3.3.1 Functional components . 24
3.3.2 Functional component: Classifier 25
3.3.3 Functional component: Data visualizer 35

4 Implementation 37
4.1 Environment choice . 37

4.1.1 Existing system solution . 37
4.1.2 Extension solution . 37

4.2 Classifier implementation . 39
4.2.1 Main loop . 39
4.2.2 Acquiring the data . 40

4

4.2.3 Preprocessing input data . 42
4.2.4 Device analysis implementation 44
4.2.5 Itinerary Matching . 48
4.2.6 Metric computation and storage 54
4.2.7 Configuration . 55

4.3 Data visualizer . 56
4.3.1 UI . 56
4.3.2 Data access layer . 63

5 Results 67
5.1 Requirement validation . 67

5.1.1 R1 - Device Filtering . 67
5.1.2 R2 - Path classification . 69
5.1.3 R3 - Data aggregation . 72
5.1.4 R4 - Readability . 73

6 Conclusion 74

Bibliography 76

5

List of Tables

3.1 Content of the stop table before grouping. 36
3.2 Grouped content ready to be shown. 36

4.1 Configuration parameters for the Classifier component. 66

6

List of Figures

3.1 Functional schema of the MQTT protocol. 18
3.2 Class diagram representing the coordinate and speed of the bus at a

certain point of time. 19
3.3 Class diagram representing a device detected by a sensor having

identifier equal to "IMEI" . 19
3.4 Parameters section of MyMoby UI. 21
3.5 Device list section of MyMoby UI, by clicking on a device ID is

possible to show it on the map. 21
3.6 Positions of a device shown on the map section of the UI. 22
3.7 Picture showing on of the roads that the device passed by. 23
3.8 One of the bus stop this devices passed by. 24
3.9 Software architecture representation. 25
3.10 Class diagram of the "StopTable". 26
3.11 Class diagram representing the bus line data. 28
3.12 Class diagram of a "BusPath". 29
3.13 Class diagram of a "Segment". 30
3.14 Class diagram of SegmentClassification. 30
3.15 Class diagram of a "LineProbability". 31
3.16 Mathematical model for the P function, indicating the probability

that the bus is serving a specific itinerary. 32
3.17 Conceptual representation of the metric’s graph. 35
3.18 Class diagram of metric in a period of time for a specific itinerary of

a bus line. 36

4.1 Http request made using HttpUrlConnection. 41
4.2 Retrofit library utilisation example. 41
4.3 Plots of the speed of the bus in two different days. 43
4.4 Example of a case where the bus is waiting at the last stop before

starting a new itinerary. 44
4.5 Behaviour of a device not belonging to a human. 45
4.6 Device detection probably coming from an user device. 46
4.7 Device detection probably coming from a fixed IP device. 46

7

List of Figures

4.8 Structure of a list element returned by the devices endpoint. 47
4.9 Code for the enlarging time window. 49
4.10 Mapping between a router ID and a sequence of bus line identifiers.

On top is specified the router ID while on the bottom there is the
sequence of line ids. 50

4.11 Representation of a itinerary’s point inside MongoDB. 52
4.12 Example of use of the "GeographicLib" to select the middle point

of the line connecting the first point (lat1, lng1) and the second
point(lat2, lng2). 52

4.13 Data structure used in the "LineProbability" class. 53
4.14 Interval of validity where the metric will be calculated. 54
4.15 StopsTable entry in the db. 55
4.16 Graph showing the metric between 3 bus stops. 58
4.17 Map section of the UI. 59
4.18 Dinamic transformation of the font-size of several paragraph depend-

ing on the data bound to the paragraphs. 59
4.19 Creating a rectangle SVG element using D3 library. 60
4.20 Node data structure. 60
4.21 Creation of a Leaflet’s map object and introduction of a tile layer

coming from OpenStreetMap. This operation will display a map in
a div having as id ’mapdiv’. 61

4.22 Function to represent a bus stop on the graph. 62
4.23 Function to draw the path connecting two stops on the map. 63
4.24 MongoDB aggregation syntax example. 64

5.1 Quick search on MyMoby devices’ list. 67
5.2 Console’s output of the filter. 68
5.3 Device belonging to an human. 68
5.4 Device not belonging to an human, probably filtered because all its

detections are concentrated at the end of a road. 69
5.5 Chart showing the error rate on the device classification in the time

period corresponding to a month of detections. 70
5.6 Validation data structure for itinerary matching. 70
5.7 Graphical user interface of the website of the transport society used

to validate the itinerary matching algorithm. 71
5.8 Chart showing the error rate on itinerary matching in the time period

corresponding to two weeks. 72

8

Chapter 1

Introduction

In the last decade, the trend of utilising IT solutions in the scope of public transport
has been increasing. The motivations behind this increase have to be searched in
the technological advancement and new solutions coming from the IoT world that
integrates well with the transport services.
Some of the solutions implemented in the public transport scope are real-time
vehicle tracking, unexpected event notifications, personalised travel solutions based
on the typical route a person does. All these solutions account for the needs of the
users of the transport system. Other solutions provide to transport societies tools
to monitor and extract metrics on their services. This metrics can be utilised to
support decision making. This thesis work focuses on the solutions for transport
societies, in particular on Automatic Passenger Counting systems which are systems
used to count the number of people on board of the bus, without any user interaction
and are based on sensors of a different kind.
Automatic Passenger Counting provides useful data to improve schedules, plan
new itineraries or update the existing ones, allocate more buses at specific times of
the day, and etcetera. This kind of systems are already in use by several transport
societies, but there is still interest in improving them due to the return of investment
they provide to transport societies.
The project associated with this thesis aimed at researching the potential offered by
this systems by focusing on a particular typology of them which uses the technology
of passive device detection. This technology relies on the signals personal devices
emit to locate them in a closed environment.
This document will detail more the scope of public transport planning, introducing
the advantages that systems of passive device detection have in respect to the classic
methods in chapter 2. The following chapters are structured as follows: first the
developed solution will be described abstractly in chapter 3 describing the main
points of the existing system of data collection and how on top of it the design has
been extended to reach the thesis’s objectives. In chapter 4 the methods followed
to implement the design along with their technical details will be discussed, also

9

1 – Introduction

showing some examples from the software developed.
In the end, in chapter 5 the results of this project will be discussed, proving the
grade at which the objectives of this thesis have been reached.

10

Chapter 2

Problem description

Public transport planning is a crucial aspect for companies, operating in the public
transport, which seeks to improve their quality of service. The deployment of a
transport plan requires the collection of feedback on its performance. Acquiring
feedback is difficult and not always accurate with manual methods because they
rely on human analysis over substantial data sets. For this reason, more transport
societies are integrating innovative technologies coming from the IT domain to
simplify this process.
This chapter will first introduce some concepts about public transport planning
and then the context of the project.

2.1 Public transport planning
2.1.1 Transport costs
Every task of transport has a cost because it implies consumption of energy needed
to win the floor, air and water attrition; also time is consumed which is another
critical resource. In general, transports cost are classifiable as the cost for the users
and cost of the providers of the transport service.
The price for the transport providers can be divided into the cost of investment
(vehicle fleet, deposits) and the cost of operation (employee cost, fuel). This costs
should be covered by the revenue coming from the service selling, but not always
that the case. This happens, in some measure, because the prices appliance is sub-
jected to limitations from public administrations to guarantee service to most of
the community.
Moreover, transport societies are obliged to provide transport services also in zones
where the demand level is not high enough to justify an investment, but the ser-
vice has to be provided in any case for reasons of social equity. In this cases, the
community intervenes financing in part, filling any deficit coming between the dif-
ference among cost and revenue. This costs mentioned before are increasing over

11

2 – Problem description

time, so transport society seeks new ways of improving their service. Nowadays, it
is more and more spread the utilisation of ITS1, that are software systems support-
ing the public transportation sector, allowing for real-time monitoring of vehicles,
passengers that provide useful information in short time to the users.

2.1.2 Demand and offer

Public transportation planning means to choose a series of actions to be performed
to reach some objectives aimed at improving the quality of services offered to in-
crease user satisfaction and revenues. For public transport societies, this will imply
updating their offer, which is constituted by all offered services (itineraries, alloca-
tion of vehicles on them and number of rides).
Before defining the offer and measure its effectiveness it is necessary to study the
demand for mobility, that is the common interest in having two points (origin and
destination) connected through any means of transport. There are two ways of
estimating the demand for mobility:

Mathematical models Mathematical models can estimate the current demand
of mobility and its evolution in function of socio-economic characteristics of
the geographic area of study and on the transport system deployed in it.

Direct investigations Direct investigations consist in interviewing users to iden-
tify their needs of mobility.

Other methods may involve analysing the flux of vehicular traffic in entrance and
exit of a specific zone.
Once the demand is defined it is possible through evaluations, supported by modern
software decision systems, to define the mobility offer of the transport society.
What is crucial for transport society is to have feedback about the performance
of a transport plan which can be done evaluating several metrics. One important
metric that is of particular interest for transport societies is the utilisation of their
bus lines. The utilisation of a bus line can be calculated by counting the number
of people present on the bus while the bus is serving that line. Several methods
can be used to produce the count of people on board, some of them use manual
techniques while more recent IT systems, called APC2, automate the process and
give higher quality data with less effort.

1Intelligent Transport Systems
2Automatic Passenger Counting

12

2 – Problem description

2.1.3 Counting techniques
As said before, the counting techniques can be divided in manual and automated.
The most common manual method is:

Direct counting With this method, the passengers are counted by sight by an
operator present on the bus. This method suffers mainly in case of bus over-
crowding due to sight obstruction. Also there are other sources of error, like
lack of attention or tiredness of the operator.

The automated methods rely on the use of sensors, which can be of different nature,
or machines installed on the bus and do not rely on human interaction. There are
several methods for automated counting:

Direct counting This method which has also been classified as manual has a
respective automated version when video cameras are installed on board of the
bus which run image recognition algorithms able to detect the human shapes
and track their movements on the bus. This method has an high accuracy,
but high costs from an implementation and computational perspective.

Counting based on ticket This counting method relies on accessing the data
contained in ticket validations machine to count the number of tickets vali-
dated, which give an insight on how many people were on a vehicle at a given
time. There is no problem of counting a person twice as each ticket is uniquely
identified in the validation machine registry. This technique is useful in con-
texts where the way in and the way out are accessed through ticket validation,
like for example metro’ stations. This technique presents instead several limi-
tations, that affect the count and the computable metric, in the context of a
bus for several reasons:

• The access to the vehicle is not bound to the validation of the ticket.
• Impossibility of reaching the ticket machine in situations of overcrowding.
• In a bus the ticket is not revalidated on exit, so the information on where

a person left the bus is unknown.

Also this technique always requires an interaction of the user. This method
can provide real time processing if the validation machines are able to transmit
over a network the validations events.

Access counting Using sensors to detect a person physically passing through a
door, which can be the entrance door and the exit door. The main limitation
is that sometimes due to crowding a person can be accounted several times
and also the sensors tend to be quite expensive.

13

2 – Problem description

Passive detection This kind of method relies on a different kind of sensors and
approach. The entity counted is not any more a person, but the device which
the person owns, because it emits different kinds of radio signals associated to
technologies like Bluetooth or WiFi which in their processes of discovery allow
the device to be tracked by sensors. This method among the one presented so
far has the lowest implementation cost which can be divided into the cost of
the sensors and the cost of deployment. One of the main problems in mobility
context is that devices external to the bus can be detected (nearby cars, IP
cameras).

Passive detections methods have little implementation costs, produces a high vol-
ume of accurate data and it provides the transport society with a broader sample
of people to perform statistic analysis, meaning that if further developed and im-
proved these methods can become a good investment for the transport societies
seeking an improvement in their offer.

2.2 Context of the project
In the last section, the counting methods have been introduced highlighting the
advantages of the passive device detection.
APC systems based on passive detections are already existent in different varieties,
but typically they are based on proprietary solutions that have a strong imple-
mentation cost because this systems need to integrate with the transport society
already existing IT systems and databases and also require training for employees
to use them.
In the scope of another master of degree thesis work it has been developed a sys-
tem for passive device detection on board of a bus characterised by the following
features:

• minimal set up on board of the bus (sensor and router).

• web portal for accessing and consulting raw data.

• REST API.

The volume of data produced by this system daily is very high, meaning that after
some time of its deployment the manual consultation of the web portal became
time-consuming for any operator trying to extract statistics.

2.2.1 Starting point
The system of passive device detection described before its the base where this
thesis work started. The existing system has been first observed and analysed in

14

2 – Problem description

order to understand its behaviour and from it build initially a design that uses its
functionalities to develop an automated way to do three operations:

• Calculate the number of devices on board.

• Calculate the bus lines served by the bus.

• Combing the two results together to obtain the wanted metric.

A second phase of the design brought also a the conception of design for a graphical
representation of the metric which will be described in further chapters.

15

Chapter 3

Architecture

In this chapter, it will be introduced the architecture of the software system that
has been developed.
In the first sections, it will be discussed in detail the architecture of the system
that has been extended with this thesis work, also going into the details of the data
that this system produces.
The last sections of the chapter will talk about the system requirements, functional
description and software architecture of the developed system.

3.1 Existing system architecture
In this section, it will be described the key components, from the perspective of the
developed software, of the already existing system of passive device detection.

3.1.1 Overview
The existing system focuses mainly on how to collect and transmit the information
about detected devices on board a bus, putting the greatest effort in the hardware
implementation. The solution implemented by this system relies on Wi-Fi tech-
nology to detect devices on board of buses using the approach of monitoring and
grouping together what is known as "probe request". A probe request is a mecha-
nism that Wi-Fi technology uses to implement the possibility of discovery, that is
to make a device know which Wi-Fi’s AP 1 are present in the area. So a device that
wants to discover the AP present nearby will transmit probe requests encapsulated
in Wi-Fi frames2, however, in doing that is possible for a device that is monitoring
the traffic of Wi-Fi frames nearby to identify each device uniquely.

1Access Point.
2Message format for the Wi-Fi protocol.

16

3 – Architecture

3.1.1.1 Devices’ sensor

The first component of the system is a microcontroller installed on the bus which
has the capability of monitoring the Wi-Fi frames transmitted nearby to identify
uniquely each device that is sending a probe request. In the scope of this thesis,
the microcontroller, from now on, will be defined as a devices’ sensor.
The devices’ sensor can track devices around itself, but still misses the capability
of associating each device to the bus position and transmitting the results of the
computation to a remote processing server. In order to provide this functionality,
a second hardware component has been added, which is a router.

3.1.1.2 Router

The router provides two essential services to the devices’ sensor:

• Internet connectivity provided through the use of a 4G module.

• GPS position of the bus provided using a specific module installed on the
router.

The router provides access to this services creating a wireless LAN3 where the de-
vices’ sensor connects to.
With the services provided by the router, the devices’ sensor has enough informa-
tion to describe a device’s detection, and in that case, it is ready to transmit it
to the remote server. The remote transmission is handled using a protocol called
MQTT.

3.1.1.3 MQTT

MQTT is a solution based on TCP/IP protocol used typically for M2M4 in IoT
contexts and uses a publish/subscribe pattern where there is a central entity called
broker which handles the reception of messages coming from the entities known
as publishers and forward this message to other entities called subscribers. Each
message is associated to a label called topic which identifies the recipients, which
are called subscribers, at which the message has to be forwarded to. Figure 3.1
shows a schema of the protocol.

3Local area network.
4Machine to Machine communication.

17

3 – Architecture

Figure 3.1: Functional schema of the MQTT protocol.

3.1.1.4 Remote server

The device’s detections are transmitted to an MQTT broker under a specific topic.
The remote server, which is the last key component of the existing system, runs an
applicative which uses an MQTT client to subscribe to the topic where the device’s
sensors send data. Every new device’s detection published on the topic is acquired
and stored in a DB5 engine.
REST web services are used to retrieve the data, stored on the DB, about positions
and devices. Accessing the data stored on the bus requires specifying a key code
in the HTTP request. This code that is called either "IMEI" or "router ID" and
identifies the data coming from the devices’ sensor installed on a bus.

3.1.1.5 Deploying the system

To deploy the system on top a bus is necessary to install the devices’ sensor and
the router hardware components on board the bus and configure them.

3.1.2 Endpoint data model devices

This section will detail the data entities exposed by the existing system including
the description and the path of the web resources. The system exposes more REST
endpoints than the one described in this section, but the others are not relevant for
this thesis work.

5Database.

18

3 – Architecture

3.1.2.1 Devices and Positions

The REST endpoints exposed by the existing system are:

Positions (/collect_data/positions) Is an endpoint exposing a set of entities
named "Position". The coordinates and speed of the bus at a certain point of
time are the attributes of a "Position". In the next figure, it is reported the
class diagram. 3.2.

Position
imei : String
timestamp : Long
lat : Double
lng : Double
speed : Double

Figure 3.2: Class diagram representing the coordinate and speed of the bus at a
certain point of time.

Grouped devices (/collect_data/devices) Is an endpoint exposing a set of
entities named "Device". The attributes of a "Device" are the set of information
that can be extracted from the Wi-Fi’s probe request. In figure 3.3 the class
diagram.

Device
_id : String
imei : String
macAddress : String

Timestamp
value : Long

Point
lat : Double
lng : Double

1

1..*

1

1..*

Figure 3.3: Class diagram representing a device detected by a sensor having iden-
tifier equal to "IMEI"

19

3 – Architecture

3.1.2.2 MyMoby client

Before the development of the thesis work, another development team implemented
a basic client of the REST’s API described in the previous section. This client allows
having a visual representation of the path the bus follows during the day and the
positions over time of each device detected on a day.
The UI6 presents three main sections:

1. Parameters This section of the UI allows to select data applying some filters
based on the following parameters:

• Date of detection.

• Time of day, specified through a select box and a time bar.

• "IMEI" which as said before identifies the data collected on a bus.

The time bar does not serve only the purpose of specifying a time of the day
to select, but also is used as an indication of time. Also there is an informative
counter which tells the total number of detections saved during the selected
date and also how many of the them are meaningful7.

2. Device list It is a list of identifiers of all devices which have been detected
in the date selected in the parameters section. Clicking on a identifier on the
list allows to show its data on the map.

3. Map An interactive map which shows two kind of information:

• The position of the bus at the time of the day selected with the parameters
section.

• Circles positioned at coordinates where a device has been detected by a
sensor.

The graphical appearance of each component is shown in figures 3.4, 3.5 and
3.6.

The map section allows different zoom levels allowing to see precisely the roads
followed by a device and also the bus stops intersected by the device. Examples in
figures 3.7 and 3.8.

6User Interface.
7A device is meaningful if the are at least more than two detections of it.

20

3 – Architecture

Figure 3.4: Parameters section of MyMoby UI.

Figure 3.5: Device list section of MyMoby UI, by clicking on a device ID is possible
to show it on the map.

3.2 Objectives and requirements for the software
extension

The existing software accomplish data collection and storing, but it has no func-
tionality of data analysis, leaving this job to an operator that needs to use the
MyMoby portal.
Several useful metrics can be extrapolated from the analysis of data coming from
the sensors, and the project associated to this thesis work aimed at extracting the
statistic about the line utilisation for each line served by the buses where the sen-
sors are installed. The statistic objective of the thesis to be calculated requires
to know for each time instant how many devices are on board the bus and which
bus line the bus is serving. Those two kinds of information are deducted from the
positions and devices’ detection.
Observing the devices’ data set it can be observed the presence of detections which
are not belonging to a human user or are relevant to the analysis. This phenomenon
is correlated to the fact that devices’ sensors installed on board the bus are capable

21

3 – Architecture

Figure 3.6: Positions of a device shown on the map section of the UI.

of sensing devices that are outside of the bus like people on the road or IP cameras.
Those types of devices are characterised by having a short detection period for the
case of people outside the bus or to be detected in fixed locations for the case of IP
cameras.
In both cases, those devices are not representative of the number of people on the
bus and must be ignored.
Another objective followed in the project is the need of showing the result in some
intuitive way. So it has been decided to build a graphic representation of the metric
that shows for each line the sequence of its bus stops connected by a line with width
proportional to the number of devices detected between each pair of bus stops.

3.2.1 Requirements of the software extension
After the choice of the statistic and the data set observation a list of requirements
has been deducted:

R1 Data filtering: The system must ignore the devices which are not representative
of the devices on board of a bus.

R2 Path classification: The system must know for each time instant which is the
most probable bus line which the bus was following.

R3 Data aggregation: The system must know for each time instant the count of
devices on top of the bus.

22

3 – Architecture

Figure 3.7: Picture showing on of the roads that the device passed by.

R4 Readability: The system should be able to show a human legible visualization
of the metric.

3.3 Software architecture

This section will present each software component’s functional description, data
model and its interaction in the architecture. In figure 3.9 it is shown the high level
view of the software components.

23

3 – Architecture

Figure 3.8: One of the bus stop this devices passed by.

3.3.1 Functional components

The system is divided into two independent software components, one responsible
for data analysis and the other one responsible for building graphic representation
out of the result of the analysis.
The result of the data analysis is a data structure called "StopsTable" that represent
the value over time of the statistic objective of this thesis work.
Every day the first component produces new values for this data structure while
the second component can select a subset of this data structure’s values to build a
graphic representation of the metric. In figure 3.10 it is reported the class diagram
of the "StopsTable".
The following section talks in detail of the two components which are called, re-
spectively in order of introduction, the Classifier and the Data Visualizer.

24

3 – Architecture

Developed System

BusLineDataEndPointMyMobyAPI

Classifier

StopsTable

DataVisualizer

UI

useuse

updates

reads

displays

Figure 3.9: Software architecture representation.

3.3.2 Functional component: Classifier
The Classifier component has the role of computing daily the metric, objective
of the thesis, using the data of the day before coming from the existing system’s
endpoints and save the result of the computation inside a "StopTable".
Two main algorithms are executed to obtain the line utilization and these algorithms
are:

• Device analysis.

• Itinerary matching.

Those tasks process independently the data coming from the two endpoints and
once they are finished the result of the operations are joined together.
The next sections will described each operation in details.

25

3 – Architecture

StopsTable StopsTableEntry
imei : String
lineId : Integer
itineraryId : Integer
timestamp : Long
numOfAscends : Integer
numOfDescent : Integer
devicesOnBoard : Integer

Stop
Id : Integer
Name : String
Latitude : Double
Longitude : Double

*

Figure 3.10: Class diagram of the "StopTable".

3.3.2.1 Device analysis

The device analysis works on the device endpoint to estimate for each device be-
longing to a person at what time they entered the bus and at which time they left it.
This operation is divided into two sub-operations; one dealing with finding invalid
devices, the ones who do not belong to a person, and the second sub-operation
determines the ascent and descent time.

3.3.2.2 Device filtering

The devices’ data set presents common patterns which are listed here:

• User device on board device detected in several positions along the bus
path for a interval of time below 2 hours.

• User device not on board device detection with low detection duration.

• Cameras device’s detections heard in fixed points.

• Bus driver device detection with a duration longer than 2 hours (2, 3 per
day).

26

3 – Architecture

• Bus maintenance device detection heard before 6 a.m. and before the bus
has even accelerated indicating that these detections are made at the bus
deposit.

Among this patterns only the first one is relevant for analysis purposes, all other
types of device detection must be filtered from the set of devices to analyse.
This software component applies a rule-based classification for each device in the
devices list and removes from the list all the devices which are not classified as user
device on board. The rules on which the classification are made are:

• The number of device detections is below 5 -> User device not on board

• The positions of a device are concentrated around 1 point -> Camera

• The time period on board of the bus is more than 2 hours -> Bus driver

• The bus has not accelerated yet -> Bus maintenance

3.3.2.3 Ascent descent analysis

The devices not filtered by the filter, are analysed one by one to determine the
ascent and descent times for each device. The calculation is made considering the
set of time instants that the device has been detected, forming groups of nearby
time instants and considering, for each group, as ascent time the first time instant
of the group and as descent time the last time instant. An ascent (or descent),
from now on, will be now defined as "Variation" which is a pair of values where the
first value is the instant when the ascent (or descent) happened in time and the
second value is either 1 or -1, and it is used to distinguish, respectively, an ascent
or a descent.

3.3.2.4 Itinerary Matcher

The bus during the day may follow different paths meaning it serves more than
one line at day. The Itinerary Matcher algorithm has the role of determining,
throughout the day examined, the set of bus lines followed by the bus and the bus
stops where the bus stopped. A probabilistic approach is used to determine the bus
lines served by the bus, and it consists in determining for each possible itinerary,
a function of probability. Comparing the calculated functions of probability, it is
possible through the comparison of them to know which line the bus was following.
The probability functions are calculated, to simplify the study, in a time window
where the bus is likely to be serving only one itinerary of a bus line. This time
windows are called "Segments". Before going into the functional description of
the algorithm, it will be introduced the model of bus line data and some abstract
entities used in the itinerary matching.

27

3 – Architecture

3.3.2.5 Bus line data definition

The transport society created an abstract model able to represent a line. The main
concept in this model is the notion of "Itinerary" that represents a path composed
by a set of "Geometries" which describe the path the bus follow departing from a
bus stop and arriving at the next one. A bus line can follow several itineraries.
In figure 3.11 the class diagram.

BusLine
ID : Integer

Stop
ID : Integer
Name : String
Latitude : Double
Longitude : Double

Itinerary
ID : Integer

Geometries

Geometry

Coordinate
Latitude : Double
Longitude : Double

has
*

has

*

*

*

*

Figure 3.11: Class diagram representing the bus line data.

The transport society exposes data of bus paths for each line from the following
endpoint:

28

3 – Architecture

• api/map/GetLineMap is the name of the endpoint that takes as a param-
eter a line identifier and returns the bus line data for that line.

The model of the data returned associates to a line identifier the following infor-
mation:

• Itineraries set of paths the bus can follow. Each path carries information
about the set of stop ids that the path includes and the set of coordinates that
the bus follows from the first stop to the last stop.

• Stops set of all bus stops information for this line.

3.3.2.6 Itinerary matcher glossary

In this paragraph it will be explained and characterized the entities used in the
itinerary matching algorithm:
BusPath From the position’s data set through reordering it is possible to build

an entity representing the set of positions the bus followed from the moment
it first accelerated (speed > 5) to the last time instant of the day.
In figure 3.12 the class diagram.

BusPath TimePoint
timestamp : Long

GeoPoint
lat : Double
lng : Double

*

Figure 3.12: Class diagram of a "BusPath".

Segment A "Segment" represents a time window composed by a pair of time in-
stants and a set of "TimePoint" having their time-stamp included in the interval
defined by the pair of time instants.
In figure 3.13 the class diagram.

SegmentClassification Each "Segment" goes through a process of classification
which ends in assign a label to the "Segment". The label assigned is a line
identifier, meaning that in the time window defined by the "Segment" the
bus was serving a specific itinerary of a bus line. Some information useful to
process next segments are contained inside the Segment Classification entity.
In figure 3.14 the class diagram.

29

3 – Architecture

Segment
startTimestamp : Long
endTimestamp : Long

TimePoint
timestamp : Long*

Figure 3.13: Class diagram of a "Segment".

SegmentClassification
segmentNumber : Integer
itineraryId : Integer
lineId : Integer
lastRelevatedLineId :
Integer
lastRelevatedItineraryId :
Integer
lastRelevatedLineProbability
: Double

Figure 3.14: Class diagram of SegmentClassification.

LineProbability is a class that indicates for a specific time instant which is the
probability that the bus is following an itinerary.
In figure 3.15 the class diagram.

3.3.2.7 Mathematical model

The itinerary matching is based on a mathematical model which allows calculating
the probability associated to the fact the bus is following a specific itinerary.
Assuming there are "m" possible itineraries that the bus can follow, to find which
is the most probable itinerary the bus followed in the segment it is required first
to build a function of probability P. The latter describes what is the probability
that the bus is following a specific itinerary for each time instant belonging to a
segment. The function is computed recursively comparing the positions the bus
occupied in a specific "Segment" and the points of all possible itineraries the bus
can follow. The P function also keeps into consideration the direction the bus is
going and if the bus is following the sequence of bus stops of an itinerary.
Figure 3.16 shows the mathematical model. The idea behind this mathematical
model is that the P function at each time instant is made up of two weighted
contributes8. The first contribute comes from the previous time instant’s function

8The "a" constant defines the weight.

30

3 – Architecture

LineProbability
timestamp : Long

LineProbabilityValue
lineId : Integer
itineraryId : Integer
probability : Double
sequenceNumber : Integer

Stop

Next stop
0..1

1..*

Figure 3.15: Class diagram of a "LineProbability".

value and the other comes from a function depending on the distance between the
current point of the bus and the closest point to it of each itinerary.

3.3.2.8 D and I functions

To explain "D" and "I" functions, consider the bus position C(k), Ni set of points of
the ith itinerary, which can be restricted in cardinality by the I(k) function. Then
the D function finds for every itinerary the minimum distance between the bus
position C(k) and any point of Ni if this distance is lower than 50.0 meters. The
index of the point of the itinerary at minimum distance to the current time point
is the value of the "I" function at instant k. The "I" function indicates that all
indexes, of the points of the itinerary, which are lesser than the current value of the
function are irrelevant because if a bus is following the itinerary then it does not
make sense to match the position of the bus to points of an itinerary which have
already been travelled.

3.3.2.9 Stop sequence matching

The value of the P function, at instant k, for each itinerary, can have another
multiplicative term if the bus is nearby a bus stop. The bus being nearby a bus
stop alters the probability in the following ways:

• if the nearby stop is the first bus stop encountered in the scope of the segment,
then no alteration is made to the value at instant k of the probability, but the
value at time k + 1 may be altered.

• otherwise considering the last bus stop encountered as A:

– if the nearby bus stop is the same or the next of A then that means that
the bus is behaving as expected on that itinerary.

31

3 – Architecture

a ∈ [0, 1], (3.1)
k ∈ set of time instant of a Segment, (3.2)
m = ||Itineraries||, (3.3)
Ni = ordered set of points of bus path of line i, (3.4)
n = ||setoftimeinstantsofaSegment||, (3.5)
C : N→ R2 (3.6)
P : N→ Rm, (3.7)
D : N→ Rm, (3.8)
I : N→ Nm, (3.9)
E : N→ Rm, (3.10)

Pi(k) =

p0 k = 0
Pi(k − 1) k > 0, Di(k) /= ∅
a× Pi(k − 1) + (1− a)× 1000

999+Ei(k) k > 0, Di(k) ∈ R
(3.11)

Ei(k) = exp Di(k)
3 , (3.12)

Di(k) =

minj=Ii(k)..n{||C(k)−Ni,j||} minj=Ii(k)..n{||C(k)−Ni,j||} < 50.0
∅ otherwise

(3.13)

Ii(k) =

0 Pi(k − 1) ≤ Ô

b Pi(k − 1) > Ô, b ∈ N
(3.14)

(3.15)

Figure 3.16: Mathematical model for the P function, indicating the probability that
the bus is serving a specific itinerary.

– if the nearby bus stop comes before of A in the sequence of bus stops, then
the probability goes back to 0 for instant k.

– if the nearby bus stop comes more than a stop after A or A + 1 then the
probability is multiplied by this factor:

Pi(k)
0.588 ∗O

(3.16)

Where O is the indexes’ distance between the index of bus stop A and the
index of the nearby bus stop.

32

3 – Architecture

3.3.2.10 Internal and external aliasing

The functions of probability for each itinerary are not enough to choose which
itinerary the bus followed in the "Segment", because of two phenomena called in-
ternal and external aliasing which are defined as follows:

Internal aliasing it occurs when two or more itineraries associated to the same
line have an high probability.

External alasing it occurs when two or more different bus lines have itineraries
which have an high probability.

So in order to choose the right itinerary another step is required, which will be
discussed in the next section.

3.3.2.11 Choosing the itinerary

The selection of an itinerary as the most probable in a segment has to be done
considering 2 possible cases:

1. it exist a time instant K where only one itinerary has an high probability.

2. internal aliasing and/or external aliasing.

In the first case, the solution is simple, and it consists in choosing the only itinerary
with high probability as a result of the classification process.
The second case is more complicated than the first one because it requires the
mitigation of the effects of aliasing and the solution for it is based on calculating a
frequency function. This function, called F, can be computed from the P function
in the following way, considering "m" the number of possible itineraries:

Fi(k) =

1 Pi(k) > Pj(k), j /= i, j = 1..m,

0 otherwise
(3.17)

This function indicates for each instant and itinerary if the value of probability is
the greatest among all components of the P function. It can be used to mitigate
both internal and external aliasing by performing two operations:

1. sum all values of the function for each itinerary.

2. from the result of the previous operation sum again this time grouping itineraries
belonging to the same line.

The highest sum indicates which line is the most probable in the segment and
this solves external aliasing. For internal aliasing is necessary to select one of the
itineraries of the line selected as segment classification. The itinerary selected in

33

3 – Architecture

this case will be the one with the highest number of stops. This choice is guided by
the fact that a line has several itineraries, as explained before, but some of them
include the others. So typically the itinerary having the highest number of stops is
the one including all the others for the same direction.
The line and itinerary identifier together are the result of the classification which
is called "SegmentClassification", and it will serve not only for the second phase of
the itinerary matching but also to provide initial values of probability for the next
segment to classify.

3.3.2.12 Stop sequence matching

Once all segments have been classified the second phase of the itinerary matching
consist into building the sequence of bus stops that the bus followed during the day.
The sequence can be built reiterating over the segments, but this time knowing the
line and the itinerary the bus was following. Each position that the bus occupied
in a segment is matched against the set of bus stops of the most probable itinerary
of the segment and for each position near a bus stop an empty entry in the "Stop-
sTable" is created. In case the entry in the "StopsTable" already exists it will not
be created a duplicate.
After having reiterated over all segments and built the bus stops sequence using
the knowledge of the segment classification the built "StopsTable" indicates only
the time at which the bus arrived at each bus stop, but still misses the data about
the devices detected on board which will be obtained through the process of joining
the results of the two main algorithms.

3.3.2.13 Joining the data

The result of the ascent and descent analysis produces a list of time instants asso-
ciated with a number which when positive indicates that in the particular moment
there was an ascent on the bus otherwise if negative it indicates a descent. This
list allows to complete the information that the "StopsTable" misses, that is the
number of devices on board.
Every ascent (or descent) time is included between the time instants of two entries
of the "StopsTable". Each ascent is assigned to the first entry which has as the time
instant’s value lower than the one of the ascent; similarly, each descent is associated
to the first entry having the time instant’s value greater than the one of the descent.
To know the number of devices of a given entry of the table is sufficient to calculate
the sum of all increments of the previous entries and add to the sum the increment
of the entry of interest.

34

3 – Architecture

3.3.3 Functional component: Data visualizer
This software component is responsible for the graphic visualisation of the data
processed by the Classifier allowing to see the utilisation of each line.
To fulfil its role the component builds a graph representing the metric for an
itinerary of a bus line. Each of the graph’s nodes represents a bus stop, and the
weight of each edge represents the average number of devices for every pair of bus
stops. In figure 3.17 there is a conceptual representation of the graph.

Figure 3.17: Conceptual representation of the metric’s graph.

The component can build the graph in two ways; The first representation consists
in a graph where each node represents a bus stop, and the width of the line joining
each pair of adjacent nodes indicates the average number of devices present on the
bus between the two stops.
The second representation is a projection of the first representation on a map where
each node is positioned in the coordinates of the bus stop which is associated to it.

3.3.3.1 Data selection

To build this graph for a bus line is necessary to select and aggregate data coming
from the stops table. The aggregation is necessary because the table’s entries for
the same line can come from different sensors. So the first step in the data selection
is to choose a time interval of interest and a time of the day and filter out the entries
not included in the time window.
The second step consists in grouping the remaining entries by itinerary and stop
identifiers and calculate the average number of devices for each group. The following
tables show an example of how the filtering and grouping work assuming the period
of interest is the first week of September and the hour of the day between 8 and 10
am.

It is possible to observe that for the bus stop called "Desnosse" the average is
computed not counting the first entry because belonging to a time period not of
interest.
In figure 3.18 a class diagram shows the parameters on which the metric can be
calculated and which information, regarding the bus stops, is associated to the
parameters specified.

35

3 – Architecture

Itinerary ID Stop ID Stop name Date Hour Sensor id
de-
vices on
board

20 52 Desnosse 29/08/2018 9 4752 6
20 52 Desnosse 04/09/2018 8 4752 10
20 52 Desnosse 05/09/2018 8 4753 12
20 53 Jules 05/09/2018 8 4752 15

Table 3.1: Content of the stop table before grouping.

Itinerary ID Stop ID Stop name Average devices on board
20 52 Desnosse 11
20 53 Jules 15

Table 3.2: Grouped content ready to be shown.

Metric
startTimestamp : Long
endTimestamp : Long
startHour : Long
endHour : Long
lineID : Integer
itineraryID : Integer

Stop
ID : Integer
name : String
averageNumberOfDevices :
Integer

*

Figure 3.18: Class diagram of metric in a period of time for a specific itinerary of
a bus line.

36

Chapter 4

Implementation

In this chapter the implementation details of the system covering technical details
and all the choices made during the development process will be discussed.

4.1 Environment choice

This section will describe the choices made for the environment which are the choice
of the language, the structure of components and the DB engine.

4.1.1 Existing system solution

The existing software architecture deployed on the remote server utilises the Spring
Framework which is an open-source framework for developing secure Java EE ap-
plications. In particular, Spring is used to provide the APIs exposing the data of
the devices and positions. These endpoints access directly the persistence layer of
the server which is implemented using a NoSQL database which is MongoDB.

4.1.2 Extension solution

Since the developed software extension has to run on the same server in favour of
future integration of the developed system in the old one and to avoid the need of
implementing an API to access the services of the extension it has been chosen to
develop the extension in Java programming language.
The software components described in chapter 3 have been structured in different
ways.

37

4 – Implementation

4.1.2.1 Classifier structure

The Classifier component has been developed in the form of a Java standalone
application that runs a TimerTask which executes every 24 hours. This choice has
been made for several reasons which are:

• This component does not expose any UI.

• To apply the itinerary matching algorithm only a full day of data provides
enough information to rebuild the sequence of bus lines and stops followed by
the bus during the day.

• Not having access to the MQTT broker inhibits all real time processes.

4.1.2.2 Data visualizer structure

The data visualizer component has been developed in form of a Web Application.
This application is made with two main layers which are the data access layer and
the UI. The data access layer provides to the UI services to query the data in a
parametrized way. Since it is not possible to access directly the database chosen
for this software extension the data access layer provides classes that handle the
following responsibilities:

• Receive requests from the UI extracting the parameters to query the db.

• Build queries.

• Forward query to the db engine and pack the result to the UI.

The UI is structured as a one-page application, and it relies on JavaScript with
JQuery, Leaflet and D3 library to interact with the data access layer and build the
graphic representations.

4.1.2.3 Database engine

The choice of the database engine was less constrained from the existing system
and was driven mainly by two requirements.

• Support for geographical queries The itinerary matching algorithm re-
quires this capability for computing the D function.

• Performance The existing system daily output is very high so the itinerary
matching has to compute the results within 24 hours.

Among the possible choices there were two main solutions evaluated.
The two evaluated solutions were:

38

4 – Implementation

MongoDB NoSQL database engine, document oriented, which provides excellent
performance for simple queries and it supports some functions in the scope of
geographical queries.

PostgreSQL’s PostGIS extention PostgreSQL is a relation database engine which
has an extension called PostGIS that supports a great number of geographical
functions.

The final choice went over MongoDB for two main reasons:

• The performance in spatial queries of MongoDB is superior of a factor of 10
than PostGIS.

• MongoDB is also the database engine of the existing system, so in case of
future integration of the extension inside the existing system this choice is
more flexible for future developments.

The database engine that has been chosen serves has a double purpose which is
to store the results of the computation that is the stops table and be used as an
engine of computation when geographical querying capability is needed.

4.2 Classifier implementation
In this section it will be described the Classifier component which among the two
components has the role of analysing the data coming from existing system end-
points and add new values to the "StopsTable" persisted on the db.

4.2.1 Main loop
The Classifier component is implemented in the form of Java Timer Task executed
daily. The run method contains a for loop which performs a series of operations for
each couple router and devices’ sensor. As stated before, each bus is identified by
a unique code1 and in order to be analysed is necessary that this code is inserted
in a specific collection inside the DB.
The tasks performed in the main loop are the following

• acquiring data.

• preparing it for processing (build bus path and divide it in segments).

• apply ascent and descent analysis.

• apply itinerary matching algorithm.

1Router’s identifier of the router installed on the bus.

39

4 – Implementation

• join results.

• export data.

The following section will talk about the implementation of each operation.

4.2.2 Acquiring the data
The first process made from the Classifier component is the data acquisition.
The component has to acquire the data of all devices’ sensors and the bus line’s
paths’ data. This kind of data is available at two different data endpoints in JSON2

format and it can be accessed through HTTP3 GET requests.
Based on this, the component requires the capability of making HTTP requests.

4.2.2.1 Possible choices

In this section the possible solutions will be listed and analysed, some of them being
integrated with the core packages of Java and other being libraries.

HttpUrlConnection The HttpUrlConnection class allows performing basic HTTP
requests without the use of any additional libraries. All the classes that are
needed are contained in the java.net package. The disadvantages of using this
method are that the code can be more cumbersome than other HTTP libraries,
and it does not provide more advanced functionalities such as dedicated meth-
ods for adding headers, authentication, or serialisation mechanisms.

Retrofit Retrofit is a type-safe REST client for Android, Java and Kotlin devel-
oped by Square. The library provides a robust framework for authenticating
and interacting with APIs.
To use this framework is necessary first to define a Java Interface which resem-
bles the structure of the API. For every resource’s path it must be specified
the following information:

• resource path.
• return type.
• parameters, that can be passed through the url or as query parameters.

In figure 4.2 there is a simple example of how the mapping is performed.
Once the annotated Java Interface is defined it is possible to obtain a client
where each of its methods when called trigger an HTTP request.

2JavaScript Object Notation
3HyperText Transfer Protocol

40

4 – Implementation

URL url = new URL("http://example.com");
HttpURLConnection con = (HttpURLConnection) url.openConnection();
con.setRequestMethod("GET");
BufferedReader in = new BufferedReader(new

InputStreamReader(con.getInputStream()));
String inputLine;
StringBuffer content = new StringBuffer();
while ((inputLine = in.readLine()) != null) {

content.append(inputLine);
}
in.close();
con.disconnect();

Figure 4.1: Http request made using HttpUrlConnection.

public interface GitHubService {
@GET("users/{user}/repos")
Call<List<Repo>> listRepos(@Path("user") String user);

}
...
Retrofit retrofit = new Retrofit.Builder()

.baseUrl("https://api.github.com/")

.build();

GitHubService service = retrofit.create(GitHubService.class);
service.listRepos();

Figure 4.2: Retrofit library utilisation example.

4.2.2.2 Final choice

Among the possible choices for the HTTP client, it has been chosen to use Retrofit
library because of its flexibility. The context of the thesis is one of an evolving sys-
tem and Retrofit with its mapping between HTTP resources and Java Interfaces
allow easily to redefine the mapping thank to straightforward Java Annotations.
For querying the existing system Retrofit alone with interface mapping, it is suf-
ficient, for the bus line data API it has been implemented a class which performs
several requests and aggregates them in a single response. The need of aggregating
several requests together derives from the fact that the bus line data API can only
return information about a single line for each call.

41

4 – Implementation

4.2.3 Preprocessing input data
Once the data has been acquired, there is a preprocessing phase which builds the
data structure containing the path that a bus followed during the day in exam and
then subdivide it into meaningful segments.

4.2.3.1 Building the path

From the positions’ endpoint, it is possible to obtain the sequence of coordinates
of all the buses registered in the system in a given period. Since the analysis is
done considering one devices’ sensor at the time. Using the MyMoby website, it
is possible to observe that the bus starts the streaming of coordinates around 5’o
clock and sends a series of coordinates coming from the same point for a period that
can go up to one hour. Using the map on MyMoby the point were the coordinates
come from is the same point where the bus goes in its last moments of the day, so
logically it has to be the bus deposit. So to build an exact path this coordinates
must be excluded from the path. The solution to this problem comes from the
observation of the bus’s speed over time reported in the plots in figure 4.3. The
commonly observed behaviour is that the bus stays at 0 m/s for at least an hour
and then after the first acceleration it starts its path. The time’s instant when this
happens is meaningful because it defines the lower bound of the interval of validity
for both itinerary matching and ascent and decent analysis.

4.2.3.2 Bus path segmentation

After the bus path is built then is necessary to divide it in segments where probably
the bus is following only one itinerary of a bus line. This operation is fundamental
to reduce the effects of internal and external aliasing, so multiple solutions where
considered:

Divide the path in timeslots This approach is based on estimating the average
trip time the bus takes to complete an itinerary and divide the sequence of
coordinates into adjacent intervals of values having temporal width equal to
the average trip time. The affability of this method depends mostly on making
a good estimation of the average trip time.

Consider the variation of velocity overtime The velocity is a good indicator
of the behaviour of the bus, so it can also be used to produce segments. The
velocity graph considered in an interval where the bus is following an itinerary
presents small periods where the bus velocity is equal to 0, it is reasonable to
think that these intervals are breaks that the bus takes when it reaches the
last stop of an itinerary.
The two main limitations to this method are that the bus can have this be-
haviour also in situations of high traffic queue or sometimes it may happen

42

4 – Implementation

170 180 190 200 2100

5

10

20

Time instant’s index

Ve
lo
ci
ty

m
/s

(a) 10/07/2018 from 5:00 to 6:00

170 180 190 200 2100

5

10

20

Time instant’s index

Ve
lo
ci
ty

m
/s

(b) 11/07/2018 from 5:00 to 6:00

Figure 4.3: Plots of the speed of the bus in two different days.

that a bus does not do a break between two itineraries. The events described
cause in the first case to create too many segments with low width and the
second case generates few segments with huge width.
In figure 4.4 an example that has been verified using the MyMoby portal.

The final choice went in favour of the first approach because even the speed’s anal-
ysis yields better result only when the limitations stated above are not happening.
Instead, the first approach gives good results more consistently.

43

4 – Implementation

350 360 370 380 390 4000

5

10

Time instant’s index

Ve
lo
ci
ty

m
/s

Figure 4.4: Example of a case where the bus is waiting at the last stop before
starting a new itinerary.

4.2.4 Device analysis implementation
The device analysis, recalling 3.3.2.1, is divided in two main operations:

• filtering.

• determining ascent and descent time for each valid device.

Those two operations are implemented in the FilterJob class which implements the
Callable interface. The Callable interface allows to define objects of which code can
be run on a separate thread, but contrary to the Runnable interface4, the result
of the computation can be accessed once the execution of the Callable object is
terminated. The execution of any thread trying to access the result of the Callable
before the result is available will be blocked until the result is available. The choice
of using the callable interfaces comes from the fact that the devices’ analysis can be
executed in parallel of the itinerary matching. Although the system is predisposed
for multi-threading in the current implementation it is not used.

4.2.4.1 Device filtering

The device filtering consists in first classifying the device under one of the categories
introduced in 3.3.2.2 and then removing from the device list, obtained through the
device endpoint, all the devices not falling under the classification of "User device

4Typical method to define a code which can be executed on a separate thread.

44

4 – Implementation

on board".

4.2.4.2 Common patterns

To implement the solution the MyMoby portal has been used to observe the devices
and highlight the common patterns.
Figures 4.5, 4.6, and 4.7 show the most common patterns for the devices. Observing
figure 4.6, it is safe to say that this device belongs to a person due to the variable
positions overtime and the fact that is possible, zooming on the map, to pinpoint
the ascent stop and the descent stop.
The device shown in 4.7 has the exact opposite behaviour, all the coordinates
where it has been detected concentrate in a point and observing the time bar, on
MyMoby UI, the detection happens periodically implying that is probably a device
not belonging to a human, probably an IP camera. In figure 4.5 it is reported the
temporal behaviour of a non human belonging device.

Figure 4.5: Behaviour of a device not belonging to a human.

Another typical pattern is the detection of devices in the first hours of the day
while the bus is standing still at the deposit, probably these detections come from
people working at the deposit passing by the bus.
The device list comes from the endpoint ordered by ascending time instants, but
to filter, it must be reordered to group detections coming from the same device.

4.2.4.3 Grouped devices

Contrary to the abstract representation of the devices shown in 3.3, the devices’
endpoint return groups of devices’ detections which have been detected in very short
periods (< 20s). Among the fields which have not been introduced yet, there is the
"counter" field which indicates how many detections the group contains. This field
is quite useful because it can be used to determine the total amount of detections for
each device, allowing to filter the ones having not enough detections. A threshold
value, that can be customized in the configuration, indicates the minimum number

45

4 – Implementation

Figure 4.6: Device detection probably coming from an user device.

Figure 4.7: Device detection probably coming from a fixed IP device.

46

4 – Implementation

of detection required for each device. In figure 4.8 is reported the structure of a
group of device detections.

{
"_id": "5b7aaa459daec200018f68b0",
"router": "861107035440552",
"globalMacAddress": null,
"localMacAddresses": [...],
"footprints": [...],
"ssids": [...],
"rssis": [...],
"timestamps": [...],
"points": [...],
"counter": 46,
"expired": true,
"startTime": 1528224555000,
"endTime": 1528225984000,
"duration": 1429000

}

Figure 4.8: Structure of a list element returned by the devices endpoint.

Based on what explained so far the implemented filtering steps are:

• Filter from the list all grouped devices having as first time instant an instant
lesser than the first valid time instant of the built bus path.

• Sort the device list by their MAC5 address.

• Group together the devices.

• Classify each group, applying the following rules.

– Get the total number of device’s detections, removing groups having a
total lesser than the threshold value.

– Calculate the central point among all devices belonging to a group, re-
moving groups having their points all concentrated within a radius from
the centre point. The radius can be customised in the configuration.

– Calculate the period of stay of the device on the bus, removing the group
if it has been on the bus for a time higher than a threshold value defined
in the configuration. This value should be set to have a value greater or

5Medium Access Control

47

4 – Implementation

equal to the average bus driver’s shift time, which can be deducted from
the MyMoby portal.

After this steps, the device list will be made only out of devices with a high prob-
ability of belonging to an individual and so the ascent and descent analysis can
begin.

4.2.4.4 Ascent and descent analysis

To affirm that a device entered the bus at a given time instant and left it in another
is necessary to identify the period where the devices’ sensor detected the device
with continuity. The temporal distribution of a device is not continuous because
composed by a set of isolated points, so an approximation has been taken and it has
been defined when two detections’ group are contiguous. What has been decided
is that if two points have a temporal distance lower than a given threshold, then
they are contiguous. The threshold can be defined in the configuration. All the
time instants belonging to a group of device’s detections6 are considered already
contiguous, so the analysis focuses on checking continuity among a series of groups
of detections of the same device.
Having defined the temporal continuity is possible to explain the implementation
of the algorithm.
In figure 4.9 the code is reported. The main idea behind this algorithm is that two
time instants have to be selected to form an interval representing the period where
the device was probably on the bus.
So at the first iteration left and right extreme are coincident then in the next
iterations the right extreme is confronted with the first time instant of another
group of detections to see if they are contiguous. In case two groups are contiguous,
the time window is enlarged otherwise the two extremes of the time window are
added to a list which collects all intervals of continuous detection. This list will
contain an even number of elements, where the even indexed elements represent
ascent times and odd indexed elements represent the descent times. Each pair of
extremes will be enclosed in the "Variation" class, introduced in 3.3.2.3, and a list
of them will be built, allowing to calculate the number of devices present on the
bus at any instant of time by summing all variations up to the instant of time of
interest.

4.2.5 Itinerary Matching
This section will talk about the itinerary matching algorithm which required the
most effort to implement, tune and improve. First, the general implementation will
be discussed, and then the choices that improved the algorithm will be highlighted.

6Device list’s element returned by the device endpoint.

48

4 – Implementation

List<Long> extremes = new ArrayList<Long>();
for (int i = 0; i < currentGroup.size(); i++) {

// time window begin
Long newTimeInstant = currentGroup.get(i).getStartTime();
if (rightExtreme == null) {

leftExtreme = currentGroup.get(i).getStartTime();
rightExtreme = currentGroup.get(i).getEndTime();
continue;

}
// enlarging process
if (Math.abs(rightExtreme - newTimeInstant) <

CONTINUITY_THRESHOLD) {
rightExtreme = newTimeInstant;

} else {
// end of continuity add points to the set of extremes
extremes.add(leftExtreme);
extremes.add(rightExtreme);
leftExtreme = null;
rightExtreme = null;
i--;

}
}

Figure 4.9: Code for the enlarging time window.

4.2.5.1 Algorithm overview

The itinerary matching algorithm is applied to each segment, and it consists of an
initialisation part where the 3.15 and an object able to interact with MongoDB to
perform geographic queries are instantiated. To initialise the line probability object
is necessary to have the data of all bus lines which the bus currently in the exam
can follow. Since there is no way of automatically infer which lines a bus can follow
a manual mapping has been performed on the database associating to each router’s
ID7 a set of line identifiers. In figure 4.10 it is shown an example of a MongoDB
document containing this mapping.
The line probability object is initialised by associating to each couple line-itinerary
an initial probability and what is defined as a sequence number.
The initial probability is either 0 or a high probability (> 0.7) if the itinerary was
the result of the previous segment classification.
After the initialisation part is over, the operation that has to be performed is to

7The router is installed in the same bus as the devices’ sensor.

49

4 – Implementation

Figure 4.10: Mapping between a router ID and a sequence of bus line identifiers.
On top is specified the router ID while on the bottom there is the sequence of line
ids.

confront the path the bus has followed with all the possible itineraries using the
mathematical model introduced in 3.3.2.7. In practice for every coordinate, that
will be referred as time point in this section, of the bus path three operations are
made:

1. copy the time instant of the point inside the line probability object, this has
the utility of keeping a global reference to which time instant is being analysed.

2. using the current time point update the probability of being on each possible
itinerary, applying the D function and checking that the bus is following the
bus stops sequence for the itineraries having high probability.

3. select the itinerary having the highest priority as the best itinerary for the time
instant. This operation will come into action later when the classification of
the segment has to be calculated.

There is a particular case that allows determining right away which is the classi-
fication of the segment and that is when, after having calculated the probability

50

4 – Implementation

associated to each itinerary, only one itinerary has a high probability associated.
This case happens when the bus follows a road which is unique to a single itinerary.

4.2.5.2 P function implementation

The calculation of the probability associated to each itinerary requires the com-
putation of the P function which is dependent on the D function which requires
locating the closest point for each itinerary path to the current time point.
Since searching the minimum distance between the current time point and each
point of each itinerary is computationally expensive if naively done, this function-
ality has been implemented using MongoDB geographical query capability.
The approach consists in loading all points of the itinerary in a MongoDB’s collec-
tion having as an identifier the itinerary identifier and as structure of each document
equal to the one shown in figure 4.11. Also each collection needs to be geographical
indexed, meaning that it must be built a "2dsphere" geographical index which if
defined allows sending geographical queries to a collection. The geographical index
can be created programmatically.
Once an itinerary is loaded inside the database, it will be reused for all future
queries. At the moment there is no functionality checking the consistency of the
itinerary loaded on the database with the ones returned by the transport society
API.
Every time the D function matches a point causing the probability associated to
the itinerary to go above a small constant Ô then the next queries will start their
matching from a subset of the points belonging to an itinerary. The first point
of the will have as lower bound the index of the previously matched point and as
upper bound the last point of the itinerary’s path. If the probability for a given
itinerary becomes high (>0.7) then the probability will be altered as defined in
3.3.2.12.
After the P function has been calculated for all itineraries, the line and itinerary
identifiers are saved to a list indicating for each time instant which is the itinerary
having the highest probability. This list will be used to classify the segment by
calculating the occurrence of each couple line-itinerary and the couple having the
highest frequency will be the result of the classification.
The result of the classification is enclosed in the segment classification class intro-
duced in 3.3.2.6.

4.2.5.3 Loading an itinerary on MongoDB

The data describing the path of an itinerary is a list of coordinates indicating the
vertices of straight lines. If these vertices are joined in order the resulting poly-
line would coincide to the first and last bus stop of the itinerary if the polyline is
positioned with the first and last vertex coincident to the first and last bus stop.
The vertex information is insufficient to perform the itinerary matching since two

51

4 – Implementation

Figure 4.11: Representation of a itinerary’s point inside MongoDB.

vertices can be put at an high distance in case the bus path includes a long straight
road.
To overcome this problem when the itinerary is loaded inside MongoDB not only
the vertex are loaded, but also all the points belonging to the geographical line
interpolation between each pair of adjacent vertices.
To avoid approximating this problem to a plane problem it has been used a library
called "GeographicLib" which is capable of performing coordinate interpolation be-
tween two geographical coordinates. The interpolation logic has been wrapped
inside a class called "GeoInterpolator" that given in input two geographical points
can return all points belonging to the line that connects them using the capabili-
ties of the library mentioned before. The "GeoInterpolator" class is structured as a
Iterator, so it implements the .hasNext() and .next() methods.
In figure 4.12 the principle on how to use the library to get the point belonging to
the line interpolation of the two geographical vertexes using a parameter "t". This

Double t = 0.5;
Geodesic geod = Geodesic.WGS84;
GeodesicLine line = geod.InverseLine(lat1, lng1, lat2, lng2,

GeodesicMask.DISTANCE_IN |GeodesicMask.LATITUDE |
GeodesicMask.LONGITUDE);

GeodesicData g = line.Position(distance * t,
GeodesicMask.LATITUDE | GeodesicMask.LONGITUDE);

return new GeoPoint(g.lat1, g.lon2);

Figure 4.12: Example of use of the "GeographicLib" to select the middle point of
the line connecting the first point (lat1, lng1) and the second point(lat2, lng2).

parameter can have values in the interval [0, 1] and allows to select any unique point
of the line. In order to obtain a meaningful sequence of points representing the line
connecting the two vertices, the parameter will be initialised at 0 and each .next()
call, in the interpolator, it will be incremented by a specific value called step. The

52

4 – Implementation

step is defined as 1
N

where N is the number of points the interpolator can return
between the two vertices. The parameter N can be defined through configuration.
The procedure of loading the itinerary inside a collection inside MongoDB is done
uniquely when in the DB there is no collection having as an identifier the itinerary
identifier.

4.2.5.4 Use classification to determine stop sequence

Once all segments are classified the stops table for the sensor and date in exam can
be finally generated. The information about the classification about each segment
is used to produce the sequence of bus stops the bus passed by during the day as
explained in 3.3.2.12.

4.2.5.5 Optimization

The use of MongoDB for the calculation of the D function speeds up the process
of calculating the probability associated to the itinerary for each time instant, but
since the high volume of time instants, other improvements have been made to the
algorithm.

1. Access time to line probability data structure.

2. Calculation of best couple line-itinerary of the time instant.

The "LineProbability" class is composed of five arrays where elements having the
same index are correlated between them. In figure 4.13 the actual declaration.
The arrays are filled in the same order on which the iteration of all possible bus

private int[] lineIds;
private int[] itineraryIds;
private double[] probabilities;
private int[] coordinateSequenceNumber;
private Stop[] nextStops;

Figure 4.13: Data structure used in the "LineProbability" class.

line data’s itineraries would be done. Doing this allows to the method calculating
the probability for each time point of the segment to access this structure using a
manually incremented index allowing for direct access to the structure.
The second optimization consist in calculating the maximum value of probability
every time the "LineProbability" object is updated. The optimization consist in
keeping a reference to the maximum value of probability in all moments so that
when a new value of probability is sent to the object then it can be immediately

53

4 – Implementation

confronted with the maximum value, updating it in case the new value is greater
than the max.

4.2.6 Metric computation and storage
The previous sections introduced the device analysis and the itinerary matching
implementation. This section will explain how their results are joined together to
obtain the line’s utilization.

4.2.6.1 Interval of validity

After having executed the algorithms of itinerary matching and ascent and descent
analysis, the "StopsTable" contains the sequence of all bus stop the bus passed by
during the day, but not all of them are valid.
Observing the MyMoby portal a pattern came out where the bus was seen in
motion for the whole day, but no devices were detected in that period. It is not
clear whether it is due to a system fault or the bus is empty. In any case this
event influences negatively the average number of devices on board, so it has been
decided to build an interval of validity defined from the time instant composed by
the time instant of the first detection8 and the last time instant. Every entry in
the "StopsTable" being temporally out of this interval will be removed from the
"StopsTable". The metric will be computed only on the interval of validity. In
figure 4.14 an example shows, that the first devices heard during the day are not
accounted.

Figure 4.14: Interval of validity where the metric will be calculated.

4.2.6.2 Storing the result

After that, the metric is computed on every valid entry of the "StopsTable" the
result has to be stored on the DB. It has been decided to create a collection on
MongoDB for each line and put inside the entries of the stops table referring to
itineraries belonging to the line. This choice has been made, so that is possible to
compute two information:

8In the set of devices belonging to users.

54

4 – Implementation

• overall usage of the line.

• usage of an itinerary, considering only the stops table entries coming from that
itinerary.

In figure 4.15 the structure of the document of a StopsTable’s entry.

Figure 4.15: StopsTable entry in the db.

4.2.7 Configuration
In the previous sections, the implementation of the main algorithm has been dis-
cussed without going into the details of the configuration of them that instead will
be discussed in this section.
Since the Classifier relies for most of its need on having an instance of MongoDB
running, it has been decided to deploy the configuration in a collection on the DB.
From the application perspective, the access is wrapped by a singleton class called
"Config". This class when invoked can have two possible behaviours:

55

4 – Implementation

1. if the collection containing the parameters is not found on the MongoDB node
at which the application is connected, then it will create a collection deploying
a set of key-values containing the default values of the parameters, and then
return the default value for the key that has been asked.

2. otherwise it will load the parameter from the database.

After that the default values are loaded in the DB, is possible to modify them
accessing and updating the table with any MongoDB client.
In the table 4.1 are reported all the parameters name along with a description and
default value.

4.3 Data visualizer
In this section, it will be presented the implementation of the data visualizer com-
ponent. Recalling 3.3.3 the primary operations performed by this component are:

• Query the data with some parameters.

• Aggregate the retrieved data.

• Build the graphic representation.

This component, as stated before, has a graphical interface and is implemented as
a one-page application and it is divided logically in UI and data access layer.

4.3.1 UI
The UI consist of an HTML page that is dynamically updated using JavaScript
and its capability of making asynchronous HTTP requests which are forwarded to
the data access layer of this component.
The UI can be divided into 3 logical sections:

• Parameters selection: includes a series of inputs to be provided as query
parameters for the data access layer. The possible parameters are:

– Line identifier.
– Itinerary identifier.
– Time of the day.
– Time period in which calculate the metric.

The period is composed by a starting and ending date in which calculate the
metric. Tuning the values of start and end date is possible to obtain three
particular views on the metric.

56

4 – Implementation

1. Start date = end date -> daily average, useful mostly for system compo-
nents validation.

2. Start date < end date -> metric in a certain period, useful to focus on
specific events like school beginning or specific seasons.

3. Start date and end date not specified -> all time average utilization of the
itinerary.

• Stops’ graph: section of the UI where is displayed the first form of graph in
which the metric can be visualized.
Figure 4.16.

• Map: a map where the projection of the graph of the bus stops is displayed.
In the projection the graph nodes are positioned on the bus stops’ coordinates
of the bus stops they represent.
Figure 4.17.

In order to update the map and graph section, forward requests to the data
access layer several scripts written with JavaScript have been implemented and
added to the page. Following it is a list of all the scripts implemented:

• init.js: In this file are defined the implementation of each event handler to
the interactive components on the UI, and at page startup it is called the data
access layer to get the meta-data of the system which consists in the list of all
line identifiers known to the system.

• data.js: This script handles the validation of the input parameters and it
contains the logic to make requests to the data access layer and format the
response to be processed by the others scripts that builds the graph. The
requests to the access layer are made using JQuery’s ajax method.

• mapScript.js: In this script is defined the logic to handle the map section,
calling the methods of the Leaflet library for web map handling. This library
will be described in later sections.

• nodeLinker.js: This script handles the creation of the itinerary utilisation
graph, in order to create a graphic representation the script relies on the
methods of the D3 library.

Two of the listed scripts rely on JavaScript libraries so in the following section
the libraries will be introduced and it will be presented how their functionality has
been used to implement the required features.

57

4 – Implementation

Figure 4.16: Graph showing the metric between 3 bus stops.
.

4.3.1.1 D3 Library

D3 (Data-Driven Documents or D3.js) is a JavaScript library for visualising data
using web standards. D3 helps bring data to life using SVG, Canvas and HTML.
D3 combines powerful visualisation and interaction techniques with a data-driven
approach to DOM manipulation.
D3 employs a declarative approach, operating on arbitrary sets of nodes called
selections; numerous methods for mutating nodes: setting attributes or styles; reg-
istering event listeners; adding, removing or sorting nodes; and changing HTML or
text content are provided by the library. Styles and attributes can also be modified
dynamically depending on the value of the data that can be associated with an
element. This operation is called data binding, and it consists of associating to
each select an object of data to use to compute the properties and the attributes
of each node selected. In the next figure is shown an example of how is possible to
modify the property "font-size" depending on the data associated to the nodes "p".
This library is often used for the generation and update of SVG9 elements. SVG
is a way to render graphical elements and images in the DOM. In the following
example it is shown how to add an rectangle element to an SVG container.

Used functionalities Using the dynamic properties to bound data of D3 library
is possible to draw the first typology of the introduced graphs. First, it has been
developed a data structure that holds the information needed for the graphic rep-
resentation called Node (fig 4.20). Each Node represents a bus stop belonging to

9Scalable Vector Graphics

58

4 – Implementation

Figure 4.17: Map section of the UI.

d3.selectAll("p")
.data([4, 8, 15, 16, 23, 42])
.style("font-size", function(d) { return d + "px"; });

Figure 4.18: Dinamic transformation of the font-size of several paragraph depending
on the data bound to the paragraphs.

59

4 – Implementation

//Select SVG element
var svg = d3.select(’svg’);
//Create rectangle element inside SVG
svg.append(’rect’)
.attr(’x’, 50)
.attr(’y’, 50)
.attr(’width’, 200)
.attr(’height’, 100)
.attr(’fill’, ’green’);

Figure 4.19: Creating a rectangle SVG element using D3 library.

an itinerary, and a set of them is built for every stop belonging to an itinerary that
has to be drawn. The set of Node objects is bound to a sequence of SVG elements

Node = function (id, nodeName, numOfDevices, coordinates) {
this.stopId = id;
this.name = nodeName; // bus stop Name
this.numOfDevices = numOfDevices; // average number of device at

the stop
this.coordinates = coordinates; // coordinates of the bus stop

};

Figure 4.20: Node data structure.

of type ’circle’ and ’line’. Assuming the set of Node has cardinality N then the code
implemented will create N circle elements and N-1 lines. Once the elements have
been created, then their attributes are modified to create the graphical represen-
tation. Following there is the list of attributes set for each element and how they
contribute to the graphical representation.

circle The circle element have to be disposed in an increasing distance from the
origin of the representation basing on their position in the sequence. Following
there is the list of attributes to obtain this effect assuming vertical representa-
tion, "cy0" vertical offset to the origin, "i" index of the node in node sequence,
and "l" length of the line connecting two circles:

• cy (center’s y coordinate): cy0 + i ∗ (l + 2 ∗ r)
• cx (center’s x coordinate): Constant value A
• r (radius): Any value

60

4 – Implementation

line The line elements must connect each pair of graph’s node with a variable line
stroke’s width. Assuming "r" as radius of a circle element.

• x1 (first vertex’s x’s coordinate): Constant value A
• x2 (second vertex’s x’s coordinate): Constant value A
• y1 (first vertex’s y’s coordinate): (2 ∗ r ∗ l) ∗ i + cy0 + r

• y2 (second vertex’s y’s coordinate): (2 ∗ r ∗ l) ∗ i + cy0 + r + l

• stroke-width: mapNumberOfDeviceThicknessFunction()

The stroke width attribute is dependent from a function which can not be ex-
pressed as a mathematical formula but requires some explanation. D3 library pro-
vides a set of helpers function to work with sets of data. One of them is the scale
function which can map values in an interval to values inside another interval.
In this case, it is used to map the interval composed by the [numOfDevicesmin,
numOfDevicesmax] to the one [1, 15] representing the stroke width.

4.3.1.2 Leaflet library

Leaflet is a widely used open source JavaScript library used to build web mapping
applications. First released in 2011, it supports most mobile and desktop platforms,
supporting HTML5 and CSS3. Along with OpenLayers, and the Google Maps API,
it is one of the most popular JavaScript mapping libraries and is used by major
websites such as FourSquare, Pinterest and Flickr. An example of basic usage of
Leaflet is shown in figure 4.21.

var map = L.map(’mapdiv’, {
center: [51.505, -0.09],
zoom: 13

});
L.tileLayer(

’https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png’, {
attribution: ’Map data © OpenStreetMap
contributors, ’,

maxZoom: 20
}

).addTo(map);

Figure 4.21: Creation of a Leaflet’s map object and introduction of a tile layer
coming from OpenStreetMap. This operation will display a map in a div having as
id ’mapdiv’.

61

4 – Implementation

Leaflet exposes a series of primitives that can be used to draw vectors graphics
layers on top of the map. Following there is the description (taken from Leaflet
documentation) of some functions used in this thesis work to draw this kind of
layer:

• L.circle([lat, lng], options): Instantiates a circle object given a geographical
point, and an options object which contains the circle radius.

• L.polyline([latLng1, ..., latLngN], options): Instantiates a polyline object given
an array of geographical points and optionally an options object. In the options
is possible to specify also the width of the line.

Those primitives allow the drawing of circles and lines over imposed on a map
thus enabling the projection of the stops’ graph on the map. The data structure
used it is still the set of Node objects introduced before. To draw the stops is
sufficient to access the coordinates’ field of a Node and pass it as the first argument
of the L.circle primitive. Following is reported the function that draws a circle on
the map based on the stop position.
To draw the polyline connecting two stops is necessary to provide also the vertex

var createStopCircle = function (node) {
var coordinates = node.getCoordinates();
var circle = L.circle([coordinates.lat, coordinates.lon], {

color: config.color,
fillColor: config.fillColor,
fillOpacity: config.fillOpacity,
radius: config.radius

}).addTo(map);
self.stops.push(circle);

};

Figure 4.22: Function to represent a bus stop on the graph.

list of each straight line composing the path. This information is contained in the
Geometries field of an itinerary.
The full path connecting the first stop the last one can be drawn following this
steps:

• iterate on all Node objects

– for each Node recover the associated Geometry object, which is the series
of coordinates that lead to the next stop, from the bus line data of the
itinerary.

62

4 – Implementation

– use D3 Scale function to get the width associated to the Node’s number
of devices.

– call function reported in figure 4.23.

var drawPolyLine = function (geometry, lineWidth) {
if (geometry) {

var coordinatesList = geometry.Geometry[0].coordinates;
var latLngs = [];
for (var i = 0; i < coordinatesList.length; i++) {

var coord = coordinatesList[i];
latLngs.push(new L.LatLng(coord[1], coord[0]));

}
var polyline = L.polyline(latLngs, {

color: "red",
weight: lineWidth

}).addTo(map);
}

};

Figure 4.23: Function to draw the path connecting two stops on the map.

4.3.2 Data access layer
Since the UI cannot access directly the data stored on MongoDB, it has been
decided to implement a layer accessible through AJAX requests capable of querying
the database. Data’s endpoints have been implemented and the UI can send HTTP
requests to get the needed data. The endpoints implemented are two, which alone
are capable of satisfying the requirements needed for the UI. They are explained in
the following list:

• /stopTable: This data endpoint returns to the UI an aggregation of stops
table’s entries belonging to a specific itinerary of a bus line and the transport
society data about the line in case it is needed for additional processing. The
request’s parameters restrict the aggregation to specific periods of time.

• /lineIds: To access the stops table is mandatory to send in the body of the
request a bus line identifier, so this endpoint returns all possible identifiers
that can be queried.

These endpoints have been developed using Java Servlets which are Java Objects
which are associated with a web resource, and their code is executed to process all

63

4 – Implementation

the HTTP requests sent to them.
The implementation of the endpoint returning the identifiers of the bus lines is
elementary, and it consists in connecting to the database and reading the name
of the collections where stops table entries are stored and then packing this list of
strings in JSON Array.
The implementation of the other endpoint requires more explanation as more op-
erations are done.
The operations performed by the second endpoint are:

• validate request parameters.

• submit an aggregation query to MongoDB.

• perform a HTTP get request to the transport society endpoint to get the data
of the request line.

• pack the result of the two previous operations in one JSON response.

Aggregation The operation of aggregation is done using MongoDB’s Java Driver
aggregation functions which need the programmer to define two phases: the match
and group phases. The matching phase consists into specify a filter to select a set
of documents on which the aggregation should be computed. In this phase the
parameters about the period and the hour of the day are used to match a specific
set of table’s entries. The matched entries are then sent to the group phase where
they are groups are formed identified by the pair itinerary and stop identifiers, and
for each group, the average of the number of devices is then calculated. In figure
4.24 it is reported an example of MongoDB’s aggregation function.

aggregationQuery = Arrays.asList(
match(// matching phase select the set of documents to aggregate

and(
gte(HOUR_OF_DAY_MONGODB_FIELD_NAME, startHour),
lte(HOUR_OF_DAY_MONGODB_FIELD_NAME, endHour))),

group(// group and aggregate
and(

eq("itinerary_id",
"$itinerary_id"),
eq("stop_id",
"$stop.id")),
avg("num_of_devices_onboard",
"$num_of_devices_onboard")));

Figure 4.24: MongoDB aggregation syntax example.

64

4 – Implementation

The results of the aggregation and of the HTTP request to the bus line data’s
endpoint are joined in a JSON containing two fields: lineData and stopStatistics.
This object is sent as a response to any valid HTTP request. The UI will use it to
build its graphic representations.

65

4 – Implementation

Parameter Name Description Default Value

DECREMENT
Indicates the number of days
before the current one where
to select data to analyse.

-1

LINE_PROBABILITY_
THRESHOLD

Threshold value above which
a probability is considered to
have an high value

0.7

ITINERARY_MATCHER_
RESET_TIME

Time difference between two
positions above which the
LineProbability object is re-
set.

1h

BUS_PATH_SEGMENT_
START_HOUR

Indicates the first time instant
where both positions and de-
vice are considered valid.

5h

P_FUNCTION_A_
PARAMETER

Weight parameter ’a’ used in
the P function. 0.9

MONGODB_ITINERARY_
MATCHER_
INTERPOLATION_POINTS

Number of points generated
by the GeoInterpolator when
loading an itinerary the db.

50

MONGODB_ITINERARY_
MATCHER_MATCH_
DISTANCE

Maximum distance of match-
ing when confronting a point
to all points constituting an
itinerary in the D function
calculation

50.0m

MONGODB_ITINERARY_
MATCHER_STOP_MATCH
_DISTANCE

Maximum distance of match-
ing when finding the nearest
stop to a point in the stop se-
quence matching algorithm.

20

MAX_DISTANCE_
BETWEEN_TIME_
INTERVALS

Maximum allowed period of
stay device on board, any de-
vice staying longer is filtered
away in device filtering algo-
rithm.

3h

MIN_RELEVATIONS

Minimum number of device
detections needed to consider
a group of device detections
valid.

2

NEARBY_RADIUS
Radius of a circle where all
points included in the circle
are considered concentrated.

20.0m

CONTINUITY
_THRESHOLD

Time duration indicating un-
der what time difference two
device detections are consid-
ered continuous in the ascent
descent analysis.

20min

Table 4.1: Configuration parameters for the Classifier component.

66

Chapter 5

Results

This chapter will talk about the validation of the work which has been done de-
scribing the details of the methods followed and the error rate on the classifiers
implemented.

5.1 Requirement validation
In this section all the requirements will be validated one by one, enunciating the val-
idation method followed by the error rate obtained following the validation method.

5.1.1 R1 - Device Filtering
This requirement refers to what is explained in 3.3.2.2, that is the fact that not all
the device’s detection belongs to devices owned by people.
The validation of this requirement consist in making the system output for each
device, detected on a given date, its identifier coupled with its classification. All the
results of classification are then confronted with the behaviour of the devices on the
MyMoby portal (time distribution, positions occupied). The use of the portal to
validate the classification consist in identifying the pattern, for each device, looking
at the patters presented in 4.2.4.2.
The console of the browser is exploited to run a simple JQuery instruction which
immediately displays the positions of a device if this is present in the device list on
the UI. This instruction speeds up very much the process of validation.
In figure 5.1 it is shown the command.

$("#deviceList").val("<idenfitier-to-search>").change()

Figure 5.1: Quick search on MyMoby devices’ list.

67

5 – Results

Following an example of the validation it is reported.
In figure 5.2 it is shown the classification result of the filter. Using the JQuery

Figure 5.2: Console’s output of the filter.

comand on the identifiers in the list produced it is possible to see very quickly their
behaviour on map and determine if the classification was correct or wrong. In this
example the classification was correct for all devices.
In figure 5.3 and 5.4 it is shown the behaviour of the first two devices in the list
shown in 5.2.

Figure 5.3: Device belonging to an human.

5.1.1.1 Error rate

The application of the validation method described before allows calculating the
number of devices classified. In figure 5.5 it is shown the error on classification

68

5 – Results

Figure 5.4: Device not belonging to an human, probably filtered because all its
detections are concentrated at the end of a road.

calculated on each date of the month having the highest number of device detections
since the system is running showing an average error rate equal to 9.13% with a
variance equal to 0.11%. Since the validation method is time-consuming, because
it relies on manual verification, it has not been possible to calculate the average
error rate on all days available since the system is running which are more than
150.

5.1.2 R2 - Path classification
This requirement to be validated requires much effort due to the complexity of
the problem, so the validation method used is manual and relies on sight. As
done before, the system has been modified to output a string representation of the
"StopsTable" composed by a set of lines each one indicating entry, and for each line,
the fields showed is:

• Line identifier.

• Itinerary identifier.

• Bus stop name.

• Date time of arrival.

69

5 – Results

1 5 10 15 20 25 300
10
20
30
40
50
60
70
80
90

100

Day of the month

Er
ro
r
%

Figure 5.5: Chart showing the error rate on the device classification in the time
period corresponding to a month of detections.

The output of the system allows to identify the periods of time where the bus was
serving each line. The series of pairs of time instants defining an interval of time
where the bus was serving a line is the starting point for the validation. In figure 5.6
the structure of the validation list (JSON representation is used for convenience):

[
{

interval: [t0, t1],
lineIdentifier: 1024

},
{

interval: [t1, t2],
lineIdentifier: 1023

},...
]

Figure 5.6: Validation data structure for itinerary matching.

After having build the intervals showing at which time the bus was serving a
line, the MyMoby portal is used to see the path the bus did starting from the first
time instant of the interval to the last time instant. At this point the path saw on
the MyMoby portal has to be confronted with the actual path of the bus. Fortu-
nately the transport society has a web site where is possible to see a map showing

70

5 – Results

the geometry of the itineraries the bus follows for each line. The map is shown in
figure 5.7. Confronting the actual bus path with the one observed on the MyMoby

Figure 5.7: Graphical user interface of the website of the transport society used to
validate the itinerary matching algorithm.

portal allows to say if an interval is correctly classified.

5.1.2.1 Error rate

For itinerary matching the evaluation of the Classifier is even harder because con-
fronting two paths by sight is a time consuming processes. So the error rate has
been calculated over a small period of two weeks from Monday to Monday.

The chart in figure 5.8 shows interesting things:

• The weekends present a lower error rate, this is probably due the fact that
during the weekends the bus rides are limited and so the bus with the sensors
on board was not used very much.

• There is a slight difference between the first week and the second week. Observ-
ing the path followed by the bus the problems of aliasing described in 3.3.2.10
where higher in respect to the second one. From all of this it is possible to
deduce that aliasing has an high impact on itinerary matching correctness.

On the validation set chosen the average error rate is of the 15% with a variance of
0.59%.

71

5 – Results

1 5 10 140
10
20
30
40
50
60
70
80
90

100

Day of the month

Er
ro
r
%

Figure 5.8: Chart showing the error rate on itinerary matching in the time period
corresponding to two weeks.

5.1.3 R3 - Data aggregation
This requirement can be validated in a similar way as the ones discussed before
using MyMoby portal and modifying the system to make a specific output, called
validation list, just for the validation. The number of devices on the bus at each
time depends mostly from the output of the ascent and descent analysis, so to val-
idate and calculate the error that algorithm has to be validated.
The validation consist in modifying system output to print a list of lines telling the
time of ascent and the time of descent. This list containing identifier, ascent and
descent time will be compared with the behaviour of the device on the MyMoby
portal. The JQuery instruction used in 5.1.1 can be reused also in this case to
quickly search device in the device list. The validation method consist in checking
that the initial and ending start point of the path that a device has made are nearby
the stops which are associated to the ascent and descent time. This procedure has
to be repeated for each device in the validation list.

5.1.3.1 Error rate

For this requirement it hasn’t been done any statistical evaluation since the per-
formance of the data aggregation are strictly related to the output of the device
filtering that in most majority of cases produces devices’ detection groups having
time instants close together producing always a couple of "Variation". Furthermore,
the validation of this requirement does not provide certainties about the fact that

72

5 – Results

the device actually left the bus at the time stated by the system for two main rea-
sons which are that the device could have turned off or the person moved away in
a zone of the bus where the sensors can barely catch the signals coming from the
Wi-Fi.

5.1.4 R4 - Readability
This requirement does not require to be validated because it is satisfied already
with its implementation. Since the requirement states only that the representation
should be human readable. In the context of the thesis which is a proof of concept
the requirement does not contain any additional constraints, so it can be considered
satisfied.

73

Chapter 6

Conclusion

This thesis work was aimed at extending a software system of passive device de-
tection of devices on board of the bus which had capabilities of just collecting and
show the data detected from the bus, but not to extrapolate any further statistic
out of it.
The extension consisted in extrapolating the statistic regarding the utilization of
each bus line served by the buses where the sensors are installed, this required to
calculate the number of devices on board of the bus for all bus stop. This problem
was divided in two sub problems, which are matching the bus path to one of the
possible itineraries and determining correctly the ascent and descent time. The
resolution of this problem brought to the development of two classifications algo-
rithms which reached high levels of accuracy.
The metric calculated from the classifications algorithms needed a way to be hu-
man readable so an UI having the role of building two graphical representation of
the metric has been built. The representations built are a graph where the nodes
represent the bus stops and the width of the edge connecting each node is propor-
tional at the number of devices between that pair of stops. The two representations
differ only from the fact that the first one is a linear representation whereas the
second one is a projection of the first on a map where the node are positioned on
the same coordinates of the bus stop they are associated to. The development of
this software provides several advantages for the analysis of the bus line utilization
and thus its optimization:

• Quick statistics: the algorithm developed are run every night on the data of
the day before with a performance able to give access to the statistics already
in the morning.

• Straightforward graphs: the graphs developed for this thesis work are easy
to read and immediately highlight the presence of crowding for a specific bus
line.

74

6 – Conclusion

• Effortless analysis the system requires no user interactions neither in the
collecting phase of the data nor the analysis.

The developed extension reached well its objective, as discussed in chapter 5 and
leaves room for future developments.

Future development This paragraph will talk about what directions can be
taken provided that the open issues have been solved.

• New classification rules The set of classification rules, both for the itinerary
matcher and the device filter, can be extended by creating rules acting on other
aspects of the data coming from the existing system thus improving even more
the accuracy of this algorithms and reduce the effects of aliasing described in
3.3.2.10.

• Tools for classify quickly the data One of the main problems of this
thesis was the methods of validations which relied entirely on observing an
user interface showing a raw representation of the collected data. A future
development could the one of developing tools to allow an operator to save the
result of the classification resulting from his observation, allowing to create
validation data that can be used to perform automatic testing.

• Better classification algorithms This development is related to the previ-
ous one. The creation of validation data that can be used in automated way
opens the possibility of implementing more efficient classifications algorithms
that rely on training data.

• Portal for deploying and studying mobility plan If the algorithms of
classification is improved at point to easily represent reality it can be used to
study performance in a deployment of a public transport plan, for example
to demonstrate, with real-time dashboards, the effect of adding o removing a
new bus line.

The one listed here are just few of the potential developments that this technology
of passive detection provides. Any development will increase the quality of public
transportation that more and more relies on IT solutions to improve the quality of
service and provide new solutions.
To conclude considering what has been done in this work, it is fare to say that the
knowledge of the utilization of each bus line obtained through low cost and efficient
systems will allow transport societies to build and deploy better transportation
plans that will match the mobility’s needs of the community.

75

Bibliography

[1] Vladimir Agafonkin. Leaflet library, 2017. https://leafletjs.com/.
[2] Mike Bostock. D3 library homepage. https://d3js.org/.
[3] M. De Luca. Manuale di pianificazione dei trasporti. CNR.: Progetto finalizzato

trasporti 2. Franco Angeli, 2000.
[4] Paolo Fadda. Concenzione dei progetti di trasporto in ambiente sistemico. Rub-

bettino, 2002.
[5] Francesco Lombardo. Progetto implementazione di un’architettura pervasiva

per la raccolta di dati analitici relativi all’utilizzo dei mezzi pubblici. Master’s
thesis, Politecnico di Torino, 2018.

[6] E J Meyer, M D; Miller. Urban transportation planning: A decision-oriented
approach, second edition. McGraw-Hill Higher Education, 2001.

[7] India Sarthak Agarwal International Institute of Information Technology Hy-
derabad Gachibowli, Hyderabad and India KS Rajan International Institute of
Information Technology Hyderabad Gachibowli, Hyderabad. Analyzing the
performance of nosql vs. sql databases for spatial and aggregate queries,
2017. https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=
1028&context=foss4g.

[8] Nathan To. How iot improves public transport for
passengers, 4 2018. https://davra.com/2018/04/25/
how-the-internet-of-things-improves-public-transportation-for-passengers/.

76

https://leafletjs.com/
https://d3js.org/
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1028&context=foss4g
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1028&context=foss4g
https://davra.com/2018/04/25/how-the-internet-of-things-improves-public-transportation-for-passengers/
https://davra.com/2018/04/25/how-the-internet-of-things-improves-public-transportation-for-passengers/

	List of Tables
	List of Figures
	Introduction
	Problem description
	Public transport planning
	Transport costs
	Demand and offer
	Counting techniques

	Context of the project
	Starting point

	Architecture
	Existing system architecture
	Overview
	Endpoint data model devices

	Objectives and requirements for the software extension
	Requirements of the software extension

	Software architecture
	Functional components
	Functional component: Classifier
	Functional component: Data visualizer

	Implementation
	Environment choice
	Existing system solution
	Extension solution

	Classifier implementation
	Main loop
	Acquiring the data
	Preprocessing input data
	Device analysis implementation
	Itinerary Matching
	Metric computation and storage
	Configuration

	Data visualizer
	UI
	Data access layer

	Results
	Requirement validation
	R1 - Device Filtering
	R2 - Path classification
	R3 - Data aggregation
	R4 - Readability

	Conclusion
	Bibliography

