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Jesús Alberto González Montoya

Supervisor:

Prof. Francesco Bertazzi

Correlator:

Prof. Michele Goano

Turin, Italy

December 2018





iii

Acknowledgments

Thanks God for giving me the opportunity to conclude this stage of my life, for giving

me hope and faith in my capabilities and for giving me the strength to keep going all this

way.

I would like to express my sincere gratitude to my advisor Prof. Francesco Bertazzi for

offering me the opportunity to work in such an interesting field, for his continuous support

and patience. He was always available to discuss my work and his guidance helped me in

all the time of research and writing of this thesis. Personally I deeply appreciate his genuine

interest not only in my academic work but also in my personal life.

I wish to offer my deepest gratitude to Prof. Michele Goano for his continuous support in

all the problems I encountered out of the academic framework, for his friendly and valuable

advices. I am grateful for the opportunity he and Prof. Bertazzi provided me, when they

chose me for the research position I currently have. Special thanks also to Dr. Alberto

Tibaldi, for his support with various technical issues.

Finally, I want to thank all those persons that have given me support and belief, specially

to my friends and family, whose presence have filled my life with motivation, happiness and

love, along with strength to move forward and achieve my goals. Thank you to my beloved

Camila Ortegon, for being at my side during these two years, for her endless patience and

love.



iv

Abstract

This thesis aims to present a full-band description for the modeling and simulation of op-

toelectronic devices. To do this, the nonequilibrium Green’s function (NEGF) formalism

is used to accurately describe the quantum processes affecting carrier dynamics within the

device, everything coupled through a self-consistent (SC) loop which is iterated to achieve

the correct device properties under the given input conditions.

Simulation of nanoscale devices should take into account several quantum processes that

dominate the device behavior at these dimensions. Consequently, quantum models have

acquired such a great importance nowadays in the modeling of microelectronic and optoelec-

tronic devices, specially in the case of LED’s and solar cells, whose many problems arising

from the low efficiency and losses make it imperative to understand what are the real phe-

nomena behind them.

In order to obtain a high fidelity representation of the device behavior, the empirical tight-

binding (ETB) basis is used to obtain a multi-band model of the device dispersion. This

representation is essential so that one is able to simulate intra or inter-band transition due

to quasi particle absorption/emission, which are some of the central phenomena involved in

the operation of photo-detectors and LEDs. Subsequently, carrier dynamics are obtained in

the NEGF formalism by solving the Dyson’s equation of motion in steady-state conditions

to obtain the device Green’s function, and particle interactions are included in the device

through the corresponding self-energies. Enormous complexity of the used model makes it

necessary to keep a rather simple approach, including just the most important interactions

to model scattering processes: electron-photon and electron-phonon interactions, being the

later with both acoustic and optical phonons. It is remarkable that the self-energies included

are enough to model most of the fundamental quantum phenomena in optoelectronics, like

photogeneration, transport, relaxation and recombination of carriers. The Green’s functions

and the self-energies are then computed self consistently within the so called self-consistent

Born approximation (SCBA), and the effects of coupling the device to semi-infinite contacts

is taken into account using boundary self-energies.

The theory presented in this work is used to simulate different nanostructured devices which

are found in literature and which allow to clearly see all the capabilities of the NEGF
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formalism. In particular, three examples are considered: an AlGaAs/GaAs quantum well

heterostructure, a type-two InAs/GaSb superlattice absorber, and an InAlGaAs/InGaAs

interband tunnel-junction. These structures were chosen due to their rather simple config-

uration, which allows to perform multi-band computations within a reasonable simulation

time, and due to their great importance in optoelectronic applications. Device performance

is also studied by varying geometrical and simulation parameters, taking special attention to

the transport mechanisms, the localization of carriers, and the formation of minibands and

localized states along the device area. Finally, two different approaches were described to be

implemented in future works, which will help to speed up and enhance the computational

capabilities of the present implementation.

Keywords: Nonequilibrium Green’s function, Empirical Tight-Binding model, k · p
model, Quantum transport, Superlattice heterostructure, Optoelectronic devices, Low

rank approximation, Pulay method.
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Chapter 1

Introduction

In the last few decades, advances in the field of microelectronics has experienced an ever

increasing tremendous development, leading to the reduced devices we see nowadays and

which opens the door to hundreds of new applications. Although the dimensions of the

transistors today fabricated seem to have reached a dead end at 14 nm [1], because of

the proximity to the atomic dimensions and the difficulties it imposes in the processes of

fabrication, continuous scientific effort have shed light to other approaches to overcome

scaling limits and still achieve better device performances , e.g. 3D stacking and technology

integration. Even in the field of optoelectronics, many new problems arise apart from the

one imposed by miniaturization, covering the many fundamental aspects behind the physics

of generating/absorbing light devices. In fact, the difficulty to easily model optical processes

in complex devices has taken the attention of many researchers and industries who seek to

develop reliable CAD tools able to represent accurately this devices and improve efficiency

and efficacy.

In the above picture, it becomes absolutely imperative to develop reliable computational

tools that help in the simulation of microelectronic devices in order to be able to really

understand the physics behind them and represent the underlying phenomena with a high

degree of fidelity. Quantum transport techniques come into play thanks to the developed

of theories like nonequilibrium Green’s (NEGF) function [2] and density matrix (DM) [3]

theory, suitable for the modelling of nanostructured devices in steady state and transient

regimes, respectively. It was Keldysh in 1964 [4] who fistly presented his theory of NEGF and

opened the gate for this formalism to become a real computational tool. Just recently NEGF

has gained such great popularity in the simulation of optoelectronic devices, since previous

fabrication techniques didn’t required such powerful simulation models. Recent technological

processes of fabrication permitted to produce full-operative complex optoelectronic devices

like quantum cascade lasers (QCL) or vertical-cavity surface-emitting lasers (VCSEL), which

brought the need of realistic simulation tools.
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In this work we provide a deep insight into the relevant aspects of the NEGF theory, and

describe how this can be employed to simulate optoelectronic devices, specifically oriented

to photo-detection applications. The theory will be presented under a multi-band approach,

focusing our attention on two of the main basis models used nowadays in NEGF simulations:

the k · p [5] and the tight binding basis. Both of them result very effective and accurate

in describing the main features of nanostructured devices, provided the proper parameters

are used to model each of the constituent materials. Other basis models like the Maximally

Localized Wannier Functions [6], first introduced by Wannier in 1937 [7], have also evolved

and become very useful in describing large, periodic nanostructures. The tight binding

model results particularly interesting since its an atomistic model, hence able to provide

full Brillouin zone simulations, which in turns is not possible for the k · p that is based on

expansion of Bloch functions around the Brillouin zone center. This, and the fact that TB

basis is orthogonal, make it a much superior method, though much more resource demanding

from the simulation standpoint.

This thesis is divided up in four chapters, which are described as follows: in the second

chapter, we will deal mainly with presenting most of the relevant theory that was used to

develop the NEGF implementation. On the one hand, we will first present the theoretical

aspects NEGF, in the Keldysh formalism, and we will derive all the main equations that

will be used in the later chapters. After this, the discretization model, namely the Empirical

Tight Binding (ETB), will be presented along with all the equations regarding tight-binding

Hamiltonian and main device properties as computed in this basis. The k · p basis will

be also presented in a brief manner, theory which will also serve to perform one example

implementation.

In the third chapter, we will be concerned with the simulation of three nanostructures which

will serve as examples to demonstrate the tremendous potential of the NEGF theory. First

we will take a look to a simple quantum well heterostructure made of AlGaAs/GaAS, in

which confined states can be used to absorb light with a well-defined wavelength. We will

observe here the effect of including phonon scattering as well as photon absorption through

photon scattering. An interband tunnel junction, made of InAlGaAs/AlGaAs will be also

studied with special attention to the quantum effects that make possible for the electrons

to travel between the contact. In particular we will observe how doping induced potential

wells lead to the appearance of confined states not accessible from the contacts and which

will need the help of optical phonon scattering to be accessible for carriers. We will also

consider a type-two superlattice composed of GaSb/InAs, which is used as photon absorber

in the mid-IR range in many optoelectonic applications. In this case we will be interested in

observing how minibands are formed through the structure and how these change as we vary

geometrical parameters of the nanostructure. All this simulations will be carried out with a

two-band tight binding model, since the trade-off between simplicity and accuracy for this
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model is sufficient for the purpose of observing the capabilities of the NEGF approach.

After this simulations, two models will be presented, aimed improve the computational ca-

pabilities of the NEGF implementation. First, we describe the reduced order model, a novel

approach proposed in this work to reduce the computational size of the basis used to dis-

cretize the device Hamiltonian. In this model, NEGF equations are projected into a reduced

order-basis composed by a subset of the noninteracting Hamiltonian wavefunctions. This

wavefunctions are used to diagonalize the position operator in order to obtain maximally

localized, orthogonal basis functions. Wavefunctions not included in the new basis are ac-

counted in an effective way by means of an extra self-energy term. In the second part, we

will show how to apply the Pulay method, also known as Direct Inversion in the Iterative

Subspace, in order improve the convergence of the inner loop. The main motivation of this

is to employ it in devices in which achieving convergence of the inner loop is particularly

slow and difficult, like is the case of the tunnel junction in the previous examples.





Chapter 2

Nonequilibrium Green’s Function

Device Simulation

Device simulations at nanoscale dimension should take into account several quantum pro-

cesses that occur at this dimensions and dominate the behavior of the device. Classical

models like the drift-diffusion give a good insight into the device performance, but lack the

capability to reproduce important quantum phenomena like light absorption, or Auger pro-

cesses, which are very important in order to simulate devices like LEDs or photodetectors.

In order to improve this deficiencies, quantum models need to be implemented, which are

capable of solving the Schrödinger equation and extract important quantities as statistical

average properties of the device. In this chapter, we will review the basic theory concerning

the Nonequilibrium Green’s Function approach for device transport simulation, and we will

derive expressions to obtain physical quantities such as carrier densities and current density.

2.1. Contour-ordered nonequilibrium Green’s function

We start this chapter by considering a system described by the Hamiltonian

Ĥ = Ĥ + Ĥext(t) = Ĥ0 + Ĥ i + Ĥext(t), (2-1)

where the time-independent Hamiltonian Ĥ = Ĥ0 + Ĥ i describes the isolated system, Ĥ0

is the simple part that contains the lattice and the electrostatic potential, and Ĥ i is the

complicated part inter-particle interactions. On the other hand, Ĥext(t) is a time-dependent

perturbation that drives the system out of equilibrium, applied at times t > t0, and that

could be, e.g., an electric field, a light excitation pulse, or an imbalance of the chemical

potentials of the reservoirs coupled to the system.

The properties of the system can be described by means of the single-particle nonequilibrium
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Green’s function, which is defined as the nonequilibrium ensemble average of contour-ordered

field operators [8]

G(r, t; r′, t′) = − i
~
〈T̂C{Ψ̂H(r, t)Ψ̂†H(r′, t′)}〉

= − i
~

(
θC(t, t′)〈Ψ̂H(r, t)Ψ̂†H(r′, t′)〉 ∓ θC(t′, t)〈Ψ̂†H(r′, t′)Ψ̂H(r, t)〉

)
, (2-2)

where the function θC(t, t′) is the Heaviside step function defined on the contour C,

θC(t, t′) =

{
1 if t later on C

0 otherwise
(2-3)

and Ψ̂H(r, t) (Ψ̂†H(r′, t′)) is the field operator in the Heisenberg picture, that annihilates

(creates) a particle at position r (r′) and at time t (t′). The minus (plus) sign stands for

fermions (bosons).

Expanding the average [9] provides the starting point of the perturbation expansion of the

nonequilibrium Green’s function1

G(r, t; r′, t′) = − i
~

〈T̂C̃
{

exp

[
− i
~

∫
C̃

dτĤ i
H0

(τ)

]
exp

[
− i
~

∫
C̃

dτĤext
H0

(τ)

]
Ψ̂H0(r, t)Ψ̂

†
H0

(r′, t′)

}
〉0

〈T̂C̃
{

exp

[
− i
~

∫
C̃

dτĤ i
H0

(τ)

]
exp

[
− i
~

∫
C̃

dτĤext
H0

(τ)

]}
〉0

,

(2-4)

where now all the quantities are expressed in the interaction picture, as indicated by the

subscript H0. Since we are just interested in the steady-state of the system, initial correla-

tions will be neglected and the integrals will be taken over the Schwinger-Keldysh contour

C̃ ≈ C = Ct ∪ Ct̄ [10], which is shown in figure 2-1.

The main goal is to derive the equations of motion of G(r, t; r′, t′) with respect to the times

t and t′, for which we will consider a Hamiltonian H with carrier-carrier interaction Ĥ i = V̂ ,

and a single-particle potential Ĥext = Û , which in second quantization reads

Ĥ(t) =

∫
dr Ψ̂†H(r, t)[H0(r) + U(r, t)]Ψ̂H(r, t)

+
1

2

∫
dr

∫
dr′Ψ̂†H(r, t)Ψ̂†H(r′, t)V (r− r′)Ψ̂H(r′, t)Ψ̂H(r, t). (2-5)

1This formula results from moving field operators in (2-2) from the Heisenberg to the interaction picture.

This is performed by multiplying the operators by the propagators observed in (2-4), which depend on the

interaction part of the Hamiltonian. A more detailed derivation is presented in [10].
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Figure 2-1: The Schwinger-Keldysh contour, composed by the chronological Ct = (−∞,∞)

and antichronological Ct̄ = (∞,−∞) branches. Small shift from real axis is just to distinguish

the integration direction.

This representation of the Hamiltonian is called normal-ordered, i.e., all annihilation opera-

tors appear to the right of any creation operator. Taking into account the anti-commutation

property

[
Ψ̂H(r, t), Ψ̂†H(r′, t)

]
+

= δ(r− r′), (2-6)

the time derivative of the contour-ordered pair of Heisenberg field operators is

∂

∂t
〈T̂C{Ψ̂H(r, t)Ψ̂†H(r′, t′)}〉 =

〈
T̂C

{[
∂

∂t
Ψ̂H(r, t)

]
Ψ̂†H(r′, t′)

}〉
+ δC(t, t′)

[
Ψ̂H(r, t)Ψ̂†H(r′, t′)

]
+

=

〈
T̂C

{[
∂

∂t
Ψ̂H(r, t)

]
Ψ̂†H(r′, t′)

}〉
+ δC(t, t′)δ(r− r′). (2-7)

The time derivative of the annihilation operator can be derived from the corresponding

Heisenberg equation of motion

i~
∂

∂t
Ψ̂H(r, t) =

[
Ψ̂H(r, t), Ĥ(t)

]
−

= [H0(r) + U(r, t)]Ψ̂H(r, t) +

∫
dr′V (r− r′)Ψ̂†H(r′, t)Ψ̂H(r′, t)Ψ̂H(r, t) (2-8)

Replacing in (2-7) the time derivative (2-8) gives the equation of motion of the Green’s

function relative to t1 (a similar procedure gives the derivative relative to t1′)

[
i~

∂

∂t1
−H0(r1)− U(1)

]
G(11′) = δ(11′)− i~

∫
C

d2V (1− 2)G(2)(121′2+) (2-9a)[
−i~ ∂

∂t1′
−H0(r)− U(1′)

]
G(11′) = δ(11′)− i~

∫
C

d2V (1′ − 2)G(2)(12−1′2) (2-9b)
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where the two-particle Green’s function is defined as

G(2)(121′2′) =

(
− i
~

)2 〈
T̂C{Ψ̂H(1)Ψ̂H(2)Ψ̂†H(2′)Ψ̂†H(1′)}

〉
, (2-10)

and the notation 2± stands for a time argument of Ψ̂†H(2) infinitesimally larger or smaller

than t2 [11]. In equation (2-9), we have also used the short-hand notation G(r1, t1; r1′ , t1′) =

G(11′),
∫
C
d1 =

∫
C
dt1
∫
dr1, and

δ(12) =δC(t1, t2)δ(r1 − r2) (2-11)

V (1− 2) =V (r1 − r2)δ(t1 − t2). (2-12)

Equation (2-9) present an infinite hierarchy of coupled equations involving Green’s Functions

of ever increasing order, hence presenting a problem in the direct evaluation of the dynamics

of the Green’s function. However, this hierarchy approach can be avoided by approximating

the two-particle Green’s function by means of the self-energy Σ(11′) encoding interaction

effects of all particles on the single-particle dynamics

[
i~

∂

∂t1
−H0(r)− U(1)

]
G(11′) = δ(11′) +

∫
C

d3Σ(13)G(31′) (2-13a)[
−i~ ∂

∂t1′
−H0(r′)− U(1′)

]
G(11′) = δ(11′) +

∫
C

d3G(13)Σ(31′). (2-13b)

The self-energy may be obtained to different levels of approximations by a perturbative ex-

pansion of the exponential terms in equation (2-4), where the help of Feynman diagrammatic

description of the resulting equations result in a simple an natural way to arrive to the formal

derivation of the self-energy term. Finally, integrating over one of the times to eliminate the

δ functions, results in integral form of the Dyson’s equations

G(11′) =G0(11′) +

∫
C

d2

∫
C

d3G0(12)Σ(23)G(31′) (2-14a)

G(11′) =G0(11′) +

∫
C

d2

∫
C

d3G(12)Σ(23)G0(31′), (2-14b)

where

G0(11′) =

[
i~

∂

∂t1
−H0(r)− U(1)

]−1

δ(11′), (2-15)

is the noninteracting Green’s function.
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2.1.1. Analytic Continuation

Difficulties arising from the complex contour integration in the Green’s function definition

are overcome by defining G(11′) as a piecewise analytic function of four new Green’s functions

with real-time arguments

G(11′) = − i
~
〈T̂C{ψ̂H(1)ψ̂†H(1′)}〉 =


Gt(11′) t1, t1′ ∈ Ct
Gt̄(11′) t1, t1′ ∈ Ct̄
G<(11′) t1 ∈ Ct, t1′ ∈ Ct̄
G>(11′) t1 ∈ Ct̄, t1′ ∈ Ct

(2-16)

which are named the chronological, antichronological, lesser, and greater Green’s functions,

respectively, and are defined by

Gt(11′) =− i

~
〈T̂t{Ψ̂H(1)Ψ̂†H(1′)}〉 (2-17)

Gt̄(11′) =− i

~
〈T̂t̄{Ψ̂H(1)Ψ̂†H(1′)}〉 (2-18)

G<(11′) = +
i

~
〈Ψ̂†H(1′)Ψ̂H(1)〉 (2-19)

G>(11′) =− i

~
〈Ψ̂H(1)Ψ̂†H(1′)〉 (2-20)

The chronological and antichronological Green’s functions are usually replaced by the re-

tarded and advanced Green’s functions

GR(11′) = θ(t− t′)[G>(11′)−G<(11′)] (2-21)

GA(11′) = −θ(t′ − t)[G>(11′)−G<(11′)] (2-22)

Subtracting the last two equations, we have

GR(11′)−GA(11′) = G>(11′)−G<(11′), (2-23)

which shows that only three of the Green’s functions are linearly independent. Equations of

motion for the above Green’s function can be derived by means of the Langreth rules [12]

applied to the contour integrals in (2-14)

DR(A)(t1, t2) =

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2A

R(A)(t1, τ1)BR(A)(τ1, τ2)CR(A)(τ2, t2) (2-24)

D≶(t1, t2) =

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2 [AR(t1, τ)BR(τ, t2)C≶(τ, t2)

+ AR(t1, τ)B≶(τ, t2)CA(τ, t2) + A≶(t1, τ)BA(τ, t2)CA(τ, t2)], (2-25)
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leading to the equations of motion of the real-time Green’s functions2

GR(A)(11′) = G
R(A)
0 (11′) +

∫
d2

∫
d3G

R(A)
0 (12)ΣR(A)(23)GR(A)(3, 1′) (2-26)

G≶(11′) =

∫
d2

∫
d3GR(12)Σ≶(23)GA(31′), (2-27)

with

∫
d1 =

∫
dr1

∫ +∞

−∞
dt1. (2-28)

2.1.2. Steady-state formulation

For steady-state calculations, only the time difference τ = t − t′ is meaningful. Hence,

assuming a steady state time dependence of the Green’s functionsGα(r, t; r′, t′) = Gα(r; r′, t−
t′) and Fourier transforming Oα = Gα,Σα (α = R,A,<,>) to energy coordinates

Oα(r1, r2, E) =

∫ +∞

−∞
dτe

i
~EτOα(r1, r2, τ) (2-29)

Oα(r1, r2, τ) =
1

2π~

∫ +∞

−∞
dEe−

i
~EτOα(r1, r2, E), (2-30)

leads to the steady state representation of the Green’s functions

G≶(r1, r1′ , E) =

∫
dr2

∫
dr3G

R(r1, r2, E)Σ≶(r2, r3, E)GA(r3, r1′ , E) (2-31a)

GR(A)(r1, r1′ , E) = G
R(A)
0 (r1, r1′ , E)

+

∫
dr2

∫
dr3G

R(A)
0 (r1, r2, E)ΣR(A)(r2, r3, E)GR(A)(r3, r1′ , E), (2-31b)

with the noninteracting Green function given by

G
R(A)
0 (r1, r1′ , E) = [E + (−)iη −H0(r1)]−1δ(r1 − r1′). (2-32)

The small η → 0+ parameter provides the correct analytical properties. Time reversal

symmetry implies

2In the case of G≶ some terms have been neglected, as can be seen when comparing (2-25) with (2-27).

It can be demonstrated that these extra terms vanish for steady-state systems. Thus, in general keeping the

shown term is usually sufficient. More information can be found in [12].
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GR(r1, r1′ , E) = [GA(r1, r1′ , E)]†, (2-33a)

G≶(r1, r1′ , E) = −[G≶(r1, r1′ , E)]†, (2-33b)

which reduces the number of independent Green’s functions to two.

2.2. Spatial discretization

Given a suitable finite basis {φν(r, σ)}, characterized by a set of quantum numbers ν, the

Green’s function needs to be discretized in order to numerically evaluate the Dyson’s equa-

tion. This is obtained by expanding the field operators as linear combination of the given

basis,

Ψ̂H(r, t) =
∑
ν

φν(r, σ)ĉν(t) (2-34a)

Ψ̂†H(r, t) =
∑
ν

φ∗ν(r, σ)ĉ†ν(t) (2-34b)

which leads to two representations of the discrete Green’s function. On one hand, the con-

travariant representation in steady state conditions, is defined by the matrix G = {Gν,µ(E)},
such that

G(r, r′;E) =
∑
ν,µ

φν(r, σ)Gν,µ(E)φ∗µ(r′, σ). (2-35)

On the other hand, the covariant representation is given by the matrix G̃ = {G̃ν,µ(E)}, such

that

G̃ν,µ(E) =

∫
dr

∫
dr′φ∗ν(r, σ)G(r, r′;E)φµ(r′, σ), (2-36)

where both representations are related by the following equivalence, in matrix notation

G̃ = MGM. (2-37)

The same definitions are used to represent the self-energy Σ(r, r′;E) in contravariant (Σ)

and covariant representation (Σ̃). The matrix M = {Mν,µ} is called the overlap matrix, and

its given by

Mν,µ =

∫
drφ∗ν(r, σ)φµ(r, σ). (2-38)

It is clear that, in the case of a orthonormal basis, the matrix M is the identity matrix and

both representations of the Green’s function are equivalent. As we will see later, this is the
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case of the tight binding method, in which this feature brings the advantage of simplifying

equations and reducing the number of matrix multiplications.

To derive the quantum kinetic equation in discrete form, we start from the steady state

Dyson’s equation for the retarded Green’s function (2-31b), and using (2-35) we obtain,

∑
ν,µ

φν(r, σ)GR
ν,µ(E)φ∗µ(r′, σ) =

∑
ν,µ

φν(r, σ){GR
0 }ν,µ(E)φ∗µ(r′, σ)

+

∫
dr2

∫
dr3

∑
ν1,µ1

φν1(r, σ){GR
0 }ν1,µ1(E)φ∗µ1(r2, σ)

×
∑
ν2,µ2

φν2(r2, σ)ΣR
ν2,µ2

(E)φ∗µ2(r3, σ)

×
∑
ν3,µ3

φν3(r3, σ)GR
ν3,µ3

(E)φ∗µ3(r
′, σ) (2-39)

=
∑
ν,µ

φν(r, σ){GR
0 }ν,µ(E)φ∗µ(r′, σ)

+
∑
ν1,µ1

∑
ν2,µ2

∑
ν3,µ3

φν1(r, σ){GR
0 }ν1,µ1(E)ΣR

ν2,µ2
(E)GR

ν3,µ3
(E)φ∗µ3(r

′, σ)

×
∫
dr2φ

∗
µ1

(r2, σ)φν2(r2, σ)︸ ︷︷ ︸
Mµ1,ν2

∫
dr3φ

∗
µ2

(r3, σ)φν3(r3, σ)︸ ︷︷ ︸
Mµ2,ν3

(2-40)

=
∑
ν,µ

φν(r, σ){GR
0 }ν,µ(E)φ∗µ(r′, σ) +

∑
ν1,µ1

∑
ν3,µ3

φν1(r, σ){GR
0 }ν1,µ1(E)

×

(∑
ν2,µ2

Mµ1,ν2Σ
R
ν2,µ2

(E)Mµ2,ν3

)
︸ ︷︷ ︸

Σ̃µ1,ν3 (E)

GR
ν3,µ3

(E)φ∗µ3(r
′, σ) (2-41)

=
∑
ν,µ

φν(r, σ)
{

GR
0 (E) + GR

0 (E)Σ̃(E)GR(E)
}
ν,µ
φ∗µ(r′, σ)

(2-42)

yielding the matrix equation,

GR(E) = GR
0 (E) + GR

0 (E)Σ̃(E)GR(E) (2-43)

which is equivalent to,

[{GR
0 (E)}−1 − Σ̃(E)]GR(E) = 1. (2-44)

In a similar way, the discrete kinetic equation for the correlation functions can be obtained

from (2-31a), yielding the Keldysh equation in its discretized form
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G≶(E) = GR(E)Σ̃≶(E)GA(E) (2-45)

with the noninteracting Green’s function given by,

GR
0 (E) = [EM−H]−1 (2-46a)

{H}ν,µ =

∫
drφ∗ν(r, σ)H(r)φµ(r, σ) (2-46b)

The fluctuation-dissipation theorem allows us to relate all Green’s functions in equilibrium

conditions

G<(E) = ifFD(E − EF )A(E) (2-47a)

G>(E) = i[fFD(E − EF )− 1]A(E) (2-47b)

where

A(E) = i[GR(E)−GA(E)] = i[G>(E)−G<(E)] (2-48)

is the spectral function, and fFD is the Fermi-Dirac distribution. A similar expression holds

for the self-energies

Σ<(E) = ifFD(E − EF )Γ(E) (2-49a)

Σ>(E) = i[fFD(E − EF )− 1]Γ(E) (2-49b)

where

Γ(E) = i[ΣR(E)−ΣA(E)] = i[Σ>(E)−Σ<(E)] (2-50)

is the broadening function. From now on, for simplicity we will use Σ to refer to the covariant

representation of the self-energy, unless the contrary is stated.

2.3. Physical observables from NEGF

For a generic one-body operator O(r, t) = {Oσ,σ′(r, t)} expressed in second quantization

notation

Ô(r, t) =
∑
σ,σ′

Ψ̂†H(r, t, σ)Oσ,σ′(r, t)Ψ̂H(r, t, σ′), (2-51)

the ensemble average can be written as
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〈Ô(r, t)〉 = Tr[ρ̂Ô(r, t)]

=
∑
σ,σ′

Tr[ρ̂Ψ̂†H(r, t, σ)Oσ,σ′(r, t)Ψ̂H(r, t, σ′)]

= lim
r′→r

lim
t′→t+

∑
σ,σ′

Oσ,σ′(r, t)Tr[ρ̂Ψ̂†H(r′, t′, σ)Ψ̂H(r, t, σ′)]

= lim
r′→r

lim
t′→t+

∑
σ,σ′

Oσ,σ′(r, t)〈Ψ̂†H(r′, t′, σ)Ψ̂H(r, t, σ′)〉

= −i~ lim
r′→r

lim
t′→t+

Tr[O(r, t)G<(r, t; r′, t′)] (2-52)

where in the last line, the trace is taken over spin indices.

2.3.1. Carrier densities

Taking the particle number operator in second quantization notation,

n̂(r, t) =
∑
σ

Ψ̂†H(r, t, σ)Ψ̂H(r, t, σ) (2-53)

the average particle density at position r and time t is given by,

n(r, t) = 〈n̂(r, t)〉

=
∑
σ

〈Ψ̂†H(r, t, σ)Ψ̂H(r, t, σ)〉

= −i~ lim
r′→r

lim
t′→t+

∑
σ

G<
σ,σ(r, t; r′, t′). (2-54)

In steady state conditions, the Green’s function can be Fourier transformed with respect to

the time difference t− t′, yielding

n(r) = −i~ lim
r′→r

lim
t′→t+

∑
σ

G<
σ,σ(r, r′; t− t′)

= −i~ lim
r′→r

lim
t′→t+

∑
σ

∫
dE

2π~
ei
E
~ (t−t′)G<

σ,σ(r, r′;E)

= −i
∑
σ

∫
dE

2π
G<
σ,σ(r, r;E). (2-55)

Similarly, for the holes we can write

p(r) = i
∑
σ

∫
dE

2π
G>
σ,σ(r, r;E). (2-56)
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2.3.2. Local density of states

From the equilibrium relation (2-47a), equation (2-55) for the electron density can be written

as

n(r) =
∑
σ

∫
dE

2π
fFD(E − EF )Aσ,σ(r, r;E), (2-57)

hence defining the local density of states (LDOS) in the following way

LDOS(r, E) =
1

2π

∑
σ

Aσ,σ(r, r;E), (2-58)

where A(r, r;E) is the spectral function as defined in equation (2-48).

2.3.3. Current

Starting from the Dyson’s equation, it is possible to derive an expression for the current

density. Here, we recall just the result, as presented in [10] for the steady state current

density

J(r) = lim
r′→r

i

2
[v(r′)− v(r)]

∑
σ

∫
dE

2π
G<
σ,σ(r, r′;E), (2-59)

where v(r) = − i
~ [r, H] is the velocity, and the current divergence

∇ · J(r) = −
∫

dE

2π~

∫
dr′Tr[ΣR(r, r′;E)G<(r′, r;E) + Σ<(r, r′;E)GA(r′, r;E)

−GR(r, r′;E)Σ<(r′, r;E)−G<(r, r′;E)ΣA(r′, r;E)], (2-60)

where the trace is done over spin indices. It is also useful to define the spectrally resolved

current density, which from equation (2-59) and ignoring the energy integration, can be

written as

J(r, E) = lim
r′→r

i

2
[v(r′)− v(r)]

∑
σ

G<
σ,σ(r, r′;E). (2-61)

2.4. Boundary conditions and boundary self-energy

When coupling a device to a contact that acts as electron reservoir, boundary conditions are

inserted in the device Green’s function through the inclusion of boundary self-energies. In

the next, we present a simple derivation for the boundary self-energies.
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Consider first the Dyson’s equation for the retarded Green’s function of the whole device-

contact system in its discretized form, as presented in equation (2-44). In the absence of

particle interaction (Σscat. = 0), this matrix equation can be written in the following way

[
EMD −HD −τ
−τ † EMR −HR

] [
GR
D GR

DR

GR
RD GR

R

]
=

[
1 0

0 1

]
, (2-62)

where τ = HDR is the coupling between device and reservoir, and HR and HD are the

hamiltonians of the isolated reservoir and device, respectively. The energy dependence of

the matrices have been also omitted for simplicity.

Since our interest is just devoted to the device Green’s function GR
D, we can use above matrix

equation to derive an expression for it. In fact, making the block multiplication, we arrive

to the following set of equations

(EMD −HD)GR
D − τGR

DR = 1 (2-63a)

(EMR −HR)GR
DR − τ †GR

D = 0. (2-63b)

Consider now the isolated contact Green’s function gRR, defined by the equation

(EMR −HR)gRR = 1. (2-64)

Finally, we can substitute gRR from (2-64) in (2-63b), and GR
DR from (2-63b) in (2-63a), to

obtain

(EMD −HD −ΣRB)GR
D = 1 (2-65)

ΣRB = τgRRτ
†. (2-66)

The lesser and greater boundary self-energies can be obtained from ΣRB using equations

(2-49a) and (2-49b), where ΣAB = {ΣRB}−1.

2.5. Particle interactions

In this section, the interactions between particles is studied within the NEGF formalism, by

the introduction of scattering self-energies. Below, we present just the results, but further

information about the complete derivation of the self-energy expressions can be found in

Appendix A.
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2.5.1. Electron-phonon self-energy

The electron-phonon Fock self-energy term, assuming an equilibrium phonon population Nq

and that phonons are not affected by confinement (bulk phonon modes), is given by

Σ≷
ν,µ(k, E) =

∑
Q

|UQ|2eiqz(zi−zj)

·
{
M
[
NQG

≷(k− q, E ± ~ωQ) + (NQ + 1)G≷(k− q, E ∓ ~ωQ)
]
M
}
ν,µ

(2-67)

ΣR(k, E) =
1

2
(Σ>(k, E)− Σ<(k, E))− iP

∫
dE ′

2π

Σ<(k, E ′)− Σ>(k, E ′)

E − E ′
. (2-68)

where Q = (q, qz) is the 3D phonon wavevector, UQ is the scattering strength in energetic

units, P denotes the principal value and zj is the position of the discretized mesh points. The

principal part in equation (2-68) leads to a negligible energy renormalization and is usually

neglected obtaining the following approximate expression for the retarded self-energy

ΣR(k, E) ≈ 1

2
(Σ>(k, E)− Σ<(k, E)). (2-69)

Acoustic phonons

For acoustic phonons, a linear dispersion relation is assumed ωQ = Qul, and the scattering

strength is given by [13]

UQ =

√
~D2

a

2V ρul
Q (2-70)

where ul is the longitudinal sound velocity in the material, Da is the deformation potential,

V = A × L is the normalization volume and ρ is the (mass) density. At sufficiently high

temperature, ~ωQ is much smaller than kBT , allowing to approximate the phonon occupation

number NQ =
1

e
~ωQ
kBT − 1

≈ kBT
~ωQ
≈ NQ+1. Using this result and equation (2-67), the acoustic

phonon self-energy yields

Σ≷,R
ν,µ (k, E) =

1

∆ij

D2
akBT

V ρu2
l

∑
q

{
MG≷,R(k− q, E)M

}
ν,µ

(2-71)

with
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1

∆ij

=
∑
qz

eiqz(zi−zj) =
L
2π

∫ π/aL

−π/aL
dqz e

iqz(zi−zj) =
L
π

sin π
aL

(zi − zj)
zi − zj

, (2-72)

and aL the lattice constant in the transport direction.

Note that in (2-71) we have used that 0 < ~ωQ � 1 for acoustic phonons, hence G≷,R(k −
q, E ± ~ωQ) ≈ G≷,R(k− q, E), which simply means that the scattering is essentially elastic.

Polar optical phonons

For optical phonons, a dispersion-less longitudinal phonon energy is assumed ~ωLO, with

characteristic frequency ωLO. The scattering strength term is given by [13]

UQ =

√
e2~ωLO

2V

(
1

ε∞
− 1

εs

)
Q

Q2 + q2
0

, (2-73)

where εs and ε∞ are the static and optical dielectric constants of the material, respectively,

and q0 =

√
e2n

εskBT
is the inverse Debye-Hückel screening length. Assuming isotropy in the

transverse direction (axial approximation), and after some simplifications, the final form of

the lesser and greater self-energies for polar optical phonons can be written as follows

Σ≷
ν,µ(k, E) =

e2~ωLO
4π2

(
1

ε∞
− 1

εs

)∫
dq qF (q, sij, k)

·
{
M
[
NLOG

≷(q, E ± ~ωLO) + (NLO + 1)G≷(q, E ∓ ~ωLO)
]
M
}
ν,µ

(2-74)

where NLO =
(
e

~ωLO
kT − 1

)−1

is the phonon occupation number, sij = zi − zj and

F (q, sij, k) =

∫ π/aL

0

dqz cos (qzsij)

·

[
1√

(q2
z + q2 + q2

0 + k2)2 − 4k2q2
− q2

0

q2
z + q2 + q2

0 + k2

((q2
z + q2 + q2

0 + k2)2 − 4k2q2)3/2

]
. (2-75)

with aL the lattice parameter of the material.

The retarded self-energy can be then calculated using equation (2-69).
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2.5.2. Electron-photon self-energy

The electron-phonon Fock self-energy term is obtained in a similar way as done for the

phonon self-energy. A complete derivation for this self energy can be found in Appendix A.

Assuming a photon population NQ,λ, with (3D) wavevector Q, energy ~ωQ and polarization

λ, the self-energy terms read in matrix notation

Σ≷(k, E) =
∑
Q,λ

Mγ(k,Q, λ) · [NQ,λG
≷(k, E ± ~ωQ)

+ (NQ,λ + 1)G≷(k, E ∓ ~ωQ)]Mγ(k,Q, λ) (2-76)

ΣR(k, E) =
1

2
(Σ>(k, E)− Σ<(k, E))− iP

∫
dE ′

2π

Σ<(k, E ′)− Σ>(k, E ′)

E − E ′
. (2-77)

where the matrix Mγ(k,Q, λ), in the dipole approximation [10], is defined by

Mγ
ν,µ(k,Q, λ) =

e

m0

A0(Q, λ) · pν,µ(k) (2-78)

with the field operator3,

A0(Q, λ) =

√
~

2ε0ωQV
εQ,λ, (2-79)

the mommentum matrix element given by

pν,µ(k) =

∫
drφ∗ν(r, σ,k)p̂(r)φµ(r, σ,k). (2-80)

and εQ,λ being the polarization of the photon.

As in the case of phonons, that the principal part in (2-77) contributes only in an energy

renormalization which is negligible compared with the total value of the retarded self-energy,

and hence can be neglected leading to the same expression exposed in (2-69). Using the

Feynman-Hellman theorem, the momentum matrix element can be computed directly from

the Hamiltonian, in the following way,

pν,µ =
m0

~
∇kHν,µ (2-81)

It is important to note that the photon self-energy is not unique, but depends on the type

of radiation source used to illuminate the device, through the corresponding field operator.

3Vector pontential opertor here is written for a monochromatic source of light of wavelength λ and

polarization vector εQ,λ.
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2.6. Poisson Equation

The last ingredient in the NEGF simulation of electronic devices is the Poisson equation,

which is solved self-consistently in what is usually called the outer-loop. The Poisson equation

∂z(ε(z)∂zφ(z)) = −ρ(z) (2-82)

where ε(z) is the (position dependent) static dielectric constant and

ρ(z) = e[p(z)− n(z) +Ndop(z)], (2-83)

relates the Hartree potential φ(z) to the carrier and doping densities. Equation (2-82)

together with equations (2-55) and (2-56) for the carrier densities, and the Dyson’s equation

(2-44) form a closed set of equations that can be solved self-consistently. The iteration

steps for both inner and outer-loop are described in figure 2-2. The inner self-consistency

loop connects the equations for the Green’s functions and self-energies, while the outer loop

provides the update of the Hartree potential from the solution of Poisson’s equation. An

initial condition is used at the first step of the process, being this G0 chosen to be the

the Green’s function at ballistic conditions (with just the boundary self-energy included).

Although this seems to be a good choice, it does not always results to be the best, as

convergence (of both inner and outer loop) strongly depend on the initial condition.

2.7. Choice of basis

2.7.1. Thight-binding model for layered semiconductors

Thight-binding model is an atomistic model, in which basis functions are represented as

Bloch sums of localized atomic orbitals (LAO). In the case of symmetrically orthogonalized

atomic orbitals, called Löwdin orbitals, this basis has the additional advantage of simplifying

computational operations due to the fact that the overlap matrix correspond with the identity

matrix.

In relation to layered semiconductors, crystalline properties in the transverse direction are

exploited, leading to the formulation of the so called planar orbitals, which we will use as

our basis functions. In this sense, a layer will be defined as a collection of atomic planes

perpendicular to the growth direction (which will be considered to be the z direction) which

themselves form a unit cell when seen as a linear chain in the same direction. The orbitals

α in the ith atomic plane of a given layer L form the so called planar orbital, as a sum of

atomic orbitals |αi, L,R||〉 located at R = (R|| + vi||, L∆ + viz), and wighted by the phase

factor eik·(R||+vi||), e.i.
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Figure 2-2: Flowchart for the calculation of physical quantities from Green’s functions.

|αi, L,k〉 =
1√
N||

∑
R||

eik·(R||+vi||)|αi, L,R||〉 (2-84)

where k and R|| are the transversal component of the wavevector and position, respectively,

the vector vi = (vi||, v
i
z) is the position of atom i in the unit cell, and N|| is the number of

points in the transverse Brillouin zone. Referring to the notation used in section 2.2, these

basis functions are characterized by the set of quantum numbers ν = (α, i, L,k).

In the planar-orbital basis, the Hamiltonian matrix elements of the isolated system are

written using empirical parameters, which are selected to fit the effective masses and bandgap

of a specific material. In our case, we will use the parameter presented by Volg et al. [14]

for the spinless case, and those presented by Wei et al. [15] for the models including spin.

The Hamiltonian can be written in the following general form:
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〈αi, L,k|H|αi′, L′,k〉 = (Dαi,αi′;L(k) + UL12b)δL,L′ − tαi,L;αi′;L′(k)(1− δL,L′) (2-85)

where UL is the electrostatic potential at layer L, and b is the number of orbitals per atom. In

the following, to simplify notation, both atom and orbital type information will be condensed

into a single index α, e.i., αi ≡ α.

In the simplest model, the s model, the functions DL(k) and tL,L′(k) are scalar functions

of the wavevector k. In general, for a material composed of two basis atoms (cation and

anion), diagonal and off-diagonal block elements of the non-interacting Hamiltonian, in the

nearest neighbor approximation, can be written as,

DL =

(
Ec Uca
Uac Ea

)
, tL,L+1 =

(
0 0

Vac 0

)
, tL,L−1 =

(
0 Vca
0 0

)
(2-86)

where Ec, Ea, Uac, Vac are block matrices of dimension b, and Uac = U †ca and Vac = V †ca, due

to hermiticity of the Hamiltonian.

Single band model

In the single band model, a single s-orbital per lattice site is used, and the contribution

of the various atoms in the lattice is lumped in this single orbital. The expression for the

diagonal and off-diagonal element can be shown to be [16]

tL,L′ = − ~2

(m∗L +m∗L′)∆
2
, (2-87)

D(k) =
~2

2∆2

(
1

m−
+

1

m+

)
+

~2k2

2m∗L
, (2-88)

m− =
m∗L−1 +m∗L

2
and m+ =

m∗L +m∗L+1

2
, (2-89)

where m∗L is the effective mass at layer L and ∆ = aL/2 is the layer width, aL being the

lattice constant.

Diatomic two-band model

The simplest model to represent the conduction and valence band structure of a direct band

gap semiconductor is the diatomic model or spz model. In this model, we place an s-type

orbital in the cation and a pz-type orbital in the anion, in order to reproduce a two-band

dispersion. In this case, diagonal and off-diagonal elements can be written in terms of the

on-site energies Es, for the cation, and Ep, for the anion, and the inter-orbital coupling Vsp
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DL =

(
Es + ~2k2

2m∗e,L
−Vsp

−Vsp Ep − ~2k2
2m∗h,L

)
, tL,L+1 =

(
0 0

−Vsp 0

)
, tL,L−1 =

(
0 −Vsp
0 0

)
(2-90)

where m∗e,L and m∗h,L are the electron and hole effective masses in layer L, respectively.

Using equation (2-81), the momentum matrix element can be shown to be [10]

pzα,L;α′,L′(k) =
m0

i~
[(L′ − L)∆ + vα

′

z − vαz ]Hα,L;α′,L′(k) (2-91)

for longitudinal polarization, and

p
||
α,L;α′,L′(k) = δL,L′(−1)δα,a

im0

2~
aLVsp cos(k

aL
4

) (2-92)

for transversal polarization, where the quantity vαz , for a two-atom basis material, will be

defined in the following way

vαz =

 0 α = c

∆

2
α = a

(2-93)

where a/c stand for anion/cation.

sp3s
∗ model

This model allows to reproduce with reasonable accuracy the band structure of semiconduc-

tors, by using sp3 orbitals with an extra excited s∗ orbital to improve the fit in the conduction

band. This five orbitals are placed in both anion and cation, allowing to reproduce a ten-

band dispersion. More advantageous is the fact that spin-orbit coupling can be included in

the model to accurately represent band structure effects due to spin, like the separation of

the split-off band from heavy and light hole bands at the Γ point. In the simple spinless

case, elements in equation (2-86) can be written in the following way [10]
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Eα =


Esα

Epα
Epα

Epα
Es∗α

 , α = a, c, (2-94a)

Uac =


Vssc− iVsapcs− −iVsapcs− −Vsapcc− 0

−iVpascs− Vxxc− −Vxyc− −iVxys− −iVpas∗cs−
iVpascs− −Vxyc− Vxxc− iVxys− iVpas∗cs−
Vpascc− −iVxys− iVxys− Vxxc− Vpas∗cc−

0 iVs∗apcs− −iVs∗apcs− −Vs∗apcc− 0

 , (2-94b)

Vac =


Vssc+ iVsapcs+ iVsapcs+ Vsapcc+ 0

−iVpascs+ Vxxc+ Vxyc+ iVxys+ −iVpas∗cs+

−iVpascs+ Vxyc+ Vxxc+ iVxys+ −iVpas∗cs+

−Vpascc+ iVxys+ iVxys+ Vxxc+ −Vpas∗cc+

0 iVs∗apcs+ iVs∗apcs+ Vs∗apcc+ 0

 , (2-94c)

with c± = 1
2
cos(k · d±), s± = 1

2
sin(k · d±), and d± = (1,±1)aL

4
.

When including spin-coupling in the model, some modifications are done to the blocks Ec,

and Ea, and new blocks are added to the non-interacting Hamiltonian blocks DL and tL,L′

[15]

Eα =


Esα

Epα −i∆α

3

i∆α

3
Epα

Epα
Es∗α

 , α = a, c, (2-95)

DL =

(
Hc Hca

H†ca Ha

)
, tL,L+1 =

(
0 0

Hac 0

)
, tL,L−1 =

(
0 H†ac
0 0

)
, (2-96)

with the new block matrices defined as

Hα =

(
Eα Eα,so
E†α,so E∗α

)
, α = a, c, (2-97a)

Hca =

(
Uca 0

0 Uca

)
, Hac =

(
Vac 0

0 Vac

)
(2-97b)
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Eα,so =


0 0 0 0 0

0 0 0 ∆α

3
0

0 0 0 −i∆α

3
0

0 −∆α

3
i∆α

3
0 0

0 0 0 0 0

 , α = a, c, (2-98)

and the matrices Uca and Vac are defined as before in equation (2-94).

For the tight binding parameters, we will use those presented by Volg et al. [14] for the

spinless case, and those proposed by Wai et al. [15] for the spin-coupling case, and all these

parameters can be found in tables 2-1 and 2-2, respectively.

The momentum matrix element can be found by means of equation (2-81), by taking the

derivative of block elements (2-94) with respect to k|| for the transversal polarization case,

which results in making the following substitution to the above block elements

c± → −s±d± s± → c±d±. (2-99)

For the case of longitudinal polarization, the result is the same as that obtained for the

spz model, which is shown in equation (2-91). In the band basis, the momentum operator

represents transitions between different bands, and its elements can be computed with equa-

tions (2-100) [17], with Cn
α,L the expansion coefficients of the state of a electron in band n.

Figure 2-3 shows the (band) momentum matrix element |pnm|2, computed for bulk GaAs

and x-polarization.

pn,m =
∑

α,L,α′,L′

Cn
α,L(k)∗pα,L;α′,L′C

m
α′,L′(k) (2-100)

Boundary self-energy in the Tight-binding basis

In the tight binding basis, the general form of the boundary self-energy for the left contact,

accounting for the openness of the system, can be written in terms of the eigenmodes of the

infinite isolated lead. Here we state just the result, whose derivation can be seen in [10].

ΣRB
1,1 = −t1,0(U−Λ−1

z U−1
− )−1 (2-101a)

ΣRB
N,N = −tN,N+1U+ΛzU

−1
+ (2-101b)

where t1,0 and tN,N+1 are the hopping elements between device and contact,
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Figure 2-3: Left: Bulk band structure. Right: Momentum transition matrix elements com-

puted for different band pairs.

U± =

(
φ1
±,c . . . φ

b
±,c 0

0 φ1
±,a . . . φ

b
±,a

)
(2-102)

is a matrix whose columns correspond to the left (−) or right (+) propagating (decaying)

Bloch states of the lead, and

Λz =



eik
1
z∆ 0

. . . 0

0 eik
b
z∆

eik
1
z∆ 0

0
. . .

0 eik
b
z∆


(2-103)

is a diagonal matrix whose elements correspond to propagating factors.

In order to compute self-energy for a given energy E, the eigenmodes of the infinite lead

need to be computed and sorted, together with their corresponding wavevector kz = kz(E),

hence the complex band structure problem needs to be solved for the lead. To this end, we

follow the approach shown in [18], by solving the Schrödinger equation for the isolated left

lead system

Hφα = Eφα (2-104)
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Table 2-1: Spinless ETB material parameters for GaAs, InAs, GaSb and InSb at 300 K,

taken from [14].

Parameters GaAs InAs GaSb InSb

Esa -8.3431 -9.5381 -7.3207 -8.0157

Epa 1.0414 0.9099 0.8554 0.6738

Esc -2.6569 -2.7219 -3.8993 -3.4643

Epc 3.6686 3.7201 2.9146 2.9162

Es∗a 8.5914 7.4099 6.6354 6.4530

Es∗c 6.7386 6.7401 5.9846 5.9362

Vss -6.4513 -5.6052 -6.1567 -5.5193

Vxx 1.9546 1.8398 1.5789 1.4018

Vxy 5.0779 4.4693 4.1285 3.8761

Vsapc 4.4800 3.0354 4.9601 3.7880

Vpasc 5.7839 5.4389 4.6675 4.5900

Vs∗apc 4.8422 3.3744 4.9895 3.5666

Vpas∗c 4.8077 3.9097 4.2180 3.4048

where α designates one of the Nα eigenmodes with energy E, and H is the tight binding

Hamiltonian of the lead.

In the following, we will focus on the left lead, whose nodes are labeled starting from 0

to −∞, and we will assume that couplings from device to lead are set to zero (which for

TB imply that the block element of the total device-lead Hamiltonian [H]1,0 = 0). For a

block-tridiagonal tight binding Hamiltonian of the form shown in (2-86), equation (2-104)

takes the form

(D − E)φα−1 + tlφ
α
0 + tuφ

α
−2 = 0, (2-105)

with tl the lower diagonal hopping element, tu the upper diagonal hopping element, D the

diagonal element, φα0 the surface mode, and

φαL =

(
φαL,c
φαL,a

)
c ≡ cation, a ≡ anion. (2-106)

Replacing D, tl and tu from equation (2-86) in (2-105), and taking into account the trans-

lational invariance of the system that connects the wavefunctions at different positions via

the relation4

4Here, (2-107) is stated as an assumption, but it appears naturally from the definition (2-84), when

writing the matrix elements of the Hamiltonian equation (2-104) in the POB. See [19].
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Table 2-2: ETB material parameters for GaAs, InAs, GaSb and InSb at 77 K, taken from

[15].

Parameters GaAs InAs GaSb InSb

Esa -9.2664 -9.3562 -6.0493 -9.3378

Epa 1.4866 1.8201 0.91157 0.39352

Esc -4.3504 -3.9611 -4.0712 -3.3248

Epc 3.2136 3.1842 2.6352 2.0791

Es∗a 8.7826 7.0432 7.8753 6.6378

Es∗c 5.8765 6.1232 4.8565 5.3807

Vss -7.9480 -6.5393 -5.7762 -5.8320

Vxx 2.3069 2.5491 1.8244 1.2596

Vxy 5.0305 5.4700 5.3733 4.0026

Vsapc 2.7777 4.3607 4.4761 4.1129

Vpasc 10.005 7.0849 8.2748 7.5769

Vs∗apc 3.6271 3.0007 5.0079 3.4448

Vpas∗c 7.0071 5.4020 6.3813 5.8873

∆a 0.4210 0.4200 0.9730 0.9730

∆c 0.1740 0.3930 0.1740 0.3930

φαL = eik
α
z (E)∆φαL−1, (2-107)

equation (2-105) leads to a set of two matrix equations

Vcaφ
α
0,a + (Ec − E)e−ik

α
z ∆φα0,c + Ucae

−ikαz ∆φα0,a = 0; (2-108a)

Uace
−ikαz ∆φα0,c + (Ea − E)e−ik

α
z ∆φα0,a + Vace

−2ikαz ∆φα0,c = 0 (2-108b)

Multiplying the upper equation by eik
α
z ∆, and the lower one by e2ikαz ∆, leads to the final

generalized eigenvalue problem of the form

(
Ec − E Uca
Vac 0

)(
φα0,c
φα0,a

)
= eik

α
z ∆

(
0 −Vca
−Uac −(Ea − E)

)(
φα0,c
φα0,a

)
, (2-109)

whose solution, for a given energy E, allows to compute the propagators eik
α
z ∆ and the surface

modes φα0 needed for the computation of the boundary self-energy in equation (2-101).

In order to obtain the matrices from equations (2-102) and (2-103), the eigenvalues and

eigenmodes obtained from (2-109) need to be classified into right (+) or left (−) propa-

gating or decaying modes. For the case of a N -band with two-atom basis, there are N/2
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eigenmodes traveling or decaying to each side, and these can be classified in the following

way: propagating states (real kz) are classified according to the sign of the group velocity vg
in the longitudinal direction, such that positive or negative velocities travel to the right or to

the left, respectively. On the other hand, decaying states (complex kz) are simply classified

according to the sign of the imaginary part of the longitudinal wavevector, as decaying to

the left (=(kz) < 0) or decaying to the right (=(kz) > 0).

The computation of the group velocity can be carried out easily by means of the Hellman-

Feynman theorem in the following way,

vαg =
1

~
dE

dkz
,

dE

dkz
=

〈
φα ∗

∣∣∣∣dH̄dkz
∣∣∣∣φα〉 (2-110)

Multiplying equation (2-105) at the left by φα ∗−1, it is easy to see that

H̄ = e−ik
α
z ∆tl +D + eik

α
z ∆tu, (2-111)

hence obtaining

dH̄

dkz
= i∆

[
e−ik

α
z ∆tl + eik

α
z ∆tu

]
, (2-112)

which can be substituted in (2-110) to obtain vαg , for each real kαz .

Current in the Tight-binding basis

Expressing equation (2-61) in the basis (2-84) one is able to find a formulation for the current

density passing from layer L− 1 to layer L. Here, we present just the result, but a complete

demonstration can be found in [10]

J
n(p)
L = (−)

e

~A
∑
k

∫
dE

2π
Tr
[
tL,L+1(k)G

<(>)
L+1,L(k, E)−G<(>)

L,L+1(k, E)tL+1,L(k)
]

(2-113)

where the trace is over orbital indices, and a factor of two still needs to be added in the

spinless case.

The particle conservation law stated in (2-60), may now be written as

0 = JnL − JnL−1 =
e

~A
∑
k

∫
dE

2π
Tr
[
{ΣRG< + Σ<GA −GRΣ< −G<ΣA}L,L

]
. (2-114)
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Omitting the energy integration in (2-113) we obtain an expression for the energy resolved

current density

J
n(p)
L (E) = (−)

e

~A
∑
k

Tr
[
tL,L+1(k)G

<(>)
L+1,L(k, E)−G<(>)

L,L+1(k, E)tL+1,L(k)
]

(2-115)

Additionally, as stated in [18], we present a second definition for the divergence of the electron

current density5

dJL
dz

(E) =
e

~A∆

∑
k

Tr [{Σ<(k, E)G>(k, E)−G<(k, E)Σ>(k, E)}L,L] , (2-116)

which is a very useful formula to compute the individual contributions of the scattering

and coherent currents, by replacing the self energies Σ≷ by the corresponding scattering

self-energy Σs,≷ or the boundary self-energy Σb,≷, respectively.

2.7.2. k · p model and hamiltonian representation

The k · p model is a multi-band model, in which electrons moving in a crystalline structure

are described by a wavefunction which is expanded around a particular point of interest k0,

which is typically located in the band edge of direct bandgap semiconductors. This method

was firstly introduced by Bardeen and Seitz [20], and it has become very popular due to

its relative simplicity and the fact that its able to accurately describe the band diagram of

direct bandgap semiconductors close to the band edges, where the wavevector k deviates by

a small amount from the considered point k0.

In our case, a real-space k ·p basis is chosen, in which the FEM basis {ti(z)} of peak-shaped

functions centered at zi, is applied to discretize the computational (1D) domain along the

perpendicular growth direction z in which the symmetry has been broken. The k · p basis

function are then written in the following manner [18],

φνk(r) =
1√
A
ti(z)eik·r||um0(r), (2-117)

where ν = (i,m) are the space (i) and band (m) indices combined, k is the transversal

component of the wavevector, um0(r) is the zone center Block function of band m, A denotes

the cross sectional area and r|| is the 2D position vector over the planes transversal to the

z-axis.

5When the factor e in (2-116) is not included, the formula represents a scattering rate (units

m−3s−1eV −1). In fact, particular scattering self-energies can be used to compute the spectrally resolved

scattering rate (optical generation rate for the case of photons).
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The noninteracting Hamiltonian matrix elements in the k · p basis are found from equation

(2-46b), which under some assumptions (e.g. axial approximation) can be demonstrated to

depend on empirical parameters. We will not present here the complete derivation of the

Hamiltonian, since it is already well documented in the literature [21], but simply present

the parameters that will be used for the subsequent simulations, which for the case of a 8×8

k · p Hamiltonian are given in table 2-3.

Table 2-3: k · p material parameters for AlSb, InAs, GaSb and InSb, taken from [22].

Parameters AlSb InAs GaSb InSb

Eg 2.386 0.42 0.81 0.235

mc/m0 0.13 0.0224 0.0412 0.0135

γ1 4.15 19.4 11.84 32.4

γ2 1.28 8.545 4.25 13.3

γ3 1.75 9.17 5.01 15.15

∆ 0.65 0.38 0.81 0.81

Ep 18.7 21.5 22.4 23.3

On the other hand, the overlap matrix expressed in basis (2-117) is different from the identity,

as in the previous case, due to the fact that the finite element basis functions ti(z) have non-

negligible overlap. Introducing the coarse-graining assumption [18]∫
dr ti(z)tj(z)u∗m0(r)un0(r) ≈

∫
dz ti(z)tj(z)A

1

Ω

∫
Ω

dr′ u∗m0(r′)un0(r′) (2-118)

The overlap matrix is written as follows,

Mνµ =

∫
drφ∗νk(r)φµk(r) =

1

A

∫
dr ti(z)tj(z)u∗m0(r)un0(r)

≈
∫
dz ti(z)tj(z) δmn (2-119)

where ν = (i,m), µ = (j, n), Ω is the volume of one unit cell, and the orthogonality condition

of the Bloch functions was used 1
Ω

∫
Ω
um0un0 = δmn.

Boundary self-energy in the k · p basis

In the case of k ·p basis, finding the boundary self-energy requires again to solve the complex

band structure problem of the isolated leads. It can be demonstrated [23, 19] that the lead

Hamiltonian can be written as a second order polynomial of the transversal wavevector kz

H̄ = H(0) +H(1)kz +H(2)k2
z (2-120)
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which, together with the Schrödinger equation (2-104), transforms the complex band struc-

ture problem into a generalized eigenvalue problem for kz and the surface mode φα

(
0 1

H(0) − E1 H(1)

)(
φα

kαz φ
α

)
= kαz

(
1 0

0 −H(2)

)(
φα

kαz φ
α

)
. (2-121)

The boundary self-energies can be found using the following equations [23, 19] ,

ΣRB
1,1 = −H(2) [φ−]K−z [φ−]−1 +

i

2
H(1) (2-122a)

ΣRB
N,N = −H(2) [φ+]K+

z [φ+]−1 +
i

2
H(1) (2-122b)

where [φ±] is a matrix which has the left (φ−) or right (φ+) propagating (decaying) eigen-

vectors organized in its columns, and the matrix K±z is defined in as follows

K±z =

 k1±
z 0

. . .

0 kNα±z

 , (2-123)

Nα is the total number of modes kαz with energy E, and ± designates right or left propagating

(decaying) eigenvalues of (2-121).

For an N -band model, we will obtain 2N solutions for (2-121) which can be classified de-

pending on the nature of the modes (propagating or decaying) in the same way as was done

for the tight binding case (see section 2.7.1). In this case, the derivative of the Hamiltonian

with respect to the longitudinal wavevector is obtained from (2-120) as

dH̄

dkz
= H(1) + 2H(2)kαz . (2-124)





Chapter 3

Numerical Results

3.1. Numerical considerations and choice of simulation

parameters

Despite being a very powerful method for the simulation of nanoscale optoelectronic devices,

the NEGF very computationally demanding. If we for example consider a small resistor

structure of 100 nm length, composed of a given material with an average lattice constant

of alat = 0.6 nm, in the TB basis this would be discretized in about Nz ≈ 330 layers.

Additionally, if a discretization in energy and k-space is chosen such that NE = 300 and

Nk = 50 points are considered, respectively, within the two-band TB model NB = 2, then

each single Green’s function or self-energy will be composed of (NB × Nz)
2 × NE × Nk =

6.534× 109 complex numbers. This simple example is useful to see how intensive the NEGF

method is, both in therms of time, because of all the matrix multiplications and inversions

it involves and which should be iterated to convergence, and in terms of memory, this

considering that at least G<, GR, Σ< and ΣR should be stored at each iteration, all of them

having the above calculated size. Hence, all the examples showed in this work will be limited

to small devices of no more than 80 nm length, in which the bandgaps and applied bias will

be small enough to ensure an energy grid of not too many points. Further improvements to

the NEGF method, in terms of convergence and memory requirements, will be also discussed

at the end of this section.

One key aspect before running the NEGF simulations is choosing appropriately all the sim-

ulation parameters, such as ∆E, ∆k, kmax, and the energy grid boundaries Emin and Emax.

Energy and transverse momentum resolutions, ∆E and ∆k respectively, should be chosen

small enough to be able to recognize all the spectral features of the simulated device, since

spectral quantities are going to be integrated in energy and momentum, but at the same time

not so small so they allow a reasonable computation time. In the case of transverse momen-

tum, effects of choosing high values of ∆k are evidenced as oscillating peaks in the spectral
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quantities. Here we take the value suggested in [10] for this quantity ∆k ≈ 0.003π/∆, with

∆ the mesh/monolayer spacing. In the case of the energy resolution, a value of ∆E less than

10 meV seems to give a good compromise between resolution and computation time.

On the other hand, the spectral range (both in energy and transversal momentum) should

be chosen so to consider all the important phenomena that is desired to capture within the

simulation. Good values for Emin and Emax are about 0.5 eV below and above the band edge

extremas. Finally, values of kmax have been suggested in the literature [18, 10], from which

kmax ≈ 0.14π/∆ seems to be a more than reasonable value, hence obtaining an average of

kmax/∆k ≈ 50 points for the transverse momentum discretization.

Among other parameters that need to be adjusted, the polar optical phonon energy ~ωLO will

be assumed to be 40 meV regardless on the material. This assumption apart of simplifying

the implementation of the code, will help to avoid Green’s function interpolation when

computing the polar optical phonon self-energy, by taking ∆E an integer multiple of this

quantity, so energy translations of ~ωLO on any point of the grid will be another point in

the grid.

As a last remark, it is important to clarify how the convergence of the inner and outer loop

will be treated. For the outer loop, Poisson equation will be solved until the potential change

δUk = |Uk −Uk−1| falls below a residual value εouter. Regarding the inner iterations, these

will be performed until the relative change in the device current goes below a limiting value

εinner, e.i.

|Jk − Jk−1|
|Jk|

< εinner (3-1)

Table 3-1 summarizes all the simulation parameters that will be used in the following sim-

ulations.

Table 3-1: Parameters used in the subsequent simulations.

Parameters Value Unit

∆E 5 meV

∆k 0.03 1/nm

kmax 1.5 1/nm

Nk 50

~ωLO 40 meV

Daco 8 eV

εinner 10−6

εouter 10−3
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3.2. Single quantum well p-i-n LED

The first device considered for this work will be a single quantum well (SQW) p-i-n diode,

composed of an intrinsic region with a high bandgap material (barrier made of Al0.3Ga0.7As)

and a low bandgap material (well made of GaAs), which is sandwiched between two highly

doped Al0.3Ga0.7As layers both with a dopant concentration of Nd,a = 1019 cm−3. The

total length of the device is approximately 38.5 nm and a transversal area A = 10 mm2

is assumed. Device structure with its respective measures is shown in figure 3-1, and the

material parameters used for the simulation are shown in table 3-2.

Figure 3-1: Schematic of the p-i-n diode studied in this section, with all the physical di-

mensions indicated in nm.

Table 3-2: Parameters used in the subsequent simulations.

Parameter Al0.3Ga0.7As GaAs Unit

Bandgap energy Eg 1.77 1.42 eV

Conduction band offset ∆Ec 0.0 -0.2 eV

Valence band offset ∆Ev 0.0 0.15 eV

Electron effective mass me 0.0879 0.067 m0

Hole effective mass mh 0.1024 0.082 m0

static dielectric constant ε 12.2 13.1 ε0
High frequency dielectric constant ε∞ 10.9 10.9 ε0
n-contact doping density Nd 1019 cm−3

p-contact doping density Na 1019 cm−3
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(a) (b)

Figure 3-2: (a) Local density of states (assuming k|| = 0) in the ballistic limit, at equilib-

rium. (b) Cut of the LDOS made at the center of the device, in x0 = 19.23 nm.

Despite being a very simple example, this kind of structures has been widely investigated

in several works [18, 10, 24], and it serves as a good structure to test the capabilities of the

NEGF method. Due to the high bandgap of the materials used, simulations using the sp3s
∗

model were very resource demanding, so only the spz was used to simulate this device. Note

also that the bands offsets are included in the Hamiltonian through the potential energy.

3.2.1. Device properties in the ballistic limit

The device above described was first simulated in the ballistic limit, in the absence of any

scattering mechanism. The equilibrium band diagram along with the local density of states

and the carrier densities are also shown in figures 3-2 and 3-3, respectively. In the LDOS,

the contribution of the transversal wavevectors is not displayed, e.i. k|| = 0.

Wave functions injected from the contact are partially reflected at the junction and form

an interference pattern which is visible along both figures in 3-2. In the case of 3.2(b),

a cut made at x0 = 19.23 nm is displayed, were the interference oscillations are shown to

decrease until the continuum region is reached. The two big peaks near the band edge

correspond to the confined states that are formed due to the presence of the well, and the

energy difference between the fist level in the conduction band and the one in the valence

band is approximately 1.55 eV. This fact will be used in the next simulations to exploit the

applicability of this device as a photodiode.

Figure 3-4 shows the ballistic spectral current computed for the p-i-n device at Vbias =

1.5 V. In this case continuous horizontal lines are seen along the device length, because

states injected by one contacts travel through the device without suffering any energetic
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Figure 3-3: Spectral distribution of carriers along the device, electrons at the right and holes

at the left.

(a) (b) (c)

Figure 3-4: (a) Spectral current (AeV −1cm−2) at Vbias = 1.5 V, in the coherent limit. (b)

Cut of the spectral current made at the center of the device, in x0 = 19.23 nm. (c) Electron

(blue), hole (red) and total (black) current along the device.

redistribution process (scattering), hence conserving their same energy as they leave the

device at the other contact. This fact can also be noticed in a cut made at any position

along the device, e.g. figure 3.4(b) shows a cut made at x0 = 19.23 nm, where two sharp peaks

of current are seen, one in the conduction band (electron current) and one in the valence

band (hole current). Moreover, injection of carriers can only happen at energies were no

reflexion can occur, e.i. above the conduction band maximum and below the valence band

minimum. Finally, 3.4(c) shows the total current along the device, with the corresponding

contributions of electrons and holes. The ballistic current is constant at every position for

both electrons and holes, as imposed by the conservation law stated in (2-114).
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(a) (b)

Figure 3-5: (a) Local density of states (assuming k|| = 0) at Vbias = 1.5 V. (b) Cut of the

LDOS made at the center of the device, in x0 = 19.23 nm.

3.2.2. Device properties including scattering mechanisms

When scattering mechanisms are included in the simulation, several changes can be appreci-

ated in the results obtained. Figure 3-5 shows the LDOS for the device at Vbias = 1.5 V, and

it can be noticed that when the device is close to flat band, the effect of confinement becomes

more visible as in 3.5(b) we can observe that the confined state within the well have become

very sharp. Due to the reduced dimensions of the device, optical phonon scattering effects

cannot be well appreciated in the simulation, as shown in figure 3.6(a) where the spectral

distribution of the current flowing trough the device closely resembles that of the ballistic

device. However, when the current at the boundaries is plotted, some changes can be ob-

served in the spectral distribution of current components. Figure 3.6(b) displays a cut of the

spectral current at the boundaries where carriers are absorbed, and a typical step behavior

is noticed due to optical phonon emission as carriers travel through the device. Acoustic

phonon scattering result in a slight broadening of the spectra, and successive emission of

optical phonons creates these steps in the spectral current, each of these separated by the

optical phonon energy ~ωLO = 40 meV. Successive scattering with optical phonons have in

general the effect of spreading the current distribution, generating satellite peaks of current,

which would be much more appreciable in a longer device.

Acoustic and optical phonon scattering conserve the current as can be appreciated in figure

3.6(c) when again the computed current is constant along the device for both electrons

and holes. It worth to mention that in general, just the total current is conserved, and

not for both electrons and holes; which is particularly the case of the illuminated device,

where photogenerated carriers in the well travel to opposite contacts, hence producing an
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(a) (b) (c)

Figure 3-6: (a) Spectral current (AeV −1cm−2) at Vbias = 1.5 V. (b) Cut of the spectral

current made at the contact-device boundary where carriers are absorbed, x0 = 38.5 nm for

electrons (blue) and x0 = 0 nm for holes (red). The current is displayed in logarithmic scale.

(c) Electron (blue), hole (red) and total (black) current along the device.

asymmetric flux of carriers at each side.

When illuminating the device, electrons in the valence band can be excited and promoted

to the conduction band, producing a net current flux through the device, or photocurrent.

To study this behavior, the device was illuminated using a monochromatic light source with

intensity 10 kW/m2. Figure 3-7 shows the spectral distribution of current flowing through

the device, for different values of the photon energy ~ωop. In this case, the device is biased

with a voltage Vbias = 1.3 V, which is a value just below the onset of the diode (the drift

current in this case is negligible compared with the induced photocurrent), and the photon

energy was varied around 1.55 eV, which is the energy difference between the confined states

in the QW, as shown in figure 3.7(d). For ~ωop = 1.45 eV, it can be seen that the induced

photocurrent is very small, since this energy is not enough to excite the states with the peak

in the LDOS, and just the lowest QW states are excited. Lower photon energies induce a

negligible photocurrent or are not absorbed at all. On the other hand, when ~ωop = 1.55

eV is used, just transitions between the states indicated in figure 3.7(d) are excited, and the

resulting photocurrent is very sharp and narrow in energy. Finally, further increasing the

photon energy, as done in figure 3.7(c), produces a broadened spectrum of photocurrent, due

to excitation of states far away from the gap, spectrum which can be broadened even more

as carriers are relaxed due to phonon scattering.

We can further observe where the absorption of photons is taking place, by plotting the

divergence of the spectral current from the electron-photon self-energy, or spectral optical rate

(number of photons absorbed/emitted per unit of time, volume and energy), using equation

(2-116). Figure 3-8 shows the spectrally resolved optical rate originated by electron-photon

scattering. It can be noticed that the absorption of photons take place just in the well region,

and the energies in which absorption take place correspond to those observed above where
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(a) (b)

(c) (d)

Figure 3-7: Spectral current (AeV −1cm−2) at Vbias = 1.3 V for different values of the energy

of the incoming photons: (a) ~ωop = 1.45 eV, (b) ~ωop = 1.55 eV, and (c) ~ωop = 1.75 eV.

(d) Cut of the LDOS made at the center of the device, in x0 = 19.23 nm, with the transition

between the confined levels indicated.

the current was flowing. For the case ~ωop = 1.45 eV exposed in figure 3.8(a), the absorption

takes place between the lowest well levels but the number of transitions is small compared

with other two cases and the induced photocurrent is almost negligible, whether for higher

photon energies, the spectral range of transition from the valence to the conduction band is

wider, hence producing a broadened current spectra.

To conclude the study of this device, we show the extraction efficiency as computed by the

following equation [24]

ηext =
JSC
Jabs

, (3-2)

where JSC is the short-circuit photocurrent, and Jabs is the bias dependent photocurrent



44 3 Numerical Results

(a) (b) (c)

Figure 3-8: Spectral optical rate for different photon energies: (a) ~ωop = 1.45 eV, (b)

~ωop = 1.55 eV, and (c) ~ωop = 1.75 eV.

Figure 3-9: Extraction efficiency ηext as a function of the bias voltage, for the SQW device

illuminated with a monochromatic source with ~ωop = 1.55 eV.

cmputed as Jabs = Jtot − JDark.

The extraction efficiency is a measure to describe the carrier scape in the device, e.i. how easy

is to remove the generated pair from the active area. A decreasing dependence is observed in

figure 3-9 between ηext and the applied bias, in accordance with the results shown in [24] for

a similar structure. In fact, increasing positively the bias, decreases the built-in field inside

the SQW, which works in a detrimental manner for the carrier extraction. On the other

hand, higher built-in field help to attract free carriers to the contact in a more effective way,

decreasing the probability this carriers recombine before leaving the device.
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3.3. Type-two superlattice absorber

As a second example, a type-II superlattice (T2SL) absorber will be analyzed using the

NEGF method in the tight-binding basis. This kind of structure is very important for opto-

electronic applications as a photodetector, and it has been studied many times before in the

literature. Its applications in the mid-infrared (mid-IR) range have been demostrated using

inter-band transitions due to the effective badgap that is formed between the quantized lev-

els of the superlattice. Moreover, its ability to tune easily the gap by varying the SL period

make it a versatile and precise device to detect a wide range of wavelengths. Some results

regarding the absorption spectra of a similar structure are shown by Qiao et al. in [25],

where the study is made with a k · p approach, under periodic (PBC) and Dirichlet bound-

ary conditions (DBC), instead of our open boundary conditions (OBC) as imposed by the

boundary self-energies. A further, more complex device using this structure is investigated

by Tian et al. in [26].

Figure 3-10: Schematic of the T2SL photodetector studied in this section.

The structure is an approximately 31 nm Type-II SL, composed ofNp periods of well (W) and

barrier (B) layers made of undoped InAs and GaSb, respectively, and which are sandwiched

between two highly doped contacts withNa = 1017 cm−3 andNd = 1018 cm−3. The unbalance

in the doping levels is just a tool to achieve flat band conditions with no applied bias. The

device layout is shown in figure 3-10, where the dimensions LB, LW , and the number of

periods were not specified as they will be varied to show some properties of the device.

Simulation parameters are also presented in table 3-3.

Figure 3-11 shows the band structure and the dispersion relation of the energy bands with

repsect to the transversal momentum k = |k|||, in a 5 period superlattice with LW = 3.65

nm and LB = 1.52 nm, computed using the TB spz model under both PBC and OBC. As

expected, in figure 3.11(b) the periodicity of the structure has created evenly spaced (in

energy) minibands along the structure, in accordance to what is shown in [25], and each

miniband is composed of four sub-bands, with an effective bandgap of 0.388 eV. On the
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Table 3-3: Parameters used in the T2SL simulations.
Parameter InAs GaSb Unit

Bandgap energy Eg 0.42 0.81 eV

Conduction band offset ∆Ec -0.95 0.0 eV

Valence band offset ∆Ev -0.56 0.0 eV

Electron effective mass me 0.0224 0.041 m0

Hole effective mass mh 0.0224 0.052 m0

static dielectric constant ε 15.15 15.7 ε0
High frequency dielectric constant ε∞ 12.3 14.4 ε0
n-contact doping density Nd 1018 cm−3

p-contact doping density Na 1017 cm−3

(a) (b) (c)

Figure 3-11: (a) Band diagram of the T2SL structure, with the left to right transmission

probability at the right side. Contact Fermi levels are marked with diamonds. The energy

dispersion is also shown, computed with (b) PBC and (c) OBC.

other hand, when attaching the finite periodic structure to the infinite leads, e.i. imposing

OBC, we experience, among the main differences, the appearance of one more band on each

miniband, and two new bands also show up inside the main gap, which decrease the effective

bandgap of the structure to about 0.277 eV. As we will show later, this two bands are an

effect of the contacts attached to the structure, but they are not visible within the periodic

part of the device, hence giving an effective gap of approximately 0.42 eV for the device

with OBC. This energy correspond to a wavelength in the order of 2.96 µm which make the

device suitable to detect wavelengths in the mid-IR light range.

Figure 3-12 shows the LDOS along the device, with a cut on the middle of the structure

shown on the right. Here the minibands are clearly visible, and the sub-bands have been

labeled with the symbols c1-c5 (c2 and c4 are not shown, but correspond to the small peaks in
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(a) (b)

Figure 3-12: (a) Local density of states (assuming k|| = 0) at equilibrium. (b) Cut of the

LDOS made at the center of the device, in x0 = 15.35 nm.

between c1−3−5) for the ones in the conduction miniband and v1-v5 for the valence miniband.

As it will be shown in a moment, miniband formation occur due to the superposition and

coupling of the localized levels of the wells, hence giving rise to peaks in the density of

states which coincide with the number of periods included in the structure (also with the

number of subbands on each miniband). In fact, the effective bandgap of the device can be

tunned by changing the well thicknesses (conduction and valence band wells), hence moving

the position of the ground states of the wells. Due to the effect of the open boundaries

and interaction with phonons, localized states appear like broadened peaks, since carriers

in those states are not confined but posses a finite lifetime, and further resonances can be

observed higher in the LDOS due to the presence of the wells, which give rise to additional

minibands.

At this point, different transitions can be tested by illuminating the SL structure, and finally

the photocurrent response of the device can be obtained. Figure 3-13 shows the spectral

current on the SL for different values of the incoming photon energies, using as illuminating

source monochromatic light with intensity 10 kW/m2. First we considered a small value of

~ωop = 0.1 eV, which is enough to promote transitions form c1 to c3, but due to the small

population of the sub-band c1, just a small resulting photocurrent is observed, in figure

3.13(a). Moreover, absorption only takes place near the n-contact (left side) where this band

has a higher concentration of electrons.

For the case of figure 3.13(b), a photon energy of ~ωop = 0.28 eV was used, close to the value

of the energy gap observed in figure 3.11(c), and some current can be seen to traverse the SL,

with a discontinuity in the spectral lines close to the right contact, suggesting that photon

absorption takes place there. In fact, this behavior is confirmed when observing the spectral
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(a) (b)

(c) (d)

(e) (f)

Figure 3-13: Spectrally resolved photogenerated current (AeV −1cm−2) for the device at zero

bias for different photon energies: (a) ~ωop = 0.1 eV, (b) ~ωop = 0.28 eV, (c) ~ωop = 0.42

eV, (d) ~ωop = 0.52 eV, and (e) ~ωop = 0.64 eV. (f) Photogenerated current as a function

of the incoming photon energy.
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(a) (b)

Figure 3-14: Spectral optical rate at: (a) ~ωop = 0.28 eV and (b) ~ωop = 0.64 eV.

optical rate which is plotted in 3.14(a), where the places where absorption takes place are

shown to be the regions close to the contacts, which are affected by the bulk density of states

at this two sides and hence producing the observed extra bands plotted in 3.11(c). However,

this energy does not correspond to the absorption edge of the structure as observed in figure

3.13(f), being the photocurrent still small due to absorption of photons limited to a small

portion of the hole structure.

Finally, values of ~ωop = 0.42, 0.52, 0.64 eV were used to observe transitions from valence

to conduction miniband, and the spectral current in those cases can be observed in figures

3.13(c), 3.13(d) and 3.13(e), respectively. This energy values correspond to the transitions

v1-c1 in the case of 0.42 eV, v1-c3 in the case of 0.52 eV and v1-c5 or v3-c3 in the case of

0.64 eV, as they can be clearly seen in the location of the spectral lines of current. As

shown in figure 3.14(b), where the spectral optical rate at 0.64 eV is plotted, the absorption

of photons takes place though the entire superlattice structure, as opposed to what was

observed in 3.14(a). The obtained photocurrent as a function of the incoming photon energy

is also plotted in figure 3.13(f), where an increasing behavior of the photocurrent can be

observed with increasing photon energy. As expected, the current has a step increase once

the photon energy is equal to 0.42 eV, which correspond to the energy gap, and starts

to become constant once the photon energy is high enough to cover the entire conduction

miniband, e.i. no more transitions will occur at higher photon energies. This behavior just

reflect the density of states participating on the optical transitions.
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(a) (b) (c)

(d) (e) (f)

Figure 3-15: Energy dispersion and LDOS (k|| = 0) at the middle of the structure for the

T2SL with different number of periods: (a) and (b) Np = 1, (c) and (d) Np = 4, and (e)

and (f) Np = 7.

3.3.1. Effect of geometrical parameters on the SL

Deeper understanding of this structure can be obtained by varying its geometrical parameters

and observing the spectral quantities. As a first example, miniband formation can be seen

when observing at the LDOS as the number of periods in the superlattice is increased. Each

InAS-GaSb period produces a well for both conduction and valence band, and confined

states are formed inside the well (See figure 3.15(b), where two confined states reside in the

conduction band well, whereas there is just one in the valence band well). When attaching

this structure to open boundaries, this states are not confined anymore, but acquire a finite

width corresponding to a finite carrier lifetime, since this carriers can now scape through

the open contacts. Away from the well top energy, the density of states resembles that of

the continuum, with some resonances corresponding to further states arising from the well

below.

As seen in figure 3.15(d), adding more periods to the superlattice results in an equal increase

in the number of peaks on each miniband, which is consequence of the coupling of the
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Figure 3-16: Energy gap between valence and conduction minibands as a function of the

period length LP in nm. The ratio LB/LW is kept constant and equal to 4/9.

confined states of the different wells. On figure 3.15(f), where the structure has 7 periods,

the minibands are clearly formed, with sharp edges at the sides. It can be noticed that

both, the v1-c1 energy (energy between first peaks on valence and conduction band) and the

miniband widths are almost not modified as the number of periods increase. As mentioned

before, this is a consequence of the fact that the well width is kept constant in this case,

therefore, the spectral location of the quasi-bond states inside the well is not modified.

On the other hand, by increasing (decreasing) the well widths, the the position of the mini-

bands can be moved to lower (higher) energies, hence changing the effective gap and in this

way tunning the cutoff wavelength absorbed by the SL absorber. One example of this is

shown in figure 3-16, where the absorber v1-c1 gap is changed by varying the period length

LP , maintaining the constant the ratio LB/LW ≈ 4/9. In this way, an increase in the period

length produce an increment in the barrier and well lengths, therefore moving the ground

levels to lower energies as shown in the decremental behavior of the graph.

3.4. Tunneling junction

Tunneling junctions (TJ) are important structures used in solar cells to match electron and

hole currents from heterojunction subcells that are connected in series. The matching of these

currents is made by means of interband tunneling and recombination of carriers, phenomenon

which will be studies in this last example using the NEGF approach, within the TB spz
band model. In particular, two structures were studied: a bulk TJ made of a heavily doped

In0.52Al0.33Ga0.15As p-n (Na,d = 1019cm−3) junction attached to doped In0.52Al0.33Ga0.15As

and In0.53Ga0.47As, p and n contacts, respectively; and a double quantum well TJ (DQWTJ)

which consist of the same structure of the bulk TJ, with two wells made of In0.53Ga0.47As
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inserted in the p-n junction region. These structures, which are shown in figure 3-17, were

studied experimentally by Lumb et al. in [27] and subsequently tested with the NEGF

approach by Aeberhard in [28]. They constitute a very good example to test our NEGF

implementation in order to observe phonon-assisted tunneling, as the structure of these

devices is made such that energetic states available for tunneling are unaccessible for ballistic

carriers coming from the contacts.

(a) (b)

Figure 3-17: Schematic layout of the structures studied in this section: (a) Bulk TJ (b)

DQWTJ. Physical dimensions are given in nm.

Table 3-4: Parameters used in the tunnel junctions simulations.

Parameter InAlGaAs InGaAs Unit

Bandgap energy Eg 1.18 0.74 eV

Conduction band offset ∆Ec 0.3 0.0 eV

Valence band offset ∆Ev -0.14 0.0 eV

Electron effective mass me 0.065 0.041 m0

Hole effective mass mh 0.087 0.052 m0

static dielectric constant ε 13.2 14.2 ε0
High frequency dielectric constant ε∞ 10.7 11.0 ε0
n-contact doping density Nd 2× 1017 cm−3

p-contact doping density Na 2× 1017 cm−3

Figures 3.18(a) and 3.18(b) show the band diagrams, along with the local density of states

(k|| = 0) at 0.06 V and 0.16 V bias voltage, for both the bulk TJ and the DQWTJ, respec-

tively. High built-in field induced at the p-n junction interface in 3.18(a) produce a pro-

nounced band bending which in turn generate confined states at the vicinity of the junction.

The presence of open boundaries broaden the spectrum this states, generating quasi-bond

states due to a finite scape probability acquired by the confined carriers. Such states, both in
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valence and conduction band, overlap in energy and are suitable to produce interband tun-

neling current. However, they are not accessible from contact states, so phonon relaxation

is needed for carriers to be able to reach this energy levels. As seen from figure 3-18, which

also shows the spectrally resolved electron-phonon scattering rate for both TJ structures at

1.6 V and 3.1 V bias, respectively; most of the phonon scattering events occur within the

potential wells formed by doping induced band bending, as ballistic carriers injected from

the contacts relax until they reach the lowest well levels and subsequently tunnel to the other

band. Once they tunnel, optical phonon absorption give them enough energy to scape to

the other contact, hence generating a net current. This behavior make imperative to include

(optical) phonon scattering in the simulation in order to accurately analyze the device, as

a oversimplified ballistic approach would underestimate the current due to the vanishingly

small ballistic energy overlap at small (positive) bias.

(a) (b)

(c) (d)

Figure 3-18: Spectrally resolved local density of states (k|| = 0) for (a) Bulk TJ at

Vbias = 0.06 V and (b) DQWTJ at 0.16 V. Spectrally resolved electron-phonon scattering

rates (cm−3s−1eV −1) for (a) the bulk TJ at Vbias = 1.6 V, and (b) the DQWTJ at Vbias = 3.1

V.
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(a) (b)

(c) (d)

Figure 3-19: Local density of states (k|| = 0) and spectrally resolved current density

(Acm−2eV −1) for the bulk TJ structure at: (a) and (b) Vbias = 0.16 V, (c) and (d)

Vbias = 0.26 V.

When applying a small positive bias to the bulk TJ structure, a small energy overlap still exist

to produce tunneling current. Moreover, localization of the energy levels within the wells in

the vicinity of the junction suggest a resonant behavior of the current, when the applied bias

is such that this levels align. Figure 3-19 shows the bulk TJ under applied bias of 1.6 and

2.6 V. In 3.19(a) bottom well levels are aligned (an arrow designates the aligned levels) and

a net tunneling current traverses the device through this energy. Further increasing the bias

to 2.6 V in 3.19(c), we see that the bottom level of the triangular well at the heterojunction

interface is now aligned with the top level in the valence band, with a net current flowing

through this energy. Some current is also observed coming from the bottom subband of the

conduction band well, through phonon-assisted tunneling. The current observed in this case

is smaller compared to the case with smaller bias because the energy overlap has decreased,

limiting the energy range in which tunneling can occur; and also carriers coming from the
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(a) (b)

(c) (d)

Figure 3-20: Local density of states (k|| = 0) and spectrally resolved current density

(Acm−2eV −1) for the DQWTJ structure at: (a) and (b) Vbias = 0.21 V, (c) and (d)

Vbias = 0.31 V.

n-contact and tunneling through the triangular well level have to traverse a longer barrier

thickness, decreasing their transmission probability. Increasing further the bias, produces

no direct tunneling, so the remaining current is due to phonon-assisted tunneling, and it

decreases exponentially as the voltage keeps growing.

In the case of the DQWTJ, conduction is dominated by the presence of the quantum well

levels, and increased current peaks can be observed due to confinement enhanced localization

of the levels. It is also remarkable from this structure that the presence of the wells increase

energy overlapping and decrease the thickness of the tunneling barrier. As a result, a higher

net current traverses the device withing a longer bias range before the net overlapping

vanishes. The response of the device when a bias is applied can be observed in figure 3-

20, where the local desnity of states and the spectral current are plotted for two values

of the applied bias. In both cases, transport of electrons from the conduction band occur
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mainly through the triangular well level to the second QW subband, and succesive phonon

relaxation to the first well subband. When a 2.1 V bias voltage is applied, electrons tunnel

to the second QW subband in the valence band, while when increasing the voltage to 3.1

V, they tunnel to the topmost well level in the valence band. Orders of magnitude of the

tunneling current are much higher than in the previous case.

It is also remarkable form the spectral current plots for both Bulk TJ and DQWTJ that

current transport is manly done through narrow lines instead of a broadened current spectra,

even at the contacts (where the density of states resembles that of the bulk, therefore allowing

carriers to propagate in a continuous spectra). This is due to the energetically narrow bands

present in the well structures (specially in the case of the DQWTJ) through which current

is transported between conduction and valence bands. Such narrow distribution of current

suffer sequential scattering events with optical phonons, that in turn generate spectral lines

of current through the device separated in energy by ~ωLO spaces. Further analysis of this

structures can be found in [24], in which the absorption spectra of both TJ structures is

analyzed, but this discussion goes beyond the scope of this work.

3.5. Improving the NEGF model

3.5.1. Reduced order model

Computational complexity of the NEGF model make the use of multiband models a chal-

lenging task, due to the huge amount of memory required and the exponential number of

arithmetic operations that need to be performed. In this section we propose a novel ap-

proach to solve this problem, based on the low rank approximation (LRA) method, which

basically consist in projecting the the Green’s functions (Dyson’s and Keldysh equations)

into a lower-order suitable basis set. The basis functions should resemble the eigenstates

of the nanostructure that is going to be analyzed, and should be orthogonal so that they

will not increase the computational complexity in the calculation of scattering self-energies.

Such a basis set can be obtained for example by finding the eigenstates of the noninteracting

Hamiltonian H0, and then moving to a orthogonal basis set by diagonalizing the position

operator (this is the exact procedure used to find maximally localized Wannier functions

[29]). In order to reduce the dimension of the final basis, just a subset of eigenstates of

the noninteracting Hamiltonian is selected, covering energies within a range that span all

the conductive channels in the conduction/valence band (several kBT above and below the

highest and lowest leads chemical potentials, respectively). We will call near basis function

referring to those spanning the subset of interest, and remote basis functions, to those not

included in the definition of the reduced basis set.

Previous attempts have been made before in implementing the LRA method to improve
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NEGF computations [30] obtaining very good results in terms of time and memory opti-

mization. However, the main issue of this approach is that neglecting a subset of the mode

space produce an incomplete representation of the system, specially in the case of the bound-

ary self-energy, as some information is discarded in order to simplify the computation ( some

of the bulk modes from H0, present in the definition of the boundary self-energy, may be

lost ). The main consequence of this is that the current conservation is violated, even in the

ballistic case, presenting fluctuations that are clearly visible, specially at the device contacts.

The approach we will describe solves this issue by a folding procedure, similar to what is

employed in real space to eliminate leads from the simulation domain. The idea is to fold

the remote basis functions, and in this way, at some extent, take into account its influence

in the device properties.

To apply our reduce order model the procedure will be divided in some steps we will describe

below. First, the problem-matched (orthogonal) basis functions should be computed, from

which we start from our original finite basis {φν(r)}1 (of dimension N) and compute the

eigenvalues of the noninteracting Hamiltonian H0 = H(k = 0), by solving the Schrödinger

equation

H0ψi = MEiψi. (3-3)

with M the overlap matrix as defined in (2-38), i = 1 . . . N is an integer labeling the eigen-

values Ei.

When M 6= 1 (k ·p case), Löwdin symmetric orthogonalization procedure should be applied

before solving the system, in order to transform the generalized eigenvalue problem (3-3)

into a standard eigenvalue problem, by defining2 R = M1/2 and S = M−1/2, hence obtaining

H′0ψ
′
i = Eiψ

′
i, H′0 = SH0S, ψ

′
i = Rψi. (3-4)

This step eliminates the need of having two representations (covariant and contravariant,

see chapter 2.2) for the Green’s functions and self-energies due to the non-orthogonality of

the basis. The eigenstates ψ′i should be subsequently partitioned into remote and near basis

sets, according to the proximity of their respective eigenvalue Ei to some value E0 lying in

the middle of the energy range considered. Hence, we will end up with two new sets: the

near basis set {ψ′i}n with neig elements (neig should be properly chosen such that enough

eigenenergies are included in the near set, so they span an energy range covering few kBT

above/below the highest/lowest chemical potential at the contacts), and the remote basis

1This basis functions refer to planar orbitals (2-84) in the case of tight binding, or finite-element zone

center Bloch functions (2-117), in the case of k · p.
2Remember that matrix M is symmetrical. Moreover, in a finite element discretization, such as k ·p, this

matrix is real. Therefore, M is diagonalizable and its square root is well defined. In fact, it can be easily

found by taking the square root of the diagonal matrix.
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set {ψ′i}r with N−neig elements. Define also the matrices Tn and Tr, which contain in their

columns the vectors from near and remote basis sets, respectively.

We now proceed to diagonalize the position operator in both near and remote basis repre-

sentation to obtain maximally localized basis functions ψML
n,j and ψML

n,l such that

X̂nψ
ML
n,j = xn,j ψ

ML
n,j , X̂n = T†nSX̂STn, (3-5a)

X̂rψ
ML
r,l = xr,l ψ

ML
r,l , X̂r = T†rSX̂STr, (3-5b)

where j = 1 . . . neig, l = 1 . . . N − neig. The position operator X̂ (in the original basis) has

been moved to the Löwdin basis through the symmetric multiplication with matrix S, and

then to either near or remote basis through transformation matrices Tn or Tr, respectively.

In our new set of maximally localized basis functions {ψML
n,j }, the new coordinate system is

given by the eigenvalues of the position operator xn,j. By taking transformation matrices Pn

and Pr, which contain in their columns vectors ψML
n,j and ψML

r,j , respectively, a transformation

matrix Qn = STnPn (Qr = STrPr) can be defined, moving from the original basis to

the maximally localized near (remote) basis. At this point, boundary self-energies and

noninteracting Green’s function should be moved to the near basis before starting the NEGF

inner loop. In order to take into account the effect of the remote basis in the simulation, the

remote basis can be folded into the near one in a similar way as was done for the boundary

self-energies in (2-66). To see this, consider the following transformation3

(
Q†n
Q†r

)
A
(

Qn Qr

)
=

(
Q†nAQn Q†nAQr

Q†rAQn Q†rAQr

)
=

(
An Anr

Arn Ar

)
, (3-6)

with A = EM−H−ΣRB the inverse of the noninteracting Green’s function (in the original

real-space basis), An and Ar in the near and remote basis, repectively.

The term Ar and the cross terms Anr and Arn can be used to fold the influence of the

remote basis, by defining an extra (remote) self-energy term in the following way

ΣR,r = AnrArArn, (3-7)

so that the effect of the remote basis terms is taken into account in an effective way. For the

noninteracting Green’s function in the near basis we finally obtain

GR,n =
[
An −ΣR,r

]−1
. (3-8)

From this point on the procedure follows as usual, scattering self-energies are calculated in

the near basis. At the last step, the Green’s functions should be transformed back to the

3Note that the matrix product here is well defined. Qn is a N × neig matrix, Qr is N ×N − neig and A

is N ×N .
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(a) (b) (c)

Figure 3-21: (a) Band structure of the five-period SL at zero bias, with the eigenenergies of

the noninteracting Hamiltonian H0 (dashed lines). Energies belonging to the near (remote)

basis are shown in black (red). (b) LDOS at vanishing transverse momentum (k|| = 0). (c)

Spectrally resolved photocurrent density, for the device illuminated with monochromatic light

of ~ωop = 0.64 eV. Electron-phonon interactions were not included in this simulation.

real space basis in order to be able to compute physical observables, as the basis functions

are eigenstates of the position operator, interpretation of the results becomes difficult in the

reduced-order space. The reduced order model here described proved to be very efficient,

reducing the computation time and memory requirements and allowing analysis of big struc-

tures, difficult to analyze before. Figure 3-21 shows the results of a simulation performed

with the ROM (neig = 30) using a 2 × 2 k · p basis. The simulation was performed on the

five-period T2SL described in the previous section, with a monochromatic light source of

~ωop = 0.64 eV illuminating the device. As can be seen when comparing figures 3.21(b)

and 3.12(a), the results are very similar. In this case, just electron-photon interactions were

considered, and figure 3.21(c) reveals that the simulation was able to reproduce the v1-c5

obtained previously with the full TB model in figure 3.13(e) at this same photon energy.

Additionally, figure 3.21(a) shows the energy eigenmodes of the noninteracting Hamiltonian

(dashed lines) with the modes belonging to the near basis plotted in black.

Figure 3.22(a) show a comparison of the total current computed with the real space basis, the

ROM and the LRA model. It can be seen that neglecting the effect of the remote basis clearly

produce strong variations the computed NEGF current, violating current conservation. On

the other hand the present approach (ROM) is capable of approximating with very good

agreements the full real basis simulation while reducing the computation time. This is seen

in figure 3.22(b) where the time per inner iteration is plotted for a 20 iteration inner loop

with both real basis and ROM. With the ROM the time per iteration was reduced by a factor

of approximately 10, and it can be further reduced by setting neig to lower values (3.21(a)

shows that the energy range spanned by the eigenenergies of the near basis is fairly enough



60 3 Numerical Results

(a) (b)

Figure 3-22: (a) Total current computed in the real space basis, in the present ROM ap-

proach and with the LRA approach proposed in [30]. (b) Comparison of the computation

time spent with both real space and modal basis, to perform 20 inner iteration.

to cover the energy range of interest, so this parameter can be further slightly reduced).

3.5.2. Pulay mixing method to improve inner loop convergence

Apart from the many issues arising from the computational complexity of the NEGF ap-

proach, another major problem is the one related with the convergence of the results. Being

the Dyson’s equation (2-44) a nonlinear equation, convergence in many cases can be very

slow or even not guaranteed, so the method applied to solve this equation can greatly impact

in the final computation time.

Solving the Dyson’s equation by means of the inner loop is equivalent to solving the fixed

point problem

GR = f(GR,G<)4, G< = g(GR,G<), (3-9)

where f and g are nonlinear functions that compress all the dependencies on scattering

self-energies, Dyson’s and Keldish equations contained in the inner loop.

In the way the NEGF algorithm is implemented, the previous problem is solved by the fixed

point iteration method (FPI), in which output Green’s function for at iteration k is computed

as the simple evaluation of the function f at the previous iteration, e.i. GR
k = f(GR

k−1,G
<
k−1).

4Remember that only two of the Green’s functions are indepenedent. Dependence here is written just in

terms of GR and G<, but could be equivalently written in terms of GA and G>.
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Although FPI is simple, it can result very slow in many cases and it worth to look for better

options that can improve the performance of the algorithm.

The Pulay mixing method, also called direct inversion in the iterative subspace (DIIS),

was first proposed by Peter Pulay in [31, 32], in order to improve convergence in SCF

minimization problems for quantum chemistry, specifically in the procedure of minimization

of the energy functional to find ground states of a quantum system. Nevertheless, its use

has extended to solving vector equations, and some attempts have been done to use it in

the solution of the Dyson’s equation for particular cases of the interaction self-energies, like

the case exposed by Thygesen et al. in [33], in which the solution is restricted to the GW

self-energy for molecular transport. For our case, we will take the approach followed by

Banerjee et al. in [34], in which a periodic Pulay mixing scheme is proposed by alternating

periodically between FPI and conventional Pulay mixing.

We start considering equations (3-9) for which we want to find a solution, and for simplicity

we define vectors gR and g< which result from the projection of the four-dimensional GR,<

matrices into RM , with M = N ×N ×Nk ×NE, such that

{GR,<(kl, En)}i,j → {gR,<}i+N×j+Nk×l+NE×n, (3-10)

with i, j = 1 . . . N, l = 1 . . . Nk, n = 1 . . . NE.

The residual functions are defined in the following way

r(gR,g<) = f(gR,g<)− gR, r̄(gR,g<) = g(gR,g<)− g<. (3-11)

where we have assumed that equation (3-9) is also valid for the M -dimensional vectors gR,<.

The main idea of Pulay mixing is to combine the Green’s functions at iteration k with the

ones of the previous m iterations in order to find an optimal value gRk+1 that minimizes the

quantities ||rk+1|| and ||r̄k+1||, with m called the size of the mixing memory. Since all the

variables are now vector quantities, the previous norm is well defined as the typical 2-norm

of a vector such that ||gR|| =
√

(gR)∗·gR.

On each iteration, the new5 Green’s function will be computed as

gRk+1 = gRk + Ckfk (3-12)

with

5Here, for new Green’s function we refer to the input Green’s function that will be used to compute the

scattering self-energies, which are then used to recompute the Green’s function being this the result of the

evaluation of the function f .
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Ck =


α1 if k+1

p
/∈ N

α1− (Rk + αFk)Γk if k+1
p
∈ N

(3-13)

Rk and Fk are M ×m matrices denoting the iterate and residual histories, defined in the

following way

Rk = [∆gRk−m+1 ∆gRk−m+2 . . . ∆gRk ], gRk = gRk − gRk−1 (3-14a)

Fk = [∆rk−m+1 ∆rk−m+2 . . . ∆rk], ∆rk = rk − rk−1 (3-14b)

α is the damping parameter, p is the period of the Pulay mixing, and Γk ∈ RM is the vector

of optimal coefficients that minimize the next iteration residual ||rk+1||, which can be shown

to be the solution of the matrix equation

F†kFkΓk = F†kfk. (3-15)

It can be seen from (3-13) that Pulay mixing is applied whenever the iteration is a multiple

of the period p. Classical Pulay is obtained the parameter p = 1 and FPI when p → ∞.

Its also important to mention that the matrix F†kFk become singular in many cases after

few iterations, so some rows need to be removed in order to solve equation (3-15). Singular

Value Decomposition (SVD) results to be very useful in this case to selectively remove the

rows corresponding to the smallest singular values. The algorithm is summarized in figure

3-23, and should be applied to both gR and g<.

The main drawback present in this convergence scheme is that four new matrices need to

be stores (two for gR and two for g<), whose dimension can become very large depending

on the value of M (which in turn depend on the spatial dimension of the device, energy

and momentum discretization), and the amount of memory m that is desired to store. In

fact, the more past values one store, the bigger the memory requirements of this approach,

but as it will become clear in a while, this does not mean better convergence properties,

but depend on the specific problem that is going to be solved. A value of m = 3 seems

to be in general a good choice for the Pulay memory. Taking into account the previous

consideration, a simple example is required to test the validity of this approach, and it

can be extended after to more complex setups. In this case we chose to consider a simple

quantum well n-i-n structure (see figure 3-24) with few point to run a NEGF simulation

for a single energy Ep = 0.7 eV and momentum kp = (15 × 106, 0) m−1. Concerning the

self-energy included, the momentum relaxing Golizadeh self-energy (dm = 10−2 eV2) was

used due to its simplicity. The Golizadeh self-energy is a phenomenological approach first
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Figure 3-23: Computational scheme of the periodic Pulay mixing method applied to the

inner loop.

introduced by Golizadeh and Datta [35] to model phase or momentum relaxing scattering

situations. Retarded and lesser/greater components of the self-energy can be written in the

following way [35, 18]

Σ(p)R = dpMGRM, Σ(p)≶ = dpMG≶M (3-16a)

Σ(m)R = dm
∑
γ

{M}α,γ{GR}γ,γ{M}γ,β, Σ(m)≶ = dm{M}α,γ{G≶}γ,γ{M}γ,β (3-16b)

where p and m denote pure phase relaxing or phase and momentum relaxing scattering,

respectively, and dp,m is the scattering strength that has units of square energy.

The main advantage of Golizadeh self-energy is that decouples Green’s functions from at
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Figure 3-24: Example device used for the NEGF simulation with Pulay optimization. Con-

tact Fermi levels are labeled with a diamond (µL = 0.4 V, µR = 0.5 V), and the single energy

used for the calculation is marked with a red circle at the left side. The structure is under a

small applied bias of 0.1 V.

different energies (which is not the case of photon/phonon scattering), and does not require

to perform sums over momentum, hence allowing to perform computation at particular

energy and momentum values. The parameters used for this simulation are shown in table

3-5.

Table 3-5: Parameters used in the example problem for Pulay mixing.

Parameter Barrier Well Unit

Bandgap energy Eg 0.85 0.5 eV

Conduction band offset ∆Ec 0.0 0.2 eV

Valence band offset ∆Ev 0.0 0.15 eV

Electron effective mass me 0.0879 0.067 m0

Hole effective mass mh 0.1024 0.082 m0

static dielectric constant ε 12.2 13.1 ε0
High frequency dielectric constant ε∞ 10.9 10.9 ε0

Periodic Pulay mixing proved to be in general much better than the simple FPI convergence.

Several combinations of parameters can be made, with respect to the choice of α, m and

p, and not necessarily more memory m implies better convergence (see figure 3.25(a)). The

damping parameter α can be chosen to either improve convergence (α ≈ 1) or make it slower

(α < 1), something that can be useful in problems in which convergence cannot be achieved

with normal FPI (NEGF simulations does not have in general this issue provided that a

proper initial Green’s function is chosen).
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(a) (b)

Figure 3-25: (a) Convergence of the periodic Pulay mixing for various choices of the pa-

rameters, compared with the FPI convergence. (b) Convergence of G< with FPI applied to

both GR and G< (blue), FPI applied to G< when Pulay mixing is applied to GR (red) and

Pulay mixing applied to both Green’s functions (black). In all the cases α = 1, m = 3 and

p = 1.

It is also important to note that its necessary to keep track of the convergence of both

GR and G<, since convergence of one does not imply the convergence of the other, as they

are independent. This is the case of Golizadeh self-energy, since the manner in which this

self-energy is defined make GR independent of G<, but G< is always related to the value of

GR through the Keldysh equation. When applying periodic Pulay just to GR, this becomes

clear, as G< take more iterations to converge compared to the case when Pulay mixing is

applied to both at the same time (see figure 3.25(b), notice that the stopping criteria is taken

with ||∆gR|| < tol, hence g< does not necessarily converge when the loop stops). Overall,

convergence and the choice of the parameters depend on the specific problem that is going

to be solved, particularly in the self-energies that are included for the computation. Further

study needs to be performed in this field with more complex self-energies in order to asses

the improvements given by the Pulay method.





Chapter 4

Conclusions and Outlook

In this thesis, a first step was taken by defining a strong and solid theory to describe nanos-

tructured devices. The theoretical framework offered by the NEGF formalism results pow-

erful due to its capability to couple carrier transport and optoelectronic phenomena into

a set of self-consistent equations. Moreover, it provides a reliable tool to model realistic

devices that has not been achieved before by CAD tools, since it relies on nonequilibrium

quantum statistical mechanics without the use of fitting parameters, but just parameters

describing the geometrical, electrical and optical characteristics of the constituent materials

of the nanostructure. However, the fact that is very accurate comes with the disadvantage of

its high computational burden, which make it unpractical to simulate structures longer than

few hundreds of nanometers. There is also a degree of freedom in choosing the basis set that

will be used to discretize the set of equations of the NEGF algorith, and two of the most

popular were documented here: the tight binding approach in which eigenfunctions of the

nanostructure are written as linear combination of planar orbitals, and the k · p approach,

in which wavefunctions are written as sum of zone center Bloch functions, combined with

a finite element discretization of the space. Tight binding results to be more accurate in

the sense that is an atomistic model, capable of performing full-Brillouin zone simulation,

though it is more resource demanding since imposes a spatial discretization corresponding

with the atomic layers of the nanostructure. On the other hand, k · p gives freedom in the

choice of the spatial discretization, but restricting the simulation to a range in reciprocal

space close to the center minimum, because of how the basis set is constructed.

Several examples were studied to test the present implementation of the NEGF algorithm.

First, a quantum well p-i-n diode was simulated with variated bias and illumination con-

ditions. Study of the spectrally resolved density of states allowed to observe interference

patterns produced by the superposition of incoming and reflected electron wavefuctions.

The presence of the well noticeably affected the energetic distribution of the state pattern.

It was also particularly useful to recognize the energies in which quasi-confined states were

located, helping to detect transitions in which the absorption, and therefore the photocur-
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rent increased, due to the increment in the availability of possible optical transitions. The

spectrally resolved current density was also used to study this device, showing a predomi-

nantly ballistic behavior of carrier transport due to the extremely reduced dimensions, with

optical phonon scattering producing an almost imperceptible broadening of the spectral dis-

tribution of current transmitting channels. Extreme contacts doping created a pronounced

band bending and a strong built-in electric field, which favored escape of carriers from the

well at low bias voltage. This was observed when the device was illuminated with photon

energies slightly above the absorption edge, where escape of electrons and holes from the

well was done mainly through Fowler-Nordheim tunneling and less due to thermal emission.

Broadening of quasi-confined levels was also larger at low bias, showing a smaller lifetime of

the carriers confined in the wells. Increasing photon energy made also possible for electrons

to reach higher energy subbands, in which escape was mainly through emission above the

barrier. In general, the study of this structure was useful to understand how photogenerated

carriers escape from a quantum well, and how this escape is favored by the applied bias.

As a second example, a type-II superlattice absorber was analyzed, mainly focusing on ob-

serving the miniband formation process and the different optical transitions available for

incoming photons af variated energy. Again the observation of the spectrally resolved lo-

cal density of states and current density served to understand the device behavior. Unlike

the previous structure quantum wells were deep for the electrons to easily scape by ther-

mal emission. Nevertheless, proximity of the wells allowed the quasi-bond states to couple,

producing continuous states along the structure that served as scape channels for photo-

generated electrons. Geometrical parameters of the structure were variated showing that

the effective bandgap of the absorber can be changed regardless of the real gap of the two

constituent materials, and the structure can be used to detect light in the mid-IR range.

As a last example, we perform a rigorous approach for the simulation of interband tunneling,

where direct and phonon assisted components are included into the analysis. A Bulk, heavily

doped tunnel junction was simulated, in which strong band bending created quasi-confined

states close to the junction, and energy overlapping gave the possibility for electrons to

directly tunnel from conduction to valence band. Inclusion of phonon scattering was shown

to be necessary for electrons to reach available tunneling channels and hence obtain realistic

results. For small bias, current present a resonant behavior due to alignment of confined

levels in valence and conduction band, and at some point, further increase in the current

leads the device to a negative differential resistance (NDR) region, because of the small

band overlapping. Inclusion of a double quantum well inside the junction showed to increase

the performance of the device, by decreasing the effective barrier length and increasing the

overlapping range. Moreover, quasi-bond states in the wells created stronger current peaks

compared to the bulk case and increased the NDR performance. This structure showed to

be suitable for coupling of electron and hole currents in multi-solar cells arrays.
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A final part was presented including two methods to enhance the performance of the present

implementation of the NEGF algorithm. The first method consisted in a novel approach

to reduce the high computational burden of NEGF, based on the low rank approximation

method, called reduced order model. The method consist in the reduction of the discretiza-

tion basis used in the NEGF simulation by selectively choosing a subset of the eigenfunction

of the noninteracting Hamiltonian, and then moving the NEGF equations to this new ba-

sis. The basis functions are used to diagonalize the position operator in order to obtain

maximally localized, orthogonal basis functions, and an extra self-energy term is included

in the simulation to account for the set of discarded basis function. This model was used to

simulate the type-II superlattice, obtaining good agreement with previously obtained results

and showing a decrease of 10 times in the time per inner iteration. Further decrease in the

simulation time can be achieved by slightly reducing the basis size. The model proved also

to be superior to the LRA model since is capable of reducing the computation time without

violating current conservation.

The second approach consisted in a implementation of the Pulay method adapted to the

present work, with the goal of improving convergence properties of the inner loop. The

method, originally presented for minimization of vectorial equations, was adapted to the

matrix equations used in the NEGF algorithm, and tested with a simple self-energy model,

showing god result respect to the typical fixed point iteration performed to solve the inner

loop. So far, convergence have been achieved with half the number of iterations for the

tested examples, and with smaller values of the residual achieved. Further works are being

tested for complex structures with realistic phonon and photon self-energies.

In general, the present implementation showed to be a reliable approach to simulate planar

structures with arbitrary band alignment and bias conditions. However, further mechanisms

need to be added in order to address in a more realistic way the simulation of optoelectronic

devices. In future works, effects like alloy disorder and complex self-energy like nonradiative

recombination processes are expected to be implemented. With the help of the provided

methods for the algorithm improvement, complex structures will be simulated within a more

realistic, multi-band approach.





Appendix A

Carrier interaction with photons and

phonons

In this sections the derivation of the electron-photon self energy is presented, based on what

is exposed in [36] and the results presented in [37]. The derivation will be restricted to the

case of an orthogonal basis, e.i. tight binding, but a similar procedure for the k · p case is

presented in [18]. Interaction with phonons is analogous and should be obtained in a similar

way.

A.1. Interaction Hamiltonian and perturbation expan-

sion

Interaction of electrons with photons and phonons (and, in a more general sense, with boson),

is described by the following perturbation Hamiltonian in second quantization [10],

H i(t) =
∑
ν,µ

∑
k,q

Mν,µ(k,q)ĉ†ν,k(t)ĉµ,k−q||(t)
[
b̂q(t) + b̂†−q(t)

]
(A-1)

where k is the transversal electron wavevector, q is the 3D photon wavevector, ν = (α,L),

µ = (α′, L′) for the case of tight binding; b̂†q and b̂q are the bosonic creation and annihilation

operators, respectively; ĉ†ν,k and ĉν,k are the fermionic creation and annihilation operator

written in our finite basis, respectively, and M(k,q) is the coupling matrix between bosons

and fermions.

The perturbation Hamiltonian in (A-1) should be inserted in (2-4) and the exponential

term expanded in a series, providing a perturbative expansion of the Green’s function for

interactions of the photon/phonon-electron type. The second order contribution term of the

expansion reads (first order terms vanish as they are proportional to 〈b〉 = 〈b†〉 = 0)
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G(2)(r, t; r′, t′) =

(
−i
~

)3
1

2
〈T̂C

{∫
C

ds

∫
C

ds′H i(s)H i(s′)Ψ̂H0(r, t)Ψ̂
†
H0

(r′, t′)

}
〉 (A-2)

where the equilibrium ensemble average has been dropped for simplicity 〈. . . 〉 ≡ 〈. . . 〉0.

Taking into account expressions (2-34a) and (2-34b) for the field operators Ψ̂H0 and Ψ̂†H0
in

the (orthogonal) basis {φν(r)}, the Green’s function in the specified basis gives

G(2)
ν,µ(k, t, t′) =

(
−i
~

)3
1

2
〈T̂C

{∫
C

ds

∫
C

ds′H i(s)H i(s′)ĉν,k(t)ĉ†µ,k(t′)

}
〉

=

(
−i
~

)3
1

2
〈T̂C


∫
C

ds

∫
C

ds′
∑
ν1,ν2

∑
µ1,µ2

∑
k1,k2

∑
q1,q2

Mν1,µ1(k1,q1)

×Mν2,µ2(k2,q2)
[
b̂q1

(s) + b̂†−q1
(s)
] [
b̂q2

(s′) + b̂†−q2
(s′)
]

×ĉ†ν1,k1
(s)ĉµ1,k1−q1||(s)ĉ

†
ν2,k2

(s′)ĉµ2,k2−q2||(s
′)ĉν,k(t)ĉ†µ,k(t′)

}
〉. (A-3)

Now, we can apply Wick-Matsubara theorem to factor the electron field operators product.

The photon operator product become [36]

〈T̂C
{[
b̂q1

(s) + b̂†−q1
(s)
] [
b̂q2

(s′) + b̂†−q2
(s′)
]}
〉

= 〈T̂C
{
b̂q1

(s)b̂†−q2
(s′)
}
〉+ 〈T̂C

{
b̂q2

(s′)b̂†−q1
(s)
}
〉

= 〈T̂C
{
b̂q1

(s)b̂†q1
(s′)
}
〉+ 〈T̂C

{
b̂−q1

(s′)b̂†−q1
(s)
}
〉, (A-4)

where products involving two creators or two annihilators vanish from the sum. In (A-4) we

have used that, due to the absence of interactions, the photon modes should be conserved,

giving

〈T̂C
{
b̂q1

(s)b̂†−q2
(s′)
}
〉 ∝ δq1,−q2

. (A-5)

with δq1,−q2
the Kronecker delta function.

There are two possible ways of factorizing the electron operator product in (A-3) which are

equivalent, canceling out the factor 1/2. Choosing one of this factorizations one obtains

[10, 36]
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〈T̂C
{
ĉ†ν1,k1

(s)ĉµ1,k1−q1||(s)ĉ
†
ν2,k2

(s′)ĉµ2,k2−q2||(s
′)ĉν,k(t)ĉ†µ,k(t′)

}
〉

= −〈T̂C
{
ĉν,k(t)ĉ†ν1,k1

(s)
}
〉〈T̂C

{
ĉµ2,k2−q2||(s

′)ĉ†ν2,k2
(s′)
}
〉〈T̂C

{
ĉµ1,k1−q1||(s)ĉ

†
µ,k(t′)

}
〉

+ 〈T̂C
{
ĉν,k(t)ĉ†ν1,k1

(s)
}
〉〈T̂C

{
ĉµ1,k1−q1||(s)ĉ

†
ν2,k2

(s′)
}
〉〈T̂C

{
ĉµ2,k2−q2||(s

′)ĉ†µ,k(t′)
}
〉

= −i~G0
ν,ν1

(k; t, s)δk,k1 i~G0
µ2,ν2

(k2; s′, s′)δk2−q2||,k2 i~G0
µ1,µ

(k; s, t′)δk1−q1||,k

+ i~G0
ν,ν1

(k; t, s)δk,k1 i~G0
µ1,ν2

(k2; s, s′)δk1−q1||,k2 i~G0
µ2,µ

(k; s′, t′)δk2−q2||,k. (A-6)

where we have used the definition of the noninteracting Green’s function defined in equation

(2-15) (expressed in our finite basis)

G0
ν,µ(k, t, t′) = − i

~
〈T̂C

{
ĉν,k(t)ĉ†µ,k(t′)

}
〉. (A-7)

Finally, defining the noninteracting boson Green’s function

D0(q; t, t′) = − i
~

[
〈T̂C

{
b̂q(t)b̂†q(t′)

}
〉+ 〈T̂C

{
b̂−q(t′)b̂†−q(t)

}
〉
]
, (A-8)

and inserting (A-6) and (A-8) in (A-3) (with q1 = −q2 = q), gives the final result

G(2)
ν,µ(k, t, t′) =

∫
C

ds

∫
C

ds′
∑
ν1,ν2

∑
µ1,µ2

∑
k2,q

Mν1,µ1(k,q)Mν2,µ2(k2,−q) i~D0(q; s, s′)[
−G0

ν,ν1
(k; t, s)G0

µ2,ν2
(k2; s′, s′)G0

µ1,µ
(k; s, t′)δk2+q||,k2δk−q||,k

+G0
ν,ν1

(k; t, s)G0
µ1,ν2

(k2; s, s′)G0
µ2,µ

(k; s′, t′)δk−q||,k2δk2+q||,k

]
=

∫
C

ds

∫
C

ds′
∑
ν1,ν2

∑
µ1,µ2

[∑
k2,qz

−G0
ν,ν1

(k; t, s) i~D0(qz; s, s
′) Mν1,µ1(k, qz)

×G0
µ2,ν2

(k2; s′, s′) Mν2,µ2(k2,−qz)G0
µ1,µ

(k; s, t′)

+
∑
q

G0
ν,ν1

(k; t, s) i~D0(q; s, s′) Mν1,µ1(k,q)G0
µ1,ν2

(k− q||; s, s
′)

×Mν2,µ2(k− q||,−q)G0
µ2,µ

(k; s′, t′)
]

(A-9)

A.2. Electron-photon self-energy

The final expression obtained in (A-9) can be compared with the formal definition of the

Dyson’s equation (2-63a), leading to the self-energy term
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Σν,µ(k; t, t′) = −i~
∑
k′,qz

Mν,µ(k, qz)
∑
ν′,µ′

∫
C

dsD0(qz; t, s)G
0
µ′,ν′(k

′; s, s) Mν′,µ′(k
′,−qz)︸ ︷︷ ︸

ΣHν,µ(k;t,t)

+ i~
∑
ν′,µ′

∑
q

D0(q; t, t′)Mν,µ′(k,q)G0
µ′,ν′(k− q||; t, t

′)Mν′,µ(k− q||,−q)︸ ︷︷ ︸
ΣFν,µ(k,t,t′)

.

(A-10)

The self-energy in (A-10) is composed by the sum of two separate terms. In terms of a

Feynman diagrammatic expansion [38, 10] this two terms correspond to the lowest order

diagrams, the Hartree self-energy ΣH (a bubble diagram is clearly recognizable in the bare

propagator initiating and ending at the same point) and the Fock self-energy ΣF . The

Hartree self-energy term can be neglected in many cases (it is nonzero for the case of het-

erostructures) and will not be considered here [36]. In the self consistent Born approximation

(SCBA) higher order perturbations terms can be automatically included in the self-energy

(A-10) by replacing the noninteracting Green’s function G0 by the exact Green’s function

G, giving for carrier-photon Fock self-energy

ΣF
ν,µ(k; t, t′) = i~

∑
ν′,µ′

∑
q

D0(q; t, t′)Mν,µ′(k,q)Gµ′,ν′(k− q||; t, t
′)Mν′,µ(k− q||,−q).

(A-11)

At this point, Lagreth rules can be applied to find lesser, greater and retarded components

of the self-energy; and the resulting expression can be Fourier transformed for the steady

state formulation, yielding

ΣF ≶
ν,µ (k, E) = i~

∑
ν′,µ′

∑
q

∫
dE ′

2π~
D≶

0 (q;E ′)Mν,µ′(k,q)G≶
µ′,ν′(k− q||;E − E ′)

×Mν′,µ(k− q||,−q), (A-12a)

ΣF R
ν,µ (k, E) = i~

∑
ν′,µ′

∑
q

∫
dE ′

2π~
Mν,µ′(k,q)

[
DR

0 (q;E ′)GR
µ′,ν′(k− q||;E − E ′)

+DR
0 (q;E ′)G<

µ′,ν′(k− q||;E − E ′) +D<
0 (q;E ′)GR

µ′,ν′(k− q||;E − E ′)
]

×Mν′,µ(k− q||,−q), (A-12b)

The equilibrium (steady state) photon Green’s function is given by [37]
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D≶
0 (q, E) = −2πi [Nq δ(E ∓ ~ωq) + (Nq + 1) δ(E ± ~ωq)], (A-13a)

DR,A
0 (q, E) =

1

E − ~ωq ± iη
− 1

E + ~ωq ± iη
. (A-13b)

Substituting (A-13a) and (A-13b) into (A-12b) and (A-12a), and integrating over energy,

gives the final result for the lesser, greater and retarded electron-photon self-energies

ΣF ≶(k, E) =
∑
q

M(k,q)
[
NqG

≶(k− q||, E ∓ ~ωq) + (Nq + 1)G≶(k− q||, E ± ~ωq)
]

×M(k− q||,−q), (A-14a)

ΣF R(k, E) =
∑
q

M(k,q)
[
(Nq + 1)GR(k− q||, E − ~ωq) +NqG

R(k− q||, E + ~ωq)

+
1

2

(
G<(k− q||, E − ~ωq)−G<(k− q||, E + ~ωq)

)
+iP

{∫
dE ′

2π

(
G<(k− q||, E − E ′

E ′ − ~ωq

−
G<(k− q||, E − E ′)

E ′ + ~ωq

)}]
×M(k− q||,−q)

=
1

2

(
ΣF >(k, E)− ΣF <(k, E)

)
− iP

{∫
dE ′

ΣF <(k, E ′)− ΣF >(k, E ′)

E − E ′

}
,

(A-14b)

where everything have been written in full matrix notation. The integration leading to

(A-14b) involves the use of the Cauchy’s principal value theorem [10].
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