
Master Degree in Electronic Engineering

ASIP Implementations for Polar Codes
Decoding using Simplified Successive

Cancellations Algorithm and Instruction
Level Parallelism

Politecnico di Torino

Turin, Italy

Student:
Sebastiano Strano

Supervisor:
Guido Masera

November 8, 2018

Summary

Summary
1 Introduction 4

1.1 Why an ASIP? . 5

2 Literature Review 7
2.1 General Transmission Scheme 7
2.2 Successive Cancellation Decoding Algorithm 8

2.2.1 Message passing . 10
2.2.2 Line SC . 12

2.3 Simplified Successive Cancellation Decoding Algorithm 16

3 State-Of-The-Art Examples 19
3.1 ASIC Decoders for Polar Codes 19
3.2 ASIP Decoders . 22

4 Software Overview 24
4.1 nML Description Language . 24
4.2 C/C++ Compiler . 25
4.3 Instruction-set Simulator . 26
4.4 RTL Generator . 27

5 Code Overview 29
5.1 First version of the decoding function 29
5.2 Second version of the decoding function 31
5.3 Vector version of the decoding function 32

6 Hardware Implementation 34
6.1 Design Overview (Design 1) 34

6.1.1 Algorithms comparison 43
6.1.2 Synthesis . 44

6.2 Design 2 . 47
6.2.1 Synthesis . 48

6.3 Design 3 . 50
6.3.1 Modified Design 3 . 55
6.3.2 Synthesis . 60

6.4 Design 4 . 62
6.4.1 Design 4 with double ports for Data memory 65
6.4.2 Modified Design 4 . 67
6.4.3 Second Modified Design 4 69
6.4.4 Synthesis . 70

6.5 Design 5 . 73

Summary

6.5.1 Modified Design 5 . 80
6.5.2 Synthesis . 81

6.6 Design 6 . 83
6.6.1 Synthesis . 87

7 Conclusions 89
7.1 State-Of-The-Art Comparison 90

3

Introduction

1 Introduction

Polar Codes have been introduced by Erdal Arıkan in 2008 as a class of

error-correcting codes with the possibility to reach the capacity of a discrete

memoryless channel. The concept of capacity of the channel was introduced

by Shannon in 1948 and it refers to the upper limit of the rate at which infor-

mation can be reliably transmitted over a communication channel. Arikan

developed the concept of "channel polarization" in his paper [1] where, ini-

tially, a certain independent channel is transformed into two different kind

of it: a high-level noise type and a low-level noise type. By recursively

applying this technique the synthesized channels increase the noise-level dif-

ference between each other until, after an infinite number of recursion, a

group of completely noiseless and a group of completely noisy channels are

created. Arikan exploits this concept elaborating an encoding strategy where

the noisy channels were assigned to constant bits (called frozen bits) while

the noiseless channels were used to send the actual information bits. On the

other side, the decoder knows a priori the positions of the frozen bits and

runs the so called "Successive Cancellations" (SC) algorithm in order to ex-

ploits the correlation among the source bits and correct the errors due to the

noise. Successive Cancellation algorithm have been evolved into "Simplified

Successive Cancellations" (SSC) and "Successive Cancellations List" (SCL)

algorithms that present better performances maintaining the error-correcting

capabilities.

In the present, Polar Codes are being used in the fifth generation of mobile

technologies substituting the "turbo-like" code families that represented the

main alternative for 3GPP, WCDMA and LTE standards.

The purpose of this dissertation is to design an application-specific in-

4

Introduction

struction set processor (ASIP) able to efficiently decode the received symbols

using the SSC decoding algorithm. At the beginning, a simple architecture

based on a single arithmetic logic unit (ALU) will be implemented where

the different decoding codes will be tested. Then, five designs with different

parallelism degrees will be proposed. In each design several problems will

be faced concerning all the different blocking elements that limit the speed-

up introduced by the multiple arithmetic units. Every architecture will be

characterised with the aim of offering different basis for comparisons between

each design.

1.1 Why an ASIP?

An application-specific instruction set processor is basically a processor whose

instruction set has been tailored to a specific application. Therefore, the main

purpose of an ASIP is to provide better performance than a general purpose

processor but maintaining a certain flexibility. This flexibility is given by

the possibility to modify the Program memory of the device changing the

algorithm run by it without changing the datapath. This is a very important

feature because when a bug or a more efficient way to implement the code

is found, the modifications can be done without producing a different device

but simply updating the memory content.

An ASIP also provides a lower power consumption than general purpose pro-

cessors. The instructions run by the ASIP are perfectly designed in order to

accomplish a well define job. For this reason, if a certain operation needs

several clock cycles in order to be completed by a general purpose processor

the same operation can be potentially done using only one cycle if it is run by

a purposely designed ASIP. Thus, if less cycles are used in order to complete

an operation less energy is waisted during the computations. In addition,

5

Introduction

an ASIP application also allows to better control the exchanges between the

arithmetic unit and the memory. In consequence, if the number of memory

accesses is reduced the power consumption can be decreased too.

6

Literature Review

2 Literature Review

2.1 General Transmission Scheme

Polar codes are based on a forward error-correction scheme shown in Fig. 1.

This scheme is able to correct the errors due to the channel noise without

re-communicating with the source but exploiting the correlation created by

the encoding step.

Figure 1: General transmission scheme for Polar Codes

The information bits represent the data that must be transmitted. These

bits are elaborated by an encoder which returns a bit array longer than the

original one. The additional bits are the result of the encoding step and are

exploited in order to create the correlation. From now on "N" represents the

code length while "k" represents the information length. These two variable

are used to compute the code ratio "R" which is the ratio between the in-

formation bits and the code length, as shown in equation 1. This ratio is

very important because it expresses the amount of "redundancy" added to

the encoded bits and so the error-correcting capability.

R ,
k

N
(1)

7

Literature Review

Therefore, when the code rate is lower, the noise rejection will be higher

because the decoder is able to exploit more redundancy in order to correct

the possible errors.

After the encoding step, a modulator elaborates the symbols that are trans-

mitted through the channel. This last element is represented by the "+"

character in the scheme because when the symbols travel the channel they

are summed to some random noise. At the end of the channel, the symbols

are received by the demodulator which transforms them into log-likelihood

ratios (LLR).

The likelihood ratio, for a binary code, represents the ratio between the prob-

ability that a single transmitted bit xi is 0 given the received symbol yi over

the probability that the same transmitted bit is 1 (equation 2):

LRyi
,

P (yi|xi = 0)
P (yi|xi = 1) (2)

LLRyi
, log

A
P (yi|xi = 0)
P (yi|xi = 1)

B
(3)

The log-likelihood ratio is basically the same thing but inside a logarithm

in order to simplify some decoding operations as will be explained later.

The decoded bits are finally obtained from the LLRs computed by the de-

coder unit using one of the previously mentioned algorithms. The decoded

bits are then ordered into a k-bits array which represents the sent information

bits.

2.2 Successive Cancellation Decoding Algorithm

The SC algorithm was originally proposed by Arikan in his paper [1]. It

consists in a soft/hard message passing scheme over a binary trellis which

8

Literature Review

can be extracted by the regular structure of the Polar Codes. Fig. 2 shows

the trellis diagram for a code with N = 8.

Figure 2: Trellis diagram with N = 8

The trellis presents log2(N) = 3 stages where it forks until the last N leafs

are obtained. The information bits can be computed performing a first for-

ward iteration from the top of the tree to the button and a second backward

iteration from the button of the tree to the top. In the forward iteration the

so called "soft" inputs are computed using the soft inputs of the higher leaf

while in the backward iteration an hard decision is made using the values

coming from the lower leafs.

An hardware implementation of the trellis can be obtained using three dif-

ferent computational nodes: a F node representing the forward operations,

a G node representing the backward operations and an H node representing

the hard decisions. The decoding scheme with an hardware implementation

for a code with N = 8 is displayed in Fig. 4. The LLR values at the right of

the scheme are the log-likelihood ratios coming from the demodulator while

9

Literature Review

the "u" values at the left of the scheme represent the decoded bits.

There are two different way to implement the SC decoding algorithm:

• Message passing: based on the structure shown in Fig. 3.

• Line SC: based on the scheme shown in Fig. 4. It is an hardware-

friendly version, as mentioned before.

2.2.1 Message passing

In the Message Passing SC decoding algorithm, each node of the trellis has

a parent and two children: one right child and one left child. Each parent

exchanges two types of message vectors with the children : a soft input called

"A" in Fig. 3 and and a binary-valued output called "B". The length of the

vectors depends on the level where a certain node is located. The Av and

Bv vectors of the root node have a length equal to 2Ns−1 where Ns is the

base two logarithm of the code length. The lower nodes have vectors length

equal to 2Ns−1−l where l is the level difference between the root node and the

position of the same node. This means that the nodes located at the last

level of the tree exchange bit vectors of length equal to one with the parent.

10

Literature Review

Figure 3: Decoding scheme of Message Passing SC algorithm

The Al array is the first that can be computed once the father receives

the Av array from his parent. The Al elements of the vector are computed

using the following formula:

Al[i] , 2tanh−1
A

tanh

A
Av[i]

2

B
· tanh

A
Av[2Ns−1−l]

2

BB
for 0 ≤ i < 2Ns−1−l

(4)

After the Al vector reception, the left child returns the Bl vector with

whom is possible to compute the Ar vector which is defined as follows:

Ar[i] , (1− 2Bl[i]) · Av[i] + Av[2Ns−1−l + i] for 0 ≤ i < 2Ns−1−l (5)

11

Literature Review

This time the right child will return the Br vector which is needed to

compute the Bv values in the following way:

Bv[i] ,

Bl[i]⊕Br[i] for 0 ≤ i < 2Ns−1−l

Bl[i] for 2Ns−1−l ≤ i < 2Ns−l

(6)

where the ⊕ sign represents the binary XOR operation.

Different is the case for the nodes that do not have any child and so belonging

to the last level of the trellis. For these nodes the Bv vector contains only one

value that is computed using the single Av value received from the parent

with the following formula:

Bv ,

0 when Av ≥ 0 or i Ô frozen position

1 otherwise

(7)

It is important to check if the node belongs to a frozen position or not. If

it belongs to a frozen position (the white nodes in Fig. 2) the Bv returned

value will be always zero, independently from the received Av value.

The Bv values are passed to the parent that will combine them with the

values received from the other sibling in order to compute the Bv values to

be passed to the higher parent. This iterative algorithm is repeated until

the root node is reached. Finally, The Bv vector computed by the root node

defines the decoded bits.

2.2.2 Line SC

The message passing algorithm can be implemented in a hardware-friendly

version using the Line SC decoding algorithm. The Line SC decoding method

is based on the structure shown in Fig. 4 where each node represents a

12

Literature Review

different type of operation (F-type, G-type or H-type) that has to be executed

on the log-likelihood ratios received at the right of the scheme. As in the

Message Passing case, the algorithm is based on a forward iteration from the

right to the left and a backward iteration from the left to the right.

This new algorithm scheme can be built following the definitions given in [2].

First of all, the different types of nodes have to be defined according to:

Ll,i ,

f(Ll+1,i; Ll+1,i+2n−l−1) if i

2l is even

g(sl,z; Ll+1,i−2n−l−1 ; ll+1,i) otherwise

(8)

where "l" represents the state while "i" indicates the row of the trellis

shown in Fig. 4. The "s" value used by the G function is the XOR operation

between the hard decisions computed starting from the node which forks into

the G node.

13

Literature Review

Figure 4: Decoding scheme for the implementation of the Line SC algorithm
with N = 8

Regarding the F and G operations, they can be computed with equations

9 and 10 [2]:

f(a, b) , a · b + 1
a + b

(9)

14

Literature Review

g(s, a, b) , a1−2s · b (10)

However, using the likelihood ratios, the previous formulas can be rear-

ranged in the following ones [2]:

f(a, b) , 2tanh−1
C
tanh

3
a

2

4
· tanh

A
b

2

BD
(11)

g(s, a, b) , a · (−1)s + b (12)

Unfortunately, this way to compute the F function is very slow for an

hardware implementation that needs real time computing. For this reason

the log-likelihood ratio have been used in order to exploit their properties to

simplify equation 11 with the following one [2]:

f(a, b) = sign(a) · sign(b) ·min(| a |, | b |) (13)

where the vertical bars perform a normal magnitude operation while the sign

function can be described as follows:

sign(x) ,

−1 if x < 0

+1 otherwise

(14)

Thanks to the log-likelihood ratios equations 12 and 13 can be performed

using simple comparators and adders speeding up the operation frequency.

Finally, the hard decision is evaluated using a certain threshold and check-

ing if it has to be done for a frozen position or not. Equation 15 [2] displays

the hard decision function which can be implemented with comparators:

15

Literature Review

ui ,

0 if i Ô frozen position

1 if L0,i < 1

0 otherwise

(15)

2.3 Simplified Successive Cancellation Decoding Algo-

rithm

The throughput of the SC decoding algorithm can be further improved using

the SSC algorithm without affecting the error-correcting performance [3].

This can be archived exploiting the known a-priory positions of the frozen

values in order to perform some simplifications over the trellis. Unfortunately,

the SSC algorithm simplifications can be applied only to the message passing

version. Using the scheme shown in Fig. 5, three different types of nodes

can be identify:

• Rate-zero nodes (in white) representing the nodes whose children be-

long only to frozen positions

• Rate-one nodes (in black) representing the nodes whose children belong

only to non-frozen positions

• Rate-R nodes (in grey) representing nodes whose children belong both

to frozen positions e non-frozen ones

The rate-zero nodes have only rate-zero nodes as descendants while the

rate-one nodes have only rate-one nodes as descendants.

Reference [4] pointed out that the partial sums coming from the rate-zero

nodes are always zero: this means that the decoder has not to wait the hard

16

Literature Review

decisions coming from the button of the trellis in order to compute the vec-

tor to be passed to the other child or the vector to be passes to the parent.

Otherwise, it can proceeding knowing a-priori that the partial sum will be

zero.

Again in [4] was demonstrated that the hard decision for the root rate-one

nodes can be carried out directly from the received soft input without obtain-

ing different results then the ones computed with the standard SC algorithm.

Figure 5: Trellis diagram with N = 8, k = 3 and node types

These simplifications allow to truncate the trellis as it is shown in Figs. 5

and 6. The lower number of leafs can be translated in a significant reduction

of the computational steps needed to decode the receiving frames. The lower

number of required computations increases the achievable throughput.

17

Literature Review

Figure 6: SSC trellis diagram with N = 8 and k = 3

18

State-of-the-art Examples

3 State-Of-The-Art Examples

In this section, several decoder architectures will be presented in order to

provide reliable terms of confrontation between the work that will be exposed

in this thesis and other interesting designs. Unfortunately, it was not possible

to find any ASIP implementation dedicated to the Polar Codes decoding.

This is the reason why two different types of examples will be detailed in the

following lines: three ASIC decoders dedicated to the Polar Codes and three

ASIP decoders dedicated to Turbo Codes and LDPC Codes.

3.1 ASIC Decoders for Polar Codes

In [13] is presented one of the first ASIC implementation of a Polar Codes

decoder. It is based on a semi-parallel architecture that is subsequently

improved with some modifications to the processing elements (PEs). The

design of [13] is based on four main units: an array of PEs, a LLR memory,

the partial-sum update logic with the associated storage registers and a con-

troller. The allocated PEs are N/2 where N is the code-length of the code

that has to be decoded. The LLR memory stores the partial LLRs during

the decoding process. It is implemented using registers connected to the PEs

through some multiplexers. The partial-sum update logic manages all the

different value updates when new nodes of the decoder trellis are computed.

Finally, the controller is able to provide the correct control signals for the en-

tire architecture using three different counters: one that handles the current

decoded bit index, one that handles the current decoding level of the trellis

and the last one which handles the node of the trellis being processed. Then,

in the second part of [13] an optimization is introduced in order to improve

the throughput of the ASIC. It concerns a modification of the PEs in order to

19

State-of-the-art Examples

compute two values at the same time. This is archived computing both the

F and G functions of two linked nodes at the same time. As it was explained

in section 2.2, the G functions needs the F function output in order to be

calculated but if the two possible output values of G are computed together,

the right one can be selected with the F output. In this way, the parallel

computation is possible with a minimal time and area overhead. The ASIC

proposed in [13] occupies a area of 1.72 mm2 (using a 180-m technology) and

it is able to decode a 1024-bit code-length with a throughput of 49 Mbps.

A second ASIC implementation of a Polar codes decoder is proposed in [14]

where another semi-parallel architecture is presented. The principal purpose

of this semi-parallel architecture is to reduce the complexity of the decoder

introducing a small latency increment. The studies detailed in [14] demon-

strate that when a code with code-length N has to be decoded, there is the

possibility to use simultaneously N
2 processing elements only two times for the

entire decoding process. This is the reason why a lower number of PEs can

be implemented reducing the architecture complexity with a small latency

handicap which affects only the stages where all PEs are actually used. This

type of approach is called semi-parallel architecture by the authors of [14].

The design proposed by them is based on N
4 processing elements that are fed

by a random access memory (RAM) where all the temporary LLR values are

stored. Since each PE requires two LLRs as input and produces one LLR

as output, the RAM is designed to store a vector of LLRs coming from the

processing elements and to provide two vectors of LLRs to the same process-

ing elements at each clock cycle. Partial sum registers are also placed with

the aim of storing the partial sum values needed by each G node (equation

12) to compute their outputs. This registers are uploaded at each decoding

stage by a dedicated partial sum update logic module. Finally, a controller

20

State-of-the-art Examples

is added to the ASIC where all the control signals of the architecture are

computed at each decoding stage. With a code-length of 1024, the decoder

presented in [14] reaches a throughout of 123 Mbps with an implementation

area of 0.31 mm2 using a 65-nm technology.

The last ASIC is reported in [15]. It is a flexible Polar Code decoder that

supports any code-rate and any frozen-bit positions. The peculiarity of this

implementation is the possibility of choosing between three different decod-

ing algorithms. The first one is the Successive-Cancellation algorithm (SC)

explained in section 2.2. The second one is the Successive-Cancellation Flip

(SCF) algorithm [17] which at the start proceeds exactly as the SC algo-

rithm but during the final computations some simplifications are done in

order to decrease the overall number of operations. When a candidate code-

word is elaborated, it is checked with a cyclic redundancy check (CRC). If

the outcome of the CRC is matched, the codeword is accepted, otherwise,

the decoding process is restarted until a match is found. The last algorithm

is the Successive-Cancellation List algorithm (SCL) [18]. It starts with a

list of L codeword best candidates elaborated by itself. Then, it computes a

path of reliability metric during the decoding with the aim of discarding the

worst codewords of the list. At the end of the computations, the remaining

codeword is picked as the decoded one. The ASIC is capable of using these

three different algorithms exploiting four main units: a flexible decoder, an

unrolled decoder, a clock generation unit and a test-controller unit. These

units work with two different clock domains: a slower one (20 MHz) used by

the clock-generator unit and the test-controller unit and a faster one used

by the two decoders. Regarding the two decoders, the flexible one is used

when one of the three different algorithms has to be adopted with a custom

code-length and code rate. Whereas, the unrolled decoder is able to run only

21

State-of-the-art Examples

the SSC algorithm with an higher speed and energy efficiency than the other

decoder but giving up flexibility and the error-correction performance offered

by the other algorithms. This particular decoder is called unrolled because of

its pipelined architecture where the different decoding steps are computed in

sequence. Regarding the clock-generator unit, it produces a fast clock using

the 20 Mhz one as reference. The faster clock is produced by a frequency

lock loop (FLL) unit that can be configured during the run-time. Finally,

the test-controller unit is mostly composed by registers where the partial

LLRs are stored during the run-time. It also includes a finite state machine

which selects the desired decoder and configures both decoders and FLL.

The ASIC presented by [15] produces a throughput of 306.8 Mbps exploiting

the flexible decoder with the SCL algorithm which is the fastest one. On

the other hand, choosing the SC algorithm, the unrolled decoder produces

a throughput of 212.6 Mbps while the flexible decoder was able to reach a

throughput of 187.6 Mhz. The two types of decoders where tested with a

1024-bit codeword and they were synthesized separately with a 28-nm tech-

nology. The flexible decoder occupies 0.44mm2 of area while the unrolled

one occupies 0.3mm2.

3.2 ASIP Decoders

The ASIP decoder reported in [18] provides a valid standard of comparison

for the ASIP developed in this thesis. The architecture detailed in [18] is fully

dedicated to the Turbo Codes decoding. It is composed by two different sub-

ASIP decoders connected together through buffers and multiplexers. The

two sub-ASIPs work in parallel in order to decode the incoming codeword.

One sub-ASIP processes the data in the natural order while the other one

processes the data in the interleaved order. The complete block calculation

22

State-of-the-art Examples

is handled dividing the same block into N windows that are then computed

by the sub-ASIPs one by one. Each sub-ASIP has eight pipeline stages and it

computes the forward recursion and the backward recursion simultaneously.

The ASIP presented in [18] provides a throughput of 130 Mbps and occupies

an area of 2.1mm2 with 90-nm technology.

The authors of [19] also propose a multi-ASIP decoder for low density parity

check (LDPC) and Turbo decoding but with more sub-ASIP units. In details,

eight sub-ASIPs are integrated and connected together using a Network on

Chip (NoC). A ring network is also implemented in order to allow the metric

exchanges between the different sub-ASIPs. A program and a configuration

memory are implemented inside the ASIP. The configuration memory con-

tains the data needed to configure all the communication parameters inside

some dedicated registers implemented in each sub-ASIP unit while the pro-

gram memory contains the instructions needed by each decoding step. This

architecture is able to reach a maximum throughput of 312 Mbps occupying

an area of 2.6 mm2 with 90-nm technology.

Finally, the ASIP presented in [21] provides a recent example of LDPC de-

coder compatible with the 802.11ad standard and with an high grade of

parallelism. It offers a raw-based architecture using layered scheduling with

the aim of increasing both area and energy efficiency. The ASIP is capable

of elaborating four different code rates and it processes a code length of 672.

The authors of [21] employed 762 variable node function units (VFUs) and

42 check node function units (CFUs) in order to increase the throughput. All

these units are divided into sixteen slices and each slice contains data memo-

ries, a barrel shifter and several arithmetic computation elements. The slices

were designed in order to work in parallel. The ASIP provides a throughput

of 7.07 Gbps and an integration area of 0.126mm2 using a 28-nm technology.

23

Software Overview

4 Software Overview

The design of the different ASIP versions presented in this thesis was en-

tirely realized using ASIP Designer: a tool suite provided by Synopsys. This

particular software was a easy choice because it allows a rapid exploration of

architectural options offering an efficient C/C++ compiler which can gener-

ate power and area-optimized synthesizable RTL.

ASIP Designer models the different architectures starting from a nML pro-

cessor description language where the instruction-set and the memory con-

figuration of the prototype have to be indicated. The best feature offered by

this description language is the possibility to model each design in a cycle-

and bit-accurate way.

The nML description is compiled by the compiler provided by the tool

suite. It can cope a wide range of architectural peculiarities of DSP cores as

instruction-level and data-level parallelism, pipelined instructions, special-

ized arithmetic functions, custom data-types, specialized address generation

units, heterogeneous register structures and various degree of instruction en-

coding. The coded instruction-set can be easily debugged using a custom

assembler file or generating this one from an external C code.

The next sections will further focus the main parts of the software. All the

reported information are provided by [7].

4.1 nML Description Language

The nML is an architecture description language [12] used by ASIP Designer

to model the processor in a concise way. All the different instructions that

compose the processor instruction-set are described hierarchically using the

so called OR and AND rules:

24

Software Overview

• The OR rule is usually exploited in order to group a certain number

of instructions that can not be executed together but only one at the

time. This could be the case of a certain number of instructions that

uses the same arithmetic unit for example. At each cycle, only one

instruction of this group can be executed.

• The AND rule have the opposite purpose of the OR rule. It groups

instructions that can be executed in parallel when, for example, more

than one arithmetic units are available for the computations.

The nML also provides the tools able to describe the different units that

compose the architecture, as memories, registers or arithmetic units, and all

the connections between them.

4.2 C/C++ Compiler

The compiler is a very important tool provided by ASIP Designer. It is able

to translate a C or C++ code into an assembly code which is runnable by

the designed architecture. This important feature is exploited to test and

verify the developed ASIP with all the operations for which the architecture

is implemented. As consequence, the writing of the assembly code becomes

optional. A C code is enough in order to make the software generate all the

instructions that have to be tested. The compiler also manages all the mem-

ory initializations and operations in order to correctly store all the variable

used into the C/C++ code. The link between the code operators and func-

tions with the ASIP operations is done listing all the connections into the so

called "chess primitive header" [14]. The compiler reads this file every time

a compilation has to be done. An example is provided in Listing 1 where

the connection between the "+" operator of the C/C++ code and the sum

25

Software Overview

operation of the ASIP is reported. The "int" indicates the type of variable for

which the operation is possible while the "word" indicates the type of data

in which the variable has to be translate inside the ASIP architecture.

Listing 1: Chess primative header declaration for sum operator

promotion i n t operator+(int , i n t) = word sum(word , word)

4.3 Instruction-set Simulator

The instruction-set simulator [11] is a fundamental tool for the architecture

debugging. It allows to simulate the C/C++ code cycle by cycle with the

aim of monitoring all the instructions executed by the ASIP and finding

the possible problems. The simulator also provides a microcode where the

executed assembly code can be displayed. By clicking on one line of the

microcode it is possible to see the corresponding lines of the C/C++ code and

vice versa. The simulator also provides the possibility to watch the memories

and register content at each cycle. Furthermore, the simulator implements

some profiling tools able to generate very interesting information after the

simulations. For example, it is possible to view the usage of the different units

integrated into the ASIP or the percentage of the different instructions run

during the simulation. These tools can be very useful when a bottleneck has

to be found or the instructions have to be improved. Finally, files containing

the data stored into well defined memory ranges can be printed so that the

results of a given simulation can be compared with the right ones.

26

Software Overview

4.4 RTL Generator

The RTL generator [12] is a fundamental tool of ASIP Designer. It is able

to create a RTL version of the implemented architecture in both VHDL

and Verilog description languages. When the RTL generator is executed, a

configuration file has to be indicated. Inside the configuration file all the

features provided by the tool can be activated. Some of these features are

listed below:

• Generate an HDL testbench for the architecture

• Create synthesis script for architecture implementation

• Use existing hardware blocks to integrate the RTL Design

• Enable low-power design optimizations such as selective clock gating

27

Software Overview

Figure 7: Generated RTL structure

Fig. 7 reports a scheme where the generated RTL code is defined. Only

the processor logic is actually implemented with real gates while the mem-

ories and the clock generation unit are only coded inside the testbech. The

testbech elements can be used only for test purposes but they will not be

included for the synthesis.

28

Code Overview

5 Code Overview

The C code used in order to implement the decoding algorithm as machine

language is very important because it directly affects the final performance

of the ASIP. In this section, only the SSC decoding algorithm code will be

presented because it is the code used for the simulations of all the different

ASIP architectures. Three versions of the recursive function exploited to

implement the different decoding nodes will be detailed:

• First version of the decoding function

• Second version of the decoding function

• Vector version of the decoding function

5.1 First version of the decoding function

The first version of the decoding function was implemented following the

message passing decoding scheme. Each time the decoding function is evoked,

five different parameters have to be indicated:

• Current state: it indicates the level of the tree where the decoding node

is located. This is needed to fix the vector length of the bits that have

to be received and computed. It is also used to compute the position

in the Tree vector where all the node types are listed in order to use

the SSC tree simplifications, as it was explained in section 2.3

• Av vector: it contains the bits elaborated by the parent node

• Bv vector: in contains the bits elaborated by the current node after it

receives the hard decisions vector from its descendants

29

Code Overview

• Tree vector: it is the vector which contains the node type of each node.

It is already saved into the ASIP memory at the start-up of the system

and it is only read to check the SSC simplifications

• Position: it is an integer value indicating the horizontal position of the

current node. It is read to compute the node position inside the Tree

vector

The first operation done by the decoding function is to check the Tree

vector so that the type of computations to be performed are selected.

If the decoding node is a Rate-R node, it starts to compute the Al bits to

be passed to its left child. Then, it evokes another decoding function where

the Al bits are indicated, the current state is decremented by one and the

new position is computed using a dedicated function. This new decoding

function returns the Bl bits that are used to compute the Ar vector. Again,

the parameter to be passed to a new decoding function representing the right

child node are computed and the Br vector is received. The Bl and Br vectors

are exploited in order to compute the Bv vector which is finally returned to

the function that evoked the decoding function.

Otherwise, if the decoding node is not Rate-R type it can directly compute

the Bv vector from the received Av vector in two different way, depending on

its type:

• Making the hard decision operation for all the received bits if the node

is R-1 type

• Returning a vector with all frozen value if the node is R-0 type

30

Code Overview

5.2 Second version of the decoding function

The second version of the decoding function implements a lot of modifica-

tions in order to improve the arithmetic units usage of the ASIP and decrease

the number of instructions needed to translate the decoding algorithm into

machine instructions. This particular version of the decoding function will

be used starting from the Design 2 implementation, reported in section 6.2.

The first important change regards the way in which three computational

functions are implemented: minimum, XOR and hard decision. These three

functions were initial computed using nested ifs in order to compute the

output value. These if statements limit the parallelism of the ASIP and

introduce a lot of nop instructions that increase the cycles needed for the

decoding, as it is explained in section 6.1. These problems were easily solved

by creating some dedicated operations inside the arithmetic unit of the ASIP

in order to compute the needed elements in a single cycle, as it is further ex-

plained in section 6.2. The C code was updated in order to integrate these

new functions by only adding the computational function syntax to the chess

primitive header so that a link between the new operations implemented into

the architecture and the corresponding C functions is created by the com-

piler.

In addition, this second version also introduced another big improvement

which decreased the number of operations needed for the decoding. The

functions used to compute the node position inside the Tree vector and in-

side the decoding trellis are substituted by two simple counters that are

incremented each time a tree position or a trellis position is requested. The

decoding algorithm always computes the different nodes of the tree with the

same order so if the values computed by both the Tree position and the trellis

position functions are stored in two ordered vectors it is possible to read the

31

Code Overview

desired value by only using the counter as index. When one of these vectors

is read, the counter is incremented in order to prepare the index for the next

reading.

The last modification concerns the temporary value storing. In this second

version of the decoding function all the trellis values computed by two or

more operations were divided and all the single results needed to complete a

single value computation were stored in dedicated variable. Thanks to this

division, register renaming was applied to this version of the decoding func-

tion in order to better exploit the architecture parallelism from Design 2 on

wards. The different variables where the temporary results are stored in the

C code are translated as register file locations from ASIP Designer, avoiding

data dependencies between the values computed by the different arithmetic

units and decresing the number of memory accesses needed to complete the

computations of the trellis values .

All the mentioned modifications will improve the performance of the ASIP

as it is detailed in section 6.

5.3 Vector version of the decoding function

The vector version of the decoding function is implemented in order to ex-

ploit the vector unit introduced in section 6.5 for Design 5.

The parallel version only substitutes the previous function when the node for

which the decoding function is evoked computes vectors with a length equal

or multiple of the vector length processed by the vector unit. The choice

between the evocation of a parallel function or a normal one is done through

an if statement before the function declaration. If the trellis level of the child

node is high enough to process vector of bits with the requested length the

parallel decoding function will be evoked. Otherwise, the normal one will be

32

Code Overview

chosen.

The parameters of the parallel decoding function are the same of the previ-

ous one. The pointers to the Av and Bv vectors are copied in a vector type

pointer so that the single bits that compose the two vectors are seen as vec-

tor operators from the ASIP Designer compiler. The vector unit processes

the vectors in the same way the single values are processed by the normal

arithmetic units. The only difference is that the vector units processes all

the values contained into the vector operators in one single cycle.

Furthermore, all the memory locations dedicated to the storing of both re-

ceived LLR values and decoded bits have to be correctly aligned in memory.

This is needed because the vector unit can access to the vector mode of the

Data memory only by using addresses multiple of the vector size, as it is de-

tailed in section 6.5. This problem is easily managed by the "chess_storage"

command, an ASIP Designer command which indicates to the compiler when

the data has to be properly aligned for vector access.

33

Hardware Implementation

6 Hardware Implementation

6.1 Design Overview (Design 1)

In this section the base implementation of the ASIP will be presented. The

structure shown in Fig. 8 is the starting architecture which will be improved

in the following sections. The base ASIP is composed by a 216 X 16 bit

Data memory, 210 X 20 bit Program memory, a single 16-bit ALU and a

3-bit addressed register file. The length of the instruction word processed by

Design 1 is 20 bits.

Figure 8: Basic ASIP implementation

34

Hardware Implementation

The processor works with a 16-bit parallelism for both data and addresses.

Theoretically, the models of the symbols transmission through a channel

affected by noise [5] show that with a realistic SNR, the number of bits used

for the LLRs representation is not crucial for the BER performance. However,

it is important to set a proper saturation range in order to minimize the BER,

as explained in [5]. Since the BER performance is not one of the topics of

this thesis, a saturation for the elaborated data will be not applied.

Regarding the data memory, it is not only used to store the received frames

and the decoded bits but it is also exploited to implement a stack. The

stack implementation is required because the software, during the assembly

code compilation, has to store the temporary values used inside the iterative

functions implemented within the C code. Each time a function is evoked, a

context switch has to be performed. All the parameters needed by the new

function are stored in a portion of the stack appositely assigned. When the

function is terminated, the stack portion will be freed and made available for

other uses. This is the reason why a 16 bit addressed memory was requisite.

In a first attempt, a processor with two different computational units was

implemented: a 8 bit arithmetic unit exploited for the decoding computations

and a 16 bit address unit used only for the address computations. This choice

was driven by the desire to reduce the area of the ASIP for both memory

side and logic side (especially when the instruction level parallelism will be

introduced) but it was discarded because of all the bypasses needed between

the address and the arithmetic units and the slowdowns introduced by the

manipulation of the 16 bit addresses in order to be loaded/stored in a 8-bit

memory. These slowdowns occur very often since each time a value has to be

loaded from the memory or stored into the memory an address computation

has to be executed. In addition, the implementation of several units able to

35

Hardware Implementation

compute both data and addresses increases the system flexibility and so the

performances when the ILP will be introduced. These assumptions are also

verified in section 6.2. At last, a 16 bit parallelism was adopted for each part

of the design in order to avoid all the previous mentioned problems.

All the ASIP versions will be implemented with the following four pipe stages:

1. IF: instruction fetch, during this stage the address of the next instruc-

tion is sampled by the program counter and used with the aim of ex-

tracting the next instruction code-word from the Program memory

2. ID: instruction decode, in this stage the instruction code-word ex-

tracted from the Program memory is read from the control unit and

the Register File in order to respectively set the control signals for the

following stages and access to the indicated data

3. EX1: execution 1, during this stage the operation indicated by the

instruction is executed by the arithmetic unit

4. EX2: execution 2, this is the final stage where the data is stored into

the register file or the Data memory loads/stores the indicated data

The ALU is able to read the operands from the two ports of the register

file or, according on the current instruction, a MUX can extract the needed

bits from the instruction code. Three types of values can be delivered to the

ALU:

• IMM: immediate value used to indicate an operand directly with the

instruction code

• SPDX: stack offset value exploited to compute the stack pointer of the

needed memory location

36

Hardware Implementation

• OFF: memory address offset which is used to set the correct address

for the data load/store operations

Once the architecture is set, the next step requests to design an instruction-

set where all the possible operations done by the ASIP are mapped. This

step is particularly important because from the instruction-set depends the

efficiency with which the C code, containing all the different steps needed for

the decoding process, will be implemented in the machine language. Fig. 9

shows the first instruction-set implementation.

In the following lines the instructions syntax is explained:

• ALU_OPN: instruction that regulates the addition, subtraction, AND,

OR and XOR operations performed by the ALU. The A and B fields

are used to indicate the register file addresses of the two operands while

the D field contains the register file destination address where the result

will be stored. The type of operation is selected by the OP code.

• COMPARE_OPN: instruction that regulates the compare operations

performed by the ALU. The OP filed selects one compare operation

between the following ones:

– Less than

– Less or equal than

– Grater than

– Grater or equal than

– Equal

– Different

37

Hardware Implementation

The result is stored in a dedicated register called SREG. This register

is read when the direction of a conditional jump has to be selected.

• REG_MOVE: instruction able to move a value from a cell of the reg-

ister file (SRC) to another one (D) using the input and output ports of

the arithmetic unit.

• U_JUMP: instruction that regulates normal jumps. The address con-

tained into the program counter is added to the value contained into

the OFFSET field in order to compute the jump address.

• C_JUMP: instruction that regulates conditional jumps. The jump

occurs only if the value stored into the SREG is matched. The jump

address is computed as in the U_JUMP case.

• BSR: call instruction that saves the return address in a register file cell

called LR and stores the target address inside another register file cell

indicated by the A field. In the next cycle, the target address is fetched

by the program counter.

• RTS: return from subroutine instruction. It sets the address previously

saved into the LR register as the next address to be fetched from the

program counter.

• NOPE: nop instruction. The hardware is stalled when this particu-

lar instruction is executed. The nop instructions are issued when the

direction of a jump has to be computed, for example.

• IMM_OPN: instruction which regulates the immediate additions and

subtractions. The B value is incremented/decremented by the value

contained into the VALUE field. The type of operation is selected by

the OP field.

38

Hardware Implementation

• SIGN_OPN: instruction which regulates the ABS and SIGN operations

needed for the decoding algorithm. Only one operand is indicated by

the B field.

• COMPLEX_OPN: instruction that regulates the multiplication, divi-

sion and modulo operations performed by the ALU.

• LOAD: instruction that regulates the data load from the memory to

the register file. The data memory is addressed by the value contained

in the ADD location of the register file. The extracted value is stored

in the D location of the register file.

• STORE: instruction that regulates the data store from the register file

to the data memory. The value contained in the SRC location of the

register file is stored in the data memory location indicated by the

address contained in the ADD location.

• LOAD_SP: instruction that sums the value contained in the OFFSET

field to the current stack pointer. The result is used as address to load

a value from the memory. This instruction and the following one are

used to interact with the values contained in the stack.

• STORE_SP: same as LOAD_SP but the result is used to store the

value in the data memory.

• SH_OPN: instruction which regulates the shift operations performed

by the ALU. The A field contains the address of the operand while the

B field contains the address of the number of shifts to be performed.

• RESET_REG: writes a zero into the register file location addressed by

D

39

Hardware Implementation

• GEN_WORD_UP/DOWN: these two instructions generate a value

inside the register file writing in two different moments the first 8 bits

and the second ones of the word.

40

Hardware Implementation

Figure 9: First instruction-set implementation

41

Hardware Implementation

Figure 10: ASIP instruction fetch focus

Regarding the instruction fetch, a focus on the hardware dedicated to this

job is shown in Fig. 10. The address fetched by the program counter can be

selected between three sources:

• Incrementer: it increments the current fetched address by one in order

to continue the normal instruction sequence

• ALU_A: it vehicles the address stored inside the register file when a

BSR or RTS instruction is executed

• Branch Adder: it selects the address computed with the current fetched

address and an offset that can be provided by both jump and condi-

tional jump instructions

The selection is chosen by the ASIP_CTRL signals that are the control

unit signals at both ID and EX stages merged together and the SREG output

which is important when a conditional jump occurs. Both the control signal

42

Hardware Implementation

in the two stages are needed because a normal jump is executed when it is

located in the decode stage while a conditional jump is executed only when

the instruction reaches the execution stage where the branch direction is

computed and stored inside the SREG register. In the same way, the Branch

Adder has to be able to select between two different offsets to be added to

the current fetched address. The offset located in the decode stage has to be

chosen when a normal jump is executed, otherwise, the offset in the execute

stage has to be selected when a conditional jump is executed. This selection is

again managed by the ASIP_CTRL signals. Every time a jump of both types

has to executed, the compiler also introduces a sequence of nop instructions

that allows the computation of the branch address without fetching wrong

instructions in the meantime. The part of the architecture dedicated to the

address fetch is never changed in the following designs exception made for

Design 6 where the implementation of the hardware loop requires a little

modification of the fetch circuit.

6.1.1 Algorithms comparison

Two simulations are run using the same architecture but compiling two dif-

ferent algorithms: the SC message passing and the SSC message passing

algorithms. This test is carried out in order to appreciate the different per-

formances between the two decoding algorithms. The code to be decoded

has a code-length equal to 1024 and a code rate of 0.5. This means that the

algorithms will extract 512 information bits from the received frame. The

simulation results are shown in Table 1

43

Hardware Implementation

Algorithm SC SSC
Cycles 1332480 749345

ALU usage 59.9% 59.75%
DM usage 36.96% 36.77%
PM size 417 498

Table 1: SC vs SSC algorithm simulation results

The SSC algorithm is 43.79% faster than the SC one. The simplifications

made to the tree bring a big speed-up in terms of performance. The only

handicap is given by a slightly increment of the program memory size. This

is due to the additional if statements present in the SSC code. They are

needed to discriminate the different types of nodes previously mentioned in

section 2.3

The assembly code of both the SC and SSC simulations showed a big number

of nop instructions generated by the conditional jumps with whom the if

statements are translated. This means that the performance could be further

improved decreasing the number of if statements in the code.

Three operation types are implemented with nested if statements that can be

easily substituted by three specific ALU operations. The operations under

discussion are:

• minimum operation, used in equation 14

• word XOR, used in equation 6

• hard decision, used in equation 7

These modifications will be applied to the next design.

6.1.2 Synthesis

In this section the Synopsys tool suite is exploited in order to synthesize the

Design 1 architecture. The synthesis gives a feedback regarding the predicted

44

Hardware Implementation

needed area for the silicon implementation and the critical path delay. This

last information is very important because it is one of the variables that will

determine the working frequency of the ASIP.

The technology used for the synthesis is called UMC 65. It is a 65-nm tech-

nology with some interesting features like multiple VT options, for power

consuption and performance balancing, and retrograde twin well for para-

sitics and leakage current reduction. For more details refer to [6].

The results of the Design 1 synthesis are shown in Table 2. These results

were obtained with the simplest synthesis available without using any opti-

mization offered by the Synopsys suite. For this reason, the synthesis data

will be used only to compare the different Designs proposed in this thesis not

in absolute terms but in relative ones.

This logic synthesis and all the following ones are carried out without includ-

ing the Data and the Program memories. Memories have to be generated

by different tools and their sizes are usually not planned by the designer but

they are strictly connected to the current market availability.

Design 1
Combinational Area (µm2) 15913

Noncombinational Area (µm2) 1976
Total Area (µm2) 17886
Critical path (ns) 4.8

Throughput (Mbps) 0.142

Table 2: Design 1 synthesis results

The combinational area value expresses the total area dedicated to the

combinational logic while the noncombinational area represents all the area

dedicated to the logic which has nothing to do with the combinational units

as, for example, registers or multiplexers. All the area values do not take into

account the area needed for the routing process. The obtained throughput

45

Hardware Implementation

with this first version of the ASIP is 0.142 Mbps, very low compared to the

examples presented in section 3. The architecture needs to be improved in

order to obtain results comparable with the state-of-the-art examples.

46

Hardware Implementation

6.2 Design 2

The Design 2 is a modified version of Design 1 where all the operations that

previously required the usage of if statements are substituted by dedicated

operation performed directly by the arithmetic unit. The syntax of the new

implemented instructions is shown in Fig. 11.

• The IF_OPN instruction selects through the OP field one operation

between the minimum operation and the word XOR

• The HARD_DEC instruction performs the hard decision on the B

operator

These additional instructions requested an extra bit for the code fields

bringing the instruction word length up to 21 bits.

Figure 11: Design 2 additional instructions

The simulation performed in section 6.1.1 is repeated for Design 2 using

only the SSC algorithm. The results are reported in Table 3:

Design 1 2
Cycles 749345 280994

ALU usage 59.75% 68.53%
DM usage 36.77% 36.17%
PM size 498 235

Table 3: SSC simulation results for Design 1 and Design 2

The Design 2 improved its performance by 62.5% over the Design 1. Also

the ALU usage increased because of all the conditional jumps introduced by

47

Hardware Implementation

the if statements were substituted by dedicated computations performed by

the arithmetic unit. On the same basis, the Program memory size decreased

by 52.81%.

These results are perfectly aligned with the expected ones. Each time an

if statement is used, the ASIP processor stalls the instruction fetch for two

cycles in order to wait the direction computation without executing the next

instructions. Thanks to the dedicated arithmetic operations presented in

Fig. 11 this big handicap is avoided with a little increment of the arithmetic

unit complexity.

Secondly, the decrement of the if statements brings also a decrement for the

conditional jumps. This will surely be a good point when the arithmetic units

will be duplicated since the conditional jumps have to be computed by only

one arithmetic unit while the other ones has to wait until the correct address

is fetched. The conditional jump decrement will increase the percentage of

instructions that can be run in parallel when the instruction level parallelism

will be introduced.

6.2.1 Synthesis

The Design 2 synthesis results are displayed in Table 4. As expected, the

Design 2 computational area increased respect to Design 1. This is due to

the additional logic needed inside the arithmetic unit in order to substitute

the if statements with the dedicated instructions shown in Fig. 11. Whereas,

the noncomputational area do not increase because of all the logic outside

the arithmetic unit was not modified.

48

Hardware Implementation

Design 1 2
Computational Area (µm2) 15913 17226

Noncomputational Area (µm2) 1976 1970
Total Area (µm2) 17886 19195
Critical Path (ns) 4.8 4.8

Throughput (Mbps) 0.142 0.38

Table 4: Design 1 vs Design 2 synthesis

In conclusion, the Design 2 modifications increased the total area of the

ASIP by 7.3% compared to the Design 1 implementation. This is an accept-

able handicap taking into account the speed-up which the Design 2 brought.

Indeed, the throughput of Design 2 increased proportionally with the de-

crease of the cycles needed to complete a frame decoding.

49

Hardware Implementation

6.3 Design 3

The Design 3 implementation exploits instruction level parallelism in order to

speed-up the operations. Two computational units are implemented, each one

with its own register file, as it is shown in Fig 12. The first computation unit

is dedicated to the arithmetic computations while the second one computes

the memory addresses and the stack pointer modifications, as it is shown by

the instruction-set displayed in Fig. 13.

The instruction level parallelism introduced a big handicap for the Program

memory word size: the instruction bit-length grew to 36 bits. Thus, it is

not practical to implement a single stack memory with such a word length

but it is more practical to implement several memory banks with a smaller

word length and then access them with the same address in parallel. This

concept remains true for the next ASIP designs where the instruction length

will further grow.

Figure 12: Design 3 datapath

The two register files are implemented with two bypasses able to link

50

Hardware Implementation

them and allow register moves between the two different arithmetic units.

These bypasses have been inserted in order to increase the flexibility of the

system and allowing the address computation with the ALU when the ADDU

is busy. The bypasses allow to directly load values without using the Data

memory. This saves one cycle each time a move between the two register

files is required and should increase the performance of the device because

the instruction level parallelism is more efficiently exploited. The bypasses

are connected to a multiplexer which selects if the data has to be loaded from

the other register file or from the Data memory. It is important to underline

that the hardware of the two arithmetic units is not the same but the ADDU

is a simpler version of the ALU where only sums and subtractions can be

performed. Regarding the SREG, it was not doubled because only the ALU

includes the hardware needed to compute the jump conditions. In any case,

as it was stated in the previous sections, only one arithmetic unit at the time

can work when the direction of a jump has to be computed.

The instruction-set has been adapted to the datapath parallelization. Fig.

13 displays the two different modes in which the Design 3 ASIP can work:

the parallel mode is able to execute two instructions in parallel with the aim

of exploiting the two arithmetic units while the immediate mode is used to

execute the instructions containing an immediate value or the instructions

that modify the flow of the program counter (like jumps or rts). The two

different modes have been discriminated by the mask bits at the start of

the instruction code (displayed in dark yellow by Fig. 12). The immediate

mode is able to execute only a single instruction at the time. Unfortunately,

the immediate mode and the parallel mode were not merged because of the

different lengths of their instructions. Indeed, if a parallel mode was intro-

duced for the immediate instruction too, the instruction word length would

51

Hardware Implementation

be further increased.

In addition, the LOAD/STORE_SP_SMALL instructions have been imple-

mented into the parallel mode: when the stack pointer has to be modified by

a little value it can be done by the parallel mode exploiting the SP_SMALL

instructions instead of the LOAD/STORE_SP instructions of the immedi-

ate mode. This represents a big speed-up for the overall performances since

the largest part of instructions that modify the stack pointer need to move

the pointer by little ranges that can be managed by the SMALL_SP in-

structions. If the SMALL_SP instructions were not introduced, all the stack

pointer manipulations would be implemented with the LOAD/STORE_SP

instructions of the immediate mode losing the opportunity to use both the

arithmetic units at the same time. The LOAD/STORE_SP instructions are

only used when the ASIP switches from one function of the C code to another

one while all the stack modifications inside the same C function are managed

by the SMALL_SP instructions.

Another speed-up is introduced by the merger of the GEN_WORD_UP/DW

instructions. In Design 1 and 2, a word was generated using these two in-

structions in order to respectively manipulate the upper and lower bits of a

register file location using an 8-bit immediate. However, Design 3 implemen-

tation offers the possibility to use 16-bit immediate value making the word

generation in one single cycles possible. Unfortunately, the GEN_WORD

instruction of Design 3 can not be executed in parallel mode.

Regarding the REG_MOVE instructions shown in Fig. 13, they are able to

move the word contained into one register file to the other one exploiting the

bypasses shown in Fig. 12

52

Hardware Implementation

Figure 13: Design 3 instruction-set

53

Hardware Implementation

The Design 3 simulation results are shown in Table 5 where as ADDU

is indicated the arithmetic unit which performs the address computations.

Unfortunately, the obtained results pointed out a problem: the number of

cycles needed from Design 3 to complete the decoding process decreased by

only 20.96% compared to Design 2. This is an unexpected result since the

predicted speed-up computed with the Amdahl’s law was higher than 50%.

This problem can be solved applying the following points:

1. If the two arithmetic units are the same, the system flexibility increases

and the software can allocate the instructions in a more efficient way.

2. The division of the register file brings a big handicap because of the

additional move instructions needed in order to transfer partial values

from one arithmetic unit to the other one. A performance increment

should be appreciated designing a modified version of Design 3 where

the two units are connected to a single register file.

3. The number of conditional jump instructions used to control the loop

statements is too high compared to the instructions where the two units

are actually exploited. This can be solved using the loop unfolding

technique.

Design 2 3
Cycles 280994 222104

ALU0 usage 68.53% 34.66%
ADDU usage / 26.11%
DM usage 36.17% 21.84%
PM size 235 207

Table 5: Design 2 vs Design 3 simulation results

54

Hardware Implementation

6.3.1 Modified Design 3

The Design 3 architecture has been modified in this new implementation

with the aim of solving all the problems enumerated in the previous section.

The modified version of Design 3 is displayed in Fig. 14. The instruction

bit-length grew to 42 bits for this ASIP implementation because of the extra

bit needed to differentiate the additional instructions implemented and the

register file addresses that are indicated with 4 bits in this case.

Figure 14: Modified Design 3 datapath

55

Hardware Implementation

The new architecture presents a single register file which contains 16 reg-

isters. The register file is able to feed two identical arithmetic units and can

load data from the Data Memory through a direct bus. The two arithmetic

units are both able to use the Data memory for load/store operation but only

one unit at the time can actually use it. The Data memory still presents a

single port so it is not able to serve both arithmetic units simultaneously.

A multiplexer selects the output from the correct unit each time a store

instruction is executed.

56

Hardware Implementation

Figure 15: Design 3 instruction-set

Fig. 15 shows the new instruction-set of the modified version of Design 3.

57

Hardware Implementation

This time, the parallel mode is able to execute both arithmetic and memory

instructions on both the arithmetic units. Regarding the immediate mode,

its functioning remains unchanged compared to the initial Design 3.

The modified Design 3 is tested with the 1024-codelength decoding sim-

ulation. Table 6 shows a comparison between the Design 3 simulation and

the modified one using two algorithms: the normal one used for Design 3

and the loop unfolded version (indicated into the Table as "Modified Design

3 LU").

Design 3 Modified Design 3 Modified Design 3 LU
Cycles 222104 Cycles 209184 Cycles 137437

ALU usage 34.66% ALU1 usage 33.36% ALU1 usage 42.79%
ADDU usage 26.11% ALU2 usage 31.18% ALU2 usage 40.12%
DM usage 21.84% DM usage 18.58% DM usage 28.14%
PM size 207 PM size 179 PM size 228

Table 6: Design 3 vs modified version with loop unfolding and normal algo-
rithm

The comparison between the Design 3 simulation and the modified one

without loop unfolding points out the benefits coming from the implementa-

tion of two identical arithmetic units connected to a single register files: the

ALU1 and ALU2 have a perfectly balanced load in the modified version and

the overall cycles needed to the decoding steps decreased by 5.8% without

changing the decoding algorithm.

Regarding the loop unfolding version of the decoding algorithm, it further

decreases the number of cycles by 38.12%. This is due to the increment of the

arithmetic instructions weight over the control instructions coming from the

conditional jumps that have to be verified at the end of each loop. Listing

2 illustrates a simple loop unfolding example: it is useful to understand how

58

Hardware Implementation

the ASIP benefits from it. In the loop 1 version the compiler implements the

instructions needed to the sum and then a conditional jump in order to verify

the loop condition. This is repeated every loop cycle. In the loop 1 unfolded

version, the compiler is able to execute the instructions needed to implement

the two different sums before executing the conditional jump. Therefore, half

conditional jumps are executed, decreasing the number of nop instructions

and increasing the cycles where the datapath parallelism can be exploited.

59

Hardware Implementation

Listing 2: Loop unfolding example

// loop 1

f o r (i = 0 ; i < N; i++){

a [i] = b [i] + c [i] ;

}

// loop 1 unfo lded

f o r (i = 0 ; i < N; i+=2){

a [i] = b [i] + c [i] ;

a [i +1] = b [i +1] + c [i +1] ;

}

6.3.2 Synthesis

In this section the synthesis results of both versions of Design 3 are presented.

The synthesis is performed using the same technology and features exploited

in the previous designs.

Design 2 3 Modified 3
Combinational Area (µm2) 17226 17979 37041

Noncombinational Area (µm2) 1970 3487 3620
Total Area (µm2) 19195 21466 40660
Critical Path (ns) 4.8 4.8 4.8

Throughput (Mbps) 0.38 0.48 0.78

Table 7: Design 2 vs Design 3 synthesis results

Table 7 displays the synthesis results: the total area of Design 3 grows by

only 11.83% respect Design 2 even if the hardware was doubled. This can be

explained by the fact that the second arithmetic unit was not really a copy of

60

Hardware Implementation

the first one but it was implemented with a smaller unit (ADDU) able to only

perform address computations. Indeed, the computational area of Design 3

grows only by 753µm2 compared to Design 2 while the noncombinational

area is much more increased because of the register file which was really

doubled.

The modified Design 3 total area grows by 111.8% compared to Design 2

because the modified version of Design 3 was implemented with two identical

arithmetic units. This is why the combinational area of the modified version

is roughly twice the combinational area of Design 2.

Moreover, no changes are appreciated for the critical path delays of the three

mentioned designs. This is due to the fact that the critical path corresponds

to the path which goes from the output ports of the register file to the input

port of the same unit passing across the slower part of the arithmetic unit.

This path was not changed in the three different versions of the ASIP because

the first arithmetic unit structure remains the same. Regarding the second

implemented arithmetic unit, it is a simpler ALU for Design 3 which do not

introduce any higher critical path for obvious reasons. In the case of the

modified version of Design 3, the second arithmetic unit is an exact copy of

the first one, so it does not introduce a different critical path.

The throughput of Design 3 and its modified version respectively increases

by 26% and by 105% compared to Design 2. The throughput of the modified

version of Design 3 was computed using the loop unfolding version of the

decoding code.

61

Hardware Implementation

6.4 Design 4

The Design 4 principal aim is to further enhance the ASIP performances

implementing four different arithmetic units. The new datapath is displayed

in Fig. 16.

Figure 16: Design 4 datapath

The four arithmetic units are identical in order to avoid the problems

faced in the previous sections. The ALUs interface the Data memory with a

single port for load operations and a single port for store operations. This is

the reason why three multiplexers were placed in order to select the data to

be stored to the Data memory from the correct arithmetic unit.

Regarding the register file, it was composed by 16 registers as in the previous

62

Hardware Implementation

design. The register file can simultaneously feed the four arithmetic units or

store four computed values coming from them.

The Design 4 instruction-set is reported in Fig. 17. The division between

immediate mode and parallel mode is still present. The parallel mode is able

to execute four instructions in parallel exploiting the four arithmetic units.

The immediate mode is also able to execute immediate instructions in parallel

but only exploiting ALU1, ALU2 and ALU3 because only three instructions

can be executed in this mode. A fourth instruction was not implemente in

order to avoid an additional grow of the instruction word. Only ALU1 is

able to execute the instruction control operations as jumps or return from

subroutine instructions because they do not allow to run other instructions

in parallel when they are executed. The grade-4 level parallelism brought

the instruction bit-length to 88 bits, twice the length of the previous design.

63

Hardware Implementation

Figure 17: Design 4 instruction-set

The new Design is tested with the same code used in Section 6.3.1 but

using a loop unfolding grade equal to four with the aim of adapting the decod-

ing algorithm to the Design 4 parallelism grade. Table 8 shows a comparison

between the modified version of Design 3 and the Design 4. Naturally, De-

64

Hardware Implementation

sign 3 architecture was tested with the loop unfolded version of the decoded

algorithm too.

Modified Design 3 Design 4
Cycles 137437 Cycles 97502

ALU1 usage 42.79% ALU1 usage 8.5%
ALU2 usage 40.12% ALU2 usage 16.81%

/ / ALU3 usage 34.78%
/ / ALU4 usage 49.16%

DM usage 28.14% DM usage 51.09%
PM size 228 PM size 282

Table 8: Modified Design 3 vs Design 4 simulation results

The Design 4 architecture was able to decode a frame with 29.06% less

cycles than the modified version of Design 3. However, these results are not

acceptable because of the unbalanced load recorded by the four arithmetic

units of the Design 4. The new architecture was not able to correctly exploit

the applied parallelism because of a blocking element: the Data memory.

This can be demonstrated looking at the simulation results. The data mem-

ory recorded the highest usage among the other units. This means that dou-

ble ports are needed for both load and store operations in order to properly

serve the requests coming from the arithmetic units.

6.4.1 Design 4 with double ports for Data memory

Fig. 18 displays the Design 4 datapath using a Data memory with two ports

for store operations and two ports for load operations. The four arithmetic

units were divided in two groups and each group is able to use one different

port of the Data memory. The ALU output is selected by a multiplexer. The

register file is able to load data from the memory using the two load ports

at the same time.

65

Hardware Implementation

Figure 18: Design 4 datapath with double port for Data memory

Table 9 shows a comparison between the simulation results of Design 4

with single port and with double port for the Data memory. The Data mem-

ory usage decrement demonstrates that the previous guess was correct: the

Data memory was a bottleneck for the ASIP. In the new Design 4 implemen-

tation the arithmetic units are more efficiently exploited since the overall

work load is better distributed among them and the number of cycles re-

quested by the decoding steps decreased by 10.68% compared to the single

port version.

66

Hardware Implementation

Design 4 (single port) 4 (double port)
Cycles 97502 87093

ALU1 usage 8.50% 14.70%
ALU2 usage 16.81% 25.39%
ALU3 usage 34.78% 36.72%
ALU4 usage 49.16% 45.58%
DM usage 51.09% 38.49%
PM size 282 261

Table 9: Design 4 single port vs double port for Data memory simulation
results

The analysis of the assembly code generated by the software for the decod-

ing process pointed out a problem: the parallelism of the Design 4 architec-

ture is not completely exploited because it is not always possible to saturate

the parallel mode or the immediate mode with respectively for arithmetic

instructions or three immediate instructions. This handicap can be easily

overcome if only one mode is implemented where both arithmetic and imme-

diate instructions can be executed together.

6.4.2 Modified Design 4

The modified version of Design 4 presents some changes only for the instruction-

set which is shown in Fig. 19. The instruction bit-length grew to 112 bits

but the modified version of Design 4 is now able to execute four parallel

instructions indifferently from their type. Each arithmetic unit can execute

the same sub-set of instructions with the exception of the first one: it can

execute four additional instructions that control the instruction fetch and, as

it was explained before, they do not allow the execution of other instructions

in parallel. The LOAD/STORE_SMALL_SP instructions were eliminated

from this instruction-set because the normal SP instructions are now always

available without switching ASIP mode.

67

Hardware Implementation

Figure 19: Modified Design 4 instruction-set

68

Hardware Implementation

A comparison between the simulation results of Design 4 multiple port

and the modified version of Design 4 is displayed in Table 10. The different

instruction-set implementation brought a 2.6% decrement for the number of

cycles. This improvement is lower than expected.

The modified Design 4 implementation was simulated step-by-step with a

32 bit code-length in order to investigate the blocking element which curbed

the performance improvement. After several simulation cycles a problem was

found for the register file: it was always saturated after a few cycles and so

it was not able to proper feed all the arithmetic units. This type of problem

emerged for the modified version of Design 4 because of the new instruction-

set which allows a larger number of instruction types execution in parallel.

Thus, a larger number of temporary values have to be loaded and stored

into the register file increasing the number of locations required during each

cycle.

Design 4 (double port) Modified 4
Cycles 87093 84830

ALU1 usage 14.70% 14.87%
ALU2 usage 25.39% 21.79%
ALU3 usage 36.72% 32%
ALU4 usage 45.58% 56.99%
DM usage 38.49% 40.80%
PM size 261 257

Table 10: Design 4 double port vs modified Design 4 simulation results

6.4.3 Second Modified Design 4

The second modified version of Design 4 is implemented using the same

instruction-set displayed by Fig. 19 and the same datapath shown in Fig.

18 with the only exception of the register file size: this ASIP version uses a

larger register file composed by 32 registers with the aim of overcoming the

69

Hardware Implementation

problem highlighted in the previous section.

Design 4 (double port) Modified 4 Second Modified 4
Cycles 87093 84830 74213

ALU1 usage 14.70% 14.87% 19.85%
ALU2 usage 25.39% 21.79% 25.81%
ALU3 usage 36.72% 32% 37.35%
ALU4 usage 45.58% 56.99% 56.22%
DM usage 38.49% 40.80% 45.02%
PM size 261 257 256

Table 11: Design 4 versions simulation results

Table 11 summarises all the simulation results obtained for the different

versions of Design 4 where the double port for the Data memory was im-

plemented. Concerning the second modified version, the number of cycles

needed for the decoding decreases by 12.52% compared to the first modified

version. The bigger register file enhances the parallel usage of the four arith-

metic units as it can be seen from the more balanced work load with respect

to the previous Design 4 versions. Although, the higher flexibility given to

the system in the successive versions of Design 4 increases the Data memory

usage. When the arithmetic units are more efficiently exploited an higher

throughput is required from the Data memory.

6.4.4 Synthesis

Table 12 presents the synthesis results for all the different versions of Design

4. The SP term indicates the single port version while the MP term indicates

the multiple port version.

70

Hardware Implementation

Design 4 (SP) 4 (DP) Mod. 4 Sec. Mod. 4
Combinational Area (µm2) 69697 69458 70209 77433

Noncombinational Area (µm2) 4734 4761 5232 15563
Total Area (µm2) 74432 74219 75441 105119
Critical Path (ns) 4.9 4.9 4.9 5.1

Throughput (Mbps) 1.07 1.2 1.23 1.35

Table 12: Designs 4 Synthesis

Comparing the Design 4 SP version with the modified Design 3 version,

the total area increased by 83.07%. This is mostly due to the four arithmetic

units that doubled the combinational area and to the additional multiplexers

that were needed for the interfacing of the Data memory.

The total area between the Design 4 SP and MP versions remains almost un-

changed. There is only a slightly decrement for the noncombinational area

because of the lower number of multiplexers required for the memory inter-

face.

Between the DP version and the first modified version, only a slightly in-

crement for the total area is appreciated too. This small increment is given

by the additional complexity required by the system in order to manage all

the types of instructions in one mode and by each arithmetic unit. This is

the reason why an increment is recorded for both the combinational and the

noncombinational area.

Between the different Design 4 versions, the higher area increment is recorded

comparing the first modified version with the second one. In this case, the

total area grows by 39.34% because of both the combinational and the non-

combinational area increments. In particular, the latter triplicates compared

to the previous version even though the number of registers of the register file

were only doubled. The reason for that was found in the additional complex-

ity required by the register file in order to simultaneously vehicle information

71

Hardware Implementation

from twice registers to the four arithmetic units and vice versa. In addition,

higher complexity is also required in order to interface more registers to the

Data memory load ports. Regarding the combinational area, a slightly in-

crement is also recorded for the same reason: an additional complexity is

required to interface more registers when the result has to be written back.

The critical path remains unchanged for all Design 4 implementations with

the exception of the last version. An increase of 4.08% is recorded for the

critical path of the second modified version of Design 4. This handicap is

again due to the additional multiplexers needed to correctly interface the

arithmetic units with the 32 registers of the register file.

The Table also reports the constant throughput increment for each successive

implementation of the ASIP.

72

Hardware Implementation

6.5 Design 5

The main purpose of Design 5 implementation is to solve the problem of

the Data memory high usage implementing a new type of unit: a vector

arithmetic unit. It is a module able to perform the same types of operations

executed by the ALUs but using a different type of operators: vectors of

word. This means that in a single cycle the vector arithmetic unit is able to

process several words at the same time. In addition, the vector arithmetic

unit is connected to a different register file, called vector file, able to store an

entire vector in each location. Finally, the main advantage of this new unit is

the possibility to perform load and store operations moving simultaneously

several words from/to the Data memory as vectors. This last feature can be

very useful in order to solve the Data memory high usage problem previously

highlighted.

Regarding the Data memory, it is now able to work in two different modes:

• Single word mode: the memory is accessed by normal addresses and

processes one word at the time. This mode is needed to correctly feed

the normal arithmetic units.

• Vector mode: the memory is accessed only by addresses multiple of

the vector length computed by the vector unit. The memory is able to

process an entire vector of words in parallel.

The two modes can not be used simultaneously. The memory can be

accessed only with one mode in each cycle. Double ports are still present for

the single word mode but only a single port is available for the multi-word

mode.

The complete datapath of Design 5 is shown in Fig. 20.

73

Hardware Implementation

Figure 20: Design 5 datatpath

The register file is still implemented with 32 registers while the vector file

contains 8 locations where 8 different vectors can be stored.

The instructions are coded in 116 bits and the instruction set is shown in Fig.

20. The instructions that control the instruction flow are executed only by

ALU1 while ALU4 instructions are substituted by the instructions executed

by the vector unit.

74

Hardware Implementation

Figure 21: Design 5 instruction-set

75

Hardware Implementation

The vector units executes new types of instructions: the V_LDST and

V_LDST_SP are instructions able to use the vector mode of the Data mem-

ory and load/store an entire vector from/to the memory in one single cycle.

The other two instructions run by the vector unit are: VALU1_OPN and

VALU2_OPN.

The VALU1_OPN processes only one vector at the time and it can select

between the following operations:

• Vector sign: returns a vector containing the signs of the elements stored

in the processed vector.

Y [i] = sign(A[i]) (16)

• Vector arf: returns a vector Y containing elements elaborated with the

following formula:

Y [i] = 1− (2 ∗ A[i]) (17)

This operation is needed in order to prepare vectors for equation 5.

• Vector ABS: returns a vector containing the absolute module of the

elements contained in the input vector

Y [i] = abs(A[i]) (18)

• Vector hard decision: returns a vector which contains the hard decision

performed on each element of the input vector, according to formula 7.

Y [i] = HARD_DEC(A[i]) (19)

76

Hardware Implementation

• Vector froze: returns a vector containing only frozen values. This oper-

ation is required in order to store a segment which contains only frozen

bits in the Data memory with a single store operation.

Y [i] = 0 (20)

Whereas, the VALU2_OPN processes two vectors as operands at the time

and it can select between the following operations:

• Vector minimum: returns a vector containing the minimum values be-

tween the elements of the two input vectors at the same position.

Y [i] = min(A[i], B[i]) (21)

• Vector XOR: returns a vector containing the XOR operation results

between the two elements of the input vectors at the same position.

Y [i] = A[i]⊕B[i] (22)

• Vector sum: returns a vector containing the sums between the elements

of the two input vectors at the same position.

Y [i] = A[i] + B[i] (23)

• Vector multiplication: returns a vector containing the multiplications

between the elements of the two input vectors at the same position.

Y [i] = A[i] ∗B[i] (24)

77

Hardware Implementation

The Design 5 is simulated with the decoding code adapted to the vector

unit which was detailed in section 5.3. It is important to underline that

only the nodes that compute vectors of bits with length equal or multiple

to the length of the vectors computed by the vector unit can benefit from

the vector computations. The nodes that handle less bits (like the nodes at

the end of the tree shown in Fig. 6, for example) can not benefit from the

vector computation and they have to use the normal arithmetic units. In

consequence of this fact, the choice of the vector length which is computed

from the vector units becomes fundamental for the achievable performances

increment.

According to the tree distribution of the nodes, lower is the length of the

vectors higher is the number of nodes that benefits from the vector compu-

tation. On the other hand, lower is the vector length processed by the vector

unit lower will be the speed-up. A trade-off has to be found simulating the

architecture with different length sizes with the aim of choosing the best con-

figuration. The number of simulations needed to do this analysis is limited

because only the lower vector sizes have the possibility to exploit the vector

computation for an higher number of nodes.

Vector length 4 8 16 32
Cycles 61094 47160 46064 53230

Table 13: Number of cycles with different vector lengths

Table 13 exposes the number of cycles needed to complete a single frame

decode using different vector lengths. The best performances are obtained

with a vector length of 16 then, with a vector length of 32 the needed cycles

start to increase. However, between the vector lengths 8 and 16 there is a

difference of only 2.3% in terms of performance but the integration of the

vector unit with a vector length of 16 requests twice the area needed by a

78

Hardware Implementation

vector length of 8. For this reason, the vector length for Design 5 was set to

8.

Inside the vector unit is embedded a second unit able to compute the ad-

dresses for all the vectors that have to be calculated and stored during the

ASIP functioning. A specialised unit for the vector addresses was needed

because the memory has to be accessed with addresses multiple of the vec-

tor length in order to correctly extract the vectors of word in vector mode.

Furthermore, the embedded vector address unit has to compute addresses

for the vectors to be stored that do not create conflict with the other data

stored into the Data memory.

Table 14 shows the simulation results of Design 5 compared to the last

version of Design 4. The number of cycles required by Design 5 to complete

the single frame decode decreased by 39.1% compared to the second modified

version of Design 4. It is also important to underline the Data memory

usage decrement for Design 5 when, for Design 4, it was the main reason to

slowdowns. However, the ALU1 and vector units are not exploited enough

in Design 5. More frames can be decoded simultaneously in order to increase

their usage.

Design Second Modified 4 5
Cycles 77433 47160

ALU1 usage 19.85% 5.72
ALU2 usage 25.81% 18.19%
ALU3 usage 37.35% 39.59%
ALU4 usage 56.22% /
VALU usage / 8.33%
VADD usage / 4.69%
DM usage 45.02% 28.11%
PM size 256 275

Table 14: Second modified Design 4 vs Design 5 simulation results

79

Hardware Implementation

6.5.1 Modified Design 5

The modified version of Design 5 is introduced in order to allow the compu-

tation of multiple frames in parallel. This is needed because of the low usage

recorded for the vector unit and the ALU1 in the simulation of Design 5.

However, the simultaneously decoding of multiple frames requires a bigger

Data memory to store all the partial data elaborated during the function-

ing. This is the reason why the modified version of Design 5 is designed

with 18-bits data parallelism which is the same length of the new Data mem-

ory address which can now interface 218 different word locations. This is the

only modification performed on Design 5 architecture. The datapath and the

instruction-set do not change compared to the ones shown in Figs. 20 and 21.

Design 5 (1 frame) Modified 5 (2 frames) Modified 5 (4 frames)
Cycles 47160 57248 83302

ALU2 usage 5.75% 9.55% 15.79%
ALU3 usage 18.19% 25.92% 30.41%
ALU4 usage 39.59% 41.16% 39.67%
VALU usage 8.33% 13.72% 18.85%
VADD usage 4.69% 7.74% 10.63%
DM usage 28.11% 37.50% 47.12%
PM size 275 328 460

Table 15: Design 5 vs modified Design 5 simulation results with multi frame
decoding

Table 15 displays the simulation results of Design 5 and the modified

version of Design 5 with the parallel decoding of two frames and four frames.

Naturally, if more frames are computed in parallel the usage of the different

arithmetic units will be higher. The decoding of multiple frames also affects

the Program memory size which has to be bigger in order to contain the

instructions of a longer code where all the the operations needed to decode

80

Hardware Implementation

the different frames are listed. Regarding the ASIP performance, this time

the number of cycles are not the absolute value of confrontation but the real

throughput has to be used. In this way, the modified Design 5 version with

2 frames parallel decoding improves by 39.3% compared to Design 5 while

the same modified Design 5 version, but with 4 frames parallel decoding,

improves by 55.84% compared to Design 5.

However, with an higher number of frames the usage of the Data memory

increases. This is due to the higher data request coming from the arithmetic

units that now have to compute several frames at the same time. This is

the reason why in the following ASIP implementation a double port for the

vector mode of the Data memory will be implemented.

6.5.2 Synthesis

Table 16 reports the synthesis results for Design 5 and its modified version.

Between the two versions there is an overall area increment of around 20%

which is directly proportional to the data parallelism increment. Regarding

the critical path delay, it increases by 7.8% for the modified version of De-

sign 5 because of the higher complexity that the computational units have

to manage with an higher data parallelism. However, the performance incre-

ment recorded for the four frames parallel decoding was much higher than

the critical path delay handicap.

Design 5 Modified 5
Computational Area (µm2) 89556 107906

Noncomputational Area (µm2) 15562 17301
Total Area (µm2) 105119 125207
Critical Path (ns) 5.1 5.5

Throughput (Mbps) 2.13 4.47

Table 16: Design 5 and modified version of Design 5 synthesis

81

Hardware Implementation

As mentioned before, the throughput of the modified version of Design 5

improves even if its critical path is higher than the original Design 5. In detail,

the throughput increases by 110% compared to the Design 5 implementation.

82

Hardware Implementation

6.6 Design 6

The Design 6 is the last architecture that will be presented in this thesis

and it was designed in order to further improve the ASIP performance dou-

bling both the arithmetic units and the vector one. As consequence of that,

some problems already faced in the previous sections will recur, as the Data

memory slowdowns or the register file saturation.

Figure 22: Design 6 architecture

Fig. 22 displays the architecture of Design 6. This time, the Data memory

has double ports for vector mode in order to overcome the problems faced

in section 6.5.1. The normal arithmetic units are also able to interface the

Data memory with double ports but the store buses were not reported in the

architecture in order to have a cleaner representation of the whole datapath.

Although, the Data memory is still able to work only in one mode at the time.

The vector file now contains 16 locations for vectors stores. It was doubled in

order to avoid saturation problems since the Vector file was always saturated

when it was tested in the previous section. The register file dimension remains

unchanged because despite the case of the Vector file, the Register file was

not completely used in the previous ASIP implementation. Finally, Design

6 implements instruction words of 250 bits. The instruction-set is the same

83

Hardware Implementation

as the one shown in Fig. 21 but it was doubled in order to manage all the

additional units of Design 6.

Design Modified 5 (4 frames) 6 (4 frames) 6 (6 frames)
Cycles 83302 64098 86640

ALU1 usage 15.79% 5.17% 3.01%
ALU2 usage 30.41% 5.36% 5.21%
ALU3 usage 39.67% 10.37% 7.38%
ALU4 usage / 13.59% 16.54%
ALU5 usage / 31.08% 35.24%
ALU6 usage / 45.60% 51.18%
VALU1 usage 18.85% 11.47% 10.91%
VALU2 usage 15.79% 13.03% 16.28%
VADD1 usage / 4.55% 5.88%
VADD2 usage / 9.27% 9.46%
DM usage 47.12% 47.31 55.91%
PM size 460 385 508

Table 17: Design 5 vs Design 6 simulation results with multiple frame de-
coding

Table 17 reports the simulation results of the modified version of Design

5 and Design 6 with 4 frames and 6 frames parallel decoding. The Design 6

architecture improves the throughput by 23.05% compared to the modified

version of Design 5 in the case of 4 frames parallel decoding for both imple-

mentations. The usage of the vector units and the first arithmetic units is

still too low so a 6 frames parallel decoding was simulated. However, the

results are disappointing: it is true that the performances of the 6 frames

parallel decoding improves by 9.89% but the usage of the previous mentioned

units remains too low. This is due to the slowdowns introduced by the Data

memory whose usage increased to 55.91%, far higher than the other units.

This was anticipated at the start of this section and can be solved imple-

menting more ports for the Data memory.

However, it is very uncommon to use memories with more than two ports

84

Hardware Implementation

because of the additional complexity which would decrease too much the

memory speed. Usually, two different approaches can be adopted:

• Divide the memory in more banks where the data is organised in differ-

ent groups so that the computational units can access different banks

at the same time. This is a good approach for power consumption be-

cause it allows to turn-off the banks that are not used but, on the other

hand, the data has to be well organised inside the different banks with

the aim of avoiding that two different units need to access the same

bank at the same time.

• Divide the memory in more banks where the data is interleaved between

them. This is a good approach in terms of performance because it is

very common that two different units need to access to two sequential

data at the same time but, on the other hand, the banks stay on for

the majority of the time.

In addition, the microcode provided by ASIP Design for Design 6 pointed out

a particular problem: with the higher level parallelism the actual instructions

where the parallelism is efficiently exploited begin to be comparable with the

total number of nops and conditional jump checks run at the end of each

code loop. This problem can be easily overcome using an hardware loop.

The Design 6 was updated in order to integrate an hardware loop unit em-

bedded into the ALU1 so that the handicap coming from the instructions

executed after each loop instantiated into the C code was eliminated. The

ALU1 was chosen to implement the hardware loop because it was the least

used ALU of Design 6. The structure of the hardware loop unit is displayed

by Fig. 23.

85

Hardware Implementation

Figure 23: Hardware loop unit

The hardware loop unit is composed by a counter and three registers.

When a hardware loop instruction is executed (instruction syntax reported

in Fig. 24) the number of cycles needed for a certain loop is transferred from

the A register of the RF to the LC register. The start address of the loop

and the end address of the same loop (provided by the instruction code) are

respectively stored in the LS and LE registers. Every time the last instruction

of the loop routine is executed, the counter is incremented and its output is

compared to the value stored into the LC register. When the two numbers

match, the LE address is fetched into the program counter. Otherwise, the

program counter fetches the address provided by the LS register so that the

loop routine is restarted.

Figure 24: Hardware loop unit instruction syntax

86

Hardware Implementation

The simulation results of the old Design 6 and the one upgraded with the

hardware loop are presented in Table 18. Both designs are simulated using

the six frame parallel version of the decoding code. The introduction of the

hardware loop decreased the cycles needed for the decoding steps by 19.17%

compared to the previous design. The upgraded Design 6 also recorded a

usage increment for all the reported units and a reduction of 35 instructions

for the program memory size. Both the changes are due to the elimination of

the nop and the conditional jump instructions related to the loop condition

check.

Design 6 (old) 6
Cycles 86640 70033

ALU1 usage 3.01% 6.47%
ALU2 usage 5.21% 6.71%
ALU3 usage 7.38% 10.16%
ALU4 usage 16.54% 19.82%
ALU5 usage 35.24% 43.74%
ALU6 usage 51.18% 57.98%
VALU1 usage 10.91% 15.49%
VALU2 usage 16.28% 18.14%
VADD1 usage 5.88% 8.82%
VADD2 usage 9.46% 10.16%
DM usage 55.91% 66.59%
PM size 508 473

Table 18: Old Design 6 vs upgraded Design 6 simulation results using six
frame parallel decoding

6.6.1 Synthesis

Table 19 displays the synthesis results for the modified version of Design 5

and the upgraded version of Design 6. The total area of Design 6 increases by

109.21% compared to the previous version. This is the results of the doubled

arithmetic units, the doubled vector file and additional complexity needed

87

Hardware Implementation

to interface the Data memory with double ports for both vector mode and

single mode plus the additional complexity needed to vehicle the information

between the doubled vector file and the other units. The critical path in-

creases too but this result is negligible because the throughput of the Design

6 implementation increases by 72.3% compared to the modified version of

Design 5.

Design Modified 5 6
Computational Area (µm2) 107906 225750

Noncomputational Area (µm2) 17301 30138
Total Area (µm2) 125207 255888
Critical Path (ns) 5.5 5.7

Throughput (Mbps) 4.47 7.7

Table 19: Modified version of Design 5 vs Design 6 Synthesis

88

Conclusions

7 Conclusions

All the designs detailed in the past sections are reported in Table 20. Each

line contains the total area and the throughput (Th) with whom each design

was characterised in its last version. There is also a column where the area

efficiency is reported. The area efficiency is computed with the ratio between

the throughput and the total area. It provides a good point of confrontation

for the different architectures because it is a measure of the performance

provided by each area unit. Thus, higher is the area efficiency higher is the

effectiveness of the different architectural choices for each design.

Design Area (mm2) Th (Mbps) Area Eff. (Mbps/mm2)
1 0.018 0.142 7.89
2 0.02 0.38 19
3 0.041 0.78 19.02
4 0.11 1.35 12.27
5 0.13 4.47 34.39
6 0.26 7.7 29.62

Table 20: Results summary

The best design in terms of required area is the first one but it is also the

worst design in terms of performance. The best throughput is provided by

the Design 6 implementation thanks to its two vector units, six arithmetic

units and six parallel frame decoding code run but, on the other hand, Design

6 is also the architecture with the higher implementation area.

Regarding the area efficiency, Design 6 is not the best choice even with the

addition of the hardware loop. The reason of that can be found in the high

usage of the Data memory which is the bottleneck of the system. As it was

stated in section 6.6, a Data memory with an higher number of port for the

load and store operations would increase the performance of Design 6 re-

wording this last architecture as the best one even in terms of area efficiency.

89

Conclusions

However, if only the results presented in this thesis are considered, the best

area efficiency is provided by Design 5. The introduction of the vector unit

and the parallel frame decoding code was able to nearly triple the area effi-

ciency of Design 4 which suffered from the bottleneck provided by the Data

memory. Design 2 also deserves a special attention because it was capable of

providing an area efficiency 141% higher than the previous implementation

with an area handicap of only 11%. This was possible thanks to the intro-

duction of "specialised" instructions that were able to compute functions of

the decoding algorithm using only one cycle. It is important to stress this

concept because it is the distinctiveness which allows to the ASIP implemen-

tations to be way more efficient than the general purpose implementations.

7.1 State-Of-The-Art Comparison

Finally, a comparison between the ASIC decoders reported in section 3.1 and

the fastest ASIP designed in this work (Design 6) will be presented. Table

21 displays throughput and implementation area for each design.

This Work [13] [14] [15]
Th (Mbps) 7.7 49 132 187
Area (mm2) 0.26 1.72 0.31 0.3

Area Norm. for 65nm (mm2) 0.26 0.22 0.31 1.62

Table 21: State-of-the-art comparison between throughput and implementa-
tion area

The ASIP implementation of this thesis is the slowest one between the

reported architectures, as it was anticipated in the first sections. The ASIC

designs are able to provide a throughput one order of magnitude higher than

the presented ASIP. Regarding the implementation area, the different archi-

tectures were implemented with different technologies so a proper comparison

90

Conclusions

can be done using the last row of Table 21 where a normalized value of the

area is computed using the 65-nm technology as reference. In this case, the

implementation area of the ASIP presented in this work is comparable with

the examples reported in [13] and [14]. An exception is made for the ASIC

presented in [15] where the normalized implementation area is seven times

higher than the developed ASIP. This is due to the possibility offered by

the ASIC of setting the code-rate and the frozen-bit positions and to the

implementation of three different decoding algorithms with whom the de-

coder can be set. Another important point of comparison is the number of

processing elements implemented in each architecture. The higher perfor-

mance of this work is reached with a parallelism grade of 22 counting each

vector arithmetic unit as eight parallel processing elements. Whereas, the

state-of-the-art ASICs exploited a parallelism grade that was much higher

and allowed to reach the displayed performances without an excessive area

handicap.

91

Bibliography

References

[1] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-

Achieving Codes for Symmetric Binary-Input Memoryless Channels",

2009.

[2] Alexandre J. Raymond, "Design and Hardware Implementation of De-

coder Architectures for Polar Codes", 2013.

[3] Gabi Sarkis and Warren J. Gross, "Increasing the Throughput of Polar

Decoders", 2013.

[4] A. Alamdar-Yazdi and F. R. Kschischang, "A simplified successive can-

cellation decoder for polar codes", 2011.

[5] Anthony Barre, Emmanuel Boutillon, Neysser Blas and Daniel Diaz, "A

polar-based demapper of 8PSK demodulation for DVB-S2 systems", 2013

[6] www.umc.com, "65 Nanomiter", 2005

[7] Synopsys, "ASIP Designer: Design Tool for ApplicationSpecific

Instruction-Set Processors", 2018

[8] Synopsys, "Guidelines for Hands-On Training", 2017

[9] Synopsys, "The nML Processor Description Language", 2017

[10] Synopsys, "Chess Compiler Processor Modeling Manual", 2017

[11] Synopsys, "Checkers Simulator Manual", 2017

[12] Synopsys, "Go User Manual", 2017

92

Bibliography

[13] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux, P. Mein-

erzhagen, A. Burg and W. J. Gross, "A successive Cancellation Decoder

ASIC for a 1024-bit Polar Code in 180nm CMOS", 2012

[14] Camille Leroux, Alexandre Raymond, GabiSarkis and Warren Gross, "A

Semi-Parallel Successive-Cancellation Decoder for Polar Codes", 2012

[15] Pascal Giard, Alexios Balatsoukas-Stimming, Thomas Christoph

Müller, Andrea Bonetti, Claude Thibeault, Warren J. Gross, Philippe

Flatresse, Andreas Burg, "POLARBEAR: A 28-nm FD-SOI ASIC for

Decoding for Decoding of Polar Codes", 2017

[16] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity

improved successive cancellation decoder for polar codes”, 2014

[17] I. Tal and A. Vardy, “List decoding of polar codes”, 2015

[18] Rachid Al-Khayat, Purushotham Murugappa, Amer Baghdadi, Michel

Jez equel, "Area and Throughput Optimized ASIP for Multi-Standard

Turbo decoding", 2011

[19] Purushotham Murugappa, Rachid Al-Khayat, Amer Baghdadi and

Michel Jezequel, "A Flexible High Throughput Multi-ASIP Architecture

for LDPC and Turbo Decoding", 2011

[20] Vianney Lapotre, Purushotham Murugappay, Guy Gogniat, Amer

Baghdadiy, Jean-Philippe Diguet, Jean-Noel Bazin, and Michael Hub-

ner, "Optimizations for an Efficient Reconfiguration of an ASIP-Based

Turbo Decoder", 2013

[21] Meng Li, Youngjoo Lee, Yanxiang Huang and Liesbet Van der Perre,

"Area and energy efficient 802.11ad LDPC decoding processor", 2015

93

