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1 INTRODUCTION 

 

1.1 IOT AND DATA ABUNDANCE 

In our modern-day society, everyone is connected. On our phones, our computers, we are one 

click away from our friends, from news, from information. But, in the last decade, there has been 

a revolution in the connectivity concept – even everyday objects are becoming connected - our 

home appliances, our cars and even the machines used in the industry. 

This is facilitated by computing devices, such as sensors, actuators and microcontrollers embedded 

in these objects, enabling them to send and receive data. The process is also called making the 

objects “smart”. How smart they are depends on the technology embedded in them. The lowest 

level is if they are only equipped with sensors that are only able to emit signals – just send data. 

Then, they can be equipped with sensors that are able to both send and receive data, making them 

an efficient communicator. Going higher on the scale, they can hold actuators, which enable them 

to be controlled remotely. Finally, they can be equipped with microcontrollers or more intelligent 

computing devices which make them able to process data, send more elaborate data to the end-

user, make decisions themselves (programmed from before) and act independently by actuating. 

The interconnection and exchange of data between these “smart” objects is called a sensor 

network. 

All of this falls under the umbrella of the Internet of Things (IoT). It is becoming an important 

topic and it is spreading fast. IoT systems are gaining popularity because they are easy to deploy, 

energy efficient and very useful. This technology has two main uses: 

• Monitoring – data collection and visualization of what is going on inside a system. Owners 

can have a deep insight of the process via analytics and human-readable plots. 

• Actuation - remote control of the system. If we know what is happening in the system, we 

can act from afar. 

What is the driving force of these systems and at the same time the side-product? What is the 

residual of all this connectivity? The answer is data. An enormous amount of data. In order to 
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operate, to do monitoring or actuation, sensor networks gather huge amounts of data. And memory 

not being a problem for today’s computers, all this data is stored. 

The natural next step here is to explore this data and try to use it somehow. Data is powerful, it 

can be used to solve many practical problems. It can help give a deeper insight into what is 

happening in our system, find problems in the process that are not easily visible and do diagnostics. 

This way, systems can be better optimized and that leads to lower costs and higher quality. 

Data mining is a field that allows us to do exactly that – examine datasets in order to generate new 

information. It is a computer-assisted process of analyzing enormous amounts of data and 

extracting meaning from them. It can help businesses make knowledge-driven decisions. A few 

notable uses of data mining are: 

• Find hidden patterns: Data often holds information that even experts do not expect. 

• Anomaly detection: Detect outliers in the data that may cause problems inside the system. 

• Learn customer purchase habits: This is an example from the retail area – find out which 

items are frequently bought together and use this knowledge to boost revenue. 

• Predictive maintenance: Instead of doing scheduled maintenance, predict when equipment 

might fail and perform maintenance to prevent it. 

• Predict behaviour and future trends: Knowledge of the past can give us insight on what 

will happen in the future. 

In this thesis, we explore exactly this application of data-mining. We take data collected remotely 

from a real-life IoT platform and we process it to get a valuable outcome. This outcome is – a 

prediction of the future. 

A field that is tightly coupled with Data mining is Machine learning. It is hard to explicitly define 

Machine learning, but (Faggella, 2018) grasps the concept with this definition: 

“Machine Learning is the science of getting computers to learn and act like humans do, and 

improve their learning over time in autonomous fashion, by feeding them data and information in 

the form of observations and real-world interactions.” 

Machine learning is the science of getting computers to act without being explicitly programmed. 

Computer systems are given a dataset and they “learn” by themselves what are the correct answers, 
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so they progressively improve on accomplishing a certain task. Machine learning is becoming 

ever-present in the modern day. It is the key technology to self-driving cars, practical speech 

recognition, effective web search etc. It is precisely Machine learning algorithms that enable Data-

mining and that give the answers we are looking for in big datasets. In this thesis, we use machine 

learning algorithms to do prediction. 

 

 

1.2 IN THE BACKGROUND OF THIS THESIS 

This thesis was developed as part of a partnership between Politecnico di Torino and a company 

for IoT solutions – Tierra S.p.A. The part of the university involved in this partnership is the Smart 

Data Center, which is a Data Science and Big Data research center. 

Tierra designs and develops advanced telematics & IoT solutions for geo-localization, 

management, maintenance and remote diagnostics of assets. It was born in 2008 as a joint venture 

of the Japanese Topcon Corporation and the Italian Divitech. It offers services of monitoring and 

control of assets, with remote diagnostics and reports in the fields of Industry, Agriculture and 

Construction. These services help reduce costs of maintenance and increase productivity. 

What we are interested in is the part of Construction. Tierra provides solutions for tracking vehicles 

at construction sites. This is done with the help of an onboard device that is installed inside the 

vehicles and gathers data about their activity: their location, movement, fuel consumption, are they 

ON/OFF, in which state of workload are they (Idle, Moving, High workload), what is their RPM 

etc. This data is then sent to a server, which is part of a cloud infrastructure, where it is processed 

and transformed into human-readable analytics (charts, plots, text) and reports. These analytics are 

then showed to the owner of the vehicles in real-time, via a web-interface. This means that the 

owner can have an insight of their fleet from the comfort of their office. 

On Figure 1.1 (Tierra presentation, 2018) we can see a sketch of the whole process. 
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Figure 1.1: How Tierra's telematics works – as seen through the eyes of a customer 

 

For now, what is shown to the owner is real-time observations with some basic analytics and 

statistics. However, no advanced analysis or usage prediction is offered. This information exists 

inside the data collected, it just needs to be found. This is where the idea for this thesis comes 

from. The data analysis is done on activity data coming from construction vehicles of companies 

that are customers of Tierra. The data is anonymized for privacy reasons. 

 

 

1.3 THE PROBLEM AND THE GOAL 

The problem that we are trying to solve is defined simply: Given the usage pattern of a vehicle in 

the past days, predict the utilization of the same vehicle for the next period (the next day, next 

working day). Basically, we use the data collected from the past, to try to forecast the future. 

What we try to predict is: Utilization hours of a vehicle – how many hours it will be used in a 

certain point in the future (ex. tomorrow).  

Which data we use to get there: The number of utilization hours in the past days along with some 

other indicators that may help us reach a precise prediction. 

This problem falls under the category of time series forecasting. In the classical statistical 

handling of time series data, it is also called extrapolation. It is a different problem from usual 
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machine – learning problems, because it adds an explicit order dependence between observations: 

time. This additional time dimension is both a constraint and a source of additional information. 

“Forecasting is the art of saying what will happen, and then explaining why it 

didn't. “ 

- Anonymous (communicated by Balaji Rajagopalan) 

 

A time series is a vector of data points listed in time order. Usually, the time intervals between two 

successive points are equally spaced. Time series are vastly used in statistics, telecommunications, 

signal processing, weather forecasting, stocks forecasting etc. There are two separate paradigms 

connected to time series: time series analysis and time series forecasting and they have different 

goals.  

• Time series analysis 

Comprises of methods for analyzing time series data in order to extract meaningful statistics 

and other characteristics of the data. It describes and interprets the time series. It takes into 

consideration the fact that data points taken over time may have an internal structure (such as 

autocorrelation, trend or seasonal variation) that should be accounted for. 

 

• Time series forecasting 

It uses the information inside a time series plus maybe additional information from the dataset 

or the domain itself to predict future values of that series. There are many variables to be set 

about the prediction – what is the window in the past that will be used as information, what is 

the point or set of points in the future that will be predicted etc. 

Even though time series analysis and forecasting are separate fields and the latter can be done 

without the former, it is always good practice to examine the dataset first and know what kind of 

data we are working with. 

To sum up, the goal of this thesis is to explore the time-series made of Utilization hours of a 

construction vehicle and do a forecast of future values. In order to reach this goal, to make our 
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prediction, we use machine learning algorithms, specifically Regression techniques. The concept 

of regression and the details on the algorithms are better explained in Chapter 3: Methodology.  

 

 

1.4 THE STEPS OF BUILDING A PREDICTIVE MODEL 

Building a good forecasting model is a long process that is subject to a lot of planning and trial 

and error experiments. It is usually organized in a few steps: 

1. Problem definition 

There must be a problem so that we can find a solution. What kind of forecast do we need? 

Who requires this forecast? How will it be used? The answers to these questions should be 

well defined. This step is problem specific, so the analyst should get acquainted with some 

domain knowledge. 

2. Data collection 

The gathering of historical data to analyze and model. In the general sense of the word, data 

can be collected in many ways - through surveys, case studies, documents, records etc. With 

the development on IoT, a lot of data is collected through IoT platforms, which is also the case 

for this thesis. Domain knowledge would also help here to best interpret the historical data. 

3. Data cleaning 

Raw data can come in any form and any frequency and is often messy and difficult to work 

with. It needs to go through a step of data-cleaning to become useful. This includes filtering 

outliers, handling missing data, formatting data, normalizing etc. This is a very important step 

since the accuracy of the prediction also depends on the quality of the data. In time series 

analysis this can consist of noise reduction and smoothing. 

4. Exploratory data analysis 

After the data is ready for handling, we explore it to get a general idea of what is going on in 

the dataset and find basic characteristics. The data undergoes statistical tests and is visualized. 
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Statistics is the part of mathematics that deals with collection, organization, analysis, and 

interpretation of numerical data. This step helps us understand the data better. In our case of 

time series data, we can summarize and note obvious temporal structures, like trends and 

seasonality. 

5. Model construction 

In this step we model our problem and figure out how we are going to solve it. We decide what 

part of the data is going to be used to solve it and in what way. What is going to be the input 

and output from the algorithm? For example, what is the window in the past that we are going 

to use as historical data? Which features are we going to feed to the algorithm? What 

granularity of data points are we going to use? How far into the future do we want to predict? 

Here we answer questions of this kind. We have to make some assumptions in order to apply 

a specific model, but our choices are backed up by the data and/or domain knowledge. 

6. Applying Machine learning algorithms 

Finally, when our model is ready, we can apply machine learning algorithms and evaluate the 

outcome. We pick a few algorithms of varying types. They are configured, the parameters are 

tuned, and they are fitted on the historical data. This is where we obtain our prediction. Then 

their performance is evaluated by back-testing with the available data. 

 

In this thesis we focus on some of these steps. We already have a well-defined problem and we 

have data gathered through an IoT platform, as mentioned in the previous sections. So, we 

concentrate on steps 3 to 6 – from data cleaning, through exploratory data analysis and building a 

model, to doing machine learning and acquiring a prediction. 
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1.5 MOTIVATION 

In this Section we answer the questions: Why this goal? What is the purpose of predicting the 

utilization hours of a vehicle and how does this contribute to the business model of the owner? 

By analyzing the behaviour of each separate vehicle, we can find out: 

• The productivity of the vehicles: see if they work more than necessary or less than 

expected, if they stay with the engine ON but are not moving  

• What is their pattern of usage and how does it vary between different vehicles  

• How correlated are different vehicles of the same model, is there a pattern that vehicles of 

the same model usually follow, but some vehicles are not into this pattern?  

• Are there outliers, is there any unusual activity and does that mean that something is wrong 

with the vehicle 

• Is there any period of the year where they work more/less and why is that so? 

The motivation behind predicting utilization hours is: 

• Knowing future patterns can help the owner of the fleet plan ahead budgets for the usage 

of the vehicle, like amortization 

• By predicting the utilization hours, we can easily calculate the fuel consumption and plan 

refueling in a more optimized nature, we can also include the fuel forecast in the budget 

planning 

• Predictive maintenance: if we know how much a vehicle is going to work, then we know 

with a certain confidence when a vehicle is going to break down, so we can do maintenance 

before to prevent the failure 

• Fleet management: predictions can help in overall fleet management 

 

These are all valuable information to the owner of the vehicle and from a business perspective, 

they would pay for this kind of information. 
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1.6 LITERATURE REVIEW 

The literature review showed that a lot of research has been done for vehicles in general, in terms 

of transport of people (usage patterns of cars, transport planning inside the city, public transport 

efficiency), but not a lot of papers have been written on vehicles in construction sites. Some papers 

that use data – mining approaches on construction vehicle data are quoted here and they are 

grouped by different topics. 

One problem that is tackled in the construction field seems to be the ecological impacts of the 

vehicles. They all use fossil fuels, which makes them not environmentally friendly. Two papers 

were found that suggest data – mining approaches to limit these negative impacts. 

• Bakhiet (2017) aims to reduce carbon dioxide emissions from construction vehicles. It talks 

about what kind of data should be collected so that we can clearly and efficiently find the 

greatest sources of emissions and the problems that arise from not having one unified 

standard for collection of this type of data (formats, classification, inaccuracy, requires 

additional administrative work etc.) 

• Rasdorf et al. (2010) also propose standard procedures for field data collection for 

construction vehicles to conquer emissions. The methodology is based on second-by-

second measurements of in-use activity and air pollutant emissions using a portable 

measurement system. They argue that the use of your own instrument insures a reliable 

collection of data, clean and of good quality. 

Research has also been directed towards data-mining for more accurate simulation and modelling 

for construction operations. 

• Akhavian and Behzadan (2012) note the importance of combining historical data 

(traditional approach) with real-time data from construction sites (novel approach) to make 

3D simulations on what is happening on the site. These simulations would help 

construction companies make decisions on fleet management. 

• Akhavian and Behzadan (2013) further their research by introducing an innovative 

approach for data capturing, fusion and mining for the purposes of knowledge-based 
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simulations of construction vehicle operation. The approach consists of using weight 

sensors and doing K-means clustering to distinguish the state of the vehicles (idle/busy). 

Two papers were found that apply machine-learning algorithms to construction vehicle data in 

order to do predictive data – mining. 

• Fan et al. (2008) use Autoregressive Trees to assess the residual value of heavy 

construction equipment. The motivation is on the contractor side - to make the right 

decisions on equipment repair, rebuilding, disposal, or equipment fleet optimization to 

maximize the return of investment. This data – mining approach is an improvement over 

the traditional statistical regression methods that cannot adequately capture the relationship 

between the residual value of a piece of heavy equipment and its influencing factors. 

• Kaya et al (2014) use Decision Trees and Association Rule Mining to predict construction 

crew productivity in the ceramic tiling industry. They explore the impact of crew size, age 

and experience on productivity. 

It is visible that studies on forecasting utilization hours of vehicles in construction sites using data 

– mining approaches have not been conducted. In general, IoT and data analysis in the field of 

Construction seems to still be a young topic, yet it holds a lot of potential. Data – driven approaches 

can be used to make the construction process faster and better optimized, thus cutting costs for the 

investors and potential users. They can also be applied to minimize negative environmental 

impacts, seeing as emissions are an issue among construction fleets. 

Looking at the Methodology, techniques have been used to do time-series forecasting with 

Machine learning algorithms, that can help us make a better decision about the algorithms to use 

and how to tune their parameters. However, these techniques have mostly been used in Financial 

prediction problems and not industrial ones. 
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1.7 CONTENTS OVERVIEW 

Here we provide a Short Summary of the Thesis organization. 

Chapter 1 offers an Introduction to the problem that we are posing and our goal: predict utilization 

hours of vehicles in construction sites using a data-centric approach. It provides a general idea 

about the solution we are providing, it states the motivation for this kind of work, the previous 

research done on such topics and introduces Tierra Telematics, the company with which the thesis 

was developed.  

Chapter 2 is an exploration of the vast Dataset mostly by using different kinds of plots to give an 

idea about the data. It first offers an explanation of the generation of data, giving a peek into the 

company workflow of Tierra and then proceeds to give interesting insights on the Data. One of the 

goals of the chapter is also to provide reasoning behind the choices done in the Methodology. 

Finally, it narrows down the Data to the part which is used in the development of the thesis. 

Chapter 3 discusses the Methodologies used to solve the problem. First it talks about formally 

formulating the problem, then about preparing the data for machine learning and finally describes 

the algorithms used. 

Chapter 4 reports the various Results and insights got by running the algorithms. It first discusses 

the tuning of general parameters and offers a comparison between five machine learning 

algorithms and two benchmark algorithms, evaluating their performance on a selected part of the 

dataset. Then it reports on the hyperparameter tuning of three of the machine learning algorithms 

and the improvement in the performance afterwards. It also explores the results in more detail. In 

the end it reports on the same experiments done with a change introduced in the problem 

formulation and compares the two scenarios. 

Chapter 5 finishes the thesis with a recap of the study, points out the most important conclusions 

and offers suggestions for future work. 
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2 THE DATA 

2.1 GENERAL OVERVIEW OF THE DATASET 

For the purpose of this study, as mentioned in 1.2, we used activity data coming from construction 

vehicles of companies that are customers of Tierra. All the vehicles that are equipped with on-

board devices from Tierra, send messages to a server at certain time-intervals. To do so, they use 

the CAN-bus standard. CAN stands for Controller Area Network and it is a vehicle bus standard 

designed to allow microcontrollers and devices to communicate with each other in applications 

without a host computer. It is a message-based protocol. More specifically, inside the vehicle, the 

SAE J1939 protocol is used, which is a higher-layer protocol based on CAN that provides serial 

data communications between microprocessor systems (also called Electronic Control Units) in 

any kind of heavy-duty vehicles. 

The available data for each vehicle is the following:  

• Information from the customers: asset info, maintenance services 

• Information from embedded devices: unit/asset code, timestamp, geographic location of 

vehicle, digital inputs report 

• Information from CAN-bus: Engine ON/OFF, CAN parametric messages, Diagnostic 

Messages and Status Reports 

We are interested in the messages that specify the CAN parameters. The CAN messages are 

generated at a high frequency (up to 100 Hz) and are gathered by a controller, where they are 

collected and processed. Then an aggregated report is sent to the server every 10 minutes (this 

reporting frequency is governed by a policy in agreement with the customer and can change). For 

each vehicle, this report contains data on the momentary situation in the engine and the vehicle 

itself, such as: Fuel level, Engine oil pressure, Engine coolant temperature, Engine fuel rate usage, 

Engine speed, Engine hours, Engine percent load, Digging press, Pump Drive temp, Oil tank temp 

etc. The data is timestamped and the number of samples taken is specified, so we can calculate the 

exact number of hours the vehicle was used.  
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These aggregated reports are kept in a database in a cloud environment. This database is a copy of 

the operational database and it is used for Data warehousing. We are not using the real-time 

database. The data in this warehouse is normalized and can be used for analytics.  

Then, using an SQL-query on the CAN-messages data, the data is again aggregated on a daily or 

weekly basis. The result is a table with all the data we need for our study on Utilization hours. We 

take this table as it is on the first week of September. The Table contains 601462 records. A very 

small sample of it (8 records) is shown on Table 2.1., as an example of what the Table looks like. 

 

Table 2.1: An example of the Table of CAN messages aggregated per day 

 

 

As we can see, the aggregation is per day. This means that for each day that a vehicle has worked, 

there is one record in the table. The first column is Unit type – this is the name of the type of 

construction vehicle. There are 10 types overall, the most common one being Refuse Compactor. 

Other types include Single Drum Roller, Tandem Roller, Coring Machine, Paver, Recycler, Cold 

Planner, Grader etc. For each type of vehicle there are several models, for example there are 44 

different models of Refuse compactors, 65 models of Single Drum Rollers, 10 models of 

Recyclers, 5 of Graders etc. Each model has a unique Model ID. Then, each model holds a number 

of vehicles. For example, there are 66 vehicles of the model 1254, of the type Refuse Compactor. 

The vehicle is the leaf of the hierarchy and we work on vehicle level, meaning we do the prediction 

Unit type Model id Unit id Date ON time [h]
Fuel 

consumed [l]
Latitude Longitude

Distance 

traveled [m]

Single Drum Roller 1328 4397 05-08-15 9.26 109.2107 51.4311166 -2.63635191 9954

Tandem Roller 1366 6003 10-07-18 7.04 32.6819 52.6654062 10.75177909 4358

Tandem Roller 1366 6003 12-07-18 6.57 43.3815 52.6631542 10.75284204 20807

Tandem Roller 1366 6003 16-07-18 5.18 17.2123 52.4396025 10.78516819 4352

Refuse Compactor 1390 4138 04-02-15 0.02 0 -11.9841032 -77.1331558 0

Refuse Compactor 1254 5282 17-03-17 1.82 26.3454 30.0251196 -91.9586677 312

Refuse Compactor 1254 5282 21-03-17 5.56 133.5375 30.0233106 -91.9539994 0

Paver 1290 4499 25-08-16 4.24 30.8916 53.8818782 27.60290141 0

…

…

…

…

…
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per vehicle. On Figure 2.1, we visualize the hierarchy of a Refuse Compactor, for better 

understanding. 

 

 

Figure 2.1: Type, model and vehicle units Hierarchy 

 

The next field in Table 2.1 is the Date. We work with almost 4 years of data – from January 2015 

to September 2018. Then we have the “ON time” in hours, which is the most important field for 

us: Utilization hours of the vehicle. This is what we use as historical data and the target of our 

prediction problem. Then, there is the Fuel consumed that day in liters and the estimated position 

of the vehicle that day – it is a mean of all the positions where the vehicle was that day, since in 

most of the cases it was moving around. For our problem, we do not need a precise position of the 

vehicle, just the country and city, so we can include local information, like the holidays in that 

country or other country-specific data. The distance traveled (in meters) is a field that can be used 

to find out if the vehicle was ON, but it was not moving or some other potentially suspicious 

behaviour. 

Using the position data, we can take a look at the geographical location of the vehicles. Figure 2.2 

shows a map of the vehicles working on 07.11.2017, using an average of all their locations from 

that day. 
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Figure 2.2 Positions of all vehicles active on 07/11/2017 

 

We see a high concentration of vehicles in Europe, especially in Germany. Then there is a lot of 

vehicles in the USA, especially the east coast and also a high number is visible in Peru. The colours 

of the circles indicate the number of hours they worked that day, according to the legend shown in 

the top right corner of the Figure. Most of the dots are green and yellow, meaning they worked 

between 0 and 10 hours. This includes all the vehicles of all models of all types. 

Next into the Chapter, we dive into the dataset and explore it on various levels. First, we analyze 

the amount of data we have per vehicle, then we explore the patterns of utilization among different 

types, models and finally vehicles. The analysis is supported by tables and numerous plots. 

 

 

2.2 AMOUNT OF USEFUL DATA 

The first step in exploring the data is to see how much data we actually have. On Table 2.2, we 

specify, for every type: 

• No. vehicles: how many vehicles there are (counting all the models) 
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• No. records: how many records there are (from all the vehicles from all the models) in this 

Unit type – these are all the days they have worked 

• Average data per vehicle: This is the important metric – how much data we actually have 

on the vehicles. It is simply the number of records divided by the number of vehicles. 

What we need is good “density” of data, amount of data – since we do the prediction per vehicle, 

we need a lot of data on vehicle level. An average of 492 records per vehicle means that there is 

data on 492 days. What is interesting to notice here is that the unit type with most records is the 

Single Drum Roller (182620 records), but the one with most data per vehicle is the Refuse 

Compactor. 

 

Table 2.2 Amount of data per unit type 

Unit type 
No. 

vehicles 

No. 

records 

Average data 

per vehicle 

Refuse Compactor 311 153240 492 

Grader 8 2454 306 

Single Drum Roller 646 182620 282 

Tandem Roller 412 99524 241 

Material Feeder 8 1788 223 

Paver 206 43710 212 

Rubber Wheel Roller 10 1970 197 

Recycler 114 20841 182 

Cold planner 522 95216 181 

Coring Machine 2 99 49 

 

However, this average is on all vehicles of type Refuse Compactor. If we make the same kind of 

table, but grouping by Model ID, we can find some models that contain more data. 

On Table 2.3, we can see a part of this table that is grouped by Model ID, showing the models with 

most data. For each Model ID, we can see the type of vehicles, the number of vehicles, the number 

of records found for that vehicle and the metric of Average data per vehicle. We again sort by the 

Average data per vehicle.  
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Table 2.3 Amount of data per model 

Model ID Unit Type 
No. 

vehicles 

No. 

records 

Average data 

per vehicle 

1269 Refuse Compactor 9 8037 893 

1262 Refuse Compactor 3 2367 789 

1199 Refuse Compactor 2 1534 767 

1114 Refuse Compactor 4 2899 724 

1133 Refuse Compactor 1 714 714 

1295 Refuse Compactor 2 1426 713 

1255 Refuse Compactor 1 697 697 

1175 Refuse Compactor 2 1387 693 

1116 Refuse Compactor 8 5299 662 

1218 Refuse Compactor 1 624 624 

1129 Refuse Compactor 5 2901 580 

1316 Refuse Compactor 16 9261 578 

1253 Refuse Compactor 2 1153 576 

1200 Refuse Compactor 3 1716 572 

1151 Cold planner 1 566 566 

1254 Refuse Compactor 66 35424 536 

1089 Cold planner 1 529 529 

1312 Single Drum Roller 6 3171 528 

1289 Refuse Compactor 23 11870 516 

1168 Grader 1 512 512 

1250 Refuse Compactor 13 6455 496 

1179 Cold planner 1 485 485 

1348 Grader 1 484 484 

1288 Refuse Compactor 29 13796 475 

1434 Single Drum Roller 1 473 473 

1195 Refuse Compactor 13 6144 472 

1331 Refuse Compactor 15 6851 456 

1292 Refuse Compactor 7 3055 436 

1343 Tandem Roller 1 410 410 

1165 Cold planner 1 405 405 

 

It is visible now that we have found a higher density of data, since we can see higher numbers in 

the last column. What is interesting to notice is that most of the models with high Average data 

per vehicles are Refuse Compactors. This gives us an incentive to work more closely with Refuse 
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Compactors. We later on take particular interest in the model with ID 1254 of the Refuse 

Compactors, since it shows a good trade – off between the three columns: the number of vehicles, 

the absolute number of records and the average data per vehicles. It holds a lot of vehicles and also 

has good amount of data per vehicle. 

Another important aspect about the amount of data is that it changes over time. One way in which 

this can be explored is by checking how many vehicles are active at a certain time interval over 

the whole time that we have data. Figure 2.3 shows exactly that – a monthly representation of the 

number of vehicles that have some records of being used that month. 

 

Figure 2.3 Change of number of vehicles being used by each type in time 

 

A few things are notable from the plot. First, the number of vehicles being used changes over time 

and there is an increasing trend. This means more and more vehicles of each type are being used. 

Second, in most of the types there is a drop of the number of vehicles used in January. This is 

probably due to holidays and cold weather which are factors that affect open-sky construction sites. 

Interestingly, these drops are not present for the types Refuse Compactor and Recycler, probably 

due to the fact that they handle waste, which needs to be collected at all times. Another thing is 
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that some types have a really low number of vehicles present throughout all the three years. These 

types are Coring machine, Grader, Material Feeder and Rubber Wheel Roller, but this data is also 

visible in Table 2.2. 

 

 

2.3 EXPLORATORY DATA ANALYSIS 

2.3.1 Analysis on the different types of vehicles 

The next thing in the analysis is to explore the utilization hours of vehicles on Type level. This 

means examining how the different types behave, considering all their vehicles, so using all the 

data we have in the dataset. 

On Figure 2.4, we can see the CDFs (Cumulative Distribution Functions) of the usage of the 

different types of vehicles. The CDF of a real-valued random variable X is given by the function: 

𝐹(𝑥) =  𝑃(𝑋 ≤ 𝑥) 

where the right-hand side represents the probability that the random variable 𝑋 takes on a value 

less than or equal to 𝑥. On the plot, the x-axis holds 𝑥, all the possible utilization hours and the y-

axis represents this probability given by 𝐹(𝑥), where for us the random variable X is the utilization 

hours of every day of every vehicle of a certain type.  
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Figure 2.4 CDFs of utilization hours of all vehicle types 

 

Looking at the CDFs of the utilization hours of the different types, we can clearly see the average 

usage patterns. The types Grader and Refuse Compactor are being used with the highest number 

of hours, while the Rubber Wheel Roller is used the least number of hours. Some of the types 

expose a long tail in the CDF, meaning there are days where they have been turned ON for 24 

hours. These situations are very rare and they could be true or they may be outliers in the data, 

which can be accounted as errors in the data collection. Overall, the number of records that exceed 

20 hours in the dataset is 384 out of 601462, which is 0.064% of the data. This is a negligible 

percentage. What is more important is that a lot of the types start with a steep slope, meaning they 

have a lot of values close to 0. We can see some types not passing the 1-hour threshold even until 

the 40th or 50th percentile. If we check this empirically, it turns out that 30% of the overall records 

show a value of utilization hours lower than 1. One type that does not show this kind of behaviour 

is the Refuse Compactor, where indeed, only 9.14% of the data shows a value of utilization hours 

lower than 1 hour, which results in the flatter CDF curve. 

On Figure 2.5, we can see the same data, but on a boxplot. Each type is represented by a box. The 

bottom x-axis labels the name of the vehicle type, while the top x-axis labels the number of vehicles 
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of that type present in the dataset. The box plot (also called box and whisker diagram) is a 

standardized way of displaying the distribution of data based on the five-number summary: 

minimum, first quartile, median, third quartile, and maximum. The central rectangle spans from 

the first quartile (Q1) to the third quartile (Q3) – meaning from the 25th percentile of the CDF to 

the 75th percentile. This is called the interquartile range or IQR. The orange line inside the rectangle 

shows the median value. The vertical lines above and below the rectangle are called whiskers and, 

in this plot, and all other boxplots that are shown in this study, they span from the first data point 

greater than Q1 - 1.5*IQR to the last data point less than Q3 + 1.5*IQR, where IQR = Q3 – Q1 

and Q1 and Q3 represent the first and third quartile respectively. The dots represent all values 

outside of these limits – the outliers. 

 

 
Figure 2.5 Boxplot of the distribution of utilization hours of all vehicle types 

The boxes are ordered in descending order according to the median value. What is interesting is 

that most of the models’ boxes are placed low on the scale and have the median at under 5 hours 
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of usage per day. This is not the case only for the Grader and Refuse Compactor, but the Grader 

only has 8 vehicles, which is a very low number in comparison to the Refuse Compactor. No 

similar pattern is visible among the different types, they each tell their own story. A lot of the types 

also present outliers but only as surprisingly high values with respect to their distribution. 

Figure 2.6 shows a temporal representation of the utilization hours per type. It is the average 

monthly utilization hours. The value is obtained as the sum of all records of all vehicles of that 

type during the month divided by the number of vehicles of that type active in that month. For 

example, the Refuse Compactor evolves around 120 hours, which means that a vehicle of the type 

Refuse Compactor works for 120 hours per month on average. 

 

 
Figure 2.6 Average utilization hours per vehicle per month 
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From Figure 2.6 it is visible that most of the types present a seasonality during the year. They have 

a really low or no utilization during the winter months of December, January and February and 

highest utilization around the summer months. Refuse Compactors, with respect to the others, do 

not present a clear visible seasonality nor trend. We have to mention that this plot is done on all 

vehicles of a model, some of which are situated in the southern hemisphere, where the summer 

and winter are not at the same time as in the northern hemisphere. However, their percentage is 

really small with respect to the other vehicles, so we can still draw this kind of conclusions. 

 

 

2.3.2 Analysis on the different models of vehicles 

In this chapter, we dive inside the different types of vehicles and take a look at all the models that 

comprise them. For the sake of repetitiveness, we only present plots of the models of a Refuse 

Compactor and a Cold planner, as the most used and least used type, respectively. 

On Figure 2.7, we can see a boxplot of the utilization hours for all 44 models of the type Refuse 

Compactor, sorted in ascending order according to the median. This is the type that is mostly used 

according to all previous data analysis. The top x-axis labels the number of vehicles of the 

corresponding model. It is obvious that most of the models have a really low number of vehicles. 

Only 9 out of 44 models have more than 10 vehicles. However, most of the models are being 

regularly used, since their rectangles are not close to 0. 
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Figure 2.7 Boxplot of the utilization hours per model for all models of type Refuse Compactor 

 

Another noticeable thing is that there is no pattern among the different models. They have different 

rectangle sizes, different whisker sizes and a different number of outliers. But it is not a difference 

that we can exploit, but rather a random one. This tells us that, looking at the different models, we 

cannot infer anything about their utilization hours. Dividing all the vehicles of type Refuse 

Compactor in models is not an indicator on how they will behave in utilization. 

Going back to the number of vehicles, the model with the highest one is the model with ID 1254. 

We later on take particular interest in the vehicles of this model. 

On Figure 2.8, on the other hand, we can see one of the least used types, the Cold Planner. 
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Figure 2.8 Boxplot of the utilization hours per model for all models of type Cold planner 

 

The Cold Planner also has a lot of models, 35 in total, and also has a lot of models with a low 

number of vehicles, but it has more vehicles in total (522 vehicles versus the 311 of Refuse 

Compactor). What we see here is that almost all the rectangles are close to 0 and very low medians. 

This confirms the previous conclusions about the low utilization of this type. Also, there is no 

particular similarity or particular difference between the models. 

 

 

2.3.3 Analysis on the different vehicles 

In this section, we concentrate on the utilization per vehicle, taking as an example the vehicles of 

the Model 1254 of type Refuse Compactor. As mentioned before, this model is chosen because it 

has a lot of vehicles and a good amount of data per vehicle. We explore the utilization of every 

vehicle using different types of plots. 
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On Figure 2.9, we can see a boxplot of the utilization of all 66 vehicles of this model, ordered in 

ascending order by median. Here we can see, that the vehicles also differ a lot between themselves 

in terms of how much they are used. Some of them have short IQRs (rectangles) and some have 

really long ones. Also, the position of the median inside the IQR changes. What is different here 

than on Model level is that there are a lot of outliers on the bottom, meaning the values close to 0 

are rare. They are outliers and not general behaviour. The overall conclusion is that every vehicle 

tells its own story. 

 

 

Figure 2.9 Boxplot of the utilization hours of all vehicles of model 1254 of type Refuse Compactor 

 

Not all 66 vehicles have enough data to be representative. To make a prediction, which is our goal, 

we need a certain amount of data to be able to tell how the vehicle will behave in the future. For 

reasons explained in Chapter 3: Methodology, we choose a threshold of 135 days as the minimum 

data required to obtain a valuable prediction. All the vehicles that do not meet this requirement (do 

not have data for more than 135 days), are marked red in Figure 2.9. In this case it is only one 

vehicle, 6054. Its behaviour does not seem special with respect to the other vehicles, it seems as if 
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it were randomly picked. The real reasons why some vehicles are not used enough to gather data 

are probably company-specific. From this point on, we remove this vehicle and all the remaining 

plots and analysis are done without it. 

The next three Figures take a better look at these 65 vehicles. Figure 2.10 is a histogram of the 

utilization hours of all the vehicles of the model.  

 

 

Figure 2.10 Histogram of the utilization hours of vehicles of model 1254 of type Refuse Compactor 

 

What can be observed here is that the distribution is not simple. It seems like a sum of two or three 

distributions and there is also a peak between 0 and 1 hours. The mean is 6.67 hours and the 

standard deviation is 3.2 hours. If we try to fit the histogram to the normal distribution, using the 

Kolmogorov–Smirnov test for goodness of fit, we get 0.82 of certainty. 

Figure 2.11 shows the same data, but on a violin plot. A violin plot is just a histogram (a smoothed 

variant like a kernel density) turned on its side and mirrored. This kind of plot allows us to see the 

distribution of every vehicle separately and not only the quartiles, like the boxplot. The width 

represents the frequency of samples and the line in the middle of the violins is the mean. In our 

case, what can be observed is that, generally, the vehicles with low utilization (left part of the plot), 

have distributions that are more spread and tend to be multimodal. The vehicles in the middle have 
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much tighter distributions and the mean is generally in the lower part of the distribution. This 

means they have vastly spread low values and then a peak at high values. The vehicles in the right 

part of the plot, the ones with higher utilization present both of these characteristics.  

 

 

Figure 2.11 Violin plot of utilization hours of vehicles of model 1254 

 

The next basic plot to observe the distributions of the different vehicles is the CDF plot. On Figure 

2.12, we present the CDFs of the same 65 vehicles of model 1254. 
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Figure 2.12 CDFs of utilization hours of the 65 vehicles of model 1254 of type Refuse Compactor 

 

It is obvious that the vehicles are used in different manners. There are those on the left side of the 

plot that are less used and those on the right side that are more used. The CDFs in the middle show 

some similarity in the way the vehicles are used. 

 

 

2.3.4 Utilization hours of a vehicle as a time-series 

While characterizing the types, models and vehicles in terms of distribution of utilization hours is 

extremely important for us and gives us a deep insight into the problem we are trying to solve, 

how we model the problem in the end is by observing the utilization hours in time. The next plots 

show the usage of the vehicles in time and model them as time series. 

Figure 2.13 shows the daily utilization hours of 6 randomly picked vehicles from the model 1254. 

Here we can observe a few things. First, every vehicle has a different behaviour in terms of the 

number of hours it is being used per day. Second, every vehicle starts collecting data at a different 

time. We can see vehicle 4318 (green curve) joining around March 2015, vehicle 4605 (red curve) 
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joining in September 2015 and vehicle 5145 (purple curve) joining even later, around July 2016. 

What is common between all joining later is that they have a short period of working only a few 

hours or not working at all before they start their usual pattern. This is because the device that 

collects data is turned on and tested in a safe environment, before actually being mounted on the 

vehicle. 

 

 

Figure 2.13 Daily utilization hours of 6 vehicles of model 1254 as a time series 

 

Next, some vehicles have data missing in the middle of the time period, for example the vehicle 

4318 (green curve) takes a break between July and October 2015. It is interesting that when they 

start working, they mostly follow the same pattern, except 4605 (red curve) that has a jump for a 

few months in late 2016 and early 2017. This regular usage was also visible on Figure 2.6 of the 

previous section, as a characteristic of the Refuse Compactors. Lastly, the data on daily granularity 

is very noisy. 

On Figure 2.14, we can see the same data (utilization hours in time), on the same 6 vehicles of 

model 1254, but this time the granularity is weekly. The hours per vehicle are summarized per 

week, so the values on the y-axis are higher. 
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Figure 2.14 Weekly utilization hours of 6 vehicles of model 1254 as a time series 

 

This is simply a “clearer” version of Figure 2.13 and we can more easily see the pattern of 

utilization between the different vehicles. It is still noisy, though not so much. Here we can see 

that vehicle 3717 (blue curve) has a jump in utilization in 2017 and is shut down in 2018. Also, 

the curves of vehicles 4605, 5145, 5300 and 3988 all seem to overlap for the better part of 2017. 

In time-series analysis it is common to decompose a time series into four components: 

• Level – the baseline value for the series if it were a straight line 

• Trend (optional) – an increase/decrease over time 

• Seasonality (optional) – repeating patterns or cycles of behaviour over time 

• Noise (optional) – variability in the observations that comes from externalities 

𝑦 =  𝑙𝑒𝑣𝑒𝑙 +  𝑡𝑟𝑒𝑛𝑑 +  𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦 +  𝑛𝑜𝑖𝑠𝑒 

Where y is the time-series. These components are often used to model a time-series using 

traditional statistical methods. They may or may not be important for the forecasting of future 

values. However, it is always useful to characterize a time-series using them.  
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Looking at our examples from Figure 2.13 and Figure 2.14, we can see that our time-series (seen 

one by one) have a somewhat stable level, they do not present a visible trend, nor an obvious 

seasonality, but they do present a lot of noise – they are very random. 

However, the time series as seen until now is unevenly spaced – there are no values present for 

every day, but only on those days when a vehicle was active. It is normal that a lot of vehicles are 

not active during the weekend, holidays or just randomly not active some days. 

A common approach to analyzing unevenly spaced time series is to transform the data into equally 

spaced observations using some form of interpolation. In our case, we suppose that when there is 

no record in the data, the vehicle was not active. So, to make it an equally spaced time series, we 

add zeros as the utilization hours on the days that are not present in the dataset. This is done in the 

following manner: we take all the raw values of utilization - from the beginning when the vehicle 

started collecting data until the moment it stopped collecting data and we only fill zeroes in the 

middle. This does not mean that now every vehicle has 3 years and 10 months’ worth of data, but 

it depends on when it started / ended working. Different vehicles have different number of samples, 

since they start or end collecting on a different date, but they are all equally spaced. Most of the 

vehicles are still collecting data, so their end date is in August 2018. 

On Figure 2.15, we can see the time series of vehicle 4318, constructed in this manner. 
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Figure 2.15 Time series with added zeroes - equally spaced: Utilization hours of vehicle 4318 

 

It is obvious that now the zeroes prevail the time series. The values are not spread. They are either 

zero or above 10 hours (mostly). That means that when the vehicle works, the hours are pretty 

regular, but often it does not work. 

Figure 2.16 is a violin plot of the distributions of the data that now includes zeroes. It is done on 

all vehicles of model 1254. Looking at this figure, we can see that a higher density is now present 

around 0 utilization hours. They all become multimodal and their peaks are somewhat drowned 

due to the zeroes. This is also visible if we compare it with Figure 2.11. 
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Figure 2.16 Violin plot of the utilization hours of all vehicles of model 1254 with added zeroes 

 

 

2.4 CONCLUSIONS FROM OBSERVING THE DATASET 

In the previous few chapters we explored the dataset in depth, starting from the highest level – the 

type, to the lowest, most spread level – the vehicle. This analysis led to a few important 

conclusions. The first takeout is the diversity of the data. Every type of vehicle is unique in the 

way it uses the vehicles. Every vehicle is different, even if they belong to the same model or the 

same type. This classification of vehicles in models and types, even though normal and very logical 

for other things, does not say much about their utilization hours. 

This leads us to the decision to treat all the vehicles separately and try to solve our problem vehicle 

by vehicle. We devise a separate prediction model for each vehicle and train it for that vehicle 

only. We predict the utilization of a certain vehicle using data only from that same vehicle. 
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This means that we need a lot of data per vehicle. Even though in general we have a lot of data, 

data on specific vehicles is sparse. The only type that has acceptable rates for data per vehicle, as 

shown on the Tables and Figures from Chapter 2 is the Refuse Compactor. That is why in the next 

chapters, all experiments are done on vehicles from this type, with special attention to model 1254 

as the model with the highest number of vehicles. 

Another thing that has to be addressed is the sampling frequency of the dataset. When we add 

zeroes to make it an equally spaced time series, we change the whole structure of the data and we 

monopolize it with zeroes. That is why in Chapter 3: Methodology we define two scenarios, or 

two points of view for our problem, that have a direct effect on the results. 
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3 METHODOLOGY 

In this chapter we talk about how we formulated the problem conceptually, represented it 

mathematically, how we adapted it to fit a machine learning problem and which algorithms we 

used to solve it. Throughout the whole development of the thesis, the software used was Python, 

with its pandas and numpy libraries for data handling, scikit-learn for the machine learning part 

and matplotlib for plotting. 

 

 

3.1 PROBLEM FORMULATION 

As mentioned in the Introduction, our problem is: Given the usage pattern of a vehicle in the past 

days, predict the utilization of the same vehicle for the next time instant (the next day/ next working 

day). 

Let us represent the model mathematically: 

𝑦 =  𝑔(𝑥𝑡−1 , 𝑥𝑡−2 , 𝑥𝑡−3   … 𝑥𝑡−𝑛, 𝑓1, 𝑓2… 𝑓𝑙) 

(Equation 1) 

Where: 

• 𝑦 is our target variable – the prediction 

• 𝑥𝑖  (i = t-1 … t-n) are values of past observations, n is the window size of past observations 

we use to do the prediction (they are known), 𝑡 signifies a time instant 

• 𝑓𝑖   (i = 1 ... l) are additional values (features) connected to 𝑦 that can help us reach a better 

prediction, l is the number of additional features we include in the model 

We approach the problem in 2 different ways based on what we want to predict, and they define 𝑥 

and 𝑦 differently: 

1. Predict usage on next day 
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Here vector 𝒙 is a time series with zeroes included for the days where there is no data – an 

equally spaced time series. The target variable 𝑦 =  𝑥𝑡, which is the next calendar day. 

2. Predict usage on next working day 

Here vector 𝒙 is an unevenly spaced time series, comprised only of the days where there is 

data present in the dataset and this data marks utilization hours > 1h. 1 hour was chosen as a 

threshold of time above which we can consider that the vehicle was really working. It was an 

arbitrary choice decided along with professionals from Tierra. The target variable is 𝑦 =  𝑥𝑡,  

which is the next day the vehicle is going to work (it supposes we know which calendar day 

that would be). 

The additional features f could be anything that we feel is connected to the target variable 𝑦. They 

could be mathematical operations of the vector 𝒙, like an average, minimum, maximum etc. of the 

past values. They could also be information that we know on 𝑦: Is y a working day? Is it a holiday? 

What will the weather be like on that day? What is the season of the year?  

Then there is the function 𝑔. It is a function that describes the relationship between the variables 

𝑥,𝑓 and 𝑦 and tries to approximate 𝑦. What kind of function it is depends on the algorithm we use 

for prediction. In linear regression it is simply a weighted sum. In the other algorithms the situation 

is more complicated. The algorithms are explained in detail later in this Chapter, in Section 3.4. 

On Figure 3.1, we visualize the model of the problem. The scenario explained is the first one – 

Predict usage on next day, but the model is the same for the second scenario, just instead of 

“tomorrow”, we would have “next working day”. 
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Figure 3.1 Sketch of the problem 

 

As seen on Figure 3.1, there are some parameters in the model that need to be fixed, like the past 

window size and the horizon. The horizon can be seen as a kind of "gap" measured in number of 

time instances (in our example days) between the known data and the data to be predicted. In our 

problem formulation, the horizon is 1, since we only predict one time instant away in the future 

(next day, next working day). This also means that we have one predicted value per window of 

past values. The past window size, on the other hand, can vary and its length is discussed in more 

detail in Chapter 4: Results. 
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3.2 TIME SERIES TO SUPERVISED MACHINE LEARNING PROBLEM 

To be able to use machine learning (ML) to solve the problem, we have to adapt it to fit the concept. 

Our problem falls in the category of supervised learning problems and in particular, a regression 

problem, since we want to predict a continuous variable. In this Section we introduce the concepts 

of supervised learning and regression and how we turned our time series into an input for a machine 

learning algorithm. 

Within the field of ML, there are two main types of tasks: supervised, and unsupervised. 

• Unsupervised learning: we have a set of data points and we want to find out if there is 

some natural structure present in the data – to find patterns. The algorithm does not know 

if it is right or wrong, it just tries to identify commonalities in the data and reacts based on 

the presence or absence of such commonalities in each new piece of data. 

• Supervised learning: we use a ground truth, we have prior knowledge of what the answers 

(output values) should be. The goal of supervised learning is to learn a function that, given 

a sample of data and desired outputs, best approximates the relationship between input and 

output observable in the data. 

There are two main types of problems that concern supervised learning: 

o Classification – we want to predict a categorical variable, or a class. Our dataset is labeled 

with different classes and we want to be able to predict the class of unseen data. 

o Regression – we want to predict a continuous variable. It is basically a statistical approach 

to find the relationship between variables and predict an outcome of an event based on that 

relationship. We will talk more about Regression and its algorithms later in Section 3.4: 

Regression algorithms 

If we go back to Section 3.1: Problem formulation, we can see that our devised formulation fits 

this description and what we want to find out is the function 𝑔. So, our problem can be treated as 

a Regression problem. 
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3.2.1 Vectorization of the problem & Feature Construction 

To use machine learning, we need to organize our data into matrices and define the input and 

output data. In ML terminology, the input is a matrix X and the output a vector y. Then we map a 

function 𝑦 = 𝑔(𝑋). The matrix X, or input matrix has as columns the Features. The features are 

basically all the things that our prediction depends upon. For example, if we want to predict the 

price of a house that is about to be on sale, we can put features like: the square footage of the 

house, the number of rooms, is there a yard or no, the number of bathrooms etc.  

In time series forecasting using machine learning, the main part of the features is the past values. 

We feel that the utilization hours in the past will have a direct effect on the utilization hours in the 

future, that is why as features we put exactly the utilization hours of a past period. If we again go 

back to (Equation 1), 𝑥𝑖  are these past values. 

The process is visualized on Figure 3.2. The vector on the left is the original time series, the daily 

utilization hours of a vehicle and on the right,  we have the same data transformed as an input to 

the ML algorithm. X is the feature matrix (the independent variable) and y is the target (the 

dependent variable). Every row of X is lagged values of the original time series. For example, the 

first four values of the time series that are marked with a blue square, compose the first row of the 

feature matrix X. The next value in the time series, marked with a green square, is the first value 

of the target vector y. This means that we use the past 4 values to predict 7.31 hours, the value of 

the fifth day. Building X in this way, in the columns we get, for each day, the values of the previous 

day (t-1), the values of the day before (t-2) that and so on. For the purposes of explaining the 

process we used a window of 4 lagged values, but in the real scenario we use a different past 

window size. 
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Figure 3.2 Turning a time series into an ML algorithm input 

 

 

3.2.2 Smart Feature Selection 

In the above example, we used the values of the previous 4 days to predict today. In the same way, 

in our problem we could use the values of the past week, or past month to predict today, But, 

sometimes, it is not the events of all past days that influence the present day. For example, if we 

want to predict the utilization hours on a Monday, we may be more interested in what happened 

last Monday, than what happened on Thursday. Thursday may even have no correlation 

whatsoever to Monday. 

Having this in mind, we devised a “smart” feature selection method, where we take as features 

only the utilization hours of the days that are correlated to today. This is done by checking the 

autocorrelation function of our original time series and deciding which lagged observations are 

most worthy to become part of our Features. On Figure 3.3, we can see an example of an 

Autocorrelation plot: the values of the autocorrelation function of the time series of utilization 
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hours of vehicle 4605 (one of the vehicles of model 1254 of type Refuse Compactor that is included 

in our analysis). 

 

 

Figure 3.3 Autocorrelation plot of vehicle 4605 

 

On the x-axis there is the lags and on the y-axis the value of the autocorrelation. Of course, the 

value for the zero lag is 1, since we are comparing an observation with itself. The other values help 

us see how correlated a value is with its lagged values. As expected, the further into the past we 

go, the less correlation we find. This kind of analysis can also give us an incentive on how far we 

should go with the past window size. However, there are higher and lower values mixed up 

throughout the plot, which means that not every past day is equally correlated with the present day. 

If we zoom in for only 30 days, we get Figure 3.4. It is visible from this plot that the values for t-

1, t-6, t-7, t-8, t-13 etc. are much more correlated to today than all the other values. 



52 

 

 

Figure 3.4 Autocorrelation plot of vehicle 4605: zoomed to 30 lags 

 

This observation can be incorporated into our model using the Features. We will take as Features 

only the past days which are highly correlated. Which values we consider highly correlated? The 

method we use is the following: We take a window of S lagged values starting at the beginning 

(ex. The first 10 lags) and we take the mean of the absolute values of all of them. Then the values 

that make it as Features are the ones that have an absolute value larger than this mean. Only the 

first 2*S values are considered (in this example the first 20 lags) and they can be both positive or 

negative. The optimal size of S is discussed in more detail in Chapter 4: Results. Basically, in this 

example, the days that are taken as features are the days with lags that fall into the red rectangle. 

Part of the Feature matrix and target vector for vehicle 4605 are shown on Figure 3.5. Now the 

columns resemble the most correlated past days and this can also be seen on their headers. 
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Figure 3.5 ML algorithm input using Smart Feature Selection 

 

 

3.2.3 Adding Additional Features 

As mentioned in the Problem formulation, the primary Features are lagged values of our time 

series, but there are other phenomena that are connected to the utilization hours at the day we want 

to predict that can also be input as Features. 

One additional column we add to the X (Feature) matrix is a column called “isWorkday”. It is 

basically a column that contains 1 if that day of the target (y) is a working day, or 2 if it is a 

weekend or a holiday. This column is very helpful in the scenario “Predict usage on next day”, 

where we maintain the temporality by adding zeroes in the data, since these zeroes are the ones 

that are hardest to predict, and they often mark the weekend.  
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3.3 WALK – FORWARD VALIDATION 

Now that we know our input and desired output from the ML algorithm, we introduce the concept 

of training and testing the model, how it is done in normal ML problems and how it is handled in 

our case. 

An important paradigm of supervised machine learning is the split of the dataset into training and 

testing sets. We take part of the dataset to “train” the machine: giving it inputs and correct outputs 

so that it can map a function 𝑦 = 𝑔(𝑋) to best describe this relationship. The machine finds a 

function based on different logic depending on the algorithm used. Usually, the bigger the training 

set, the better, since with every new training sample the accuracy of the function is improved. 

Then, we try the already trained machine on unseen data: we apply the function it found to the test 

set. The machine now does not know the correct answers and predicts them, but we know the 

correct answers, so we can check how accurate the developed function is. 

In a normal ML problem, where the time of event occurrence is not important, the data can simply 

be split in two: a training and testing set. As an example, using Figure 3.5, we would take the first 

7 rows of the matrix X and the first 7 rows of the matrix y as (X, y) training pairs and the last 3 

rows of X and y as testing pairs. This is the simplest scenario. Then, there are more sophisticated 

ways to do the train-test split to avoid undesirable behaviour, like overfitting. Some of them are 

using a third validation set or doing k-fold cross-validation, where we split the dataset into k 

subsets and use one as test, the other k-1 as training, interchanging the test one and then averaging 

the error between all the k test sets. This is the best way to do cross-validation, since we really use 

up the dataset and not overfit the data on one small test set. 

However, in our case we cannot use k-fold cross-validation because there is the time factor. We 

cannot randomly pick training and testing samples since time has to be preserved. This means that 

the testing samples should come later in the dataset than the training samples. Another important 

thing to consider is that the data collection is from an IoT system, so there is new data available 

every day. The original Table (Table 2.1) is updated and this new data can and should be used in 

our model. So, we want to refresh the model every day. 
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Having these two things in mind, we construct the validation in the following way: Starting at 

the beginning of the time series, a number of samples (past window) is used to train a model. This 

“model” is in fact the mapping equation 𝑔 = 𝑓(𝑋). Then the model makes a prediction for the 

next time step, the next day (test phase). This prediction is evaluated against the known value and 

the error is recorded. Then we move on to the next day, including in the window the known value, 

thus moving forward one step, and we repeat the process. 

Because this methodology involves moving along the time series one-time step at a time, it is often 

called Walk Forward Testing or Walk Forward Validation. The process implies that we build not 

only one model of our problem, but many models, since a new model is created and trained every 

day. This way, we can provide a much more robust estimation of how the chosen modeling method 

and parameters will perform in practice, if we assume the data will change its distribution in time 

and the dynamic of the system is fast. However, this improved estimate comes at a computational 

cost of creating so many models. 

To clarify and quantify the process, we specify the matrix sizes of the input and output using walk-

forward validation on our data. First, we define N and F: 

N (past window size) – number of past samples (days) used for training (ex. N=100) 

F (feature window size) – number of features: the lagged values constructed either simply, or by 

using the Smart feature selection, plus any other features that we might incorporate (ex. F=7) 

For each model the 𝑋_𝑡𝑟𝑎𝑖𝑛 matrix has the size NxF and the 𝑦_𝑡𝑟𝑎𝑖𝑛 vector is of size Nx1. 𝑥_𝑡𝑒𝑠𝑡 

is a vector of size 1xF and 𝑦_𝑡𝑒𝑠𝑡 is of size 1x1 – it is a real number. This says that for every model 

(one model per day), we train with N samples and we test with 1 sample. 

Finally, we have L models (and predictions): 𝐿 =  𝑀 –  𝑁 –  𝐹  

L is equal to: M number of days in the dataset for that vehicle, minus N for the first window minus 

F for the feature window size. 

Let us call our model of L models a mega-model. To evaluate the mega-model accuracy, we 

average out the error of all the L models. Which error measurements we use is explained later in 

this chapter. 
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One more important concept about the walk-forward validation that we need to address is the way 

we build the past window. Since we are moving ahead in time, we have more and more data for 

training. Should we use all this data in our next model, expanding our window every day or fix a 

past window size and slide it? It is a plausible question. The two paradigms are the following: 

• Expanding window 

The past window size grows as we go further in the future. With every new day we use more 

and more data as training. In the above definitions of the sizes, this means that N would start 

from a value and grow with every new model. So, we only have to fix the starting N and it is 

not so crucial to the performance. The positive side is that we have a lot of training samples, 

which in basic machine learning is always good. But how dependent is the present from the 

far past? Does the past just stop being meaningful for predicting the future at some point? And 

we have to consider that as the data grows, the computational time also grows. 

• Sliding window 

In this case the past window size (N) is fixed. It is always the same, on every new model. It 

appears as though it slides with the data, hence the name. This type of window better captures 

the behaviour of the data at the moment, getting rid of the far past. It is much less 

computationally expensive, but is limiting the training data size. Also, we have to carefully 

choose the window size N. 

Figure 3.6 illustrates the two window types in terms of training and testing portions of the dataset. 
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Figure 3.6 Expanding vs. Sliding window 

 

It is clearly visible what is the difference between them and gives an accurate notion on how we 

do the training and testing in general and how we put together all the separate test samples to 

evaluate the accuracy of our mega-model. 

 

In conclusion, what is really important to distinguish from this Section is the past window size 

and the feature window size. The past window size is how many samples we use for training. 

They are values of the past, that is why we call it the past window. The feature window size is how 

many samples we use as features (which are these samples is for the normal/smart feature 

construction algorithm to decide). This number is always less than the past window size. Basically, 

the feature window size is the width of our matrix X, while the past window size is the height of 

it. 

Another important thing is the walk-forward validation method: the fact that we do a new model 

every day, which gives us many models per vehicle. In the end, we are not giving a specific model 

as a solution, but more a manner of choosing the perfect model tomorrow. 

As we can see, there is a number of parameters to fix even before we start with the algorithm 

choice. We have to decide which past observations to use as Features, are we going to construct 

the Feature matrix simply or by doing the Smart Feature Selection, if the selection is making our 

results better, how are we going to fix its parameter (the number of lagged values that are included 



58 

 

for taking the mean), then we need to decide the past window size and whether we are going to 

use a sliding or expanding window. When we have decided all these parameters, we have a 

scenario and we can apply an ML algorithm. In the next section we discuss the 5 algorithms that 

were tried in the scope of this thesis. 

 

 

3.4 REGRESSION ALGORITHMS 

As mentioned in Section 3.2, Regression is a supervised ML technique that is used to predict 

continuous variables. There are many algorithms that fall under the umbrella of regression, each 

trying to find the best mapping function 𝑦 =  𝑔(𝑋), that links its input to its desired output. We 

also said that regression fits the formulation of our problem perfectly and so it is regression 

algorithms that we use to solve our problem. In the previous few sections we described how to 

prepare our data for regression and in this section we describe all the algorithms that were used to 

predict our variables. 

All of the algorithms that are described, except Linear regression, have hyperparameters that need 

to be tuned. (DataCamp, 2018) defines a model hyperparameter as a configuration that is external 

to the model and whose value cannot be estimated from data. They have some default values that 

generally work well with the algorithms, but they are often specified by the practitioner. In this 

study, we tune some of these hyperparameters. 

 

 

3.4.1 Linear Regression 

As a first, simple algorithm we try Linear Regression. We do not know if the relationship between 

our input and output can be described as a linear combination, so it is a justified choice to try a 

simple linear algorithm. We use the implementation of the Python library scikit-learn, (Scikit-

learn.org, 2018).  
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Linear regression tries to map the input to the output using a linear function. Each feature is 

attributed a weight in the equation, which accounts for the importance of that feature for predicting 

the output. The general form of the equation is the following: 

𝑦𝑖  =  𝑤0  +  𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + 𝑤3𝑥𝑖3  +  … + 𝑤𝐹𝑥𝑁𝐹 

Where 𝑦𝑖 is the i-th output (i = 1 … N). N is the number of samples and F is the number of features. 

In matrix form the equation is: 

𝒚 =  𝑿𝒘 

Where 𝒚 is the target variable vector (Nx1), 𝑿 is the feature matrix (NxF) and 𝒘 is a vector of 

weights (Fx1).  

The goal is to estimate the weights 𝒘 and this is done through the method of Least Squares. 

Least Squares means that we are trying to find a vector of weights that minimizes the square error: 

𝑒(𝒘)  =  || 𝒚 − 𝑿𝒘||2  

Getting the gradient of this error 𝑒(𝑤) to zero gives us the solution for 𝑤: 

ŵ = [𝑿𝑇𝑿]−1𝑿𝑇𝒚 

 

Linear regression is good for exploring the model. The different weights (coefficients) can tell us 

in a simple manner how the different features impact the model - if they are important or not. It 

was exactly this analysis that led us to the idea for the smart feature selection. It is also a good way 

to see how any new features we might add reflect on the model. The coefficient analysis is also a 

good tool to explore the impact of the sliding and expanding window on the model. More on this 

is discussed in Chapter 4: Results. 
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3.4.2 Lasso Regression 

Lasso regression uses the same principle as linear regression, in that it tries to map a linear function 

to the problem and aims to find the weights (coefficients) of the different features in this function. 

However, aiming to perform better than normal linear regression, it adds a regularization parameter 

to the weights, a kind of penalization, so that they do not grow very high. The name Lasso is an 

abbreviation of Least Absolute Shrinkage and Selection Operator. We again use the scikit-learn 

implementation of the algorithm, (Scikit-learn.org, 2018). 

The difference from Linear regression comes in the objective function, what we are trying to do in 

this case is minimize the following error:  

𝑒(𝒘) =  ||𝒚 − 𝑿𝒘||2 +  𝛼|𝒘| 

Where y, X and w are defined in Section 3.4.1 and 𝛼 is an L1 regularization parameter. If 𝛼 is zero, 

we get exactly Linear regression as above. Controlling 𝛼 controls the penalization of the features. 

Then minimizing the error and solving for 𝒘 we get: 

ŵ = (𝑿𝑇𝑿 +  𝛼𝑰)−1𝑿𝑇𝒚 

 

Lasso is counted as one of the simple techniques to reduce model complexity and prevent 

overfitting which may result from simple linear regression. The type of regularization (L1) it uses 

can lead to zero coefficients, meaning some of the features are completely neglected for the 

evaluation of the output. So, Lasso regression not only helps in reducing overfitting, but it can help 

us in feature selection.  

There is one hyperparameter that needs to be fixed and that is the regularization parameter 𝛼. The 

default value of 𝛼 by the Python implementation sklearn.linear_model.Lasso is 1. 
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3.4.3 SVR – Support Vector Regression 

SVR, or Support Vector Regression is a regression algorithm that is derived from SVM (Support 

Vector Machine), which is a classification algorithm. The main idea in SVR is the same: to 

minimize an error, individualizing the hyperplane which maximizes the margin, keeping in mind 

that part of the error is tolerated. The model produced by SVR depends only on a subset of the 

training data, because the cost function for building the model ignores any training data close to 

the model prediction. We use the scikit-learn (Scikit-learn.org, 2018) implementation of SVR 

(sklearn.svm.SVR). 

Linear SVR tries to find the function: 

𝑓(𝑥) = 𝒙𝑇𝒘+  𝑏 

Training the original SVR means solving the minimization problem: 

𝐽(𝑤) =
𝟏

𝟐
||𝒘||2 

subject to subject to all residuals having a value less than 𝜀: 

∀𝑛:  |𝑦𝑛 − (𝑥𝑛
𝑇𝑤 + 𝑏)| ≤ 𝜀 

where 𝑥𝑖 is a training sample with target value 𝑦𝑖. The inner product plus intercept 〈𝑤, 𝑥𝑖〉 + 𝑏 is 

the prediction for that sample, and 𝜀  is a free parameter that serves as a threshold: all predictions 

have to be within an 𝜀 range of the true predictions. It is possible that no such function 𝑓(𝑥) exists 

to satisfy these constraints for all points. To deal with otherwise infeasible constraints, slack 

variables 𝜉𝑛 and 𝜉𝑛∗  are introduced for each point. This approach is similar to the “soft margin” 

concept in SVM classification, because the slack variables allow regression errors to exist up to 

the value of 𝜉𝑛 and 𝜉𝑛∗ , yet still satisfy the required conditions. 

Including these slack variables leads to the objective function, also known as the primal formula: 

𝐽(𝑤) =
𝟏

𝟐
||𝒘||2 + 𝐶∑(𝜉𝑛 + 𝜉𝑛

∗)

𝑁

𝑛=1

 

Subject to the following constraints: 
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{
 

 
∀𝑛:  𝑦𝑛 − (𝑥𝑛

𝑇𝑤 + 𝑏) ≤ 𝜀 + 𝜉𝑛
∀𝑛:  (𝑥𝑛

𝑇𝑤 + 𝑏) − 𝑦𝑛 ≤ 𝜀 + 𝜉𝑛
∗

∀𝑛:  𝜉𝑛
∗ ≥ 0

∀𝑛:  𝜉𝑛 ≥ 0

 

 

The constant C is the box constraint, a positive numeric value that controls the penalty imposed 

on observations that lie outside the epsilon margin (ε) and helps to prevent overfitting (serves for 

regularization). This value determines the trade-off between the flatness of 𝑓(𝑥) and the amount 

up to which deviations larger than ε are tolerated. 

The optimization problem previously described is computationally simpler to solve in its Lagrange 

dual formulation. The solution to the dual problem provides a lower bound to the solution of the 

primal (minimization) problem. The optimal values of the primal and dual problems need not be 

equal, and the difference is called the “duality gap.” But when the problem is convex and satisfies 

a constraint qualification condition, the value of the optimal solution to the primal problem is given 

by the solution of the dual problem. 

To obtain the dual formula, a Lagrangian function is constructed from the primal function by 

introducing nonnegative multipliers 𝛼𝑛 and  𝛼𝑛∗  for each observation 𝑥𝑛. Then we minimize a new 

function that includes these multipliers and we constrain them to be lower than C. 

Now the function used to predict new values depends only on the support vectors: 

𝑓(𝑥) = ∑(𝛼𝑛 − 𝛼𝑛
∗)(𝑥𝑛

𝑇x) + 𝑏

𝑁

𝑛=1

 

 

Nonlinear SVR: 

Some regression problems cannot adequately be described using a linear model. In such a case, 

the Lagrange dual formulation allows the previously-described technique to be extended to 

nonlinear functions. We can obtain a nonlinear SVR model by replacing the dot product (𝑥1𝑇𝑥2) 

with a nonlinear kernel function 𝐾(𝑥1, 𝑥2)  = < 𝜑(𝑥1), 𝜑(𝑥2) >, where 𝜑(𝑥) is a transformation 

that maps 𝑥 to a high-dimensional space. 
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The three kernel functions that we use are: 

𝐾(𝑥1, 𝑥2) =  𝑥1
𝑇𝑥2 – Linear (dot product) 

𝐾(𝑥1, 𝑥2) = (𝛾(𝑥1
𝑇𝑥2) + 𝑟)

𝑑 – Polynomial, 𝑑 is the degree 

𝐾(𝑥1, 𝑥2) = (−𝛾||𝑥1 − 𝑥2||
2) – Radial basis function (RBF) 

 

That said, there are a few hyperparameters to be chosen when using SVR: 

• the kernel type 

• the C parameter 

• the range 𝜀 

• the multiplier 𝛾 if we use polynomial or RBF kernel 

• the degree 𝑑 if we use polynomial kernel 

SVR also requires standardizing the data to have mean 0 and variance 1. 

 

 

3.4.4 Random Forest Regression 

Random Forest Regression is an ensemble method. The goal of ensemble methods is to combine 

the predictions of several base estimators built with a given learning algorithm in order to improve 

generalizability / robustness over a single estimator. In particular, it is an averaging/bagging 

method, meaning it builds several independent estimators (weak learners) and then averages their 

predictions. We use the implementation of the Python library scikit-learn (Scikit-learn.org, 2018), 

given by sklearn.ensemble.RandomForestRegressor. 

The core of the Random Forest, its base estimator, is the Decision Tree. The Decision Tree is an 

algorithm which forms a tree structure, calculating the best questions to ask in order to make the 

most accurate estimates possible. The goal is to create a model that predicts the value of a target 

variable by learning simple decision rules inferred from the data features. The observations about 
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an item are represented in the branches and the conclusions about the item’s target value are 

represented in the leaves. 

Random Forest consists of multiple trees - in ensemble terms, the trees are weak learners and 

together they make the Random Forest, which is a strong learner. Each decision tree in the forest 

considers a random subset of features when forming questions and only has access to a random set 

of the training data points. This increases diversity in the forest (each tree is slightly different) 

leading to more robust overall predictions and gives it the name “random forest”. When the time 

comes to make a prediction, the algorithm takes an average of all the individual decision tree 

estimates. As a result of the randomness, the bias of the forest usually slightly increases (with 

respect to the bias of a single non-random tree) but, due to averaging, its variance decreases, which 

usually more than compensates for the increase in bias, hence yielding an overall better model. 

The main hyperparameters to adjust when using Random Forest Regression are: 

- n_estimators: The number of trees in the forest. The larger the better, but also the longer it will 

take to compute. It is expected that the results will stop getting significantly better beyond a critical 

number of trees. 

- max_features: The size of the random subsets of features to consider when splitting a node. The 

lower it is, the greater the reduction of variance, but also the greater the increase in bias. Empirical 

good default value is max_features=n_features for regression problems. 

- max_depth: The maximum depth of the decision trees. If None, then nodes are expanded until 

all leaves are pure or until all leaves contain less than min_samples_split samples. 

- min_samples_split: The minimum number of samples required in a node to be considered for 

splitting. This parameter is used to prevent overfitting. 

- min_samples_leaf: The minimum number of samples required at each leaf node. 

- max_features: The number of features to consider when looking for the best split. These are 

randomly selected. 

Max_depth and min_samples_split control the size of the trees. The default values are 

max_depth=None and min_samples_split=2. They lead to fully grown and unpruned trees which 
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yield good results, but can potentially be very large on some data sets. To reduce memory 

consumption, the complexity and size of the trees should be controlled by setting those parameter 

values. 

Using scikit-learn’s Random Forest we can explore the features with the attribute 

feature_importances_. Features used at the top of the tree contribute to the final prediction decision 

of a larger fraction of the input samples. The expected fraction of the samples they contribute to 

can thus be used as an estimate of the relative importance of the features. In scikit-learn, the 

fraction of samples a feature contributes to is combined with the decrease in impurity from splitting 

them to create a normalized estimate of the predictive power of that feature. This estimate is stored 

in feature_importances_. 

The pros of using Random Forest is that, being an averaging ensemble method, it reduces variance 

and thus conquers overfitting. It is also good for exploring the features. Theoretically, we can also 

find out what is going on inside it by looking at the separate decision trees, but this process is 

messy since there are many trees for every model and we are making a new model every day. It is 

also more computationally expensive than the other algorithms we try and it has a lot of parameters 

that need to be tuned. 

 

 

3.4.5 Gradient Boosting Regression 

Gradient Boosting Regression is another ensemble method, like Random Forest, but this one is a 

boosting method, rather than an averaging (bagging) method. Boosting is an ensemble technique 

in which the predictors are not made independently, but sequentially. We once again use the scikit-

learn implementation of the algorithm given by sklearn.ensemble.GradientBoostingRegression. 

On Figure 3.7 (Medium, 2018), we visualize the difference between these two ensemble methods. 
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Figure 3.7 Difference between bagging (averaging) and boosting ensemble methods 

(Medium, 2018): This technique employs the logic in which the subsequent predictors learn from 

the mistakes of the previous predictors. Therefore, the observations have an unequal probability 

of appearing in subsequent models and ones with the highest error appear most. (So, the 

observations are not chosen based on the bootstrap process, but based on the error). The predictors 

can be chosen from a range of models like decision trees, regressors, classifiers etc. Because new 

predictors are learning from mistakes committed by previous predictors, it takes less 

time/iterations to reach actual predictions. But we have to choose the stopping criteria carefully or 

it could lead to overfitting on the training data. 

The advantages of Gradient Boosting are that it can handle heterogeneous features and is robust to 

outliers in output space, while the disadvantage is that it is hard to scale due to its sequential nature. 

 

(Learning and Python, 2018) splits the parameters of Gradient Boosting into three categories: 

1. Tree-Specific Parameters: These affect each individual tree in the model. 

They are similar to those of Random Forest and are explained in the previous section: 

min_samples_split, min_samples_leaf, max_depth, max_features. 

2. Boosting Parameters: These affect the boosting operation in the model. 

There are three important parameters here:  
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• Learning_rate: A multiplier that shrinks the contribution of each tree by its value. 

Lower values are generally preferred as they make the model robust to the specific 

characteristics of tree and thus allowing it to generalize well. 

• n_estimators: The number of sequential trees to be modeled (the number of boosting 

stages to perform). Gradient boosting is fairly robust to over-fitting, so a large number 

usually results in better performance. 

• Subsamples: The fraction of observations to be selected for each tree. Selection is done 

by random sampling. 

There is a trade-off between learning_rate and n_estimators. 

3. Miscellaneous Parameters: Other parameters for overall functioning. 

There are a few parameters here but the most important one is: 

• Loss: The loss function to be minimized at each split. The default is least squares. Some 

alternatives are least absolute deviation, huber and quantile.  

 

 

3.5 PERFORMANCE EVALUATION 

An essential part of the model construction and the whole prediction process is to know how 

accurate our solution is. We use a few metrics to judge the performance of the devised models - 

we measure the error in the prediction. 

First, we analyze the error in absolute terms. There are two very common error metrics that come 

into play here: The Mean Absolute Error and the Root Mean Squared Error. 

We define the vector of true values for the target y as 𝑦𝑡𝑟𝑢𝑒 and the vector of predicted values as 

𝑦𝑝𝑟𝑒𝑑. With this said we define the two errors in absolute terms: 

• Mean Absolute Error (MAE) 
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• Root Mean Squared Error (RMSE) 
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Although these are good and accurate error measurements, they are absolute, meaning they 

measure the average error we make over all predictions in hours. Since we make a different mega-

model for every vehicle and the vehicles have very different utilization magnitudes (the number 

of hours they are usually used varies a lot from vehicle to vehicle), we need a relative error 

measurement that would allow us to compare performance of predictors between different 

vehicles. This is why we also measure the Percentage Error. 

• Percentage Error (PE) 

𝑃𝐸 =  
∑ |𝑦𝑡𝑟𝑢𝑒𝑖 − 𝑦𝑝𝑟𝑒𝑑𝑖|
𝑛
𝑖=1

∑ |𝑦𝑡𝑟𝑢𝑒𝑖|
𝑛
𝑖=1

∗ 100 

This error tells us on average, how much our prediction is wrong relative to the utilization hours 

of that vehicle. In the further text, this error can also be found as Error in %. 

Other data about the error is also collected upon the execution of the models for every vehicle. 

This includes some insights on the residual error 𝒓 (a vector): 

• Residual Error 𝒓 

∀𝑖: 𝑟𝑖 = 𝑦𝑡𝑟𝑢𝑒𝑖 − 𝑦𝑝𝑟𝑒𝑑𝑖 

We analyze the distribution of the residual error values, its mean and standard deviation – we want 

a normally distributed residual error, with a mean of 0 and a small standard deviation. This tells 

us if the model is biased or not. 
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4 RESULTS 

In this Chapter, we report the Results we obtained, using the Methodologies described in Chapter 

2, on the Dataset explored in Chapter 1. 

We begin with the first scenario, Predict usage on next day. We want to predict the next calendar 

day, so we fill the days for which there is no data with zeroes, as mentioned in the previous 

Chapters. This makes it a difficult prediction problem since the zeroes are throwing off the 

predictor. 

We start the Result analysis by tuning the general parameters that are used in the methodology, 

regardless of the algorithm. In this section we also choose the best setup for running the algorithms 

- which type of window are we going to use, whether smart feature selection is generating better 

results, whether our additional feature is really helping the algorithm etc. Then we proceed to run 

the algorithms with some coarse hyperparameter tuning and generate some first results. After this 

phase, we narrow down the algorithms to the best ones and we do a broader and proper 

hyperparameter tuning. We also go into more detail on the results, showing plots and interesting 

insights about the working of the different algorithms. 

Then we move on to the second scenario, Predict usage on next working day, which simplifies the 

problem. We repeat the valuable experiments in this scenario using only the best algorithms, 

having in mind the difference in the problem formulation. Then we analyze the results of this 

scenario and we compare the two. 

 

 

4.1 CHOICE OF FEATURE CONSTRUCTION METHOD AND TRAINING SET SIZE 

(ALGORITHM INPUT) 

A lot of the methodologies explained above require tuning of parameters, even before we start to 

apply algorithms. We need to decide some general values like: 

• the past window size 
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• usage of sliding or expanding window (past window size important for usage of sliding 

window) 

• the feature window size when we use normal feature construction 

• the threshold of lags considered from autocorrelation function to form the mean, if we use 

smart feature selection 

To fix these values we use Linear regression, since the algorithm itself does not require any 

parameter tuning and is thus good for comparison between setups. 

 

 

4.1.1 Fixing Past window size and Feature window size 

We start with tuning the Past window size and Feature window size. Tuning the feature window 

size means we are using the “normal” feature construction, where we take consecutive past days 

as features. The past window size is the number of samples used for training, while the feature 

window size tells us how many consecutive days in the past shall be used as features. These two 

parameters define the size of the X matrix (the training matrix that is an input to the algorithm, as 

explained in 3.2.1) – the past window size is N and the feature window size is F. This makes them 

coupled values that should be picked together as a combination. 

The choice of the past window size is really important because it is the size of the sliding window. 

The tests are done on 10 representative vehicles of model 1254 and the error is averaged. Their 

IDs are: 3959, 3988, 4256, 4551, 4700, 4891, 5003, 5229, 5504, 6034. The tried values for the 

feature window size are: 5, 7, 10, 20, 30, 40 and 50 days. The tried values for the past window size 

are: 70, 90, 100, 110, 120 and 130. The results are shown on Figure 4.1. 
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Figure 4.1 Choice of past window size and feature window size 

 

On the x-axis we have the different values for Feature window size, on the y-axis we have the 

average error in % of Linear regression run with the use of these parameters. The different curves 

represent different Past window sizes and they are listed in the legend. 

All the curves have a somewhat similar behaviour with respect to the Feature window size. The 

lowest errors are obtained by using a past window size of 120 or 130 (green and blue curve), 

depending on the Feature window size. However, the best result is a Feature window size of 10 

and a Past window size of 120. 

 

 

4.1.2 Fixing the Past window size and the parameter for Smart Feature Selection 

If we want to use Smart Feature Selection, we do not have a fixed Feature window size. It varies 

from vehicle to vehicle according to the autocorrelation of the data. As mentioned in Section 3.2.2 

of Methodology,  there is a parameter there that we have to tune and that is: the size of the vector 

of lagged observations from which a mean is taken, so that we include as features only the lagged 

days that have a higher absolute value of correlation than this mean. In the previous chapter this 

value was defined as S. Let us now call this value acf_value (autocorrelation function value). Then, 
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we are taking only the indexes of the autocorrelation function that are less than 2 ∗ 𝑎𝑐𝑓_𝑣𝑎𝑙𝑢𝑒. 

Putting this value low, means we are introducing a higher mean, since usually the lags close to 0 

are more correlated and thus higher in value. This stricter mean, with the combination of a low 

number of indexes considered, lets in a lower number of features. On the other hand, putting 

acf_value high means setting a lower threshold and a longer range of considered indexes, thus 

allowing more lagged values to become features. 

This value is also coupled with the past window size, so we again search for the best combination. 

Also, we want to make sure that the value we choose works well for a wider range of window 

sizes, to give it more credibility. 

The tests are done on the same 10 vehicles of model 1254. The past window sizes are of the same 

order as before, but a bit larger: 100, 110, 120, 130, 140, 150. The tried numbers for acf_value are: 

5, 10, 15, 20, 25, 30, 40. We have to keep in mind that the algorithm is letting in values from the 

range of 2 ∗ 𝑎𝑐𝑓_𝑣𝑎𝑙𝑢𝑒. 

On Figure 4.2  we show the results of the search. We can see that an acf_value of 15 is a good 

match for all the past window sizes, but as these sizes grow, larger values for acf_value also 

become competitive and for past window sizes of 140 and 150, they perform better. It is important 

to notice that overall, we are not dealing with a large change in the error, since the y-axis is very 

narrow, from 34 to 38 %. Taking into consideration only acf_value of 15, 20 and 25 and past 

window sizes larger than 120, we are dealing with only 0.6 % of improvement. 
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Figure 4.2 Choice of Smart Feature Selection parameters 

 

Another thing that is visible here is that, the larger the window size, the smaller the error. This is 

expected, since we are using more and more training data. This opens the discussion on the Sliding 

and Expanding window, which needs to be discussed. We tackle this choice in the following 

section and we also conclude the choice of acf_value. 

 

 

4.1.3 Sliding vs. expanding window 

On Figure 4.3, we can see a comparison of a sliding window with length 150 (past window size) 

and an expanding window, which starts from 120 and changes the past window size with every 

model. The tests are done on the same 10 vehicles of model 1254 and the error is averaged. The 

comparison is again done in function of the acf_value. 
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Figure 4.3 Comparison of expanding and sliding window in function of acf_value 

 

It is visible that we can reach a lower error by using an expanding window. But, with a careful 

choice of the past window size and acf_value, we can get really close to this result by using a 

sliding window. 

Even though the results are better by using an expanding window, for the simple reason of having 

more training data, we prefer the sliding window for a few reasons:  

• Computational complexity 

Using an expanding window is much more computationally expensive since we increase 

the training data with every new model. 

• Captures the temporary dynamics 

The sliding window is focused on a shorter period and can better approximate the model 

in that period of time. 

To visualize how the sliding window captures the temporary dynamics, we offer a plot of the linear 

regression coefficients (weights) for all the models of all the days of vehicle no. 4272, done twice: 

once using an expanding window and then using a sliding window. We used the Smart Feature 

Selection, with a past window of 140 and acf_value of 20. This means that the sliding window is 

of size 140 and for the expanding window we start with 140 and expand with every new model. 

The coefficients are a metric of how important a feature is and they are the weights that multiply 
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each feature value in the linear equation of Linear Regression. The behaviour of the coefficients 

when using the expanding window and sliding window are shown on Figure 4.4 and Figure 4.5, 

respectively. 

 

 

Figure 4.4 Change of coefficients of Linear regression with every new model using an expanding window 

  

 

Figure 4.5 Change of coefficients of Linear regression with every new model using a sliding window 
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It is clearly visible from the plots how the coefficients behave differently in time for the two 

scenarios. Using an expanding window results in calm, almost linear change in coefficients, 

meaning the importance of each feature (lagged day for us) stays the same in all the models that 

are generated. In contrast, using a sliding window makes the coefficients change with every new 

model and dynamically capture the situation in the system. Let us take the utilization hours of 14 

days before the day we are predicting (t-14, red curve), as an example. At the beginning this value 

is really important, granted a coefficient larger than 1, and as the time goes on it becomes less and 

less important, going towards a coefficient of 0.  

There is another trade-off to keep in mind when choosing the sliding window size: we want to get 

close to the results of the expanding window and as we make the past window size larger, we get 

closer and closer to this result. On the other hand, we do not want to use a really big sliding window 

size, because we want to be able to do predictions also for vehicles that do not have that much 

data. As Future work, it may be interesting to try a dynamic past (sliding) window size, that 

depends on how much data there is for the vehicle. However, in the thesis we fix this parameter to 

obtain fair comparisons of the algorithms and scenarios. 

Taking all these things into consideration and also making some experiments that involve 57 

vehicles of model 1254, we decide to use, when dealing with the Smart Feature Selection scenario, 

140 samples for the sliding window size (past window size, training samples count) and 20 for 

acf_value. 

 

 

4.1.4 Improvements by adding additional Features 

The last general paradigm that needs to be discussed is the adding of additional features, besides 

the values of utilization hours of the past days. As mentioned in Section 3.2.3, we add a Feature 

that is called “isWorkday”, which, as the name suggests, specifies if the target day is a workday 

or a weekend/holiday. 

Testing the scenario proves that this Feature is helpful to the algorithm and decreases the average 

percentage error over 57 vehicles of model ID 1254 by 2 %. Moreover, if we take a look at the 
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coefficients of linear regression now, using also this feature, we can see that it is awarded a high 

weight, which means it is important to the algorithm. Figure 4.6 shows a stem plot of the 

coefficients of model no. 870 out of 1116 models of the mega-model trained for vehicle 4272. We 

can see that the new feature (rightmost part) has a higher coefficient (-1.5), with respect to the 

other features. This is not always the case, nor is the difference between this coefficient and the 

other ones always big, but in general the feature is given importance. 

 

 

Figure 4.6 Linear Regression coefficients of the 870th model of vehicle 4272 

 

 

4.1.5 Overall comparison and choice of best setup 

To sum up, in this Section we show the 6 main scenarios with a bar chart of the average error in 

%  calculated over 57 vehicles of model 1254. The tests are done using Linear Regression with a 

change in the setup – normal feature construction v.s smart feature selection; sliding v.s expanding 

window and usage of the additional feature that specifies if it is a working day or not. The “Normal 

Feature Construction” scenario (in short, “normal”) uses a past window of 120 values and a feature 

window size of 10. The “Smart Feature Selection” scenario (in short, “smart”) uses a past window 
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of 140 samples and an acf_value of 20 samples. These are the values that were discussed and 

decided in the past few Sections. The resulting barchart is shown on Figure 4.7. 

 

 

Figure 4.7 Error in % of Linear regression over different problem setups 

 

The red bars represent the “normal” scenario, using a sliding and expanding window respectively. 

The blue bars represent the “smart” scenario with again a comparison between sliding and 

expanding window. Finally, the green bars represent the “smart” scenario with the added feature 

“isWorkday”. The bars are sorted in descending order according to the error in %. It is visible that 

the “normal” scenario performs worse than the smart scenario and the smart in combination with 

the added feature performs the best of all three. With respect to the sliding and expanding window, 

the expanding window performs better in all three cases. However, for reasons discussed in Section 

4.1.3, we prefer to use a sliding window, so we are willing to take the trade-off in terms of the 

slightly worse performance. 

To conclude, based on the searches executed in this Section, in all the experiments reported in the 

next sections, we use the following scenario: Smart Feature Selection with acf_value = 20, 

combined with a sliding window of size 140 and the additional feature “isWorkday”. 
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4.2 ALGORITHM COMPARISON 

Having set all the parameters from the previous section, we are now able to proceed with the 

algorithms and gathering results. However, most of the algorithms require parameter tuning of 

their own. In this section, we do a coarse hyperparameter tuning, just a few experiments with 

different values with the goal to see the general behaviour of the different algorithms. Then we 

choose two algorithms and in the next section we concentrate on them, doing a proper 

hyperparameter tuning and giving detailed insight into the results we obtain with them. 

The other parameters of the algorithms (explained as part of describing the algorithms in Section 

3.4) are the following: 

• Lasso 

o alpha = 0.1 

• SVR:  

o kernel = “rbf” 

o C = 10 

o 𝛾 = 1 / n_features 

o ε = 0.1 

• Random Forest 

o     n_estimators = 50 

o     max_features = “sqrt” 

o     min_samples_split = 5 

o     min_samples_leaf = 5 

o     max_depth = 10 

• Gradient Boosting 

o     learning_rate = 0.1 

o     n_estimators = 100 

o     max_depth = 1 

o     loss = “lad” 
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It is usual when testing an algorithm performance to add a benchmark algorithm to compare with. 

The benchmark algorithm is something really simple and the proposed algorithm should perform 

much better than it. For our problem, we chose two benchmark algorithms which are usual for 

time-series forecasting. They are: 

• Last Value algorithm 

The predicted value is equal to the last observed value – for us this means that the utilization 

hours of tomorrow are the same as those of today. 

• Moving Average 

The predicted value is equal to an average of the features. For this scenario we use 

acf_value=30, since after a few experiments it yielded the best results. 

 

The algorithms were then tested on 57 vehicles of the model 1254 (Refuse Compactors) and the 

Error in % was measured for each vehicle. Figure 4.8 shows a boxplot of the distribution of this 

error for each algorithm. As in the boxplots of Chapter 2, the whiskers span to  ±1.5*IQR and the 

lines in the middle of the boxes show the median. In this plot there is the addition of x marks that 

label the mean. 
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Figure 4.8 Distribution of Percentage error on different algorithms 

  

The first obvious thing from Figure 4.8 is that the machine learning algorithms we try, perform 

significantly better than the benchmark algorithms Last Value and Moving Average. So, it is 

worthy to continue working on them. Of the benchmark algorithms, the Percentage errors obtained 

by Last Value have a tighter distribution than the other algorithms and the mean is 54.46%. The 

errors obtained by Moving Average are more spread, going from 15% to 65%, with a mean of 

42.93%. This is because our data does not have a constant level, it hits extremes when it goes down 

to zero and this happens often. Moving Average cannot capture well this explosive behaviour, but 

it still performs better than Last Value. 

The second obvious thing is that the distributions of the errors are regular. The mean is almost 

aligned with the median in every box, which means the distributions are centered around the mean 

and are not long-tailed. We have to bear in mind that the plotted distribution is made of 57 samples, 

so we cannot derive any strong conclusions about it, but we can get a good general idea about the 

algorithm performance.  
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About the five ML algorithms that were tried, it is visible that they are not that different in the 

performance. They all have the IQR between 20% and 40% with little difference in the mean and 

standard deviation. Random Forest shows a smaller variance and this is expected of an averaging 

ensemble method. However, the mean and median value are the second worst from all the 

algorithms. Table 4.1 reports the mean and standard deviation of the errors for every algorithm. 

 

Table 4.1 Mean and Standard deviation of the Percentage error over 57 vehicles 

Algorithm 

Mean of the 
Errors 

Standard deviation 
of the Errors 

Last Value 54.46 8.87 

Moving Average 42.92 12.87 

Linear Regression 33.1 13.11 

Lasso Regression 31.49 10.98 

SVR 30.49 10.73 

Random Forest 31.98 10.40 

Gradient Boosting 29.64 10.76 

 

It is difficult to evaluate which of these algorithms perform the best. If we consider only the mean 

and standard deviation of the errors, then the best choice is Gradient Boosting and next to it is 

SVR. Then with 1% worse performance is Lasso, close to it is Random Forest and finally Linear 

Regression. But, there are other metrics that should be taken into consideration and one of them is 

the computational time. Figure 4.9 shows the computational time of each algorithm to be applied 

to 57 vehicles, in seconds. The experiments that yielded these times were done on a laptop with an 

Intel(R) Core(TM) i7-8550U CPU with 16 GB of RAM. 
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Figure 4.9 Execution time of the algorithms 

 

It is obvious that for the ensemble methods, Random Forest and Gradient Boosting, the 

computational time explodes. This is because they build a number of trees for each model in the 

mega-model. SVR has a really good performance and a low computational time. Lasso and Linear 

regression also take a really short time, since they are simple algorithms. 

Looking at Figure 4.7 from the previous Section and Figure 4.8 of this section, we can say that we 

started from an average error of 54% with Last Value, lowered it first to 38% by using a “Normal 

Feature Construction” configuration, then to 33% by coming up with the “Smart Feature 

Selection” paradigm and using it with Linear regression and then applying all of this to more 

sophisticated algorithms, managed to get to 29.6% of average error. The question is, can this error 

become even lower? In the next section we discuss the attempt to further reduce the error by doing 

a proper parameter tuning on Lasso, SVR and Gradient Boosting. 
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4.3 HYPERPARAMETER TUNING OF THE ALGORITHMS 

In this section we report the results of a deeper parameter tuning done on three algorithms: Lasso, 

SVR and Gradient boosting. These three were chosen because they had the lowest average error 

and because they are different in their core. Lasso is linear regression with a regularization 

parameter, SVR is kernel-oriented and Gradient boosting is an ensemble method that uses 

sequential learners. Even though with a carefully tuned Random forest we also expect better 

results, since it is similar in its nature to Gradient boosting (both being ensemble methods), and 

takes a really long computational time, we choose only one of them. 

Why is hyperparameter tuning important? (DataCamp Community, 2018) says that: “The best way 

to think about hyperparameters is like the settings of an algorithm that can be adjusted to optimize 

performance, just as you might turn the knobs of an AM radio to get a clear signal.” These 

hyperparameters are free, so that the algorithms can be better applicable and moldable to different 

problems and scenarios.  

 

4.3.1 Hyperparameter Tuning of Lasso Regression 

Lasso regression has only one parameter to tune – 𝛼. It is the parameter that quantifies how much 

the coefficients of the algorithm (the weights of the different features) are being regularized. We 

perform the tuning over 10 vehicles of model 1254 (the same 10 ones that were used for the general 

parameter tuning). The result of the search is shown on Figure 4.10. We do a denser check in the 

area of least error. The best value for 𝛼 turns out to be 0.065, yielding an error of 30.855% for the 

10 vehicles. When we try this value on all 57 vehicles, we get an error of 31.38%, which is not 

significantly less than the 31.49% we had obtained before. 
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Figure 4.10 Tuning of the alpha parameter of Lasso regression 

 

 

4.3.2 Hyperparameter tuning of SVR 

The next algorithm to undergo proper parameter tuning is SVR. This is again done on the same 10 

vehicles of model 1254 of type Refuse Compactor and the error is averaged. Here the parameters 

in question are the kernel, the cost coefficient C, epsilon (ε) and 𝛾, if we use RBF kernel. The 

constant C is the box constraint, a positive numeric value that controls the penalty imposed on 

observations that lie outside the epsilon margin (ε) and helps to prevent overfitting. 

We try 3 different kernels: linear, polynomial and RBF and first tune the parameters for each to 

reach the best option by using that kernel, then compare the three best options and find the optimum 

configuration. 

The first kernel we try is the linear kernel. There we compare performance for different values of 

C and ε. The result is shown on Figure 4.11. As the plot may suggest, wherever we see a minimum 

approaching, we do a deeper search, so there are more points in this area. We try to minimize C 

for different values of ε. As ε decreases, we get a better performance and this converges at 0.01, 

then if we go lower with ε, the error increases by very little. The best result is obtained with an ε 

of 0.01 (orange curve) and a C of 0.15. The error in this case is 29.73% and this is the lowest error 
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that can be obtained on these 10 vehicles by using a linear kernel. However, the x-axis is very 

zoomed, in general, the difference in the error between configurations is very small. 

 

 

Figure 4.11 Hyperparameter tuning using linear kernel in SVR 

 

The next kernel we try is the polynomial kernel. The polynomial kernel does not yield promising 

results. In spite of that, we try to optimize its performance to see how low the error can go by using 

a polynomial kernel. Figure 4.12 shows the process, where the variables changed are again C and 

ε. The degree of the polynomial is 3, which is the default one (other degrees were also tried and 

this one had the best performance). 
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Figure 4.12  Hyperparameter tuning using polynomial kernel in SVR 

 

The best results are yielded by using an ε of 0.5 (yellow curve) and a C of 0.5 and the error obtained 

is 32.37%, which is worse than using the default parameters of SVR on our problem.. 

We then move on to the RBF (Radial Basis Function) kernel, where things are more complicated 

since here, in addition to C and ε, we also have to tune γ (gamma). Scikit-learn has a default value 

of γ that it uses when left to “auto” and that is 1 / n_features. For us the number of features is 

different for every vehicle (in the order of 10-20), so this means γ is also different. The results 

using this kind of gamma are shown on Figure 4.13. 
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Figure 4.13  Hyperparameter tuning using RBF kernel and gamma "auto" in SVR 

 

If we take a look at the legend and a closer look to the orange curve, we can see that the curves for 

ε=0.01 and ε=0.02 totally overlap as the ones with lowest errors. Also, an ε of 0.05 and 0.1 are 

really close to the least error. In this scenario, the best choice for C is 2 and for ε either 0.01 or 

0.02. The end result is an average error of 29.29%, which is an improvement from the other kernels. 

Then we try to also tune γ and see if that can help us reach an even better result. In this case, we 

fix ε to 0.02 and search for a good configuration between C and γ. The resulting curves are shown 

on Figure 4.14. 
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Figure 4.14  Hyperparameter tuning using RBF kernel and epsilon 0.02 in SVR 

 

It is interesting to see that all the curves have the same behaviour, except the curve for γ = 0.01 

(dark blue). This curve reaches the minimum at C = 15, while the other curves for a C lower than 

6. The two best results here are: γ = 0.01 and C = 15 or γ = 0.02 and C = 5. The average errors in 

% are 28.3671% and 28.3669%, respectively. They are different only in the third decimal, so we 

use other indicators to make the decision. We choose the second one (γ = 0.02 and C = 5, yellow 

curve) because its minimum is on a lower C, since as C grows, so does computational time. Using 

the RBF kernel with this configuration, yielded the lowest error of the three kernels. 

Finally, the hyperparameters that we use for SVR are the following: 

- RBF kernel 

- ε = 0.02 

- γ = 0.02 

- C = 5 

Trying SVR with these hyperparameters on all 57 vehicles of model 1254, we get an error of 

28.53%, which is an almost 2% improvement from the results with the “coarsely” tuned 

hyperparameters. 
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4.3.3 Hyperparameter tuning of Gradient Boosting 

The tuning is again done on the 10 vehicles mentioned in the previous sections, with IDs: 3959, 

3988, 4256, 4551, 4700, 4891, 5003, 5229, 5504 and 5512. If we run the algorithm with the 

coarsely tuned parameters, as reported in Section 4.2, only on these 10 vehicles, we get an error of 

29.15%. So, the goal of the tuning is to find a combination of parameters that yield a lower error 

than this on the 10 vehicles, which would mean that the error on all 57 vehicles will also be lesser. 

The hyperparameters that need to be tuned are described in Section 3.4.5 of Methodology. 

Gradient Boosting is the most complicated of the three algorithms to tune, because it has a lot of 

hyperparameters and takes a long time to do the computation. That is why we approach the tuning 

of the hyperparameters here in a different way. We first determine some parameters that are more 

important using the default values for all others. Then, when the important parameters have been 

decided, we proceed to tune other parameters using the already configured ones. This process can 

be thought of as a tree. We visualize the process and the results obtained on Figure 4.15. 
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Figure 4.15 Hyperparameter tuning of Gradient Boosting using a Least Squares loss function 

 

The parameters that we start with are the default parameters of Gradient Boosting defined by the 

scikit-learn Python Library (Scikit-learn.org, 2018), except subsamples (the fraction of samples to 

be used for fitting the individual base learners), which is set to 0.8, instead of 1, in the attempt to 

reduce variance and max_depth, which is set to 1 (the default being 3). The other parameters that 

are set to default, but are to be tampered with in the process of tuning are: 

- min_samples_split = 2    

- min_samples_leaf = 1     

- max_depth = 1 

- subsamples = 0.8 

When max_features is set to None, it means that it is considering the total number of features when 

looking for the best split in the individual trees, while if it is set to “sqrt”, it considers the square 
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root of the total number of features. The other variables are numbers, so they are self-explanatory. 

Of course, we also fix the random state for all experiments in this Section, because the algorithm 

has some randomicity and we need to keep this parameter the same, so we can really compare the 

scenarios.  

The blue rectangles represent a change of one hyperparameter in the next scenarios – we set a 

hyperparameter that will be used in all the children of this branch. The green rectangles represent 

a search that was done with many values of the mentioned parameter and the best one (the one 

with least error) is reported in the tree. The purple rectangle represents a choice of two parameters 

and reports the best combination, while the orange rectangle represents one try with the specified 

parameters different from the parent scenario. 

As we go down from the parents toward the children of the tree, there is an improvement in the 

error. The best scenario is the one that can be seen in the lower right corner of the Figure, which 

yields an error of 30.4% on the 10 vehicles tried. This is worse than the average error we had with 

the coarse tuning of hyperparameters, which is 29.15% if we run it on these 10 vehicles. So, we 

proceed by taking the hyperparameters from the coarse parameter tuning and trying different 

combinations of them. This scenario uses a loss function Least Absolute Deviation (“lad”), so that 

we start from this parameter and develop a tree, but this time a more sequential one. The other 

parameters we start from are all default, except max_depth, which is set to 1. The process is 

visualized on Figure 4.16. 
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Figure 4.16 Hyperparameter tuning of Gradient Boosting using a Least Absolute Deviation loss function 

 

The legend for the colours of the rectangles is the same as Figure 4.15 and the dark green now 

represents the best scenario. We start from the scenario that was used for the first run of the 

algorithms and then proceed to tune parameter by parameter. For completion, we try this scenario 

also using max_features = ”sqrt”, which yields a worse result, so we do not go on developing the 

tree in that direction. To visualize some of the processes inside the rectangles, on Figure 4.17 we 

plot the process of choosing the optimal number of trees (estimators) and the optimal 

min_samples_split. 
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Figure 4.17 Optimizing individual hyperparameters of Gradient Boosting: number of estimators and min_samples_split 

 

Again, as we go down towards the leaves of the tree, we get a better performance. In the end, the 

optimum parameters found for Gradient Boosting are: 

• learning_rate = 0.1 

• n_estimators = 85 

• max_depth = 2 

• loss = “lad” 

• min_samples_split = 14 

• min_samples_leaf = 1 

• subsample = 0.8 

• max_features = None 

Using these hyperparameters, the Average Percentage error over all 57 vehicles of model 1254 is 

28.42%, which is an improvement of 1.22% over the 29.64% error reported with the coarse 

parameter tuning. 
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4.3.4 Conclusions from the Hyperparameter tuning 

The tuning was done with the hope of further improving the accuracy of the models. Even though 

it ultimately did result in an improvement, this turned out to be marginal – only 0.1% for Lasso 

regression, 1.22% for Gradient boosting and 2% for SVR. However, these improvements were 

found on only a part of the dataset - 57 vehicles of one model of one type, so we cannot exclude 

that these improvements may be due to the choice of the dataset – for other vehicles we could 

observe a different set of optimal hyperparameters. All in all, the best we could do on this part of 

the dataset is an average Percentage error of 28.42%, obtained by using a carefully tuned Gradient 

Boosting algorithm and SVR as a very close second with 28.53%. 

 

 

4.4 RESULTS AND INSIGHTS 

In the previous sections, all that is shown is a numerical evaluation of the algorithms, using the 

Percentage error averaged over many vehicles, or looking at its distribution using a boxplot. The 

hyperparameter tuning is also done with the objective to lower this Percentage error on global 

level. 

However, our models are done vehicle by vehicle, so it is important to know what is going on at 

vehicle level - take a look at one vehicle at a time and how the algorithms perform on specific 

vehicles. Taking a closer look allows us to better see the performance of the algorithms and the 

methodology in general and to understand why the errors are such. 

That is why in this section we break an example of a few vehicles and report some plots and 

insights on the algorithm performance for these vehicles. 
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4.4.1 Detailed results of vehicle 4272 

Vehicle no. 4272 is of model ID 1254 and it is a Refuse Compactor. It is located in Czech Republic. 

It is one of the vehicles that were included in the 57-vehicle analysis and it has a pretty regular 

utilization pattern, which makes it easy to predict. In this section we look at the results of running 

SVR (with optimized hyperparameters) on this vehicle. 

Vehicle 4272 is used from February 2015 to August 2018. To get an idea about its behaviour, on 

Figure 4.18 we plot 2 months of data, more specifically April and May of 2017. 

 

 

Figure 4.18 Temporal representation of 2 months of daily data of vehicle 4272 

 

We can see that there is a somewhat regular behaviour, the vehicle works around 7 hours in April 

and around 8 hours in May. The zeroes are also regular in this period and they are all located on 

Sundays. The minimum value that is found in the time series of this vehicle is 0 and the maximum 

is 9.29 hours. The mean is 4.87, with a standard deviation of 3.1 hours. Obviously, the zeroes bring 

down the mean of the whole time series. However, if we remove the zeroes and then compute the 

mean, we get a more realistic value of the average utilization hours. This value is 6.48 hours with 

a standard deviation of 1.61 hours. This is also visible on the histogram on Figure 4.19. 
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Figure 4.19 Histogram of utilization hours of vehicle 4272 

 

The histogram shows a multimodal distribution, but actually most of the values follow a normal 

distribution with an additional very high peak at zero and a small peak between 0 and 2 hours. 

Then we run SVR on this time series and the results are reported in the next part of this section. 

On Figure 4.20, we plot a temporal representation of the real data and the predicted data. Vehicle 

4272 has data for 1291 days in total, out of which 253 are zeros. Using the first 140 days for 

training and 35 days as features, we start getting results from the 175-th day until the end. In total 

there are 1116 resulting values. The true values are plotted with green and the predicted values 

with blue. 
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Figure 4.20 SVR performance on vehicle 4272, temporal plot 

It is visible that the algorithm can capture the behaviour in general, but cannot get the exact peaks 

in the data. To be able to see this more clearly, Figure 4.21 shows a zoomed version of Figure 4.20. 

 

 

Figure 4.21 Zoom of the temporal representation of SVR on vehicle 4272 
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When the zeroes are regular, SVR is able to almost perfectly predict them. The peaks, on the other 

hand present a harder challenge in this case, since they are more variable. All in all, the prediction 

of 4272 is of high accuracy in comparison to other vehicles. The Percentage Error is 13.32%, 

which is far below the average of all vehicles for SVR (28.53%). The MAE is 0.67 hours and the 

RMSE is 0.99 hours. This means that the predictor is on average wrong for this number of hours. 

Of course, the squared error RMSE is stricter, so the value is bigger. 

Another good way to inspect the accuracy and behaviour of the algorithm is with a scatterplot. 

Figure 4.22 is exactly that. The x-axis represents the real values for 𝑦, the target variable and the 

y-axis labels the predicted values by the algorithm. Obviously, both are measured in hours. The 

blue line is just a diagonal. If a dot is on the diagonal it means that the true 𝑦 and the predicted 𝑦 

are the same, which is ideal. So, we want the dots as close to the diagonal as possible. 

 

 

Figure 4.22 Scatterplot of true values and values predicted by SVR on vehicle 4272 

 

There are a few notable things to be seen in this plot. First, the separation of the dots in two groups: 

it shows that most of the values are either close to zero or between 6 and 8 hours. This is also 

visible on Figure 4.20 (the temporal one). Second, the vertical line made of points in the lower left 

corner shows that zeroes in the real data are often mistaken with higher values (real 𝑦 is 0, while 
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estimated goes from 0 to 5 hours). This is understandable, since there is a somewhat regular pattern 

that suddenly drops to zero and the algorithm cannot catch it. Third, the number of overestimates 

and underestimates. The points the top left half of the plot are the values that have been 

overestimated, while the points on the lower right half are those that have been underestimated. In 

this configuration (vehicle 4272 solved with SVR), there are 560 underestimates and 556 

overestimates. When these numbers are close it means we have an unbiased estimator, which is 

good. 

Next, we take a look at the distribution of the residual error. As defined in Section 3.5, the residual 

error 𝒓  is simply a vector of the absolute value of the differences between each 𝑦𝑡𝑟𝑢𝑒  and 

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. A histogram of its distribution is shown on Figure 4.23. 

 

 

Figure 4.23 Distribution of the residual errors 

 

The distribution of the residual error is a regular normal distribution with mean 0.04 (very close to 

0) and standard deviation 0.99 (very close to 1). This is again an indicator that our predictor is 

unbiased. The distribution spans from  -4.45 hours to 6.63 hours of error, but these are extremely 

rare occurrences. Most of the errors are from -2 to 2 hours and 75% of the errors are within 0.5 

hours. As mentioned above, the vehicle usually works for around 7 hours and 0.5 hours offset 

present around 13%, which is exactly equal to the Percentage error for this vehicle. 
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4.4.2 Algorithm performance on vehicles with long periods of zero usage 

Sometimes, a vehicle would stop working for a while. This is a hard transition for the algorithms 

to do and they usually make bigger errors in these phases. For some algorithms this is more difficult 

than for others, for example Linear regression has a hard time grasping these sudden changes of 

behaviour, while the other ML algorithms find it easier, but still troubling. 

An example of such a case is vehicle 3717, which suddenly stops working for a period near the 

end and then resumes working again. Figure 4.24 shows how both SVR and Linear Regression 

handle this, with a zoom of the temporal plot. The green curve represents the true values, the red 

curve the predicted values by SVR and the blue curve the predicted values by Linear regression. 

 

 

Figure 4.24 SVR and Linear regression handling a period of zero usage 

 

There are two situations to observe here and how the two algorithms handle them: The first one is 

when a vehicle stops working, suddenly going to a long period of no usage and the second one is 

when a vehicle starts working again. Both algorithms have some trouble adjusting to both 

situations, but SVR handles them much better. 
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In particular, when the vehicle stops working, SVR “converges” to zero faster and needs a shorter 

time to understand that the vehicle is not working anymore. It means that SVR is more responsive. 

Linear regression, however, needs 140 days to get to this conclusion. When the vehicle starts 

working on the other hand, SVR again handles the situation more smoothly, but still needs time to 

resume regular behaviour. Linear regression performs really badly in this situation, more so than 

when the vehicle stops working. It starts predicting a lot of negative values with a lot of variability. 

This is one of the main disadvantages of Linear regression and a reason why it performs worse 

than the others and cannot handle complicated cases such as this one.  

This behaviour of the algorithms is an indicator that algorithm performance should not be 

evaluated only on average for the whole period, but also in a temporal sense. These zero periods 

should be detected and the the algorithm should be deemed unreliable for a period of time 

following a sudden change of usage. 

Another notable thing is that both algorithms generate negative values, while we know for a fact 

that the utilization hours cannot be negative. So, as a future adjustment to the methodology, it 

should be specified that the target has to be positive or zero. 

 

 

4.4.3 Algorithm performance on rarely used vehicles 

Throughout the whole research process, between all the experiments and trying different 

algorithms, the question that remained was: What makes a vehicle hard to predict?  

First and foremost, the zeroes. The zeroes in general and the zeroes in a sequence – so, when a 

vehicle is not being used. We cannot infer anything about the usage of the vehicle if it is not being 

used often and this is a given. Of course, a regular usage pattern is easier to predict than a very 

noisy one with a high standard deviation, but still the first ingredient is to have enough usage data. 

Second, unpredictable changes in patterns and sudden very high peaks make a vehicle’s usage hard 

to predict accurately. 
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On Figure 4.25 we plot the worst-case vehicle of these 57 vehicles that are in the core of our 

experiments. SVR with tuned hyperparameters exhibits an error of 57% on this vehicle. The 

vehicle in question is no. 5229.  

 

 

Figure 4.25 Temporal plot of the real and predicted values by SVR of vehicle 5229 

 

In general, the vehicle has low utilization, with a mean of 1.19 hours and if we remove the zeroes, 

a mean of 1.85 hours. But that is not the problem, the problems are: 

• Sudden high peaks of utilization exhibited often 

They can be seen throughout the whole plot and their timings seem random. High peaks like 

this are hard for any algorithm to catch and they cost it a lot in the average error. 

• Changes of pattern of usage 

This vehicle has a really irregular pattern of usage. We can split it into 4 periods: first a regular 

usage with a mean of around 1.5 hours (0-150th day of prediction), then a drop in the usage 
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leading to a halt and the halt itself (150-300th day), then a sudden start of very high usage 

(300-380th day) and finally a stable period with a mean of 1.5 hours again (380th day until the 

end). 

The zeroes play a big part in both of these problems: if it is not for them, the peaks would not be 

that much higher with respect to the other values. The pattern would still be irregular, but more 

reasonable. 

All of the reasons mentioned in this section and the previous one, lead us to construct Scenario 2: 

Predict usage on next working day, where we remove the zeroes and predict utilization where there 

actually is utilization. 

 

 

4.5 A SIMPLER PROBLEM: PREDICT USAGE ON NEXT WORKING DAY 

It is visible from the previous Chapter that the zeroes which make our time series evenly spaced, 

are very hard to predict. They seem random to the algorithms and the models cannot capture this 

behaviour. Moreover, a period of consecutive days where the vehicle was for some reason not used 

are further confusing the algorithm. As mentioned in Section 3.1: Problem formulation, there is 

another way to approach the problem that would make it simpler and easier to predict and that is 

to keep the unevenly spaced time-series. We assume that the user of the solution (the construction 

company) would know which day will be the next working day (the date), so we can proceed to 

predict the utilization hours for that day. 

The goal of this problem formulation is not only to remove the zeroes that were added for 

temporality, but to generally remove all values from the dataset where it seems that the vehicle 

was turned ON, but was not actually utilized. For example, it was only re-parked on the jobsite, or 

driven a few meters for some reason. This is not considered as utilization, so we remove these 

values from the dataset. 

In particular, what is removed is all the data samples (days) in the dataset that mark utilization 

hours lower than 1h. Construction vehicles are heavy and of high power and some of them stay 
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ON without moving for approximately 20 minutes to warm up the engine. So, the value of 1 hour 

was decided along with professionals from Tierra as a reasonable threshold of time above which 

we can consider that the vehicle was really working. 

An example of a time series of one vehicle with this kind of problem formulation is shown on 

Figure 4.26. The vehicle is 4256 of model 1254 of type Refuse Compactor. 

 

 

Figure 4.26 Temporal representation of vehicle 4256 with all values for utilization hours less than one excluded 

 

This way the usage pattern is much more regular. There are still some values that go as low as 1 

hour, which should not be considered as usage and this gives us the notion that the threshold should 

maybe be dynamic and depend on the mean and standard deviation of the usage of each vehicle. 

However, in most cases 1 hour is a reasonable choice and the outliers are rare, so for simplicity we 

continue using 1 hour. 
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This change of scenario afflicts a change in the system. We have to tune some general parameters 

again, such as the sliding window size and the feature window size and take a look at the 

autocorrelation function to decide whether using Smart Feature Selection is in this case an 

improvement. We are not doing experiments using Expanding window, since we have already 

decided to use a sliding window cross-validation approach, for reasons explained in Section 4.1.3. 

Also, we are using the additional feature “isWorkday”, since it has proven helpful for the 

prediction. This time, to do the tuning, we use SVR, as a fast and effective algorithm. The 

hyperparameters used for SVR are those that were already tuned in Section 4.3.2. Then we try the 

rest of the algorithms and evaluate their performance on this slightly different time-series. 

The tuning is done on the same 10 vehicles from the previous Sections. First, we try the Normal 

feature construction, where we take past consecutive days as features and we fix the past window 

size (sliding window, training window size, length of training matrix X) and the Feature window 

size (how many past consecutive days to use as features, width of training matrix X). For the past 

window size we test values of: 90, 100, 110, 120, 130, 140, 150 and for the feature window size, 

values of 4, 5, 6, 7, 8, 10, 20. The results are shown on Figure 4.27. 

 

 

Figure 4.27 Choice of Past window size & Feature window size: No zeroes scenario 
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Past window sizes of 120, 130 and 140 all have a good performance and are almost equal in the 

minimum. We choose a past window size of 140 (dark blue curve) and a feature window size of 

6.  

Another notable thing from this plot is the y-axis values: for this problem formulation the average 

errors are around 16-17%, which is half of the average error magnitude for the first scenario that 

includes an equally spaced time series full of zeroes (Predict usage next day). 

Next, we try the Smart Feature construction and tune the past window size along with the acf_value 

for this case. For the past window size, we again try the values 90, 100, 110, 120, 130, 140, 150 

and for acf_value we try 4, 5, 6, 7, 8, 10, 15 and 20. The results are shown on Figure 4.28. 

 

 

Figure 4.28 Choice of Smart Feature Selection parameters: No zeroes scenario 

 

The optimum values in this case are a past window size of 120 (light blue curve) and an acf_value 

of 6. This value is much less than the optimum acf_value for the previous scenario (Predict usage 

next day), which was 20. 

What is interesting here is that the Smart feature selection does not perform better than the Normal 

feature construction, since the values are generally only correlated with the first few lags, that are 
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also captured by the Normal feature construction. This is why the Normal feature construction 

performs almost the same and even a bit better. 

To prove this, we run SVR, Gradient Boosting and Linear Regression (for comparison) with both 

scenarios (normal and smart). We also run one of the benchmark algorithms, Moving average to 

check if the ML algorithms are performing better. For it, we set the window of past values for 

taking the average to 30, in both the normal and smart scenarios (in the smart scenario this means 

we set acf_value=30). The average Percentage errors over all 57 vehicles are shown on Table 4.2. 

 

Table 4.2 Average Percentage Error of different algorithms for Normal and Smart feature construction 

 Mean of the Errors 

Algorithm Normal Smart 

Moving average 21.628 21.829 

SVR 16.633 16.648 

Gradient Boosting 17.142 17.190 

Linear Regression 17.304 17.354 

 

The table reports that the results of using the Smart feature construction are almost equal to using 

the normal one, differing only after the first decimal. Since we can say that the performance is the 

same, it is better to use the Normal feature construction because it is computationally less 

demanding. In the next experiments, we use Normal feature construction. 

Another interesting thing from the Table is the performance of the benchmark algorithm Moving 

average. The results it yields are close to the ones of the ML algorithms. This shows that the 

dynamic of these kinds of time series can be somewhat accurately captured by a moving average. 

Figure 4.29 shows a boxplot of the error distributions of the algorithms on this scenario. 
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Figure 4.29 Error distribution on different algorithms: No zeroes scenario 

 

Again, we can see that in this scenario, Moving average comes closer to the other algorithms with 

performance, than in the previous scenario (Figure 4.8). When predicting usage on the next day, 

the mean error yielded by Moving average was around 14% higher than those yielded by the ML 

algorithms, while in this case it is just 5% higher. 

In general the errors by the algorithms here are lower than the previous scenario (Figure 4.8), 

spanning from 5% to 30% for the ML algorithms (note that the y-axis spans from 0% to 45%), 

with a few negligible outliers. In the previous scenario the span of the errors in general was from 

10% to 60%, so this scenario also has tighter distributions – lower variance. The best performing 

algorithm is SVR, having the lowest mean and median and a low variance, but all the algorithms 

show a more or less similar performance. 

Going into the details of the results obtained with this scenario (Predict usage on next working 

day), we again report the results from one vehicle, this time vehicle no. 4256 of model 1254, of 

type Refuse Compactor. The time series of this vehicle is shown earlier in this Section, on Figure 

4.26. The histogram of utilization of it, however, is shown on Figure 4.30. 
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Figure 4.30 Histogram of utilization of vehicle 4256: No zeroes scenario 

 

Now the histogram is clearer than in the previous scenario – the peak at zero is not there and we 

can better see the distribution of the utilization hours. This vehicle is pretty regular – follows a 

normal distribution, with a long tail up to 1h, which is understandable and also visible from the 

temporal plot (Figure 4.26). Even in the scenario with zeroes, there is usually some usage in the 

lower hours, seen for example on the histogram of utilization hours of vehicle 4272 with zeroes 

(Figure 4.19). 

Then we run SVR on this time series and the results are reported in the next figures. 

On Figure 4.31, we plot a temporal representation of the real data and the predicted data. 

 



111 

 

 

Figure 4.31 Temporal representation of real vs. predicted values by SVR 

 

The algorithm is much more capable of capturing the behaviour in this case. The data is noisier 

than the prediction and there are some peaks that are hard to catch by any algorithm, but in general 

the performance of SVR is good. This can also be inspected by seeing the scatterplot of the real 

vs. predicted values on Figure 4.32.  

 



112 

 

 

Figure 4.32 Scatterplot of real vs. predicted values by SVR 

 

The values are generally close to diagonal, with some outliers. Something that can be noticed is 

that the algorithm tends to overestimate the small values and underestimate the high values, and 

this is also visible on the temporal plot on Figure 4.31. 

To sum up, Scenario 2: Predict usage on next working day is issuing an average error over all 57 

vehicles of around 16%, while Scenario 1: Predict usage on next day is yielding an average error 

of circa 28%. This means that the problem in Scenario 2 is much easier to solve. However, which 

scenario will be used depends on the customer’s preference. 
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5 CONCLUSIONS 

In conclusion, the thesis posed a problem of predicting future utilization hours of construction 

vehicles and offered methodologies to solve it using time series forecasting with machine learning 

algorithms. First, the problem and the background were posed, then the Data was examined in 

detail, after which a formal problem formulation was derived and methodologies were suggested 

to solve it. Finally, some results were reported on the performance of these methodologies. 

The problem proved a difficult one to solve and was yielding high errors. Moreover, making the 

time series temporal (equally spaced) constructed a complicated problem. Relieving the data of 

these zeroes and setting a threshold that detects if the vehicle was really working that day 

simplified the problem and much better results were obtained. 

In terms of the performance of different ML algorithms, they were much better than the Benchmark 

algorithms, but did not differ a lot in performance between themselves. With a bit of fine 

hyperparameter tuning we were able to lower the error, but there was only so much that we can do 

from the side of the algorithms. The more important part, we found, was the input to the algorithm, 

in particular, the features. 

In the study we used only temporal features, meaning features related to the working hours of the 

previous days (historical values) and information about the day to be predicted - is it a working 

day or not. The features can be further enriched by other perspectives, like the season of the year, 

the weather on that day, information about the project a vehicle is working on, geographical 

information about the jobsite and the kind of work done there etc. These are only some ideas of 

how to improve the accuracy of the models by using more features as input. 

Furthermore, due to the very different usage patterns between vehicles, we decided to do a different 

model per vehicle. Another approach may be to first cluster the vehicles according to their usage 

patterns and then try to make group predictions where we could use historical data of more vehicles 

to predict the future utilization of one. This could be done with the help of unsupervised machine 

learning techniques. 

Another issue that should be considered is a better performance evaluation of the algorithms. We 

do an average prediction error on all models (one per day) of a vehicle. But, as we could see, the 
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vehicles express different periods of usage patterns through the years and this should be accounted 

for in the error evaluation. If a vehicle has a period of no usage, for example, there should be a 

transient of a number of days where we say the prediction will be unreliable, until the predictor 

gets back on track. 

In any dataset, there is a certain margin of unpredictability that cannot be extracted by any data 

mining technique. Using the tested techniques, we can say that we found a soft upper bound of the 

unpredictability of our dataset: we know that there exists a technique that can yield an error below 

29% (17% considering the non-zero scenario) on the tested 57 vehicles. 

In general, as we said in the first chapter, where there is data, there is power. We can find many 

ways to handle the data and explore various interesting insights. We can formulate and solve 

different problems and help the customer better exploit their product. It can lead to scientific 

conclusions for the researchers and economic improvements for everyone. The key is data. 
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