
POLITECNICO DI TORINO

Collegio di Ingegneria Elettronica, delle Telecomunicazioni e Fisica (ETF)

Corso di Laurea Magistrale in
Ingegneria Elettronica (Electronic Engineering)

Tesi di Laurea Magistrale

Custom High-Speed Communication
Ethernet-Point to Point Protocol Interface

Design and Implementation

Relatore
Prof. Guido Masera

Supervisori
Jorge Sanchez de Nova
Dr. Javier Garçia Castaño

Candidato

Elena Maria Migliorin

Dicembre 2018

i

Abstract

This master thesis work describes the development of a high-speed protocol interface for the railway
communication system at Bombardier Transportation Sweden AB. The railway communication system helps the
maintenance, controls, and monitors all the objects involved in a railway line such as traffic lights and sensors.
The communication network is normally composed by a physical part, such as wires and processors, and the
firmware and software to manage the traffic of data. The data transmitted are the commands that the objects on
the railway line must execute and their operational status.

High-speed communication in a railway network increases the control of the objects on the railway line in
terms of response time. A fast dispatching of orders increases the reactivity of the system to any event affecting
the railway objects. This improved reactivity allows for an increase of train ride per hour, improving the
transportation service for the customers.

This master thesis work was carried out at Bombardier Transportation, Stockholm, which is a world leader for
aerospace and transportation. The railway communication network at Bombardier Transportation monitors and
drives all the elements on the railway line. The cross point of two railways must be synchronized to make the
fastest transit of the trains. If the communication toward the traffic light is fast enough, the trains will avoid
waiting for a long time before transiting the cross point. The communication network features physical channel
that can support high-speed communication. In the constant effort to improve the service for the customer by
reducing the waiting time between train rides, Bombardier is trying to upgrade the inter-board communication.
The plan is to use a new physical channel which is estimated to be 100 times faster than the currently used one.
This new channel needs a suitable firmware interface to allow its use in the existing system.

Care must be taken when designing this interface to ensure high reliability and safety. The System Integrity
Level (SIL) is the standard that defines four discrete level of safety integrity requirements. In the railway system,
the SIL is 4, the highest. According to the standard, only one serious error is allowed in 10000 years. Since the
safety regulation is so tight, it means that the corruption of a single message in railway communication can result
in serious safety hazards. Therefore, all the system's elements must comply with the RAMS characteristic:
Reliability, Availability, Maintainability, and Safety.

In this thesis, I developed a custom-made Very-High-Speed Integrated Circuits Hardware Description
Language (VHDL) interface to use the new physical channel for high-speed communication while maintaining
standard safety levels. This interface converts the message between the standard protocol in the system
(Ethernet) and the communication protocol chosen for the new channel, which is the Point to Point Protocol
(PPP). This protocol was chosen since it has a flexible header and provides Cyclic Redundant Check (CRC)
code, which makes the communication safe and adaptable. The interface must also be divided into two main
parts since the communication channel is full duplex. When a message is received by the board it will enter the
inbound part. If it is sent from the board it will be converted by the outbound part. The inbound part then
converts the frame from PPP to Ethernet and the outbound from Ethernet to PPP.

The design flow of the component is composed of four main stages. The existing system was studied in terms
of component, signals and timing issues since the new component must be synchronized with the whole chain of
transmission. Then the component was developed with the goal of creating a fast component and keeping the
integrity of the sent frames. The generated VHDL code was then stimulated with custom testbenches to verify
the behavior of all the developed parts. Finally, the code was uploaded on the physical board and the system
communication was tested.

As first step, all the components belonging to the transmission chain have been studied. All of the described in
VHDL and some are network standard. They have been analyzed in terms of timing synchronization, the
dimension of the data and how they are handled by these components and what is their role in the system. This
study is essential to understand the requirement that the system has in terms of synchronization toward the new
component.

The PPPConverter was then developed analyzing how the two parts must be interfaced toward the system and
how the conversion has to be managed from one kind of frame to the other. As first step, a pseudocode was
written to show the behavior of each part. Then the flow of the data was studied. Since one important parameter
is the performances of the system, the writing and reading operation are done as parallel as possible. Moreover,
since the integrity of the signal is essential, the PPP frame header is controlled in each byte. If a faulty byte is
read, the whole frame is discarded. Moreover, a shift register, called ShiftMemory, was implemented to
determine the end of the payload of both frames. In both parts, the length of the payload was not available and
with this component, it is possible to eliminate the incoming end-of-frame bytes and write the new ones. Timing

ii

diagrams were also studied and developed to satisfy the interface of the component toward the system and
toward the new channel, called IOChannel.

To verify the correct behavior of the generated VHDL code, the ShiftMemory and the two parts were
stimulated. The test was developed with custom-made testbenches and the generated waveforms were confronted
with the expected timing diagrams. These test also aimed to verify the full-duplex ability of the PPPConverter,
since the inbound and outbound parts should work in parallel independently from each other.

Finally, the new VHDL code was uploaded on the physical board to verify its behavior. At first, the full
transmission chain was simulated. Using a testbench, the simulation recreated the communication of a random
ARP message from one board to another via the IOChannel. Then, only the IOChannel specific interface was
uploaded on the board to verify that the physical channel was actually working. Then the interface was uploaded
together with the old system but in parallel. This step was implemented to verify that the extra logic could still
be handled by the existing system. Finally, the whole desired implementation was uploaded on the board to
verify that the developed component could create a new communication path between the system and the
IOChannel.

The entire PPP protocol is not fully implemented: future implementations will need to add the Escaping
mechanism as declared by the standard. Moreover, the destination and source addresses belonging to the
Ethernet frame need to be managed in a more specific way.

Sommario

Questo elaborato di tesi descrive lo sviluppo di un’interfaccia tra protocolli di comunicazione ad alta velocità
per il sistema di comunicazione ferroviario sviluppato in Bombardier Transportation. Il sistema di
comunicazione in ambito ferroviario controlla, monitora e aiuta la manutenzione di tutti gli oggetti presenti su
una linea ferroviaria come semafori e sensori. La rete di comunicazione è solitamente composta di una parte
fisica, come cavi e processori, e dal firmware e software utilizzati per dirigere il traffico di dati. I dati trasmessi
sono i comandi che gli oggetti sulla linea ferroviaria devono eseguire e il loro stato operativo.

La comunicazione ad alta velocità in una rete ferroviaria migliora il controllo degli oggetti sulla linea
ferroviaria in termini di tempi di risposta. Un invio di ordini più veloce aumenta la reattività del sistema a
qualsiasi evento del quale gli oggetti ferroviari sono affetti. L’aumentata reattività permette un aumento di corse
di treni all’ora, migliorando il servizio di trasporto per i clienti.

Questa esperienza di tesi è stata sviluppata presso la Bombardier Transportation, a Stoccolma, che è un leader
mondiale per il settore aerospaziale e i trasporti. La comunicazione ferroviaria sviluppata dalla Bombardier
Transportation monitora e pilota tutti gli elementi sulla linea ferroviaria. Il punto d’incrocio di due linee
ferroviarie deve essere sincronizzato per permettere il passaggio dei treni il più velocemente possibile. Se la
comunicazione verso il semaforo è sufficientemente veloce, il treno eviterà di aspettare per lungo tempo prima di
transitare nell’incrocio. La rete di comunicazione presenta canali fisici che supportano la comunicazione ad alta
velocità. Nel costante sforzo di migliorare il servizio per i clienti nel ridurre i tempi di attesa fra corse dei treni,
Bombardier Transportation sta provando a migliorare la comunicazione fra board interne al sistema. L’obiettivo

è di usare un nuovo canale finisco che si è stimato essere 100 volte più veloce di quello correntemente in uso. Il
nuovo canale necessita un’interfaccia adatta per permettere di usarlo nel sistema esistente.

Quando si progetta questa interfaccia, è necessario farlo con cura per garantire un’alta affidabilità e sicurezza.
Il System Integrity Level (SIL) è lo standard che definisce Quattro livelli discrete di requisiti sull’integrità di

sicurezza. Nel sistema ferroviario il SIL è 4, il massimo valore. Secondo lo standard, solo un errore significativo
è ammesso in 10000 anni. Poiché la regolazione di sicurezza è severa, significa che la corruzione di un solo
messaggio nella comunicazione ferroviaria può generare serie situazioni di pericolo. Di conseguenza, tutti gli
elementi del sistema devono rispettare le caratteristiche RAMS: Reliability (Affidabilità), Availability
(Disponibilità), Maintainability (Facilità nella manutenzione) and Safety (Sicurezza).

In questa tesi, ho sviluppato un’apposita interfaccia in Very High-Speed Integrated Circuits Hardware
Description Language (VHDL) per usare il nuovo canale per la comunicazione ad alta velocità mantenendo I
livelli di sicurezza standard. Questa interfaccia converte il messaggio tra il protocollo standard del sistema
(Ethernet) e il protocollo di comunicazione scelto per il nuovo canale, il Point to Point Protocol (PPP). Questo
protocollo è stato scelto perché ha un header flessibile e ha il Cyclic Redundant Check (CRC), che rendono la

iii

comunicazione sicura e adattabile. L’interfaccia deve anche essere divisa in due parti principali poiché il canale
di comunicazione è full duplex. Quando un messaggio è ricevuto dalla board, entrerà nella parte inbound. Se è
inviato dalla board, sarà convertito dalla parte outbound. La parte inbound converte quindi il frame da PPP a
Ethernet e l’outbound da Ethernet a PPP.

Il flusso di progetto del component è composto di quattro fasi. Il sistema esistente è stato studiato in termini di
component, segnali e caratteristiche temporali perché il nuovo component deve essere sincronizzato con tutta la
catena di trasmissione. Il component poi è stato sviluppato con l’obiettivo di creare un component veloce
mantenendo l’integrità del frame inviata. Il codice VHDL generato è stato poi simulato con testbench appositi
per verificare il comportamento di tutte le parti sviluppate. Infine, il codice è stato caricato sulla board fisica e il
sistema di comunicazione è stato testato.

Come primo passo, tutti i component appartenenti alla catena di trasmissione sono stati studiati. Essi sono
descritti in VHDL e molti sono standard di rete. Sono stati analizzati in termini di sincronizzazione temporale,
dimensione dei dati e come sono gestiti. Anche il loro ruolo nel sistema è stato analizzato. Lo studio è essenziale
per capire I requisiti che il sistema ha in termini di sincronizzazione verso il nuovo component.

Il PPPConverter è stato sviluppato analizzando come le due parti debbano essere interfacciate verso il sistema
e come la conversione da un tipo di frame all’altro debba essere gestita. Come primo passo, uno pseudocodice è

stato scritto per mostrare il comportamento di ogni parte. Poi il flusso di dati è stato studiato. Dato che un
parametro importante sono le performance del sistema, le operazioni di scrittura e lettura sono svolte il più
possibile in parallelo. Inoltre, dato che l’integrità del segnale è essenziale, l’header del frame PPP è controllato in

ogni suo byte. Se un byte sbagliato è letto, l’intero frame è scartato. In aggiunta, uno shift register, chiamato
ShiftMemory, è stato implementato per determinare la fine del payload di entrambe i frame. In ambo le parti, la
lunghezza del payload non è disponibile e con questo component è possibile eliminare i byte di fine frame e
scrivere i nuovi. Sono anche stati studiati I diagrammi temporali per soddisfare l’interfaccia del component verso
il sistema e il nuovo canale, chiamato IOChannel.

Per verificare la correttezza del comportamento del codice VHDL generato, lo ShiftMemory e le due parti
sono state simulate. Il test è stato sviluppato con appositi testbench e le forme d’onda generate sono state
confrontate con i diagrammi temporali attesi. Questi test avevano come obiettivo anche quello di verificare la
capacità di essere full duplex del PPPConverter, dato che le parti inbound e outbound devono lavorare in
parallelo.

Infine, il nuovo codice VHDL è stato caricato nella board fisica per verificarne il comportamento. Come prima
cosa, l’intera trasmissione è stata simulata. Tramite un testbench, la simulazione ha ricreato la comunicazione di
un messaggio ARP casual da una board all’altra attraverso l'IOChannel. Poi, solo l’interfaccia specifica per

l’IOChannel è stata caricata sulla board per verificare che il canale fisico stesse effettivamente lavorando.

L’interfaccia poi è stata caricata insieme al vecchio sistema ma in parallelo. Questo passaggio è stato svolto per
verificare che la logica aggiuntiva potesse essere gestita dal sistema esistente. Infine, l’intera implementazione

richiesta è stata caricata sulla board per verificare che i component sviluppati potessero creare un nuovo
passaggio di comunicazione tra il sistema e l’IOChannel.

L’intero protocollo PPP non è stato implementato del tutto: sviluppi futuri richiedono di aggiungere il
meccanismo di escaping come dichiarato dallo standard. In aggiunta, gli indirizzi di provenienza e destinazione
appartenenti al frame Ethernet devono essere gestiti in maniera più specifica.

iv

Indice

1. Introduction 1

2. Bombardier Transportation 5

3. The involved standard protocols, models, and utilities 7

 3.1 Open System Interconnection (OSI) model 7

 3.1.1 Layer 1: Physical Layer 7

 3.1.2 Layer 2: Data Link Layer 7

 3.1.3 Layer 3: Network Layer 7

 3.1.4: Layer 4: Transport Layer 7

 3.1.5 Layer 5: Session Layer 7

 3.1.6 Layer 6: Presentation Layer 7

 3.1.7 Layer 7: Application Layer 8

 3.2 Low-Voltage Differential Signaling (LVDS) 8

 3.3 Cyclic Redundant Check (CRC) 8

 3.4 Universal Asynchronous Receiver-Transmitter (UART) 8

 3.5 Ethernet Protocol 8

 3.5.1 Preamble 8

 3.5.2 Start of Frame Delimiter (SFD) 8

 3.5.3 Destination Address 9

 3.5.4 Source Address 9

 3.5.5 Ethernet Type 9

 3.5.6 Payload 9

 3.5.7 Cyclic Redundant Check (CRC) 9

 3.6 Point to Point Protocol (PPP) 9

 3.6.1 Flag 9

 3.6.2 Address 9

 3.6.3 Control 10

 3.6.4 Protocol 10

 3.6.5 Information 10

 3.6.6 CRC 10

 3.6.7 Flag 10

 3.6.8 Escaping sequence 10

 3.7 Serial Line Interface Protocol (SLIP) 10

 3.8 Address Resolution Protocol (ARP) 10

 3.9 Packet Internet Grouper (Ping) utility 10

4. The system inside the FPGA: how it was and how it will be 13

 4.1 The system and purpose of the FPGA 13

 4.2 The flow of the message 13

 4.2.1From the Processor to the IOChannel 14

 4.2.2 From the IOChannel to the Processor 14

v

 4.3 Choice of the Protocol on the IOChannel 14

 4.4 Involved components 14

4.4.1 Reduced Gigabit Media-Independent Interface (Rgmii) - PHY Interface 15

4.4.2 Bridge Interface 16

4.4.3 FrameBuffer 17

4.4.4 Ethernet Switch 19

4.4.5 UARTInterface: core generated FIFOs and UART module 19

4.4.6 PPPConverter 20

5. Design of PPPConverter 21

 5.1 Error and Escaping management 21

 5.2 ShiftMemory 21

 5.2.1 Pseudocode 22

 5.2.2 Timing diagram 22

 5.3 Calculation of the CRC32 signature 23

 5.4 Inbound 23

 5.4.1 Pseudocode 23

 5.4.2 Data Flow management 25

 5.4.3 Control Flow chart 26

 5.4.4 Timing diagram 27

 5.4.5 Source and destination MAC address management 30

 5.5 Outbound 31

 5.5.1 Pseudocode 31

 5.5.2 Data Flow management 32

 5.5.3 Control Flow Diagram 34

 5.5.4 Timing diagram 34

6. Simulations of PPPConverter 37

 6.1 ShiftMemory simulations 37

 6.2 PPPConverter simulation results 37

 6.2.1 Inbound part simulation results 37

 6.2.2 Outbound part simulation results 38

7. Implementation and test on physical board 41

 7.1 The simulation of the implemented system and results 41

 7.2 The implementation of the PPPConverter chain and results 43

 7.3 The implementation of the parallel design and results 44

 7.4 Results of the integration on the physical board 46

8. Discussions and future implementations 47

9. Conclusions 49

10. List of Symbols 51

11. List of Figures 53

12. List of Tables 57

vi

13. References 59

14. Appendix 61

 14.1 Inbound Control Flow chart 61

 14.1.1 Preamble 61

 14.1.2 Payload 65

 14.1.3 CRC and Ending 66

 14.2 Outbound Control Flow chart 69

 14.2.1 Preamble 69

 14.2.2 Payload 74

 14.2.3 CRC and Ending 77

 14.3 PPPConverter VHDL Code 79

 14.4 Testbench VHDL code 106

 14.3.1 ShiftMemory testbench 106

 14.3.2 PPPConverter inbound and outbound testbench 109

 14.3.3 Full chain testbench code 119

15. Acknowledgment 129

16. Ringraziamenti 131

1

1. Introduction

A telecommunication network is a system that allows different elements to communicate with each other at a
distance using electromagnetic signals[1]. Communications systems can be classified based on the way the
communication work. The communication can either work so that all the objectives can communicate with each
other simultaneously, or it can be limited to a message from a single object per communication line at the time.
Whenever the latter case occurs, it is possible to set a hierarchy among the objects of the system in a Master-
Slave fashion. It is possible to assign the role of Master of the communication to a specific object. A Master, in
short, can decide when to send the messages and who the receiver is. An element that is not a Master is a Slave
of communication, Slave in short. A Slave can talk only when a Master allows it to do it. In complex systems,
there is the need to use different levels of hierarchy. The Slaves can be Masters as well, totally passive elements
or can send messages to the Master which is going to listen to them using a specific priority order.

Telecommunication networks are used in railway transportation to coordinate the traffic of the trains. The
management of the traffic of the trains in each station requires the precise coordination of many
electromechanical devices both on the railway and onboard the train. The traffic must be handled by a central
traffic unit called Traffic Management System (TMS) which enforces the routes and the schedule of the trains
and takes the decisions when two or more trains must transit on the same railway line. The TMS communicate
with the Computer-based Interlocking System (CBI), which is responsible for the supervision and control of the
object in the railway line. The CBI is composed of three subsystems: the Central Interlocking System (CIS), the
Transmission Network (TN) and the Object Controller System (OCS) (Figure 1.1). When a train has the
allowance to transit on a line, the TMS sends commands through the communication network until they reach
the traffic lights and question the position sensors status. Traffic light and sensors are some of the objects on the
railway line, also called Wayside Objects. Wayside Objects and they are traffic lights, balises, sensors, and
points. When the TMS has decided which Wayside Object should move, the order is communicated to the CBI
that takes it in charge and it is responsible for the direct control of the Wayside Objects. The CBI is composed of
three subsystems: the Central Interlocking System (CIS), the Transmission Network (TN) and the Object
Controller System (OCS). The OCS is the element that receives the order from the TMS and translates them into
messages that the objects on the railway can understand and execute. The CIS is the communication node
between the TMS and the OCS. The TN is the system built of all the elements that compose the network that
make the CIS-OCS communication possible.

Figure 1.1: The hierarchical structure of the Railway Communication System. The TMS

communicates with the CBI. The CBI is composed by the CIS, TN and the OCS which is the elements
that directly control the Wayside Objects.

Important factors influencing the wellness of customers of the railway transportation system are the

compliance with the highest safety standard and high-speed communication. The safety standard is regulated by
the System Integrity Level (SIL). It is defined as a relative level of risk-reduction provided by a safety system. In
the railway system, the required SIL is 4, the highest level defined by the standard. The standard requires at
Level 4 a probability of failure per hour of 10−8 – 10−9 , or one failure every 10000 years, for a system operating

2

in continuous mode. The Wayside Objects have to be constantly monitored about their status to prevent damage
and react quickly to possible hazardous situations. The high-speed communication has an important role in
improving the quality of transportation. If the communication network is fast, the Wayside Object can react in a
short period of time, and the overall system will have better performances. If the order to change the point
machine arrives faster, the same line will have more frequent train rides resulting in reducing waiting time for
the customer.

A new high-speed channel will be used to increase locally the performance of communication inside the OCS.
In the OCS subsystem, there are several elements that concur to the flow of the messages from and toward the
Wayside Objects. The message that comes from the CIS is sent to the OCS. The communication network
between the CIS and the OCS is also composed of two redundant physical boards. These boards are identical and
they are defined as redundant because one of them is designated as online and the other one is in standby mode.
Whether the online one stops working, the system substitutes it with the standby. In this way, communication is
always granted even when a hazard occurs. Currently, communication from the online board to other elements of
the OCS occurs through a specific channel. However, the performances of this channel are not high enough to
update the system to increase the railway traffic. A high-speed physical channel has to be used. This channel is
already present on the Printed Circuit Board (PCB) inside the OCS, but it was missing a firmware interface to
allow it to communicate with the current system. It has been proven that this new channel is 100 times faster
with respect to the previous one[2]. Using the new channel, the traffic of the messages can be increased.

It is important that the design of the interface that will allow the communication through the new channel is
custom made to fit the system already developed inside the FPGA. The new channel needs to be connected to the
existing system and a proper interface has to be developed to enable a standard communication and to comply
speed and safety requirements. The interface is designed using VHDL language and then loaded into a Field
Programmable Gate Array (FPGA)[3]. An FPGA is a device that is composed of a reprogrammable logic. Each
board is composed by an FPGA which acts as a Switch[4], which is a device that redirects the different incoming
messages to the correct destination device. The channel is directly connected to the FPGA on the PCB. The
message arrives in the FPGA and it dispatches it to the proper destination. An on-the-shelf solution was not a
good choice for this system since the OCS developed by Bombardier Transportation is granted for 30 years. In
that timespan, the device can become obsolete and the integrity of the system might not be granted since an
obsolete device can grant less reliability with respect to a new one. It is then a flexible solution and it facilitates
maintenance operations since it can be reconfigured with new coding instead of replacing a new component on
the board.

The new interface enables communication between two different standard protocols and it is custom made to
comply with the existing system. The standard protocol that the system uses for the messages is the Ethernet
[6](see Chapter 2, Section 2.5). To analyze if the Ethernet frame was still a good choice in terms of protocol to
be used on the new channels, the flexibility, the speed, and safety of the system were taken into consideration. A
frame is the transmission unit which carries the message by encapsulating it with a header and an end-of-frame
field as the start and stop points of the message. The carried message is called the payload. The communication
is faster if more payload information is transferred in the same amount of time, and therefore if the frame has
less non-payload bytes to send. To keep the communication fast, a frame which has less overhead with respect to
the Ethernet has to be considered. In this work, the overhead is defined as the ratio between the length of the
non-payload bytes and the total length of the frame and it is the parameter to consider whether the chosen
protocol fits the high-performance requirement. A low overhead value results in a more efficient information
transfer, decreasing the time-per-message and thus allowing faster communication. To find a valid alternative to
the Ethernet frame and since the communication is serial, also the Serial Line Interface Protocol (SLIP) and the
Point to Point Protocol (PPP)[7] have been studied (for the complete frame explanation, see Chapter 2 Sections
2.6 and 2.7). The SLIP is a protocol developed to give a start and end frame of a message to be sent over a serial
line. The PPP is a protocol is meant to connect two elements that have only one link between them. It is possible
to notice that in the worst case scenario, that is when the frame has the maximum dimension, the best solution is
the SLIP. However, the PPP offers two fields that are not available in the SLIP[8]: the header bytes that precede
the payload and the Cyclic Redundant Check (CRC) [9] field. These fields allow having a flexible
communication that is fully customizable according to the need of the receiver of the message and to have an
extra security layer by exploiting the CRC code (see Chapter 2, Section 2.3). The new interface then will be a
converter between Ethernet and PPP frame and it will be called PPPConverter. It will be composed of two
separated and independent part called as inbound and outbound. The part will be called Inbound if the message
in incoming in the board, outbound if it sent from the board over the IOChannel, the new channel.

By the physical point of view, the new channel, called IOChannel, is implemented as an LVDS-full duplex
communication link. A full duplex communication means that the system can exchange messages from and to
the board on two independent links. Moreover, each link is a Low Voltage Differential Signal (LVDS)[5]. This

3

means that each link is composed of a positive and a negative line. Therefore, there are four lines for one
channel, two are with the message as it is, defined as positive, and two in which the data are sent as the opposite
value called negated. For further information about the LVDS protocol, see Chapter 2 Section 2.2. Each wire
sends messages using a serial protocol implemented by a Universal Asynchronous Receiver-Transmitter
(UART) component inside the FPGA (described in Chapter 2, Section 2.4). This asynchronous component
allows to serialize and send the data over the lines and deserialize the received bits. The serial UART data
generated by the architecture inside the FPGA reaches a buffer that creates a differential signal as output and
then the output is transmitted onto the LVDS pins of the FPGA. When the message is received, it is translated
from LVDS to single ended from another buffer inside the FPGA and it is converted into a byte-based message
from the UART component.

In conclusion, an Ethernet-PPP converter has been designed and implemented in VHDL to allow
communication through the IOChannel. The interfaces connecting the IOChannel and the system will be custom
made according to the given specifications to interface this component with the existing system and the UART
module that acts as a transceiver toward the physical implementation of the IOChannel. The component is
working as required from a behavioral point of view. When integrated into the existing system on a physical
board, the system does not produce anymore the output on the IOChannel.

4

5

2. Bombardier Transportation

The thesis project was developed and implemented at Bombardier Transportation Sweden AB. Founded as

L'Auto-Neige Bombardier Limitée in 1942 by Joseph-Armand Bombardier, Bombardier is a multinational
aerospace and transportation company based in Montreal, Quebec, Canada. In 1970, Bombardier buys
Lohnerwerke in Vienna, Austria, a manufacturer of motor scooters and trams, and its subsidiary, the engine
manufacturer ROTAX. This marks Bombardier’s entry into the railway business. After obtaining the North

American leadership in Rail Transportation in 1982, in 1986 Bombardier expands in Europe and in the same
year it buys Canadair expanding his sectors also in the aerospace field [10].

Nowadays, Bombardier Transportation is one of the largest companies in the world in the rail vehicle and
equipment manufacturing and servicing industry. Among many products, Bombardier has produced many
subway systems worldwide, monorails, trams, and rail vehicles. Famous products are the train V300ZEFIRO,
also known as Frecciarossa 1000, shown in Figure 2.1 [11] and the Metro trains and system in Munich Airport
Franz Josef Strauss, INNOVIA APM 300 Automated People Mover System, shown in Figure 2.2 [12].

Figure 2.1: V300ZEFIRO

Figure 2.2: INNOVIA APM 300

6

7

3. The involved standard protocols, models, and utilities

Several standard protocols, model and utilities belonging to telecommunication engineering have been
considered during the development of this thesis project. They include Ethernet, PPP, SLIP and ARP protocols,
the Ping utility, the OSI Model, the UART device, the LVDS standard, and the CRC code.

3.1 Open System Interconnection (OSI) model
The Open System Interconnection model is a standard for network development[13]. It describes the

architecture of a network system as composed of seven different layers whose set fully describes all the possible
functionality of a network system. For this project, the FPGA works only in the OSI Layer 2[14] while
transporting messages belonging to the Layer 3. It only deals with the correct addressing and transmission of the
messages but not their content.

3.1.1 Layer 1: Physical Layer

The Protocol Data Unit (PDU), which is a single unit of information transmitted among peer entities of a
computer network, is organized in symbols. This layer defines the way the raw bits are transmitted. It provides
the electrical, mechanical and procedural interface to the transmission medium. It is often referred to as PHY.

3.1.2 Layer 2: Data Link Layer

The PDU is the frame for this layer. It focuses on delivering, addressing and arbitering the media of frames
usually in a Local Addressing Network (LAN). It is not managed the local network, it is handled by higher
levels. It is divided into two sub layers[14]: logical link control (LLC) and media access control (MAC). The
former multiplexes the protocols that run in the data link layer and can provide flow control, acknowledgment
and error notification as the checksum control. The latter handles frame synchronization and the arbitration for
speaking or listening on a line. Some protocols belonging to this layer can be Ethernet[6], PPP[7], and SLIP[8].

3.1.3 Layer 3: Network Layer

The packet is the PDU of this layer. The Layer 3 transfers variable length packets from a source to a
destination host via one or more networks. It takes order from the Transport Layer and gives orders to the Data
Link Layer.

3.1.4 Layer 4: Transport Layer

The protocols that work in this layer provide host-to-host communication services. The PDU for this layer is
segment or datagram.

3.1.5 Layer 5: Session Layer

The Session Layer provides the mechanism for opening, closing and managing a session between application
processes. The PDU for this layer is data.

3.1.6 Layer 6: Presentation Layer

The presentation layer is responsible for the delivery and formatting of information to the application layer for
further processing or display.

8

3.1.7 Layer 7: Application Layer

The application layer is an abstraction layer that specifies the shared communications protocols and interface
methods used by hosts in a communications network.

3.2 Low-Voltage Differential Signaling (LVDS)
LVDS is a standard that specifies the electrical characteristics of a differential and serial communication

protocol. It is a protocol defined in the OSI Layer 1. Each signal in this standard is sent via two wires which are
called positive and negative. Due to this differential characteristic, the common mode is rejected.[5]

3.3 Cyclic Redundant Check (CRC)
The CRC is an error detecting code used in order to observe an accidental change in the data inside the frame

[15]. It is usually used in digital network systems by many protocols as part of their frame as Ethernet, PPP, and
RapidIO. The CRC can also be used for error correction but in this project will be used only the CRC32 [9] error
detection version. CRC32 is the algorithm that has 32 bits as input and 32 as output. The CRC uses a specific
polynomial to which the input frame is divided using a polynomial division and creating a four bytes sequence
unique for the frame to which it is related. All the parts in the frame as header, payload and possibly the tail will
be set as the input of the CRC32.

3.4 Universal Asynchronous Receiver-Transmitter (UART)
A UART is a device used for serial communication over a serial port. This module divides the frame into bits

to be sent one per each clock cycle on the serial line. The delimiters of the sent byte are the start and stop bit.
The start bit is determined by a transition from 1 to 0, then eight bits are transmitted, and the stop bit is 1 as
shown in Figure 3.1. The communication is asynchronous: the UART receiver should work at the same
frequency of the transmitter or use an asynchronous buffer to not lose data. In this project, the UART modules
work at the same frequency.

Figure 3.1: UART framing [16]. It has a start bit coded as a transition between a logic 1 and 0 and a

stop bit coded as 1

3.5 Ethernet protocol
Ethernet is a family of computer networking. It can be used into three main categories of a network: Local

Access Network (LAN), Metropolitan Area Network (MAN) and Wide Area Network (WAN). For this project,
the system involves only LAN. The Ethernet Frame is the payload transported by the data unit of the Ethernet
Protocol and it belongs to the Layer 2 of the OSI Model. As described by the standard, a standard Ethernet
Frame is composed of the following fields; in Figure 3.2 the Ethernet Frame is shown. The Ethernet protocol
refers to the Ethernet 2.0 version. [6]

3.5.1 Preamble
It is composed of seven bytes and in this system; they all correspond to the hexadecimal number 0x55.

3.5.2 Start of Frame Delimiter (SFD)
This byte indicates the beginning of the frame and is represented by the hexadecimal number 0xD5.

9

3.5.3 Destination Address
It is expressed as the Media Access Control address of the destination object of the message transported by the

Ethernet Frame and it is composed by six bytes. The MAC address is a unique identifier whose code is not
shared by any other object in the world if universally addressed. In this way of addressing, the MAC number is
given according to the standard declared by IEEE. The MAC address can also be locally addressed by setting
some bits belonging to the Most Significant Byte according to Big Endian format[17].

3.5.4 Source Address
As well as the destination address, it is composed of six bytes which compose the MAC Address of the device

that is sending the message.

3.5.5 Ethernet Type
It is composed by two bytes and it is used by the destination device to understand the protocol used in the

payload. In this system, the Ethernet Frame transports Internet Protocol Version 4 (IPv4) frames so the two bytes
will always be set as the hexadecimal number 0x0800. The message can also be ARP; in this case, the code is
0x0806. [18]

3.5.6 Payload
The standard length of an Ethernet Frame’s payload is between 48 and 1500 bytes. Since the system is

developed using the OSI model it will be a Layer 3 protocol, specifically IPv4[19] frames.

3.5.7 Cyclic Redundant Check (CRC)
Composed by four bytes, it is an error detecting code based on the computation of a signature of the frame by

exploiting a polynomial division of all the content in the frame: addresses, Ethernet type, and payload. The CRC
signature is calculated again when the message is received by the destination device and if it is not equal to the
one in the frame it means that there was a failure in transmitting the message and some data were lost or
modified. The CRC used in this system is CRC32. The CRC is not an error correction code, it only detects
whether a fault in the message has occurred.

Figure 3.2: Ethernet frame format, the numbers in the Figure indicate the number of bytes allowed by

the standard. It is composed by a preamble, an SFD byte, 12 bytes for destination and source MAC
address, the Ethernet type, the payload and four final bytes of CRC32

3.6 Point to Point Protocol (PPP)
The Point to Point Protocol is an OSI Layer 2 protocol used to link two nodes in a network without any other

host or interfacing device during the communication. As described by the protocol, a standard PPP frame, as
represented in Figure 3.3 is composed as follows. [7]

3.6.1 Flag
This byte is the start of the frame and it is the hexadecimal number 0x7E.

3.6.2 Address
This field is made by one byte and it is usually set to broadcast so the hexadecimal number 0xFF.

10

3.6.3 Control
The control byte is set to the hexadecimal number 0x03.

3.6.4 Protocol
These two bytes identify the type of protocol of the transported message; in this case, since it is IP it will be

coded as 0x0021. Since the message can also be ARP and there is no indication from the standard for this type of
message, it has been chosen the code 0x0081 since it is marked as unassigned from the standard itself.[20]

3.6.5 Information
This field has a variable number of bytes and it is the transported message.

3.6.6 CRC
As in the Ethernet Frame case, these are four bytes of CRC32.

3.6.7 Flag
The hexadecimal number 0x7E is sent as the conclusive byte of the frame.

3.6.8 Escaping sequence
If the 0x7E byte is inside the payload, the protocol requires to translate that byte to the byte 0x7D into the new

PPP frame followed by the XOR of the bytes 0x7E and 0x20. If the byte 0x7D is present in the payload, it is
meant to be translated into 0x7D followed by the XOR between 0x7D and 0x20 bytes.

Figure 3.3: Point to Point frame format, the numbers in the Figure indicate the number of bytes

allowed by the standard. It is started and ended by the Flag, it contains also the Address and Control
fields, two Protocol field that described which protocol is the Payload message and four bytes of

CRC32

3.7 Serial Line Interface Protocol (SLIP)
The Serial Line Interface Protocol is a standard used to encapsulate frames before being serialized. This

protocol modifies the frame as follows.[8]

3.7.1 Frame END
This byte corresponds to the hexadecimal number 0xC0 and it is added at the beginning and at the end of the

frame.

3.7.2 Frame ESC
In case the byte C0 is already inside the frame to convert, it is converted into two bytes 0xDB (the ESC byte)

and 0xDC. If the Frame ESC is detected as well as a byte in the frame, it will be translated into the two bytes
0xDB and 0xDD.

3.8 Address Resolution Protocol (ARP)
The Address Resolution Protocol is a protocol used from the server device of the system to map all the MAC

addresses of the clients connected to it[21]. The ARP protocol is based on a request in which the message is
broadcast, and the content of the message is: the IP address XX.XX.XX.Y asks who is XX.XX.XX.Z? The answer
to this message is unicast since there is no need for it to be broadcasted to all the devices. For purpose of
simplicity, in the system that will be developed the answer will always be broadcast. Moreover, for this thesis,
there is no need to describe the full details of the frame of the ARP.

3.9 Packet Internet Grouper (Ping) utility

11

Ping is a utility used to test the reachability of a host on Internet Protocol (IP) network [22]. IP is a protocol
that works in the OSI Layer 3 [19]. When the Ping instruction is sent from a processor toward a specific IP
address, the sender waits for the answer of the IP addressed device. If the answer is received it means that there
is a connection between the devices. The utility allows also specifying in the command line extra field to monitor
different features regarding the communication. The ping utility is used to test the full architecture inside the
FPGA since in the Implementation phase two boards are connected through the IOChannel. When the Ping
instruction is sent to a specific IP address, the sender waits for the answer of the IP addressed device. In this
way, the full duplex communication can be tested.

12

13

4. The system inside the FPGA: how it was and how it will be

The interface that has to be developed is going to be designed and implemented in VHDL and uploaded on an
FPGA. In this device, the OSI Layer 2 is implemented while the higher layers are managed outside of it. The
new channels, which are going to be called IOChannels, are already printed on the PCB and a pin has already
been selected for them in the FPGA

4.1 The system and purpose of the FPGA
The FPGA is a Switch. In telecommunication standard, a Switch is a device that drives incoming messages

from one or more possible input and directs the messages to the proper output[4]. The messages can be
broadcast, so sent to every other port connected to the switch, or unicast, so with a specified destination address
and sent to a specific output port. All the components belonging to the FPGA are divided into two parts: inbound
and outbound. When the message incoming toward the FPGA it is defined as inbound when it is going outside of
it is defined as outbound. Both parts are independent on one another since the system is always full duplex. The
desired system is represented in Figure 4.1.

Figure 4.1: The communication system inside the FPGA. The message is sent by the Processor, it is

sent to the IOChannel through the following components: Rgmii-PHY, Bridge, FrameBuffer,
EthernetSwitch, FrameBuffer, PPPConverter, and UARTInterface

4.2 The flow of the message
Concerning all the used blocks, Figure 4.1 can be observed as a reference about how they are connected.

14

4.2.1 From the processor to the IOChannel
The message is sent by a processor and it is an Ethernet 2.0 Frame. The message encapsulated inside the

Ethernet Frame can be an ARP request or an IP message. When the message enters the FPGA, it is translated
from the Rgmii-PHY interface to an Ethernet Frame organized in bytes and it is saved into the FrameBuffer
connected to the Port 0 of the Ethernet Switch. The Switch then decides which is the destination port and
forwards the messages to it. From the destination Port the message is saved into another FrameBuffer and when
a full frame is saved into it the PPPConverter starts to convert the message into PPP frame and forward it to the
block UARTInterface. This block contains two core generated FIFOs (inbound and outbound) and a UART
module that is responsible for the creation of the serial communication. The serial stream of bits then enters the
LVDS buffer, proprietary of the FPGA, and the two LVDS signals exit the FPGA feeding one of the
IOChannels. The message that comes from the processor enters the inbound part of all the components in the
chain until it reaches the EthernetSwitch. When it is sent to another port the message is meant to be sent outside
the FPGA, so it will be processed in the outbound part of the components.

4.2.2 From the IOChannel to the processor

When the message comes from the IOChannel, it is deserialized by the UARTInterface and stored in bytes in
the inbound FIFO. The PPPConverter then acquires each byte and from them recreates the EthernetFrame using
as destination address the MAC address of the processor. The Ethernet Frame is then saved into the FrameBuffer
connected to one of the Ports of the Ethernet Switch. The Switch then redirects the message toward the proper
Port, where the message is saved into the FrameBuffer. When the full frame is saved, the message is translated
into PHY and sent to the processor.

4.3 Choice of the protocol on the IOChannels
These new channels are full duplex and LVDS, which means that for each channel there will be four serial

wires: two in transmission (positive and negative) and two in reception (positive and negative).
To have the fastest communication possible, the overhead of the frame, the ratio between the length of the non-
payload bytes and the total length of the frame, must be the minimum to save time. For this reason, some
standard protocols solutions have been considered to optimize the overhead due to the Ethernet Frame itself. As
shown in Table 4.1 the SLIP protocol appears to be the best trade-off in terms of overhead proportion since it has
only two more extra bytes to be added to the payload and, in case of full sized-frame, it has less overhead than
PPP. The problem with SLIP is that it has no error detection field, as the CRC in the Ethernet and PPP frame.
Moreover, the PPP is a very flexible protocol since it has the Address, Control, and Protocol fields while having
less overhead with respect to the Ethernet Frame if there is no escaping needed. Flexibility is needed since the
element that is going to receive the PPP frame is not yet designed. For all these reasons, the PPP was chosen as
best protocol as a trade-off among performances, safety, and flexibility.

Table 4.1: Possible Protocol overhead scenarios

Type Theoretical Overhead, Standard
Payload length L bytes

Maximum Overhead, all characters
must be converted (SLIP and PPP)

Ethernet Frame 18/L 18/L

SLIP 2/L 3000/L

PPP 10/L 30000/L

4.4 Involved components
Many different components are involved in the flux of the messages. In the following both the signal interface

and the timing, when relevant, are shown. All the signals not mentioned in the description of the components are
not to be considered since not relevant to the system.

15

4.4.1 Reduced Gigabit Media-Independent Interface (Rgmii) - PHY Interface
This component allows converting the Ethernet frame from the format used into the OSI Layer 2 into the one

used in the OSI Layer 1, the physical layer, and vice versa. This block acts as a synchronizer and helps the
processor to interface the FPGA. There are three main signals from the processor: data on four bits, the enable
signal and the clock which might be different with respect to the one used internally in the FPGA. These signals
are used according to the Rgmii standard.[23]

The signal interface was studied to create the complete testbench of the system. In Figure 4.2 it is possible to
see the input and output signals belonging to this component. The clock used for the interface toward the
processor is not necessarily the one in the system since it can be different. Inside the component, there are
specific processes to synchronize the signals. The data are received in frames composed by four bits and then
merged so that they are sent as bytes inside the system of the FPGA. When a data is valid to be read, the
processor asserts the CTL signal. The 4-bits frames are incoming toward the FPGA coded as little-endian: this
component creates the bytes as big-endian so that the message can be correctly managed inside the FPGA that
uses this order. The inbound part of the communication, which is the one just described, can be noticed in Figure
4.3. In the outbound part, the component takes the bytes and separates them in four bits data, synchronize the
clock with the one received from the processor and asserts the enable signal CTL when the data are valid.

Figure 4.2: Rgmii-Phy signals interface

The timing diagram showing the writing action from the processor toward the Rgmii-PHY features three
signals: the clock, the CTL and the data. The CTL signal acts as a data valid signal as the Rgmii standard
prescribes (Figure 4.3). The Inbound interface between the Rgmii-PHY component and the Bridge is shown in
Figure 4.4. The read signal is asserted every two clock cycles and when the bridge has asserted the start signal
the sequence can be read. If the signal end is strobed the frame is finished, and the Bridge will wait for another
start strobe to read. As for the outbound part, the interface is the same with start and end strobes, the write signal
behaves as the read but there is no delay between data and the assertion of the write signal.

16

Figure 4.3: Timing diagram of the signals used by the processor to send a message to the FPGA.

The interface component is Rgmii-PHY. If the ctl signal is asserted the data is valid. The data are an
example and are not indicative of a proper Ethernet frame.

Figure 4.4: Timing diagram of the interface between the Rgmii-PHY and Bridge components.

Inbound Interface. The start and end signal delimit the frame. The data are an example and are not
indicative of a proper Ethernet frame.

4.4.2 Bridge Interface
A network bridge is a computer networking device that fragments the network[24]. It receives a message and

decides if forward it or discard it. It is simpler than a Switch since the communication between two blocks is not
independent, but it is chosen by the Bridge itself. In this system, the Bridge decides if the inbound information
can go toward the EthernetSwitch or other parts of the FPGA which will be ignored since not useful for this
project. In the inbound part of the Bridge, the Preamble and the SFD of the Ethernet Frame are removed while in
the outbound part it is added again. These parts of the Ethernet frame are also checked and if they do not have
the expected value they are discarded. In Figure 4.5 the bridge signals interface is shown. With this component,
the timing will not be described since it is already shown for the two components to which it is connected to, the
Rmgii-PHY and the FrameBuffer.

17

Figure 4.5: Bridge signals interface

4.4.3 FrameBuffer
To synchronize the flow of communication, each Port is connected to a FrameBuffer (Figure 4.6). This buffer

can store up to 16 KB, that are 10 full-size Ethernet Frames, and it is divided as well in the Inbound and
Outbound part.

18

Figure 4.6: FrameBuffer signals interface. Since the inbound and outbound parts have the same

interface, the signals shown refer to a generic part.

The read operation is performed by asserting the signal ReadContent. One clock cycle later on the signal

ReadContentData the bytes will start to appear. When a frame is completely read, the buffer asserts the signal
ReadContentEnd for one clock cycle. If the user wants to read the next frame, the signal ReadFrame has to be
asserted for one clock cycle as a strobe while the signal ReadContentData is not asserted (Figure 4.7). The write
operation is executed by asserting the signal WriteContent and in the same clock cycle starting to give the frame
as input on the signal WriteContentData. When the user wants to write a new frame, the signal WriteFrame has
to be asserted for one clock cycle as a strobe (Figure 4.8).

Figure 4.7: Timing diagram of the reading operation on the FrameBuffer component. The

ReadContent signal is asserted until the ReadFrameEnd is asserted and the frame is finished. To read
the next frame the ReadFrame signal must be strobed for one clock cycle. The data are random values.

Figure 4.8: Timing diagram of the writing operation on the FrameBuffer component. While the

WriteContent signal is asserted, the data are written inside the buffer. When a new frame has to be
written, the WriteFrame signal is strobed for one clock cycle.

19

4.4.4 Ethernet Switch

The main component inside the FPGA that acts as a switch is the EthernetSwitch: it is a block developed by
Bombardier that receives the incoming signal, decide which other object connected to it is the destination and
forward the message to it. Each device that needs to exchange messages to the other devices connected to the
FPGA is connected to a Port on this component. All the incoming and outcoming messages are Ethernet Frames,
so the addressing of the destination and source is based on the MAC Address specified in the message. The
peculiarities of this block are that it is self-learning and the decision of which port can talk is taken by a
WishBoneCrossbar component [25] based on a Round-Robin Arbiter [26], so each port has the same priority to
talk. All the signals incoming toward the EthernetSwitch belongs to the inbound part of the system. Therefore,
all the outcoming messages belong to the Outbound part of the system. The signals belonging to the interface are
used in the same way as the ones of the FrameBuffer, as well as the timing. The only difference is that each
signal of the FrameBuffer is declared as a vector of length equal to the number of ports instead of a single bit
control signal.

4.4.5 UARTInterface: core generated FIFOs and UART module
This component contains three components: two identical Xilinx Core-generated FIFO and a UART module.

The two FIFOs are one for the inbound e one for the outbound part. The interface toward the PPPConverter is
the same of one FIFOBuffer (Figure 4.9) and it makes possible to write on the outbound FIFO and read from the
inbound FIFO. The UART module is interfaced inside the UARTInterface component with the two FIFOs and
the only signals that interfaces the other main components are the IOSignal_i and IOSignal_o which are
respectively the input and output serial line connected to one of the physical IOChannel. Moreover, this block is
the only one of the involved components that has a positive reset.

Figure 4.9: FIFOBuffer signals interface

The timing diagrams that are relevant to the project are the Core generated FIFOs interface [27]. Since they

are identical in the inbound and outbound part, the indicated signals will be named in a general way. The signal
rd_en is asserted and one clock cycle later the data can be read on the pin data_out. The data are valid to be used
if the signal valid is also asserted by the FIFO. The signal empty notifies if there are data in the FIFO by
becoming 0 (Figure 4.10). Concerning the writing operation, in the same clock cycle, the wr_en signal has to be
asserted and the data must be present on the data_in pin. When the FIFO has correctly written the data, it asserts
the signal wr_ack one clock cycle after the data has been sampled by the FIFO (Figure 4.11).

20

Figure 4.10: Timing diagram of the reading operation from the FIFOBuffer. The rd_en signal is

asserted and one clock cycle later the data are read. The data is the correct one only if the valid signal
is asserted as well. The data are random values.

Figure 4.11: Timing diagram of the writing sequence on the FIFOBuffer component. The wr_en

signal is asserted and the data is written into the FIFO. If the memory has correctly written the data,
the wr_ack is asserted. The data are random.

4.4.6 PPPConverter

This component is the main object of the thesis project. Since all the communication is divided into inbound
and outbound, the two parts will be described separately. The communication is full duplex, so they are meant to
be always independent of each other.

21

5. Design of PPPConverter

The Converter is divided into two parts: Inbound and Outbound. They work in parallel and are not meant to
communicate with each other. The approach used to design the VHDL code is the behavioral one, as used by all
the other codes belonging to this system. Therefore, the Data Path scheme will not be introduced while the most
relevant importance is given to the Control Flow Chart. The two protocols have different length and values in the
head and tail of the frame so if the system must be designed to have the least latency possible, for this reason in
both parts the writing of the new head and the reading of the incoming message will be done in parallel. In both
cases, a Data Flow management graph will show how this procedure is managed during the evolution of the
states. Since all the signals names have as radix the name of the part to which they belong to, inbound and
outbound, while describing the two different part the radix will be neglected and it must be considered as the
name of the part that is described.

5.1 Error and escaping management
Since the FPGA works in a high safety environment, some studies about error detection and correction inside

the FPGA and the system must be considered. As far as the system in which the FPGA works is concerned,
when a frame is faulty is not a responsibility of the FPGA to correct the mistake: if an error is detected the frame
is discarded and the processor that has sent the message will send it again until it receives an answer. The Safety
Layer of the network system is the one responsible for the management of these faulty situations. For this reason,
the signal wr_ack of the FIFO is not checked in the PPPConverter component: if the UART receive a faulty byte
the inbound part of the PPPConverter on the other side of the channel will detect the problem and discard the
faulty message. To discard a message, the FrameBuffer has a dedicated signal called WriteFrameAbort: if the
signal is asserted the buffer will not save the rest of the frame and will delete the bytes already written inside of
it.

The escaping feature required by the PPP protocol standard declaration was not implemented in the
PPPConverter component. This decision was taken to have a first version of the converter that could be simple
enough to be implemented and at the same time could introduce the PPP frame to the system. This was also
possible since the two boards that will be used for the implementation test (see Chapter 7) do not use the special
character 0x7E in their framing. This aspect was verified [28] [29] using the tcpdump command on the processor
interface toward the FPGA: the frames that are sent in both the ARP and Ping messages never contain the Flag.
The escaping feature must be added in the future implementations of the component in order to make the
communication fully standard.

5.2 ShiftMemory
In both parts, the length of the frame is not known but there is a signal or data value that indicates when the

frame ends. Moreover, the CRC32 signature calculated in both the protocols is going to be different because the
head of the frame is different, so the last four bytes have to be discarded and substituted with the new signature.
In the Inbound part, the end of frame delimiter is the byte 0x7E: when it is read, the frame is finishes and the
previous four bytes are the old CRC32. In the Outbound part, when the signal ReadFrameEnd is asserted, it
means that the four last bytes are the old CRC32. Since there is the same behavior in both parts, the
ShiftMemory component, designed to create the proper tail to the frame, will be described as one component
which is independent on the part of the PPPConverter in which works. The only difference is in the reset value of
the output of this component: in the inbound part will be set at zero while in the outbound will be set at 7E since
the PPP protocol prescribes that value to be the idle state of the line. The ShiftMemory component is composed
of four eight-bit signals that, when the signal enable is asserted, shift their value to the next one. When the end of
frame moment is reached, the last value to be read is the output of the ShiftMemory and the content of it, the old
CRC32, is discarded. This means that all the payload bytes are shifted into this component before being written
into the FrameBuffer or the FIFO and therefore delayed by four clock cycles (Figure 5.1). This choice raises the
latency of the frame, but the overhead of four clock cycles compared to the latency given from the overall
system is dispensable. Since the component is described using the behavioral VHDL, it is not possible to draw
an accurate Data Path.

22

Figure 5.1: Behavior of the ShiftMemory component. When the end of frame trigger is asserted, the
last shifted out content is the data and the content of the ShiftMemory is the old CRC, that can be

discarded.

5.2.1 Pseudocode

The behavior of the ShiftMemory component is explained in the following pseudocode. Please note that after
every semicolon a new clock cycle will occur, as it happens for the Finite State Machine in the VHDL code.

If (reset = 0) data1, data2, data3, data4 <= 0; // if inbound,

 // if outbound 7E

If (enable = 1)

{ data1 <= data_in,

 data2 <= data1,

 data3 <= data2,

 data4 <= data3,

 data_out <= data4;

}

5.2.2 Timing diagram
The timing diagram act according to the described behavior. When the shiftEnable signal is asserted the content
of the four registers is shifted toward the next register in line otherwise the content remains as it is. The
component is synchronous, so this behavior only happens on a positive edge of the clock signal. If the shiftReset
signal is asserted, the value of all the internal signals is 0x00 for the inbound and 0x7E for the outbound part
(Figure 5.2).

23

Figure 5.2: Timing diagram of the ShiftMemory. When the enable is asserted the bytes are shifted
creating the diagonal pattern. When the reset is asserted the component assumes the 0x00 value if

inbound and 0x7E if outbound.

5.3 Calculation of the CRC32 signature
In both Ethernet and PPP frame, a CRC32 signature is needed. The input of the component, developed by

Bombardier Transportation, is composed by an 8-bit signal which is the byte that has to be added to the signature
and a 32-bit signal that is reset at the value FF and when a new byte is processed it has to be set at the 32-bit
output signal of the CRC32 itself. This component is asynchronous. This procedure is used in both inbound and
outbound parts as shown in the Pseudocodes.

5.4 Inbound
The Inbound part is the one responsible for converting the message from PPP to the Ethernet Frame. It should

read the frame, check whether the frame has the correct five bytes of the preamble of the PPP protocol while
writing on the FrameBuffer the destination and source MAC address and the Ethernet Type. Then it is going to
transfer the payload and finally the new calculated CRC32 bytes. The CRC32 is the signature generated by the
two MAC addresses, the Ethernet Type and the payload bytes. Since the length of the frame is not fixed, all the
data that will be written into the buffer are delayed by a shift register called ShiftMemory which is going to flush
the elements remaining inside the shift register when the Flag byte is read, acting as an end frame. In this way,
there is no need to count the length of the total frame. Finally, since there are two possible types of payload,
there will be a check to update the corresponding Ethernet Type field according to the Protocol field inside the
PPP Frame. In case the Protocol is 0x 0021 the payload is IP so translated to 0x0800 if 0x0081 it is ARP so
translated to 0x 0806, otherwise it is an error. The coding of the type of frame is decided by the standard.

5.4.1 Pseudocode

The behavior of the inbound part of the component is explained in the following pseudocode. Please note that
after every semicolon a new clock cycle will occur, as it happens for the Finite State Machine in the VHDL
code.

finished=0;

if (FifoEmpty=0) // data is available in the FIFO

{ while (! Finished) {

 if(bufferfull=0) output= destinationMAC (47 downto 40)

 updateCRC,

 else // wait for the buffer to be not full;

24

 if(bufferfull=0) output= destinationMAC (39 downto 32)

 updateCRC,

 else // wait for the buffer to be not full;

 if(bufferfull=0) output= destinationMAC (31 downto 24)

 updateCRC,

 else // wait for the buffer to be not full;

 if(bufferfull=0) output= destinationMAC (23 downto 16)

 updateCRC,

 read_byte

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= destinationMAC (15 downto 8)

 updateCRC,

 read_byte

 if input!= 7E error, reset_shift, finished=1

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= destinationMAC (7 downto 0)

 updateCRC,

 read_byte

 if input!= FF error, reset_shift, finished=1

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= sourceMAC (47 downto 40)

 updateCRC,

 read_byte

 if input!= 03 error, reset_shift, finished=1

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= sourceMAC (39 downto 32)

 updateCRC,

 read_byte

 if input!= 00 error, reset_shift,finished=1

 else // wait for the buffer to be not full;

if (bufferfull=0 & datavalid)

 if input = 21 ethType =00

 else if input = 81 ethType = 06

 else error, reset_shift, finished = 1;

 output= sourceMAC (31 downto 24)

 updateCRC,

 read_byte

 else // wait for the buffer to be not full;

if (bufferfull=0 & datavalid) output= sourceMAC (23 downto 16)

 updateCRC,

 read_byte

 shiftMemory= input; // start to shift in the payload

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= sourceMAC (15 downto 8)

 updateCRC,

 read_byte

 shiftMemory= input; // shift in the payload

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= sourceMAC (7 downto 0)

 updateCRC,

 read_byte

 shiftMemory= input; // shift in the payload

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= x”08” // shift EthType

 updateCRC,

25

 read_byte

 shiftMemory= input; // shift in the payload

 else // wait for the buffer to be not full;

 if (bufferfull=0 & datavalid) output= ethType // shift EthType

 updateCRC,

 read_byte

 shiftMemory= input; // shift in the payload

 else // wait for the buffer to be not full;

while (input!= 7E)

if (bufferfull=0 & datavalid) output= shiftOut

 updateCRC,

 read_byte

 shiftMemory= input;

 else // wait for the buffer to be not full;

if(bufferfull=0) output= crc(31 downto 24)

else // wait for the buffer to be not full;

if(bufferfull=0) output= crc(23 downto 16)

else // wait for the buffer to be not full;

if(bufferfull=0) output= crc(15 downto 8)

else // wait for the buffer to be not full;

if(bufferfull=0) output= crc(7 downto 0)

else // wait for the buffer to be not full;

// packet translated correctly, update strobe for input buffer

update_strobe_buffer, finished = 1;

}

}

5.4.2 Data Flow Management

The Data Flow management of the Ethernet Frame to be written and the PPP frame to be converted was
studied to have the fastest conversion possible while checking if the received frame was a correct PPP frame
(Figure 5.3). In total there are 22 states, in sequence order they are: one IDLE state, 6 to write the destination
MAC address, 6 for the source address, 2 for the Ethernet Type field, one to write the payload until the frame is
not finished, 4 for writing the CRC32 signature and the last one to update the WriteFrame strobe for the
FramBuffer. By exploiting the ShiftMemory component, while the MAC addresses are directly written into the
FrameBuffer, the reading of the PPP frame can start. Since the ShiftMemory takes 5 clock cycles to bring on its
output one byte, the reading and shifting of the payload of the PPP frame can start 5 states before the
STATE_RD_WR_PAYLOAD in which the output of the ShiftMemory is written into the FrameBuffer. This
means that the first reading of the payload has to start in the state in which the fourth byte of the source address
is written. Since the read signal must be asserted one clock cycle before the data, it will be asserted in the state in
which the third byte of the source address is written. Moreover, since the FSM is written in one process, the
writing action must be asserted one clock cycle before, so the state in which the second byte of the Ethernet Type
is written. Moreover, the PPP frame has 5 bytes of preamble before sending the payload. This means that the
effective reading of the FIFO can start during the writing of the fifth byte of the destination address and the read
enable signal must be asserted in the previous state, during the writing of the fourth destination byte. During the
reading of the head of the PPP frame, if one of the bytes has a different value, the FSM goes into the
STATE_ERROR in which the WriteFrameAbort signal is asserted, the shift register is reset, and the FSM goes
back to the idle state. If not, when the value 0x7E is read again, the content of the ShiftMemory is deleted and in
the next four states, the four bytes of the CRC32 will be written directly into the FrameBuffer. A final state
updates the strobe signal for the FrameBuffer and a new frame can be converted. To summarize, the reading is
always performed from the inboundFIFO component, the writing is done in two different ways: the MAC
addresses, Ethernet Type and CRC32 signature are written directly into the FrameBuffer, the payload is shifted
into the ShiftMemory and the output of this component is written into the FrameBuffer delayed by 4 clock
cycles. Before every writing operation, the FrameBuffer signal WriteFrameFull has to be checked: if it is
asserted the FSM has to stay in the same state in which it is and wait for the buffer to have space again. The

26

same happens when the data from the FIFO is not marked as valid by the homonym signal: if it is not asserted
the FSM has to wait for a new valid signal.

Figure 5.3: Data Flow management in the inbound part of the PPPConverter component. The read

content, the content of the ShiftMemory, its output and the byte written in output are shown for each
state of the FSM.

5.4.3 Control flow chart

Since the flow is composed of many states, to make the Finite State Machine more understandable, it has been
divided into four parts (Figure 5.4). The Control Flow charts describe the evolution of the states in the Inbound
FSM. They follow the same algorithm of the Pseudocode and the Data Flow described before. They contain for
each state the signals that must be asserted or not asserted according to the given timing diagrams and the
behavior previously described. They can be found in the Appendix Section 14.1. The designed FSM has both
Moore and Mealy states: the condition of the buffer to be empty or full has always to be checked before a

27

respectively reading or writing operation which leads to reading the input and not only the output of the FSM
generating the need to use also Mealy states. In the Control Flow Chart, the Moore states are indicated by
squared states while the Mealy ones are in a more rounded shape.

Figure 5.4: General division of the control flow chart. For sake of simplicity, four parts have been
identified. The destination MAC address management, the source MAC address and possible PPP

header, the payload, and the CRC and end-frame.

5.4.4 Timing diagram

The timing diagrams have been separated into four different parts using the same approach as the Control
Flow Diagrams. The four stages that are shown are the start of the writing phase of the Ethernet Frame, the start
of the reading phase of the PPP frame, the payload reading and writing phase and the final states of the FSM
where the system goes back to the IDLE state. The values of the data used in all the timing diagrams of this
document are purely random and are not referred to anything specifically. The timing diagrams show only the
significant signals for the described phase. Moreover, not all the states are shown since some have the same
behavior, only a sample of them and the special ones will be shown.

When the FIFO is not empty, the PPPConverter starts to write the destination MAC address of the Ethernet
frame: it writes directly in the FrameBuffer (Figure 4.8). In Figure 5.5 it is possible to see the evolution of the
states from IDLE to WR_DESTINATION_1 and the involved control signals. In this Figure it is also shown the
usage of the CRC32: it will not be shown again in the next timing diagrams. During the writing of the
destination MAC address, the FSM starts to read the PPP frame. The rd_en signal is asserted one clock before
the data and each byte of the PPP preamble that is received is checked: if it is not the expected one the system
aborts the frame and restart from IDLE (Figure 5.6). When the FSM has finished reading the preamble of the
PPP frame, it starts to read the payload (Figure 5.7). Finally, the FSM writes the CRC32 signature, update the
signals for the FrameBuffer and restarts from the IDLE state (Figure 5.8).

28

Figure 5.5: Start of the Inbound FSM, the system begins to write the destination MAC address into
the FrameBuffer. The states have been coded to make the timing diagram more understandable. The

corresponding states are shown in Table 5.1.

Table 5.1: Coding of the states for the timing diagram in Figure 5.4

State name Coded name

STATE_WR_DESTINATION_1 A

STATE_WR_DESTINATION_2 B

STATE_WR_DESTINATION_3 C

Figure 5.6: Timing diagram of the start of the reading part of the PPP frame, inbound part. A faulty

byte is detected, and the system aborts the frame. The states have been coded to make the timing
diagram more understandable. The corresponding states are shown in Table 5.2.

29

Table 5.2: Coding of the states for the timing diagram in Figure 5.6

State name Coded name

STATE_WR_DESTINATION_3 A

STATE_WR_DESTINATION_4 B

STATE_WR_DESTINATION_5_RD_FLAG C

STATE_WR_DESTINATION_6_RD_ADDRESS D

STATE_ERROR E

STATE_IDLE F

Figure 5.7: Timing diagram of the handling of the payload in the Inbound part of the PPPConverter

component. The states have been coded to make the timing diagram more understandable. The
corresponding states are shown in Table 5.3.

Table 5.3: Coding of the states for the timing diagram in Figure 5.7

State name Coded name

STATE_WR_SOURCE_4_RD_PAYLOAD A

STATE_WR_SOURCE_5_RD_PAYLOAD B

STATE_WR_SOURCE_6_RD_PAYLOAD C

STATE_WR_ETHTYPE_1_RD_PAYLOAD D

STATE_WR_ETHTYPE_1_RD_WR_PAYLOAD E

STATE_RD_WR_PAYLOAD F

STATE_WR_CRC_1 G

30

Figure 5.8: Timing diagram of the end of the evolution of the inbound FSM. The states have been

coded to make the timing diagram more understandable. The corresponding states are shown in Table
5.5.

Table 5.4: Coding of the states for the timing diagram in Figure 5.8

State name Coded name

STATE_WR_CRC_3 A

STATE_WR_CRC_3 B

STATE_END_WR_STROBE C

STATE_IDLE D

5.4.5 Source and destination MAC address management

In the inbound part, the MAC addresses must be rewritten into the new Ethernet Frame. To make the system
simple, they are two values that are an input for the PPPConverter component. The destination address is set as
the processor universal MAC address decided from the vendor. The source MAC address is decided by the
VHDL code and it is a locally administered address decided by the designer. To set that address as locally
administered, the second Least Significant Bit (LSB) of the first byte of the source address is set to 1. The way
that decides the values of the two addresses is not the final version of the management of the addresses and it
must be considered as a future implementation. To see a proposed future implementation, see Section 8. Future
Implementations[17].

31

5.5 Outbound
The Outbound part is responsible for the translation from Ethernet to PPP of the frame. The component reads

the destination and MAC address while writing into the OutboundFIFO the preamble bytes of the PPP protocol
and updating the Protocol field according to the received Ethernet Type. In case a 0x0800 is received it will be
translated as 0x0021, if 0x0806 is received it will become 0x0081. If something different is received it means
that there was an error in the transmission and the frame will be discarded. Successively, the payload is written,
then the four bytes of CRC32 and finally the Flag byte.

5.5.1 Pseudocode

The pseudocode that follows describes the expected behavior of the outbound part of the PPPConverter. It is
not related to a specific code, but it is meant to give an insight of the followed algorithm.

finished=0;

if (bufferEmpty=0) // data is available in the buffer

{ while (finished = 0) {

 read_destinationMAC (47 downto 40);

 read_destinationMAC (39 downto 32);

 read_destinationMAC (31 downto 24);

 read_destinationMAC (23 downto 16);

 read_destinationMAC (15 downto 8);

 read_destinationMAC (7 downto 0);

 read_sourceMAC (47 downto 40);

 read_sourceMAC (39 downto 32);

 read_sourceMAC (31 downto 24)

 if FIFOfull=0 output= 7E, updateCRC, else; //wait

 read_sourceMAC (23 downto 16)

 if FIFOfull=0 output=FF, updateCRC, else; //wait

 read_sourceMAC (15 downto 8)

 if FIFOfull=0 output=03, updateCRC, else; //wait

 read_sourceMAC (7 downto 0)

 if FIFOfull=0 output=00, updateCRC, else; //wait

read_Eth (15 downto 8)

if input=00 output=21, updateCRC,

elsif input = 06 output= 81, updateCRC,

else error, reset_shift, finished=1;

read_Eth (7 downto 0)

shiftMemory=input, updateCRC;

while(dataend=0) {

if FIFOfull=0

shiftMemory=input, write_output, updateCRC;} // write payload

if FIFOfull=0

shiftData, write_output, updateCRC; // shift last data out

if FIFOfull=0

writeoutput= CRC(31 downto 24);

if FIFOfull=0

writeoutput= CRC(23 downto 16);

if FIFOfull=0

writeoutput= CRC(15 downto 8);

32

if FIFOfull=0

writeoutput= CRC(7 downto 0);

if FIFOfull=0

writeoutput= 7E, finished=1; // write flag and start again

}

}

5.5.2 Data Flow Management

The Data Flow management in the Outbound process was studied to have the fastest conversion possible
(Figure 5.9). In total there are 25 states. They are, sequentially: one idle state, two states to instruct the
FrameBuffer to read the first byte of the destination address, 6 to read the destination MAC address, 6 to read the
source MAC address, 2 to read the Ethernet Type, one to wait for the first payload byte to be written, one for the
payload, one to write the last value of the payload, 4 for the CRC32 and the last one to write the Flag 7E as
ending of the frame. Also, in the outbound part, the reading and writing of the two different frames are done in
parallel. In this case, the crucial moment is the choice of the Protocol field: the second byte of the Ethernet Type
field must be read to decide if it is an ARP or IP message. The reading will be done while the second Byte of the
Ethernet Type field is written, which means that there are 4 bytes to be read before that. The PPP frame will be
written starting from the same state in which the fourth byte of the source address is read. Instead of writing the
bytes directly into the FrameBuffer, in this part, they are written into the Shift Memory and then its output is
written into the FrameBuffer. Since the code is written using one process and the write enable signal must be
asserted when the input data are valid, an extra state before the one used to write the payload must be set. In this
way, the ShiftMemory output and the control signal of the FIFO are all synchronized, and all the bytes are
transcribed correctly. The output is written directly into the FIFO only when storing the CRC32 bytes,
otherwise, it is at first stored into the shiftMemory and its output is written into the FIFO. Once the
ReadFrameEnd signal is asserted, the content of the ShiftMemory is shifted to write the last byte of the payload.
Then the four bytes of the CRC32 are written and finally the ReadFrame flag is asserted. The FSM goes back to
the idle state and the next frame can be processed. When a reading or writing operation is performed, it has to be
checked respectively if the FrameBuffer is not empty or the FIFO is not full. In the latter case, there is the need
to always check the full signal before taking action: this leads again to have both Moore and Mealy states.[30]

33

Figure 5.9: Data Flow management in the Outbound part of the PPPConverter component. The read
content, the content of the ShiftMemory, its output and the byte written in output are shown for each

state of the FSM.

34

5.5.3 Control Flow chart

As well as the inbound part, the Control Flow chart can be found in Appendix Section 14.1. It contains the
evolution of the states and all the control signals required. They follow the behavior described in the Data Flow
management Section. As for the inbound part, the flow that was followed is shown in Figure 5.4. The Control
Flow chart was divided into four parts: the reading of the destination MAC address, the reading of the source
MAC address and the writing of the header of the PPP frame, the payload reading and writing, and the CRC and
Flag writing.

5.5.4 Timing diagram

The timing diagrams have been separated into four different parts using the same approach as the Control
Flow Diagrams also in the outbound part. The four stages that are shown are the start of the reading phase of the
Ethernet Frame, the start of the writing phase of the PPP frame, the payload reading and writing phase and the
final states of the FSM where the system goes back to the IDLE state. The same rules described for the inbound
part apply for the outbound part in terms of content and organization of the diagrams. The trigger for the start of
the outbound FSM is when at least a frame is stored inside the FrameBuffer. Then the PPPConverter starts to
read it (Figure 5.10). When the proper state is reached, the FSM start to write into the ShiftMemory following
the timing interface previously described (Figure 5.11). Then, the FSM requires one state to wait for the payload
to be written into the FIFO. When the output of the ShiftMemory is ready and valid it is written into the FIFO
according to the previously described timing behavior (Figure 5.12). Finally the system writes directly into the
FIFO the CRC bytes, the Flag and goes back to the IDLE state (Figure 5.13).

Figure 5.10: Timing diagram of the start of the outbound FSM. In Table 5.5 the coding of the states is

shown.

Table 5.5: Coding of the states of the timing diagram in Figure 5.10

State name Coded name

STATE_IDLE A

STATE_UPDATE_BUFFER_CONTROL B

STATE_WAIT_BUFFER C

STATE_RD_DESTINATION_1 D

STATE_RD_DESTINATION_2 E

35

Figure 5.11: Timing diagram of the beginning of the writing of the PPP frame into the FIFO by the

outbound part of the PPPConverter component. The coding of the states is shown in Table 5.6.

Table 5.6: Coding of the states for the timing diagram in Figure 5.11
State name Coded name

STATE_RD_SOURCE_3 A

STATE_RD_SOURCE_4_WR_FLAG B

STATE_RD_SOURCE_5_WR_ADDRESS C

STATE_RD_SOURCE_6_WR_CONTROL D

Figure 5.12: Timing diagram of the payload management in the outbound part of the PPPConverter

component. The coding of the states is shown in Table 5.7.

Table 5.7: Coding of the state for the timing diagram in Figure 5.12

State name Coded name

STATE_WAIT_WR_PAYLOAD A

STATE_RD_WR_PAYLOAD B

STATE_SHIFT_LAST_OUT C

STATE_WR_CRC_1 D

36

Figure 5.13: Timing diagram of the CRC writing and end frame of the outbound part in the

PPPConverter component. The coding of the states is shown in Table 5.8.

Table 5.8: Coding of the state for the timing diagram in Figure 4.13

State name Coded name

STATE_WR_CRC_3 A

STATE_WR_CRC_4 B

STATE_WR_FLAG C

STATE_IDLE D

37

6. Simulations of PPPConverter

To analyze the behavior of the designed PPP, this component has been simulated with the Xilinx tool ISE
14.7. Since there is a Core Generated component, all the simulations have been done in the ISE 14.7 tool, Xilinx
property. All the testbench codes used in this section can be found in the Appendix Section 14.4 and the
PPPConverter code can be found in Appendix Section 14.3. For sake of brevity, here only the waveform results
will be shown. The bytes used as MAC addresses, payload and CRC are all random numbers.

6.1 ShiftMemory simulations
It is possible to demonstrate that the ShiftMemory component behaves as expected when stimulated with a

proper testbench (Figures 6.1 and 6.2). The testbench used to simulate the behavior of the ShiftMemory
component is based on a process with a wait for statement. At each clock cycle, one more byte is written into the
component as the shiftEnable signal is asserted. When the shiftEnable signal is not asserted, the ShiftMemory
stops to shift in values. If the shiftReset signal is asserted, the expected content of all the registers became 0x00
if in the inbound part (Figure 6.1) or 0x7E in the outbound part (Figure 6.2). The testbench that can be found in
Chapter 14 Section 14.4.1.

Figure 6.1: Waveform resulting from the testbench applied on the inboundShiftMemory.

Figure 6.2: Waveform resulting from the testbench applied on the outboundShiftMemory.

6.2 PPPConverter simulations results
To verify that the VHDL code of the PPPConverter satisfies the expected behavior, it was stimulated with a

custom testbench. This testbench generates the clock signal, the asynchronous reset and the stimuli sequences for
the inbound and outbound part. Regarding these two parts, two specific processes were used so that it was
possible to test the full duplex behavior of the component.

6.2.1 Inbound part simulation results
The inbound part of the PPPConverter component was simulated with a testbench and the resulting behavior is

as expected. The testbench is based on wait for statements and it recreates the interface of the inboundFIFO.
When the empty signal is not asserted, the inbound part starts to write the destination (Figure 6.3) and source
MAC addresses as well as reading from the dummy FIFO the PPP frame (Figure 6.4). Then the payload is

38

written as it is in the FrameBuffer (Figure 6.5) and finally when the 0x7E byte is read, the FSM writes the new
CRC signature and return to the IDLE state (Figure 6.6). The testbench code is in Appendix Section 14.4.2.

Figure 6.3: Simulation results of the inbound part. Start of the FSM and writing of the destination

MAC address.

Figure 6.4: Simulation results of the inbound part. The PPP frame is read, and a wrong value is

received. The FSM aborts it and goes back to the IDLE state.

Figure 6.5: Simulation results of the inbound part. The payload is read and written. When the byte 7E
is received the FSM starts to write the CRC.

Figure 5.6: Simulation results of the inbound part. The last two bytes of the CRC are written and the

FSM goes back to the IDLE state ready to convert another frame.

6.2.2 Outbound part simulation results
The testbench used to stimulate the outbound part was based as well on wait for statements process and it

recreates the FrameBuffer interface. When the FrameBuffer is not empty, the outbound part starts to read the
destination MAC address (Figure 6.7). While reading the source address it starts to write the PPP frame into the
outboundShiftMemory (Figure 6.8). The payload, then, is transferred as it is until the ReadFrameEnd signal is

39

asserted (Figure 6.9). Finally, the new CRC signature is written into the outboundFIFO as well as the flag and
the FSM goes back to the IDLE state (Figure 6.10). The testbench code can be found as well in Appendix
Section 14.4.2.

Figure 6.7: Simulation results of the outbound part. The FSM starts to read the destination MAC

address.

Figure 6.8: Simulation results of the outbound part. The PPP frame is written.

Figure 6.9: Simulation result of the outbound part. The Payload is read and written until the proper

signal from the FrameBuffer is asserted.

Figure 6.10: Simulation result of the outbound part. The CRC bytes are written and the FSM goes

back to the IDLE state.

40

41

7. Implementation and test on physical board

The implementation of the PPPConverter featured multiple steps. Firstly, a simulation of the full chain of the
message through two boards was performed with successful results. Secondly, only the PPPConverter chain was
uploaded on the FPGA to check if the system was transmitting the message through the IOChannel. Then the
PPPConverter chain was uploaded in parallel to the existent system to check if it could still work properly when
the IOChannel is transmitting data. Finally, the whole new system was uploaded and tested.

7.1 The simulation of the implemented system and results
The simulation of a full chain implementation was performed. The stimuliProcess a data-generator process

that simulates a random ARP request from the component belonging to a BoardA to the ones belonging to a
BoardB (Figure 7.1). In this picture is also shown the path of the message and all the components it will go
through. When the message is generated in the BoardA, it is written into the Rgmii-PHY component, sent to the
Bridge and written into the FrameBuffer connected to the Port 0 of the Ethernet Switch. Since the message is
broadcast by definition, it is sent to all the ports including the one with the PPPConverter component. The
message is written into the FrameBuffer to which the PPPConverter reads and translate the Ethernet Frame to a
PPP frame. The frame is then written into the UARTInterface component which serialized it. The serial signal is
the input of the UARTInterface belonging to the BoardB. The received bytes are stored in the FIFO and read by
the PPPConverter which recreates the Ethernet Frame and save it into the FrameBuffer. This buffer is connected
to another Ethernet Switch which sends the broadcast message to all the ports. The FrameBuffer of the Port 1 is
written and, when a full frame is stored, the Bridge reads it, attach the Preamble and SFD fields to it and sends it
to the Rgmii-PHY component. The latter should then send the message to the processor.

Figure 7.1: The DataPath of the full chain of transmission. This scheme was followed while

developing the testbench to simulate the behavior of a physical board.

With the stimuliProcess shown in Appendix 14.4.3, the full chain behavior was simulated with successful
results. The testbench recreates a Rgmii frame and writes it into the Rgmii-PHY component. The testbench is
developed with an FSM in which at each state a four-bit value is sent. In these simulations, the bytes that belong

42

to the message are purely random. In all this Figure and the two consecutive, the Rgmii-PHY component is
called SPhy, where S stands for Server, as the master of the communication.

The result of the simulation prove that the full chain transmission works as expected. As the transmission
starts, the four-bites data are sent together with the tx_ctl signal asserted. The data written into the
BufferInput_A (Figure 7.2). The message is then received by the PPPConverter, it is translated and the
IOChannel start to send the message in a serial way (Figure 7.3). Finally, the frame is received on the
outboundData_i signal of the Rgmii-PHY as the final stage of the whole chain transmission (Figure 7.4). In
Figure 7.5 is shown the full chain transition where the message is sent from the Board A and received on the
Board B.

Figure 7.2: Start of the transmission of the frame. The message is received by the Rgmii-Phy

component, passed through the Bridge and written into the BufferInput_A. The violets lines are the
divisors and they indicate the meaning of the signals right below them.

Figure 7.3: Simulation results of the full chain. The PPPConverter on the Board A receives the

frame and translate it. The PPP frame is then serialized by the UARTInterface in the Board A. It can
be also noticed the start of the conversion of the message by the PPPConverter on the Board B. The

violets lines are the divisors and they indicate the meaning of the signals right below them.

43

Figure 7.4: Simulation results of the full chain. The message is sent through the IOChannel and it is
sent along the chain until being written into the Rgmii-PHY. It is possible to notice the conversion
from PPP frame to Ethernet in the PPPConverter component. The violets lines are the divisors and

they indicate the meaning of the signals right below them.

Figure 7.5: Simulation results of the full chain. The frame is sent from the Board A and it reaches

finally the Rgmii-PHY component on the Board B. The violets lines are the divisors and they indicate
the meaning of the signals right below them.

7.2 The implementation of the PPPConverter chain and results
The FPGA was programmed to have only the PPPConverter component as well as a FrameBuffer, and the

UARTInterface to check if a waveform was transmitted on the physical IOChannel (Figure 7.6). The test
produced the desired waveform as output of the IOChannel. To obtain the data, a process called stimuliProcess
was used as a testbench to write data into the FrameBuffer (Appendix 14.4.3). The result of this physical test is
successful, a waveform was captured on the IOChannel. Since the link is LVDS, the reference probe was
inserted on the negate link and the signal probe on the positive link. The sampling of the data was made with
athe Mixed Signal Oscilloscope MSO 70404C by Tektronix (Figure 7.7). The clock frequency chosen for this
test is random and does not have meaning in the actual performances of the IOChannel.

44

Figure 7.6: First test implemented on the board, the chain involves only the PPPCoverter chain

blocks

Figure 7.7: Logic Analyzer sampled waveform representing the output of the IOChannel produced

with the setup in Figure 7.2. The frequency value is random

7.3 The implementation of the parallel design and results
The existing system and the PPPConverter chain were uploaded on the same FPGA but not linked. The

PPPConverter is still stimulated by the stimuliProcess. To check if the existing system could work in this setup,
the PING utility was used. The two physical boards are connected as in the already existent system and the PING
request was sent to the other board. The same structure was uploaded on the two boards. The results of this test
were not successful: the PING utility could not send any message to the other board. This issue was checked

45

with the tcpdump instruction[29], which shows on the terminal what messages are sent or received by the
processors. The IOChannel, though, was still transmitting the stream of data as expected (Figure 7.9).

Figure 7.8: Parallel implementation test setup. The system inside the dashed line is the system already

implemented while the other is the PPPConverter chain. The component called P is the Processor.

46

Figure 7.9: Logic Analyzer sampled waveform representing the output of the IOChannel produced

with the setup in Figure 7.8. The frequency of the signal is random

7.4 Results of the integration on the physical board
The PPPConverter chain was integrated into the existing architecture by connecting the FrameBuffer to one of

the Ports of the EthernetSwitch. The code was compiled, and the resulting bit file was uploaded on the two
Boards. The PING utility was used again to test if the two boards could communicate through the IOChannel.
The test was unsuccessful since it showed that the PING request was not sent to the other board. The ChipScope
PRO tool was used to check the behavior of the system inside the FPGA. This tool is designed by Xilinx and
allows to have the sampled waveform of some signals inside the FPGA. The signals are shown together with a
trigger signal that starts the sampling of the data. For this test, the asserted wr_en signal of the outboundFIFO
was the trigger and the data was the IOChannel serial signal sent to the buffer that translates the message from
single-ended to differential. This differential signal is then sent toward the LVDS pins of the FPGA. The
analysis with ChipScope showed that on the input of the differential buffer there was an IOChannel signal
(Figure 7.10), but the board could not propagate it toward the physical IOChannel since the Mixed Signal
Oscilloscope could not sample any data.

Figure 7.10: Chiscope results. The DataPort (0) is the trigger signal wr_en of the outboundFIFO and
the DataPort (1) is the IOChannel serial signal

47

8. Discussion and future implementations

The results of the simulation of the different part of the PPPConverter prove that it was developed according to
the expected behavior. The ShiftMemory component shows the diagonal shift behavior as the timing diagram
was expecting it to behave. The inbound part correctly verifies that the incoming PPP frame has the correct
format and translate it into an Ethernet frame. It also interfaces correctly the FrameBuffer and FIFO since no
byte is lost or duplicated in the communication. The outbound part also transforms the Ethernet frame into a PPP
one without modifying the payload. However, there are still three important features that have to be implemented
in future stages in the VHDL code. These allow the component to be flexible and fully compliant of the PPP
standard. The MAC addresses are hardcoded in the VHDL as constant signals, which is not a flexible solution if
the board is substituted. The escaping sequence belonging to the PPP standard has not been developed to
simplify the initial development of the PPPConverter but it must be developed to create a fully standard
interface. Finally, the FIFO used in the UARTInterface is a Xilinx Core generated FIFO. This means that if a
new FPGA is chosen with a different brand, the whole interface has to be redesigned.

The MAC addresses are different depending on which part of the PPPConverter is considered. In the inbound
part, the source MAC address is a locally administered one is can be hard-coded inside the system since it is used
only locally. However, the destination MAC address is the universally administered of the processor. This value
cannot be hardcoded since this will result in a custom made code for each sold board. To prevent this to happen,
in future implementation the destination address must be saved in a register that could communicate also with
the outbound part. When the message is sent outside the board, the source address is the one identifying the
processor. Therefore, when an outbound frame is detected, the source field should be saved so that the inbound
part can update the correct address. This operation should be developed outside of the PPPConverter component
in order to keep the component full duplex.

The escaping mechanism should be added to the FSMs of both inbound and outbound parts. In the outbound
part, whenever a byte is read, if it is equal to 0x7E it should be substituted with a sequence of two bytes: 0x7D
and the XOR between 0x7E and 0x20. If the byte 0x7D is read, it is substituted with 0x7D and the XOR between
x7D and 0x20. In the inbound part, if a 0x7D byte is received, it means that one byte was escaped. The resulting
byte will be the either the XOR between 0x7D and 0x20 or between 0x7E and 0x20. This verification will be
added whenever a new byte is read. It will also require to modify the FSM in both parts by adding one state to
handle the extra inserted byte. This solution will not compromise the synchronization toward either the
FrameBuffer or the FIFOs. This escaping sequence will allow the system to be fully standard and it will prevent
the interruption of the frame.

The Core generated FIFO should be removed and substituted with a generic FIFO. The used FIFO is generated
by the Xilinx ISE 14.7 tool and it can only be tested in that environment. Moreover, if future implementations of
the system will require an FPGA sold by a different brand, the whole interface must be redesigned in terms of
timing and signal interface. It might even be that the PPPConverter should be designed again from the start if
there is a significant difference. Developing a brand-independent FIFO will ease the design in term of the
flexibility of the system.

Concerning the physical implementation of the interface, the results show that the system does not work. The
single PPPConverter chain is reacting as expected since waveforms were sampled on the IOChannel, but the
integration with the existent system must be thoroughly studied. The problem might be generated by some
timing constraints not related to the internal logic. Since there was no warning from the ISE tool about setup and
hold times, the synchronization with other elements on the board that are connected to the FPGA must be
analyzed. If more logic is added to the FPGA the system is going to react more slowly even if the new
components are not connected to the previous system. Moreover, since the IOChannel was not used before, it
can also be that the processor sets some part of the board in a status that forces the IOChannel to stop to
communicate when connected to the message flow. This hypothesis is made by analyzing the ChipScope image
and noticing that the Logic Analyzer could not observe any signal. The FPGA is producing a serial stream of
data but it does not reach the physical pin.

48

49

9. Conclusions

The PPPConverter component was developed in VHDL. The relationship between it and the components
already in the system was studied and taken into consideration during the development of the VHDL code. The
timing and signal requirements were satisfied. The two parts were developed to reach the most parallelized
possible flow of data as well as the control of the integrity of the signal. A new component, the ShiftMemory,
was developed to further synchronize the conversion of the frame. The simulations of the PPPConverter and the
ShiftMemory are successful since they behave with the theoretic expected results. The physical implementation
is not fully complete.

With this new component, the system will not only be able to communicate via a new channel that is faster
than the one used before but also maintains the integrity of the messages. However, there are some limitations to
the component and the system. The PPPConveter is not fully developed as it lacks a proper MAC address
management. Moreover, the PPP standard is not fully implemented yet since the escaping function is not
developed in the code. This will add more integrity to the transmission of the messages. There are also some
limitations on the system level. The FIFO is specifically used for the used FPGA and it should be developed as a
generic component to increase the flexibility of the system. Moreover, the physical implementation shows timing
constraint issues which should be studied thoroughly as well as the processor capability of control of the board
elements.

Overall, since this component is the first interface developed for the IOChannel, it is a good starting point.
Simulations and its own physical implementation satisfy the requirement. Although, since the system in which it
is inserted is complex, deeper studies and development must be carried out.

50

51

10. List of Symbols

Name Meaning

ARP Address Resolution Protocol

CBI Computer-based Interlocking System

CIS Central Interlocking System

CRC Cyclic Redundant Check

FIFO First In First Out

FPGA Field Programmable Gate Array

HDLC High-level Data Link Control

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

Ipv4 Internet Protocol version 4

LAN Local Area Network

LSB Least Significant Bit

LLC Logical Link Control

LVDS Low Voltage Differential Signal

MAC Media Access Control

MAN Metropolitan Area Network

OCS Object Controller System

OSI Open System Interconnection

PCB Printed Circuit Board

PDU Protocol Data Unit

PHY PHYsical Layer

PING Packet Internet Grouper

PPP Point to Point Protocol

RAMS Reliability, Availability, Maintainability, Safety

SFD Start of Frame Delimiter

SIL Safety Integrity Level

SLIP Serial Line Interface Protocol

TCC Traffic Control Center

TMS Traffic Management System

TN Transmission Network

UART Universal Asynchronous Receiver-Transmitter

VHDL Very High Speed Integrated Circuits Hardware
Description Language

WAN Wide Area Network

52

53

11. List of Figures

Number Description Page

1.1 The hierarchical structure of the Railway Communication System. The TMS communicates
with the CBI. The CBI is composed by the CIS, TN and the OCS which is the elements that
directly control the Wayside Objects.

1

2.1 V300ZEFIRO 5

2.2 INNOVIA APM 300 5

3.1 UART framing [16]. It has a start bit coded as a transition between a logic 1 and 0 and a stop
bit coded as 1

8

3.2 Ethernet frame format, the numbers in the Figure indicate the number of bytes allowed by
the standard. It is composed by a preamble, an SFD byte, 12 bytes for destination and source
MAC address, the Ethernet type, the payload and four final bytes of CRC32

9

3.3 Point to Point frame format, the numbers in the Figure indicate the number of bytes allowed
by the standard. It is started and ended by the Flag, it contains also the Address and Control
fields, two Protocol field that described which protocol is the Payload message and four
bytes of CRC32

10

4.1 The communication system inside the FPGA. The message is sent by the Processor, it is sent
to the IOChannel through the following components: Rgmii-PHY, Bridge, FrameBuffer,
EthernetSwitch, FrameBuffer, PPPConverter, and UARTInterface

13

4.2 Rgmii-Phy signals interface 15

4.3 Timing diagram of the signals used by the processor to send a message to the FPGA. The
interface component is Rgmii-PHY. If the ctl signal is asserted the data is valid. The data are
an example and are not indicative of a proper Ethernet frame.

16

4.4 Timing diagram of the interface between the Rgmii-PHY and Bridge components. Inbound
Interface. The start and end signal delimit the frame. The data are an example and are not
indicative of a proper Ethernet frame.

16

4.5 Bridge signals interface 17

4.6 FrameBuffer signals interface. Since the inbound and outbound parts have the same
interface, the signals shown refer to a generic part.

18

4.7 Timing diagram of the reading operation on the FrameBuffer component. The ReadContent
signal is asserted until the ReadFrameEnd is asserted and the frame is finished. To read the
next frame the ReadFrame signal must be strobed for one clock cycle. The data are random
values.

18

4.8 Timing diagram of the writing operation on the FrameBuffer component. While the
WriteContent signal is asserted, the data are written inside the buffer. When a new frame has
to be written, the WriteFrame signal is strobed for one clock cycle.

18

4.9 FIFOBuffer signals interface 19

4.10 Timing diagram of the reading operation from the FIFOBuffer. The rd_en signal is asserted
and one clock cycle later the data are read. The data is the correct one only if the valid signal
is asserted as well. The data are random values.

20

4.11 Timing diagram of the writing sequence on the FIFOBuffer component. The wr_en signal is
asserted and the data is written into the FIFO. If the memory has correctly written the data,
the wr_ack is asserted. The data are random.

20

5.1 Behavior of the ShiftMemory component. When the end of frame trigger is asserted, the last
shifted out content is the data and the content of the ShiftMemory is the old CRC, that can

22

54

be discarded.

5.2 Timing diagram of the ShiftMemory. When the enable is asserted the bytes are shifted
creating the diagonal pattern. When the reset is asserted the component assumes the 0x00
value if inbound and 0x7E if outbound.

23

5.3 Data Flow management in the inbound part of the PPPConverter component. The read
content, the content of the ShiftMemory, its output and the byte written in output are shown
for each state of the FSM.

26

5.4 General division of the control flow chart. For sake of simplicity, four parts have been
identified. The destination MAC address management, the source MAC address and
possible PPP header, the payload, and the CRC and end-frame.

27

5.5 Start of the Inbound FSM, the system begins to write the destination MAC address into the
FrameBuffer. The states have been coded to make the timing diagram more understandable.
The corresponding states are shown in Table 5.1.

28

5.6 Timing diagram of the start of the reading part of the PPP frame, inbound part. A faulty byte
is detected, and the system aborts the frame. The states have been coded to make the timing
diagram more understandable. The corresponding states are shown in Table 5.2.

28

5.7 Timing diagram of the handling of the payload in the Inbound part of the PPPConverter
component. The states have been coded to make the timing diagram more understandable.
The corresponding states are shown in Table 5.3.

29

5.8 Timing diagram of the end of the evolution of the inbound FSM. The states have been coded
to make the timing diagram more understandable. The corresponding states are shown in
Table 5.5.

30

5.9 Data Flow management in the Outbound part of the PPPConverter component. The read
content, the content of the ShiftMemory, its output and the byte written in output are shown
for each state of the FSM.

33

5.10 Timing diagram of the start of the outbound FSM. In Table 5.5 the coding of the states is
shown.

35

5.11 Timing diagram of the beginning of the writing of the PPP frame into the FIFO by the
outbound part of the PPPConverter component. The coding of the states is shown in Table
5.6.

35

5.12 Timing diagram of the payload management in the outbound part of the PPPConverter
component. The coding of the states is shown in Table 5.7.

35

5.13 Timing diagram of the CRC writing and end frame of the outbound part in the PPPConverter
component. The coding of the states is shown in Table 5.8.

36

6.1 Waveform resulting from the testbench applied on the inboundShiftMemory. 37

6.2 Waveform resulting from the testbench applied on the outboundShiftMemory. 37

6.3 Simulation results of the inbound part. Start of the FSM and writing of the destination MAC
address.

38

6.4 Simulation results of the inbound part. The PPP frame is read, and a wrong value is
received. The FSM aborts it and goes back to the IDLE state.

38

6.5 Simulation results of the inbound part. The payload is read and written. When the byte 7E is
received the FSM starts to write the CRC.

38

6.6 Simulation results of the inbound part. The last two bytes of the CRC are written and the
FSM goes back to the IDLE state ready to convert another frame.

38

6.7 Simulation results of the outbound part. The FSM starts to read the destination MAC
address.

39

6.8 Simulation results of the outbound part. The PPP frame is written. 39

6.9 Simulation result of the outbound part. The Payload is read and written until the proper 39

55

signal from the FrameBuffer is asserted.

6.10 Simulation result of the outbound part. The CRC bytes are written and the FSM goes back to
the IDLE state.

39

7.1 The DataPath of the full chain of transmission. This scheme was followed while developing
the testbench to simulate the behavior of a physical board.

41

7.2 Start of the transmission of the frame. The message is received by the Rgmii-Phy
component, passed through the Bridge and written into the BufferInput_A. The violets lines
are the divisors and they indicate the meaning of the signals right below them.

42

7.3 Simulation results of the full chain. The PPPConverter on the Board A receives the frame
and translate it. The PPP frame is then serialized by the UARTInterface in the Board A. It
can be also noticed the start of the conversion of the message by the PPPConverter on the
Board B. The violets lines are the divisors and they indicate the meaning of the signals right
below them.

42

7.4 Simulation results of the full chain. The message is sent through the IOChannel and it is sent
along the chain until being written into the Rgmii-PHY. It is possible to notice the
conversion from PPP frame to Ethernet in the PPPConverter component. The violets lines
are the divisors and they indicate the meaning of the signals right below them.

43

7.5 Simulation results of the full chain. The frame is sent from the Board A and it reaches
finally the Rgmii-PHY component on the Board B. The violets lines are the divisors and
they indicate the meaning of the signals right below them.

43

7.6 First test implemented on the board, the chain involves only the PPPCoverter chain blocks 44

7.7 Logic Analyzer sampled waveform representing the output of the IOChannel produced with
the setup in Figure 7.2. The frequency value is random

44

7.8 Parallel implementation test setup. The system inside the dashed line is the system already
implemented while the other is the PPPConverter chain

45

7.9 Logic Analyzer sampled waveform representing the output of the IOChannel produced with
the setup in Figure 7.8. The frequency of the signal is random

46

7.10 Chiscope results. The DataPort (0) is the trigger signal wr_en of the outboundFIFO and the
DataPort (1) is the IOChannel serial signal

46

14.1 Control flow chart, behavioral representation. Part 1 of the Preamble in the inbound part 61

14.2 Control flow chart, behavioral representation. Part 2 of the Preamble in the inbound part 62

14.3 Control flow chart, explicit controls. Part 1 of the Preamble in the inbound part 63

14.4 Control flow chart, explicit controls. Part 2 of the Preamble in the inbound part 64

14.5 Control flow chart, behavioral representation. Payload management in the inbound part 65

14.6 Control flow chart, explicit controls. Payload management in the inbound part 66

14.7 Control flow chart, behavioral representation. CRC and frame end management in the
inbound part

67

14.8 Control flow chart, explicit controls. CRC and frame end management in the inbound part 68

14.9 Control flow chart, behavioral representation. Part 1 of the Preamble in the outbound part 70

14.10 Control flow chart, behavioral representation. Part 2 of the Preamble in the outbound part 71

14.11 Control flow chart, explicit controls. Part 1 of the Preamble in the outbound part 72

14.12 Control flow chart, explicit controls. Part 2 of the Preamble in the outbound part 73

14.13 Control flow chart, behavioral representation. Payload management in the outbound part 75

14.14 Control flow chart, explicit controls. Payload management in the outbound part 76

14.15 Control flow chart, behavioral representation. CRC and frame end management in the 77

56

outbound part

14.16 Control flow chart, explicit controls. CRC and frame end management in the outbound part 78

57

12. List of Tables

Name Meaning Page

4.1 Possible Protocol overhead
scenarios

14

5.1 Coding of the states for the timing
diagram in Figure 5.4

28

5.2 Coding of the states for the timing
diagram in Figure 5.6

29

5.3 Coding of the states for the timing
diagram in Figure 5.7

29

5.4 Coding of the states for the timing
diagram in Figure 5.8

30

5.5 Coding of the states for the timing
diagram in Figure 5.10

34

5.6 Coding of the states for the timing
diagram in Figure 5.11

35

5.7 Coding of the states for the timing
diagram in Figure 5.12

35

5.8 Coding of the states for the timing
diagram in Figure 5.13

36

58

59

13. References

[1] “The Components of a Telecommunications System - Video & Lesson Transcript | Study.com.”

[Online]. Available: https://study.com/academy/lesson/the-components-of-a-telecommunications-
system.html. [Accessed: 28-Nov-2018].

[2] A. Zaklouta, “High-Speed Communication in OSI Layer 2 Research and Implementation,” KTH, 2018.

[3] “What is an FPGA? Field Programmable Gate Array.” [Online]. Available:

https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html. [Accessed: 02-Dec-2018].

[4] “What Is a Computer Network Switch?” [Online]. Available: https://www.lifewire.com/definition-of-
network-switch-817588. [Accessed: 29-Nov-2018].

[5] “Understanding LVDS for Digital Test Systems - National Instruments.” [Online]. Available:

http://www.ni.com/white-paper/4441/en/. [Accessed: 29-Nov-2018].

[6] “IEEE 802.3-2018 - IEEE Approved Draft Standard for Ethernet.” [Online]. Available:

https://standards.ieee.org/standard/802_3-2018.html. [Accessed: 29-Nov-2018].

[7] W. Simpson, “The Point-to-Point Protocol (PPP).”

[8] J. L. Romkey, “Nonstandard for transmission of IP datagrams over serial lines: SLIP.”

[9] “[MS-ABS]: 32-Bit CRC Algorithm.” [Online]. Available: https://msdn.microsoft.com/en-
us/library/dd905031.aspx. [Accessed: 29-Nov-2018].

[10] Bombardier Inc., “History of Bombardier - Planes and Trains,” 2014. [Online]. Available:

https://www.bombardier.com/en/about-us/history.html. [Accessed: 29-Nov-2018].

[11] “Frecciarossa 1000 Very High Speed Train Makes Maiden Journey in Italy - Bombardier.” [Online].

Available: https://www.bombardier.com/en/media/newsList/details.bombardier-
transportation20150427frecciarossa1000veryhighspeedtr.bombardiercom.html. [Accessed: 29-Nov-
2018].

[12] “Bombardier’s INNOVIA APM 300 Automated People Mover System Enters Service at Munich Airport
- Bombardier.” [Online]. Available: https://www.bombardier.com/en/media/newsList/details.bt-
20160422-bombardiers-innovia-apm-300-automated-people-mover-s.bombardiercom.html. [Accessed:
29-Nov-2018].

[13] “What is the OSI Model? - Definition from Techopedia.” [Online]. Available:

https://www.techopedia.com/definition/24205/open-systems-interconnection-model-osi-model.
[Accessed: 29-Nov-2018].

[14] “What is Data Link Layer? - Definition from Techopedia.” [Online]. Available:
https://www.techopedia.com/definition/18698/data-link-layer. [Accessed: 29-Nov-2018].

[15] W. Peterson and D. Brown, “Cyclic Codes for Error Detection,” Proc. IRE, vol. 49, no. 1, pp. 228–235,
Jan. 1961.

[16] “File:UART timing diagram.svg - Wikimedia Commons.” [Online]. Available:

https://commons.wikimedia.org/wiki/File:UART_timing_diagram.svg. [Accessed: 29-Nov-2018].

[17] “Standard Group MAC Addresses Standard Group MAC Addresses: A Tutorial Guide.”

[18] “B1R-623 Cisco IOS Bridging and IBM Networking Command Reference, Volume 1 of 2 Ethernet Type
Codes.”

[19] J. Postel, “Internet Protocol.”

[20] “Point-to-Point (PPP) Protocol Field Assignments.” [Online]. Available:

https://www.iana.org/assignments/ppp-numbers/ppp-numbers.xhtml. [Accessed: 29-Nov-2018].

[21] D. Plummer, “An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to

48.bit Ethernet Address for Transmission on Ethernet Hardware.”

[22] “man page ping section 8.” [Online]. Available: http://www.manpagez.com/man/8/ping/. [Accessed: 29-

60

Nov-2018].

[23] “Wayback Machine.” [Online]. Available:

https://web.archive.org/web/20160303171328/http:/www.hp.com/rnd/pdfs/RGMIIv2_0_final_hp.pdf.
[Accessed: 29-Nov-2018].

[24] “What is a network bridge? | CCNA.” [Online]. Available: https://geek-university.com/ccna/what-is-a-
network-bridge/. [Accessed: 29-Nov-2018].

[25] “Wishbone :: OpenCores.” [Online]. Available: https://opencores.org/howto/wishbone. [Accessed: 30-
Nov-2018].

[26] “round robin arbitration | RTLery.” [Online]. Available: http://www.rtlery.com/articles/round-robin-
arbitration. [Accessed: 30-Nov-2018].

[27] “LogiCORE IP FIFO Generator v9.3 Product Guide PG057,” 2012.

[28] “Weblet Importer.” [Online]. Available: https://www.tcpdump.org/manpages/tcpdump.1.txt. [Accessed:

29-Nov-2018].

[29] “tcpdump(8): dump traffic on network - Linux man page.” [Online]. Available:

https://linux.die.net/man/8/tcpdump. [Accessed: 29-Nov-2018].

[30] “Moore and Mealy Machines.” [Online]. Available:

https://www.tutorialspoint.com/automata_theory/moore_and_mealy_machines.htm. [Accessed: 29-Nov-
2018].

61

14. Appendix
14.1 Inbound Control Flow charts

In the following charts are represented the behavior of the inbound FSM divided in the four parts as described
in Figure 5.4. There are also the same charts with the explicit signals. In these charts are shown only the signals
that change in that state and have an effect on the behavior of the system.

14.1.1 Preamble
In Figures 14.1 and 14.2 are shown respectively the start of the FSM together the writing of the destination

MAC address and the start of the reading part of the PPP frame. In Figures 14.3 and 14.4 are represented the
same charts but with the explicit controls used in every state.

Figure 14.1: Control flow chart, behavioral representation. Part 1 of the Preamble in the inbound part

62

Figure 14.2: Control flow chart, behavioral representation. Part 2 of the Preamble in the inbound part

63

Figure 14.3: Control flow chart, explicit controls. Part 1 of the Preamble in the inbound part

64

Figure 14.4: Control flow chart, explicit controls. Part 2 of the Preamble in the inbound part

65

14.1.2 Payload
Figures 14.5 and 14.6 show the control flow charts of the Payload part. They feature the behavior and explicit

controls part, respectively.

Figure 14.5: Control flow chart, behavioral representation. Payload management in the inbound part

66

Figure 14.6: Control flow chart, explicit controls. Payload management in the inbound part

14.2.3 CRC and Ending

In Figures 14.7 and 14.8 are shown the control flow charts of the last bytes of CRC and frame ending part.
Respectively, in the former there is the behavior and in the latter the explicit controls used in each state.

67

Figure 14.7: Control flow chart, behavioral representation. CRC and frame end management in the

inbound part

68

Figure 14.8: Control flow chart, explicit controls. CRC and frame end management in the inbound

part

69

14.2 Outbound Control Flow charts
This section follows the same structure of 14.1, but all the charts are referred to the outbound part.

14.2.1 Preamble
In Figures 14.9 and 14.10 are shown respectively the start of the FSM together with the reading of the

destination MAC address and the start of the writing part of the PPP frame. In Figures 14.11 and 14.12 are
represented the same charts but with the explicit controls used in every state.

70

Figure 14.9: Control flow chart, behavioral representation. Part 1 of the Preamble in the outbound part

71

Figure 14.10: Control flow chart, behavioral representation. Part 2 of the Preamble in the outbound

part

72

Figure 14.11: Control flow chart, explicit controls. Part 1 of the Preamble in the outbound part

73

Figure 14.12: Control flow chart, explicit controls. Part 2 of the Preamble in the outbound part

74

14.2.2 Payload
In Figures 14.13 and 14.14 are shown the control flow charts of the Payload part. In the former, there is the

behavior , in the latter, the explicit controls used in each state.

75

Figure 14.13: Control flow chart, behavioral representation. Payload management in the outbound

part

76

Figure 14.14: Control flow chart, explicit controls. Payload management in the outbound part

77

14.2.3 CRC and Ending
Figures 14.15 and 14.16 show the control flow charts of the last bytes of CRC and frame ending part. In the

former, there is the behavior and, in the latter, the explicit controls used in each state.

Figure 14.15: Control flow chart, behavioral representation. CRC and frame end management in the

outbound part

78

Figure 14.16: Control flow chart, explicit controls. CRC and frame end management in the outbound

part

79

14.3 PPPConverter VHDL Code
--

-- (C) COPYRIGHT Bombardier Transportation Sweden AB, 2010

--

-- We reserve all rights in this file and in the information

-- contained therein. Reproduction, use or disclosure to third

-- parties without express authority is strictly forbidden.

--

-- %name: EthIpPPP.vhd %

-- %version: 1.0 %

-- %created_by: emiglior %

-- %date_created: 02-08-2018 14:54 %

--

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity PPPConverter is

port (

 clk: in std_logic;

 areset_n: in std_logic;

 macClient: in std_logic_vector(47 downto 0);

 macSProcessor: in std_logic_vector(47 downto 0);

 -- interface toward/from RioFrameBuffer

 outboundReadFrameEmpty: in std_logic;

 outboundReadContentEnd: in std_logic;

 outboundReadFrame: out std_logic;

 outboundReadContent: out std_logic;

 inFrameOutbound: in std_logic_vector(7 downto 0);

 inboundWriteFrame: out std_logic;

 inboundWriteFrameAbort: out std_logic;

 inboundWriteContent: out std_logic;

 inFrameInbound: in std_logic_vector(7 downto 0);

 inboundWriteFrameFull: in std_logic;

 -- interface toward/from Xilinx buffer

 full: in std_logic;

 wr_ack: in std_logic;

80

 wr_en: out std_logic;

 outFrameOutbound: out std_logic_vector (7 downto 0);

 empty: in std_logic;

 rd_en: out std_logic;

 valid: in std_logic;

 outFrameInbound: out std_logic_vector (7 downto 0);

 outFlush : out std_logic;

 inFlush: out std_logic

);

end entity;

architecture PPPModuleBehaviour of PPPConverter is

 function reversed(slv: std_logic_vector) return std_logic_vector is

 variable result: std_logic_vector(slv'reverse_range);

 begin

 for i in slv'range loop

 result(i) := slv(i);

 end loop;

 return result;

 end reversed;

component shiftMemoryOutbound is

generic (CONTENT_WIDTH : natural);

port (

 clk: in std_logic;

 areset_n: in std_logic;

 reset: in std_logic;

 shiftEnable: in std_logic;

 shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0);

 shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0)

);

end component;

component shiftMemoryInbound is

generic (CONTENT_WIDTH : natural);

port (

81

 clk: in std_logic;

 areset_n: in std_logic;

 reset: in std_logic;

 shiftEnable: in std_logic;

 shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0);

 shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0)

);

end component;

component Crc32Ethernet is

 port(

 d_i : in std_logic_vector(7 downto 0);

 crc_i : in std_logic_vector(31 downto 0);

 crc_o : out std_logic_vector(31 downto 0));

end component;

type stateInbound is (

 STATE_IDLE,

 STATE_WR_DESTINATION_1,

 STATE_WR_DESTINATION_2,

 STATE_WR_DESTINATION_3,

 STATE_WR_DESTINATION_4,

 STATE_WR_DESTINATION_5_RD_FLAG,

 STATE_WR_DESTINATION_6_RD_ADDRESS,

 STATE_WR_SOURCE_1_RD_CONTROL,

 STATE_WR_SOURCE_2_RD_PROTOCOL_1,

 STATE_WR_SOURCE_3_RD_PROTOCOL_2,

 STATE_WR_SOURCE_4_RD_PAYLOAD,

 STATE_WR_SOURCE_5_RD_PAYLOAD,

 STATE_WR_SOURCE_6_RD_PAYLOAD,

 STATE_WR_ETHTYPE_1_RD_PAYLOAD,

 STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD,

 STATE_RD_WR_PAYLOAD,

 STATE_WR_CRC_1,

 STATE_WR_CRC_2,

 STATE_WR_CRC_3,

 STATE_WR_CRC_4,

 STATE_END_WR_STROBE,

 STATE_ERROR

);

82

type stateOutbound is (STATE_IDLE,

 STATE_UPDATE_BUFFER_CONTROL,

 STATE_WAIT_BUFFER,

 STATE_RD_DESTINATION_1,

 STATE_RD_DESTINATION_2,

 STATE_RD_DESTINATION_3,

 STATE_RD_DESTINATION_4,

 STATE_RD_DESTINATION_5,

 STATE_RD_DESTINATION_6,

 STATE_RD_SOURCE_1,

 STATE_RD_SOURCE_2,

 STATE_RD_SOURCE_3,

 STATE_RD_SOURCE_4_WR_FLAG,

 STATE_RD_SOURCE_5_WR_ADDRESS,

 STATE_RD_SOURCE_6_WR_CONTROL,

 STATE_RD_ETHERNET_TYPE_1_WR_PROTOCOL_1,

 STATE_RD_ETHERNET_TYPE_2_WR_PROTOCOL_2,

 STATE_WAIT_WR_PAYLOAD,

 STATE_RD_WR_PAYLOAD,

 STATE_SHIFT_LAST_OUT,

 STATE_WR_CRC_1,

 STATE_WR_CRC_2,

 STATE_WR_CRC_3,

 STATE_WR_CRC_4,

 STATE_WR_FLAG

);

signal shiftResetInbound, shiftEnableInbound : std_logic;

signal inNextFrame, inChosenFrame : std_logic_vector (7 downto 0);

signal crc32EthData: std_logic_vector (7 downto 0);

signal crc32EthCurrent, crc32EthNext: std_logic_vector (31 downto 0);

signal currentStateInbound: stateInbound;

signal ethType: std_logic_vector (7 downto 0);

signal shiftResetOutbound, shiftEnableOutbound : std_logic;

signal outNextFrame, outChosenFrame : std_logic_vector (7 downto 0);

signal crc32IpData: std_logic_vector (7 downto 0);

signal crc32IpCurrent, crc32IpNext: std_logic_vector (31 downto 0);

signal currentStateOutbound: stateOutbound;

signal outputFrameOutbound, outputFrameInbound: std_logic_vector (7 downto

0);

83

signal inboundOutputWriteFrame: std_logic;

begin

-- inbound components

inboundShifter: shiftMemoryInbound

generic map (CONTENT_WIDTH => 8)

port map (clk => clk, areset_n => areset_n, reset => shiftResetInbound,

shiftEnable => shiftEnableInbound,

shiftIn => inNextFrame, shiftOut => inChosenFrame);

crc32BitEthModule: Crc32Ethernet

port map (d_i => crc32EthData, crc_i => crc32EthNext, crc_o =>

crc32EthCurrent);

-- oubound components

outboundShifter: shiftMemoryOutbound

generic map (CONTENT_WIDTH => 8)

port map (clk => clk, areset_n => areset_n, reset =>

shiftResetOutbound, shiftEnable => shiftEnableOutbound,

shiftIn => outNextFrame, shiftOut => outChosenFrame);

crc32BitIPModule: Crc32Ethernet

port map (d_i => crc32IpData, crc_i => crc32IpNext, crc_o =>

crc32IpCurrent);

outFrameInbound <= outputFrameInbound;

inboundWriteFrame <= inboundOutputWriteFrame;

inboundFrameCreationStateContent: process (clk, areset_n)

begin

if (areset_n='0') then

 currentStateInbound <= STATE_IDLE;

 shiftEnableInbound <= '0';

 shiftResetInbound <= '1';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 inboundWriteFrameAbort <= '0';

 inFlush <= '1';

elsif (clk'event and clk='1') then

case currentStateInbound is

when STATE_IDLE => shiftEnableInbound <= '0';

84

 shiftResetInbound <= '1';

 inFlush <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 inboundWriteFrameAbort <= '0';

 crc32EthData <= (others => '0');

 crc32EthNext <= x"ffffffff";

 if empty = '0' then

 currentStateInbound <=

STATE_WR_DESTINATION_1;

 else currentStateInbound <= STATE_IDLE;

 end if;

when STATE_WR_DESTINATION_1 =>

 if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macSProcessor

(47 downto 40));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macSProcessor (47

downto 40);

 currentStateInbound <=

STATE_WR_DESTINATION_2;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_DESTINATION_1;

 end if;

when STATE_WR_DESTINATION_2 =>

 if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

85

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed(macSProcessor (39

downto 32));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macSProcessor (39

downto 32);

 currentStateInbound <=

STATE_WR_DESTINATION_3;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0'

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_DESTINATION_2;

 end if;

when STATE_WR_DESTINATION_3 =>

 if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macSProcessor

(31 downto 24));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macSProcessor (31

downto 24);

 currentStateInbound <=

STATE_WR_DESTINATION_4;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_DESTINATION_3;

 end if;

86

when STATE_WR_DESTINATION_4 =>

 if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed(macSProcessor

(23 downto 16));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macSProcessor (23

downto 16);

 currentStateInbound <=

STATE_WR_DESTINATION_5_RD_FLAG;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_DESTINATION_4;

 end if;

when STATE_WR_DESTINATION_5_RD_FLAG =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed(macSProcessor (15

downto 8));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macSProcessor (15

downto 8);

 if inFrameInbound /= x"7E" then

currentStateInbound <= STATE_ERROR;

 else currentStateInbound <=

STATE_WR_DESTINATION_6_RD_ADDRESS;

 end if;

87

 else

 currentStateInbound <=

STATE_WR_DESTINATION_5_RD_FLAG;

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 end if;

when STATE_WR_DESTINATION_6_RD_ADDRESS =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macSProcessor (7

downto 0));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macSProcessor (7

downto 0);

 if (inFrameInbound /= x"FF") then

currentStateInbound <= STATE_ERROR;

 else

 currentStateInbound <=

STATE_WR_SOURCE_1_RD_CONTROL;

 end if;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_DESTINATION_6_RD_ADDRESS;

 end if;

when STATE_WR_SOURCE_1_RD_CONTROL =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '0';

88

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macClient (47

downto 40));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macClient (47 downto

40);

 if (inFrameInbound /= x"03") then

currentStateInbound <= STATE_ERROR;

 else

 currentStateInbound <=

STATE_WR_SOURCE_2_RD_PROTOCOL_1;

 end if;

 else

 currentStateInbound <=

STATE_WR_SOURCE_1_RD_CONTROL;

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 end if;

when STATE_WR_SOURCE_2_RD_PROTOCOL_1 =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macClient (39

downto 32));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macClient (39 downto

32);

 if (inFrameInbound /= x"00") then

currentStateInbound <= STATE_ERROR;

 else

 currentStateInbound <=

STATE_WR_SOURCE_3_RD_PROTOCOL_2;

 end if;

89

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_SOURCE_2_RD_PROTOCOL_1;

 end if;

when STATE_WR_SOURCE_3_RD_PROTOCOL_2 =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macClient (31

downto 24));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macClient (31 downto

24);

 if (inFrameInbound = x"21") then

 ethType <= x"00";

 currentStateInbound <=

STATE_WR_SOURCE_4_RD_PAYLOAD;

 elsif inFrameInbound = x"81" then

 ethType <= x"06";

 currentStateInbound <=

STATE_WR_SOURCE_4_RD_PAYLOAD;

 else

 currentStateInbound <= STATE_ERROR;

 end if;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_SOURCE_3_RD_PROTOCOL_2;

 end if;

90

when STATE_WR_SOURCE_4_RD_PAYLOAD =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '1';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macClient (23

downto 16));

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= macClient (23 downto

16);

 inNextFrame <= inFrameInbound;

 currentStateInbound <=

STATE_WR_SOURCE_5_RD_PAYLOAD;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_SOURCE_4_RD_PAYLOAD;

 end if;

when STATE_WR_SOURCE_5_RD_PAYLOAD =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '1';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macClient (15

downto 8));

 crc32EthNext <= crc32EthCurrent;

 inNextFrame <= inFrameInbound;

 outputFrameInbound <= macClient (15 downto

8);

 currentStateInbound <=

STATE_WR_SOURCE_6_RD_PAYLOAD;

91

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_SOURCE_5_RD_PAYLOAD;

 end if;

when STATE_WR_SOURCE_6_RD_PAYLOAD =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '1';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (macClient (7

downto 0));

 crc32EthNext <= crc32EthCurrent;

 inNextFrame <= inFrameInbound;

 outputFrameInbound <= macClient (7 downto

0);

 currentStateInbound <=

STATE_WR_ETHTYPE_1_RD_PAYLOAD;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_SOURCE_6_RD_PAYLOAD;

 end if;

when STATE_WR_ETHTYPE_1_RD_PAYLOAD =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '1';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

92

 inboundWriteContent <= '1';

 crc32EthData <= reversed (x"08");

 crc32EthNext <= crc32EthCurrent;

 inNextFrame <= inFrameInbound;

 outputFrameInbound <= x"08";

 currentStateInbound <=

STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_ETHTYPE_1_RD_PAYLOAD;

 end if;

when STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD =>

 if (valid = '1' and inboundWriteFrameFull

= '0') then

 shiftEnableInbound <= '1';

 shiftResetInbound <= '0';

 inNextFrame <= inFrameInbound;

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 crc32EthData <= reversed (ethType);

 crc32EthNext <= crc32EthCurrent;

 outputFrameInbound <= ethType;

 currentStateInbound <=

STATE_RD_WR_PAYLOAD;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD;

 end if;

93

when STATE_RD_WR_PAYLOAD => if (valid = '1' and inboundWriteFrameFull =

'0') then

 shiftEnableInbound <= '1';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 outputFrameInbound <= inChosenFrame;

 crc32EthData <= reversed (inFrameInbound);

 crc32EthNext <= crc32EthCurrent;

 inNextFrame <= inFrameInbound;

 if inFrameInbound = x"7E" then

currentStateInbound <= STATE_WR_CRC_1;--STATE_SHIFT_LAST_OUT;

 else currentStateInbound <=

STATE_RD_WR_PAYLOAD;

 end if;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '1';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <=

STATE_RD_WR_PAYLOAD;

 end if;

when STATE_WR_CRC_1 => if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 outputFrameInbound <= crc32EthCurrent (31

downto 24);

 currentStateInbound <= STATE_WR_CRC_2;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <= STATE_WR_CRC_1;

94

 end if;

when STATE_WR_CRC_2 => if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 outputFrameInbound <= crc32EthCurrent (23

downto 16);

 currentStateInbound <= STATE_WR_CRC_3;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <= STATE_WR_CRC_2;

 end if;

when STATE_WR_CRC_3 => if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 outputFrameInbound <= crc32EthCurrent (15

downto 8);

 currentStateInbound <= STATE_WR_CRC_4;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <= STATE_WR_CRC_3;

 end if;

when STATE_WR_CRC_4 => if (inboundWriteFrameFull = '0') then

 shiftEnableInbound <= '0';

95

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '1';

 outputFrameInbound <= crc32EthCurrent (7

downto 0);

 currentStateInbound <=

STATE_END_WR_STROBE;

 else

 shiftEnableInbound <= '0';

 shiftResetInbound <= '0';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 currentStateInbound <= STATE_WR_CRC_4;

 end if;

when STATE_END_WR_STROBE => shiftEnableInbound <= '0';

 shiftResetInbound <= '1';

 rd_en <= '0';

 inboundOutputWriteFrame <= '1';

 inboundWriteContent <= '0';

 outputFrameInbound <= inChosenFrame; -- in

this way it is reset to zero

 currentStateInbound <= STATE_IDLE;

when STATE_ERROR => shiftEnableInbound <= '0';

 shiftResetInbound <= '1';

 rd_en <= '0';

 inboundOutputWriteFrame <= '0';

 inboundWriteContent <= '0';

 inboundWriteFrameAbort <= '1';

 shiftResetInbound <= '0';

 currentStateInbound <= STATE_IDLE;

when others => currentStateInbound <= STATE_ERROR;

end case;

end if;

end process;

96

-- outbound process

outFrameOutbound <= outputFrameOutbound;

outboundFrameCreationStateContent: process (clk, areset_n)

begin

 if (areset_n='0') then

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '1';

 outputFrameOutbound <= (others => '0');

 wr_en <= '0';

 outFlush <= '1';

 outboundReadFrame <= '0';

 currentStateOutbound <= STATE_IDLE;

 outboundReadContent <= '0';

 elsif (clk'event and clk='1') then

case currentStateOutbound is

when STATE_IDLE =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '1';

 outFlush <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '0';

 crc32IpData <= (others => '0');

 if outboundReadFrameEmpty = '0' then

 currentStateOutbound <=

STATE_UPDATE_BUFFER_CONTROL;

 else currentStateOutbound <= STATE_IDLE;

 end if;

when STATE_UPDATE_BUFFER_CONTROL =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <= STATE_WAIT_BUFFER;

97

when STATE_WAIT_BUFFER =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_DESTINATION_1;

when STATE_RD_DESTINATION_1 =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_DESTINATION_2;

when STATE_RD_DESTINATION_2 =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_DESTINATION_3;

when STATE_RD_DESTINATION_3 =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_DESTINATION_4;

when STATE_RD_DESTINATION_4 =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

98

 currentStateOutbound <=

STATE_RD_DESTINATION_5;

when STATE_RD_DESTINATION_5 =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_DESTINATION_6;

when STATE_RD_DESTINATION_6 =>

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <= STATE_RD_SOURCE_1;

when STATE_RD_SOURCE_1 => shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <= STATE_RD_SOURCE_2;

when STATE_RD_SOURCE_2 => shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <= STATE_RD_SOURCE_3;

when STATE_RD_SOURCE_3 => shiftEnableOutbound <= '0';

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_SOURCE_4_WR_FLAG;

99

when STATE_RD_SOURCE_4_WR_FLAG =>

 shiftEnableOutbound <= '1';

 shiftResetOutbound <= '0';

 outNextFrame <= x"7E";

 wr_en <= '0';

 crc32IpNext <= x"ffffffff";

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_SOURCE_5_WR_ADDRESS;

when STATE_RD_SOURCE_5_WR_ADDRESS =>

 shiftEnableOutbound <= '1';

 outNextFrame <= x"FF";

 shiftResetOutbound <= '0';

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_SOURCE_6_WR_CONTROL;

when STATE_RD_SOURCE_6_WR_CONTROL =>

 shiftEnableOutbound <= '1';

 outNextFrame <= x"03";

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_ETHERNET_TYPE_1_WR_PROTOCOL_1;

when STATE_RD_ETHERNET_TYPE_1_WR_PROTOCOL_1 =>

 shiftEnableOutbound <= '1';

 outNextFrame <= x"00";

 wr_en <= '0';

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_ETHERNET_TYPE_2_WR_PROTOCOL_2;

when STATE_RD_ETHERNET_TYPE_2_WR_PROTOCOL_2 =>

 shiftEnableOutbound <= '1';

100

 if inFrameOutbound = x"00" then

 outNextFrame <= x"21";

 elsif inFrameOutbound = x"06" then

 outNextFrame <= x"81";

 else currentStateOutbound <= STATE_IDLE; -

-error in the protocol

 shiftResetOutbound <= '1';

 shiftEnableOutbound <= '0';

 outboundReadFrame <= '1';

 outboundReadContent <= '0';

 end if;

 wr_en <= '0';

 crc32IpData <= reversed (outChosenFrame);

 crc32IpNext <= crc32IpCurrent;

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_WAIT_WR_PAYLOAD;

when STATE_WAIT_WR_PAYLOAD =>

 if (full = '0') then

 shiftEnableOutbound <= '1';

 outNextFrame <= inFrameOutbound;

 wr_en <= '0';

 crc32IpData <= reversed (outChosenFrame);

 crc32IpNext <= crc32IpCurrent;

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 currentStateOutbound <=

STATE_RD_WR_PAYLOAD;

 else

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <=

STATE_WAIT_WR_PAYLOAD;

 end if;

when STATE_RD_WR_PAYLOAD =>

 if (full = '0') then

 shiftEnableOutbound <= '1';

 outNextFrame <= inFrameOutbound;

101

 wr_en <= '1';

 crc32IpData <= reversed (outChosenFrame);

 crc32IpNext <= crc32IpCurrent;

 outputFrameOutbound <= outChosenFrame;

 outboundReadFrame <= '0';

 outboundReadContent <= '1';

 if outboundReadContentEnd = '1' then

 currentStateOutbound <=

STATE_SHIFT_LAST_OUT;

 else currentStateOutbound <=

STATE_RD_WR_PAYLOAD;

 end if;

 else

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <=

STATE_RD_WR_PAYLOAD;

 end if;

when STATE_SHIFT_LAST_OUT =>

 if (full = '0') then

 shiftEnableOutbound <= '1';

 wr_en <= '1';

 crc32IpData <= reversed (outChosenFrame);

 crc32IpNext <= crc32IpCurrent;

 outputFrameOutbound <= outChosenFrame;

 outboundReadFrame <= '0';

 outboundReadContent <= '0';

 currentStateOutbound<= STATE_WR_CRC_1;

 else

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <=

STATE_SHIFT_LAST_OUT;

 end if;

when STATE_WR_CRC_1 =>

 if (full = '0') then

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '1';

102

 wr_en <= '1';

 outputFrameOutbound <= crc32IpCurrent (31

downto 24);

 outboundReadFrame <= '1';

 outboundReadContent <= '0';

 currentStateOutbound <= STATE_WR_CRC_2;

 else

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <= STATE_WR_CRC_1;

 end if;

when STATE_WR_CRC_2 =>

 if (full = '0') then

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '1';

 wr_en <= '1';

 outboundReadFrame <= '0';

 outboundReadContent <= '0';

 outputFrameOutbound <= crc32IpCurrent (23

downto 16);

 currentStateOutbound <= STATE_WR_CRC_3;

 else

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <= STATE_WR_CRC_2;

 end if;

when STATE_WR_CRC_3 =>

 if (full = '0') then

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '1';

 wr_en <= '1';

 outputFrameOutbound <= crc32IpCurrent (15

downto 8);

 outboundReadFrame <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <= STATE_WR_CRC_4;

 else

103

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <= STATE_WR_CRC_3;

 end if;

when STATE_WR_CRC_4 =>

 if (full = '0') then

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '1';

 wr_en <= '1';

 outboundReadFrame <= '0';

 outboundReadContent <= '0';

 outputFrameOutbound <= crc32IpCurrent (7

downto 0);

 currentStateOutbound <= STATE_WR_FLAG;

 else

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <= STATE_WR_CRC_4;

 end if;

when STATE_WR_FLAG =>

 if (full = '0') then

 shiftEnableOutbound <= '0';

 shiftResetOutbound <= '1';

 wr_en <= '1';

 outboundReadFrame <= '0';

 outboundReadContent <= '0';

 outputFrameOutbound <= x"7E";

 currentStateOutbound <= STATE_IDLE;

 else

 shiftEnableOutbound <= '0';

 wr_en <= '0';

 outboundReadContent <= '0';

 currentStateOutbound <= STATE_WR_FLAG;

 end if;

when others => currentStateOutbound <= STATE_IDLE;

104

end case;

end if;

end process;

end architecture;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity shiftMemoryOutbound is

generic (CONTENT_WIDTH : natural);

port (

 clk: in std_logic;

 areset_n: in std_logic;

 reset: in std_logic;

 shiftEnable: in std_logic;

 shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0);

 shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0)

);

end entity;

architecture behaviourShiftMemory of shiftMemoryOutbound is

signal slot1, slot2, slot3, slot4: std_logic_vector (CONTENT_WIDTH-1 downto

0);

begin

shifting: process (areset_n, shiftEnable, reset, clk) --clk

begin

if (areset_n = '0' or reset = '1') then slot1 <= x"7e";

 slot2 <= x"7e";

 slot3 <= x"7e";

 slot4 <= x"7e";

 shiftOut <= x"7e";

elsif (clk ' event and clk='1') then

if (shiftEnable= '1') then slot1 <= shiftIn;

 slot2 <= slot1;

 slot3 <= slot2;

 slot4 <= slot3;

 shiftOut <= slot4;

105

end if;

end if;

end process;

end architecture;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity shiftMemoryInbound is

generic (CONTENT_WIDTH : natural);

port (

 clk: in std_logic;

 areset_n: in std_logic;

 reset: in std_logic;

 shiftEnable: in std_logic;

 shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0);

 shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0)

);

end entity;

architecture behaviourShiftMemory of shiftMemoryInbound is

signal slot1, slot2, slot3, slot4: std_logic_vector (CONTENT_WIDTH-1 downto

0);

begin

shifting: process (areset_n, shiftEnable, reset, clk) --clk

begin

if (areset_n = '0' or reset = '1') then slot1 <= x"00";

 slot2 <= x"00";

 slot3 <= x"00";

 slot4 <= x"00";

 shiftOut <= x"00";

elsif (clk ' event and clk='1') then

if (shiftEnable= '1') then slot1 <= shiftIn;

 slot2 <= slot1;

 slot3 <= slot2;

 slot4 <= slot3;

 shiftOut <= slot4;

106

end if;

end if;

end process;

end architecture;

14.4 Testbench VHDL codes
In this section, all the VHDL codes used for the testbenches are reported.

14.4.1 ShiftMemory testbench
--

-- (C) COPYRIGHT Bombardier Transportation Sweden AB, 2014

-- We reserve all rights in this file and in the information

-- contained therein. Reproduction, use or disclosure to third

-- parties without express authority is strictly forbidden.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity tb_shiftmem is

end entity;

architecture test_behaviour of tb_shiftmem is

component shiftMemoryOutbound is

generic (CONTENT_WIDTH : natural);

port (

 clk: in std_logic;

 areset_n: in std_logic;

 reset: in std_logic;

 shiftEnable: in std_logic;

 shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0);

 shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0)

);

end component;

component shiftMemoryInbound is

generic (CONTENT_WIDTH : natural);

port (

 clk: in std_logic;

 areset_n: in std_logic;

 reset: in std_logic;

 shiftEnable: in std_logic;

107

 shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0);

 shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0)

);

end component;

signal clk : std_logic;

signal areset_n: std_logic := '0';

signal resetIn, resetOut, enableIn, enableOut : std_logic;

signal inFrameInbound, inFrameOutbound, outFrameInbound, outFrameOutbound:

std_logic_vector (7 downto 0);

begin

UUTOutbound: shiftMemoryOutbound

generic map (CONTENT_WIDTH => 8)

port map (

 clk => clk,

 areset_n => areset_n,

 reset => resetOut,

 shiftEnable => enableOut,

 shiftIn => inFrameOutbound,

 shiftOut => outFrameOutbound

);

UUTInbound: shiftMemoryInbound

generic map (CONTENT_WIDTH => 8)

port map (

 clk => clk,

 areset_n => areset_n,

 reset => resetIn,

 shiftEnable => enableIn,

 shiftIn => inFrameInbound,

 shiftOut => outFrameInbound

);

inboundstimuli: process

begin

wait for 80 ns;

resetIn <= '0';

inFrameInbound <= x"01";

enableIn <= '1';

wait for 40 ns;

108

inFrameInbound <= x"02";

enableIn <= '1';

wait for 40 ns;

inFrameInbound <= x"03";

enableIn <= '1';

wait for 40 ns;

inFrameInbound <= x"04";

enableIn <= '1';

wait for 40 ns;

inFrameInbound <= x"05";

enableIn <= '1';

wait for 40 ns;

inFrameInbound <= x"06";

enableIn <= '1';

wait for 40 ns;

enableIn <= '0';

wait for 40 ns;

resetIn <= '1';

end process;

outboundstimuli: process

begin

wait for 80 ns;

resetOut <= '0';

inFrameOutbound <= x"01";

enableOut <= '1';

wait for 40 ns;

inFrameOutbound <= x"02";

enableOut <= '1';

wait for 40 ns;

inFrameOutbound <= x"03";

enableOut <= '1';

wait for 40 ns;

inFrameOutbound <= x"04";

enableOut <= '1';

wait for 40 ns;

inFrameOutbound <= x"05";

enableOut <= '1';

wait for 40 ns;

inFrameOutbound <= x"06";

109

enableOut <= '1';

wait for 40 ns;

enableOut <= '0';

wait for 40 ns;

resetOut <= '1';

end process;

 ClockGenerator: process

 begin

 clk <= '1';

 wait for 20 ns;

 clk <= '0';

 wait for 20 ns;

 end process;

-- Asynchronous reset generation

areset_n <= '1' after 15 ns;

end architecture;

14.4.2 PPPConverter inbound and outbound testbench
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity testbenchPPPBuffers is

end entity;

architecture testbenchBehaviour of testbenchPPPBuffers is

component PPPConverter is

port (

 clk: in std_logic;

 areset_n: in std_logic;

 macClient: in std_logic_vector(47 downto 0);

 macSProcessor: in std_logic_vector(47 downto 0);

 -- interface toward/from RioFrameBuffer

 outboundReadFrameEmpty: in std_logic;

 outboundReadContentEnd: in std_logic;

 outboundReadFrame: out std_logic;

110

 outboundReadContent: out std_logic;

 inFrameOutbound: in std_logic_vector(7 downto 0);

 inboundWriteFrame: out std_logic;

 inboundWriteFrameAbort: out std_logic;

 inboundWriteContent: out std_logic;

 inFrameInbound: in std_logic_vector(7 downto 0);

 inboundWriteFrameFull: in std_logic;

 -- interface toward/from Xilinx buffer

 full: in std_logic;

 wr_ack: in std_logic;

 wr_en: out std_logic;

 outFrameOutbound: out std_logic_vector (7 downto 0);

 empty: in std_logic;

 rd_en: out std_logic;

 valid: in std_logic;

 outFrameInbound: out std_logic_vector (7 downto 0);

 outFlush : out std_logic;

 inFlush: out std_logic

);

end component;

component FrameBuffer is

 generic(

 SIZE_ADDRESS_WIDTH : natural := 6;

 CONTENT_ADDRESS_WIDTH : natural := 8;

 CONTENT_WIDTH : natural := 32;

 MAX_PACKET_SIZE : natural := 69);

 port(

 clk : in std_logic;

 areset_n : in std_logic;

 inboundWriteFrameFull_o : out std_logic;

 inboundWriteFrame_i : in std_logic;

 inboundWriteFrameAbort_i : in std_logic;

 inboundWriteContent_i : in std_logic;

 inboundWriteContentData_i : in std_logic_vector(CONTENT_WIDTH-1 downto

0);

 inboundReadFrameEmpty_o : out std_logic;

 inboundReadFrame_i : in std_logic;

 inboundReadFrameRestart_i : in std_logic;

 inboundReadFrameAborted_o : out std_logic;

111

 inboundReadFrameSize_o : out std_logic_vector(CONTENT_ADDRESS_WIDTH-1

downto 0);

 inboundReadContentEmpty_o : out std_logic;

 inboundReadContent_i : in std_logic;

 inboundReadContentEnd_o : out std_logic;

 inboundReadContentData_o : out std_logic_vector(CONTENT_WIDTH-1 downto

0);

 outboundWriteFrameFull_o : out std_logic;

 outboundWriteFrame_i : in std_logic;

 outboundWriteFrameAbort_i : in std_logic;

 outboundWriteContent_i : in std_logic;

 outboundWriteContentData_i : in std_logic_vector(CONTENT_WIDTH-1 downto

0);

 outboundReadFrameEmpty_o : out std_logic;

 outboundReadFrame_i : in std_logic;

 outboundReadFrameRestart_i : in std_logic;

 outboundReadFrameAborted_o : out std_logic;

 outboundReadFrameSize_o : out std_logic_vector(CONTENT_ADDRESS_WIDTH-1

downto 0);

 outboundReadContentEmpty_o : out std_logic;

 outboundReadContent_i : in std_logic;

 outboundReadContentEnd_o : out std_logic;

 outboundReadContentData_o : out std_logic_vector(CONTENT_WIDTH-1 downto

0));

end component;

COMPONENT FIFO_BUFFER

 PORT (

 rst : IN STD_LOGIC;

 wr_clk : IN STD_LOGIC;

 rd_clk : IN STD_LOGIC;

 din : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

 wr_en : IN STD_LOGIC;

 rd_en : IN STD_LOGIC;

 dout : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 full : OUT STD_LOGIC;

 wr_ack : OUT STD_LOGIC;

 empty : OUT STD_LOGIC;

 valid : OUT STD_LOGIC;

 rd_data_count : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 wr_data_count : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);

112

END COMPONENT;

signal clk: std_logic;

signal areset_n: std_logic:='0';

signal macClient: std_logic_vector (47 downto 0):= x"111213141516";

signal macSProcessor: std_logic_vector (47 downto 0):= x"212223242526";

constant CONTENT_WIDTH: natural := 8;

constant CONTENT_ADDRESS_WIDTH: natural := 14;

constant SIZE_ADDRESS_WIDTH: natural := 6; -- 2**6 = 64 frames (max)

constant MAX_PACKET_SIZE: natural := 1520;

-- interface toward/from RioFrameBuffer

signal outboundReadFrameEmpty: std_logic;

signal outboundReadContentEnd: std_logic;

signal outboundReadFrame: std_logic;

signal outboundReadContent: std_logic;

signal inFrameOutbound: std_logic_vector(7 downto 0); -- output of the

riobuffer --> contentdata

signal outboundWriteContent: std_logic := '0';

signal outboundWriteFrame: std_logic :='0';

signal inboundWriteFrame: std_logic;

signal inboundWriteFrameAbort: std_logic;

signal inboundWriteContent: std_logic;

signal inFrameInbound: std_logic_vector(7 downto 0); -- one input of the

test

signal inboundWriteFrameFull: std_logic;

-- interface toward/from Xilinx buffer

signal full: std_logic := '0';

signal wr_ack: std_logic;

signal wr_en, wr_enIN: std_logic;-- output I want to read

signal outFrameOutbound: std_logic_vector (7 downto 0); -- output I want

to read

signal empty: std_logic := '1';

signal rd_en: std_logic;

signal outFrameInbound: std_logic_vector (7 downto 0); -- input of the

buffer --> inboundWriteContentData_i

signal inFlush, outFlush: std_logic;

-- testbench signals

signal opensignal: std_logic :='0';

signal openvectorcontent: std_logic_vector (CONTENT_WIDTH-1 downto 0) :=

(others => '0');

113

signal openvectoraddress: std_logic_vector (CONTENT_ADDRESS_WIDTH-1 downto

0):= (others => '0');

signal outbIN, outbOUT: std_logic_vector (7 downto 0);

signal inbOUT, inbIN: std_logic_vector (7 downto 0);

signal inboundReadContent, inboundReadFrame, rd_enOut: std_logic:='0';

signal valid, validIN, emptyIN, fullIN, wr_ackIN: std_logic;

begin

UUT: PPPConverter

port map (

 clk => clk,

 areset_n => areset_n,

 macClient => macClient,

 macSProcessor => macSProcessor,

 -- interface toward/from RioFrameBuffer

 outboundReadFrameEmpty => outboundReadFrameEmpty,

 outboundReadContentEnd => outboundReadContentEnd,

 outboundReadFrame => outboundReadFrame,

 outboundReadContent => outboundReadContent,

 inFrameOutbound => inFrameOutbound,

 inboundWriteFrame => inboundWriteFrame,

 inboundWriteFrameAbort => inboundWriteFrameAbort,

 inboundWriteContent => inboundWriteContent,

 inFrameInbound => inFrameInbound,

 inboundWriteFrameFull => inboundWriteFrameFull,

 -- interface toward/from Xilinx buffer

 full => full,

 wr_ack => wr_ack,

 wr_en => wr_en,

 outFrameOutbound => outFrameOutbound,

 empty => empty,

 rd_en => rd_en,

 valid => valid,

 outFrameInbound => outFrameInbound

);

ethbuffer: FrameBuffer

 generic map (

 SIZE_ADDRESS_WIDTH => SIZE_ADDRESS_WIDTH,

 CONTENT_ADDRESS_WIDTH => CONTENT_ADDRESS_WIDTH,

 CONTENT_WIDTH => CONTENT_WIDTH,

 MAX_PACKET_SIZE => MAX_PACKET_SIZE)

114

 port map (

 clk => clk,

 areset_n => areset_n,

 inboundWriteFrameFull_o => inboundWriteFrameFull,

 inboundWriteFrame_i => inboundWriteFrame,

 inboundWriteFrameAbort_i => inboundWriteFrameAbort,

 inboundWriteContent_i => inboundWriteContent,

 inboundWriteContentData_i => outFrameInbound,

 inboundReadFrameEmpty_o => opensignal,

 inboundReadFrame_i => inboundReadFrame,

 inboundReadFrameRestart_i => opensignal,

 inboundReadFrameAborted_o => opensignal,

 inboundReadFrameSize_o => openvectoraddress,

 inboundReadContentEmpty_o => opensignal,

 inboundReadContent_i => inboundReadContent,

 inboundReadContentEnd_o => opensignal,

 inboundReadContentData_o => inbOUT,

 outboundWriteFrameFull_o => opensignal,

 outboundWriteFrame_i => outboundWriteFrame,

 outboundWriteFrameAbort_i => opensignal,

 outboundWriteContent_i => outboundWriteContent,

 outboundWriteContentData_i => outbIN,

 outboundReadFrameEmpty_o => outboundReadFrameEmpty,

 outboundReadFrame_i => outboundReadFrame,

 outboundReadFrameRestart_i => opensignal,

 outboundReadFrameAborted_o => opensignal,

 outboundReadFrameSize_o => openvectoraddress,

 outboundReadContentEmpty_o => opensignal,

 outboundReadContent_i => outboundReadContent,

 outboundReadContentEnd_o => outboundReadContentEnd,

 outboundReadContentData_o => inFrameOutbound

);

IoLinkBufferInbound: FIFO_BUFFER

 PORT MAP(

 rst => inFlush,

 wr_clk => clk,

 rd_clk => clk,

 din => inbIN, -- used for test

 wr_en => wr_enIN, -- used for test

115

 rd_en => rd_en, -- inbound

 dout => inFrameInbound,

 full => fullIN, --ignored

 wr_ack => wr_ackIN, --ignored

 empty => empty, --inbound

 valid => valid, -- inbound

 rd_data_count => openvectorcontent,

 wr_data_count => openvectorcontent

);

IoLinkBufferOutbound: FIFO_BUFFER

 PORT MAP(

 rst => outFlush,

 wr_clk => clk,

 rd_clk => clk,

 din => outFrameOutbound,

 wr_en => wr_en, -- outbound

 rd_en => rd_enOut, -- used for test

 dout => outbOUT, -- outbound

 full => full, -- outbound

 wr_ack => wr_ack, -- outbound

 empty => emptyIN, -- ignored

 valid => validIN, -- ignored

 rd_data_count => openvectorcontent,

 wr_data_count => openvectorcontent

);

-- Clock generation

clkGeneration: process

 begin

 clk <= '1';

 wait for 10 ns;

 clk <= '0';

 wait for 10 ns;

 end process;

-- Asynchronous reset generation

areset_n <= '1' after 15 ns;

testProcedureOutbound: process

begin

-- outbound part, writing on the buffer

116

 wait for 80 ns;

 -- NORMAL TEST

 -- write on buffer 1

 outboundWriteContent <= '1';

 rd_enOut <= '0';

 -- mac source

 outbIN<= x"11";

 wait for 20 ns;

 outbIN<= x"11";

 wait for 20 ns;

 outbIN<= x"11";

 wait for 20 ns;

 outbIN<= x"11";

 wait for 20 ns;

 outbIN<= x"11";

 wait for 20 ns;

 outbIN<= x"11";

 wait for 20 ns;

 --mac destination

 outbIN<= x"22";

 wait for 20 ns;

 outbIN<= x"22";

 wait for 20 ns;

 outbIN<= x"22";

 wait for 20 ns;

 outbIN<= x"22";

 wait for 20 ns;

 outbIN<= x"22";

 wait for 20 ns;

 outbIN<= x"22";

 wait for 20 ns;

 -- eth type

 outbIN<= x"08";

 wait for 20 ns;

 outbIN<= x"00";

 wait for 20 ns;

 -- payload

 outbIN<= x"31";

 wait for 20 ns;

 outbIN<= x"32";

117

 wait for 20 ns;

 outbIN<= x"33";

 wait for 20 ns;

 outbIN<= x"34";

 wait for 20 ns;

 outbIN<= x"35";

 wait for 20 ns;

 outbIN<= x"36";

 wait for 20 ns;

 outbIN<= x"37";

 wait for 20 ns;

 outbIN<= x"38";

 wait for 20 ns;

 outbIN<= x"39";

 wait for 20 ns;

 outbIN<= x"3A";

 wait for 20 ns;

 outbIN<= x"3B";

 wait for 20 ns;

 -- crc

 outbIN<= x"00";

 wait for 20 ns;

 outbIN<= x"01";

 wait for 20 ns;

 outbIN<= x"02";

 wait for 20 ns;

 outbIN<= x"03";

 wait for 20 ns;

 outboundWriteContent <= '0';

 outboundWriteFrame <= '1';

 wait for 20 ns;

 outboundWriteContent <= '0';

 outboundWriteFrame <= '0';

 wait for 20 ns;

 -- read from the FIFO_BUFFER

 rd_enOut <= '1';

 wait for 500 ns;

end process;

testProcedureInbound: process

begin

118

-- inbound part, writing in the FIFO_BUFFER

 wr_enIN <= '0';

 wait for 80 ns;

 -- empty <= '0';

 wr_enIN <= '1';

 inbIN <= x"7E";

 wait for 20 ns;

 inbIN <= x"FF";

 wait for 20 ns;

 inbIN <= x"03";

 wait for 20 ns;

 inbIN <= x"00";

 wait for 20 ns;

 inbIN <= x"21";

 wait for 20 ns;

 -- payload

 inbIN<= x"31";

 wait for 20 ns;

 inbIN<= x"32";

 wait for 20 ns;

 inbIN<= x"33";

 wait for 20 ns;

 inbIN<= x"34";

 wait for 20 ns;

 inbIN<= x"35";

 wait for 20 ns;

 inbIN<= x"36";

 wait for 20 ns;

 inbIN<= x"37";

 wait for 20 ns;

 inbIN<= x"38";

 wait for 20 ns;

 inbIN<= x"39";

 wait for 20 ns;

 inbIN<= x"3A";

 wait for 20 ns;

 inbIN<= x"3B";

 wait for 20 ns;

 -- crc

 inbIN<= x"4E";

119

 wait for 20 ns;

 inbIN<= x"08";

 wait for 20 ns;

 inbIN<= x"BF";

 wait for 20 ns;

 inbIN<= x"B4";

 wait for 20 ns;

 -- end byte

 inbIN<= x"7E";

 wait for 20 ns;

 wr_enIN <= '1';

 -- empty <= '1';

 wait for 20 ns;

-- read from buffer procedure

 inboundReadContent<='1';

 wait for 580 ns;

 inboundReadContent<='0';

 inboundReadFrame<= '1';

 wait for 20 ns;

 inboundReadFrame<= '0';

end process;

end architecture;

14.4.3 Full chain testbench code
The process that generates the data is shown as follows. The declaration of all the components is not reported for
the sake of brevity. All the necessary signals declaration can be found in Section 4.4 and the connection of the
components in Figure 7.6.

StimuliProcess: process (clk, areset_n)

begin

if (areset_n = '0') then

 stateStimuli <= STATE_IDLE;

 icTctl_i <= '0';

 icTd_i <= x"0";

 counter <= 0;

elsif (clk' event and clk = '1')then

case stateStimuli is

when STATE_IDLE =>icTctl_i <= '0';

 icTd_i <= x"0";

 stateStimuli <= STATE_PREAMBLE_1_A;

120

when STATE_PREAMBLE_1_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_1_B;

when STATE_PREAMBLE_1_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_2_A;

when STATE_PREAMBLE_2_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_2_B;

when STATE_PREAMBLE_2_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_3_A;

when STATE_PREAMBLE_3_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_3_B;

when STATE_PREAMBLE_3_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_4_A;

when STATE_PREAMBLE_4_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_4_B;

when STATE_PREAMBLE_4_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_5_A;

121

when STATE_PREAMBLE_5_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_5_B;

when STATE_PREAMBLE_5_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_6_A;

when STATE_PREAMBLE_6_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_6_B;

when STATE_PREAMBLE_6_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_7_A;

when STATE_PREAMBLE_7_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_7_B;

when STATE_PREAMBLE_7_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_8_A;

when STATE_PREAMBLE_8_A =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_PREAMBLE_8_B;

when STATE_PREAMBLE_8_B =>

 icTctl_i <= '1';

 icTd_i <= x"D";

 stateStimuli <= STATE_DESTINATION_1_A;

122

when STATE_DESTINATION_1_A =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_1_B;

when STATE_DESTINATION_1_B =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_2_A;

when STATE_DESTINATION_2_A =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_2_B;

when STATE_DESTINATION_2_B =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_3_A;

when STATE_DESTINATION_3_A =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_3_B;

when STATE_DESTINATION_3_B =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_4_A;

when STATE_DESTINATION_4_A =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_4_B;

when STATE_DESTINATION_4_B =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_5_A;

123

when STATE_DESTINATION_5_A =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_5_B;

when STATE_DESTINATION_5_B =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_6_A;

when STATE_DESTINATION_6_A =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_DESTINATION_6_B;

when STATE_DESTINATION_6_B =>

 icTctl_i <= '1';

 icTd_i <= x"F";

 stateStimuli <= STATE_SOURCE_1_A;

when STATE_SOURCE_1_A =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_SOURCE_1_B;

when STATE_SOURCE_1_B =>

 icTctl_i <= '1';

 icTd_i <= x"2";

 stateStimuli <= STATE_SOURCE_2_A;

when STATE_SOURCE_2_A =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_SOURCE_2_B;

when STATE_SOURCE_2_B =>

 icTctl_i <= '1';

 icTd_i <= x"3";

 stateStimuli <= STATE_SOURCE_3_A;

124

when STATE_SOURCE_3_A =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_SOURCE_3_B;

when STATE_SOURCE_3_B =>

 icTctl_i <= '1';

 icTd_i <= x"4";

 stateStimuli <= STATE_SOURCE_4_A;

when STATE_SOURCE_4_A =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_SOURCE_4_B;

when STATE_SOURCE_4_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_SOURCE_5_A;

when STATE_SOURCE_5_A =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_SOURCE_5_B;

when STATE_SOURCE_5_B =>

 icTctl_i <= '1';

 icTd_i <= x"6";

 stateStimuli <= STATE_SOURCE_6_A;

when STATE_SOURCE_6_A =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_SOURCE_6_B;

when STATE_SOURCE_6_B =>

 icTctl_i <= '1';

 icTd_i <= x"7";

 stateStimuli <= STATE_ETH_1_A;

125

when STATE_ETH_1_A =>

 icTctl_i <= '1';

 icTd_i <= x"8";

 stateStimuli <= STATE_ETH_1_B;

when STATE_ETH_1_B =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_ETH_2_A;

when STATE_ETH_2_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_ETH_2_B;

when STATE_ETH_2_B =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_1_A;

when STATE_PAYLOAD_1_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_1_B;

when STATE_PAYLOAD_1_B =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_PAYLOAD_2_A;

when STATE_PAYLOAD_2_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_2_B;

when STATE_PAYLOAD_2_B =>

 icTctl_i <= '1';

 icTd_i <= x"8";

 stateStimuli <= STATE_PAYLOAD_3_A;

126

when STATE_PAYLOAD_3_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_3_B;

when STATE_PAYLOAD_3_B =>

 icTctl_i <= '1';

 icTd_i <= x"6";

 stateStimuli <= STATE_PAYLOAD_4_A;

when STATE_PAYLOAD_4_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_4_B;

when STATE_PAYLOAD_4_B =>

 icTctl_i <= '1';

 icTd_i <= x"4";

 stateStimuli <= STATE_PAYLOAD_5_A;

when STATE_PAYLOAD_5_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_5_B;

when STATE_PAYLOAD_5_B =>

 icTctl_i <= '1';

 icTd_i <= x"1";

 stateStimuli <= STATE_PAYLOAD_6_A;

when STATE_PAYLOAD_6_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_6_B;

when STATE_PAYLOAD_6_B =>

 icTctl_i <= '1';

 icTd_i <= x"8";

 stateStimuli <= STATE_PAYLOAD_7_A;

127

when STATE_PAYLOAD_7_A =>

 icTctl_i <= '1';

 icTd_i <= x"6";

 stateStimuli <= STATE_PAYLOAD_7_B;

when STATE_PAYLOAD_7_B =>

 icTctl_i <= '1';

 icTd_i <= x"9";

 stateStimuli <= STATE_PAYLOAD_8_A;

when STATE_PAYLOAD_8_A =>

 icTctl_i <= '1';

 icTd_i <= x"c";

 stateStimuli <= STATE_PAYLOAD_8_B;

when STATE_PAYLOAD_8_B =>

 icTctl_i <= '1';

 icTd_i <= x"b";

 stateStimuli <= STATE_PAYLOAD_9_A;

when STATE_PAYLOAD_9_A =>

 icTctl_i <= '1';

 icTd_i <= x"0";

 stateStimuli <= STATE_PAYLOAD_9_B;

when STATE_PAYLOAD_9_B =>

 icTctl_i <= '1';

 icTd_i <= x"c";

 stateStimuli <= STATE_CRC_1_A;

when STATE_CRC_1_A =>

 icTctl_i <= '1';

 icTd_i <= x"b";

 stateStimuli <= STATE_CRC_1_B;

when STATE_CRC_1_B =>

 icTctl_i <= '1';

 icTd_i <= x"5";

 stateStimuli <= STATE_CRC_2_A;

128

when STATE_CRC_2_A =>

 icTctl_i <= '1';

 icTd_i <= x"2";

 stateStimuli <= STATE_CRC_2_B;

when STATE_CRC_2_B =>

 icTctl_i <= '1';

 icTd_i <= x"d";

 stateStimuli <= STATE_CRC_3_A;

when STATE_CRC_3_A =>

 icTctl_i <= '1';

 icTd_i <= x"9";

 stateStimuli <= STATE_CRC_3_B;

when STATE_CRC_3_B =>

 icTctl_i <= '1';

 icTd_i <= x"a";

 stateStimuli <= STATE_CRC_4_A;

when STATE_CRC_4_A =>

 icTctl_i <= '1';

 icTd_i <= x"e";

 stateStimuli <= STATE_CRC_4_B;

when STATE_CRC_4_B =>

 icTctl_i <= '1';

 icTd_i <= x"f";

 stateStimuli <= STATE_ENDING;

when STATE_ENDING =>

 icTctl_i <= '0';

 icTd_i <= x"0";

 stateStimuli <= STATE_IDLE;

when others => stateStimuli <= STATE_IDLE;

end case;

end if;

end process;

129

15. Acknowledgment

As this thesis marks the end of my University experience, there are many people I would like to thank for
participating in this journey.

I am very grateful to my thesis supervisors at Bombardier Transportation Sweden AB, Jorge Sanchez de Nova
and Javier Garçia Castaño. You gave me the opportunity to live my first working and personal experience
abroad. I especially thank Jorge since he saw in me the potential to develop this project and Javier for giving me
advice and sharing my enthusiasm about this project. The same goes for all my colleagues at Bombardier with
whom I have spent these last eight months: Mattias Magnusson, Lars Brocke, Nader Kardouni, Viktor
Drozdovskyy and Olavi Kumpulainen for the infinite patience when answering all my questions. I especially
enjoyed the quality time I spent with the Italian crew: Marco Barbieri, Giuseppe Palma, and Gianpaolo
Giudicianni. Special thanks goes to Roberto Giovannelli for all the coffees drunk together and the patience in
supporting me during the development of the project.

During these years at Politecnico di Torino I have grown a lot overcoming the challenges that I have met, and
I am now ready to cope with the ones I will soon encounter in my working life. I would like to thank all my
professors for providing me with not only the knowledge but also the right mindset to be a good engineer.
However, these challenges have been made easier thanks to all the colleagues that I have met during this
journey. Thanks, Erica Raviola and Marialuisa Michelangeli, for always have been there from the beginning to
the very end of this journey regardless the physical distance. I could not be more grateful for such great journey
fellows. A special thank goes also to Tommaso Marinelli for being a very good friend. I won’t forget Flavio
Tanese, Pietro Inglese, Andrea Casalino, Luca Sasselli, Paolo Michelotti, Fabio Castagno, and Fabio Mongardi
for all the good laughs you shared with me in the hardest semester I have experienced. I also thank Federica
Barbaresco, Andrea Gerini, Francesco Marrone, Milena Andrighetti, Gemma Giliberti, and Roberta Marino for
always helping me and the good time together.

To strive to achieve my academic goals and complete this master thesis experience, the constant presence of
my friends and family has been fundamental. I am so grateful for having my long lasting friends Arianna Macrì,
Alessia Velardi and Fabia Brustia. I grew up with you and I always will, no matter the distance. A very special
thank goes to my new Swedish family: Elisa Tiozzo Fasiolo, Simone Pagliano, and Emre Işeri. I have found my
second home in Solna. I would like to thank in particular Renzo Enrico and Lucia De Rossi for all the support
and the warm feeling of family you have given me in all these years. My gratitude goes to Alessandro for the
unconditional support and love he always gave me in all these years together. Lastly, my heartfelt thank goes to
all my family for being patient with me and always been there, no matter what. In particular it is dedicated to my
parents Patrizia and Luca, and my sister Matilde.

130

131

16. Ringraziamenti

Con questa tesi completo la mia esperienza universitaria, e ci sono tante persone che vorrei ringraziare per
aver fatto parte di questo mio viaggio.

Ringrazio molto i miei supervisori alla Bombardier Transportation Sweden AB, Jorge Sanchez de Nova e
Javier Garçia Castaño. Mi avete dato l’opportunità di vivere la mia prima esperienza lavorativa e personale
all’estero. In particolare, ringrazio Jorge per aver creduto nelle mie capacità per sviluppare questo progetto e
Javier per tutti i consigli e l’entusiasmo condiviso nel lavorare a questo progetto. Lo stesso si può dire per tutti i
miei colleghi alla Bombardier con cui ho speso questi ultimo otto mesi: Mattias Magnusson, Lars Brocke, Nader
Kardouni, Viktor Drozdovskyy ed Olavi Kumpulainen per l’infinita pazienza che hanno sempre avuto nel

rispondere a tutte le mie domande. Ho particolarmente apprezzato il tempo di qualità trascorso con il gruppo
degli italiani: Marco Barbieri, Giuseppe Palma e Gianpaolo Giudicianni. Un ringraziamento speciale va a
Roberto Giovannelli per tutti i caffè bevuti insieme e la pazienza avuta nel sostenermi durante lo sviluppo del
progetto.

Durante questi anni al Politecnico di Torino sono cresciuta molto superando le sfide che ho incontrato, e ora
sono pronta ad affrontare quelle che incontrerò nella mia vita lavorativa. Vorrei ringraziare tutti i miei professori
per avermi trasmesso non solo la conoscenza ma la giusta mentalità per essere un buon ingegnere. Tuttavia,
queste sfide sono state rese più accessibili grazie a tutti i colleghi che ho incontrato durante questo viaggio.
Grazie, Erica Raviola e Marialuisa Michelangeli, per esserci sempre state dall’inizio di questo viaggio fino alla
sua fine indipendentemente dalla distanza fisica. Non avrei potuto desiderare migliori compagne di viaggio. Un
ringraziamento speciale va a Tommaso Marinelli per essere un ottimo amico. Non dimenticherò Flavio Tanese,
Pietro Inglese, Andrea Casalino, Luca Sasselli, Paolo Michelotti, Fabio Castagno, e Fabio Mongardi per avermi
tenuto su di morale durante il semestre più difficile della mia carriera universitaria. Grazie Federica Barbaresco,
Andrea Gerini, Francesco Marrone, Milena Andrighetti, Gemma Giliberti, e Roberta Marino per avermi sempre
aiutato e per il tempo trascorso insieme.

Nell’inseguire i miei obiettivi accademici e completare questa esperienza di tesi, la presenza costante dei miei
amici e della mia famiglia è stata fondamentale. Sono davvero grata alle mie amiche di lunga data Arianna
Macrì, Alessia Velardi e Fabia Brustia. Sono cresciuta e continuerò a crescere insieme a voi. Un grazie speciale
alla mia nuova famiglia svedese: Elisa Tiozzo Fasiolo, Simone Pagliano, ed Emre Işeri. Ho trovato la mia
seconda casa a Solna. Vorrei ringraziare in particolare Renzo Enrico e Lucia De Rossi per tutto il sostegno e il
calore familiare che mi avete trasmesso in tutti questi anni. La mia gratitudine va ad Alessandro per tutto il
sostegno e amore incondizionato che mi ha sempre dato in questi anni insieme. Infine, il mio più sentito
ringraziamento va alla mia famiglia, I miei genitori Patrizia e Luca e mia sorella Matilde, per la pazienza e per
esserci sempre stati.

