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Abstract 
 

This master thesis work describes the development of a high-speed protocol interface for the railway 
communication system at Bombardier Transportation Sweden AB. The railway communication system helps the 
maintenance, controls, and monitors all the objects involved in a railway line such as traffic lights and sensors. 
The communication network is normally composed by a physical part, such as wires and processors, and the 
firmware and software to manage the traffic of data. The data transmitted are the commands that the objects on 
the railway line must execute and their operational status. 

High-speed communication in a railway network increases the control of the objects on the railway line in 
terms of response time. A fast dispatching of orders increases the reactivity of the system to any event affecting 
the railway objects. This improved reactivity allows for an increase of train ride per hour, improving the 
transportation service for the customers.  

This master thesis work was carried out at Bombardier Transportation, Stockholm, which is a world leader for 
aerospace and transportation. The railway communication network at Bombardier Transportation monitors and 
drives all the elements on the railway line. The cross point of two railways must be synchronized to make the 
fastest transit of the trains. If the communication toward the traffic light is fast enough, the trains will avoid 
waiting for a long time before transiting the cross point. The communication network features physical channel 
that can support high-speed communication. In the constant effort to improve the service for the customer by 
reducing the waiting time between train rides, Bombardier is trying to upgrade the inter-board communication. 
The plan is to use a new physical channel which is estimated to be 100 times faster than the currently used one. 
This new channel needs a suitable firmware interface to allow its use in the existing system.  

Care must be taken when designing this interface to ensure high reliability and safety. The System Integrity 
Level (SIL) is the standard that defines four discrete level of safety integrity requirements. In the railway system, 
the SIL is 4, the highest. According to the standard, only one serious error is allowed in 10000 years. Since the 
safety regulation is so tight, it means that the corruption of a single message in railway communication can result 
in serious safety hazards. Therefore, all the system's elements must comply with the RAMS characteristic: 
Reliability, Availability, Maintainability, and Safety. 

In this thesis, I developed a custom-made Very-High-Speed Integrated Circuits Hardware Description 
Language (VHDL) interface to use the new physical channel for high-speed communication while maintaining 
standard safety levels. This interface converts the message between the standard protocol in the system 
(Ethernet) and the communication protocol chosen for the new channel, which is the Point to Point Protocol 
(PPP). This protocol was chosen since it has a flexible header and provides Cyclic Redundant Check (CRC) 
code, which makes the communication safe and adaptable. The interface must also be divided into two main 
parts since the communication channel is full duplex. When a message is received by the board it will enter the 
inbound part. If it is sent from the board it will be converted by the outbound part. The inbound part then 
converts the frame from PPP to Ethernet and the outbound from Ethernet to PPP. 

The design flow of the component is composed of four main stages. The existing system was studied in terms 
of component, signals and timing issues since the new component must be synchronized with the whole chain of 
transmission. Then the component was developed with the goal of creating a fast component and keeping the 
integrity of the sent frames. The generated VHDL code was then stimulated with custom testbenches to verify 
the behavior of all the developed parts. Finally, the code was uploaded on the physical board and the system 
communication was tested. 

As first step, all the components belonging to the transmission chain have been studied. All of the described in 
VHDL and some are network standard. They have been analyzed in terms of timing synchronization, the 
dimension of the data and how they are handled by these components and what is their role in the system. This 
study is essential to understand the requirement that the system has in terms of synchronization toward the new 
component. 

The PPPConverter was then developed analyzing how the two parts must be interfaced toward the system and 
how the conversion has to be managed from one kind of frame to the other. As first step, a pseudocode was 
written to show the behavior of each part. Then the flow of the data was studied. Since one important parameter 
is the performances of the system, the writing and reading operation are done as parallel as possible. Moreover, 
since the integrity of the signal is essential, the PPP frame header is controlled in each byte. If a faulty byte is 
read, the whole frame is discarded. Moreover, a shift register, called ShiftMemory, was implemented to 
determine the end of the payload of both frames. In both parts, the length of the payload was not available and 
with this component, it is possible to eliminate the incoming end-of-frame bytes and write the new ones. Timing 
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diagrams were also studied and developed to satisfy the interface of the component toward the system and 
toward the new channel, called IOChannel. 

To verify the correct behavior of the generated VHDL code, the ShiftMemory and the two parts were 
stimulated. The test was developed with custom-made testbenches and the generated waveforms were confronted 
with the expected timing diagrams. These test also aimed to verify the full-duplex ability of the PPPConverter, 
since the inbound and outbound parts should work in parallel independently from each other. 

Finally, the new VHDL code was uploaded on the physical board to verify its behavior. At first, the full 
transmission chain was simulated. Using a testbench, the simulation recreated the communication of a random 
ARP message from one board to another via the IOChannel. Then, only the IOChannel specific interface was 
uploaded on the board to verify that the physical channel was actually working. Then the interface was uploaded 
together with the old system but in parallel. This step was implemented to verify that the extra logic could still 
be handled by the existing system. Finally, the whole desired implementation was uploaded on the board to 
verify that the developed component could create a new communication path between the system and the 
IOChannel. 

The entire PPP protocol is not fully implemented: future implementations will need to add the Escaping 
mechanism as declared by the standard. Moreover, the destination and source addresses belonging to the 
Ethernet frame need to be managed in a more specific way. 

 

 
Sommario 
 

Questo elaborato di tesi descrive lo sviluppo di un’interfaccia tra protocolli di comunicazione ad alta velocità 
per il sistema di comunicazione ferroviario sviluppato in Bombardier Transportation. Il sistema di 
comunicazione in ambito ferroviario controlla, monitora e aiuta la manutenzione di tutti gli oggetti presenti su 
una linea ferroviaria come semafori e sensori. La rete di comunicazione è solitamente composta di una parte 
fisica, come cavi e processori, e dal firmware e software utilizzati per dirigere il traffico di dati. I dati trasmessi 
sono i comandi che gli oggetti sulla linea ferroviaria devono eseguire e il loro stato operativo.  

La comunicazione ad alta velocità in una rete ferroviaria migliora il controllo degli oggetti sulla linea 
ferroviaria in termini di tempi di risposta. Un invio di ordini più veloce aumenta la reattività del sistema a 
qualsiasi evento del quale gli oggetti ferroviari sono affetti. L’aumentata reattività permette un aumento di corse 
di treni all’ora, migliorando il servizio di trasporto per i clienti. 

Questa esperienza di tesi è stata sviluppata presso la Bombardier Transportation, a Stoccolma, che è un leader 
mondiale per il settore aerospaziale e i trasporti. La comunicazione ferroviaria sviluppata dalla Bombardier 
Transportation monitora e pilota tutti gli elementi sulla linea ferroviaria. Il punto d’incrocio di due linee 
ferroviarie deve essere sincronizzato per permettere il passaggio dei treni il più velocemente possibile. Se la 
comunicazione verso il semaforo è sufficientemente veloce, il treno eviterà di aspettare per lungo tempo prima di 
transitare nell’incrocio. La rete di comunicazione presenta canali fisici che supportano la comunicazione ad alta 
velocità. Nel costante sforzo di migliorare il servizio per i clienti nel ridurre i tempi di attesa fra corse dei treni, 
Bombardier Transportation sta provando a migliorare la comunicazione fra board interne al sistema. L’obiettivo 

è di usare un nuovo canale finisco che si è stimato essere 100 volte più veloce di quello correntemente in uso. Il 
nuovo canale necessita un’interfaccia adatta per permettere di usarlo nel sistema esistente.  

Quando si progetta questa interfaccia, è necessario farlo con cura per garantire un’alta affidabilità e sicurezza. 
Il System Integrity Level (SIL) è lo standard che definisce Quattro livelli discrete di requisiti sull’integrità di 

sicurezza. Nel sistema ferroviario il SIL è 4, il massimo valore. Secondo lo standard, solo un errore significativo 
è ammesso in 10000 anni. Poiché la regolazione di sicurezza è severa, significa che la corruzione di un solo 
messaggio nella comunicazione ferroviaria può generare serie situazioni di pericolo. Di conseguenza, tutti gli 
elementi del sistema devono rispettare le caratteristiche RAMS: Reliability (Affidabilità), Availability 
(Disponibilità), Maintainability (Facilità nella manutenzione) and Safety (Sicurezza). 

In questa tesi, ho sviluppato un’apposita interfaccia in Very High-Speed Integrated Circuits Hardware 
Description Language (VHDL) per usare il nuovo canale per la comunicazione ad alta velocità mantenendo I 
livelli di sicurezza standard. Questa interfaccia converte il messaggio tra il protocollo standard del sistema 
(Ethernet) e il protocollo di comunicazione scelto per il nuovo canale, il Point to Point Protocol (PPP). Questo 
protocollo è stato scelto perché ha un header flessibile e ha il Cyclic Redundant Check (CRC), che rendono la 
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comunicazione sicura e adattabile. L’interfaccia deve anche essere divisa in due parti principali poiché il canale 
di comunicazione è full duplex. Quando un messaggio è ricevuto dalla board, entrerà nella parte inbound. Se è 
inviato dalla board, sarà convertito dalla parte outbound. La parte inbound converte quindi il frame da PPP a 
Ethernet e l’outbound da Ethernet a PPP. 

Il flusso di progetto del component è composto di quattro fasi. Il sistema esistente è stato studiato in termini di 
component, segnali e caratteristiche temporali perché il nuovo component deve essere sincronizzato con tutta la 
catena di trasmissione. Il component poi è stato sviluppato con l’obiettivo di creare un component veloce 
mantenendo l’integrità del frame inviata. Il codice VHDL generato è stato poi simulato con testbench appositi 
per verificare il comportamento di tutte le parti sviluppate. Infine, il codice è stato caricato sulla board fisica e il 
sistema di comunicazione è stato testato.  

Come primo passo, tutti i component appartenenti alla catena di trasmissione sono stati studiati. Essi sono 
descritti in VHDL e molti sono standard di rete. Sono stati analizzati in termini di sincronizzazione temporale, 
dimensione dei dati e come sono gestiti. Anche il loro ruolo nel sistema è stato analizzato. Lo studio è essenziale 
per capire I requisiti che il sistema ha in termini di sincronizzazione verso il nuovo component. 

Il PPPConverter è stato sviluppato analizzando come le due parti debbano essere interfacciate verso il sistema 
e come la conversione da un tipo di frame all’altro debba essere gestita. Come primo passo, uno pseudocodice è 

stato scritto per mostrare il comportamento di ogni parte. Poi il flusso di dati è stato studiato. Dato che un 
parametro importante sono le performance del sistema, le operazioni di scrittura e lettura sono svolte il più 
possibile in parallelo. Inoltre, dato che l’integrità del segnale è essenziale, l’header del frame PPP è controllato in 

ogni suo byte. Se un byte sbagliato è letto, l’intero frame è scartato. In aggiunta, uno shift register, chiamato 
ShiftMemory, è stato implementato per determinare la fine del payload di entrambe i frame. In ambo le parti, la 
lunghezza del payload non è disponibile e con questo component è possibile eliminare i byte di fine frame e 
scrivere i nuovi. Sono anche stati studiati I diagrammi temporali per soddisfare l’interfaccia del component verso  
il sistema e il nuovo canale, chiamato IOChannel. 

Per verificare la correttezza del comportamento del codice VHDL generato, lo ShiftMemory e le due parti 
sono state simulate. Il test è stato sviluppato con appositi testbench e le forme d’onda generate sono state 
confrontate con i diagrammi temporali attesi. Questi test avevano come obiettivo anche quello di verificare la 
capacità di essere full duplex del PPPConverter, dato che le parti inbound e outbound devono lavorare in 
parallelo. 

Infine, il nuovo codice VHDL è stato caricato nella board fisica per verificarne il comportamento. Come prima 
cosa, l’intera trasmissione è stata simulata. Tramite un testbench, la simulazione ha ricreato la comunicazione di 
un messaggio ARP casual da una board all’altra attraverso l'IOChannel. Poi, solo l’interfaccia specifica per 

l’IOChannel è stata caricata sulla board per verificare che il canale fisico stesse effettivamente lavorando. 

L’interfaccia poi è stata caricata insieme al vecchio sistema ma in parallelo. Questo passaggio è stato svolto per 
verificare che la logica aggiuntiva potesse essere gestita dal sistema esistente. Infine, l’intera implementazione 

richiesta è stata caricata sulla board per verificare che i component sviluppati potessero creare un nuovo 
passaggio di comunicazione tra il sistema e l’IOChannel. 

L’intero protocollo PPP non è stato implementato del tutto: sviluppi futuri richiedono di aggiungere il 
meccanismo di escaping come dichiarato dallo standard. In aggiunta, gli indirizzi di provenienza e destinazione 
appartenenti al frame Ethernet devono essere gestiti in maniera più specifica.  
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1. Introduction 
 
 

A telecommunication network is a system that allows different elements to communicate with each other at a 
distance using electromagnetic signals[1]. Communications systems can be classified based on the way the 
communication work. The communication can either work so that all the objectives can communicate with each 
other simultaneously,  or it can be limited to a message from a single object per communication line at the time. 
Whenever the latter case occurs, it is possible to set a hierarchy among the objects of the system in a Master-
Slave fashion. It is possible to assign the role of Master of the communication to a specific object. A Master, in 
short, can decide when to send the messages and who the receiver is. An element that is not a Master is a Slave 
of communication, Slave in short. A Slave can talk only when a Master allows it to do it. In complex systems, 
there is the need to use different levels of hierarchy. The Slaves can be Masters as well, totally passive elements 
or can send messages to the Master which is going to listen to them using a specific priority order. 

Telecommunication networks are used in railway transportation to coordinate the traffic of the trains. The 
management of the traffic of the trains in each station requires the precise coordination of many 
electromechanical devices both on the railway and onboard the train. The traffic must be handled by a central 
traffic unit called Traffic Management System (TMS) which enforces the routes and the schedule of the trains 
and takes the decisions when two or more trains must transit on the same railway line. The TMS communicate 
with the Computer-based Interlocking System (CBI), which is responsible for the supervision and control of the 
object in the railway line. The CBI is composed of three subsystems: the Central Interlocking System (CIS), the 
Transmission Network (TN) and the Object Controller System (OCS) (Figure 1.1). When a train has the 
allowance to transit on a line, the TMS sends commands through the communication network until they reach 
the traffic lights and question the position sensors status. Traffic light and sensors are some of the objects on the 
railway line, also called Wayside Objects. Wayside Objects and they are traffic lights, balises, sensors, and 
points. When the TMS has decided which Wayside Object should move, the order is communicated to the CBI 
that takes it in charge and it is responsible for the direct control of the Wayside Objects. The CBI is composed of 
three subsystems: the Central Interlocking System (CIS), the Transmission Network (TN) and the Object 
Controller System (OCS). The OCS is the element that receives the order from the TMS and translates them into 
messages that the objects on the railway can understand and execute. The CIS is the communication node 
between the TMS and the OCS. The TN is the system built of all the elements that compose the network that 
make the CIS-OCS communication possible.   

 

 
Figure 1.1: The hierarchical structure of the Railway Communication System. The TMS 

communicates with the CBI. The CBI is composed by the CIS, TN and the OCS which is the elements 
that directly control the Wayside Objects. 

 
Important factors influencing the wellness of customers of the railway transportation system are the 

compliance with the highest safety standard and high-speed communication. The safety standard is regulated by 
the System Integrity Level (SIL). It is defined as a relative level of risk-reduction provided by a safety system. In 
the railway system, the required SIL is 4, the highest level defined by the standard.  The standard requires at 
Level 4 a probability of failure per hour of 10−8 – 10−9 , or one failure every 10000 years, for a system operating 
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in continuous mode. The Wayside Objects have to be constantly monitored about their status to prevent damage 
and react quickly to possible hazardous situations. The high-speed communication has an important role in 
improving the quality of transportation. If the communication network is fast, the Wayside Object can react in a 
short period of time, and the overall system will have better performances. If the order to change the point 
machine arrives faster, the same line will have more frequent train rides resulting in reducing waiting time for 
the customer. 

A new high-speed channel will be used to increase locally the performance of communication inside the OCS. 
In the OCS subsystem, there are several elements that concur to the flow of the messages from and toward the 
Wayside Objects. The message that comes from the CIS is sent to the OCS. The communication network 
between the CIS and the OCS is also composed of two redundant physical boards. These boards are identical and 
they are defined as redundant because one of them is designated as online and the other one is in standby mode. 
Whether the online one stops working, the system substitutes it with the standby. In this way, communication is 
always granted even when a hazard occurs. Currently, communication from the online board to other elements of 
the OCS occurs through a specific channel. However, the performances of this channel are not high enough to 
update the system to increase the railway traffic. A high-speed physical channel has to be used. This channel is 
already present on the Printed Circuit Board (PCB) inside the OCS, but it was missing a firmware interface to 
allow it to communicate with the current system. It has been proven that this new channel is 100 times faster 
with respect to the previous one[2]. Using the new channel, the traffic of the messages can be increased.  

It is important that the design of the interface that will allow the communication through the new channel is 
custom made to fit the system already developed inside the FPGA. The new channel needs to be connected to the 
existing system and a proper interface has to be developed to enable a standard communication and to comply 
speed and safety requirements. The interface is designed using VHDL language and then loaded into a Field 
Programmable Gate Array (FPGA)[3]. An FPGA is a device that is composed of a reprogrammable logic. Each 
board is composed by an FPGA which acts as a Switch[4], which is a device that redirects the different incoming 
messages to the correct destination device. The channel is directly connected to the FPGA on the PCB. The 
message arrives in the FPGA and it dispatches it to the proper destination. An on-the-shelf solution was not a 
good choice for this system since the OCS developed by Bombardier Transportation is granted for 30 years. In 
that timespan, the device can become obsolete and the integrity of the system might not be granted since an 
obsolete device can grant less reliability with respect to a new one. It is then a flexible solution and it facilitates 
maintenance operations since it can be reconfigured with new coding instead of replacing a new component on 
the board. 

The new interface enables communication between two different standard protocols and it is custom made to 
comply with the existing system. The standard protocol that the system uses for the messages is the Ethernet 
[6](see Chapter 2, Section 2.5). To analyze if the Ethernet frame was still a good choice in terms of protocol to 
be used on the new channels, the flexibility, the speed, and safety of the system were taken into consideration. A 
frame is the transmission unit which carries the message by encapsulating it with a header and an end-of-frame 
field as the start and stop points of the message. The carried message is called the payload. The communication 
is faster if more payload information is transferred in the same amount of time, and therefore if the frame has 
less non-payload bytes to send. To keep the communication fast, a frame which has less overhead with respect to 
the Ethernet has to be considered. In this work, the overhead is defined as the ratio between the length of the 
non-payload bytes and the total length of the frame and it is the parameter to consider whether the chosen 
protocol fits the high-performance requirement. A low overhead value results in a more efficient information 
transfer, decreasing the time-per-message and thus allowing faster communication. To find a valid alternative to 
the Ethernet frame and since the communication is serial, also the Serial Line Interface Protocol (SLIP) and the 
Point to Point Protocol (PPP)[7] have been studied (for the complete frame explanation, see Chapter 2 Sections 
2.6 and 2.7). The SLIP is a protocol developed to give a start and end frame of a message to be sent over a serial 
line. The PPP is a protocol is meant to connect two elements that have only one link between them. It is possible 
to notice that in the worst case scenario, that is when the frame has the maximum dimension, the best solution is 
the SLIP. However, the PPP offers two fields that are not available in the SLIP[8]: the header bytes that precede 
the payload and the Cyclic Redundant Check (CRC) [9] field. These fields allow having a flexible 
communication that is fully customizable according to the need of the receiver of the message and to have an 
extra security layer by exploiting the CRC code (see Chapter 2, Section 2.3). The new interface then will be a 
converter between Ethernet and PPP frame and it will be called PPPConverter. It will be composed of two 
separated and independent part called as inbound and outbound. The part will be called Inbound if the message 
in incoming in the board, outbound if it sent from the board over the IOChannel, the new channel.   

By the physical point of view, the new channel, called IOChannel, is implemented as an LVDS-full duplex 
communication link. A full duplex communication means that the system can exchange messages from and to 
the board on two independent links. Moreover, each link is a Low Voltage Differential Signal (LVDS)[5]. This 
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means that each link is composed of a positive and a negative line. Therefore, there are four lines for one 
channel, two are with the message as it is, defined as positive, and two in which the data are sent as the opposite 
value called negated. For further information about the LVDS protocol, see Chapter 2 Section 2.2. Each wire 
sends messages using a serial protocol implemented by a Universal Asynchronous Receiver-Transmitter 
(UART) component inside the FPGA (described in Chapter 2, Section 2.4). This asynchronous component 
allows to serialize and send the data over the lines and deserialize the received bits. The serial UART data 
generated by the architecture inside the FPGA reaches a buffer that creates a differential signal as output and 
then the output is transmitted onto the LVDS pins of the FPGA. When the message is received, it is translated 
from LVDS to single ended from another buffer inside the FPGA and it is converted into a byte-based message 
from the UART component. 

In conclusion, an Ethernet-PPP converter has been designed and implemented in VHDL to allow 
communication through the IOChannel. The interfaces connecting the IOChannel and the system will be custom 
made according to the given specifications to interface this component with the existing system and the UART 
module that acts as a transceiver toward the physical implementation of the IOChannel. The component is 
working as required from a behavioral point of view. When integrated into the existing system on a physical 
board, the system does not produce anymore the output on the IOChannel. 
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2. Bombardier Transportation 
 
 
The thesis project was developed and implemented at Bombardier Transportation Sweden AB. Founded as 

L'Auto-Neige Bombardier Limitée in 1942 by Joseph-Armand Bombardier, Bombardier is a multinational 
aerospace and transportation company based in Montreal, Quebec, Canada. In 1970, Bombardier buys 
Lohnerwerke in Vienna, Austria, a manufacturer of motor scooters and trams, and its subsidiary, the engine 
manufacturer ROTAX. This marks Bombardier’s entry into the railway business. After obtaining the North 

American leadership in Rail Transportation in 1982, in 1986 Bombardier expands in Europe and in the same 
year it buys Canadair expanding his sectors also in the aerospace field [10].  

Nowadays, Bombardier Transportation is one of the largest companies in the world in the rail vehicle and 
equipment manufacturing and servicing industry. Among many products, Bombardier has produced many 
subway systems worldwide, monorails, trams, and rail vehicles. Famous products are the train V300ZEFIRO, 
also known as Frecciarossa 1000, shown in Figure 2.1 [11] and the Metro trains and system in Munich Airport 
Franz Josef Strauss, INNOVIA APM 300 Automated People Mover System, shown in Figure 2.2 [12]. 

 

 
Figure 2.1: V300ZEFIRO 

 
 

 
Figure 2.2: INNOVIA APM 300 
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3. The involved standard protocols, models, and utilities 
 
 

Several standard protocols, model and utilities belonging to telecommunication engineering have been 
considered during the development of this thesis project. They include Ethernet, PPP, SLIP and ARP protocols, 
the Ping utility, the OSI Model, the UART device, the LVDS standard, and the CRC code. 

 

3.1 Open System Interconnection (OSI) model 
The Open System Interconnection model is a standard for network development[13]. It describes the 

architecture of a network system as composed of seven different layers whose set fully describes all the possible 
functionality of a network system. For this project, the FPGA works only in the OSI Layer 2[14] while 
transporting messages belonging to the Layer 3. It only deals with the correct addressing and transmission of the 
messages but not their content. 

 

3.1.1 Layer 1: Physical Layer 

The Protocol Data Unit (PDU), which is a single unit of information transmitted among peer entities of a 
computer network, is organized in symbols. This layer defines the way the raw bits are transmitted. It provides 
the electrical, mechanical and procedural interface to the transmission medium. It is often referred to as PHY. 

 

3.1.2 Layer 2: Data Link Layer 

The PDU is the frame for this layer. It focuses on delivering, addressing and arbitering the media of frames 
usually in a Local Addressing Network (LAN). It is not managed the local network, it is handled by higher 
levels. It is divided into two sub layers[14]: logical link control (LLC) and media access control (MAC). The 
former multiplexes the protocols that run in the data link layer and can provide flow control, acknowledgment 
and error notification as the checksum control. The latter handles frame synchronization and the arbitration for 
speaking or listening on a line. Some protocols belonging to this layer can be Ethernet[6], PPP[7], and SLIP[8]. 

 

3.1.3 Layer 3: Network Layer 

The packet is the PDU of this layer. The Layer 3 transfers variable length packets from a source to a 
destination host via one or more networks. It takes order from the Transport Layer and gives orders to the Data 
Link Layer.  

 

3.1.4 Layer 4: Transport Layer 

The protocols that work in this layer provide host-to-host communication services. The PDU for this layer is 
segment or datagram. 

 

3.1.5 Layer 5: Session Layer 

The Session Layer provides the mechanism for opening, closing and managing a session between application 
processes. The PDU for this layer is data. 

 

3.1.6 Layer 6: Presentation Layer 

The presentation layer is responsible for the delivery and formatting of information to the application layer for 
further processing or display. 
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3.1.7 Layer 7: Application Layer 

The application layer is an abstraction layer that specifies the shared communications protocols and interface 
methods used by hosts in a communications network. 

 

3.2 Low-Voltage Differential Signaling (LVDS) 
LVDS is a standard that specifies the electrical characteristics of a differential and serial communication 

protocol. It is a protocol defined in the OSI Layer 1. Each signal in this standard is sent via two wires which are 
called positive and negative. Due to this differential characteristic, the common mode is rejected.[5] 

 

3.3 Cyclic Redundant Check (CRC) 
The CRC is an error detecting code used in order to observe an accidental change in the data inside the frame 

[15]. It is usually used in digital network systems by many protocols as part of their frame as Ethernet, PPP, and 
RapidIO. The CRC can also be used for error correction but in this project will be used only the CRC32 [9] error 
detection version. CRC32 is the algorithm that has 32 bits as input and 32 as output. The CRC uses a specific 
polynomial to which the input frame is divided using a polynomial division and creating a four bytes sequence 
unique for the frame to which it is related. All the parts in the frame as header, payload and possibly the tail will 
be set as the input of the CRC32.  

 

3.4 Universal Asynchronous Receiver-Transmitter (UART) 
A UART is a device used for serial communication over a serial port. This module divides the frame into bits 

to be sent one per each clock cycle on the serial line. The delimiters of the sent byte are the start and stop bit. 
The start bit is determined by a transition from 1 to 0, then eight bits are transmitted, and the stop bit is 1 as 
shown in Figure 3.1. The communication is asynchronous: the UART receiver should work at the same 
frequency of the transmitter or use an asynchronous buffer to not lose data. In this project, the UART modules 
work at the same frequency. 

 

 
Figure 3.1: UART framing [16]. It has a start bit coded as a transition between a logic 1 and 0 and a 

stop bit coded as 1 

 

3.5 Ethernet protocol 
Ethernet is a family of computer networking. It can be used into three main categories of a network: Local 

Access Network (LAN), Metropolitan Area Network (MAN) and Wide Area Network (WAN). For this project, 
the system involves only LAN. The Ethernet Frame is the payload transported by the data unit of the Ethernet 
Protocol and it belongs to the Layer 2 of the OSI Model. As described by the standard, a standard Ethernet 
Frame is composed of the following fields; in Figure 3.2 the Ethernet Frame is shown. The Ethernet protocol 
refers to the Ethernet 2.0 version. [6] 

 

3.5.1 Preamble 
It is composed of seven bytes and in this system; they all correspond to the hexadecimal number 0x55. 

 

3.5.2 Start of Frame Delimiter (SFD) 
This byte indicates the beginning of the frame and is represented by the hexadecimal number 0xD5. 
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3.5.3 Destination Address  
It is expressed as the Media Access Control address of the destination object of the message transported by the 

Ethernet Frame and it is composed by six bytes. The MAC address is a unique identifier whose code is not 
shared by any other object in the world if universally addressed. In this way of addressing, the MAC number is 
given according to the standard declared by IEEE. The MAC address can also be locally addressed by setting 
some bits belonging to the Most Significant Byte according to Big Endian format[17].  

 

3.5.4 Source Address  
As well as the destination address, it is composed of six bytes which compose the MAC Address of the device 

that is sending the message. 

 

3.5.5 Ethernet Type 
It is composed by two bytes and it is used by the destination device to understand the protocol used in the 

payload. In this system, the Ethernet Frame transports Internet Protocol Version 4 (IPv4) frames so the two bytes 
will always be set as the hexadecimal number 0x0800. The message can also be ARP; in this case, the code is 
0x0806. [18] 

 

3.5.6 Payload 
The standard length of an Ethernet Frame’s payload is between 48 and 1500 bytes. Since the system is 

developed using the OSI model it will be a Layer 3 protocol, specifically IPv4[19] frames. 

 

3.5.7 Cyclic Redundant Check (CRC) 
Composed by four bytes, it is an error detecting code based on the computation of a signature of the frame by 

exploiting a polynomial division of all the content in the frame: addresses, Ethernet type, and payload. The CRC 
signature is calculated again when the message is received by the destination device and if it is not equal to the 
one in the frame it means that there was a failure in transmitting the message and some data were lost or 
modified. The CRC used in this system is CRC32. The CRC is not an error correction code, it only detects 
whether a fault in the message has occurred. 

 

 
Figure 3.2: Ethernet frame format, the numbers in the Figure indicate the number of bytes allowed by 

the standard. It is composed by a preamble, an SFD byte, 12 bytes for destination and source MAC 
address, the Ethernet type, the payload and four final bytes of CRC32 

 

3.6 Point to Point Protocol (PPP) 
The Point to Point Protocol is an OSI Layer 2 protocol used to link two nodes in a network without any other 

host or interfacing device during the communication. As described by the protocol, a standard PPP frame, as 
represented in Figure 3.3 is composed as follows. [7] 

3.6.1 Flag 
This byte is the start of the frame and it is the hexadecimal number 0x7E. 

3.6.2 Address 
This field is made by one byte and it is usually set to broadcast so the hexadecimal number 0xFF. 
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3.6.3 Control 
The control byte is set to the hexadecimal number 0x03. 

3.6.4 Protocol 
These two bytes identify the type of protocol of the transported message; in this case, since it is IP it will be 

coded as 0x0021. Since the message can also be ARP and there is no indication from the standard for this type of 
message, it has been chosen the code 0x0081 since it is marked as unassigned from the standard itself.[20] 

3.6.5 Information 
This field has a variable number of bytes and it is the transported message. 

3.6.6 CRC 
As in the Ethernet Frame case, these are four bytes of CRC32. 

3.6.7 Flag 
The hexadecimal number 0x7E is sent as the conclusive byte of the frame. 

3.6.8 Escaping sequence 
If the 0x7E byte is inside the payload, the protocol requires to translate that byte to the byte 0x7D into the new 

PPP frame followed by the XOR of the bytes 0x7E and 0x20. If the byte 0x7D is present in the payload, it is 
meant to be translated into 0x7D followed by the XOR between 0x7D and 0x20 bytes.  

 

 
Figure 3.3: Point to Point frame format, the numbers in the Figure indicate the number of bytes 

allowed by the standard. It is started and ended by the Flag, it contains also the Address and Control 
fields, two Protocol field that described which protocol is the Payload message and four bytes of 

CRC32 

 

3.7 Serial Line Interface Protocol (SLIP) 
The Serial Line Interface Protocol is a standard used to encapsulate frames before being serialized. This 

protocol modifies the frame as follows.[8] 

3.7.1 Frame END 
This byte corresponds to the hexadecimal number 0xC0 and it is added at the beginning and at the end of the 

frame. 

3.7.2 Frame ESC 
In case the byte C0 is already inside the frame to convert, it is converted into two bytes 0xDB (the ESC byte) 

and 0xDC. If the Frame ESC is detected as well as a byte in the frame, it will be translated into the two bytes 
0xDB and 0xDD. 

3.8 Address Resolution Protocol (ARP) 
The Address Resolution Protocol is a protocol used from the server device of the system to map all the MAC 

addresses of the clients connected to it[21]. The ARP protocol is based on a request in which the message is 
broadcast, and the content of the message is: the IP address XX.XX.XX.Y asks who is XX.XX.XX.Z? The answer 
to this message is unicast since there is no need for it to be broadcasted to all the devices. For purpose of 
simplicity, in the system that will be developed the answer will always be broadcast. Moreover, for this thesis, 
there is no need to describe the full details of the frame of the ARP.  

3.9 Packet Internet Grouper (Ping) utility 
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Ping is a utility used to test the reachability of a host on Internet Protocol (IP) network  [22]. IP is a protocol 
that works in the OSI Layer 3 [19]. When the Ping instruction is sent from a processor toward a specific IP 
address, the sender waits for the answer of the IP addressed device. If the answer is received it means that there 
is a connection between the devices. The utility allows also specifying in the command line extra field to monitor 
different features regarding the communication. The ping utility is used to test the full architecture inside the 
FPGA since in the Implementation phase two boards are connected through the IOChannel. When the Ping 
instruction is sent to a specific IP address, the sender waits for the answer of the IP addressed device. In this 
way, the full duplex communication can be tested.   
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4. The system inside the FPGA: how it was and how it will be 
 
 

The interface that has to be developed is going to be designed and implemented in VHDL and uploaded on an 
FPGA. In this device, the OSI Layer 2 is implemented while the higher layers are managed outside of it. The 
new channels, which are going to be called IOChannels, are already printed on the PCB and a pin has already 
been selected for them in the FPGA 

 

4.1 The system and purpose of the FPGA 
The FPGA is a Switch. In telecommunication standard, a Switch is a device that drives incoming messages 

from one or more possible input and directs the messages to the proper output[4]. The messages can be 
broadcast, so sent to every other port connected to the switch, or unicast, so with a specified destination address 
and sent to a specific output port. All the components belonging to the FPGA are divided into two parts: inbound 
and outbound. When the message incoming toward the FPGA it is defined as inbound when it is going outside of 
it is defined as outbound. Both parts are independent on one another since the system is always full duplex. The 
desired system is represented in Figure 4.1. 

 

 
Figure 4.1: The communication system inside the FPGA. The message is sent by the Processor, it is 

sent to the IOChannel through the following components: Rgmii-PHY, Bridge, FrameBuffer, 
EthernetSwitch, FrameBuffer, PPPConverter, and UARTInterface 

 
 

4.2 The flow of the message 
Concerning all the used blocks, Figure 4.1 can be observed as a reference about how they are connected.  
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4.2.1 From the processor to the IOChannel 
The message is sent by a processor and it is an Ethernet 2.0 Frame. The message encapsulated inside the 

Ethernet Frame can be an ARP request or an IP message. When the message enters the FPGA, it is translated 
from the Rgmii-PHY interface to an Ethernet Frame organized in bytes and it is saved into the FrameBuffer 
connected to the Port 0 of the Ethernet Switch. The Switch then decides which is the destination port and 
forwards the messages to it. From the destination Port the message is saved into another FrameBuffer and when 
a full frame is saved into it the PPPConverter starts to convert the message into PPP frame and forward it to the 
block UARTInterface. This block contains two core generated FIFOs (inbound and outbound) and a UART 
module that is responsible for the creation of the serial communication. The serial stream of bits then enters the 
LVDS buffer, proprietary of the FPGA, and the two LVDS signals exit the FPGA feeding one of the 
IOChannels. The message that comes from the processor enters the inbound part of all the components in the 
chain until it reaches the EthernetSwitch. When it is sent to another port the message is meant to be sent outside 
the FPGA, so it will be processed in the outbound part of the components.  

 

4.2.2 From the IOChannel to the processor 

When the message comes from the IOChannel, it is deserialized by the UARTInterface and stored in bytes in 
the inbound FIFO. The PPPConverter then acquires each byte and from them recreates the EthernetFrame using 
as destination address the MAC address of the processor. The Ethernet Frame is then saved into the FrameBuffer 
connected to one of the Ports of the Ethernet Switch. The Switch then redirects the message toward the proper 
Port, where the message is saved into the FrameBuffer. When the full frame is saved, the message is translated 
into PHY and sent to the processor. 

 

4.3 Choice of the protocol on the IOChannels 
These new channels are full duplex and LVDS, which means that for each channel there will be four serial 

wires: two in transmission (positive and negative) and two in reception (positive and negative). 
To have the fastest communication possible, the overhead of the frame, the ratio between the length of the non-
payload bytes and the total length of the frame, must be the minimum to save time. For this reason, some 
standard protocols solutions have been considered to optimize the overhead due to the Ethernet Frame itself. As 
shown in Table 4.1 the SLIP protocol appears to be the best trade-off in terms of overhead proportion since it has 
only two more extra bytes to be added to the payload and, in case of full sized-frame, it has less overhead than 
PPP. The problem with SLIP is that it has no error detection field, as the CRC in the Ethernet and PPP frame. 
Moreover, the PPP is a very flexible protocol since it has the Address, Control, and Protocol fields while having 
less overhead with respect to the Ethernet Frame if there is no escaping needed. Flexibility is needed since the 
element that is going to receive the PPP frame is not yet designed. For all these reasons, the PPP was chosen as 
best protocol as a trade-off among performances, safety, and flexibility.   

 
Table 4.1: Possible Protocol overhead scenarios  

Type Theoretical Overhead, Standard 
Payload length L bytes 

Maximum Overhead, all characters 
must be converted (SLIP and PPP) 

Ethernet Frame 18/L 18/L 

SLIP 2/L 3000/L 

PPP 10/L 30000/L 

 
 

4.4 Involved components 
Many different components are involved in the flux of the messages. In the following both the signal interface 

and the timing, when relevant, are shown. All the signals not mentioned in the description of the components are 
not to be considered since not relevant to the system. 
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4.4.1 Reduced Gigabit Media-Independent Interface (Rgmii) - PHY Interface 
This component allows converting the Ethernet frame from the format used into the OSI Layer 2 into the one 

used in the OSI Layer 1, the physical layer, and vice versa. This block acts as a synchronizer and helps the 
processor to interface the FPGA. There are three main signals from the processor: data on four bits, the enable 
signal and the clock which might be different with respect to the one used internally in the FPGA. These signals 
are used according to the Rgmii standard.[23] 

The signal interface was studied to create the complete testbench of the system. In Figure 4.2 it is possible to 
see the input and output signals belonging to this component. The clock used for the interface toward the 
processor is not necessarily the one in the system since it can be different. Inside the component, there are 
specific processes to synchronize the signals. The data are received in frames composed by four bits and then 
merged so that they are sent as bytes inside the system of the FPGA. When a data is valid to be read, the 
processor asserts the CTL signal. The 4-bits frames are incoming toward the FPGA coded as little-endian: this 
component creates the bytes as big-endian so that the message can be correctly managed inside the FPGA that 
uses this order. The inbound part of the communication, which is the one just described, can be noticed in Figure 
4.3. In the outbound part, the component takes the bytes and separates them in four bits data, synchronize the 
clock with the one received from the processor and asserts the enable signal CTL when the data are valid. 

 

 
Figure 4.2: Rgmii-Phy signals interface 

 

The timing diagram showing the writing action from the processor toward the Rgmii-PHY features three 
signals: the clock, the CTL and the data. The CTL signal acts as a data valid signal as the Rgmii standard 
prescribes (Figure 4.3). The Inbound interface between the Rgmii-PHY component and the Bridge is shown in 
Figure 4.4. The read signal is asserted every two clock cycles and when the bridge has asserted the start signal 
the sequence can be read. If the signal end is strobed the frame is finished, and the Bridge will wait for another 
start strobe to read. As for the outbound part, the interface is the same with start and end strobes, the write signal 
behaves as the read but there is no delay between data and the assertion of the write signal. 
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Figure 4.3: Timing diagram of the signals used by the processor to send a message to the FPGA. 

The interface component is Rgmii-PHY. If the ctl signal is asserted the data is valid. The data are an 
example and are not indicative of a proper Ethernet frame. 

 

 

 
Figure 4.4: Timing diagram of the interface between the Rgmii-PHY and Bridge components. 

Inbound Interface. The start and end signal delimit the frame. The data are an example and are not 
indicative of a proper Ethernet frame. 

 
 

4.4.2 Bridge Interface 
A network bridge is a computer networking device that fragments the network[24]. It receives a message and 

decides if forward it or discard it. It is simpler than a Switch since the communication between two blocks is not 
independent, but it is chosen by the Bridge itself. In this system, the Bridge decides if the inbound information 
can go toward the EthernetSwitch or other parts of the FPGA which will be ignored since not useful for this 
project. In the inbound part of the Bridge, the Preamble and the SFD of the Ethernet Frame are removed while in 
the outbound part it is added again. These parts of the Ethernet frame are also checked and if they do not have 
the expected value they are discarded. In Figure 4.5 the bridge signals interface is shown. With this component, 
the timing will not be described since it is already shown for the two components to which it is connected to, the 
Rmgii-PHY and the FrameBuffer. 
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Figure 4.5: Bridge signals interface 

 

4.4.3 FrameBuffer 
To synchronize the flow of communication, each Port is connected to a FrameBuffer (Figure 4.6). This buffer 

can store up to 16 KB, that are 10 full-size Ethernet Frames, and it is divided as well in the Inbound and 
Outbound part.  
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Figure 4.6: FrameBuffer signals interface. Since the inbound and outbound parts have the same 

interface, the signals shown refer to a generic part. 

 
The read operation is performed by asserting the signal ReadContent. One clock cycle later on the signal 

ReadContentData the bytes will start to appear. When a frame is completely read, the buffer asserts the signal 
ReadContentEnd for one clock cycle. If the user wants to read the next frame, the signal ReadFrame has to be 
asserted for one clock cycle as a strobe while the signal ReadContentData is not asserted (Figure 4.7). The write 
operation is executed by asserting the signal WriteContent and in the same clock cycle starting to give the frame 
as input on the signal WriteContentData. When the user wants to write a new frame, the signal WriteFrame has 
to be asserted for one clock cycle as a strobe (Figure 4.8). 

 

 
Figure 4.7: Timing diagram of the reading operation on the FrameBuffer component. The 

ReadContent signal is asserted until the ReadFrameEnd is asserted and the frame is finished. To read 
the next frame the ReadFrame signal must be strobed for one clock cycle. The data are random values. 

 
 

 
Figure 4.8: Timing diagram of the writing operation on the FrameBuffer component. While the 

WriteContent signal is asserted, the data are written inside the buffer. When a new frame has to be 
written, the WriteFrame signal is strobed for one clock cycle. 
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4.4.4 Ethernet Switch 

The main component inside the FPGA that acts as a switch is the EthernetSwitch: it is a block developed by 
Bombardier that receives the incoming signal, decide which other object connected to it is the destination and 
forward the message to it. Each device that needs to exchange messages to the other devices connected to the 
FPGA is connected to a Port on this component. All the incoming and outcoming messages are Ethernet Frames, 
so the addressing of the destination and source is based on the MAC Address specified in the message. The 
peculiarities of this block are that it is self-learning and the decision of which port can talk is taken by a 
WishBoneCrossbar component [25] based on a Round-Robin Arbiter [26], so each port has the same priority to 
talk. All the signals incoming toward the EthernetSwitch belongs to the inbound part of the system. Therefore, 
all the outcoming messages belong to the Outbound part of the system. The signals belonging to the interface are 
used in the same way as the ones of the FrameBuffer, as well as the timing. The only difference is that each 
signal of the FrameBuffer is declared as a vector of length equal to the number of ports instead of a single bit 
control signal. 

 

4.4.5 UARTInterface: core generated FIFOs and UART module 
This component contains three components: two identical Xilinx Core-generated FIFO and a UART module. 

The two FIFOs are one for the inbound e one for the outbound part. The interface toward the PPPConverter is 
the same of one FIFOBuffer (Figure 4.9) and it makes possible to write on the outbound FIFO and read from the 
inbound FIFO. The UART module is interfaced inside the UARTInterface component with the two FIFOs and 
the only signals that interfaces the other main components are the IOSignal_i and IOSignal_o which are 
respectively the input and output serial line connected to one of the physical IOChannel. Moreover, this block is 
the only one of the involved components that has a positive reset. 

 

 
Figure 4.9: FIFOBuffer signals interface 

 
The timing diagrams that are relevant to the project are the Core generated FIFOs interface [27]. Since they 

are identical in the inbound and outbound part, the indicated signals will be named in a general way. The signal 
rd_en is asserted and one clock cycle later the data can be read on the pin data_out. The data are valid to be used 
if the signal valid is also asserted by the FIFO. The signal empty notifies if there are data in the FIFO by 
becoming 0 (Figure 4.10). Concerning the writing operation, in the same clock cycle, the wr_en signal has to be 
asserted and the data must be present on the data_in pin. When the FIFO has correctly written the data, it asserts 
the signal wr_ack one clock cycle after the data has been sampled by the FIFO (Figure 4.11). 
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Figure 4.10: Timing diagram of the reading operation from the FIFOBuffer. The rd_en signal is 

asserted and one clock cycle later the data are read. The data is the correct one only if the valid signal 
is asserted as well. The data are random values. 

 
 

 
Figure 4.11: Timing diagram of the writing sequence on the FIFOBuffer component. The wr_en 

signal is asserted and the data is written into the FIFO. If the memory has correctly written the data, 
the wr_ack is asserted. The data are random. 

 
4.4.6 PPPConverter 

This component is the main object of the thesis project. Since all the communication is divided into inbound 
and outbound, the two parts will be described separately. The communication is full duplex, so they are meant to 
be always independent of each other.  
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5. Design of PPPConverter 
 
 

The Converter is divided into two parts: Inbound and Outbound. They work in parallel and are not meant to 
communicate with each other. The approach used to design the VHDL code is the behavioral one, as used by all 
the other codes belonging to this system. Therefore, the Data Path scheme will not be introduced while the most 
relevant importance is given to the Control Flow Chart. The two protocols have different length and values in the 
head and tail of the frame so if the system must be designed to have the least latency possible, for this reason in 
both parts the writing of the new head and the reading of the incoming message will be done in parallel. In both 
cases, a Data Flow management graph will show how this procedure is managed during the evolution of the 
states. Since all the signals names have as radix the name of the part to which they belong to, inbound and 
outbound, while describing the two different part the radix will be neglected and it must be considered as the 
name of the part that is described.  

 

5.1 Error and escaping management 
Since the FPGA works in a high safety environment, some studies about error detection and correction inside 

the FPGA and the system must be considered. As far as the system in which the FPGA works is concerned, 
when a frame is faulty is not a responsibility of the FPGA to correct the mistake: if an error is detected the frame 
is discarded and the processor that has sent the message will send it again until it receives an answer. The Safety 
Layer of the network system is the one responsible for the management of these faulty situations. For this reason, 
the signal wr_ack of the FIFO is not checked in the PPPConverter component: if the UART receive a faulty byte 
the inbound part of the PPPConverter on the other side of the channel will detect the problem and discard the 
faulty message. To discard a message, the FrameBuffer has a dedicated signal called WriteFrameAbort: if the 
signal is asserted the buffer will not save the rest of the frame and will delete the bytes already written inside of 
it. 

The escaping feature required by the PPP protocol standard declaration was not implemented in the 
PPPConverter component. This decision was taken to have a first version of the converter that could be simple 
enough to be implemented and at the same time could introduce the PPP frame to the system. This was also 
possible since the two boards that will be used for the implementation test (see Chapter 7) do not use the special 
character 0x7E in their framing. This aspect was verified [28] [29] using the tcpdump command on the processor 
interface toward the FPGA: the frames that are sent in both the ARP and Ping messages never contain the Flag. 
The escaping feature must be added in the future implementations of the component in order to make the 
communication fully standard. 

 

5.2 ShiftMemory 
In both parts, the length of the frame is not known but there is a signal or data value that indicates when the 

frame ends. Moreover, the CRC32 signature calculated in both the protocols is going to be different because the 
head of the frame is different, so the last four bytes have to be discarded and substituted with the new signature. 
In the Inbound part, the end of frame delimiter is the byte 0x7E: when it is read, the frame is finishes and the 
previous four bytes are the old CRC32. In the Outbound part, when the signal ReadFrameEnd is asserted, it 
means that the four last bytes are the old CRC32. Since there is the same behavior in both parts, the 
ShiftMemory component, designed to create the proper tail to the frame, will be described as one component 
which is independent on the part of the PPPConverter in which works. The only difference is in the reset value of 
the output of this component: in the inbound part will be set at zero while in the outbound will be set at 7E since 
the PPP protocol prescribes that value to be the idle state of the line. The ShiftMemory component is composed 
of four eight-bit signals that, when the signal enable is asserted, shift their value to the next one. When the end of 
frame moment is reached, the last value to be read is the output of the ShiftMemory and the content of it, the old 
CRC32, is discarded. This means that all the payload bytes are shifted into this component before being written 
into the FrameBuffer or the FIFO and therefore delayed by four clock cycles (Figure 5.1). This choice raises the 
latency of the frame, but the overhead of four clock cycles compared to the latency given from the overall 
system is dispensable. Since the component is described using the behavioral VHDL, it is not possible to draw 
an accurate Data Path. 
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Figure 5.1: Behavior of the ShiftMemory component. When the end of frame trigger is asserted, the 
last shifted out content is the data and the content of the ShiftMemory is the old CRC, that can be 

discarded.  

 
5.2.1 Pseudocode 

The behavior of the ShiftMemory component is explained in the following pseudocode. Please note that after 
every semicolon a new clock cycle will occur, as it happens for the Finite State Machine in the VHDL code. 

If (reset = 0) data1, data2, data3, data4 <= 0; // if inbound, 

 // if outbound 7E 

If (enable = 1) 

{ data1 <= data_in,  

 data2 <= data1, 

 data3 <= data2, 

 data4 <= data3, 

 data_out <= data4; 

}  

 

5.2.2 Timing diagram 
The timing diagram act according to the described behavior. When the shiftEnable signal is asserted the content 
of the four registers is shifted toward the next register in line otherwise the content remains as it is. The 
component is synchronous, so this behavior only happens on a positive edge of the clock signal. If the shiftReset 
signal is asserted, the value of all the internal signals is 0x00 for the inbound and 0x7E for the outbound part 
(Figure 5.2).  
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Figure 5.2: Timing diagram of the ShiftMemory. When the enable is asserted the bytes are shifted 
creating the diagonal pattern. When the reset is asserted the component assumes the 0x00 value if 

inbound and 0x7E if outbound. 

 

5.3 Calculation of the CRC32 signature 
In both Ethernet and PPP frame, a CRC32 signature is needed. The input of the component, developed by 

Bombardier Transportation, is composed by an 8-bit signal which is the byte that has to be added to the signature 
and a 32-bit signal that is reset at the value FF and when a new byte is processed it has to be set at the 32-bit 
output signal of the CRC32 itself. This component is asynchronous. This procedure is used in both inbound and 
outbound parts as shown in the Pseudocodes.  

 

5.4 Inbound  
The Inbound part is the one responsible for converting the message from PPP to the Ethernet Frame. It should 

read the frame, check whether the frame has the correct five bytes of the preamble of the PPP protocol while 
writing on the FrameBuffer the destination and source MAC address and the Ethernet Type. Then it is going to 
transfer the payload and finally the new calculated CRC32 bytes. The CRC32 is the signature generated by the 
two MAC addresses, the Ethernet Type and the payload bytes. Since the length of the frame is not fixed, all the 
data that will be written into the buffer are delayed by a shift register called ShiftMemory which is going to flush 
the elements remaining inside the shift register when the Flag byte is read, acting as an end frame. In this way, 
there is no need to count the length of the total frame. Finally, since there are two possible types of payload, 
there will be a check to update the corresponding Ethernet Type field according to the Protocol field inside the 
PPP Frame. In case the Protocol is 0x 0021 the payload is IP so translated to 0x0800 if 0x0081 it is ARP so 
translated to 0x 0806, otherwise it is an error. The coding of the type of frame is decided by the standard.  

 

5.4.1 Pseudocode 

The behavior of the inbound part of the component is explained in the following pseudocode. Please note that 
after every semicolon a new clock cycle will occur, as it happens for the Finite State Machine in the VHDL 
code. 

finished=0; 

if (FifoEmpty=0) // data is available in the FIFO 

{ while (! Finished) { 

 if(bufferfull=0) output= destinationMAC (47 downto 40) 

 updateCRC, 

   else // wait for the buffer to be not full; 
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 if(bufferfull=0) output= destinationMAC (39 downto 32) 

   updateCRC, 

 else // wait for the buffer to be not full; 

 if(bufferfull=0) output= destinationMAC (31 downto 24) 

   updateCRC, 

 else // wait for the buffer to be not full; 

 if(bufferfull=0) output= destinationMAC (23 downto 16) 

   updateCRC, 

      read_byte 

 else // wait for the buffer to be not full; 

  if (bufferfull=0 & datavalid) output= destinationMAC (15 downto 8) 

  updateCRC,  

      read_byte 

      if input!= 7E error, reset_shift, finished=1  

 else // wait for the buffer to be not full; 

 if (bufferfull=0 & datavalid) output= destinationMAC (7 downto 0) 

   updateCRC,  

      read_byte 

      if input!= FF error, reset_shift, finished=1  

 else // wait for the buffer to be not full; 

 if (bufferfull=0 & datavalid) output= sourceMAC (47 downto 40)  

   updateCRC, 

      read_byte 

      if input!= 03 error, reset_shift, finished=1  

 else // wait for the buffer to be not full; 

 if (bufferfull=0 & datavalid) output= sourceMAC (39 downto 32)  

   updateCRC, 

      read_byte 

      if input!= 00 error, reset_shift,finished=1  

 else // wait for the buffer to be not full; 

if (bufferfull=0 & datavalid)  

   if input = 21 ethType =00  

   else if input = 81 ethType = 06  

   else error, reset_shift, finished = 1; 

   output= sourceMAC (31 downto 24)  

     updateCRC, 

      read_byte 

  else // wait for the buffer to be not full; 

if (bufferfull=0 & datavalid) output= sourceMAC (23 downto 16)  

     updateCRC, 

    read_byte 

    shiftMemory= input; // start to shift in the payload  

 else // wait for the buffer to be not full; 

 if (bufferfull=0 & datavalid) output= sourceMAC (15 downto 8)  

      updateCRC, 

    read_byte 

    shiftMemory= input; // shift in the payload  

 else // wait for the buffer to be not full; 

 if (bufferfull=0 & datavalid) output= sourceMAC (7 downto 0) 

      updateCRC,  

    read_byte 

    shiftMemory= input; // shift in the payload  

 else // wait for the buffer to be not full; 

 if (bufferfull=0 & datavalid) output= x”08” // shift EthType 

      updateCRC, 
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    read_byte 

    shiftMemory= input; // shift in the payload  

 else // wait for the buffer to be not full; 

 if (bufferfull=0 & datavalid) output= ethType // shift EthType 

      updateCRC, 

    read_byte 

    shiftMemory= input; // shift in the payload  

 else // wait for the buffer to be not full; 

while (input!= 7E) 

if (bufferfull=0 & datavalid) output= shiftOut  

      updateCRC, 

     read_byte 

    shiftMemory= input; 

 else // wait for the buffer to be not full; 

if(bufferfull=0) output= crc(31 downto 24)  

else // wait for the buffer to be not full; 

if(bufferfull=0) output= crc(23 downto 16)  

else // wait for the buffer to be not full; 

if(bufferfull=0) output= crc( 15 downto 8)  

else // wait for the buffer to be not full; 

if(bufferfull=0) output= crc(7 downto 0)  

else // wait for the buffer to be not full; 

// packet translated correctly, update strobe for input buffer 

update_strobe_buffer, finished = 1; 

} 

} 

 

5.4.2 Data Flow Management  

The Data Flow management of the Ethernet Frame to be written and the PPP frame to be converted was 
studied to have the fastest conversion possible while checking if the received frame was a correct PPP frame 
(Figure 5.3). In total there are 22 states, in sequence order they are: one IDLE state, 6 to write the destination 
MAC address, 6 for the source address, 2 for the Ethernet Type field, one to write the payload until the frame is 
not finished, 4 for writing the CRC32 signature and the last one to update the WriteFrame strobe for the 
FramBuffer. By exploiting the ShiftMemory component, while the MAC addresses are directly written into the 
FrameBuffer, the reading of the PPP frame can start. Since the ShiftMemory takes 5 clock cycles to bring on its 
output one byte, the reading and shifting of the payload of the PPP frame can start 5 states before the 
STATE_RD_WR_PAYLOAD in which the output of the ShiftMemory is written into the FrameBuffer. This 
means that the first reading of the payload has to start in the state in which the fourth byte of the source address 
is written. Since the read signal must be asserted one clock cycle before the data, it will be asserted in the state in 
which the third byte of the source address is written. Moreover, since the FSM is written in one process, the 
writing action must be asserted one clock cycle before, so the state in which the second byte of the Ethernet Type 
is written. Moreover, the PPP frame has 5 bytes of preamble before sending the payload. This means that the 
effective reading of the FIFO can start during the writing of the fifth byte of the destination address and the read 
enable signal must be asserted in the previous state, during the writing of the fourth destination byte. During the 
reading of the head of the PPP frame, if one of the bytes has a different value, the FSM goes into the 
STATE_ERROR in which the WriteFrameAbort signal is asserted, the shift register is reset, and the FSM goes 
back to the idle state. If not, when the value 0x7E is read again, the content of the ShiftMemory is deleted and in 
the next four states, the four bytes of the CRC32 will be written directly into the FrameBuffer. A final state 
updates the strobe signal for the FrameBuffer and a new frame can be converted. To summarize, the reading is 
always performed from the inboundFIFO component, the writing is done in two different ways: the MAC 
addresses, Ethernet Type and CRC32 signature are written directly into the FrameBuffer, the payload is shifted 
into the ShiftMemory and the output of this component is written into the FrameBuffer delayed by 4 clock 
cycles. Before every writing operation, the FrameBuffer signal WriteFrameFull has to be checked: if it is 
asserted the FSM has to stay in the same state in which it is and wait for the buffer to have space again. The 
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same happens when the data from the FIFO is not marked as valid by the homonym signal: if it is not asserted 
the FSM has to wait for a new valid signal.  

 

 
Figure 5.3: Data Flow management in the inbound part of the PPPConverter component. The read 

content, the content of the ShiftMemory, its output and the byte written in output are shown for each 
state of the FSM. 

 

5.4.3 Control flow chart 

Since the flow is composed of many states, to make the Finite State Machine more understandable, it has been 
divided into four parts (Figure 5.4). The Control Flow charts describe the evolution of the states in the Inbound 
FSM. They follow the same algorithm of the Pseudocode and the Data Flow described before. They contain for 
each state the signals that must be asserted or not asserted according to the given timing diagrams and the 
behavior previously described. They can be found in the Appendix Section 14.1. The designed FSM has both 
Moore and Mealy states: the condition of the buffer to be empty or full has always to be checked before a 
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respectively reading or writing operation which leads to reading the input and not only the output of the FSM 
generating the need to use also Mealy states. In the Control Flow Chart, the Moore states are indicated by 
squared states while the Mealy ones are in a more rounded shape. 

 

 
Figure 5.4: General division of the control flow chart. For sake of simplicity, four parts have been 
identified. The destination MAC address management, the source MAC address and possible PPP 

header, the payload, and the CRC and end-frame. 

 

5.4.4 Timing diagram 

The timing diagrams have been separated into four different parts using the same approach as the Control 
Flow Diagrams. The four stages that are shown are the start of the writing phase of the Ethernet Frame, the start 
of the reading phase of the PPP frame, the payload reading and writing phase and the final states of the FSM 
where the system goes back to the IDLE state. The values of the data used in all the timing diagrams of this 
document are purely random and are not referred to anything specifically. The timing diagrams show only the 
significant signals for the described phase. Moreover, not all the states are shown since some have the same 
behavior, only a sample of them and the special ones will be shown.  

When the FIFO is not empty, the PPPConverter starts to write the destination MAC address of the Ethernet 
frame: it writes directly in the FrameBuffer (Figure 4.8). In Figure 5.5 it is possible to see the evolution of the 
states from IDLE to WR_DESTINATION_1 and the involved control signals. In this Figure it is also shown the 
usage of the CRC32: it will not be shown again in the next timing diagrams. During the writing of the 
destination MAC address, the FSM starts to read the PPP frame. The rd_en signal is asserted one clock before 
the data and each byte of the PPP preamble that is received is checked: if it is not the expected one the system 
aborts the frame and restart from IDLE (Figure 5.6). When the FSM has finished reading the preamble of the 
PPP frame, it starts to read the payload (Figure 5.7). Finally, the FSM writes the CRC32 signature, update the 
signals for the FrameBuffer and restarts from the IDLE state (Figure 5.8). 
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Figure 5.5: Start of the Inbound FSM, the system begins to write the destination MAC address into 
the FrameBuffer. The states have been coded to make the timing diagram more understandable. The 

corresponding states are shown in Table 5.1. 

 
 

Table 5.1: Coding of the states for the timing diagram in Figure 5.4 

State name Coded name 

STATE_WR_DESTINATION_1 A 

STATE_WR_DESTINATION_2 B 

STATE_WR_DESTINATION_3 C 

 
 

 
Figure 5.6: Timing diagram of the start of the reading part of the PPP frame, inbound part. A faulty 

byte is detected, and the system aborts the frame. The states have been coded to make the timing 
diagram more understandable. The corresponding states are shown in Table 5.2. 
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Table 5.2: Coding of the states for the timing diagram in Figure 5.6  

State name Coded name 

STATE_WR_DESTINATION_3 A 

STATE_WR_DESTINATION_4 B 

STATE_WR_DESTINATION_5_RD_FLAG C 

STATE_WR_DESTINATION_6_RD_ADDRESS D 

STATE_ERROR E 

STATE_IDLE F 

 

 
Figure 5.7: Timing diagram of the handling of the payload in the Inbound part of the PPPConverter 

component. The states have been coded to make the timing diagram more understandable. The 
corresponding states are shown in Table 5.3. 

 

Table 5.3: Coding of the states for the timing diagram in Figure 5.7 

State name Coded name 

STATE_WR_SOURCE_4_RD_PAYLOAD A 

STATE_WR_SOURCE_5_RD_PAYLOAD B 

STATE_WR_SOURCE_6_RD_PAYLOAD C 

STATE_WR_ETHTYPE_1_RD_PAYLOAD D 

STATE_WR_ETHTYPE_1_RD_WR_PAYLOAD E 

STATE_RD_WR_PAYLOAD F 

STATE_WR_CRC_1 G 
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Figure 5.8: Timing diagram of the end of the evolution of the inbound FSM. The states have been 

coded to make the timing diagram more understandable. The corresponding states are shown in Table 
5.5. 

 
 

Table 5.4: Coding of the states for the timing diagram in Figure 5.8 

State name Coded name 

STATE_WR_CRC_3 A 

STATE_WR_CRC_3 B 

STATE_END_WR_STROBE C 

STATE_IDLE D 

 

5.4.5 Source and destination MAC address management 

In the inbound part, the MAC addresses must be rewritten into the new Ethernet Frame. To make the system 
simple, they are two values that are an input for the PPPConverter component. The destination address is set as 
the processor universal MAC address decided from the vendor. The source MAC address is decided by the 
VHDL code and it is a locally administered address decided by the designer. To set that address as locally 
administered, the second Least Significant Bit (LSB) of the first byte of the source address is set to 1. The way 
that decides the values of the two addresses is not the final version of the management of the addresses and it 
must be considered as a future implementation. To see a proposed future implementation, see Section 8. Future 
Implementations[17]. 
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5.5 Outbound  
The Outbound part is responsible for the translation from Ethernet to PPP of the frame. The component reads 

the destination and MAC address while writing into the OutboundFIFO the preamble bytes of the PPP protocol 
and updating the Protocol field according to the received Ethernet Type. In case a 0x0800 is received it will be 
translated as 0x0021, if 0x0806 is received it will become 0x0081. If something different is received it means 
that there was an error in the transmission and the frame will be discarded. Successively, the payload is written, 
then the four bytes of CRC32 and finally the Flag byte. 

 

5.5.1 Pseudocode 

The pseudocode that follows describes the expected behavior of the outbound part of the PPPConverter. It is 
not related to a specific code, but it is meant to give an insight of the followed algorithm.  

finished=0; 

if (bufferEmpty=0) // data is available in the buffer 

{ while (finished = 0) { 

 read_destinationMAC (47 downto 40);  

 read_destinationMAC (39 downto 32);  

 read_destinationMAC (31 downto 24);  

 read_destinationMAC (23 downto 16);  

 read_destinationMAC (15 downto 8);  

 read_destinationMAC (7 downto 0); 

 read_sourceMAC (47 downto 40); 

 read_sourceMAC (39 downto 32); 

 read_sourceMAC (31 downto 24) 

 if FIFOfull=0 output= 7E, updateCRC, else; //wait 

 read_sourceMAC (23 downto 16) 

 if FIFOfull=0 output=FF, updateCRC, else; //wait 

 read_sourceMAC (15 downto 8) 

 if FIFOfull=0 output=03, updateCRC, else; //wait 

 read_sourceMAC (7 downto 0) 

 if FIFOfull=0 output=00, updateCRC, else; //wait 

read_Eth (15 downto 8) 

if input=00 output=21, updateCRC, 

elsif input = 06 output= 81, updateCRC, 

else error, reset_shift, finished=1; 

read_Eth (7 downto 0) 

shiftMemory=input, updateCRC; 

while(dataend=0) { 

if FIFOfull=0 

shiftMemory=input, write_output, updateCRC;} // write payload 

if FIFOfull=0 

shiftData, write_output, updateCRC; // shift last data out 

if FIFOfull=0 

writeoutput= CRC(31 downto 24);  

if FIFOfull=0 

writeoutput= CRC(23 downto 16);  

if FIFOfull=0 

writeoutput= CRC(15 downto 8);  
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if FIFOfull=0 

writeoutput= CRC(7 downto 0);  

if FIFOfull=0 

writeoutput= 7E, finished=1; // write flag and start again 

} 

} 

 

5.5.2 Data Flow Management  

The Data Flow management in the Outbound process was studied to have the fastest conversion possible 
(Figure 5.9). In total there are 25 states. They are, sequentially: one idle state, two states to instruct the 
FrameBuffer to read the first byte of the destination address, 6 to read the destination MAC address, 6 to read the 
source MAC address, 2 to read the Ethernet Type, one to wait for the first payload byte to be written, one for the 
payload, one to write the last value of the payload, 4 for the CRC32 and the last one to write the Flag 7E as 
ending of the frame. Also, in the outbound part, the reading and writing of the two different frames are done in 
parallel. In this case, the crucial moment is the choice of the Protocol field: the second byte of the Ethernet Type 
field must be read to decide if it is an ARP or IP message. The reading will be done while the second Byte of the 
Ethernet Type field is written, which means that there are 4 bytes to be read before that. The PPP frame will be 
written starting from the same state in which the fourth byte of the source address is read. Instead of writing the 
bytes directly into the FrameBuffer, in this part, they are written into the Shift Memory and then its output is 
written into the FrameBuffer. Since the code is written using one process and the write enable signal must be 
asserted when the input data are valid, an extra state before the one used to write the payload must be set. In this 
way, the ShiftMemory output and the control signal of the FIFO are all synchronized, and all the bytes are 
transcribed correctly.  The output is written directly into the FIFO only when storing the CRC32 bytes, 
otherwise, it is at first stored into the shiftMemory and its output is written into the FIFO. Once the 
ReadFrameEnd signal is asserted, the content of the ShiftMemory is shifted to write the last byte of the payload. 
Then the four bytes of the CRC32 are written and finally the ReadFrame flag is asserted. The FSM goes back to 
the idle state and the next frame can be processed. When a reading or writing operation is performed, it has to be 
checked respectively if the FrameBuffer is not empty or the FIFO is not full. In the latter case, there is the need 
to always check the full signal before taking action: this leads again to have both Moore and Mealy states.[30] 
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Figure 5.9: Data Flow management in the Outbound part of the PPPConverter component. The read 
content, the content of the ShiftMemory, its output and the byte written in output are shown for each 

state of the FSM. 
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5.5.3 Control Flow chart 

As well as the inbound part, the Control Flow chart can be found in Appendix Section 14.1. It contains the 
evolution of the states and all the control signals required. They follow the behavior described in the Data Flow 
management Section. As for the inbound part, the flow that was followed is shown in Figure 5.4. The Control 
Flow chart was divided into four parts: the reading of the destination MAC address, the reading of the source 
MAC address and the writing of the header of the PPP frame, the payload reading and writing, and the CRC and 
Flag writing. 

 

5.5.4 Timing diagram 

The timing diagrams have been separated into four different parts using the same approach as the Control 
Flow Diagrams also in the outbound part. The four stages that are shown are the start of the reading phase of the 
Ethernet Frame, the start of the writing phase of the PPP frame, the payload reading and writing phase and the 
final states of the FSM where the system goes back to the IDLE state. The same rules described for the inbound 
part apply for the outbound part in terms of content and organization of the diagrams. The trigger for the start of 
the outbound FSM is when at least a frame is stored inside the FrameBuffer. Then the PPPConverter starts to 
read it (Figure 5.10). When the proper state is reached, the FSM start to write into the ShiftMemory following 
the timing interface previously described (Figure 5.11). Then, the FSM requires one state to wait for the payload 
to be written into the FIFO. When the output of the ShiftMemory is ready and valid it is written into the FIFO 
according to the previously described timing behavior (Figure 5.12). Finally the system writes directly into the 
FIFO the CRC bytes, the Flag and goes back to the IDLE state (Figure 5.13).  

 

 
Figure 5.10: Timing diagram of the start of the outbound FSM. In Table 5.5 the coding of the states is 

shown. 

 
 

Table 5.5: Coding of the states of the timing diagram in Figure 5.10 

State name Coded name 

STATE_IDLE A 

STATE_UPDATE_BUFFER_CONTROL B 

STATE_WAIT_BUFFER C 

STATE_RD_DESTINATION_1 D 

STATE_RD_DESTINATION_2 E 
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Figure 5.11: Timing diagram of the beginning of the writing of the PPP frame into the FIFO by the 

outbound part of the PPPConverter component. The coding of the states is shown in Table 5.6. 
 

Table 5.6: Coding of the states for the timing diagram in Figure 5.11 
State name Coded name 

STATE_RD_SOURCE_3 A 

STATE_RD_SOURCE_4_WR_FLAG B 

STATE_RD_SOURCE_5_WR_ADDRESS C 

STATE_RD_SOURCE_6_WR_CONTROL D 

 

 
Figure 5.12: Timing diagram of the payload management in the outbound part of the PPPConverter 

component. The coding of the states is shown in Table 5.7. 

 
Table 5.7: Coding of the state for the timing diagram in Figure 5.12  

State name Coded name 

STATE_WAIT_WR_PAYLOAD A 

STATE_RD_WR_PAYLOAD B 

STATE_SHIFT_LAST_OUT C 

STATE_WR_CRC_1 D 
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Figure 5.13: Timing diagram of the CRC writing and end frame of the outbound part in the 

PPPConverter component. The coding of the states is shown in Table 5.8. 

 
 

Table 5.8: Coding of the state for the timing diagram in Figure 4.13 

State name Coded name 

STATE_WR_CRC_3 A 

STATE_WR_CRC_4 B 

STATE_WR_FLAG C 

STATE_IDLE D 
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6. Simulations of PPPConverter 
 
 

To analyze the behavior of the designed PPP, this component has been simulated with the Xilinx tool ISE 
14.7. Since there is a Core Generated component, all the simulations have been done in the ISE 14.7 tool, Xilinx 
property. All the testbench codes used in this section can be found in the Appendix Section 14.4 and the 
PPPConverter code can be found in Appendix Section 14.3. For sake of brevity, here only the waveform results 
will be shown. The bytes used as MAC addresses, payload and CRC are all random numbers. 

 

6.1 ShiftMemory simulations 
It is possible to demonstrate that the ShiftMemory component behaves as expected when stimulated with a 

proper testbench (Figures 6.1 and 6.2). The testbench used to simulate the behavior of the ShiftMemory 
component is based on a process with a wait for statement. At each clock cycle, one more byte is written into the 
component as the shiftEnable signal is asserted. When the shiftEnable signal is not asserted, the ShiftMemory 
stops to shift in values. If the shiftReset signal is asserted, the expected content of all the registers became 0x00 
if in the inbound part (Figure 6.1) or 0x7E in the outbound part (Figure 6.2). The testbench that can be found in 
Chapter 14 Section 14.4.1.  

 

Figure 6.1: Waveform resulting from the testbench applied on the inboundShiftMemory. 

 
 

 
Figure 6.2: Waveform resulting from the testbench applied on the outboundShiftMemory. 

 

6.2 PPPConverter simulations results 
To verify that the VHDL code of the PPPConverter satisfies the expected behavior, it was stimulated with a 

custom testbench. This testbench generates the clock signal, the asynchronous reset and the stimuli sequences for 
the inbound and outbound part. Regarding these two parts, two specific processes were used so that it was 
possible to test the full duplex behavior of the component. 

 

6.2.1 Inbound part simulation results 
The inbound part of the PPPConverter component was simulated with a testbench and the resulting behavior is 

as expected. The testbench is based on wait for statements and it recreates the interface of the inboundFIFO. 
When the empty signal is not asserted, the inbound part starts to write the destination (Figure 6.3) and source 
MAC addresses as well as reading from the dummy FIFO the PPP frame (Figure 6.4). Then the payload is 
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written as it is in the FrameBuffer (Figure 6.5) and finally when the 0x7E byte is read, the FSM writes the new 
CRC signature and return to the IDLE state (Figure 6.6). The testbench code is in Appendix Section 14.4.2.  

 

 
Figure 6.3: Simulation results of the inbound part. Start of the FSM and writing of the destination 

MAC address. 

 

 
Figure 6.4: Simulation results of the inbound part. The PPP frame is read, and a wrong value is 

received. The FSM aborts it and goes back to the IDLE state. 

 
 

 

Figure 6.5: Simulation results of the inbound part. The payload is read and written. When the byte 7E 
is received the FSM starts to write the CRC. 

 
 

 
Figure 5.6: Simulation results of the inbound part. The last two bytes of the CRC are written and the 

FSM goes back to the IDLE state ready to convert another frame. 

 
 

6.2.2 Outbound part simulation results 
The testbench used to stimulate the outbound part was based as well on wait for statements process and it 

recreates the FrameBuffer interface. When the FrameBuffer is not empty, the outbound part starts to read the 
destination MAC address (Figure 6.7). While reading the source address it starts to write the PPP frame into the 
outboundShiftMemory (Figure 6.8). The payload, then, is transferred as it is until the ReadFrameEnd signal is 
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asserted (Figure 6.9). Finally, the new CRC signature is written into the outboundFIFO as well as the flag and 
the FSM goes back to the IDLE state (Figure 6.10). The testbench code can be found as well in Appendix 
Section 14.4.2. 

 

 
Figure 6.7: Simulation results of the outbound part. The FSM starts to read the destination MAC 

address. 

 
 

 
Figure 6.8: Simulation results of the outbound part. The PPP frame is written. 

 
 

 
Figure 6.9: Simulation result of the outbound part. The Payload is read and written until the proper 

signal from the FrameBuffer is asserted. 

 
 

 
Figure 6.10:  Simulation result of the outbound part. The CRC bytes are written and the FSM goes 

back to the IDLE state. 
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7. Implementation and test on physical board 
 
 

The implementation of the PPPConverter featured multiple steps. Firstly, a simulation of the full chain of the 
message through two boards was performed with successful results. Secondly, only the PPPConverter chain was 
uploaded on the FPGA to check if the system was transmitting the message through the IOChannel. Then the 
PPPConverter chain was uploaded in parallel to the existent system to check if it could still work properly when 
the IOChannel is transmitting data. Finally, the whole new system was uploaded and tested. 

 

7.1 The simulation of the implemented system and results 
The simulation of a full chain implementation was performed. The stimuliProcess a data-generator process 

that simulates a random ARP request from the component belonging to a BoardA to the ones belonging to a 
BoardB (Figure 7.1). In this picture is also shown the path of the message and all the components it will go 
through. When the message is generated in the BoardA, it is written into the Rgmii-PHY component, sent to the 
Bridge and written into the FrameBuffer connected to the Port 0 of the Ethernet Switch. Since the message is 
broadcast by definition, it is sent to all the ports including the one with the PPPConverter component. The 
message is written into the FrameBuffer to which the PPPConverter reads and translate the Ethernet Frame to a 
PPP frame. The frame is then written into the UARTInterface component which serialized it. The serial signal is 
the input of the UARTInterface belonging to the BoardB. The received bytes are stored in the FIFO and read by 
the PPPConverter which recreates the Ethernet Frame and save it into the FrameBuffer. This buffer is connected 
to another Ethernet Switch which sends the broadcast message to all the ports. The FrameBuffer of the Port 1 is 
written and, when a full frame is stored, the Bridge reads it, attach the Preamble and SFD fields to it and sends it 
to the Rgmii-PHY component. The latter should then send the message to the processor. 

 

 
Figure 7.1: The DataPath of the full chain of transmission. This scheme was followed while 

developing the testbench to simulate the behavior of a physical board. 
 

With the stimuliProcess shown in Appendix 14.4.3, the full chain behavior was simulated with successful 
results. The testbench recreates a Rgmii frame and writes it into the Rgmii-PHY component. The testbench is 
developed with an FSM in which at each state a four-bit value is sent. In these simulations, the bytes that belong 
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to the message are purely random. In all this Figure and the two consecutive, the Rgmii-PHY component is 
called SPhy, where S stands for Server, as the master of the communication. 

The result of the simulation prove that the full chain transmission works as expected. As the transmission 
starts, the four-bites data are sent together with the tx_ctl signal asserted. The data written into the 
BufferInput_A (Figure 7.2). The message is then received by the PPPConverter, it is translated and the 
IOChannel start to send the message in a serial way (Figure 7.3). Finally, the frame is received on the 
outboundData_i signal of the Rgmii-PHY as the final stage of the whole chain transmission (Figure 7.4). In 
Figure 7.5 is shown the full chain transition where the message is sent from the Board A and received on the 
Board B.  

 

 
Figure 7.2: Start of the transmission of the frame. The message is received by the Rgmii-Phy 

component, passed through the Bridge and written into the BufferInput_A. The violets lines are the 
divisors and they indicate the meaning of the signals right below them. 

 
 

 
Figure 7.3: Simulation results of the full chain. The PPPConverter on the Board A receives the 

frame and translate it. The PPP frame is then serialized by the UARTInterface in the Board A. It can 
be also noticed the start of the conversion of the message by the PPPConverter on the Board B. The 

violets lines are the divisors and they indicate the meaning of the signals right below them. 
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Figure 7.4: Simulation results of the full chain. The message is sent through the IOChannel and it is 
sent along the chain until being written into the Rgmii-PHY. It is possible to notice the conversion 
from PPP frame to Ethernet in the PPPConverter component. The violets lines are the divisors and 

they indicate the meaning of the signals right below them. 

 

 
Figure 7.5: Simulation results of the full chain. The frame is sent from the Board A and it reaches 

finally the Rgmii-PHY component on the Board B. The violets lines are the divisors and they indicate 
the meaning of the signals right below them. 

 

7.2 The implementation of the PPPConverter chain and results 
The FPGA was programmed to have only the PPPConverter component as well as a FrameBuffer, and the 

UARTInterface to check if a waveform was transmitted on the physical IOChannel (Figure 7.6). The test 
produced the desired waveform as output of the IOChannel. To obtain the data, a process called stimuliProcess 
was used as a testbench to write data into the FrameBuffer (Appendix 14.4.3). The result of this physical test is 
successful, a waveform was captured on the IOChannel. Since the link is LVDS, the reference probe was 
inserted on the negate link and the signal probe on the positive link. The sampling of the data was made with 
athe Mixed Signal Oscilloscope MSO 70404C by Tektronix (Figure 7.7). The clock frequency chosen for this 
test is random and does not have meaning in the actual performances of the IOChannel.   

 



44 
 

 
Figure 7.6: First test implemented on the board, the chain involves only the PPPCoverter chain 

blocks 

 

 
Figure 7.7: Logic Analyzer sampled waveform representing the output of the IOChannel produced 

with the setup in Figure 7.2. The frequency value is random 
 

7.3 The implementation of the parallel design and results 
The existing system and the PPPConverter chain were uploaded on the same FPGA but not linked. The 

PPPConverter is still stimulated by the stimuliProcess. To check if the existing system could work in this setup, 
the PING utility was used. The two physical boards are connected as in the already existent system and the PING 
request was sent to the other board. The same structure was uploaded on the two boards. The results of this test 
were not successful: the PING utility could not send any message to the other board. This issue was checked 
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with the tcpdump instruction[29], which shows on the terminal what messages are sent or received by the 
processors. The IOChannel, though, was still transmitting the stream of data as expected (Figure 7.9). 

 

 
Figure 7.8: Parallel implementation test setup. The system inside the dashed line is the system already 

implemented while the other is the PPPConverter chain. The component called P is the Processor. 
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Figure 7.9:  Logic Analyzer sampled waveform representing the output of the IOChannel produced 

with the setup in Figure 7.8. The frequency of the signal is random 
 

7.4 Results of the integration on the physical board 
The PPPConverter chain was integrated into the existing architecture by connecting the FrameBuffer to one of 

the Ports of the EthernetSwitch. The code was compiled, and the resulting bit file was uploaded on the two 
Boards. The PING utility was used again to test if the two boards could communicate through the IOChannel. 
The test was unsuccessful since it showed that the PING request was not sent to the other board. The ChipScope 
PRO tool was used to check the behavior of the system inside the FPGA. This tool is designed by Xilinx and 
allows to have the sampled waveform of some signals inside the FPGA. The signals are shown together with a 
trigger signal that starts the sampling of the data. For this test, the asserted wr_en signal of the outboundFIFO 
was the trigger and the data was the IOChannel serial signal sent to the buffer that translates the message from 
single-ended to differential. This differential signal is then sent toward the LVDS pins of the FPGA. The 
analysis with ChipScope showed that on the input of the differential buffer there was an IOChannel signal 
(Figure 7.10), but the board could not propagate it toward the physical IOChannel since the Mixed Signal 
Oscilloscope could not sample any data. 

 

 

Figure 7.10: Chiscope results. The DataPort (0) is the trigger signal wr_en of the outboundFIFO and 
the DataPort (1) is the IOChannel serial signal 
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8. Discussion and future implementations 
 
 

The results of the simulation of the different part of the PPPConverter prove that it was developed according to 
the expected behavior. The ShiftMemory component shows the diagonal shift behavior as the timing diagram 
was expecting it to behave. The inbound part correctly verifies that the incoming PPP frame has the correct 
format and translate it into an Ethernet frame. It also interfaces correctly the FrameBuffer and FIFO since no 
byte is lost or duplicated in the communication. The outbound part also transforms the Ethernet frame into a PPP 
one without modifying the payload. However, there are still three important features that have to be implemented 
in future stages in the VHDL code. These allow the component to be flexible and fully compliant of the PPP 
standard. The MAC addresses are hardcoded in the VHDL as constant signals, which is not a flexible solution if 
the board is substituted. The escaping sequence belonging to the PPP standard has not been developed to 
simplify the initial development of the PPPConverter but it must be developed to create a fully standard 
interface. Finally, the FIFO used in the UARTInterface is a Xilinx Core generated FIFO. This means that if a 
new FPGA is chosen with a different brand, the whole interface has to be redesigned. 

The MAC addresses are different depending on which part of the PPPConverter is considered. In the inbound 
part, the source MAC address is a locally administered one is can be hard-coded inside the system since it is used 
only locally. However, the destination MAC address is the universally administered of the processor. This value 
cannot be hardcoded since this will result in a custom made code for each sold board. To prevent this to happen, 
in future implementation the destination address must be saved in a register that could communicate also with 
the outbound part. When the message is sent outside the board, the source address is the one identifying the 
processor. Therefore, when an outbound frame is detected, the source field should be saved so that the inbound 
part can update the correct address. This operation should be developed outside of the PPPConverter component 
in order to keep the component full duplex. 

The escaping mechanism should be added to the FSMs of both inbound and outbound parts. In the outbound 
part, whenever a byte is read, if it is equal to 0x7E it should be substituted with a sequence of two bytes: 0x7D 
and the XOR between 0x7E and 0x20. If the byte 0x7D is read, it is substituted with 0x7D and the XOR between 
x7D and 0x20.  In the inbound part, if a 0x7D byte is received, it means that one byte was escaped. The resulting 
byte will be the either the XOR between 0x7D and 0x20 or between 0x7E and 0x20. This verification will be 
added whenever a new byte is read. It will also require to modify the FSM in both parts by adding one state to 
handle the extra inserted byte. This solution will not compromise the synchronization toward either the 
FrameBuffer or the FIFOs. This escaping sequence will allow the system to be fully standard and it will prevent 
the interruption of the frame. 

The Core generated FIFO should be removed and substituted with a generic FIFO. The used FIFO is generated 
by the Xilinx ISE 14.7 tool and it can only be tested in that environment. Moreover, if future implementations of 
the system will require an FPGA sold by a different brand, the whole interface must be redesigned in terms of 
timing and signal interface. It might even be that the PPPConverter should be designed again from the start if 
there is a significant difference. Developing a brand-independent FIFO will ease the design in term of the 
flexibility of the system. 

Concerning the physical implementation of the interface, the results show that the system does not work. The 
single PPPConverter chain is reacting as expected since waveforms were sampled on the IOChannel, but the 
integration with the existent system must be thoroughly studied. The problem might be generated by some 
timing constraints not related to the internal logic. Since there was no warning from the ISE tool about setup and 
hold times, the synchronization with other elements on the board that are connected to the FPGA must be 
analyzed. If more logic is added to the FPGA the system is going to react more slowly even if the new 
components are not connected to the previous system. Moreover, since the IOChannel was not used before, it 
can also be that the processor sets some part of the board in a status that forces the IOChannel to stop to 
communicate when connected to the message flow. This hypothesis is made by analyzing the ChipScope image 
and noticing that the Logic Analyzer could not observe any signal. The FPGA is producing a serial stream of 
data but it does not reach the physical pin. 
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9. Conclusions 
 
 

The PPPConverter component was developed in VHDL. The relationship between it and the components 
already in the system was studied and taken into consideration during the development of the VHDL code. The 
timing and signal requirements were satisfied. The two parts were developed to reach the most parallelized 
possible flow of data as well as the control of the integrity of the signal. A new component, the ShiftMemory, 
was developed to further synchronize the conversion of the frame. The simulations of the PPPConverter and the 
ShiftMemory are successful since they behave with the theoretic expected results. The physical implementation 
is not fully complete. 

With this new component, the system will not only be able to communicate via a new channel that is faster 
than the one used before but also maintains the integrity of the messages. However, there are some limitations to 
the component and the system. The PPPConveter is not fully developed as it lacks a proper MAC address 
management. Moreover, the PPP standard is not fully implemented yet since the escaping function is not 
developed in the code. This will add more integrity to the transmission of the messages. There are also some 
limitations on the system level. The FIFO is specifically used for the used FPGA and it should be developed as a 
generic component to increase the flexibility of the system. Moreover, the physical implementation shows timing 
constraint issues which should be studied thoroughly as well as the processor capability of control of the board 
elements. 

Overall, since this component is the first interface developed for the IOChannel, it is a good starting point. 
Simulations and its own physical implementation satisfy the requirement. Although, since the system in which it 
is inserted is complex, deeper studies and development must be carried out.  
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14. Appendix 
14.1 Inbound Control Flow charts 

In the following charts are represented the behavior of the inbound FSM divided in the four parts as described 
in Figure 5.4. There are also the same charts with the explicit signals. In these charts are shown only the signals 
that change in that state and have an effect on the behavior of the system. 

14.1.1 Preamble 
In Figures 14.1 and 14.2 are shown respectively the start of the FSM together the writing of the destination 

MAC address and the start of the reading part of the PPP frame. In Figures 14.3 and 14.4 are represented the 
same charts but with the explicit controls used in every state.  

 

 
Figure 14.1: Control flow chart, behavioral representation. Part 1 of the Preamble in the inbound part 
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Figure 14.2: Control flow chart, behavioral representation. Part 2 of the Preamble in the inbound part 
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Figure 14.3: Control flow chart, explicit controls. Part 1 of the Preamble in the inbound part 
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Figure 14.4: Control flow chart, explicit controls. Part 2 of the Preamble in the inbound part 
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14.1.2 Payload 
Figures 14.5 and 14.6 show the control flow charts of the Payload part. They feature the behavior and explicit 

controls part, respectively.  

 

 
Figure 14.5: Control flow chart, behavioral representation. Payload management in the inbound part 
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Figure 14.6: Control flow chart, explicit controls. Payload management in the inbound part 

 
14.2.3 CRC and Ending  

In Figures 14.7 and 14.8 are shown the control flow charts of the last bytes of CRC and frame ending part. 
Respectively, in the former there is the behavior and in the latter the explicit controls used in each state. 
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Figure 14.7: Control flow chart, behavioral representation. CRC and frame end management in the 

inbound part 
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Figure 14.8: Control flow chart, explicit controls. CRC and frame end management in the inbound 

part 
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14.2 Outbound Control Flow charts 
This section follows the same structure of 14.1, but all the charts are referred to the outbound part. 

14.2.1 Preamble 
In Figures 14.9 and 14.10 are shown respectively the start of the FSM together with the reading of the 

destination MAC address and the start of the writing part of the PPP frame. In Figures 14.11 and 14.12 are 
represented the same charts but with the explicit controls used in every state.  
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Figure 14.9: Control flow chart, behavioral representation. Part 1 of the Preamble in the outbound part 
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Figure 14.10: Control flow chart, behavioral representation. Part 2 of the Preamble in the outbound 

part 
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Figure 14.11: Control flow chart, explicit controls. Part 1 of the Preamble in the outbound part 
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Figure 14.12: Control flow chart, explicit controls. Part 2 of the Preamble in the outbound part 
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14.2.2 Payload 
In Figures 14.13 and 14.14 are shown the control flow charts of the Payload part. In  the former, there is the 

behavior , in the latter, the explicit controls used in each state. 
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Figure 14.13:  Control flow chart, behavioral representation. Payload management in the outbound 

part 
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Figure 14.14: Control flow chart, explicit controls. Payload management in the outbound part 
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14.2.3 CRC and Ending 
Figures 14.15 and 14.16 show the control flow charts of the last bytes of CRC and frame ending part. In the 

former,  there is the behavior and, in the latter, the explicit controls used in each state. 

 
Figure 14.15: Control flow chart, behavioral representation. CRC and frame end management in the 

outbound part 



78 
 

 
Figure 14.16: Control flow chart, explicit controls. CRC and frame end management in the outbound 

part 
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14.3 PPPConverter VHDL Code  
---------------------------------------------------------------------- 

--  (C) COPYRIGHT Bombardier Transportation Sweden AB, 2010 

--  

--  We reserve all rights in this file and in the information  

--  contained therein. Reproduction, use or disclosure to third  

--  parties without express authority is strictly forbidden. 

-- 

--  %name: EthIpPPP.vhd % 

--  %version: 1.0 % 

--  %created_by: emiglior % 

--  %date_created: 02-08-2018 14:54 % 

---------------------------------------------------------------------- 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity PPPConverter is 

port (  

  clk: in std_logic; 

  areset_n: in std_logic; 

  macClient: in std_logic_vector(47 downto 0); 

  macSProcessor: in std_logic_vector(47 downto 0);   

   

  -- interface toward/from RioFrameBuffer 

  outboundReadFrameEmpty: in std_logic; 

  outboundReadContentEnd: in std_logic;   

  outboundReadFrame: out std_logic;  

  outboundReadContent: out std_logic; 

  inFrameOutbound: in std_logic_vector(7 downto 0); 

   

  inboundWriteFrame: out std_logic; 

  inboundWriteFrameAbort: out std_logic; 

  inboundWriteContent: out std_logic; 

  inFrameInbound: in std_logic_vector(7 downto 0); 

  inboundWriteFrameFull: in std_logic; 

   

  -- interface toward/from Xilinx buffer 

  full: in std_logic; 

  wr_ack: in std_logic; 
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  wr_en: out std_logic; 

  outFrameOutbound: out std_logic_vector (7 downto 0); 

   

  empty: in std_logic; 

  rd_en: out std_logic; 

  valid: in std_logic; 

  outFrameInbound: out std_logic_vector (7 downto 0); 

   

  outFlush : out std_logic; 

  inFlush: out std_logic 

     

  ); 

end entity; 

 

architecture PPPModuleBehaviour of PPPConverter is 

 

  function reversed(slv: std_logic_vector) return std_logic_vector is 

    variable result: std_logic_vector(slv'reverse_range); 

  begin 

    for i in slv'range loop 

      result(i) := slv(i); 

    end loop; 

    return result; 

  end reversed; 

 

component shiftMemoryOutbound is 

generic (CONTENT_WIDTH : natural ); 

port (   

  clk: in std_logic; 

  areset_n: in std_logic; 

  reset: in std_logic; 

  shiftEnable: in std_logic; 

  shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0); 

  shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0) 

); 

end component; 

 

component shiftMemoryInbound is 

generic (CONTENT_WIDTH : natural ); 

port (   
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  clk: in std_logic; 

  areset_n: in std_logic; 

  reset: in std_logic; 

  shiftEnable: in std_logic; 

  shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0); 

  shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0) 

); 

end component; 

 

component Crc32Ethernet is 

  port( 

    d_i : in std_logic_vector(7 downto 0); 

    crc_i : in std_logic_vector(31 downto 0); 

    crc_o : out std_logic_vector(31 downto 0)); 

end component; 

 

type stateInbound is (  

      STATE_IDLE, 

      STATE_WR_DESTINATION_1, 

      STATE_WR_DESTINATION_2, 

      STATE_WR_DESTINATION_3, 

      STATE_WR_DESTINATION_4, 

      STATE_WR_DESTINATION_5_RD_FLAG, 

      STATE_WR_DESTINATION_6_RD_ADDRESS, 

      STATE_WR_SOURCE_1_RD_CONTROL, 

      STATE_WR_SOURCE_2_RD_PROTOCOL_1, 

      STATE_WR_SOURCE_3_RD_PROTOCOL_2, 

      STATE_WR_SOURCE_4_RD_PAYLOAD, 

      STATE_WR_SOURCE_5_RD_PAYLOAD, 

      STATE_WR_SOURCE_6_RD_PAYLOAD, 

      STATE_WR_ETHTYPE_1_RD_PAYLOAD, 

      STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD, 

      STATE_RD_WR_PAYLOAD, 

      STATE_WR_CRC_1, 

      STATE_WR_CRC_2, 

      STATE_WR_CRC_3, 

      STATE_WR_CRC_4, 

      STATE_END_WR_STROBE, 

      STATE_ERROR 

        ); 
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type stateOutbound is ( STATE_IDLE, 

      STATE_UPDATE_BUFFER_CONTROL, 

      STATE_WAIT_BUFFER, 

      STATE_RD_DESTINATION_1, 

      STATE_RD_DESTINATION_2, 

      STATE_RD_DESTINATION_3, 

      STATE_RD_DESTINATION_4, 

      STATE_RD_DESTINATION_5, 

      STATE_RD_DESTINATION_6, 

      STATE_RD_SOURCE_1, 

      STATE_RD_SOURCE_2, 

      STATE_RD_SOURCE_3, 

      STATE_RD_SOURCE_4_WR_FLAG, 

      STATE_RD_SOURCE_5_WR_ADDRESS, 

      STATE_RD_SOURCE_6_WR_CONTROL, 

      STATE_RD_ETHERNET_TYPE_1_WR_PROTOCOL_1, 

      STATE_RD_ETHERNET_TYPE_2_WR_PROTOCOL_2, 

      STATE_WAIT_WR_PAYLOAD, 

      STATE_RD_WR_PAYLOAD, 

      STATE_SHIFT_LAST_OUT, 

      STATE_WR_CRC_1, 

      STATE_WR_CRC_2, 

      STATE_WR_CRC_3, 

      STATE_WR_CRC_4, 

      STATE_WR_FLAG 

        ); 

 

signal shiftResetInbound, shiftEnableInbound : std_logic; 

signal inNextFrame, inChosenFrame : std_logic_vector (7 downto 0); 

signal crc32EthData: std_logic_vector (7 downto 0); 

signal crc32EthCurrent, crc32EthNext: std_logic_vector (31 downto 0); 

signal currentStateInbound: stateInbound; 

signal ethType: std_logic_vector (7 downto 0); 

signal shiftResetOutbound, shiftEnableOutbound : std_logic; 

signal outNextFrame, outChosenFrame : std_logic_vector (7 downto 0); 

signal crc32IpData: std_logic_vector (7 downto 0); 

signal crc32IpCurrent, crc32IpNext: std_logic_vector (31 downto 0); 

signal currentStateOutbound: stateOutbound; 

signal outputFrameOutbound, outputFrameInbound: std_logic_vector (7 downto 

0); 
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signal inboundOutputWriteFrame: std_logic; 

 

begin 

-- inbound components 

inboundShifter: shiftMemoryInbound  

generic map (CONTENT_WIDTH => 8) 

port map (  clk => clk, areset_n => areset_n, reset => shiftResetInbound, 

shiftEnable => shiftEnableInbound, 

shiftIn => inNextFrame, shiftOut => inChosenFrame); 

    

crc32BitEthModule: Crc32Ethernet 

port map ( d_i => crc32EthData, crc_i => crc32EthNext, crc_o => 

crc32EthCurrent); 

 

-- oubound components 

outboundShifter: shiftMemoryOutbound  

generic map (CONTENT_WIDTH => 8) 

port map (  clk => clk, areset_n => areset_n, reset => 

shiftResetOutbound, shiftEnable => shiftEnableOutbound, 

shiftIn => outNextFrame, shiftOut => outChosenFrame); 

    

crc32BitIPModule: Crc32Ethernet 

port map ( d_i => crc32IpData, crc_i => crc32IpNext, crc_o => 

crc32IpCurrent); 

 

outFrameInbound <= outputFrameInbound; 

inboundWriteFrame <= inboundOutputWriteFrame; 

inboundFrameCreationStateContent: process (clk, areset_n) 

begin 

if (areset_n='0') then 

 currentStateInbound <= STATE_IDLE; 

 shiftEnableInbound <= '0'; 

 shiftResetInbound <= '1'; 

 rd_en <= '0'; 

 inboundOutputWriteFrame <= '0'; 

 inboundWriteContent <= '0'; 

 inboundWriteFrameAbort <= '0';  

 inFlush <= '1'; 

elsif (clk'event and clk='1') then 

case currentStateInbound is 

  

when STATE_IDLE  =>   shiftEnableInbound <= '0'; 
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       shiftResetInbound <= '1'; 

       inFlush <= '0';  

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       inboundWriteFrameAbort <= '0'; 

       crc32EthData <= (others => '0'); 

       crc32EthNext <= x"ffffffff"; 

       if empty = '0' then 

       currentStateInbound <= 

STATE_WR_DESTINATION_1; 

       else currentStateInbound <= STATE_IDLE; 

       end if; 

                                                

when STATE_WR_DESTINATION_1 =>   

       if (inboundWriteFrameFull = '0') then  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0';  

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macSProcessor 

(47 downto 40)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macSProcessor (47 

downto 40); 

       currentStateInbound <= 

STATE_WR_DESTINATION_2; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_DESTINATION_1; 

       end if; 

                                                

when STATE_WR_DESTINATION_2 => 

       if (inboundWriteFrameFull = '0') then  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 
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       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed(macSProcessor (39 

downto 32)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macSProcessor (39 

downto 32); 

       currentStateInbound <= 

STATE_WR_DESTINATION_3; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0' 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_DESTINATION_2; 

       end if; 

                                       

when STATE_WR_DESTINATION_3 => 

       if (inboundWriteFrameFull = '0') then  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macSProcessor 

(31 downto 24)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macSProcessor (31 

downto 24); 

       currentStateInbound <= 

STATE_WR_DESTINATION_4; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_DESTINATION_3; 

       end if; 
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when STATE_WR_DESTINATION_4 =>  

       if (inboundWriteFrameFull = '0') then  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed( macSProcessor 

(23 downto 16)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macSProcessor (23 

downto 16); 

       currentStateInbound <= 

STATE_WR_DESTINATION_5_RD_FLAG; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_DESTINATION_4; 

       end if; 

                                    

when STATE_WR_DESTINATION_5_RD_FLAG => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed(macSProcessor (15 

downto 8)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macSProcessor (15 

downto 8); 

       if inFrameInbound /= x"7E" then 

currentStateInbound <= STATE_ERROR; 

       else currentStateInbound <= 

STATE_WR_DESTINATION_6_RD_ADDRESS; 

       end if; 
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       else  

       currentStateInbound <= 

STATE_WR_DESTINATION_5_RD_FLAG; 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       end if; 

        

when STATE_WR_DESTINATION_6_RD_ADDRESS => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macSProcessor (7 

downto 0)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macSProcessor (7 

downto 0); 

       if (inFrameInbound /= x"FF") then 

currentStateInbound <= STATE_ERROR; 

       else 

       currentStateInbound <= 

STATE_WR_SOURCE_1_RD_CONTROL; 

       end if; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_DESTINATION_6_RD_ADDRESS; 

       end if; 

        

when STATE_WR_SOURCE_1_RD_CONTROL => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then 

       shiftEnableInbound <= '0'; 
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       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macClient (47 

downto 40)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macClient (47 downto 

40); 

       if (inFrameInbound /= x"03") then 

currentStateInbound <= STATE_ERROR; 

       else 

       currentStateInbound <= 

STATE_WR_SOURCE_2_RD_PROTOCOL_1; 

       end if; 

       else  

       currentStateInbound <= 

STATE_WR_SOURCE_1_RD_CONTROL; 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       end if; 

        

when STATE_WR_SOURCE_2_RD_PROTOCOL_1 => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macClient (39 

downto 32)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macClient (39 downto 

32); 

       if (inFrameInbound /= x"00") then 

currentStateInbound <= STATE_ERROR; 

       else  

       currentStateInbound <= 

STATE_WR_SOURCE_3_RD_PROTOCOL_2; 

       end if; 
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       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_SOURCE_2_RD_PROTOCOL_1; 

       end if; 

                                    

when STATE_WR_SOURCE_3_RD_PROTOCOL_2 => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macClient (31 

downto 24)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macClient (31 downto 

24); 

       if (inFrameInbound = x"21") then  

       ethType <= x"00"; 

       currentStateInbound <= 

STATE_WR_SOURCE_4_RD_PAYLOAD; 

       elsif inFrameInbound = x"81" then 

       ethType <= x"06"; 

       currentStateInbound <= 

STATE_WR_SOURCE_4_RD_PAYLOAD; 

       else  

       currentStateInbound <= STATE_ERROR; 

       end if; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_SOURCE_3_RD_PROTOCOL_2; 

       end if; 
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when STATE_WR_SOURCE_4_RD_PAYLOAD => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then  

       shiftEnableInbound <= '1'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macClient (23 

downto 16)); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= macClient (23 downto 

16); 

       inNextFrame <= inFrameInbound; 

       currentStateInbound <= 

STATE_WR_SOURCE_5_RD_PAYLOAD; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_SOURCE_4_RD_PAYLOAD; 

       end if; 

                                    

when STATE_WR_SOURCE_5_RD_PAYLOAD => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then  

       shiftEnableInbound <= '1'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macClient (15 

downto 8)); 

       crc32EthNext <= crc32EthCurrent; 

       inNextFrame <= inFrameInbound; 

       outputFrameInbound <= macClient (15 downto 

8); 

       currentStateInbound <= 

STATE_WR_SOURCE_6_RD_PAYLOAD; 
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       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_SOURCE_5_RD_PAYLOAD; 

       end if; 

                                    

when STATE_WR_SOURCE_6_RD_PAYLOAD => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then  

       shiftEnableInbound <= '1'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (macClient (7 

downto 0)); 

       crc32EthNext <= crc32EthCurrent; 

       inNextFrame <= inFrameInbound; 

       outputFrameInbound <= macClient (7 downto 

0); 

       currentStateInbound <= 

STATE_WR_ETHTYPE_1_RD_PAYLOAD; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_SOURCE_6_RD_PAYLOAD; 

       end if; 

                                    

when STATE_WR_ETHTYPE_1_RD_PAYLOAD => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then  

       shiftEnableInbound <= '1'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 
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       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (x"08"); 

       crc32EthNext <= crc32EthCurrent; 

       inNextFrame <= inFrameInbound; 

       outputFrameInbound <= x"08"; 

       currentStateInbound <= 

STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_ETHTYPE_1_RD_PAYLOAD; 

       end if; 

    

when STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD => 

       if (valid = '1' and inboundWriteFrameFull 

= '0') then  

       shiftEnableInbound <= '1'; 

       shiftResetInbound <= '0'; 

       inNextFrame <= inFrameInbound; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       crc32EthData <= reversed (ethType); 

       crc32EthNext <= crc32EthCurrent; 

       outputFrameInbound <= ethType; 

       currentStateInbound <= 

STATE_RD_WR_PAYLOAD; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_WR_ETHTYPE_2_RD_WR_PAYLOAD; 

       end if; 
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when STATE_RD_WR_PAYLOAD => if (valid = '1' and inboundWriteFrameFull = 

'0') then  

       shiftEnableInbound <= '1'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       outputFrameInbound <= inChosenFrame; 

       crc32EthData <= reversed (inFrameInbound); 

       crc32EthNext <= crc32EthCurrent; 

       inNextFrame <= inFrameInbound; 

       if inFrameInbound = x"7E" then 

currentStateInbound <= STATE_WR_CRC_1;--STATE_SHIFT_LAST_OUT; 

       else currentStateInbound <= 

STATE_RD_WR_PAYLOAD; 

       end if; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '1'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= 

STATE_RD_WR_PAYLOAD; 

       end if; 

                                        

when STATE_WR_CRC_1 =>  if (inboundWriteFrameFull = '0') then 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       outputFrameInbound <= crc32EthCurrent (31 

downto 24); 

       currentStateInbound <= STATE_WR_CRC_2; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= STATE_WR_CRC_1; 
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       end if; 

              

when STATE_WR_CRC_2 =>  if (inboundWriteFrameFull = '0') then 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       outputFrameInbound <= crc32EthCurrent (23 

downto 16); 

       currentStateInbound <= STATE_WR_CRC_3; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= STATE_WR_CRC_2; 

       end if; 

                                    

when STATE_WR_CRC_3 =>  if (inboundWriteFrameFull = '0') then 

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       outputFrameInbound <= crc32EthCurrent (15 

downto 8); 

       currentStateInbound <= STATE_WR_CRC_4; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= STATE_WR_CRC_3; 

       end if; 

        

                                    

when STATE_WR_CRC_4 =>  if (inboundWriteFrameFull = '0') then 

       shiftEnableInbound <= '0'; 



 
 

95 
 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '1'; 

       outputFrameInbound <= crc32EthCurrent (7 

downto 0); 

       currentStateInbound <= 

STATE_END_WR_STROBE; 

       else  

       shiftEnableInbound <= '0'; 

       shiftResetInbound <= '0'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       currentStateInbound <= STATE_WR_CRC_4; 

       end if; 

                                    

when STATE_END_WR_STROBE => shiftEnableInbound <= '0'; 

       shiftResetInbound <= '1'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '1'; 

       inboundWriteContent <= '0'; 

       outputFrameInbound <= inChosenFrame; -- in 

this way it is reset to zero 

       currentStateInbound <= STATE_IDLE; 

      

when STATE_ERROR =>   shiftEnableInbound <= '0'; 

       shiftResetInbound <= '1'; 

       rd_en <= '0'; 

       inboundOutputWriteFrame <= '0'; 

       inboundWriteContent <= '0'; 

       inboundWriteFrameAbort <= '1'; 

       shiftResetInbound <= '0'; 

       currentStateInbound <= STATE_IDLE; 

 

when others =>  currentStateInbound <= STATE_ERROR; 

 

end case; 

end if; 

end process; 
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-- outbound process 

 

outFrameOutbound <= outputFrameOutbound; 

outboundFrameCreationStateContent: process (clk, areset_n) 

begin 

 if (areset_n='0') then 

  shiftEnableOutbound <= '0'; 

  shiftResetOutbound <= '1'; 

  outputFrameOutbound <= (others => '0'); 

  wr_en <= '0'; 

  outFlush <= '1'; 

  outboundReadFrame <= '0'; 

  currentStateOutbound <= STATE_IDLE; 

  outboundReadContent <= '0';   

   

 elsif (clk'event and clk='1') then 

 

case currentStateOutbound is 

 

when STATE_IDLE => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '1'; 

       outFlush <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '0'; 

       crc32IpData <= (others => '0'); 

       if outboundReadFrameEmpty = '0' then 

       currentStateOutbound <= 

STATE_UPDATE_BUFFER_CONTROL; 

       else currentStateOutbound <= STATE_IDLE; 

       end if; 

        

when STATE_UPDATE_BUFFER_CONTROL => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= STATE_WAIT_BUFFER; 

        



 
 

97 
 

when STATE_WAIT_BUFFER => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_DESTINATION_1; 

        

when STATE_RD_DESTINATION_1 => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_DESTINATION_2; 

                                             

when STATE_RD_DESTINATION_2 => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_DESTINATION_3; 

                                             

when STATE_RD_DESTINATION_3 => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_DESTINATION_4; 

                                    

when STATE_RD_DESTINATION_4 => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 
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       currentStateOutbound <= 

STATE_RD_DESTINATION_5; 

                                    

when STATE_RD_DESTINATION_5 => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_DESTINATION_6; 

                                    

when STATE_RD_DESTINATION_6 => 

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= STATE_RD_SOURCE_1; 

                                    

when STATE_RD_SOURCE_1 => shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= STATE_RD_SOURCE_2; 

                                    

when STATE_RD_SOURCE_2 => shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= STATE_RD_SOURCE_3; 

                                    

when STATE_RD_SOURCE_3 => shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_SOURCE_4_WR_FLAG; 
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when STATE_RD_SOURCE_4_WR_FLAG => 

       shiftEnableOutbound <= '1'; 

       shiftResetOutbound <= '0'; 

       outNextFrame <= x"7E"; 

       wr_en <= '0'; 

       crc32IpNext <= x"ffffffff"; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_SOURCE_5_WR_ADDRESS; 

                                    

when STATE_RD_SOURCE_5_WR_ADDRESS => 

       shiftEnableOutbound <= '1'; 

       outNextFrame <= x"FF"; 

       shiftResetOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_SOURCE_6_WR_CONTROL;  

                                    

when STATE_RD_SOURCE_6_WR_CONTROL => 

       shiftEnableOutbound <= '1'; 

       outNextFrame <= x"03"; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_ETHERNET_TYPE_1_WR_PROTOCOL_1; 

                                    

when STATE_RD_ETHERNET_TYPE_1_WR_PROTOCOL_1  => 

       shiftEnableOutbound <= '1'; 

       outNextFrame <= x"00"; 

       wr_en <= '0'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_ETHERNET_TYPE_2_WR_PROTOCOL_2; 

                                    

when STATE_RD_ETHERNET_TYPE_2_WR_PROTOCOL_2 => 

       shiftEnableOutbound <= '1'; 
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       if inFrameOutbound = x"00" then 

       outNextFrame <= x"21"; 

       elsif inFrameOutbound = x"06" then 

       outNextFrame <= x"81"; 

       else currentStateOutbound <= STATE_IDLE; -

-error in the protocol 

       shiftResetOutbound <= '1'; 

       shiftEnableOutbound <= '0'; 

       outboundReadFrame <= '1'; 

       outboundReadContent <= '0'; 

       end if; 

       wr_en <= '0'; 

       crc32IpData <= reversed (outChosenFrame); 

       crc32IpNext <= crc32IpCurrent; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_WAIT_WR_PAYLOAD; 

    

when STATE_WAIT_WR_PAYLOAD => 

       if (full = '0') then  

       shiftEnableOutbound <= '1'; 

       outNextFrame <= inFrameOutbound; 

       wr_en <= '0'; 

       crc32IpData <= reversed (outChosenFrame); 

       crc32IpNext <= crc32IpCurrent; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       currentStateOutbound <= 

STATE_RD_WR_PAYLOAD;  

       else  

       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= 

STATE_WAIT_WR_PAYLOAD; 

       end if; 

                                    

when STATE_RD_WR_PAYLOAD => 

       if (full = '0') then  

       shiftEnableOutbound <= '1'; 

       outNextFrame <= inFrameOutbound; 
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       wr_en <= '1'; 

       crc32IpData <= reversed (outChosenFrame); 

       crc32IpNext <= crc32IpCurrent; 

       outputFrameOutbound <= outChosenFrame; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '1'; 

       if outboundReadContentEnd = '1' then 

       currentStateOutbound <= 

STATE_SHIFT_LAST_OUT; 

       else currentStateOutbound <= 

STATE_RD_WR_PAYLOAD; 

       end if; 

       else  

       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= 

STATE_RD_WR_PAYLOAD; 

       end if; 

    

when STATE_SHIFT_LAST_OUT => 

       if (full = '0') then  

       shiftEnableOutbound <= '1'; 

       wr_en <= '1'; 

       crc32IpData <= reversed (outChosenFrame); 

       crc32IpNext <= crc32IpCurrent; 

       outputFrameOutbound <= outChosenFrame; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound<= STATE_WR_CRC_1;  

       else  

       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= 

STATE_SHIFT_LAST_OUT; 

       end if; 

                                    

when STATE_WR_CRC_1 => 

       if (full = '0') then  

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '1'; 
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       wr_en <= '1'; 

       outputFrameOutbound <= crc32IpCurrent (31 

downto 24); 

       outboundReadFrame <= '1'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= STATE_WR_CRC_2; 

       else  

       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= STATE_WR_CRC_1; 

       end if; 

                                    

when STATE_WR_CRC_2 => 

       if (full = '0') then  

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '1'; 

       wr_en <= '1'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '0'; 

       outputFrameOutbound <= crc32IpCurrent (23 

downto 16); 

       currentStateOutbound <= STATE_WR_CRC_3; 

       else  

       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= STATE_WR_CRC_2; 

       end if; 

                                    

when STATE_WR_CRC_3 => 

       if (full = '0') then  

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '1'; 

       wr_en <= '1'; 

       outputFrameOutbound <= crc32IpCurrent (15 

downto 8); 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= STATE_WR_CRC_4; 

       else  
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       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= STATE_WR_CRC_3; 

       end if; 

                                    

when STATE_WR_CRC_4 => 

       if (full = '0') then  

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '1'; 

       wr_en <= '1'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '0'; 

       outputFrameOutbound <= crc32IpCurrent (7 

downto 0); 

       currentStateOutbound <= STATE_WR_FLAG; 

       else  

       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= STATE_WR_CRC_4; 

       end if; 

        

when STATE_WR_FLAG => 

       if (full = '0') then  

       shiftEnableOutbound <= '0'; 

       shiftResetOutbound <= '1'; 

       wr_en <= '1'; 

       outboundReadFrame <= '0'; 

       outboundReadContent <= '0'; 

       outputFrameOutbound <= x"7E"; 

       currentStateOutbound <= STATE_IDLE; 

       else  

       shiftEnableOutbound <= '0'; 

       wr_en <= '0'; 

       outboundReadContent <= '0'; 

       currentStateOutbound <= STATE_WR_FLAG; 

       end if; 

                                    

when others  => currentStateOutbound <= STATE_IDLE; 
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end case; 

end if; 

end process; 

end architecture; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity shiftMemoryOutbound is 

generic (CONTENT_WIDTH : natural ); 

port (   

  clk: in std_logic; 

  areset_n: in std_logic; 

  reset: in std_logic; 

  shiftEnable: in std_logic; 

  shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0); 

  shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0) 

); 

end entity; 

 

architecture behaviourShiftMemory of shiftMemoryOutbound is 

 

signal slot1, slot2, slot3, slot4: std_logic_vector (CONTENT_WIDTH-1 downto 

0); 

begin 

  

shifting: process (areset_n, shiftEnable, reset, clk) --clk 

begin 

 

if (areset_n = '0' or reset = '1') then slot1 <= x"7e"; 

            slot2 <= x"7e"; 

            slot3 <= x"7e"; 

            slot4 <= x"7e"; 

            shiftOut <= x"7e"; 

elsif (clk ' event and clk='1') then  

if (shiftEnable= '1') then slot1 <= shiftIn; 

       slot2 <= slot1; 

       slot3 <= slot2; 

       slot4 <= slot3; 

       shiftOut <= slot4; 
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end if; 

end if; 

end process; 

end architecture; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all;  

 

entity shiftMemoryInbound is 

generic (CONTENT_WIDTH : natural ); 

port (   

  clk: in std_logic; 

  areset_n: in std_logic; 

  reset: in std_logic; 

  shiftEnable: in std_logic; 

  shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0); 

  shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0) 

); 

end entity; 

 

architecture behaviourShiftMemory of shiftMemoryInbound is 

 

signal slot1, slot2, slot3, slot4: std_logic_vector (CONTENT_WIDTH-1 downto 

0); 

begin 

  

shifting: process (areset_n, shiftEnable, reset, clk) --clk 

begin 

 

if (areset_n = '0' or reset = '1') then slot1 <= x"00"; 

            slot2 <= x"00"; 

            slot3 <= x"00"; 

            slot4 <= x"00"; 

            shiftOut <= x"00"; 

elsif (clk ' event and clk='1') then  

if (shiftEnable= '1') then slot1 <= shiftIn; 

        slot2 <= slot1; 

        slot3 <= slot2; 

        slot4 <= slot3; 

        shiftOut <= slot4; 
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end if; 

end if; 

end process; 

end architecture; 

14.4 Testbench VHDL codes 
In this section, all the VHDL codes used for the testbenches are reported. 

14.4.1 ShiftMemory testbench 
---------------------------------------------------------------- 

--  (C) COPYRIGHT Bombardier Transportation Sweden AB, 2014 

--  We reserve all rights in this file and in the information  

--  contained therein. Reproduction, use or disclosure to third  

--  parties without express authority is strictly forbidden. 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity tb_shiftmem is 

end entity; 

 

architecture test_behaviour of tb_shiftmem is 

 

component shiftMemoryOutbound is 

generic (CONTENT_WIDTH : natural ); 

port (   

  clk: in std_logic; 

  areset_n: in std_logic; 

  reset: in std_logic; 

  shiftEnable: in std_logic; 

  shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0); 

  shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0) 

); 

end component; 

 

component shiftMemoryInbound is 

generic (CONTENT_WIDTH : natural ); 

port (   

  clk: in std_logic; 

  areset_n: in std_logic; 

  reset: in std_logic; 

  shiftEnable: in std_logic; 
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  shiftIn: in std_logic_vector (CONTENT_WIDTH-1 downto 0); 

  shiftOut: out std_logic_vector (CONTENT_WIDTH-1 downto 0) 

); 

end component; 

 

signal clk : std_logic; 

signal areset_n: std_logic := '0'; 

signal resetIn, resetOut, enableIn, enableOut : std_logic; 

signal inFrameInbound, inFrameOutbound, outFrameInbound, outFrameOutbound: 

std_logic_vector ( 7 downto 0); 

 

begin 

 

UUTOutbound: shiftMemoryOutbound  

generic map (CONTENT_WIDTH => 8 ) 

port map (   

  clk => clk, 

  areset_n => areset_n, 

  reset => resetOut, 

  shiftEnable => enableOut, 

  shiftIn => inFrameOutbound, 

  shiftOut => outFrameOutbound 

); 

 

UUTInbound: shiftMemoryInbound  

generic map (CONTENT_WIDTH => 8 ) 

port map (   

  clk => clk, 

  areset_n => areset_n, 

  reset => resetIn, 

  shiftEnable => enableIn, 

  shiftIn => inFrameInbound, 

  shiftOut => outFrameInbound 

); 

inboundstimuli: process 

begin 

wait for 80 ns; 

resetIn <= '0'; 

inFrameInbound <= x"01"; 

enableIn <= '1'; 

wait for 40 ns; 
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inFrameInbound <= x"02"; 

enableIn <= '1'; 

wait for 40 ns; 

inFrameInbound <= x"03"; 

enableIn <= '1'; 

wait for 40 ns; 

inFrameInbound <= x"04"; 

enableIn <= '1'; 

wait for 40 ns; 

inFrameInbound <= x"05"; 

enableIn <= '1'; 

wait for 40 ns; 

inFrameInbound <= x"06"; 

enableIn <= '1'; 

wait for 40 ns; 

enableIn <= '0'; 

wait for 40 ns; 

resetIn <= '1'; 

end process; 

 

outboundstimuli: process 

begin 

wait for 80 ns; 

resetOut <= '0'; 

inFrameOutbound <= x"01"; 

enableOut <= '1'; 

wait for 40 ns; 

inFrameOutbound <= x"02"; 

enableOut <= '1'; 

wait for 40 ns; 

inFrameOutbound <= x"03"; 

enableOut <= '1'; 

wait for 40 ns; 

inFrameOutbound <= x"04"; 

enableOut <= '1'; 

wait for 40 ns; 

inFrameOutbound <= x"05"; 

enableOut <= '1'; 

wait for 40 ns; 

inFrameOutbound <= x"06"; 
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enableOut <= '1'; 

wait for 40 ns; 

enableOut <= '0'; 

wait for 40 ns; 

resetOut <= '1'; 

end process; 

 

  ClockGenerator: process 

  begin 

    clk <= '1'; 

    wait for 20 ns; 

    clk <= '0'; 

    wait for 20 ns; 

  end process; 

   

-- Asynchronous reset generation 

areset_n <= '1' after 15 ns;   

 

end architecture; 

 

14.4.2 PPPConverter inbound and outbound testbench 
library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all;  

 

entity testbenchPPPBuffers is 

end entity; 

 

architecture testbenchBehaviour of testbenchPPPBuffers is 

 

component PPPConverter is 

port (  

  clk: in std_logic; 

  areset_n: in std_logic; 

  macClient: in std_logic_vector(47 downto 0); 

  macSProcessor: in std_logic_vector(47 downto 0); 

  -- interface toward/from RioFrameBuffer 

  outboundReadFrameEmpty: in std_logic; 

  outboundReadContentEnd: in std_logic;   

  outboundReadFrame: out std_logic;  



110 
 

  outboundReadContent: out std_logic; 

  inFrameOutbound: in std_logic_vector(7 downto 0); 

  inboundWriteFrame: out std_logic; 

  inboundWriteFrameAbort: out std_logic; 

  inboundWriteContent: out std_logic; 

  inFrameInbound: in std_logic_vector(7 downto 0); 

  inboundWriteFrameFull: in std_logic; 

  -- interface toward/from Xilinx buffer 

  full: in std_logic; 

  wr_ack: in std_logic; 

  wr_en: out std_logic; 

  outFrameOutbound: out std_logic_vector (7 downto 0); 

  empty: in std_logic; 

  rd_en: out std_logic; 

  valid: in std_logic; 

  outFrameInbound: out std_logic_vector (7 downto 0); 

  outFlush : out std_logic; 

  inFlush: out std_logic 

  ); 

end component; 

 

component FrameBuffer is 

  generic( 

    SIZE_ADDRESS_WIDTH : natural := 6; 

    CONTENT_ADDRESS_WIDTH : natural := 8; 

    CONTENT_WIDTH : natural := 32; 

    MAX_PACKET_SIZE : natural := 69); 

  port( 

    clk : in std_logic; 

    areset_n : in std_logic; 

    inboundWriteFrameFull_o : out std_logic; 

    inboundWriteFrame_i : in std_logic; 

    inboundWriteFrameAbort_i : in std_logic; 

    inboundWriteContent_i : in std_logic; 

    inboundWriteContentData_i : in std_logic_vector(CONTENT_WIDTH-1 downto 

0); 

    inboundReadFrameEmpty_o : out std_logic; 

    inboundReadFrame_i : in std_logic; 

    inboundReadFrameRestart_i : in std_logic; 

    inboundReadFrameAborted_o : out std_logic; 
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    inboundReadFrameSize_o : out std_logic_vector(CONTENT_ADDRESS_WIDTH-1 

downto 0); 

    inboundReadContentEmpty_o : out std_logic; 

    inboundReadContent_i : in std_logic; 

    inboundReadContentEnd_o : out std_logic; 

    inboundReadContentData_o : out std_logic_vector(CONTENT_WIDTH-1 downto 

0); 

    outboundWriteFrameFull_o : out std_logic; 

    outboundWriteFrame_i : in std_logic; 

    outboundWriteFrameAbort_i : in std_logic; 

    outboundWriteContent_i : in std_logic; 

    outboundWriteContentData_i : in std_logic_vector(CONTENT_WIDTH-1 downto 

0); 

    outboundReadFrameEmpty_o : out std_logic; 

    outboundReadFrame_i : in std_logic; 

    outboundReadFrameRestart_i : in std_logic; 

    outboundReadFrameAborted_o : out std_logic; 

    outboundReadFrameSize_o : out std_logic_vector(CONTENT_ADDRESS_WIDTH-1 

downto 0); 

    outboundReadContentEmpty_o : out std_logic; 

    outboundReadContent_i : in std_logic; 

    outboundReadContentEnd_o : out std_logic; 

    outboundReadContentData_o : out std_logic_vector(CONTENT_WIDTH-1 downto 

0)); 

end component; 

 

COMPONENT FIFO_BUFFER 

  PORT ( 

    rst : IN STD_LOGIC; 

    wr_clk : IN STD_LOGIC; 

    rd_clk : IN STD_LOGIC; 

    din : IN STD_LOGIC_VECTOR(7 DOWNTO 0); 

    wr_en : IN STD_LOGIC; 

    rd_en : IN STD_LOGIC; 

    dout : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); 

    full : OUT STD_LOGIC; 

    wr_ack : OUT STD_LOGIC; 

    empty : OUT STD_LOGIC; 

    valid : OUT STD_LOGIC; 

    rd_data_count : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); 

    wr_data_count : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) 

  ); 
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END COMPONENT; 

 

signal clk: std_logic; 

signal areset_n: std_logic:='0'; 

signal macClient: std_logic_vector (47 downto 0):= x"111213141516"; 

signal macSProcessor: std_logic_vector (47 downto 0):= x"212223242526";

   

constant CONTENT_WIDTH: natural := 8; 

constant CONTENT_ADDRESS_WIDTH: natural := 14; 

constant SIZE_ADDRESS_WIDTH: natural := 6;      -- 2**6  =  64 frames (max) 

constant MAX_PACKET_SIZE: natural := 1520; 

-- interface toward/from RioFrameBuffer 

signal outboundReadFrameEmpty:  std_logic; 

signal outboundReadContentEnd:  std_logic;   

signal outboundReadFrame:  std_logic;  

signal outboundReadContent:  std_logic; 

signal inFrameOutbound: std_logic_vector(7 downto 0); -- output of the 

riobuffer --> contentdata 

signal outboundWriteContent: std_logic := '0'; 

signal outboundWriteFrame: std_logic :='0'; 

signal inboundWriteFrame:  std_logic; 

signal inboundWriteFrameAbort:  std_logic; 

signal inboundWriteContent:  std_logic; 

signal inFrameInbound:  std_logic_vector(7 downto 0); -- one input of the 

test 

signal inboundWriteFrameFull:  std_logic; 

-- interface toward/from Xilinx buffer 

signal full:  std_logic := '0'; 

signal wr_ack:  std_logic; 

signal wr_en, wr_enIN:  std_logic;-- output I want to read 

signal outFrameOutbound:  std_logic_vector (7 downto 0); -- output I want 

to read 

signal empty:  std_logic := '1'; 

signal rd_en:  std_logic; 

signal outFrameInbound:  std_logic_vector (7 downto 0); -- input of the 

buffer --> inboundWriteContentData_i 

signal inFlush, outFlush: std_logic; 

 

-- testbench signals 

signal opensignal: std_logic :='0'; 

signal openvectorcontent: std_logic_vector (CONTENT_WIDTH-1 downto 0) := 

(others => '0'); 
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signal openvectoraddress: std_logic_vector (CONTENT_ADDRESS_WIDTH-1 downto 

0):= (others => '0'); 

signal outbIN, outbOUT: std_logic_vector (7 downto 0); 

signal inbOUT, inbIN: std_logic_vector (7 downto 0); 

signal inboundReadContent, inboundReadFrame, rd_enOut: std_logic:='0'; 

signal valid, validIN, emptyIN, fullIN, wr_ackIN: std_logic; 

begin 

UUT: PPPConverter 

port map (    

   clk => clk, 

   areset_n => areset_n, 

   macClient => macClient, 

   macSProcessor => macSProcessor, 

   -- interface toward/from RioFrameBuffer 

   outboundReadFrameEmpty => outboundReadFrameEmpty, 

   outboundReadContentEnd => outboundReadContentEnd, 

   outboundReadFrame => outboundReadFrame, 

   outboundReadContent => outboundReadContent, 

   inFrameOutbound => inFrameOutbound,  

   inboundWriteFrame => inboundWriteFrame, 

   inboundWriteFrameAbort => inboundWriteFrameAbort, 

   inboundWriteContent => inboundWriteContent, 

   inFrameInbound => inFrameInbound, 

   inboundWriteFrameFull => inboundWriteFrameFull, 

   -- interface toward/from Xilinx buffer 

   full => full, 

   wr_ack => wr_ack, 

   wr_en => wr_en,  

   outFrameOutbound => outFrameOutbound, 

   empty => empty, 

   rd_en => rd_en, 

   valid => valid, 

   outFrameInbound => outFrameInbound 

  ); 

 

ethbuffer: FrameBuffer 

  generic map ( 

    SIZE_ADDRESS_WIDTH => SIZE_ADDRESS_WIDTH, 

    CONTENT_ADDRESS_WIDTH => CONTENT_ADDRESS_WIDTH, 

    CONTENT_WIDTH => CONTENT_WIDTH, 

    MAX_PACKET_SIZE => MAX_PACKET_SIZE ) 



114 
 

 port map ( 

   clk => clk, 

   areset_n => areset_n,  

   inboundWriteFrameFull_o => inboundWriteFrameFull, 

   inboundWriteFrame_i => inboundWriteFrame, 

   inboundWriteFrameAbort_i => inboundWriteFrameAbort, 

   inboundWriteContent_i => inboundWriteContent, 

   inboundWriteContentData_i  => outFrameInbound, 

   inboundReadFrameEmpty_o => opensignal, 

   inboundReadFrame_i => inboundReadFrame, 

   inboundReadFrameRestart_i => opensignal, 

   inboundReadFrameAborted_o => opensignal, 

   inboundReadFrameSize_o => openvectoraddress, 

   inboundReadContentEmpty_o => opensignal, 

   inboundReadContent_i => inboundReadContent, 

   inboundReadContentEnd_o => opensignal, 

   inboundReadContentData_o => inbOUT, 

   outboundWriteFrameFull_o => opensignal, 

   outboundWriteFrame_i => outboundWriteFrame, 

   outboundWriteFrameAbort_i => opensignal, 

   outboundWriteContent_i => outboundWriteContent, 

   outboundWriteContentData_i => outbIN, 

   outboundReadFrameEmpty_o => outboundReadFrameEmpty, 

   outboundReadFrame_i => outboundReadFrame, 

   outboundReadFrameRestart_i => opensignal, 

   outboundReadFrameAborted_o => opensignal, 

   outboundReadFrameSize_o => openvectoraddress, 

   outboundReadContentEmpty_o => opensignal, 

   outboundReadContent_i => outboundReadContent, 

   outboundReadContentEnd_o => outboundReadContentEnd, 

   outboundReadContentData_o => inFrameOutbound 

  ); 

 

IoLinkBufferInbound: FIFO_BUFFER 

  PORT MAP( 

    rst => inFlush, 

    wr_clk  => clk, 

    rd_clk  => clk, 

    din  => inbIN, -- used for test 

    wr_en => wr_enIN, -- used for test 
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    rd_en => rd_en, -- inbound 

    dout => inFrameInbound, 

    full => fullIN, --ignored 

    wr_ack => wr_ackIN, --ignored 

    empty => empty, --inbound 

    valid => valid, -- inbound 

    rd_data_count => openvectorcontent, 

    wr_data_count => openvectorcontent 

  );  

IoLinkBufferOutbound: FIFO_BUFFER 

  PORT MAP( 

    rst => outFlush, 

    wr_clk  => clk, 

    rd_clk  => clk, 

    din  => outFrameOutbound, 

    wr_en => wr_en, -- outbound 

    rd_en => rd_enOut, -- used for test 

    dout => outbOUT, -- outbound 

    full => full, -- outbound 

    wr_ack => wr_ack, -- outbound 

    empty => emptyIN, -- ignored 

    valid => validIN, -- ignored 

    rd_data_count => openvectorcontent, 

    wr_data_count => openvectorcontent 

  ); 

-- Clock generation 

 

clkGeneration: process 

 begin 

 clk <= '1'; 

 wait for 10 ns; 

 clk <= '0'; 

 wait for 10 ns; 

 end process; 

 

-- Asynchronous reset generation 

areset_n <= '1' after 15 ns; 

testProcedureOutbound: process 

begin 

-- outbound part, writing on the buffer 
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 wait for 80 ns;  

 -- NORMAL TEST 

 -- write on buffer 1 

  outboundWriteContent <= '1'; 

  rd_enOut <= '0'; 

 -- mac source 

 outbIN<= x"11"; 

 wait for 20 ns; 

 outbIN<= x"11"; 

 wait for 20 ns; 

 outbIN<= x"11"; 

 wait for 20 ns; 

 outbIN<= x"11"; 

 wait for 20 ns; 

 outbIN<= x"11"; 

 wait for 20 ns; 

 outbIN<= x"11"; 

 wait for 20 ns; 

 --mac destination 

 outbIN<= x"22"; 

 wait for 20 ns; 

 outbIN<= x"22"; 

 wait for 20 ns; 

 outbIN<= x"22"; 

 wait for 20 ns; 

 outbIN<= x"22"; 

 wait for 20 ns; 

 outbIN<= x"22"; 

 wait for 20 ns; 

 outbIN<= x"22"; 

 wait for 20 ns; 

 -- eth type 

 outbIN<= x"08"; 

 wait for 20 ns; 

 outbIN<= x"00"; 

 wait for 20 ns; 

 -- payload 

 outbIN<= x"31"; 

 wait for 20 ns; 

 outbIN<= x"32"; 
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 wait for 20 ns; 

 outbIN<= x"33"; 

 wait for 20 ns; 

 outbIN<= x"34"; 

 wait for 20 ns; 

 outbIN<= x"35"; 

 wait for 20 ns; 

 outbIN<= x"36"; 

 wait for 20 ns; 

 outbIN<= x"37"; 

 wait for 20 ns; 

 outbIN<= x"38"; 

 wait for 20 ns; 

 outbIN<= x"39"; 

 wait for 20 ns; 

 outbIN<= x"3A"; 

 wait for 20 ns; 

 outbIN<= x"3B"; 

 wait for 20 ns; 

 -- crc  

 outbIN<= x"00"; 

 wait for 20 ns; 

 outbIN<= x"01"; 

 wait for 20 ns; 

 outbIN<= x"02"; 

 wait for 20 ns; 

 outbIN<= x"03"; 

 wait for 20 ns; 

 outboundWriteContent <= '0'; 

 outboundWriteFrame <= '1'; 

 wait for 20 ns; 

 outboundWriteContent <= '0'; 

 outboundWriteFrame <= '0'; 

 wait for 20 ns; 

 -- read from the FIFO_BUFFER 

 rd_enOut <= '1'; 

 wait for 500 ns; 

end process; 

testProcedureInbound: process 

begin 
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-- inbound part, writing in the FIFO_BUFFER 

 wr_enIN <= '0'; 

 wait for 80 ns;  

 -- empty <= '0'; 

 wr_enIN <= '1'; 

 inbIN <= x"7E"; 

 wait for 20 ns; 

 inbIN <= x"FF"; 

 wait for 20 ns; 

 inbIN <= x"03"; 

 wait for 20 ns; 

 inbIN <= x"00"; 

 wait for 20 ns; 

 inbIN <= x"21"; 

 wait for 20 ns; 

 -- payload 

 inbIN<= x"31"; 

 wait for 20 ns; 

 inbIN<= x"32"; 

 wait for 20 ns; 

 inbIN<= x"33"; 

 wait for 20 ns; 

 inbIN<= x"34"; 

 wait for 20 ns; 

 inbIN<= x"35"; 

 wait for 20 ns; 

 inbIN<= x"36"; 

 wait for 20 ns; 

 inbIN<= x"37"; 

 wait for 20 ns; 

 inbIN<= x"38"; 

 wait for 20 ns; 

 inbIN<= x"39"; 

 wait for 20 ns; 

 inbIN<= x"3A"; 

 wait for 20 ns; 

 inbIN<= x"3B"; 

 wait for 20 ns; 

 -- crc  

 inbIN<= x"4E"; 
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 wait for 20 ns; 

 inbIN<= x"08"; 

 wait for 20 ns; 

 inbIN<= x"BF"; 

 wait for 20 ns; 

 inbIN<= x"B4"; 

 wait for 20 ns; 

 -- end byte 

 inbIN<= x"7E"; 

 wait for 20 ns; 

 wr_enIN <= '1'; 

 -- empty <= '1'; 

 wait for 20 ns; 

-- read from buffer procedure 

 inboundReadContent<='1'; 

 wait for 580 ns; 

 inboundReadContent<='0'; 

 inboundReadFrame<= '1'; 

 wait for 20 ns; 

 inboundReadFrame<= '0'; 

end process; 

end architecture; 

 

14.4.3 Full chain testbench code 
The process that generates the data is shown as follows. The declaration of all the components is not reported for 
the sake of brevity. All the necessary signals declaration can be found in Section 4.4 and the connection of the 
components in Figure 7.6. 

StimuliProcess: process (clk, areset_n) 

begin 

if (areset_n = '0') then 

 stateStimuli <= STATE_IDLE; 

 icTctl_i <= '0'; 

 icTd_i <= x"0"; 

 counter <= 0; 

elsif (clk' event and clk = '1' )then 

 

case stateStimuli is  

when STATE_IDLE   =>icTctl_i <= '0'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PREAMBLE_1_A; 
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when STATE_PREAMBLE_1_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_1_B; 

        

when STATE_PREAMBLE_1_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_2_A; 

     

when STATE_PREAMBLE_2_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_2_B; 

        

when STATE_PREAMBLE_2_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_3_A; 

        

when STATE_PREAMBLE_3_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_3_B; 

        

when STATE_PREAMBLE_3_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_4_A; 

        

when STATE_PREAMBLE_4_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_4_B; 

        

when STATE_PREAMBLE_4_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_5_A; 
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when STATE_PREAMBLE_5_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_5_B; 

        

when STATE_PREAMBLE_5_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_6_A; 

        

when STATE_PREAMBLE_6_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_6_B; 

        

when STATE_PREAMBLE_6_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_7_A; 

        

when STATE_PREAMBLE_7_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_7_B; 

        

when STATE_PREAMBLE_7_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_8_A; 

        

when STATE_PREAMBLE_8_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_PREAMBLE_8_B; 

        

when STATE_PREAMBLE_8_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"D"; 

     stateStimuli <= STATE_DESTINATION_1_A; 
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when STATE_DESTINATION_1_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_1_B; 

        

when STATE_DESTINATION_1_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_2_A; 

          

when STATE_DESTINATION_2_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_2_B; 

        

when STATE_DESTINATION_2_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_3_A; 

 

when STATE_DESTINATION_3_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_3_B; 

        

when STATE_DESTINATION_3_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_4_A; 

 

when STATE_DESTINATION_4_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_4_B; 

        

when STATE_DESTINATION_4_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_5_A; 
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when STATE_DESTINATION_5_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_5_B; 

        

when STATE_DESTINATION_5_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_6_A; 

 

when STATE_DESTINATION_6_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_DESTINATION_6_B; 

        

when STATE_DESTINATION_6_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"F"; 

     stateStimuli <= STATE_SOURCE_1_A; 

 

when STATE_SOURCE_1_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_SOURCE_1_B; 

     

when STATE_SOURCE_1_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"2"; 

     stateStimuli <= STATE_SOURCE_2_A; 

 

when STATE_SOURCE_2_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_SOURCE_2_B; 

     

when STATE_SOURCE_2_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"3"; 

     stateStimuli <= STATE_SOURCE_3_A; 
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when STATE_SOURCE_3_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_SOURCE_3_B; 

     

when STATE_SOURCE_3_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"4"; 

     stateStimuli <= STATE_SOURCE_4_A; 

 

when STATE_SOURCE_4_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_SOURCE_4_B; 

     

when STATE_SOURCE_4_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_SOURCE_5_A; 

 

when STATE_SOURCE_5_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_SOURCE_5_B; 

     

when STATE_SOURCE_5_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"6"; 

     stateStimuli <= STATE_SOURCE_6_A; 

 

when STATE_SOURCE_6_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_SOURCE_6_B; 

     

when STATE_SOURCE_6_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"7"; 

     stateStimuli <= STATE_ETH_1_A; 
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when STATE_ETH_1_A =>   

     icTctl_i <= '1'; 

     icTd_i <= x"8"; 

     stateStimuli <= STATE_ETH_1_B; 

        

when STATE_ETH_1_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_ETH_2_A; 

        

when STATE_ETH_2_A =>   

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_ETH_2_B; 

        

when STATE_ETH_2_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_1_A; 

        

when STATE_PAYLOAD_1_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_1_B; 

 

when STATE_PAYLOAD_1_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_PAYLOAD_2_A; 

 

when STATE_PAYLOAD_2_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_2_B; 

        

 

when STATE_PAYLOAD_2_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"8"; 

     stateStimuli <= STATE_PAYLOAD_3_A; 
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when STATE_PAYLOAD_3_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_3_B; 

 

when STATE_PAYLOAD_3_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"6"; 

     stateStimuli <= STATE_PAYLOAD_4_A; 

 

when STATE_PAYLOAD_4_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_4_B; 

 

when STATE_PAYLOAD_4_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"4"; 

     stateStimuli <= STATE_PAYLOAD_5_A; 

 

when STATE_PAYLOAD_5_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_5_B; 

 

when STATE_PAYLOAD_5_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"1"; 

     stateStimuli <= STATE_PAYLOAD_6_A; 

 

when STATE_PAYLOAD_6_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_6_B; 

 

when STATE_PAYLOAD_6_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"8"; 

     stateStimuli <= STATE_PAYLOAD_7_A; 
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when STATE_PAYLOAD_7_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"6"; 

     stateStimuli <= STATE_PAYLOAD_7_B; 

 

when STATE_PAYLOAD_7_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"9"; 

     stateStimuli <= STATE_PAYLOAD_8_A; 

 

when STATE_PAYLOAD_8_A =>  

     icTctl_i <= '1'; 

     icTd_i <= x"c"; 

     stateStimuli <= STATE_PAYLOAD_8_B; 

 

when STATE_PAYLOAD_8_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"b"; 

     stateStimuli <= STATE_PAYLOAD_9_A; 

 

when STATE_PAYLOAD_9_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_PAYLOAD_9_B; 

 

when STATE_PAYLOAD_9_B =>  

     icTctl_i <= '1'; 

     icTd_i <= x"c"; 

     stateStimuli <= STATE_CRC_1_A; 

 

when STATE_CRC_1_A =>   

     icTctl_i <= '1'; 

     icTd_i <= x"b"; 

     stateStimuli <= STATE_CRC_1_B; 

 

when STATE_CRC_1_B =>   

     icTctl_i <= '1'; 

     icTd_i <= x"5"; 

     stateStimuli <= STATE_CRC_2_A; 
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when STATE_CRC_2_A =>   

     icTctl_i <= '1'; 

     icTd_i <= x"2"; 

     stateStimuli <= STATE_CRC_2_B; 

 

when STATE_CRC_2_B =>   

     icTctl_i <= '1'; 

     icTd_i <= x"d"; 

     stateStimuli <= STATE_CRC_3_A; 

 

when STATE_CRC_3_A => 

     icTctl_i <= '1'; 

     icTd_i <= x"9"; 

     stateStimuli <= STATE_CRC_3_B; 

 

when STATE_CRC_3_B => 

     icTctl_i <= '1'; 

     icTd_i <= x"a"; 

     stateStimuli <= STATE_CRC_4_A; 

 

when STATE_CRC_4_A =>   

     icTctl_i <= '1'; 

     icTd_i <= x"e"; 

     stateStimuli <= STATE_CRC_4_B; 

 

when STATE_CRC_4_B =>   

     icTctl_i <= '1'; 

     icTd_i <= x"f"; 

     stateStimuli <= STATE_ENDING; 

         

when STATE_ENDING =>   

     icTctl_i <= '0'; 

     icTd_i <= x"0"; 

     stateStimuli <= STATE_IDLE; 

 

when others => stateStimuli <= STATE_IDLE; 

end case; 

end if; 

end process; 
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