
POLITECNICO DI TORINO
Master of science-level of the Bologna process in

Mechatronic Engineering

Final project work

Implementation of the IEEE 802.11p
protocol on embedded systems

Advisors
prof. Claudio Ettore Casetti
dott. Marco Malinverno

Francesco Raviglione
Student ID: 236040

December 2018

Summary

In the following master degree thesis, an implementation and integration of the IEEE

802.11p protocol in two different models of PC Engines boards [1] is investigated. The

focus is put on the physical and MAC layers.

PC Engines is a Swiss producer that makes and sells embedded boards, typically based

on AMD x86 processors. These boards are specifically targeted to networking applica-

tions and always include at least one mini PCI or mini PCIe slot to accommodate a proper

WNIC (Wireless Network Interface Controller), providing a quite customizable architec-

ture, as investigated in literature [2].

In both cases, an embedded Linux operating system (OpenWrt) is used, providing all

the proper tools needed to develop the work and giving a high degree of flexibility, being

completely open source.

The integration of other WAVE important features will be investigated too, such as the

different traffic classes defined in the MAC layer of 802.11.

The final goal is to test the implementation, getting data to be analyzed in order to

study the system performance, on both boards, highlighting possible problems that could

arise.

Part of this work is also related to analyzing the ITS frequency spectrum used by the

boards, by means of a proper analyzer hardware, eventually finding out few PHY layer

problems affecting the older boards.

Systems like the one which is investigated in this work actually represent an important

part of the ITS applications which are becoming more and more of interest both in the

iii

industrial and academic world.

We tried in particular to concentrate on open source solutions, since they are ideal for

researching with V2X protocols, allowing implementing new features and patching exist-

ing ones with much more ease than commercial products which start to appear nowadays

on the market.

The chapters are organized as follows:

1. The first chapter is an introduction to the world of VANETs and related protocols,

that are one of the main enabling technologies for the future ITS (Intelligent trans-

portation systems). It also lists existing embedded solutions for vehicular networks.

2. The second chapter introduces the WAVE (Vehicular Access in Vehicular Environ-

ment) stack, introduced by IEEE and object of this work.

3. The third chapter is related to the PC Engines ALIX boards, presenting the work I

did on them and the obtained results in terms of the boards communicating using

WAVE. This chapter also introduces the OpenWrt Linux distribution, highlighting

its advantages and how the Linux wireless subsystem works.

4. The fourth chapter is related to how the ITS frequency spectrum can be analyzed by

means of a spectrum analyzer and to the problems that were found with the ALIX

boards

5. The fifth chapter is related to the PC Engines APU boards and to the integration of

the 802.11p functionalities on them.

6. The sixth chapter is related to the measurements performed on the APU boards,

which resulted to be more stable than the older ALIX boards, and to the obtained

results.

7. The seventh chapter contains the conclusion of this work, highlighting some possible

future improvements.

iv

Contents

1 Introduction 7
1.1 Intelligent Transport Systems . 7
1.2 VANETs . 9

1.2.1 Basics . 9
1.2.2 Components and types of communication 10
1.2.3 Routing . 12
1.2.4 Standards for physical and MAC layers 14

1.3 Existing embedded solutions for VANETs 18
1.3.1 Used boards and objectives . 22

2 IEEE WAVE 23
2.1 WAVE physical layer . 26
2.2 WAVE MAC layer . 28

2.2.1 EDCA . 28
2.2.2 IEEE 1609.4 for multi-channel operations 31

3 ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem 37
3.1 ALIX boards and development host 37
3.2 Desk configuration and connections 42
3.3 UNEX DCMA 86P2 . 44
3.4 Used antennas . 45
3.5 The OpenWrt Linux distribution . 45

3.5.1 The Linux wireless subsystem 50
3.6 Connecting with the boards . 58

3.6.1 PuTTY . 58
3.6.2 WinSCP . 59

3.7 OpenWrt GCDC 2011 and network configuration 61
3.7.1 Configuration of the boards 62
3.7.2 iPerf . 72
3.7.3 Testing the VTL Java code . 79
3.7.4 Moving to newer versions of OpenWrt 83

3.8 LEDE 17.01 and OpenC2X . 85

v

3.8.1 LEDE toolchain . 89
3.8.2 LEDE images, SquashFS and ext4 91
3.8.3 Patch creation and management: quilt 96
3.8.4 Patching ath5k and iperf . 103
3.8.5 C programs for broadcast transmissions 111
3.8.6 Packet sniffing: methodologies 116

3.9 Packet sniffing: RadioTap . 125
3.10 OpenWrt 18.06.1 . 126

4 Analyzing the DSRC spectrum 129
4.1 Introduction . 129
4.2 MetaGeek Wi-Spy DBx and Chanalyzer 130
4.3 Kismet Spectools . 133

4.3.1 Patching Kismet Spectools . 134
4.3.2 Results of the patching work 158

4.4 Looking for possible interferences . 160
4.5 ALIX spectrum usage and transmission problems 161

5 APU boards and UNEX DHXA-222 167
5.1 The APU boards . 167
5.2 UNEX DHXA-222 . 171
5.3 Installing a Linux based operating system on the SSD 172

5.3.1 Serial connection with the APU board 175
5.4 Compiling OpenWrt for the APU boards 178
5.5 Configuring the APU boards . 179
5.6 NTP synchronization with chrony . 181
5.7 Sniffing with an APU board . 185
5.8 Bitrates on the APU boards and correct way of measuring them 186

6 Measurements on the APU boards and results 195
6.1 Throughput and packet loss measurements 195

6.1.1 Network configuration and conditions 196
6.1.2 Scripts and commands . 197
6.1.3 Plots and results . 202
6.1.4 Additional considerations . 210

6.2 Characterization of the buffered transmission 210
6.2.1 Network configuration and conditions 211
6.2.2 Scripts and commands, iPerf UDP send loop 213
6.2.3 Plots and results: first set . 228
6.2.4 Plots and results: second set 231

6.3 More systematic throughput and packet loss measurements 238
6.3.1 Network configuration and conditions 238

vi

6.3.2 Scripts and commands . 239
6.3.3 Plots and results . 240

6.4 Traffic classes . 247
6.4.1 Network configuration and conditions 248
6.4.2 Scripts and commands . 249
6.4.3 Plots and results: first set . 260
6.4.4 Plots and results: second set 269

6.5 Indoor received power and connectivity measurements 271
6.5.1 Network configuration and conditions 272
6.5.2 Scripts and commands, meaning of the power values 273
6.5.3 Plots and results . 286
6.5.4 Additional considerations . 290

6.6 Broadcast communication issue with Linux kernel version 4 290

7 Conclusions 295
7.1 APU boards startup . 295
7.2 Channel switching . 296
7.3 Improvements . 296
7.4 Conclusions . 297
7.5 Acknowledgements . 298

Appendices 301

Appendix A 302
C programs for broadcast transmissions . 302

rawsock library . 302
Sender program . 335
Receiver program . 344
Receiver program (using AF_INET socket) 348
Compiler commands . 352

Appendix B 353
OpenWrt 18.06.1 patches . 353

001-iperf-MAC_AC-patch.patch . 353
202-restore_ocb.patch . 358
600-DE-openC2X-regdb.patch . 359
601-IT-regdb.patch . 360
998-ath5k_ocb.patch . 361
998-ath9k_allow_11p.patch . 368
999-Enable-queueing-in-all-4-ACs-BE-BK-VI-VO.patch 371
999-Get-hw-queue-pending-stats-from-ath9k-via-netlink.patch 372
999-ITS-G5D-channels-fix.patch . 386
.bashrc (on the development PC) - modified lines 387

vii

Appendix C 388
OpenWrt 18.06.1 configuration file for the APU boards 388

Appendix D 427
APU boards network configuration files and iw_startup 427

APU_102 . 427
APU_103 . 431

Appendix E 434
chrony and system configuration files . 434

Appendix F 438
millisleep utility and iPerf debug modifications 438

millisleep . 438
iPerf debug modifications . 441

Appendix G 454
Scripts for systematic measurements of throughput and packet loss 454

3 Mbit/s . 454
Development PC data log data extraction script - 3 Mbit/s 459
6 Mbit/s . 462
Development PC data log data extraction script - 6 Mbit/s 466
12 Mbit/s . 469
Development PC data log data extraction script - 12 Mbit/s 473

viii

Abbreviations

Automotive

• ADAS: Advanced Driver-Assistance Systems, that are implemented to assist the

driver in the driving process

Hardware and embedded systems

• AC97: Audio Codec 97

• CAN: Controller Area Network, protocol used for internal vehicle communications,

based on a 2-wire asynchronous serial bus with multi-master transmissions

• CF: Compact Flash

• DMA: Direct Memory Access

• DRAM: Dynamic Random Access Memory

• FPGA: Field Programmable Gate Array

• FTL: Flash Translation Layer

• GNSS: Global Navigation Satellite System

• GPP: General Purpose Processor

1

• IDE: Integrated Drive Electronics

• LEDE: Linux Embedded Development Enviroment

• NEMA: National Electrical Manufacturers Association, defining standard for elec-

trical materials and embedded systems enclosures

• NIC: Network Interface Controller

• OS: Operating System

• PCIe: Peripheral Component Interconnect (PCI) Express

• RTC: Real-Time Clock, a computer clock (often implemented in an integrated cir-

cuit) keeping track of the current time, usually getting its power from a separate

battery (or, possibly, from supercapacitors)

• SCP: Secure Copy Protocol

• SDK: Software Development Toolkit

• SMA: SubMiniature version A

• SSH: Secure SHell

• VIF: Virtual network InterFace

IEEE WAVE and ETSI standards

• AC: Access Category, corresponding to one of the 4 levels of priority used in EDCA

• BSM: Basic Safety Message

• CAM: Cooperative Awareness Message

• CCH: Control Channel

2

• DCC: Decentralized Congestion Control

• DCF: Distributed Coordination Function

• DENM: Decentralized Environment Notification Message

• DIFS: Arbitration InterFrame Space

• DIFS: Distributed InterFrame Space

• EDCA: Enhanced Distributed Channel Access

• EDCAF: Enhanced Distributed Channel Access Fnction

• MLME: MAC subLayer Management Entity

• QoS: Quality of Service

• SAM: Service Announcement Message

• SCH: Service Channel

• UP: User Priority

• WAVE: Wireles Access in Vehicular Environments

• WSA: WAVE Short Advertisment

• WSM: WAVE Short Message

• WSMP: WAVE Short Message Protocol

Organizations

• ARIB: Association of Radio Industries and Businesses

• CEN: Comité Européen de Normalisation

3

• ETSI: European Telecommunications Standards Institute

• FCC: Federal Communications Commission

• IEEE: Institute of Electrical and Electronic Engineers

• INRiM: Istituto Nazionale di Ricerca Metrologica

• ITSA: Intelligent Transportation Society of America

• SAE: Society of Automotive Engineers

Telecommunications and WiFi

• BPSK: Binary Phase Shift Keying, equivalent to 2-PSK

• BRAN: Broadband Radio Access Network

• BSS: Basic Service Set

• BSSID: Basic Service Set Identifier

• CRDA: Central Regulatory Domain Agent

• CSMA/CA: Carrier Sense Multiple Access with Collision Avoidance

• DFS: Dynamic Frequency Selection

• ESSID: Extended Service Set Identifier

• IBSS: Indipendent Basic Service Set

• ICI: Inter Carrier Interference

• IP: Internet Protocol

• IPG: InterPacket Gap

4

• ISI: Inter Symbol Interference

• MAC: Medium Access Control (layer)

• NTP: Network Time Protocol

• OCB: Outside Context of a BSS

• OFDM: Orthogonal Frequency-Division Multiplexing

• PHY: Physical (layer)

• PSK: Phase Shift Keying

• QAM: Quadrature Amplitude Modulation

• RF: Radio Frequency

• RLAN: Radio Local Area Network

• SDR: Software Defined Radio

• SDU: Service Data Unit, unit of data passed down from an upper OSI layer to a

lower OSI layer

• TCP: Transmission Control Protocol, connection oriented protocol over IP

• TDMA: Time Division Multiple Access

• TIM: Traffic Indication Map

• ToS: Type of Service

• UDP: User Datagram Protocol, connectionless protocol used over IP

• USRP: Universal Software Radio Peripheral

• WLAN: Wireless Local Area Network

5

• WM: Wireless Medium

• WME: Wireless Multimedia Extension, a Wi-Fi Alliance interoperability certifica-

tion for the 802.11e features, including the 4 AC used in 802.11p EDCAmechanism

• WNIC: Wireess Network Interface Controller

Vehicular communications

• C-V2X: Cellular Vehicle-to-everything

• DSRC: Dedicated Short-Range Communications

• GCDC: Grand Cooperative Driving Challenge

• ITS: Intelligent Transport Systems

• NLOS: Non-line-of-sight

• OBU: On Board Unit

• OEM: Original Equipment Manufacturer

• RSU: Road Side Unit

• VANET: Vehicular Ad-hoc NETwork

• VTL: Virtual Traffic Lights

6

Chapter 1

Introduction

1.1 Intelligent Transport Systems

Theworld of Intelligent Transport Systems (ITS) is gainingmore andmore importance

in the modern world. It is possible to define ”ITS” any system that uses ICT technologies

to improve safety, performance and productivity of any transportation system, as defined

by the 2010/40/EU directive of the European Union [3].

The goal of ITS systems is to enable comfort and safety applications such as:

• Platooning, in which cars or heavier vehicles can group together to form a platoon,

all traveling together like a train, composed by different wagons, would do. This

allows to increase road safety (for example by making all heavy vehicles travel in

a line in a single lane) and to have an optimal usage of the road infrastructure, in-

creasing its overall capacity without going into congestion. Of course, continuous

communication between the platoon members must occur. This application has also

its importance in saving fuel for the involved vehicles.

• Virtual traffic lights (VTL), in which the vehicles exchange their positions, obtained

from accurate GPS receivers (or from other positioning systems), and use them to

autonomously coordinate the precedence at the intersection in an efficient manner.

7

1 – Introduction

Each driver could then see, though a display, a virtual traffic light to understand

whether he can proceed or not. A VTL could also involve a fixed road side unit,

that will be in this case responsible for the traffic regulation, leaving less duty to the

single cars.

This application has been already investigated by different research groups, with

very good results [4]. In [4] they present a work by the IEIIT Wireless Communica-

tion Systems Group and they describe what a VTL system is.

• Non-line-of-sight (NLOS), more informally called See-through, allowing vehicles

to see through blind spots or event through, for instance, heavy vehicles that are

following or preceding, limiting the normal view. This is actually investigated by

important OEMs such as Ford, NXP and Cohda [2]).

• Collision avoidance, with hazard warning and/or using technologies such as see-

through. Collision avoidance is one of the most important safety related ITS appli-

cations. Statistics show that the death rate of road accidents is actually veryworrying,

with 3400 people killed every day.

This application involves applying algorithms, based on vehicle exchanging data

such as their positions, speeds and heading, that are able to detected potential danger-

ous situations and act accordingly, from simply warning the driver to start an emer-

gency brake maneuver and eventually warn also other incoming vehicles through

wireless or mobile communications. Using this kind of technology, the goal is to

limit as much as possible the risk of collision, drastically reducing the road acci-

dents and with the final target of ending road fatalities (in the US the goal is to have

zero road fatalities by 2050). Among other applications, as studied by a research

group in Politecnico di Torino, this one actually requires most vehicle to be ITS

equipped in order to have good performances, needing a so called high “penetration

rate” (a percentage indicating how fast a certain technologies is adopted and how

much it is actually widespread) [5].

8

1.2 – VANETs

Most of these applications, if not all, require cooperative driving, with vehicles ex-

changing information between them and with the road infrastructure. This implies creat-

ing a network of connected cars, able to regulate themselves depending on the received

information and to enable technologies such as the ones presented before.

1.2 VANETs

1.2.1 Basics

Vehicular networks, in general, can be based on mobile ad hoc networks, and this is

the case in which it is possible to speak about VANETs, or even on cellular networks (in

this case it is more common to talk about C-V2X). While cellular networks seems to be

better in terms of packet reception ratio and for longer distance transmissions, mobile ad

hoc networks seems to be better in relation to lower latency and shorter distances [5].

VANET stands for Vehicular Ad-hoc NETworks: they are in fact self-organized net-

works, composed by vehicles and fixed road units, that are created only when necessary

(ad hoc in Latinmeans for this, as they are network created on the fly for a specific reason),

just like any other mobile ad hoc network. They are characterized by wireless commu-

nication, typically based on ”WiFi” technologies1, highly mobile nodes, very dynamic

network topology, often difficult to predict, and typically require GPS localization.

One of the requirements for VANETs is the ability to establish a connection in a fast

way, since the vehicles may be moving even at high speed. Two vehicles may be even

visible, for very high speeds, for less than one second, and this can be critical in safety

related applications. [6, p. 24]

Due to this, VANETs rely on a variant of the IBSS (Indipendent BSS) architecture,

that do not need any Access Point to pass through. This allows to establish a connection

1In Europe and U.S. the MAC and physical layers are mostly based on the IEEE 802.11p protocol, an
approved amendment of the 802.11 standard that includes enhancements for the vehicular case, described
later on

9

1 – Introduction

in a shorter time with respect to BSS with infrastructure, as time represents a critical

requirement in this case, and takes into consideration the highly dynamical topology of

these networks.

In fact, VANETs do not have any fixed topology, and, if needed, the nodes have to

exchange data in order to try to understand which other nodes are near them. This kind

of data exchange is required in some proposed vehicular network algorithms, such as

DV-CAST (figure 1.1), which is presented as an example of algorithm involving VANETs

and which is proposed as an algorithm to solve the problem of network fragmentation

when a vehicle wants to transmit data to other ones, for example to notify them of an

incoming hazard.

In this solution, a vehicle that receives some broadcasted information from other ve-

hicles will rebroadcast it depending on a ”map” of the vehicles around it, that is built

thanks to Hello beacons that are periodically sent by all the vehicles participating in the

VANET. For instance, if there are vehicles traveling in the opposite direction and if there

are no neighbors further away with respect to the frame source (i.e. the current vehicle

is the last of its ”line” and then the network is fragmented, as shown in figure 1.1), the

information is actually re-broadcasted and received by the opposite direction neighbors,

that will store and forward it when other vehicles are encountered. More details about this

algorithm are found in [7].

As written before, vehicles are moving and this generates frequent network topol-

ogy changes and fragmentations. This actually represents one of the major challenges for

VANETs, together with the fact that the nodes are moving, generating fast fading chan-

nels. As reported in literature, such as in [8], this is a quite relevant problem for which

numerous studies and pratical experiments have been carried on.

1.2.2 Components and types of communication

It is possible to distinguish the following main components of a VANET:

• OBU (On Board Unit): it is the device embedded in each vehicle, composed by an

10

1.2 – VANETs

Figure 1.1: DV-CAST example: vehicle A, which is supposed to have received a message
about an hazard that it has to re-broadcast, thanks to the Hello beacons is able to under-
stand that vehicle B is passing through in the opposite direction. So, it will re-broadcast
the message that will be received by B. B will proceed further and re-broadcast again
when it encounters vehicles in the opposite direction (i.e. in the same direction as A).
Thanks to this mechanism, group 2 cars will be able to receive the hazard notification
even though the network is fragmented. Taken from [7] with custom modifications.

embedded system able to communicate through wireless communication.

• RSU (Road Side Unit): it is a fixed device positioned along the road, working as a

fixed access point. It can provide additional services and support to connected ve-

hicles and connection to the Internet. They can be connected in a mesh and they

can be an important element since they can help regulate the traffic flow (for exam-

ple by interfacing with a traffic light controller), improve safety, improve emergency

response in case of hazard, and so on. NXP is for example actually providing solu-

tions suitable for integration inside RSUs, such as the automotive vision processor

S32V234 [9].

• GPS or other positioning systems: it is a very important component for every ITS

application: without any localization system it would be impossible, for instance, to

locate an hazard and send a proper notification to surrounding vehicles. The posi-

tion (and speed) of the cars is used in VTL, in the DV-CAST algorithm to properly

send theHello beacons, for any kind of cooperative driving, in most variants of rout-

ing algorithms (mainly for georouting based ones, but also for flooding algorithms

11

1 – Introduction

and broadcast suppression schemes2). Some routing algorithms that try to use po-

sition estimation instead of GPS readings have been proposed [10], but localization

systems such as GPS still remain a fundamental component.

In general, it is possible to talk about:

• V2V (Vehicle to vehicle) communication, between OBUs

• V2I or I2V (Vehicle to infrastructure or vice versa) communication, between RSU

and OBU [6]

• V2D (Vehicle to Device) communication, involving the vehicle and any device con-

nected to the vehicle itself

• V2P (Vehicle to Pedestrian) communication, which has strong safety implications

due to pedestrians being the most vulnerable road users; V2P is an important key-

word for example in pedestrian detection ITS applications [11]: for instance, a re-

search group in Politecnico di Torino actually proposed and simulated a collision

avoidance algorithm with very good results, analyzing both the vehicle-to-vehicle

and vehicle-to-pedestrian detection, in which information about pedestrians is col-

lected through their smartphones in a V2V/V2P framework [12]

• V2N (Vehicle to Network), in which the vehicle directly communicates with the

network, instead of having communications with the RSU and then to the network

To talk about vehicular communications in general, the term V2X (Vehicle to everything)

has been coined.

1.2.3 Routing

Another important problem related to VANETs is actually routing. While it is possible

to use standard mobile network routing algorithms, they may not be completely suitable

2Described later on

12

1.2 – VANETs

Figure 1.2: V2V and V2I example. Taken from [13].

for vehicular applications. They use, in fact, periodic update procedures to maintain an

up to date map of the network, with increased complexity and, possibly, more time lost

and inefficiency in running the algorithm in the case of a highly dynamic vehicular envi-

ronment [10] [14]. Without going into more complex algorithm that have been proposed

in these years, such as the one described by [10], two standard solutions for VANETs are:

1. Georouting: vehicle position and its distance from the destination are used to route

a frame, in a multi-hop approach. It is important to have both a “greedy” operation

mode to properly choose the next hop (possibly choosing it as the nearest to the des-

tination) and a “recovery” operation mode to avoid and “circumnavigate” obstacles

when they tend to block the communication (for instance, a node may the nearest to

the destination, but it may not be able to route the information towards the next best

hop due to obstacles). While georouting seems to be very effective, in practice and

with a standard implementation it may require quite a large overhead to find next

hops, estimate the distances, understand when obstacles are blocking the message

13

1 – Introduction

routing and so on. Some efficient and effective georouting schemes have been pro-

posed though, trying to overcome the problems of inaccuracies in the vehicles and

destination positions and routing non-optimality due to outdated topology knowl-

edge, depending on the frequency at which the nodes exchange information about

their positions and on their speeds. Another problem is in fact the following one: if

the vehicles move faster than the beaconing frequency, routing may take the wrong

nodes (i.e. vehicles) into account and generate routing inefficiencies and higher la-

tency [14].

2. Flooding: one simpler solution, with respect to georouting, is called flooding: the

solution is actually to broadcast to all nodes the messages when some information

has to be sent. Then, these nodes will be responsible for rebroadcasting the informa-

tion to other vehicles. In fact, in many safety applications there’s a little time to set

up a topology or use complex routing algorithms. However, performing an uncon-

trolled flooding can lead, mainly in the case of high vehicle density, to the risk of

jamming the channel with too many vehicles all transmitting together. Solutions are

presented in the form of broadcast suppression schemes, in which the rebroadcast

happens only depending on certain conditions. Some scheme, as written before, re-

quire GPS information to estimate, for example, the distance to the message source

and act accordingly [15].

1.2.4 Standards for physical and MAC layers

Vehicular networks are nowadays based on two main families of standards, for what

concerns theMAC and physical layers: DSRC (Dedicated Short-Range Communications)

standards and cellular based standards. TheDSRC standards have been establishedmainly

by ETSI, IEEE and ARIB while cellular based standards are developed by 3GPP and will

include 5G technologies, built upon on the current LTE framework.

In particular, concentrating on DSRC standards and VANET networks, that are the

14

1.2 – VANETs

main objective of this work, they are the result of the efforts of ETSI, in Europe, proposing

the ITS-G5 standard, IEEE, with 802.11p and 1609.x, in the U.S., and ARIB, with T109,

in Japan. Since ARIB T109 takes quite a different approach with respect to ETSI ITS-G5

and IEEE protocols, using a 700 MHz lower frequency band and a mixed CSMA/CA-

TDMA medium access control, it will not be considered in details in this work. There

are, however, articles presenting more in depth the Japanese standard and comparing it

with the ETSI and IEEE ones [16].

Both the ETSI and IEEE standards use the IEEE 802.11p physical and MAC layers.

IEEE 802.11p is an approved amendment of the 802.11 family of standards, related to

wireless local area networks [17], that introduces enhancements to the known 802.11

protocols to make them suited for the automotive and vehicular use case.

In 1997 FCC (the Federal Communications Commission) assigned a 75 MHz band-

width between 5.850 and 5.925 GHz for vehicular communications, after a petition from

ITSA (Intelligent Transportation Society of America3), including seven 10 MHz channels

and a 5 MHz guard band, needed to avoid invading other technologies’ frequencies due

to, for instance, Doppler effect.

In 2004, the IEEE 802.11p and IEEE 1609.x (WAVE) working groups were formed

and finally in 2010 the new 802.11p amendment was released, using exactly the frequen-

cies reserved by FCC. These frequency bands are called DSRC (Dedicated Short Range

Communications) frequency bands and are used for all the ITS applications.

In such a way, seven channels are defined: one central Control Channel (CCH) and six

Service Channels (SCH). Services are advertised on the control channel and ITS stations

can tune to specific SCH in order to use the desired ones. The IEEE channel structure will

be described more in detail in chapter 2.

3Home page: https://www.itsa.org/

15

https://www.itsa.org/

1 – Introduction

In Europe the same frequency bands4 have been reserved for vehicular communica-

tions, and ETSI, the European standardization organization (ETSI stands for European

Telecommunications Standards Institute), started working on a standard for vehicular

communications, ending up releasing ITS-G5, in the ETSI EN 302 663 document [18].

ITS-G5 is using most of the physical and MAC layer characteristics defined by IEEE

802.11-2016 (802.11p amendment), focusing more on application requirements, foresee-

ing amulti radio/multi antenna system that avoids channel switching5, adding a congestion-

based selection of some access parameters (introducing the so called Decentralized Con-

gestion Control which tries to adapt the transmission parameters to avoid overloading the

channel in case of high load) and defining a new Facilities layer, between Application and

Networking [19] [20].

In this additional layer, an Application Support sublayer is defined, in which three

application support messages are defined:

• CAM (Cooperative Awareness Message): broadcasted every 1-10 Hz depending on

the vehicle speed and behavior, they contain safety and period speed/position infor-

mation.

• DENM (Decentralized Environment Notification Message): event-based messages

that can be used to carry hazard information when needed, containing position in-

formation and having typically a local scope. They are sent and reported as long as

the ITS station detecting the event is perceiving it.

• SAM (Service Announcement Message): they advertise other services available in

specific Service Channels.

A more fine-grained SCH assignment is defined too, together with a more detailed

4According to [17, p. 3289] the official frequency allocation for Europe is actually 5.855-5.925 GHz.
The first 5 MHz of the US allocation are in any case unused, representing a guard band. An ITS-G5C range
at 5.470-5.725 GHz is defined too.

5Channel switching for IEEE protocols is described later on

16

1.2 – VANETs

intended usage of the frequency ranges, as reported in tables 1.1 and 1.2.

Frequency range [GHz] Usage

ITS-G5D 5.905-5.925 Reserved (future ITS applications)

ITS-G5A 5.875-5.905 ITS safety related applications

ITS-G5B 5.855-5.875 ITS non-safety related applications

ITS-G5C 5.470-5.725 Broadband radio access networks band -
RLAN/WLAN/BRAN band - transmit power con-
trol, dynamic frequency selection and uniform
spreading are mandatory to avoid co-channel
interference and with radar systems - cannot be
used when outside of a basic service set - more
details in [18, appendix C]

Table 1.1: Frequency allocation for ITS in Europe

Frequency range [GHz] Channel type IEEE channel number

ITS-G5A
5.895-5.905 G5-CCH 180
5.885-5.895 G5-SCH2 178
5.875-5.885 G5-SCH1 176

ITS-G5B 5.865-5.875 G5-SCH3 174
5.855-5.865 G5-SCH4 172

ITS-G5C 5.470-5.725 G5-SCH7 94 to 145

ITS-G5D 5.905-5.915 G5-SCH5 182
5.915-5.925 G5-SCH6 184

Table 1.2: Channel allocation prescribed by the standard for ITS in Europe

For what concerns the IEEE protocol stack the upper layers are instead defined by the

IEEE 1609.x standards and the SAE J2735 standard, which defines the so called Basic

Safety Message(s) (BSM), similar to the European CAM, that comprise 16 different sub-

types of messages (including a reserved message) and that are transmitted periodically

every 100ms (i.e. with a 10Hz frequency). They contain periodic information such as

vehicle speeds and positions and they can also be used to report safety information when

17

1 – Introduction

needed [21].

To conclude, DSRC frequencies around 5.8/5.9 GHz are actually used for electronic

tolling applications, such as Telepass®, that, in Europe, is using the so called CEN DSRC

band, around 5.8 GHz and separated from the other V2X bands [18, Figure 3, p.10]. In

fact, as reported by the ETSI standards, ITS-G5 and CEN DSRC should co-exist without

interfering. In any case, since the two systems use adjacent frequencies (5.8 GHz and 5.9

GHz), some research has been done in order to avoid any potential interference [22].

1.3 Existing embedded solutions for VANETs

This work will concentrate on DSRC standard and on the IEEE 802.11p amendment

(part of the IEEE 802.11-2016 specifications).

All standard compliant OBUs and RSUs will surely contain embedded systems able

to perform wireless communications inside the 5.8-5.9 GHz frequency band prescribed

by the standard. In this work embedded systems composed by PC Engines boards and

running Linux operating systems are considered.

These boards must be able to communicate in the DSRC frequency range and to im-

plement all the main features prescribed by standard and related to the physical and MAC

layers.

There are, however, other emerging technologies, both open and commercial, that are

able to support vehicular communication and the 802.11p protocol. In the awareness that

this will not be a complete and exhaustive list (some commercial technologies are not

even released to the public and they are probably covered by commercial secrets [2]),

some available technologies, as of todays, are listed, taking as reference the list in [2]:

• ARADA Systems, a company that focuses on solutions for connected vehicles, has

produced the LocoMate™ series of products, providing hardware for both RSUs and

OBUs. Every hardware board is integrated with bluetooth, GPS with 1 m accuracy

and high power 802.11p radios, including a full WAVE stack implemented inside (as

18

1.3 – Existing embedded solutions for VANETs

described in chapter 2, WAVE stands forWireless Access in Vehicular Environments

and it is comprises the IEEE 802.11p and 1609.x stacks). The RSU units sold by

ARADA are using a NEMA enclosure with water resistance and IP67 certification.

SAE J2735 is supported too. This is a commercial solution, as opposed to some open

source solutions that are presented below.

• Another solution and prototype is the one produced by Cohda Wireless: their latest

product is theMK5, a complete system for OBUs and RSUs (both the OBU and RSU

hardware boards are produced). This system implements both the IEEE and ETSI

stacks. According to Cohda their hardware is rugged, small and relatively low cost,

with dual 802.11p radio. These systems are based on the automotive chip RoadLINK

produced by NXP (for which the RoadLINK SAF5400 Single Chip Modem is actu-

ally in preproduction by NXP, advertised to support IEEE, ETSI, ARIB standards

and channel switching) and on a firmware written by Cohda. They offer connection

for two 5.9 GHz antennas, GNSS receiver, micro SD card, 12 V DC power supply,

serial and Ethernet connections (the Ethernet connection can be used to interface

with the vehicle CAN network). Their RSUmodule comprises also a rugged NEMA

enclosure to resist to water and harsh environmental conditions. They also provide

an MK5 XBU, a DSRC radio device with integrated security and studied for the

harsh conditions of underground mining. They provide also an advanced SDK (Co-

hdaMobility MKx SDK), a software development kit that can be used in conjunction

to Cohda hardware, allowing the running and compiling of applications for Cohda

boards and including software, as they report on their website [23], ”necessary to

modify and rebuild the MKx firmware to your specifications”.

• The Austrian Kapsch TrafficCom group is also developing solutions for connected

vehicles, targeted at DSRC 5.9 GHz devices, such as the Onboard unit KVE-3320

V2X ECU, supporting ETSI and IEEE standards and with a maximum output power

of 23 dBm; as an option, an internal antenna can be inserted. They are based on

19

1 – Introduction

the ARM® Cortex® A7 core (based on the ARM instruction set, which is different

than the x86 one used by the processors embedded in the boards used for this work),

operating up to 528 MHz, and they provide a CAN 2.0B interface to connect to the

internal vehicle network. They also have a group developing V2X software, part of

the Connected Vehicle Software Suite, which is advertised as ”a rapid development

framework for V2X applications with a small footprint and high reliability”. A va-

riety of V2X applications are currently, at the date of writing, being developed by

Kapsch ad an SDK will be part of the software suite, for developers that wants to

build V2X applications.

• Marvell is instead developing a family of automotive wireless transceivers (Mar-

vell® 88W8987xA), integrating IEEE 802.11ac and 802.11p for V2X and ADAS

applications.

• Moving to more open solutions, that have the advantage of being more accessible

and customizable for research and experiments, UNEX produced the DCMA 86P2

miniPCI wireless cards, compatible with DSCR and V2X applications. It can be

used in any board as a separate component. This is actually the wireless card used

with the ALIX boards considered in this work. It is based on the Atheros AR5414

chipset, thus supporting the ath5k Linux driver. The advantage of this card is that it

should be designed specifically for VANETs. It has been also used in various research

and practical works, such as [2] [6] [8] [24]. Other newer cards can be used, with

proper patching to the operating system, to support and research with IEEE 802.11p,

as UNEX DHXA-222, based on the AR9462 chipset, supported by the ath9k Linux

driver [25].

• The Swiss producer PC Engines makes and sells embedded boards, typically based

on the AMD Geode x86 processor or on the AMD Embedded G-Series x86 family

of processors. These boards are specifically targeted to networking applications and

always include at least one miniPCI slot to accommodate a proper WNIC (Wireless

20

1.3 – Existing embedded solutions for VANETs

Network Interface Controller), such as Unex cards, providing a quite customizable

architecture, as investigated in literature [2]. All the boards used in this work are

from PC Engines.

• Bastian Bloessl, Michele Segata, Christoph Sommer and Falko Dressler demon-

strated in their work [8] that it is also possible to built a GPP (General Purpose Pro-

cessor - as opposed to FPGAs, that have better performance but higher cost and less

flexibility) SDR (Software Defined Radio) able to communicate using a standard

compliant implementation of both an 802.11p received and transmitter, using the

GNU Radio framework, a software development toolkit complete with a graphical

user interface (GNU Radio Companion) that provides signal processing blocks and

libraries. The advantage of this approach, as stated by the authors, is both the ability

to access details of the physical layer that would be otherwise difficult to analyze and

to be able to use the same code for both simulation and implementation. The disad-

vantage of this method is, however, the delay and the jitter, introduced by the used of

software signal processing and of a non real time operating system. They were, how-

ever, able to implement also some time-critical functionalities on an FPGA, keeping

the main physical layer software implementation and showing very good result for

broadcasted communications, as they happen most of the time in VANETs. As hard-

ware they used an Ettus Research USRP (Universal Software Radio Peripheral)

N210, an hardware platform used for implementing SDRs, connected to an host

computer and an Ettus Research XCVR 2450 daugtherboard, i.e. a transceiver able

to operate with both 10 MHz and 20 MHz channels; this transceiver supports half-

duplex operations in the 2.4 and 5 GHz bands, up to 6 GHz [26]. This seems again a

quite customizable architecture, since the same SDR algorithms can be implemented

on different URSP and using different tranceivers. Their work is now available here,

under an Open Source license: https://www.wime-project.net/.

21

https://www.wime-project.net/

1 – Introduction

1.3.1 Used boards and objectives

The final objective of this work is to implement and integrate the IEEE 802.11p pro-

tocol inside two different models of PC Engines boards [1]. The focus will be put on the

lower layers, particularly on the physical and MAC layers.

The two boards that are used are the following ones:

• ALIX 3d2, with UNEX DCMA-86P2 wireless cards, connected through miniPCI

and AMD Geode 500 MHz MX800 CPU.

• APU 1d, with UNEX HXA-222 dual-band 2x2 wireless cards, connected through

miniPCI express and AMDG series T40E 1GHz dual core CPU, with 64 bit support.

A Linux operating system is used, providing all the proper tools needed to develop

the work. In particular, for the ALIX boards the OpenWrt distribution is used, being well

suitable for embedded devices and networking applications.

The integration of other important vehicular network features will be investigated too,

such as the different traffic classes defined in the MAC layer of 802.11p.

Another important objective is to test the implementation, getting data to be analyzed

in order to study the system performance, on both boards, highlighting possible problems

that could arise.

Part of this work is also related to analyzing the ITS frequency spectrum used by the

boards, by means of a proper analyzer hardware.

22

Chapter 2

IEEE WAVE

A WAVE system is a radio communications system intended to provide seamless, inter-

operable services to transportation. These services include those recognized by the U.S.

National Intelligent Transportation Systems Architecture and many others contemplated

by the automotive and transportation infrastructure industries. [27, p. 7]

This chapter will serve as a short introduction to IEEE WAVE protocols.

When talking about VANETs and related protocols, it is common to hear about IEEE

WAVE.

WAVE means Wireless Access in Vehicular Environments. In order to enable such a

technology, IEEE defined a family of standards, already introduced in chapter 1, as the

amendment 802.11p to the 802.11 protocol (introduced in 2010 and updated in 2016 [17])

and as the 1609.x family of standards. Overall, WAVE covers both the physical (PHY) and

MAC layers, using as physical layer 802.11p. The WAVE protocol architecture is shown

in figure 2.1.

As it is possible to see from the figure, theWAVE stack supports, as higher layers, both

IP and non-IP protocols. In particular, non-IP frames are transmitted using another pro-

tocol called WAVE Short Message Protocol (WSMP), which is specified inside the IEEE

23

2 – IEEE WAVE

Figure 2.1:WAVE protocol architecture, optimized for vehicular environments, from [28,
p. 12].

1609.3 document. This protocol serves as an optimized protocol which minimized com-

munications overhead, thus being able to satisfy in a better way the criticality demands of

vehicular networks; it also provides both networking and transport functions, respectively

through two headers called WSMP-N-Header and WSMP-T-Header. The messages that

are using WSMP are called WAVE Short Messages or, in short, WSMs [27].

Behind all of this, security services, as an important part of the WAVE stack, are de-

fined in IEEE 1609.2.

The protocols that are part of the WAVE stack are:

• IEEE 802.11-2016, IEEE Std 802.11p: Wireless Access in Vehicular Environments

(Amendment 6).

• IEEE 1609.0: IEEE Guide for Wireless Access in Vehicular Environments (WAVE)

Architecture - it contains an overview aboutWAVE, providing a context under which

all the other WAVE standard documents shall be put [29].

24

2 – IEEE WAVE

• IEEE 1609.2: IEEE Standard for Wireless Access in Vehicular Environments - Se-

curity Services for Applications and Management Messages - describing all the se-

curity aspects [28].

• IEEE 1609.3: IEEE Standard for Wireless Access in Vehicular Environments (WAVE)

- Networking Services - providing a description of the WAVE Networking services

from the Network layer upwards, such as WAVE management and service advertis-

ing, including the WSMP protocol definition too [27].

• IEEE 1609.4: IEEE Standard for Wireless Access in Vehicular Environments (WAVE)

- Multi-Channel Operation - defining ”MAC sublayer functions and services” and

channel related aspects, such as channel routing, channel coordination and common

time reference estimation [30].

• IEEE 1609.11: IEEE Standard for Wireless Access in Vehicular Environments (WAVE)

- Over-the-Air Electronic Payment Data, Exchange Protocol for Intelligent Trans-

portation Systems (ITS) - defining a standard for electronic payments inWAVE based

applications, using OBU and RSU as EPS1 equipment.

• IEEE 1609.12: IEEE Standard for Wireless Access in Vehicular Environments (WAVE)

- Identifier Allocations - specifying the allocation ofWAVE identifiers (i.e. how they

should be assigned), such as PSID2 identifiers, used to identify the application ser-

vices offered by a certain provider (for example an RSU that provides some services

to passing by vehicles), and admitted EtherType3 values (in the LLC sublayer) for

IEEE 1609: 0x86DD for IPv6 (no IPv4 is foreseen by the standard, but, as written

in [30], the transmission of other frame types is not prohibited) and 0x88DC for

WSMP [31].

1Electronic Payment Service
2Provider Service Identifier
3Indicating the higher layer protocol that is being used.

25

2 – IEEE WAVE

Moreover, since vehicular communications require immediate data exchange, a new

mode, based on the IBSS architecture, is introduced. This mode is called Outside Context

of a BSS (in short OCB).

When a wireless interface is set in OCB mode, it is able to directly send data frames

to either broadcast or multicast destinations.

As this work will concentrate on physical and MAC layers, they are briefly described

below.

2.1 WAVE physical layer

As mentioned in chapter 1, the physical layer is based on 802.11p.

802.11p is (mainly) based on two other 802.11 amendments: 802.11a, whichwas based

on the 5 GHz band and on an OFDM modulation, and 802.11e, introducing some QoS4

enhancements.

ODFM is based here on 64 orthogonal subcarriers, including 48 data subcarriers and

4 pilot ones. Depending on the used modulation, IEEE 802.11p actually supports data

rates from 3Mb/s (with BPSK) to 27Mb/s (with 64QAM).

Smaller channels are used, having a 10MHzwidth instead of 20MHz, in order to try to

counteract fading, multi-path and Doppler effects which may cause the ISI phenomenon

(Inter Symbol Interference). Another countermeasure against ISI is the introduction of

a cyclic prefix for any OFDM symbol, which is essentially a repetition of the end of the

OFDMsymbol that is repeated at the beginning of the symbol itself, instead of introducing

a silent guard band. This is not described here, but has some good advantages against ISI

and ICI (Inter Carrier Interference) too [32].

This has the effect of doubling all the timing parameters: 802.11a in fact supported

data rates up to 27× 2 = 54Mb/s.

4Quality of Service

26

2.1 – WAVE physical layer

The physical layer main characteristics are well resumed in table 2.1, adapted from [6,

p. 23], which was already an adaptation of [33, Table 2].

Parameter IEEE 802.11p (WAVE) IEEE 802.11a/g

Frequency band (around) 5.9 GHz 5 GHz

Channel bandwidth 10 MHz 20 MHz

Supported data rates (Mb/s) 3, 4.5, 6, 9, 12, 18, 24, 27 6, 9, 12, 18, 24, 36, 48, 54

Modulations BPSK, QPSK, 16QAM,
64QAM

BPSK, QPSK, 16QAM,
64QAM

Number of data subcarriers 48 48

Number of OFDM subcarriers 64 64

ODFM symbol interval 8µs 4µs

Table 2.1: IEEE 802.11p PHY main characteristics

The available 70 MHz (excluding the guard band), from 5.855 to 5.925 GHz are di-

vided into 7 10 MHz channels, representing, as mentioned in chapter 1, one Control

Channel (CCH) and six Service Channels (SCH) [33]. The channels are represented in

figure 2.2.

Figure 2.2: WAVE channels. The IEEE channel number (CH) is computer in such a way
that f(CH) = 5000 + 5× CH [MHz]

The CCH is mapped to channel 178 (corresponding instead to an SCH - G5-SCH2 -

in the ETSI standard) and it is used for high priority messages or control data, carrying

27

2 – IEEE WAVE

only non-IP frames (i.e. using WSMP).

2.2 WAVE MAC layer

WAVEMAC layer is substantially based on the standard 802.11MAC layer, with some

major modifications and added functions related to multi-channel operations5 such as:

• It operates outside the context of a BSS (Basic Service Set), as described in the

previous chapter.

• It uses a variation of the CSMA/CA DCF (Distributed Coordination Function),

called EDCA (Enhanced Distributed Channel Access), that defines the DIFS times

(now called AIFS) in a different way according to traffic classes, based on user prior-

ities (UP) and access categories (AC) to support QoS. EDCA is defined in the IEEE

802.11-2016 document.

Some peculiar WAVE MAC layer characteristics are described below.

2.2.1 EDCA

WAVEMAC layer is actually using a channel access based onCSMA/CA, calledEDCA.

All the data, with respect to a standard DCF, is divided into 4 Access Categories, each

having a different priority, starting from 8 User Priorities.

The four access categories are the following ones (lowest priority-shortest AIFS[N] to

highest priority-shortest AIFS[N]):

1. AC_BK: Background, to which user priorities 1 and 2 are mapped.

2. AC_BE: Best Effort, corresponding to UP 0 and 3.

3. AC_VI: Video, corresponding to UP 4 and 5.

5Defined in IEEE 1609.4

28

2.2 – WAVE MAC layer

4. AC_VO: Voice, corresponding to UP 6 and 7.

Note that the user priorities written here are the same as the ones defined in another IEEE

standard (for a different purpose), i.e. in IEEE 802.1D, constituting a base of the spanning

tree protocol for bridges and switches. The priorities from the lowest to the highest are,

according to [17, Table 10.1], 1-2-0-3-4-5-6-7.

Each access category corresponds to a transmit queue inside the MAC layer imple-

mentation; each of these queues will then have to virtually contend the channel access as

in DCF with backoff (like if the contention happened inside the MAC layer), after it has

been idle for an Arbitration InterFrame Space (AIFS), which assumes the meaning of the

standard Distributed InterFrame Space (DIFS). The queue winning the contention will

be able to access the physical channel.

Each queue has its own (AIFS[N]), which is shorter for higher priorities queues and

longer for lower priority ones.

The backoff procedure, in EDCA, is performed using AC-dependent parameters such

as minimum and maximum contention window size, that are reported in table 2.2 [17].

Table 2.2: Default EDCA parameters when operating in ad-hoc mode. From [17, p. 899]

In this way, in case of contention, the high priority queue will transmit, likely, before

the low priority queue. The fact some randomness is still remaining due to the backoff

mechanism ensures that the highest priority queue does not monopolize the channel.

The standard EDCA architecture is shown in figure 2.3.

29

2 – IEEE WAVE

Figure 2.3: Reference standard EDCA architecture. From [17, p. 1378]

The standard foresees also an Alternate EDCA mode: when activated, six queues are

used instead of four. This will result in two added queues (A_VI - Video (alternate),

A_VO - Voice (Alternate)) and a different UP-queue mapping:

• UP=4→ A_VI queue - Video (alternate)

• UP=5→ VI queue - Video (primary)

• UP=6→ VO queue - Voice (primary)

• UP=7→ A_VO queue - Voice (alternate)

The alternate queues share the same EDCA functions as the VI and VO queues, as shown

in figure 2.4, and the proper queue, between primary and alternate, is selected according

to a scheduling function working above the EDCA mechanism. This scheduling function

selects which SDU should be passed to the EDCA function below [17].

30

2.2 – WAVE MAC layer

An EDCA Function (EDCAF) can be defined as follows (taken from IEEE 802.11-

2016):

Definition 1. Enhanced distributed channel access function (EDCAF): a logical func-

tion in quality-of-service (QoS) station (STA) that determines, using enhanced distributed

channel access (EDCA), when a frame in the transmit queue with the associated access

category (AC) is permitted to be transmitted via the wireless medium (WM). There is one

EDCAF per AC.

Figure 2.4: Reference Alternate EDCA architecture. From [17, p. 1378]

2.2.2 IEEE 1609.4 for multi-channel operations

The IEEE 1609.4 standard defines an ”upper MAC layer”, related to channel coordi-

nation, while channel access is already managed by 802.11.

IEEE 1609.4 defines, in fact, an extension to the IEEE 802.11 MAC layer.

31

2 – IEEE WAVE

Two types of channel are defined: service channels (SCH) and one control channel

(CCH). As shown in figure 2.2, they use 10 MHz of bandwidth each and their IEEE

channel numbers range from 172 to 184 (even numbers only), with 178 being the number

of CCH.

The control channel is used for service advertisements (the “WAVE Service Advertise-

ments”, transmitted using the WSMP protocol) and management data. It can carry only

WSMP data.

All the other messages are transmitted on the service channels, which can be used to

manage both WSMP and IPv6 data.

Since there is more than one channel, their access must be regulated. A “MAC Sub-

layer Management Entity” (MLME) is defined: as reported in [30], “this management

entity provides the layer management service interface through which layer management

functions may be invoked”.

Three channel switching modes are defined by the standard, after dividing the time

into slots, with a default duration of 50 ms:

a. Continuous channel access: access is done continuously on the same channel, in an

”always-on safety channel” mode.

b. Alternating channel access: two different channels are accessed during two consec-

utive time slots. It can happen between CCH and SCH or between two SCHs.

c. Immediate channel access: after receiving a WSA on the CCH, the device switches

immediately to the SCH of interest, without respecting the slot boundaries. After it

has completed its activity, the device can switch back to the initial channel.

The channel switching mode may depend on the final usage scenario of the system

[30].

The channel routing (i.e. the selection of the proper channel and AC) is also defined

by the standard. This is performed thanks to the definition of two MAC layer entities, one

32

2.2 – WAVE MAC layer

Figure 2.5: Channel access modes. From [30, p. 26]

related to the CCH and accepting only WSMP data and one related to SCHs, accepting

IPv6 data too.

The choice of the proper entity and AC is performed depending on the user priority

(0 to 7), which is mapped to an AC (BK to VO), and on the service the message belongs

to. Looking at WSMP message, which can be transmitted on both SCHs and CCH, the

channel is specified when a higher layer wants to transmit data: through a proper Service

Primitive a Channel Identifier is given to the MAC layer and it is used for channel routing

[30].

The conceptual internalWAVEMACmulti-channel architecture is shown in figure 2.6.

This diagram, as reported in the standard, may depart from the actual implementation but

it should be used as a reference as it facilitates the specifications of the of all the multi-

channel and data prioritization operations.

33

2 – IEEE WAVE

Figure 2.6: Conceptual transmit side MAC layer architecture. From [30, p. 17]

One last aspect to be considered is time synchronization, specified by IEEE 1609.4.

Since there are now time slots that regulates the multi-channel usage, this aspect gains

even more importance. Alternating channel access, for instance, should be synchronous,

taking also into account that the message transmission should occur and complete within

the allowed time slot, before a switch takes place (otherwise an SDU should be queued

until the proper channel is activated again).

All the synchronization features are based on a common time reference, which is UTC

(Coordinated Universal Time) time modulo 1 second, derived from any source able to

provide it. For instance, GPS can be used for such a purpose, highlighting again the im-

portance of having a positioning system as an essential component of VANETs.

The common time reference is derived from an UTC estimate, taking into account a

possible tolerance and the estimate error standard deviation (for example by means of a

Kalman Filter). The estimation, in a more complex implementation, can take into account

the information received through Time Advertisement beacon frames that are exchanged

34

2.2 – WAVE MAC layer

(as specified in IEEE 802.11-2016).

Due to time synchronization tolerance, radio switching effects and timing inaccuracies,

each time slot starts with a guard interval.

When a device switches channel during a guard interval (as in the case of alternating

channel access), it should consider the medium as busy during that interval and perform

backoff; this is done to prevent multiple devices transmitting simultaneously at the end of

the guard interval itself [30].

Figure 2.7: Time slots and guard intervals. From [30, p. 18]

35

Chapter 3

ALIX boards, UNEX DCMA

86P2, OpenWrt and Linux

wireless subsystem

3.1 ALIX boards and development host

After an introduction about VANETs and IEEE WAVE protocols, the next chapters

will be related to the implementation and integration work on the PC Engines boards,

presenting the hardware, the tools used and the results obtained.

The boards presented in this chapter are the ALIX 3d2 boards, which hardware char-

acteristics are summarized below:

• CPU: AMD Geode LX800, x86 500 MHz processor designed for embedded appli-

cations

• RAM: 256 MB DDR DRAM

• Storage: Compact Flash (two 8GBCF cards have been used: oneMLC fromKingston

and one SLC from PC Engines, ensuring a longer life for the card)

37

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

• Power: DC jack 7V to 20V

• Expansion: twominiPCI slots for up to twowireless cards and LPC “Low Pin Count”

bus

• Connectivity: 1 Ethernet channel (Via VT6105M 10/100)

• Ports and I/O: 2 USB ports and a DB9 serial port

• Board size: 100 x 160 mm

• Firmware: tinyBIOS

• Other: 3 LEDs, optional RTC battery (not included in the boards used in this work)

One of the ALIX 3d2 boards is shown in figure 3.1. Two post-its have been attached to

the two boards to distinguish them and have all the main parameters (such as their WLAN

and Ethernet configured IP addresses).

In order to show all themain components of theALIX boards, two figures are presented

below:

It is possible to notice the following main hardware components:

1. AMD Geode LX800 x86 CPU

2. 256MB DRAM

3. First miniPCI slot with the UNEX DCMA 86P2 wireless card

4. From left to right: Ethernet connector (with a 10/100 Mbit/s Fast Ethernet Con-

troller), DC power connector, RP-SMA antenna connector, DB9 serial port

5. Two USB ports on the other side of the board

6. AMD Geode CS5536 companion chip, optimized to work with the AMD Geode

LX800 processor and providing controllers such as the ones for USB 2.0, IDE, AC97

audio, DMA, including real time clock features, Periodic Interval Timers (PIT) and

38

3.1 – ALIX boards and development host

Figure 3.1: ALIX 3d2 board view from outside, with the enclosure mounted on. It is
possible to distinguish the Ethernet port, the DB9 serial connector, a 50ω impedance RP-
SMA connector connected to the wireless card and the DC power connector.

many I/O functions; together with the AMD Geode CPU, it provides a system-level

solution suitable for embedded boards [34]

7. LPC header

8. Second miniPCI slot to accommodate a second wireless card (it was not used during

this work)

9. Compact Flash connector with a Kingston 8 GBMLC CF card inserted in; this card

contains the openWRT Linux distribution that has been previously flashed using the

host computer

The Ethernet port is used to connect the boards to the development host through the

SSH protocol, practically allowing to run any shell command and command line program

from the latter.

39

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

(a) ALIX 3d2 board view from above
(without enclosure)

(b) ALIX 3d2 board view from below
(without enclosure)

Figure 3.2: ALIX 3d2 main components

As host, an HP Envy j111sl notebook has been used, running Windows 10 as main

operating system. Since a lot of work needed to be done on a host Linux distribution too

(for example to cross-compile in a more practical way for the embedded boards), a virtual

machine with Linux Mint 18.3 (64 bits) has been installed on a separate SSD, allowing

to work in a flexible way both with Linux and Windows at the same time.

Of course this is just a personal configuration. Any other host PC configuration, for

example with Linux only as main operating system, would allow to do almost the same

operations described here, obtaining the same results.

As will be described later on, in order to be able to work with the boards configured

for a different Ethernet subnet than the one used for Internet access, an ASUS USB to

RJ45 Ethernet adapter (with 10/100 Mbit/s support) has been used to practically add a

second Ethernet NIC to the development host.

This allowed to have both the boards and the local gateway to be connected to the host

40

3.1 – ALIX boards and development host

computer, ensuring board connectivity and Internet connectivity at the same time, even

when no local WiFi network was available (as it happened most of the time), without the

need of changing the ALIX 3d2 configuration to match the local modem/router settings.

This configuration is shown in figure 3.3.

Figure 3.3: Ethernet connections on the development host.

Using two Ethernet NIC offered a flexible approach too, by giving the possibility to

connect the boards to the local network (with Internet access) when needed, by just as-

signing Ethernet IP addresses in the range 192.168.1.0/24 and disconnecting the ASUS

adapter configured for another subnet, and to any other subnet, by assigning different

IPs to the Ethernet interfaces (for example in the private network range 10.1.0.0/16) and

actually using the USB-RJ45 device configured for the same address range.

The range 192.168.1.0/24 mentioned above refers to the local network configuration

that was present at the time of writing and implementing all the work on the boards. In

case the same work has to be repeated, the correct local modem/router IP address range

should be used instead of the one mentioned here.

41

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

3.2 Desk configuration and connections

Most of theworkwith theALIX andAPUboards has been developedworking at home,

after properly setting the desk and the surrounding area to work in the best way possible

for all the development and testing work. Part of the work, though, was developed in

Politecnico di Torino in a laboratory inside the DET department, in which WiFi Internet

connectivity and an Ethernet switch were provided.

The configuration used at home can be seen in figure 3.4. After the first weeks, to work

in a much more comfortable and polite way, some cables and the additional Ethernet

switch have been moved to pass behind and under the desk and some electrical plugs

have been added to connect the boards’ power supply, keeping them farther away from

the development PC. The connections, however, practically remain the same.

Figure 3.4: Desk configuration to work with the PC Engines boards.

It is possible to distinguish:

1. A Sitecom switch used to connect both the boards (supporting the connection of up

to 4 boards) to the development host PC; it allows to connect and control the two

42

3.2 – Desk configuration and connections

ALIX boards at the same time using two different SSH sessions

2. The development PC connected to the two boards

3. The Ethernet connections shown in figure 3.3

4. The two ALIX boards, communicating through 802.11p frequencies over the radio

medium (conceptually represented by the green circles)

5. See figure 3.5 for a side view

Figure 3.5: Side view of more recent desk

configuration to work with the PC Engines

boards.

In figure 3.5 a more recent side view of

the desk is shown. As mentioned before,

some cables now are put behind and under

the desk and some plugs have been added

on the wall. The boards are placed farther

away from the development PC and the

Ethernet switch connecting the two boards

is now located inside the black box.

The power supply for the Ethernet

switch connecting the boards can be lo-

cated, as in the older desk configuration,

in the power strip visible in the lower part

of the photograph.

A second Netgear switch can be seen:

it is the one connecting several devices to

the local network with Internet access, in-

cluding the category 5 cable labeled as “To

local network” in figure 3.3.

When connecting the boards from their

own subnet to the home network and to the

43

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Internet (without the use of the ASUS adapter described above), other than changing their

IP addresses, one Ethernet cable is used to connect together the two switches, practically

putting both the boards, connected to the Sitecom switch, inside the local network.

The connection to the modem/router, located in another room, happens through Pow-

erline.

3.3 UNEX DCMA 86P2

The used ALIX boards are both equipped with an UNEX DCMA 86P2 V2X wireless

card. This card, produced by the Taiwanese produced Unex, in conjunction with Wistron

Corporation, is a device specifically designed for V2X applications, able to provide high

power in the 5.850 to 5.925 GHz range, thanks to how it is designed and to additional

hardware filtering.

Due to this, it should be best used in the DSCR range of frequencies, although also

other 802.11a frequencies can be selected.

It is based on the Atheros AR5414 dual-band multi-mode WLAN chipset, which is

supported under the Linux operating system thanks to the ath5k driver, which will be

mentioned multiple times later on in this work. This chipset supports all the most used

modulations1.

There are several research works, in literature, using this card [2] [6] [8] [24].

Now it seems to be out of production and more modern cards supported by newer and

more stable drivers are available (such as the DHXA-222 used in conjunction with the

APU boards), but it is still worth working with it, due to being apparently well-suited for

DSRC communications and allowing us to compare V2X embedded devices, such as the

old solutions with ALIX boards and the newer solutions with APU boards.

Both the ALIX boards and theDCMA86P2 are not so recent, though; this fact leads for

example to some IEEE WAVE MAC layer features being tested and some measurements

1As described in the AR5414 chipset datasheet

44

3.4 – Used antennas

being performed only on the newer APU boards, as detailed in chapter 5.

3.4 Used antennas

During all this work, we used indoor omni-directional antennas, with a gain of 5 dBi

and an RP-SMA connector. They are targeted at both the 2.4 and 5 GHz frequency bands.

dBi is a relative power measurement unit, that measures the antenna gain with respect

to an isotropic source, seen as an ideal “perfect omnidirectional radiator” [35].

Figure 3.6: Two 5 dBi omni-directional antennas

3.5 The OpenWrt Linux distribution

In order to properly work with the ALIX boards, an operating system is needed, pro-

viding the necessary basic services to the applications running over it.

These basic services actually include the CPU manager and the process scheduler,

the memory and file manager, the network manager and all the device drivers needed to

support external peripherals. The ath5k driver mentioned above refers to this part of the

operating system, providing the support needed to use the UNEX card.

One important feature to look into the choice of operating systems for embedded ap-

plications like this is the support to loadable kernel modules, mainly when more complex

operating systems are considered.

45

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

They are driver modules that can be loaded at run time inside the operating system

kernel, without the need of recompiling the whole kernel every time (which, from per-

sonal experience, can take up to 2 hours when there are no object files which have been

already compiled before).

These modules allow to work with the OS in a much more flexible way, with the dis-

advantage of introducing more easily, in flat architectures and monolithic kernels, bugs

that can crash the whole system due to faulty loadable modules, that have direct access to

the kernel space.

In this work both the loadable modules and the kernel recompilation methods are used,

since most of the object files do not need to be recompiled every time, allowing a faster

kernel recompilation with the advantages of producing standalone images as output.

The current use case requires then a strong basic support at least for all the standard

802.11 protocols: rewriting from scratch a complete PHY+MAC stack when there are

already solid and well-maintained solutions would be very ineffective from this work

point of view.

Considering that, embedded Linux distributions are chosen, since they actually pro-

vide support to loadable drivers, include several useful system programs for working with

them, include a strong 802.11 support thanks to Atheros (i.e. ath5k, ath9k and ath10k)

and Broadcom drivers which are constantly maintained and, most important, they are typ-

ically completely open source, which is a very important requirement in the wireless and

network communications research field.

The most evident advantage, as reported in [36], is the flexibility open source software

provides: there are already existing high quality commercial solutions, supporting the

whole IEEE WAVE stack, as mentioned in chapter 1, but they are rather inflexible and it

is typically difficult to modify their firmware to match the research and experimentation

needs. With open source software it is instead much easier to extend the existing protocol

stack with new features and updates, sharing then the obtained code and results with the

46

3.5 – The OpenWrt Linux distribution

vehicular networking research community in an easy way2.

All the Linux distributions are based on the Linuxmonolithic kernel, in whichmodules

can be loaded by means of the “modprobe” program, which takes as input a kernel object

file (.ko), containing the compiled driver.

Figure 3.7: Monolithic kernel basic architecture

Having a monolithic kernel, in which the OS services are provided by a single ex-

ecutable (“vmlinux” or “vmlinuz” when it is compressed), is also a good compromise

between OS safety (there is a good separation between the user and kernel space) and

less performance overhead in the communication between user space and kernel space.

Between the various available embedded Linux distributions (includingVoyage Linux,

OpenWrt, and others), OpenWrt has been chosen as a base for this work.

2For example using the services provided by GitHub: https://github.com/

47

https://github.com/

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

This does not mean that this is absolutely the best choice, but it was possible to find

some advantages that led to OpenWrt in place of other distributions:

• It is a distribution especially targeted to embedded devices, very well suitable for

routers, switches and other networking devices, as the ALIX boards used in the

802.11 communication context; it is used a lot, for example, as a replacement firmware

for routers

• It supports a wide range of hardware devices, from ARMv8 processors to x86 ones

[37]

• It has been used in a good number of research works in the past, and both the 2011

GCDC (Grand Cooperative Driving Challenge) and University of Bologna used it

as a base for delivering vehicular communication services [6]

• The OpenC2X open source experimental and prototyping platform for vehicular

communications, supporting all the ETSI ITS-G5 stack and being developed by a

team in Paderborn University actually runs on standard Linux and there’s a version

based on LEDE, which was a branch of OpenWrt, now merged again into the main

project; this platform with LEDE (and an updated version) will be used after the first

tests with an older OpenWrt version [38]

• It allows a very good level of customization before (and after) building the system,

allowing it to fit even in less powerful devices such as routers and to tailor to the

own needs of the user; it can be fit in flash memories as low as 4 MB and with a

minimum RAM of 32 MB [39]

• Their website3 documents in a quite complete and exhaustive way how it works and

what steps to be followed to reach the desired goals

3https://openwrt.org/docs/start

48

https://openwrt.org/docs/start

3.5 – The OpenWrt Linux distribution

In other works and use cases OpenWrt may be a worse choice if compared to other

available embedded distributions. Voyage Linux, an x86 embedded distribution based on

Debian, can be for instance another very good choice, as reported in [25].

The OpenWrt project was started in 2004. In 2016 LEDE was started as a branch of

OpenWrt; in 2017 LEDE 17.01 was released but few months later the project was merged

again to OpenWrt with the rules established by the LEDE development team (that is why,

sometimes, it is possible to find “LEDE/OpenWrt” as project name), with the release of

the OpenWrt 18.06 stable version [40] [41]. The latter has been released very recently at

the time of writing (August 2018). All the latest OpenWrt releases are based on the fourth

version of the Linux kernel.

The OpenWrt build process uses a custom build system, based on Buildroot, which

is an open source build system for embedded Linux distributions, making all the process

easier and generating Linux images through cross-compilation on a host development PC.

The build system comprises a set of patches and makefiles to build a complete embed-

ded Linux environment, including generating a cross-compilation toolchain to compile

programs for the target boards (such as the ALIX boards), creating a root file system,

generating a bootloader and compiling the Linux kernel [42].

It is also based on the Linux Kconfig system, in which KConfig (Kernel Configuration)

files (written in a special configuration language) are distributed in the build directory tree

and are used by a kernel configurator to build the final system and check for dependen-

cies between the different configuration options and included modules. Three states are

possible for every configuration option:

• y: enable the option (for example to include a certain program directly into the ker-

nel)

• n: do not enable the option

• m: build as a module (in this case the package is compiled, but it must be manually

49

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

installed inside the final system, if needed, with “opkg update”, followed by “opkg

install <package_name>”, when an Internet connection is available)

Both a user interface based and a textual kernel configurators are made available to the

user, respectively through the commands make menuconfig and make config.

make menuconfig displays an “ncurses”4 text version of the configurator and it is the

most used command for building the kernel in this work [43].

3.5.1 The Linux wireless subsystem

The main components of any Linux wireless subsystem, which deals with the MAC

and PHY layers of 802.11 standards, are schematized in figure 3.8 [44].

In this work the mac80211 framework is considered: it is a framework for writing

SoftMAC drivers.

SoftMAC refers to devices (i.e. WNICs) where the MLME is managed in software,

allowing a better control of the hardware and the MAC frame management to happen

directly in software.

Today, most of the WNIC devices are based on this architecture [45].

User applications and system programs are running over all the operating system ser-

vices. Applications and system programs can access the general networking subsystem by

means of proper system calls, opening for example sockets with socket() or using the

“netlink” interface through nl80211, which provides a socket-based interface to transfer

information between the user space and the kernel space, where the wireless subsystem

lies.

It is important, before proceeding further, to note that there is a different in the way in

which management and data frames are handled.

4“ncurses” is a library enabling the creation of text-based user interface directly on terminal windows -
url: https://www.gnu.org/software/ncurses/ncurses.html

50

https://www.gnu.org/software/ncurses/ncurses.html

3.5 – The OpenWrt Linux distribution

Figure 3.8: Linux 802.11 wireless framework main components, with SoftMAC drivers
and devices

Management frames and configuration

This subsection deals on howmanagement of wireless interfaces is performed in Linux

based systems.

Wireless management tools such as iw, which is a command-line utility for wireless

configuration and management, use the nl80211 interface mentioned before to commu-

nicate with the “cfg80211” module.

The kernel modules are then the following:

• cfg80211: it provides a configuration API for 802.11 devices, bridging user space

and drivers; in order to make any driver offer a consistent API this module must be

51

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

used by all the new wireless drivers written for Linux

• mac80211: it provides a framework for drivers for SoftMAC devices (making a

driver API available); it depends on cfg80211 for registration and configuration op-

erations [45]

• Device drivers: they are the actual drivers providing access to the hardware (i.e. to

the wireless chipset used to communicate at the PHY layer); examples include ath5k

and ath9k

All the high level blocks shown in figure 3.8 actually support transparency, which

means that they are as most as possible independent.

Introducing a modification, for instance, in the driver should not require any change to

mac80211 block. This is very useful, since patches can be introduced in the driver without

any major or complex change in the mac80211 module [46].

This is achieved thanks to C function pointers and callback functions, acting as han-

dlers for the operations that can be performed on thewireless hardware throughmac80211.

mac80211 provides to the device drivers a struct ieee80211_ops, containing a good

number of function pointers, that must be filled by the lower level (i.e. by the driver) with

the proper handlers for the various operations that can be performed on the wireless de-

vice. Themac80211 block will then be able to invoke any proper handler without knowing

its name and how it is implemented by the driver itself [46].

These handler are registered by the driver using a call to ieee80211_alloc_hw(),

which is an inline function calling ieee80211_alloc_hw_nm()which effectively writes

the information and the handlers passed by the driver to a mac80211 local structure:

main.c

493 struct ieee80211_local *local;

To better clarify this concept, it is possible to look at an example.

For instance, mac80211.h defines struct ieee80211_ops containing several function

pointers:

52

3.5 – The OpenWrt Linux distribution

mac80211.h

3500 struct ieee80211_ops {

3501 void (*tx)(struct ieee80211_hw *hw,

3502 struct ieee80211_tx_control *control,

3503 struct sk_buff *skb);

3504 int (*start)(struct ieee80211_hw *hw);

3505 void (*stop)(struct ieee80211_hw *hw);

3506 #ifdef CONFIG_PM

3507 int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *

wowlan);

3508 int (*resume)(struct ieee80211_hw *hw);

3509 void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled);

3510 #endif

3511 int (*add_interface)(struct ieee80211_hw *hw,

3512 struct ieee80211_vif *vif);

3513 int (*change_interface)(struct ieee80211_hw *hw,

3514 struct ieee80211_vif *vif,

3515 enum nl80211_iftype new_type, bool p2p);

3516 void (*remove_interface)(struct ieee80211_hw *hw,

3517 struct ieee80211_vif *vif);

3518 int (*config)(struct ieee80211_hw *hw, u32 changed);

3519 void (*bss_info_changed)(struct ieee80211_hw *hw,

3520 struct ieee80211_vif *vif,

3521 struct ieee80211_bss_conf *info,

3522 u32 changed);

3523

3524 ...

The tx function pointer has the following description (taken directly frommac80211.h):

“ * @tx: Handler that 802.11 module calls for each transmitted frame.

* skb contains the buffer starting from the IEEE 802.11 header.

* The low-level driver should send the frame out based on

* configuration in the TX control data. This handler should,

53

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

* preferably, never fail and stop queues appropriately.

* Must be atomic.”

mac80211 will actually call the handler registered at tx for transmitting frames, thus

making this field one of the most important among the others.

ath5k, inside the mac80211-ops.c file, fills an ieee80211_ops structure with its own

transmit handler:

mac80211-ops.c

782 const struct ieee80211_ops ath5k_hw_ops = {

783 .tx = ath5k_tx ,

ath5k_tx() is a function calling ath5k_tx_queue(), which is defined as follows

inside the main base.c code base for the ath5k driver:

base.c

1610 void

1611 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,

1612 struct ath5k_txq *txq, struct ieee80211_tx_control *control)

This function is the transmission handler for the ath5k driver.

The driver then calls, for example in case of a WNIC connected to a PCI bus:

pci.c

250 hw = ieee80211_alloc_hw(sizeof(*ah), &ath5k_hw_ops);

This call will registers the handlers, including the tx one.

Every time a frame (both data or management, as it will be detailed later on) has to

be transmitted on the wireless interface with a device supported by ath5k, mac80211 will

call, through a certain number of nested function calls, drv_tx() which calls itself:

driver-ops.h

36 local->ops->tx(&local->hw, control, skb);

54

3.5 – The OpenWrt Linux distribution

effectively using the handler registered by the driver, which can be called hiding all

the lower details to the current block.

A similarmechanism is used to link the cfg80211 andmac80211 blocks, withmac80211

registering handlers to cfg80211 through struct cfg82011_ops.

Tools such as iw use the nl80211 library to communicate with the kernel space and

with cfg80211. Then, mac80211 is called to perform the needed configuration operations

on the driver (which, of course, must support them).

Data frames

Data frames, transmitted through standard sockets, are instead managed in a different

way, which is schematized in figure 3.9.

The transmission of data frames is briefly described here, as a meaningful example on

how things work.

For what concerns the reception of packet, the inverse process occurs, either using

polling or interrupts.

Inside the application a socket is typically created (either with or without broadcast

permissions) specifying the type of socket and the protocol family.

System calls such as socket() are then used to pass the control to the kernel space.

The socket layer will take care of managing the application created socket.

This block, which is “protocol agnostic”, will then pass the data to the proper Network

protocol block, depending on what the user specified as protocol family during the socket

creation. This block is responsible for parsing and decoding the packet header too [46].

The control is then given to the net_dev layer, linking network protocols to the desired

hardware devices, including wireless chipsets.

A mechanism similar to the one described before is implemented, using a struct

net_device_ops structure.

Concentrating on wireless transmissions, mac82011 defines a structure:

55

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Figure 3.9: Linux networking structure when sending data frames over WiFi [46]

iface.c

1166 static const struct net_device_ops ieee80211_dataif_ops = {

1167 .ndo_open = ieee80211_open ,

1168 .ndo_stop = ieee80211_stop ,

1169 .ndo_uninit = ieee80211_uninit ,

1170 .ndo_start_xmit = ieee80211_subif_start_xmit ,

1171 .ndo_set_rx_mode = ieee80211_set_multicast_list ,

1172 .ndo_set_mac_address = ieee80211_change_mac ,

1173 .ndo_select_queue = ieee80211_netdev_select_queue ,

1174 .ndo_get_stats64 = ieee80211_get_stats64 ,

1175 };

used to register its handlers to net_dev.

The handler registration happens with a mac80211 call to register_netdevice()

(defined in net_dev), which accepts as argument a struct net_device, containing

itself the structure defined above:

56

3.5 – The OpenWrt Linux distribution

netdevice.h (in net_dev module)

1717 const struct net_device_ops *netdev_ops;

The registration function is called after another net_dev function is invoked, allocating and

initializing the struct net_device; this function is also responsible for calling a void

(*setup)(struct net_device *) mac80211 callback, which sets the netdev_ops

pointer to the ieee80211_dataif_ops structure.

This registration procedure, even if more complex, resembles then one described be-

fore between the driver and mac80211.

Then, every time a frame has to be transmitted using a wireless interface, the trans-

mit handler ieee80211_subif_start_xmit() is called by net_dev to give control to

mac80211, which will end up calling drv_tx() for data transmission, as described be-

fore.

Another useful handler which is worth being mentioned is ndo_select_queue, which

is “called to decide which queue to use when device supports multiple transmit queues”.

Setting this with ieee80211_netdev_select_queue results in setting a wrapper to

the ieee80211_select_queue() function of the WME mac80211 module, which is

responsible for choosing, in our case, the 802.11p EDCA queues.

Few notes on packet reception

According to an analysis work by Fred Chou on the Linux.com blog [46], which has

been then directly verified on the Linux kernel source code, the reception of packets hap-

pens in an inverse way with respect to transmission.

When the hardware makes the system aware that a new frame has been received (ei-

ther through polling or through interrupt), the driver performs some fast operation on the

received data and passes it to mac80211 for more complex processing, typically through

a function called ieee80211_rx() or a similar variant.

Frames can then take two different ways:

57

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

1. Data frames are passed to net_dev and to higher level blocks, using netif_receive_skb

() (called more than once inside the rx module of mac80211), which is also in-

voked by the Ethernet drivers to handle received messages. Unless specific options

or a monitor interface are set, the frames seems to be converted to the 802.3 format

(by means of ieee80211_data_to_8023() and __ieee80211_data_to_8023

() calls in rx.c) before being passed to higher level modules.

2. Management frames, such as the ones used, for instance, in the authentication and

association process with a BSS with infrastructure may instead be handled over to

cfg80211 and possibly sent to the user space through nl80211. Some management

frames may also end their life inside mac80211 [46].

One final note

One important final note about the Linux wireless subsystem is related to time-critical

functionalities such as acknowledgments (when needed) and backoff timers: they are nor-

mally managed by theWNIC hardware and can be controlled through writing and reading

the registers the device sets available to the developer.

3.6 Connecting with the boards

Two main software tools, under Microsoft Windows 10, has been used to connect with

the boards and control them, launching tests, loading scripts and programs, and so on.

These tools have been used both for the ALIX and for the APU boards.

3.6.1 PuTTY

PuTTY is a free and open source SSH and Telnet client running onMicrosoftWindows

and Linux.

Since the boards, though OpenWrt and their Ethernet interface, are running an SSH

58

3.6 – Connecting with the boards

server (thanks to the Dropbear software package), it is possible to connect to them using

PuTTY, in order to display a command line interface.

The command line can be then used to interact with the boards and the operating

system, for example launching programs and shell scripts.

Figure 3.10: PuTTY interface before and after establishing an SSH connection with one
of the ALIX boards, running OpenWrt

Through the vi command line text editor it is also possible to edit and create new files;

however, since more advanced tools can be used to write files into the boards, this solution

has been almost never used in this work.

In order to use SSH (after selecting the corresponding option), the IP address of the

board has to be specified, together with port 22.

Sessions (with connection type + IP address + port) can be saved and quickly run again

by means of a simple double click on the desired saved session.

3.6.2 WinSCP

In order to manage the files that are store inside the boards memories (either with the

SquashFS or ext4 file systems) in a more comfortable way, the user can also rely on the

SCP protocol, using SSH for a secure data transfer process.

59

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

This protocol, from the board side, is provided by the dropbear package, which is

typically used as a lightweight SCP/SSH package in embedded systems.

From the development PC side a software tool able to support SCP is needed.

Under Microsoft Windows, the open sourceWinSCP program can be used. It provides

support to FTP, SFTP, SCP, WebDAV and Amazon S3 protocols to securely transfer files

between the local computer and a remote device5.

It offers a very practical user interface through which it is possible to access the boards

memory storage almost as if the files were stored in the local PC; there’s also the possibil-

ity of running more than one connection at the same time, seamlessly switching between

the different connections by means of tabs.

Drag and drop operations are supported to copy the files from/to the remote device

and the user can use a text editor of his choice to directly open and edit the files from

within WinSCP.

In order to setup a connection, just like in PuTTY, the user must specify:

• The protocol (SCP)

• The port (22)

• The IP address of the SCP server running on the board (using the eth0 interface

address, not the wireless interface one)

• User name and password, if the user want to access the board in a faster way (spec-

ifying the password may have security implications, though)

Each configuration can be then saved for any future use.

Under Linux there are other alternative programs which can be used in place of Win-

SCP.

5Home page: https://winscp.net/eng/docs/lang:it

60

https://winscp.net/eng/docs/lang:it

3.7 – OpenWrt GCDC 2011 and network configuration

Figure 3.11: WinSCP new connection window and user interface

3.7 OpenWrt GCDC 2011 and network configuration

The first part of the work with the ALIX boards was to integrate an older OpenWrt

distribution (version 10.03), patched for the GCDC 2011 competition and already used

by Università di Bologna for some ITS related works and experimentations [6].

We were given directly a SquashFS + ext2 disk image to flash on the ALIX Compact

Flash memory, containing the whole distribution with the 802.11p patch.

This patch was limited, however, to the 10 MHz channels at the ITS frequencies, al-

lowing the selection of 802.11p channels in IBSS mode, which was used instead of the

more proper OCB mode since no patches for OCB were available at the time.

The rest of the IEEE protocol was partly implemented, instead, byUniversità di Bologna

in a separate Java code, using CALM-FAST libraries and a proper daemon in order to in-

terface with the boards [6].

This older OpenWrt version was, in any case, useful to test the ALIX boards capabil-

ities when trying to communicate over the ITS channels.

61

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

The patch introduced within this distribution was part of the 2011 GCDC competi-

tion, in which teams from different nations were challenged to create cooperative and

autonomous driving solutions.

Both the 802.11p patch and the basic version of the Java program were released for

this competition. Università di Bologna then added some custom classes to match their

needs.

This version was also still based on the Linux “Wireless extension”, providing tools for

wireless configuration such as iwconfig, which are now deprecated since the mac80211

infrastructure, together with iw, should be now used by all drivers and Linux based wire-

less systems.

3.7.1 Configuration of the boards

The patched version of OpenWrt was flashed inside the two ALIX boards. Then, con-

necting one board only to the development PC through Ethernet, its default IP address,

coming from a previous configuration, was found out.

The initial address was belonging to the 10.1.0.0/16 private address range, which was

probably the one used internally by WiLAB, in Università di Bologna [6].

We decided to keep this network as a local network between the boards in the newer

OpenWrt versions, too.

To detect the board default IP address, programs such as Nmap (possibly with the Zen-

map GUI) can be used to scan the local network for connected devices, after configuring

the PC Ethernet card to work on the proper subnet (in our case 10.1.0.0/16).

In order to configure the development host for connecting with the ALIX boards, when

they are set to work in the 10.1.0.0/16 subnet, the following batch script has been written,

affecting the Ethernet NIC corresponding to the Asus adapter (in our case it was assigned

the Ethernet 6 name):

62

3.7 – OpenWrt GCDC 2011 and network configuration

Set_10_1_x_x_network.bat

1 @echo off

2 echo This file must be launched as administrator. If this is the case,

press any key to continue.

3 pause

4 netsh interface ip set address ”Ethernet 6” source=static address

=10.1.11.60 mask=255.255.0.0 gateway=10.1.0.1 gwmetric=0

5 echo Ethernet 6 set to 10.1.0.0/24 subnet

6 pause

This script uses the netshWindows utility to set the “Ethernet 6” card to use the following

settings:

• IP address of the development host: 10.1.11.60

• Subnet mask: 255.255.0.0 (/16)

• Gateway (unused in our case): 10.1.0.1

• Gateway metric: can be left to 0

Writing a script instead of manually change the settings allows faster operations in case

this configuration needs to be temporarily changed and then restored to the initial values.

Since any newly built OpenWrt image uses the 192.168.1.1 IP address as default one

for the Ethernet interface, another similar script to properly configure the ASUS Ethernet

to USB device was written:

Set_192_168_1_x_network.bat

1 @echo off

2 echo This file must be launched as administrator. If this is the case,

press any key to continue.

3 pause

4 netsh interface ip set address ”Ethernet 6” source=static address

=192.168.1.199 mask=255.255.255.0 gateway=192.168.1.0 gwmetric=0

63

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

5 echo Ethernet 6 set to local 192.168.1.0/24 subnet

6 pause

The necessity of writing a second script was due to the fact that 192.168.1.1 is actually

belonging to the 192.168.1.0/24 local subnet which is used at home (with Internet ac-

cess), but it would be conflicting with the local modem/router address, which defaults at

192.168.1.1.

This configuration was temporarily used to access the boards running a newly built

OpenWrt image and to change the address to a value inside the chosen range (i.e. 10.1.0.0/16).

However, newly built images will be used only later on, thus this script has been never

used in conjunction with the OpenWrt GCDC 2011 builds.

Before configuring the boards, it was necessary to find out the root password, which

is reported in [6]:

• Username: root

• Password: gcdc2011

Then, in order to configure the boards for the connection with the development PC,

one file needed to be modified to set their Ethernet interface IP addresses.

This file is /etc/config/network. It could be easily accessed throughWinSCP and it was

already partly configured by some projects in Università di Bologna [6].

We decided to give the boards specific IP addresses, which where then reported on

two post-its applied to the boards, in order to easily recognize them. In particular:

• Board 1:ALIX_1006, with eth0 IP address: 10.1.6.100, wlan0 IP address: 10.10.6.100

(when connecting it to the local networkwith Internet access: eth0 address: 192.168.1.180)

• Board 2: ALIX_101, with eth0 IP address: 10.1.6.101, wlan0 IP address: 10.10.6.101

(when connecting it to the local networkwith Internet access: eth0 address: 192.168.1.181)

6Names are just given to recognize the boards, they do not play any role inside the integrated software
and in any communication between the boards

64

3.7 – OpenWrt GCDC 2011 and network configuration

The content of an /etc/config/network file is reported below:

config ’interface ’ ’loopback ’

option ’ifname’ ’lo’

option ’proto’ ’static’

option ’ipaddr’ ’127.0.0.1’

option ’netmask’ ’255.0.0.0’

config ’interface ’ ’lan_wilab ’

option ’ifname’ ’eth0’

option ’type’ ’bridge’

option ’proto’ ’static’

option ’netmask’ ’255.255.0.0’

option ’ipaddr’ ’10.1.6.100’

option ’gateway’ ’10.1.0.1’

The only modification we needed to perform was related to changing the option ’

ipaddr’ ’10.1.6.100’ line with the proper IP address (10.1.6.100 for the ALIX_100

board, and 10.1.6.101 for the ALIX_101 board).

LucaNisi, in [6], had already changed some other options, commenting out the option

’type’ ’bridge’ line and setting “proto” to “static”.

The other file that was actually already configured, but that needed a second check,

was /etc/config/wireless.

This file contains the board wireless configuration.

The ALIX_100 file is reported below:

config wifi-device radio0

option type mac80211

option channel 5

option macaddr 00:1B:B1:B5:E7:4F

option hwmode 11g

REMOVE THIS LINE TO ENABLE WIFI:

option disabled 0

65

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

config wifi-iface

option device radio0

option network lan

option mode ap

option ssid WiLABALIX_43

option encryption none

After verifying that the line option disabled was set to 0 (setting this to 1 would

disable the wireless interface), it was necessary to change option macaddr with the

MAC address of the UNEX card (both for ALIX_100 and ALIX_101).

As a side note, it is possible to notice the line option hwmode11g. This option can

be set to 11g to use the 2.4 GHz range and to 11a to use the 5 GHz range (even in the case

of 802.11n or 802.11p).

This setting seems to be mismatching with the 802.11p frequencies, but the patch and

the GCDC image settings actually take care of creating another wireless configuration

using the 5GHz frequency range, nomatter what the user writes in the /etc/config/wireless

file.

The MAC address can be found by using the ifconfig utility. Its output for the

ALIX_100 board is reported below:

eth0 Link encap:Ethernet HWaddr 00:0D:B9:1E:C0:AC

inet addr:10.1.6.100 Bcast:10.1.255.255 Mask:255.255.0.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:499 errors:0 dropped:0 overruns:0 frame:0

TX packets:313 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:55582 (54.2 KiB) TX bytes:59072 (57.6 KiB)

Interrupt:10 Base address:0xa000

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:16436 Metric:1

66

3.7 – OpenWrt GCDC 2011 and network configuration

RX packets:3 errors:0 dropped:0 overruns:0 frame:0

TX packets:3 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:279 (279.0 B) TX bytes:279 (279.0 B)

wlan0 Link encap:Ethernet HWaddr 00:1B:B1:B5:E7:4F

inet addr:10.10.6.100 Bcast:10.10.255.255 Mask:255.255.0.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The MAC address is reported after wlan0, as HWaddr.

The boards are configured to run some GCDC specific services, by placing an initial-

ization script inside /etc/init.d:

gcdc

#!/bin/sh /etc/rc.common

Copyright (C) 2008 OpenWrt.org

START=45

start() {

. /lib/gcdc/gcdc-init.sh

}

stop() {

. /lib/gcdc/gcdc-stop.sh

}

This script runs some additional scripts (on start and stop of the corresponding service)

inside /lib/gcdc, launching, among other things, the CALM daemon.

67

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

More important, a script placed in the root user folder, called iw_startup was config-

ured to be run at startup.

This script performed all the configuration steps, with iw and iwconfig, needed to

setup the ITS frequencies’ communication.

With minor modifications to the original one (mainly related to setting the chosen IP

address for the WLAN interface), the ALIX_100 iw_startup script is reported below:

iw_startup

1 #!/bin/sh

2

3 echo ”Wifi Down”

4 wifi down

5 sleep 1

6 echo ”Wifi Up”

7 wifi up

8 sleep 1

9 echo ”Netherlands Frequency Register Set”

10 iw reg set NL

11 sleep 1

12 ifconfig wlan0 down

13 sleep 1

14 echo ”Set Mode Ad-Hoc”

15 iwconfig wlan0 mode ad-hoc

16 ifconfig wlan0 up

17 sleep 1

18 echo ”Set Frequency 5890 MHz”

19 iw dev wlan0 set freq 5890

20 iw dev wlan0 ibss leave

21 iw dev wlan0 ibss join ITS43 5890 fixed-freq ff:ff:ff:ff:ff:ff beacon

2

22 echo ”IP address”

23 ifconfig wlan0 10.10.6.100 netmask 255.255.0.0

24 echo ”Set Rate 6M and Power 0dBm”

68

3.7 – OpenWrt GCDC 2011 and network configuration

25 iwconfig wlan0 txpower 0

26 iwconfig wlan0 rate 6M

The script is described below:

1. It starts turning off and on the wifi network to avoid possible problems due to pre-

vious configurations (this step may also be avoided in most cases, provided that the

wireless interface is already up).

2. Through the iw utility it is possible to set the wireless regulatory domain, which,

thanks to a built-in database, defines the law limits for transmit power and frequency

ranges in each country.

There is, in fact, a Central Regulatory Domain Agent (CRDA), which is a Linux tool

“for communication between the kernel and userspace for regulatory compliance”

[45], used to set a certain regulatory domain, which has the purpose to checkwhether

the current settings are compliant with the current country, set using iw reg set

<code>.

It relies on the wireless-regdb database, containing, for each country, the allowed

transmit power, frequencies, maximum antenna gain, and so on.

In order to display the current regulatory domain, the user can rely on the iw reg

get command.

To set a different regulatory domain, iw reg set <code> is used, specifying the

desired country (US seems to be selected as default by OpenWrt).

Since the Italian regulatory domain is not updated to include the ITS frequencies,

nor was the US one, the GCDC 2011 image used the NL (Netherlands) flag, which

was patched to include the 802.11p frequencies as allowed ones (up to 27 dBm,

without antenna gain limit, with mandatory DFS to recognized interference from

radars and automatically change channel).

3. It turns down the wlan0 wireless interface to change its mode

69

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

4. It sets the wireless interface mode to Ad-hoc (OCB mode was not yet available),

corresponding to IBSS.

5. It turns up again the wlan0 wireless interface.

6. It leaves a possible IBSS (to ensure no other IBSS is active when joining a new

IBSS).

7. It joins an IBSS, with name (ESSID) “ITS43” (any other name should be fine),

fixed frequency 5890 MHz (CCH - it can be changed later on), BSSID equal to the

broadcast MAC address (all binary ones) and beaconing period of 2ms (this can be

specified thanks to a proper iw patch included in the GCDC 2011 image).

8. Using ifconfig the WLAN IP address and netmask are set.

9. We then decided to start with a small transmit power (0 dBm), increasing it only

when necessary. When the boards are one near to each other, however, they are com-

pletely able to communicate. So, 0 dBm is set as initial “txpower”.

10. The last line is used to set the target bitrate the UNEX cards will use. Since there was

no native support for 802.11p rates and everything was working thanks to a patch,

the user has to specify a double rate (as if 802.11a was used instead of 802.11p)

with respect to the desired one. For instance, iwconfig wlan0 rate 6Mwas used

to set the 3Mbit/s 802.11p mode.

The ALIX_101 board included the same script, with a different WLAN IP address:

ifconfig wlan0 10.10.6.101 netmask 255.255.0.0

In order to display the current wireless configuration, it is possible to use iwconfig.

Since the script is run at startup, when ready the boards are already configured to

transmit on the 10 MHz wide CCH:

iwconfig output after startup

lo no wireless extensions.

70

3.7 – OpenWrt GCDC 2011 and network configuration

eth0 no wireless extensions.

wlan0 IEEE 802.11a ESSID:”ITS43”

Mode:Ad-Hoc Frequency:5.89 GHz Cell: Invalid

Tx-Power=0 dBm

RTS thr:off Fragment thr:off

Encryption key:off

Power Management:off

The user can turn off the boards with poweroff (although it seems to be bugged in

this OpenWrt version, practically breaking the PuTTY SSH connection but not turning

off the whole operating system) and reboot them with reboot.

Some configuration parameters can also be easily changed; in particular:

• In order to change the transmission power, it is possible to use iwconfig wlan0

txpower <power in dBm, greater or equal than 0>

• To change the desired bitrate: iwconfig wlan0 rate <desired bitrate x 2>

• To change frequency (i.e. to change channel): iw dev wlan0 ibss leave fol-

lowed by iw dev wlan0 ibss join ITS43 <central frequency in MHz>

fixed-freq ff:ff:ff:ff:ff:ff beacon 2; we were not able to set, however,

the standard 802.11a frequencies, other than the ITS ones, probably due to how the

patch works

As an additional note, it can be useful to point out that any new script copied to the

board should be made executable, by moving to its directory with cd and executing chmod

+x <script name>.

71

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

3.7.2 iPerf

The iperf tool allows the user to measure the network throughput (called “band-

width” inside the program), by means of a server running on one board and a client run-

ning on the other board.

This measurement tool will be used also with the newer OpenWrt versions.

It is a cross-platform tool, able to work with different layer 4 protocols, such as UDP,

TCP and SCTP; it supports multiple simultaneous connections, it can be configured to

run for a certain time or after a certain amount of data has been sent, possibly printing

periodic reports at configurable intervals.

It is able to measure the network throughput, the packet loss and the jitter [47].

A complete rewrite of the program, by the same development team, is available under

the name iperf3, representing the latest iPerf version. This program did not exist at

the time of the 2011 GCDC competition, thus it is not available in the corresponding

OpenWrt version.

The UDP based measurements will be used to test the throughput achievable by the

boards; after capturing some packets from a client-server communication using iPerf, the

packet loss measurement seems to be performed thanks to the UDP payload, in which

some sequential numbers are fit.

This is confirmed looking at the iPerf source code:

Reporter.c

1113 // packet loss occured if the datagram numbers aren’t sequential

1114 if (packet->packetID != data->PacketID + 1) {

1115 if (packet->packetID < data->PacketID + 1) {

1116 data->cntOutofOrder++;

1117 } else {

1118 data->cntError += packet->packetID - data->PacketID - 1;

1119 }

1120 }

72

3.7 – OpenWrt GCDC 2011 and network configuration

Sniffing happened through the tcpdump tool, which is better described when looking

at the newer OpenWrt versions (in section 3.8.6).

In order to check if the boards are able to communicate with each other on the CCH,

an iPerf server has been run on one board (ALIX_100) and an iPerf client has been run

on the other board (ALIX_101).

Both the boards were running with the initial settings of 0 dBm transmit power and

mode 1 (3Mbit/s).

The used commands are the following:

• iperf -s -u -i 2, to start a server (-s), set the use of UDP datagrams (-u), trigger

periodic reports for throughput, jitter and packet loss every 2 seconds (-i 2); since no

datagram size is specified (with the -l option), 1470 B datagrams, as default size, will

be expected; the port to be used can be specified by ‘‘-u <port number>” (default:

port 5001).

• iperf -c 10.10.6.100 -u -t 120 -i 2 -b 10M, to start a client connecting

to the server with IP address 10.10.6.100 (-c 10.10.6.100), using UDP (-u), running

for 120 seconds (-t 120), with periodic interval every 2 seconds (-i 2) and specifying

a target UDP bandwidth to send at equal to 10Mbit/s (much more than what is

achievable, to really test the obtainable throughput in mode 1); as it is not specified,

1470 B UDP datagrams will be sent; the port to be used can be specified by ‘‘-u

<port number>” (default: port 5001).

The client side report is reported here:

log_iperf_client_gcdc.txt

--

Client connecting to 10.10.6.100, UDP port 5001

Sending 1470 byte datagrams

UDP buffer size: 106 KByte (default)

--

73

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

[3] local 10.10.6.101 port 43574 connected with 10.10.6.100 port

5001

[ID] Interval Transfer Bandwidth

[3] 0.0- 2.0 sec 622 KBytes 2.55 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 2.0- 4.0 sec 508 KBytes 2.08 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 4.0- 6.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 6.0- 8.0 sec 512 KBytes 2.10 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 8.0-10.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 10.0-12.0 sec 553 KBytes 2.26 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 12.0-14.0 sec 511 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 14.0-16.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 16.0-18.0 sec 505 KBytes 2.07 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 18.0-20.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 20.0-22.0 sec 511 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 22.0-24.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 24.0-26.0 sec 510 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 26.0-28.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 28.0-30.0 sec 554 KBytes 2.27 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 30.0-32.0 sec 510 KBytes 2.09 Mbits/sec

74

3.7 – OpenWrt GCDC 2011 and network configuration

[ID] Interval Transfer Bandwidth

[3] 32.0-34.0 sec 560 KBytes 2.29 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 34.0-36.0 sec 510 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 36.0-38.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 38.0-40.0 sec 511 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 40.0-42.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 42.0-44.0 sec 553 KBytes 2.26 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 44.0-46.0 sec 511 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 46.0-48.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 48.0-50.0 sec 508 KBytes 2.08 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 50.0-52.0 sec 558 KBytes 2.29 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 52.0-54.0 sec 507 KBytes 2.08 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 54.0-56.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 56.0-58.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 58.0-60.0 sec 511 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 60.0-62.0 sec 554 KBytes 2.27 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 62.0-64.0 sec 510 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 64.0-66.0 sec 560 KBytes 2.29 Mbits/sec

75

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

[ID] Interval Transfer Bandwidth

[3] 66.0-68.0 sec 508 KBytes 2.08 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 68.0-70.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 70.0-72.0 sec 510 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 72.0-74.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 74.0-76.0 sec 518 KBytes 2.12 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 76.0-78.0 sec 554 KBytes 2.27 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 78.0-80.0 sec 512 KBytes 2.10 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 80.0-82.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 82.0-84.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 84.0-86.0 sec 514 KBytes 2.11 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 86.0-88.0 sec 554 KBytes 2.27 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 88.0-90.0 sec 508 KBytes 2.08 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 90.0-92.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 92.0-94.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 94.0-96.0 sec 511 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 96.0-98.0 sec 561 KBytes 2.30 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 98.0-100.0 sec 511 KBytes 2.09 Mbits/sec

76

3.7 – OpenWrt GCDC 2011 and network configuration

[ID] Interval Transfer Bandwidth

[3] 100.0-102.0 sec 557 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 102.0-104.0 sec 510 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 104.0-106.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 106.0-108.0 sec 554 KBytes 2.27 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 108.0-110.0 sec 510 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 110.0-112.0 sec 558 KBytes 2.29 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 112.0-114.0 sec 512 KBytes 2.10 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 114.0-116.0 sec 556 KBytes 2.28 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 116.0-118.0 sec 511 KBytes 2.09 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 118.0-120.0 sec 554 KBytes 2.27 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 0.0-120.1 sec 31.5 MBytes 2.20 Mbits/sec

[3] Sent 22461 datagrams

[3] Server Report:

[ID] Interval Transfer Bandwidth Jitter Lost/Total

Datagrams

[3] 0.0-120.2 sec 31.5 MBytes 2.20 Mbits/sec 15.954 ms

1/22462 (0.0045%)

The client and the server running side by side are instead shown in figure 3.12.

As it is possible to see, very few frames are lost (1 over 22462, 0.0045%), which

is in line with the results obtained in [6]. The jitter, computed by iPerf with continuous

measurements (thanks to a “64 bit second/microsecond timestamp” recorded by the client

77

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Figure 3.12: iPerf server running on oneALIX board (on the left) and iPerf client running
on the other board (on the right, with output redirection to a log file)

[47]) and a final smoothed mean, is around 15 ms.

These results are obtained transferring around 550KB every 2 seconds, with an achiev-

able bandwidth of 2.20Mbit/s on IBSS mode, which is quite good with respect to the

theoretical value of 3Mbit/s.

Trying to change channel on one board only, the communication could no more hap-

pen, as expected. Changing the channel to both boards (for example setting both the boards

to work at 5.650 GHz) the communication could happen again with very similar results.

If one board, without any installed antenna, then, was put inside a cupboard while

running iPerf tests, the communication was interrupted, proving the fact that with 0 dBm

transmit power communication can happen only as long as the boards are quite near to

each other, without major obstacles in between. Installing the antenna, as expected the

maximum distance between the boards increased.

It was also possible to check the power received by one board with respect to another

board. With 0 dBm, no antennas, and the boards placed very near to each other, it was

possible to measure a received power of -76 dBm, while, increasing the effective trans-

mission power to 24 dBm, the received power increased to -49 dBm. More detailed and

systematic measurements will be taken with the newer platforms.

In order to view the power one board receives with respect to a second board, we used

78

3.7 – OpenWrt GCDC 2011 and network configuration

the following command:

iw dev wlan0 station get ”00:1B:B1:B5:E6:BE”

launched on ALIX_100 (running an iPerf server) with the ALIX_101 UNEX card MAC

address (running an iPerf client).

3.7.3 Testing the VTL Java code

The next step was to quickly test the VTL Java code from [4], using the CALMdaemon

to interface with the boards, as a possibility to deliver advanced services with 802.11p

programmed boards.

This code is able both to implement a VTL system for field tests and to implement

simulations, with virtual coordinates. We actually tested it using the second approach.

Few modifications needed to be performed to the code, in order to make it accept

the IP addresses of the boards, which are different than the ones accepted for the GCDC

competition.

To test the VTL algorithm with the boards we had, we launched two instances of the

Eclipse program, running on two different workspaces. Each is working with its own

version of the code, which remains almost the same except for few small modifications.

The modifications are reported below, with the edited lines highlighted by comments:

it.unibo.trafficlights - VirtualTrafficLightVisualizer.java (ALIX_100 and ALIX_101)

42 public VirtualTrafficLightVisualizer(int positionOnScreen , String

vehicleName) {

43 if(positionOnScreen==0) {

44 vtlActive = false;

45 return;

46 } else {

47 vtlActive = true;

48 }

49 previousColour=-1;

50 imgFrameVTL = new JFrame(vehicleName);

79

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

51 imgFrameVTL.setSize(400, 400);

52 this.ModifyPosition(positionOnScreen);

53

54 if(vehicleName.contains(”0”)) { // Edited to enable ALIX_100 IP

address

55 imgFrameVTL.setBackground(Color.GRAY);

56 } else if(vehicleName.contains(”37”)) {

57 imgFrameVTL.setBackground(Color.RED);

58 } else if(vehicleName.contains(”1”)) { // Edited to enable ALIX_101

IP address

59 imgFrameVTL.setBackground(Color.BLUE);

60 } else if(vehicleName.contains(”35”)) {

61 imgFrameVTL.setBackground(Color.WHITE);

62 } else if(vehicleName.contains(”41”)) {

63 imgFrameVTL.setBackground(Color.GREEN);

64 } else if(vehicleName.contains(”45”)) {

65 imgFrameVTL.setBackground(Color.PINK);

66 } else if(vehicleName.contains(”49”)) {

67 imgFrameVTL.setBackground(Color.YELLOW);

68 } else if(vehicleName.contains(”47”)) {

69 imgFrameVTL.setBackground(Color.BLACK);

70 } else {

71 CustomizedError.printError(”Id veicolo non previsto: ” +

vehicleName);

72 }

it.unibo.communications - Main.java (ALIX_100)

31 /**********

32 * Settings

33 */

34 static private int deviceID = 00; // Edited by to support ALIX_100

35 //deviceID: choose # if you are using ALIX#, e.g. choose 35 if you are

using ALIX35

80

3.7 – OpenWrt GCDC 2011 and network configuration

36 static private int application = APP_VIRTUALTRAFFICLIGHT; //

APP_VIRTUALTRAFFICLIGHT;

37 private static boolean useOfGPS = true;

38 private static boolean useOfMaps = true;

39 public static String city=”Bologna”;

40 private static boolean isRSU=false;

it.unibo.communications - Main.java (ALIX_101)

31 /**********

32 * Settings

33 */

34 static private int deviceID = 01; // Edited by to support ALIX_101

35 //deviceID: choose # if you are using ALIX#, e.g. choose 35 if you are

using ALIX35

36 static private int application = APP_VIRTUALTRAFFICLIGHT; //

APP_VIRTUALTRAFFICLIGHT;

37 private static boolean useOfGPS = true;

38 private static boolean useOfMaps = true;

39 public static String city=”Bologna”;

40 private static boolean isRSU=false;

it.unibo.communications - Main.java (ALIX_100 and ALIX_101)

170 public static void main(String[] args) throws Exception

171 {

172 new Config();

173

174 startingTime=System.currentTimeMillis();

175

176 // Setting of the device name

177 deviceName = ”10.1.6.1” + String.format(”%02d”,getDeviceID()); //

Edited to support our ALIX boards

178 System.out.println(deviceName);

The deviceName is used to set up a socket to connect with the boards.

81

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

It was then necessary to edit the config.cfg file, setting the virtual coordinates for sim-

ulating two cars reaching a VTL intersection. The two cars have been put near to an inter-

section by changing the respective startingLat and startingLong parameters (lines

23-24 of the configuration file). The deviceID line had to be changed too, setting it to

00 for ALIX_100 and to 01 for ALIX_101, since this value actually overrides the ones

specified inside Main.java.

After running two instances of the Java programs, connected to the two ALIX boards,

it was possible to see that the boards were correctly communicating using 802.11p: one

board, simulating one OBU, received a green signal, while the other a red one, as shown

in figure 3.13.

Figure 3.13: VTL simulation with the Java code connected to the boards: one simulated
car (simulated on ALIX_100) getting green traffic light, the other (on ALIX_101) getting
red traffic light

After the first one passed the intersection, the second one was properly notified and

received a green semaphore too, as it is possible to see from the following logs:

Log from the Java code connected to the ALIX_100 board

......

Time: 00:00:28.618

Time: 00:00:28.718

82

3.7 – OpenWrt GCDC 2011 and network configuration

Time: 00:00:28.732, VTL message GREEN sent to 1.0 (with numVhc=2)

Time: 00:00:28.733, VTL message GREEN sent to 1.0 (with numVhc=2)

Time: 00:00:28.733, VTL message GREEN sent to 1.0 (with numVhc=2)

Time: 00:00:28.819

Time: 00:00:28.919

......

Log from the Java code connected to the ALIX_101 board

......

VTL: Threshold not yet exceeded

Time: 00:00:19.683

VTL: I set ORANGE

VTL: I set RED.

Time: 00:00:19.783

......

VTL message received: GREEN (with numVhc=2.0)

VTL: HO RICEVUTO IL VERDE!!!!! URL: fast://0x001bb1b5e74f:5

VTL: I set GREEN

VTL message received: GREEN (with numVhc=2.0)

VTL: I IGNORE A GREEN MESSAGE. I AM ALREADY GREEN!!!

Time: 00:00:25.709

VTL message received: GREEN (with numVhc=2.0)

VTL: I IGNORE A GREEN MESSAGE. I AM ALREADY GREEN!!!

Time: 00:00:25.810

......

3.7.4 Moving to newer versions of OpenWrt

The previous sections show how the patched OpenWrt version can already be a quite

stable solution for building and evaluating even complex applications, such as a VTL

system, provided that some additional IEEE 802.11p features, other than the physical

layer ones provided by the patch, are implemented in an external application.

83

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

There are, however, several drawbacks that lead us to select more updated solutions,

based on newer versions of OpenWrt and on the version 4 of the Linux kernel:

• The 2011 GCDC images are based on an older version of the Linux kernel (2.6.32),

which is actually missing over 7 years of updates and bug-fixes, thus being also more

difficult to update as newer versions of both the operating system and the kernel

come out. The capability of updating the software may play an important role in

future connected vehicles, which may run Linux-based software solutions.

• As mentioned before, everything is working thanks to a GCDC patch, which is not

officially included inside the OpenWrt distributions. This represented a valid solu-

tion, but it was limited to the 10 MHz channels at the 802.11p frequencies: other

features were not fully included and/or supported and needed to performed by an

additional application. They could also have been coded with an additional patching

work, but, in any case, it would have been related to an old OpenWrt version, with

difficulties in porting it to more updated distributions (which may already include

some of the desired features too), increasing the number of patches, which may be

conflicting with new kernel features, at some point.

• Due to the patch, it seemed as if non-ITS frequencies, at least with a UNEX DCMA

86P2 card installed in, were no more selectable, limiting a bit the flexibility of the

system.

• It was not possible, even though various different tests, to make the EDCA queues

work; this was instead possible with newer platforms.

• The newer versions of OpenWrt and the Linux kernel seems to already integrate sev-

eral 802.11p features introduced by projects such as the CTU-IIG 802.11p-linux one

[48], including the OCB mode, which, even if it is similar to the IBSS architecture

used in the GCDC patch, is the right mode established by the standard (as described

in chapter 2).

84

3.8 – LEDE 17.01 and OpenC2X

• GCDC patches were mainly based on the ath5k driver. However, now there are sev-

eral wireless cards supporting ITS frequencies which are supported by the ath9k

driver. Moreover, as reported in [25], now many cards are based on the PCIe in-

terface (other than the mini-PCI one used in the ALIX boards): this means moving

from ath5k to ath9k and other drivers (at least for Atheros chipsets).

• Newer patches could provide a better support for GeoNetworking implementations,

as reported in [25].

• Finally, using newer versions of the software platform allows the user to access new

packages as they are introduced, together with newer versions of the existing ones.

This, together with suitable hardware (faster, with more storage, possibly based on

SSD - as in the APU boards, and more RAM), may lead to the integration of build

systems directly on the ITS systems; for instance it is very easy to integrate gcc in-

side an OpenWrt distribution, by just selecting it after running “make menuconfig”.

For the aforementioned reasons, we investigated how to integrate two new OpenWrt

versions: LEDE 17.01, together with theOpenC2X embedded platform [38], and the latest

OpenWrt 18.06.1.

3.8 LEDE 17.01 and OpenC2X

The first platform we investigated is the OpenC2X embedded platform, developed by

CCS Labs in University of Paderborn (Germany).

It includes a LEDE 17.01 distribution integrating the OpenC2X ETSI compliant plat-

form.

This platform implements features of the ETSI protocol stack including DCC, CAM,

DENM, the so-called “Local Dynamic Map”, offering support for GPS and even OBD-II

connectivity to link the ITS device with the internal vehicle network (usually based on

CAN).

85

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

It is the first open source platform, running over Linux, “supporting most ETSI ITS-G5

features” [36].

Being open source, it also offers a high degree of stabilizability and flexibility for what

concerns modifications and updates to the protocol stack.

OpenC2X embedded is based on a patched LEDE distribution, a branch of OpenWrt

which is now merged again inside the main project, with native support, coming directly

fromOpenWrt, to OCBmode and EDCA queues (for which, however, a patch was needed

and it was introduced by the Paderborn University team).

This platform, in the default configuration, also includes the LuCI web user interface,

accessible from the connected PC at the same IP address which was set for the board

Ethernet interface (it is sufficient to write this address in any web browser).

This web interface was actually modified in order to enhance it with specific OpenC2X

features, for example related to transmission and reception of CAMandDENMmessages.

All the downloading and building work happen on the Linux Mint virtual machine.

The LEDE distributionwas first of all downloaded from the followingwebsite: https:

//github.com/florianklingler/OpenC2X-embedded, using Git7:

git clone https://github.com/florianklingler/OpenC2X-embedded.git

The distribution was cloned inside the OpenC2X-embedded directory.

Before proceeding, several prerequisite packages needed to be installed in the devel-

opment PC, where the build system resides. This can be done by using [49]:

sudo apt-get install build-essential subversion libncurses5 -dev zlib1g

-dev gawk gcc-multilib flex git-core gettext libssl-dev

Then, in order to prepare the distribution, it was necessary to update and download the

available feeds (which are OpenWrt collections of packages, sharing a common location).

This can be done thanks to a script included in every OpenWrt distribution (called feeds):

7Git is a ”free and open source distributed version control system” which helps developers to manage
software projects of any size. Home page: https://git-scm.com/

86

https://github.com/florianklingler/OpenC2X-embedded
https://github.com/florianklingler/OpenC2X-embedded
https://git-scm.com/

3.8 – LEDE 17.01 and OpenC2X

cd OpenC2X-embedded

./scripts/feeds update -a

./scripts/feeds install -a

This script can be also used to clean the downloaded feeds data: ./scripts/feeds

clean.

After updating the feeds, it was possible to load an OpenC2X embedded default con-

figuration, already selecting the needed packages without the need of looking for them

inside the kernel configuration window executed through make menuconfig. Since the

ALIX boards are based on the x86 Geode processor, the corresponding configuration was

selected:

./create_config.sh x86_geode

The create_config.sh script is an addition by the CCS Labs team, not included in offi-

cial OpenWrt releases. It simplifies the creation of default configurations, by copying

already generated configuration files contained in ./configs in .config, which is the hidden

configuration file normally generated after launching make menuconfig.

It was then necessary to run a make command to generate a full system configuration

before the build process, including dependencies check.

make defconfig

It was then possible to run the Linux kernel configuration by executing:

make menuconfig

Most of the useful packages were already selected, but it could be useful to add a few.

In particular:

• Network -> tcpdump, for packet sniffing

• Network -> firewall -> iptables -> iptables-mod-tee, again for packet sniffing

• Utilities -> strace, which installs a the strace tool, very useful for debugging, since

it is able to display the system call trace of whichever command

87

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

• Utilities -> grep, to install the grep search utility also onto the boards’ system

• Network -> Time Synchronization -> chrony, an utility that uses NTP to synchronize

the system clock, when the boards are connected to the Internet

• Utilities -> Shells -> bash, installing the bash shell inside the boards; in very low

memory devices a user may want to disable this option and keep the existing sh shell,

but the PC Engines boards are, in general, quite capable in terms of hardware and

we will need this to perform some measurements (see chapter 6), mainly due to its

support to arrays inside scripts

iperf and iperf3 should be already included in the default configuration.

Including make and gcc could be useful too, mainly to develop small programs di-

rectly on the ITS device, with the condition that sufficient RAM and memory storage are

available. We decided, however, to stick with the classical embedded solution of cross-

compilation on the development PC (which is the solution that could be adopted in case

low memory cheap devices are used.).

After including the desired package it is possible to compile the whole kernel. The

first compilation may take, depending on the available hardware in the development PC,

over two hours:

make -j1 V=s

The V=s argument enables verbose output, useful to identify possible compilation error.

-j1 instead sets up the compilation for working with one job only.

Although this has been done multiple times when building LEDE, a better solution,

which has been successfully tested with OpenWrt 18.06.1, is to use:

make download

make -j10 V=s

The first command downloads all the dependencies source code, enabling multi-core and

multi-job compilation, which would otherwise result in a compilation error. The second

command compiles the OpenWrt images generating 10 jobs, which can be a good choice

88

3.8 – LEDE 17.01 and OpenC2X

for 4 cores, 8 thread CPUs such as the Intel Core i7 one available on the development PC

[50].

Multi-core compilation allows the development PC to finish the build process in even

less than one hour, under some circumstances.

It has, however, the drawback of making it more difficult to detect a compilation error

when the compilation stops before completion, with respect to the -j1 case.

The user can also clean up the build environment, by means of:

• make clean, to do a basic clean, deleting the already compiled sources in the ./bin

and ./build_dir directories.

• make dirclean, to perform a full clean operation, deleting also the ./staging_dir

and ./toolchain folders (it deletes the OpenWrt toolchain for cross-compilation).

• make distclean, to perform a deep clean operation, equal to the previous case,

but also clearing out all the feeds and configuration files.

After the build process finishes, two main compilation products are generated:

• The toolchain, including a gcc version to cross-compile for the boards

• TheOpenWrt images, ready to be flashed onto the board’smemory, generated thanks

to the OpenWrt Image Builder, able to integrate the desired packages into flashable

images.

3.8.1 LEDE toolchain

The toolchain binaries, containing tools for cross-compiling for the embedded boards

are located in the ./staging_dir folder. This is actually valid for every LEDE/OpenWrt

distribution.

In the LEDE 17.01 distribution supplied with the OpenC2X embedded platform, the

toolchain binaries, including gcc, is located in ./staging_dir/toolchain-i386_pentium_gcc-

5.4.0_musl-1.1.16/bin/.

89

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Other toolchains, such as the one for MIPS, may be present inside the ./staging_dir;

however, we are interested on x86 system, thus using only the i386 tools.

In order to make the use of the toolchain gcc easier and more flexible, some lines were

added to the .bashrc8 file of the Linux operating system running on the development PC,

as reported also in [51]:

.bashrc

PATH environmental variable settings for OpenWrt toolchain

PATH=$PATH:/home/francesco/openwrt/staging_dir/toolchain -

i386_pentium_gcc -7.3.0_musl/bin/

export PATH

Set STAGING_DIR environment variable for the toolchain

STAGING_DIR=/home/francesco/openwrt/staging_dir/toolchain -

i386_pentium_gcc -7.3.0_musl/bin

export STAGING_DIR

alias compileboard=”i486-openwrt-linux-musl-gcc”

Function to compile for the PC Engines boards

compileboardstatic() {

i486-openwrt-linux-musl-gcc -o ”$1” -static ”$1.c”

}

More than one x86 version of gcc is actually being compiled: the choice of which version

to use is up to the programmer, depending on his specific needs.

We decided to create an alias for compiling with musl-gcc, in order to support the

musl C standard library implementation9, which may be useful in developing programs

for the boards.

8The .bashrc file, under any Linux distribution using bash, is stored inside the main user directory (i.e.
in /home/<username>) and it contains commands to be executed every time a non-login bash shell is started

9Home page: https://www.musl-libc.org/

90

3.8 – LEDE 17.01 and OpenC2X

Using musl-gcc requires static linking (which is performed quite efficiently by this

library), otherwise we were not able to run the obtained binaries on the target boards.

After saving the .bashrc file, it was then possible to compile custom C programs, such

as the ones presented in section 3.8.5. To compile simple C programs we could use, di-

rectly from the terminal:

compileboard -o <binary file> -static <C file(s)>

or:

compileboardstatic <binary name>

which assumes the .c file has the same name as the final binary file. Of course more

complex aliases could be defined to compile more complex projects.

To compile simple C programs, in any case, we always used compileboardstatic.

As a side note older versions of the toolchain can actually be used to cross-compile

programs which will run on newer OpenWrt versions, but it is nevertheless suggested to

always use updated binaries.

3.8.2 LEDE images, SquashFS and ext4

After the compilation finishes, two main OpenWrt images are generated, compressed

inside .tar.gz archives and located inside ./bin/targets/x86/geode/ (or a simular directory

inside ./bin).

They are all relying on the GRUB2 boot loader for the boot process.

One is based on the ext4 file system (lede-x86-geode-combined-ext4.img), the other

uses SquashFS+JFFS2, which are merged into a single file system thanks to OverlayFS

(lede-x86-geode-combined-squashfs.img).

SquashFS is a read only, compressed file system, with the advantage of taking little

space in embedded systems, with low overhead and easy recovery, since it is not actually

possible to write on it.

91

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Thanks to OverlayFS, JFFS2 is union mounted10 with SquashFS, providing also a

writable compressed file system with journaling and flash wear leveling support. Thanks

to JFFS2 the user can actually write data on the device. It is a good solution for raw NOR

flash devices, such as some routers.

Due to SquashFS not having any bad block management and requiring all the blocks

in order, it is typically not so suitable for raw NAND flash devices, in which UBIFS can

be used instead [52].

ext4 is instead the more commonly used Linux file system, which optionally supports

journaling.

Due to ALIX boards using Compact Flash memories, working with ATA controllers,

and APU boards using SSDs, ext4 seemed to be a good choice.

Looking more in depth at the possible filesystems could be a future improvement to

this work.

For now, the ext4 images will be always used.

After building the images, they were flashed into the Compact Flash memories, then

mounted on the ALIX boards.

Their IP address was then changed to match the settings presented in section 3.7, edit-

ing the /etc/config/network file.

Two additional modifications were needed to:

• Commenting out the line option ’type’ ’bridge’ by placing an # in front of it

• Adding the line option gateway ’10.1.0.1’ which is not present by default

An example of network configuration file is reported below, for the ALIX_100 board:

config interface ’loopback ’

option ifname ’lo’

option proto ’static’

10Union mount actually mounts two combined file systems into what appears to be a single directory to
the end user, generating a new new virtual root filesystem in /

92

3.8 – LEDE 17.01 and OpenC2X

option ipaddr ’127.0.0.1’

option netmask ’255.0.0.0’

config globals ’globals’

option ula_prefix ’fd49:d667:37fc::/48’

config interface ’lan’

option type ’bridge’

option ifname ’eth0’

option proto ’static’

option ipaddr ’10.1.6.100’

option netmask ’255.255.0.0’

option gateway ’10.1.0.1’

option ip6assign ’60’

After logging in to the root account, it was possible to test the 802.11p capabilities

of the LEDE distribution, integrated inside the ALIX boards.

Before working with the boards on the ITS frequencies, some basic configuration

needs to be performed, though.

The first configuration operation is related to the file /etc/config/wireless, in which the

wireless interface was enabled by setting option disabled to 0.

Then, we decided to keep the approach of using an iw_startup script, with the dif-

ference of not making it automatically executed at startup, to leave more freedom for the

final user.

The script, adapted to use only iw and not the deprecated iwconfig (which is also no

more included in default configurations), is reported below (in the ALIX_101 board only

the WLAN IP address is different):

iw_startup (ALIX_100 board)

1 #!/bin/sh

2

3 echo ”Wifi Down”

93

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

4 wifi down

5 sleep 1

6 echo ”Wifi Up”

7 wifi up

8 echo ”Waiting 5 seconds...”

9 sleep 5

10 echo ”Pacthed Italian Frequency Register Set”

11 iw reg set IT

12 sleep 1

13 echo ”Turn off wlan0”

14 ifconfig wlan0 down

15 sleep 1

16 echo ”Set Mode OCB”

17 iw dev wlan0 set type ocb

18 echo ”Turn on wlan0”

19 ifconfig wlan0 up

20 sleep 1

21 echo ”Leave possibile OCB...”

22 iw dev wlan0 ocb leave

23 echo ”Set Frequency 5890 MHz (CCH) and channel width 10MHz (802.11p)”

24 iw dev wlan0 ocb join 5890 10MHz

25 echo ”IP address set to 10.10.6.100”

26 ifconfig wlan0 10.10.6.100 netmask 255.255.0.0

27 echo ”Set Rate 6M and Power 0dBm, using iw”

28 iw dev wlan0 set bitrates legacy -5 6

29 iw dev wlan0 set txpower fixed 0

30 echo ”Completing configuration , waiting 8 seconds...”

31 sleep 8

32 echo ”Configured as: ”

33 iw dev

Now OCB is supported by the kernel and it can be used instead of the IBSS mode, also

with non-ITS frequencies (although it would be probably less meaningful), which seemed

to be, in the previous case, disabled by the patch.

94

3.8 – LEDE 17.01 and OpenC2X

Some additional sleep commands have been added too, to let the system complete

any previous configuration before issuing new commands.

One useful feature of the OpenWrt build system is the possibility of including cus-

tom files directly inside the built images, making them available as soon as the system is

integrated into the boards.

In order to include them, a files directory has been created inside the main LEDE

build directory. Every file contained in ./files/<dir> will be included inside ./<dir> [50].

Using this feature, the iw_startup has been included in the root directory, by placing

it inside ./files/root (after creating the directory itself).

Other useful commands, which are now different than before, are:

• iw dev, used to show the current Wi-Fi configuration, in place of the old iwconfig

• iw dev <interface> station dump (for example iw dev wlan0 station

dump), showing useful statistic information such as inactive time, received and trans-

mitted packets, received signal power and the last transmit bitrate; some information

such as the bitrate values, as will be detailed later on, seems to be very unreliable,

though

• iw dev <interface> set txpower fixed <value in mBm> (for example iw

dev wlan0 set txpower fixed 0), to set a fixed output effective transmit power,

in mBm (milliBel per mW), knowing that 100mBm = 1 dBm

• iw phy <phy name> info, to show information about the specified hardware de-

vice (for example iw phy phy0 info)

This system resulted to be quite complete, but few additional patches were needed in order

to work with the ALIX boards (with WNICs still supported by ath5k) and perform some

measurements.

One first modification was introduced to the wireless regulatory file, in order to enable

the ITS frequencies also for Italy (IT flag), taking as reference the NL country in the

GCDC 2011 OpenWrt version.

95

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

The file which will be used, with name regdb.txt, is available in the ./package/ker-

nel/mac80211/files/ directory and it can be easily modified, at least in the LEDE version

supplied with OpenC2X (it will be different in OpenWrt 18.06.1).

It already enables the ITS frequencies for Germany (DE flag), but in order to add them

to Italy as well, the line (5842 - 5932 @ 20), (27), DFS was added to the Italian

country:

country IT: DFS-ETSI

(2402 - 2482 @ 40), (20)

(5170 - 5250 @ 80), (20), AUTO-BW

(5250 - 5330 @ 80), (20), DFS, AUTO-BW

(5490 - 5710 @ 160), (27), DFS

(5842 - 5932 @ 20), (27), DFS

60 GHz band channels 1-4, ref: Etsi En 302 567

(57000 - 66000 @ 2160), (40)

The modifications to this file becomes active only after a recompilation process.

The frequency band that has been set ranges from 5842MHz to 5932MHz to take

into account the fact that the regulatory database calculations are made considering 20

MHz wide channels, instead of the 10 MHz 802.11p channels. So, some MHz of margin

have been added to the allowed frequency range (the reference is the GCDC 2011 patch).

It is important, however, to keep in mind that this is still a patch: more normative

research is needed in case a similar system is used outside of research activities or it is

really deployed onto vehicles.

Then, before introducing the true patches, the patching tool quilt is briefly described.

3.8.3 Patch creation and management: quilt

The quilt software is a nonGNU utility11 that can be used to keep track of themodifica-

tion to source code files, by means of patches, which can be applied and un-applied like in

11Home page:http://savannah.nongnu.org/projects/quilt

96

http://savannah.nongnu.org/projects/quilt

3.8 – LEDE 17.01 and OpenC2X

a stack, created and removed, refreshed and so on; this utility is actually well documented

in the Linux Man Pages12; this tool can be efficiently used from the terminal.

Patches are included in .patch diff files, containing information about the modified

lines of code and applied by quilt or during compilation.

The Linux patch tool, although not used in this work, can be used to apply patches to

source code starting from these diff files.

It is included in the LEDE/OpenWrt build system to create and manage patches to the

Linux kernel and packages code.

In order to configure quilt to generate patches in the correct format, as suggested in

the OpenWrt documentation, a proper configuration file (.quiltrc) must be created in the

user home directory (the same where .bashrc is stored) [53].

This file contains also the preferred editor to use when editing source code files to

generate patches; in order to dynamically and easily change this field, a script in turn

generating the required .quiltrc file has been created on the Linux virtual machine in the

development PC (the same would apply with an installed Linux partition).

This script accepts as argument the name of the editor.

quiltrcmaker.sh

1 #!/bin/bash

2

3 echo ”Creating .quiltrc file in your home directory...”

4 cat > ~/.quiltrc <<EOF

5 QUILT_DIFF_ARGS=”--no-timestamps --no-index -p ab --color=auto”

6 QUILT_REFRESH_ARGS=”--no-timestamps --no-index -p ab”

7 QUILT_SERIES_ARGS=”--color=auto”

8 QUILT_PATCH_OPTS=”--unified”

9 QUILT_DIFF_OPTS=”-p”

10 EDITOR=”$1”

11 EOF

12https://www.systutorials.com/docs/linux/man/1-quilt/

97

https://www.systutorials.com/docs/linux/man/1-quilt/

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

12 echo ”Process completed!”

The .quiltrc file has been then created in the user home directory, by moving to the direc-

tory where the script has been saved (in our case the current user home directory) and by

invoking:

cd --

chmod +x quiltrcmaker.sh

./quiltrcmaker.sh subl

The second line should be run only once to set the execution permission on the script

before launching it.

As editor, we decided to use Sublime Text (subl), which is a multi platform, advanced

and commercial source code editor. Other free and open source alternatives can be spec-

ified, such as nano.

After creating the configuration file, it is possible to start using quilt.

The workflow in order to create a new patch is briefly summarized here, taking as

reference [53]:

1. Move to the build system main directory using cd.

2. Prepare the source directory and existing patches:

make package/example/{clean,prepare} V=s QUILT=1.

Example with iPerf :

make package/network/utils/iperf/{clean,prepare} V=s QUILT=1.

3. Move to the prepared source directory inside ./build_dir, looking for the prepared

source has been placed (it should be printed by the previous command):

cd build_dir/target-*/example-*.

Example with iPerf :

cd build_dir/target-i386_pentium_musl-1.1.16/iperf-2.0.9/.

4. Apply all the pre-existing patches before creating a new one:

quilt push -a.

98

3.8 – LEDE 17.01 and OpenC2X

5. Show the list of all the existing patches:

quilt series.

6. Create a new patch: quilt new <xxx>-<patch_name>.patch, where <xxx> should

be a number, higher than all the other patch numbers (we noticed that the alphabet-

ical order play a role too, so, creating a patch with number 1010 while all the other

patches are named with three digits numbers does not ensure that it will be applied

after patch #999, unless all the other patches are renamed with four digits and a zero

in front); quilt manages the patches like if they were put inside a stack; the newly cre-

ated patch is actually “put on top” and applied after all the other underlying patches.

7. Associate the files to edit to the patch and modify them: quilt edit <path/

filename>. This command will associate a file and open the preferred editor to

edit that file; the path is relative to the position of the package prepared source di-

rectory.

Example with an iPerf file: quilt edit src/Locale.c

8. Optionally review the changes: quilt diff

9. Update the patch with the modifications: quilt refresh.

10. Repeat points from 6 to 9 to create other patches, if needed.

11. Return to the build system main directory using cd (example: cd ../../../)

12. Update the package:

make package/example/update V=s.

Example with iPerf :

make package/network/utils/iperf/update V=s.

13. Rebuild the package to compile the changes:

make package/example/{clean,compile} package/index V=s.

99

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Example with iPerf :

make package/network/utils/iperf/{clean,compile} V=s.

In order to make this workflow easier to follow, we created a script for the development

PC which is able to prepare, push all the existing patches, update and build a package

for LEDE/OpenWrt, adding then a corresponding alias inside .bashrc to call it from any

terminal window.

The script uses a quiltmake.config file inside the user home directory, which must

contain, on two separate lines:

• The OpenWrt build system directory

• The desired target directory name

quiltmake.sh

1 #!/bin/bash

2

3 if [$# -ne 2]

4 then

5 echo ”Error using program. Expected two parameters: ”

6 echo ”1) Package name (either its name or its compiled name).”

7 echo ”2) -p for \”prepare\” or -q for cd and quilt push or -u for

update or -b for build (includes -u)”

8 exit 1

9 fi

10

11 IFS=$’\r\n’ # Internal field separator setting for reading the .config

file

12 filename=”quiltmake.config”

13

14 cd ~

15 i=0

16 while read -r line

100

3.8 – LEDE 17.01 and OpenC2X

17 do

18 config[$i]=”$line”

19 i=$((i+1))

20 done < $filename

21 openwrtpath=${config[0]}

22 target=${config[1]}

23

24 echo ”openWRT path: $openwrtpath”

25 echo ”target name: $target”

26

27 if [$2 = ”-p”]

28 then

29 echo ”Preparing package: $1”

30 cd $openwrtpath

31 make package/$1/{clean,prepare} V=s QUILT=1

32 elif [$2 = ”-q”]

33 then

34 echo ”Moving to folder: $openwrtpath/build_dir/$target/$1”

35 cd $openwrtpath/build_dir/$target/$1

36 echo ”Pushing existing patches...”

37 quilt push -a

38 echo ”Now you can start creating your patch with \”quilt new <number

>-<filename >.patch\””

39 echo ” and \”quilt edit <src file>\”.”

40 echo ”Review your changes with \”quilt diff\” and apply them with \”

quilt refresh\”.”

41 echo ”Please use now \”cd $openwrtpath\” and \”cd build_dir/$target/

$1\” to start working”

42 echo ” as reported above.”

43 elif [$2 = ”-b”]

44 then

45 echo ”(Re)building package $1”

46 echo ”Updating...”

47 cd $openwrtpath

101

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

48 make package/$1/update V=s QUILT=1

49 echo ”Cleaning , compiling and installing”

50 make package/$1/{clean,compile,install} package/index V=s

51 echo ”Ok. Now, if you do not see any error, you can regenerate your

image using, for instance , \”make -j1 V=s\””

52 elif [$2 = ”-u”]

53 then

54 echo ”Updating package $1”

55 echo ”Updating...”

56 cd $openwrtpath

57 make package/$1/update V=s QUILT=1

58 echo ”Package updated.”

59 else

60 echo ”Unrecognized argument $2. The script will terminate now.”

61 exit 1

62 fi

63 echo ”Done.”

Example of quiltmake.config file

/home/francesco/openc2x_embedded/OpenC2X-embedded/

target-i386_pentium_musl -1.1.16

Added line to .bashrc

alias quiltmake=”~/quiltmake.sh”

Thanks to this script, creating patches, for example for the iPerf package, was made

simpler. A sample workflow, opening a terminal on the LEDE main build directory, for

iPerf patching is shown below:

quiltmake network/utils/iperf -p

quiltmake iperf -2.0.9 -q

cd build_dir/target-i386_pentium_musl -1.1.16/iperf -2.0.9/

quilt new

quilt edit

102

3.8 – LEDE 17.01 and OpenC2X

quilt refresh

quiltmake network/utils/iperf -b

3.8.4 Patching ath5k and iperf

TheOpenC2X platformwas designed to flawlessly work with the ath9k driver. In order

to adapt the platform to properly work with the ath5k based UNEX cards, a patch needed

to be coded.

In fact, looking at the hardware properties supported by the driver with iw dev phy

phy0, two channels (182 and 184) were actually missing from the list of the supported

ones, even through, from previous experience, we knew that they were actually supported.

Part of the hardware information command output is reported below:

.......

* 5860 MHz [172] (14.0 dBm)

* 5870 MHz [174] (33.0 dBm)

* 5880 MHz [176] (33.0 dBm)

* 5890 MHz [178] (33.0 dBm)

* 5900 MHz [180] (33.0 dBm)

valid interface combinations:

* #{ managed } <= 2048, #{ AP, mesh point } <= 4, #{ IBSS } <= 1,

total <= 2048, #channels <= 1

.......

In order to enable the support for them, the driver needed to be modified. Thanks to

the transparency mechanism introduced in section 3.5.1, it was sufficient to change the

driver source code, without touching, for instance, the mac80211 layer.

The patch file is reported here:

999-ITS-G5D-channels-fix.patch (in package/kernel/mac80211)

1 --- a/drivers/net/wireless/ath/ath5k/base.c

2 +++ b/drivers/net/wireless/ath/ath5k/base.c

3 @@ -319,7 +319,22 @@ ath5k_setup_channels(struct ath5k_hw *ah

103

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

4

5 count = 0;

6 for (ch = 1; ch <= size && count < max; ch++) {

7 - freq = ieee80211_channel_to_frequency(ch, band);

8 + /* ITS-G5D fix: added by Politecnico di Torino to enable channels

182

9 + and 184 on UNEX DCMA 86P2 cards */

10 + if(ch == 182 || ch == 184) {

11 + switch(ch) {

12 + case 182:

13 + freq=5910;

14 + break;

15 + case 184:

16 + freq=5920;

17 + break;

18 + default:

19 + break;

20 + }

21 + } else {

22 + freq = ieee80211_channel_to_frequency(ch, band);

23 + }

24

25 if (freq == 0) /* mapping failed - not a standard channel */

26 continue;

The 182 and 184 channels, representing the ITS-G5D ones in the ETSI standard, were

disabled due to the fact that ath5k was using, inside the ath5k_setup_channels()

function (responsible for channels’ setup) a call to ieee80211_channel_to_frequency

(), a utility function provided by cfg80211. This function, defined in net/wireless/util.c

in the Linux kernel code, performs the mapping between the channel number and the

corresponding central frequency.

It is, however, mapping channels from 182 to 196 to the 4.9 GHz range, instead of the

5.9 GHz range.

104

3.8 – LEDE 17.01 and OpenC2X

In order not to modify the cfg80211 source code, which may be used by other devices,

the driver was modified to perform a manual mapping between channels 182 and 184 and

their respective center frequencies (5910 and 5920 MHz).

Figure 3.14 shows the driver correctly recognizing channels 182 and 184.

Figure 3.14: Channels 182 and 184 now available

Another feature that was missing was iPerf support to the EDCA traffic classes, to

perform measurements with prioritized traffic using a simple tool, without the need of

coding other external applications.

The IP ToS field (iperf option -S) could have been used, but it appeared to be ig-

nored in frame prioritization, due to the “999-Enable-queueing-in-all-4-ACs-BE-BK-VI-

VO.patch”OpenC2Xmac80211 patch, which, however, introduces a very useful workaround

that makes it possible to directly set the traffic class by acting on any created socket op-

tions.

This patch actuallymodifies the ieee80211_select_queue() function, inmac80211,

mentioned when speaking about the Linux wireless subsystem.

Its code can be seen, as an updated version to workwith OpenWrt 18.06.1, in Appendix

B.

105

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Following the workflow presented before for the quilt tool, a patch for the iPerf pro-

gram has been created, adding a new, non-mandatory, option -A to specify the traffic class

which should be used to send packets (it accepts as argument “BK”, “BE”, “VI” or “VO”).

Then, after fetching the access category from the user, the patched binary can set the

socket, created by iPerf, to use the corresponding user priority.

The patch file, including comments to the modified and newly introduced lines, is

reported below:

001-iperf-MAC_AC-patch.patch (in package/network/utils/iperf)

1 --- a/src/PerfSocket.cpp

2 +++ b/src/PerfSocket.cpp

3 @@ -136,8 +136,18 @@ void SetSocketOptions(thread_Settings *

4 (char*) &tos, len);

5 WARN_errno(rc == SOCKET_ERROR , ”setsockopt IP_TOS”);

6 }

7 +

8 #endif

9

10 + // set MAC AC (access category) field, if specified only (i.e. if

mMACUP != -1)

11 + // AC is set starting from user priorities (UP)

12 + if (inSettings ->mMACUP >= 0) {

13 + int up = inSettings ->mMACUP;

14 + Socklen_t len = sizeof(up);

15 + int rc = setsockopt(inSettings ->mSock, SOL_SOCKET ,

SO_PRIORITY , (char*) &up, len);

16 + WARN_errno(rc == SOCKET_ERROR , ”setsockopt SO_PRIORITY”);

17 + }

18 +

19 if (!isUDP(inSettings)) {

20 // set the TCP maximum segment size

21 setsock_tcp_mss(inSettings ->mSock, inSettings ->mMSS);

22 --- a/src/Settings.cpp

106

3.8 – LEDE 17.01 and OpenC2X

23 +++ b/src/Settings.cpp

24 @@ -107,6 +107,7 @@ const struct option long_options[] =

25 {”realtime”, no_argument , NULL, ’z’},

26

27 // more esoteric options

28 +{”accesscategory”, required_argument , NULL, ’A’},

29 {”bind”, required_argument , NULL, ’B’},

30 {”compatibility”, no_argument , NULL, ’C’},

31 {”daemon”, no_argument , NULL, ’D’},

32 @@ -152,6 +153,7 @@ const struct option env_options[] =

33 {”IPERF_REPORTSTYLE”,required_argument , NULL, ’y’},

34

35 // more esoteric options

36 +{”IPERF_MACAC”, required_argument , NULL, ’A’},

37 {”IPERF_BIND”, required_argument , NULL, ’B’},

38 {”IPERF_COMPAT”, no_argument , NULL, ’C’},

39 {”IPERF_DAEMON”, no_argument , NULL, ’D’},

40 @@ -172,7 +174,7 @@ const struct option env_options[] =

41

42 #define SHORT_OPTIONS()

43

44 -const char short_options[] = ”1b:c:def:hi:l:mn:o:p:rst:uvw:x:y:zB:CDF

:IL:M:NP:RS:T:UVWZ:”;

45 +const char short_options[] = ”1b:c:def:hi:l:mn:o:p:rst:uvw:x:y:zA:B:

CDF:IL:M:NP:RS:T:UVWZ:”;

46

47 /*

48 * defaults

49 @@ -233,6 +235,7 @@ void Settings_Initialize(thread_Setting

50 //main->mThreads = 0; // -P,

51 //main->mRemoveService = false; // -R,

107

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

52 //main->mTOS = 0; // -S, ie. don’t set type

of service

53 + main->mMACUP = -1; // -A (set to an invalid

number as default -> with -1 no setsockopt will be called for AC)

54 main->mTTL = 1; // -T, link-local TTL

55 //main->mDomain = kMode_IPv4; // -V,

56 //main->mSuggestWin = false; // -W, Suggest the window

size.

57 @@ -679,6 +682,24 @@ void Settings_Interpret(char option, co

58 mExtSettings ->mTOS = strtol(optarg, NULL, 0);

59 break;

60

61 + case ’A’: // 802.11p/802.11e MAC layer access categories

62 + // Mapping between UP (0 to 7) and AC (BK to VO)

63 + if(strcmp(optarg ,”BK”) == 0) {

64 + mExtSettings ->mMACUP=1; // UP=1 (2) is AC_BK

65 + } else if(strcmp(optarg ,”BE”) == 0) {

66 + mExtSettings ->mMACUP=0; // UP=0 (3) is AC_BE

67 + } else if(strcmp(optarg ,”VI”) == 0) {

68 + mExtSettings ->mMACUP=4; // UP=4 (5) is AC_VI

69 + } else if(strcmp(optarg ,”VO”) == 0) {

70 + mExtSettings ->mMACUP=6; // UP=6 (7) is AC_VO

71 + } else {

72 + // Leave to default (-1), i.e. no AC is set to socket

, and print error

73 + fprintf(stderr, ”Invalid AC specified with -A\nValid

ones are: BK, BE, VI, VO\nNo AC will be set\n”);

74 + }

75 +

76 + //mExtSettings ->mMACUP = strtol(optarg, NULL, 0);

77 + break;

78 +

79 case ’T’: // time-to-live for multicast

80 mExtSettings ->mTTL = atoi(optarg);

108

3.8 – LEDE 17.01 and OpenC2X

81 break;

82 --- a/include/Settings.hpp

83 +++ b/include/Settings.hpp

84 @@ -129,6 +129,7 @@ typedef struct thread_Settings {

85 // int’s

86 int mThreads; // -P

87 int mTOS; // -S

88 + int mMACUP; // -A

89 int mSock;

90 int Extractor_size;

91 int mBufLen; // -l

92 --- a/src/Locale.c

93 +++ b/src/Locale.c

94 @@ -111,6 +111,7 @@ Client specific:\n\

95 -n, --num #[KM] number of bytes to transmit (instead of -t

)\n\

96 -r, --tradeoff Do a bidirectional test individually\n\

97 -t, --time # time in seconds to transmit for (default

10 secs)\n\

98 + -A, --accesscategory <AC> Forces a certain EDCA MAC access category

to be used\n\

99 -B, --bind [<ip> | <ip:port>] bind src addr(s) from which to

originate traffic\n\

100 -F, --fileinput <name> input the data to be transmitted from a

file\n\

101 -I, --stdin input the data to be transmitted from

stdin\n\

102 --- a/include/version.h

103 +++ b/include/version.h

104 @@ -1,2 +1,2 @@

105 -#define IPERF_VERSION ”2.0.9”

106 +#define IPERF_VERSION ”2.0.9 OpenC2X patch”

107 #define IPERF_VERSION_DATE ”9 Sept 2016”

109

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

In order to test the added functionality, two sh scripts using iperf have been written,

to open a client+server on one board, connecting to a server+client on the other board,

with the possibility of setting two different traffic classes for the two clients connecting

to the two servers.

server6000client7000.sh

1 #!/bin/sh

2

3 if [$# -ne 3]

4 then

5 echo ”Error using program. Expected 3 parameters: client IP, AC, inj

. data rate.”

6 exit 1

7 fi

8

9 iperf -s -u -i 2 -p 6000 &

10 sleep 2

11 echo ’Starting client...’

12 iperf -c $1 -u -b $3 -i 2 -t 60 -A $2 -p 7000 >> Client7000.txt

13 sleep 2

14 echo ’Killing iperf server...’

15 killall iperf

16 echo ’Done.’

server7000client6000.sh

1 #!/bin/sh

2

3 if [$# -ne 3]

4 then

5 echo ”Error using program. Expected 3 parameters: client IP, AC, inj

. data rate.”

6 exit 1

7 fi

110

3.8 – LEDE 17.01 and OpenC2X

8

9 iperf -s -u -i 2 -p 7000 &

10 sleep 2

11 echo ’Starting client...’

12 iperf -c $1 -u -b $3 -i 2 -t 60 -A $2 -p 6000 >> Client6000.txt

13 sleep 2

14 echo ’Killing iperf server...’

15 killall iperf

16 echo ’Done.’

They should be run one on one board and the other on the second board, specifying as

arguments:

1. The WLAN IP address of the other board to connect to (for instance 10.10.6.100 or

10.10.6.101)

2. The traffic class (a string containing “BK”, “BE”, “VI” or “VO”)

3. The data rate at which the UDP transmission should happen (for example 10M)

During this work, they were also included inside all the newly built LEDE/OpenWrt

images, using the custom files feature described in section 3.8.2.

As is it possible to notice, the new -A option is used (together with the typical iPerf

commands presented before) and two client log files are saved into Client6000.txt and

Client7000.txt.

More detailed measurements with iPerf, on the APU boards, be presented in chapter 6.

3.8.5 C programs for broadcast transmissions

The next step foresaw the creation of two command line C programs for broadcast (and

possibly also unicast) transmissions, which were then cross-compiled for the boards.

The two programs are based on raw sockets, in order to make them as much flexible

as possible, even for the implementation of non-IP protocols, such as WSMP.

111

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

In order to properly test them, UDP, which is IP-based, was chosen, but we tried to

keep our approach as general as possible, in order to enable any future improvement with

other protocols and packet formats.

The disadvantage is that the packet should be manually built: for instance, considering

UDP, the application has to build the Ethernet header, the IP header and the UDP header,

including the IP and UDP checksums, which should be then checked by the receiver.

In order to make it easier to build the UDP packet and to separate the application

from all the functions to manage and build the frame, we wrote a custom library, which

contains:

• Some useful constants, such as additional Ethertypes

• Some useful macros, for instance to compute the size of a standard IP/UDP packets

(with no options in the IP header)

• Additional types, including “macaddr_t”, to contain mac addresses as 1 B arrays

with 6 places, “byte_t”, to define in a more friendly manner byte arrays and vari-

ables (which are actually unsigned char) and “ethertype_t”, as a new,more friendly,

name for unsigned short, to be used to specify a certain Ethertype

• General utility functions, including “wlanLookup()”, which can be used to auto-

matically look for a wireless interface on the device, two functions to print a given

packet with a certain length (both in hexadecimal mode - “display_packet()”

and in character mode - “display_packetc()”) and functions to manage MAC

address arrays (“macaddr_t” type)

• Functions to populate an Ethernet header (with source MAC, destination MAC and

Ethertype) and to encapsulate an SDU inside an Ethernet packet, combining header

and data coming from higher layers

• Functions to populate and manage IPv4 headers and packets

• Functions to populate and manage UDP headers and packets

112

3.8 – LEDE 17.01 and OpenC2X

• Two function which can be useful when receiving UDP datagrams throug a raw

socket: “UDPgetpayloadsize()”, allowing to get the payload size of a specified

UDP datagram (given its pointer), and “UDPgetpacketpointers()”, to obtain,

given a certain buffer containing an UDP packet, the pointer to the headers and

payload sections

The library is divided into twomain files, called “rawsock.h” and “rawsock.c” plus two ad-

ditional files “ipcsum_alth.h” and “ipcsum_alth.c”, which contain a copy of the “|”ip_fast_csum()|

function from the 4.19.1 version of the Linux kernel; this function is able to compute the

IP checksum is a fast and reliable way.

This function, even though it is available in the Linux kernel, was copied inside two

additional files to make it easier to compile programs using the library, since this IP

checksum calculation function is contained in kernel header files (in particular, inside

net/checksum.h), which are not normally available for inclusion like other headers.

This library currently supports IP and UDP only, with very few constants related also

to WSMP.

We built its structure, however, in the hope that it could be easily extended to other

non-IP protocols without having too many issues to deal with.

Its code and an example on how it can be used (i.e. the packet sending program) are

reported in the appendix mentioned at the end of this section.

The two programs are represented by one periodic sender and one receiver, printing

the information which are read from the wireless medium, either broadcast or directed to

a specific board:

• The sending program (testprogram_broadcastSend) accepts as arguments: the port

to be used, IP address (255.255.255.255 can be used for broadcast flooding trans-

missions), user priority (which will be mapped to an access category), period to use

for sending each message (in seconds, values less than 1 are accepted), payload of

the message (the program could be enhanced to use a different payload, not specified

by the user though the terminal).

113

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

• The receiving program (testprogram_broadcastReceive) does not accept any argu-

ment (as it can receive all UDP packets), but it can be easily enhanced to received

parameters from the user, such as source IP address, port, and so on.

In the current version of the program, which is set for broadcast transmissions only (at

the moment), the IP address specified by the user is actually ignored. This parameter,

however, has been kept to enable future versions of the program to easily support both

unicast and broadcast transmissions.

They are both able to automatically look for available wireless interfaces thanks to the

functions contained in the library described before.

The “wlanLookup()” function has the following prototype:

62 rawsockerr_t wlanLookup(char *devname, int *ifindex, macaddr_t mac,

unsigned int index);

When only one interface is available and “0” is specified as index, that interface name is

returned inside “devname”. Then, if the other two arguments are not NULL, the interface

index and the corresponding source MAC address (if available) are returned.

If more than one interface is present, the number of available interfaces is returned by

the function and the index is used to point to a specific interface (for instance “index=1”

can be used to point to a possible “wlan1” interface).

As mentioned before, the programs are actually using UDP as higher layer protocol,

but they can be used as a basic skeleton to build more complex projects, possibly sup-

porting non-IP protocols which can be implemented in the future, such as WSMP.

The processing done by the receiving program is then limited, at this level, to reading

and printing the received information, but, again, they can be extended to perform further

processing, use nl80211 to manage the wireless stack, and so on.

The sending program can also be used as a base to implement a broadcast sending

software parsing information from files and from other structures, other than simply re-

ceiving the information from the user via terminal (both for what concerns the payload

and the interval/user priority).

114

3.8 – LEDE 17.01 and OpenC2X

The time precision of the Linux timers used to send periodic messages, taking also

into account the program execution time, allows the user to easily reach around 1ms of

precision; this is fine for ITS applications like sending periodic BSMs.

Figure 3.15: The two C programs for broadcast transmission and receptions, running
respectively on the two boards (the image has been recreated in a second moment: that’s
the only reason why the APU boards are shown in the title of each window)

In order to validate, at least for what concerns UDP, our implementation, we also

tested the sending program together with a receiver program using UDP datagram sock-

ets, showing that our manually built UDP packets are actually received and that both the

library and the sender/received program should be working properly.

115

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Figure 3.16: Validating the sender program with a receiver program using a simple UDP
datagram socket

The C source code is reported in Appendix A.

3.8.6 Packet sniffing: methodologies

One important feature when developing and researching on networking applications,

is the possibility to perform packet sniffing.

Three ways of performing packet sniffing on the PC Engine boards have been stud-

ied, trying to maintain them as general as possible, as general method to do sniffing on

networking embedded systems, typicallymissing an user interface and unable to runWire-

shark.

In order to perform packet sniffing in an optimal way, the chosen board should be

116

3.8 – LEDE 17.01 and OpenC2X

configured to use a monitor wireless interface.

Thanks to how the Linux networking subsystemworks, with virtual interfaces, a board

can manage both monitoring and, for instance, transmission of information over the radio

medium.

In order to create a new virtual monitor interface, alongside the main wireless interface

(which, in our work, was always called wlan0), the following command have to be issued:

iw dev wlan0 interface add wlan1 type monitor

or: iw phy phy0 interface add wlan1 type monitor

ifconfig wlan1 up

It is important to notice that this is possible only if the wireless card supports interface

combinations.

A board can also be configured in monitor mode only, which is always the preferred

option.

In case twomodes are used simultaneously, however, the monitor interface will depend

on the master (managed) one, for example for what concerns the configured frequency.

(1) Using tcpdump

tcpdump is a packet analysis command line tool, able to report all the captured packets

over a certain wireless interface (it is typically used in conjunction with monitor mode

interfaces).

Its use is well documented inside the Linux Man Pages [54]. This section will concen-

trate on the useful options for packet sniffing operations.

When included into the boards, it can be used both for printing out the captured packets

or to save them into a file, which can be transferred to the development PC and visualized

inside Wireshark.

In the first case, it is sufficient to use, on the boards (so, by means of PuTTY):

tcpdump -i <interface > -l

117

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

Where <interface> is the monitor interface, for example, with reference to the previous

section, wlan1. This option is meaningful only when few packets are received and to

check whether communication can really happen between different devices.

-l makes the output line buffered for a better visualization.

In order to capture network traffic and be able to better analyze it, it is possible to make

tcpdump write the raw packets to a file, instead of parsing and printing them out. It can

be read both by tcpdump, with the -r <file> option, or transferred to the development

PC and analyzed with Wireshark.

The command to be used is:

tcpdump -i <interface > -w <file>

The .pcap extension is the suggested one for every capture file [54].

118

3.8 – LEDE 17.01 and OpenC2X

Figure 3.17: tcpdump running over amonitor interface in the ALIX_100 board, capturing
failed ARP requests from the ALIX_101 board, directly using stdout over the command
line

(2) Using tcpdump and plink

One useful option for packet sniffing foresees the use of plink, which is a command

line interface to PuTTY.

119

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

We used plink to open a session with the board chosen for wireless monitoring, cap-

turing traffic with the tcpdump program and sending it to Wireshark, running on the

Windows development host, through a pipe.

This allowed to have almost real time monitoring of the wireless traffic directly on the

development PC, as long as it was connected with the board (through Ethernet).

To simplify the process, a simple batch script, for Windows, has been written:

1 @echo off

2 title Wireshark PC Engines capture

3 color F0

4 set /p monIP=”Insert the IP address of the board (use the Ethernet

interface IP here!): ”

5 set /p iface=”Insert the monitor interface (for ex. ’wlan0’): ”

6 echo ”IP: %monIP% Port: 22 Interface: %iface%”

7 :: using tcpdump on:

8 :: -i <specified interface >

9 :: -w <standard output, ’-’ is used to indicate stdout>

10 :: -U with packet-buffered output

11 :: piping (|) to wireshark with:

12 :: -k (start capture immediately)

13 :: -i - (read from stdin (’-’))

14 plink.exe -l root %monIP% -P 22 ”tcpdump -i %iface% -U -w -” | ”C:\

Program Files\Wireshark\Wireshark.exe” -k -i -

15 echo ”Script terminated”

16 pause

It asks the user to specify the Ethernet IP address of the board monitoring the wireless

medium (the same IP address used to connect with PuTTY and SSH) and the interface to

be used (in our case wlan1).

While the tcpdump options are already commented in the code, the main plink options

are listed below:

• -l <username>: connect with the specified username (e.g. root)

120

3.8 – LEDE 17.01 and OpenC2X

• -pw <password>: use the specified password, if set on the target board

• -P <port>: to connect to the specified port (e.g. 22 for SSH connections)

Figure 3.18 shows a capture session using the script and Wireshark, while the C pro-

grams (plus some failed ARP requests) presented in the previous section are running.

Figure 3.18: Packet sniffing using method (2)

(3) Using iptables-mod-tee

The third possibility, which can be used only when a development PC is connected to

the board monitoring the selected channel, is to rely on the iptables firewall, with a target

extension called tee.

This target extension “will clone a packet and redirect this clone to another machine

on the local network segment” [55], actually cloning, in our case, all the packets received

by the board and sending them to the development PC, which should be already inside

121

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

the boards subnet when interacting with them through PuTTY or WinSCP.

It is then possible to open Wireshark and, through proper filtering, filter out all the

SSH information and view the wireless traffic received by the board.

In this case, only the boards needs to be configured. To simplify the setup procedure,

an sh script has been written, to be run on the board itself. This script contains also the rel-

evant iptables commands, used to setup the so called mangle13 table for packet cloning

and forwarding. It will also check whether iptables and the TEE extension are installed

before proceeding with the configuration.

iptables_route

1 #!/bin/sh

2

3 # Check correct parameter usage and eventually flush the mangle table

4 if [$# -ne 3]

5 then

6 if [$# -eq 1 -a $1 = ’flush’]

7 then

8 echo ”Flushing mangle table...”

9 iptables -t mangle -F

10 else

11 echo ”Error using program. Expected two parameters.”

12 echo ”1) IP address to monitor (IP or ’any’)”

13 echo ”2) IP address of the PC running Wireshark”

14 echo ”3) Interface to be used (for ex. wlan0)”

15 echo ”One parameter only is accepted only if it is ’flush’”

16 echo ” to flush the whole iptables mangle table”

17 fi

18 exit 1

19 fi

20

13Packet mangling refers to the modification of packets

122

3.8 – LEDE 17.01 and OpenC2X

21 # Check if the required package iptables is installed.

22 # If it is not, abort the execution.

23 # You can install it by using opkg install iptables.

24 opkg list | grep -w ”iptables” >/dev/null 2>&1

25 if [$? -ne 0]

26 then

27 echo ”iptables is not installed. Please install it before

proceeding further.”

28 exit 1

29 fi

30

31 # Check if the required package iptables -mod-tee is installed.

32 # If it is not, abort the execution.

33 # You can install it by using opkg install iptables-mod-tee.

34 opkg list | grep ”iptables-mod-tee” >/dev/null 2>&1

35 if [$? -ne 0]

36 then

37 echo ”iptables -mod-tee is not installed. Please install it before

proceeding further.”

38 exit 1

39 fi

40

41 # $1 - IP of device to monitor

42 # $2 - IP of gateway (i.e. of the PC running Wireshark)

43 echo ”Setting POSTROUTING...”

44 if [$1 = ’any’]

45 then

46 iptables -t mangle -A POSTROUTING -o $3 -j TEE --gateway $2

47 else

48 iptables -t mangle -A POSTROUTING -o $3 -s $1 -j TEE --gateway $2

49 fi

50 if [$? -eq 0]

51 then

52 echo ”Done.”

123

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

53 else

54 echo ”iptables -t mangle -A POSTROUTING <...> reported an error.

The script will terminate now.”

55 exit 1

56 fi

57 echo ”Setting PREROUTING...”

58 if [$1 = ’any’]

59 then

60 iptables -t mangle -A PREROUTING -i $3 -j TEE --gateway $2

61 else

62 iptables -t mangle -A PREROUTING -i $3 -d $1 -j TEE --gateway $2

63 fi

64 if [$? -eq 0]

65 then

66 echo ”Done.”

67 else

68 echo ”iptables -t mangle -A PREROUTING <...> reported an error.

The script will terminate now.”

69 exit 1

70 fi

71

72 echo ”iptables routing has been configured for $3 on mangle table,

using TEE package.”

73 echo ”On wireshark , connect to the network corresponding to $2.”

74 if [$1 != ’any’]

75 then

76 echo ”You can use as filter: (ip.src == $1) || (ip.dst == $1)”

77 fi

The script accepts as parameters either flush, to clear the firewall table and the ex-

isting forwarding settings, or a sequence of IP address to use when copying traffic to the

development PC (or “any” to monitor any address, including broadcast), IP address of the

PC running Wireshark (in our case it should be 10.1.11.60, as defined in section 3.7.1)

124

3.9 – Packet sniffing: RadioTap

and the interface to be used.

For instance:

./iptables_route any 10.1.11.60 wlan0

In order to filter the meaningless traffic inside Wireshark (which should be set to cap-

ture on the Ethernet interface where the boards are connected), filters such as IP based

ones can be used, as in figure 3.19.

Figure 3.19: Wireshark with filter (ip.src == 10.10.6.101), to display only the
traffic generated by the “ALIX_101” board

The drawback of this method is that it can only monitor packets directly received by

the board (either targeted to the specific board or multicast/broadcast); that is why we

actually preferred method (2).

This method does not seem to work with monitor interfaces, so, it should be used only

with managed interfaces, such out wlan0 (not wlan1).

3.9 Packet sniffing: RadioTap

Every time an interface is set in monitor mode it will be able to capture packets at the

802.11 level, including an additional RadioTap header.

This additional encapsulation, added during capture, is able to provide the user more

125

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

useful information about the captured frame, such as signal level at the antenna (SSI Sig-

nal), channel frequency, some channel flags telling whether the 2.4 or 5 GHz has been

used and the channel width, and so on [56].

It is able, in some sense, to capture the state of the radio medium and of the hardware

at the moment in which the packet was received and it can be reviewed using Wireshark.

This additional “header” is typically inserted by the driver, which then informs the

mac80211 layer [57].

3.10 OpenWrt 18.06.1

After workingwith LEDE 17.01, we decided to try tomove to themost updated version

of OpenWrt, i.e. to OpenWrt 18.06.1, released in August 2018 (less than two months

before the moment of writing), with Linux kernel version 4.14.63 (4.14 is the 18th LTS

release of the Linux kernel [58]).

We used as a base the OpenC2X LEDE distribution, downloading OpenWrt 18.06.1

and applying all the already existing OpenC2X patches to it, with very few modifications

with respect to their LEDE version, which is coded by the CCS Labs team in Paderborn.

We adapted also all the custom patches described before, which required almost no

modifications to the code (although some line offsets occurred due to newer versions of

the packages).

All the patches, including the original OpenC2X ones adapted to work in the new

OpenWrt version, are reported in Appendix B, since they include quite a lot of code.

To ensure compatibility, they all have been recreated using quilt, after updating the

quiltmake.config file with the new directory and target name:

Updated quiltmake.config file

/home/francesco/openwrt -18.06.1

target-i386_pentium_musl

Other than the patches presented before, three new patches have been added:

126

3.10 – OpenWrt 18.06.1

• An existing OpenWrt patch for the new version of iw (200-reduce_size.patch) was

excluding from compilation the ocb module, thus making the ocb leave and ocb

join commands unavailable. This patch was probably introduced to reduce the size

of iw for maintaining support to older devices with low memory [59] [60]. The new

patch restores the OCB module when building iw.

• The wireless regulatory database file, which was included inside mac80211, has

been moved and it is now managed in ./package/firmware/wireless-regdb/. Instead

of directly editing the file and placing it as a “custom file” (which is now called

db.txt), we decided to introduce two patches: one adding the ITS frequencies to IT,

and one adding them to DE (in the same way in which there were introduced by the

Paderborn University team), to maintain complete compatibility with the OpenC2X

platform.

At the moment our OpenWrt 18.06.1 platform does not include the OpenC2Xmodules

as in the previous LEDE solution, but, thanks to OpenC2X standalone, they can actually

be inserted and they should work as intended.

A future improvement of this work could consider the integration and testing of these

modules also inside the new OpenWrt version.

Since OpenC2X is a very useful software solution for delving into ITS systems, how-

ever, it can be important to keep the whole solution compatible with it.

The commands and solutions that can be applied to OpenWrt 18.06.1 are then the

same as the ones described before: it is possible to compile C code and run the previously

described programs, to do packet sniffing, to perform measurements with iPerf just like

before, and so on.

When building the system, since no “./create_config.sh” script was available (it was

included in LEDE by the CCS Labs team), it was necessary, before setting the main con-

figuration with “make menuconfig” and in place of running the aforementioned script,

to:

127

3 – ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem

1. Set the target only (x86, x86_geode) after issuing “make menuconfig” for a first

time

2. Generate the default configuration: “make defconfig”

3. Run again “make menuconfig” to select the desired packages and configuration

Then, during make menuconfig we tried to select all the packages that were present

in a default OpenC2X configuration, including all the additional packages presented in

3.8.

Finally, two modifications have been performed inside the OpenWrt build system,

other than settings their IP addresses in etc/config/network as in 3.7.1 and 3.8.2:

• The custom files described before, such as iw_startup, have been included in the files

folder, just like in LEDE/OpenC2X embedded.

• The .bashrc file was updated to point to the new toolchain location; the modified

lines are shown in Appendix B.

It can be important to remember that the “poweroff” command can be used to shut

down the boards in a safe manner.

On the ALIX boards it seems to work only partially, while on the APU boards it will

able to effectively turn them completely off (just like a desktop PC).

As a final note, when building the OpenWrt image, it is always important to install all

the prerequisite packages inside the development PC [49]:

sudo apt-get install build-essential subversion libncurses5 -dev zlib1g

-dev gawk gcc-multilib flex git-core gettext libssl-dev

128

Chapter 4

Analyzing the DSRC spectrum

4.1 Introduction

Before proceeding further with thework, moving to the newerAPU boards, we decided

that it could be interesting to use a spectrum analyzer tool, in order to achieve two main

results: first, to verify that no other DSRC radio sources were interfering with the boards’

communications (this was quite likely, due to DSRC system not being so widespread as of

today and due to tests being performed, at this phase, mostly indoors), second, to validate

the 10 MHz wide channel usage when one board is transmitting information, verifying

also that the guard band is kept free by the UNEX cards.

This will let us discover few problems with the ALIX boards.

These tests can be, of course, repeated for any embedded system running an 802.11p

stack, provided that it can give the possibility to change the channel in which the infor-

mation is transmitted. Possibly any other supported analyzer device can be used too.

Spectrum analyzers are tools that are able to capture signals at different frequencies,

thus specializing on the frequency domain (unlike oscilloscopes that are time domain

based) thanks to specialized hardware.

129

4 – Analyzing the DSRC spectrum

These instruments are very important in electronic and telecommunication engineer-

ing to test RF circuits and radio transmission. They can be nevertheless used to look at the

WiFi frequency spectrum in a certain location, helping for example to detected possible

devices interfering with the one used for transmitting information.

Spectrum analyzer can be in a portable or bench-top format. The latter are similar to

oscilloscopes analysing the captured spectrum of certain signals: it’s the case, for instance,

of the Keysight X-Series Signal Analyzers. The evolution of technology allowed, however,

to create miniaturized circuits, leading to the birth of portable analyzer almost as precise

and powerful as the bench-top lab-grade solutions [61].

The typical plot that is shown by a spectrum analyzer comprises the signal magnitude

(usually in dBm) on the y axis and the signal frequency on the x axis.

4.2 MetaGeek Wi-Spy DBx and Chanalyzer

In this work, a professional portable analyzer produced by MetaGeek has been used.

Figure 4.1: MetaGeek Wi-Spy DBx

This device is the Wi-Spy DBx (version 3) dual band spectrum analyzer. As it is pos-

sible to see in figure 4.1 it is composed by the device itself, including an antenna, and an

130

4.2 – MetaGeek Wi-Spy DBx and Chanalyzer

USB cable to connect it to a PC.

The PC should be running a software able to capture the device raw output and present

it to the user in a more readable format.

Wi-Spy DBx is actually targeted at locating source of interferences which are acting

against desired WiFi communications and at testing the existing coverage of WiFi net-

works.

The main characteristics of the device are the following [62]:

• Default frequency range: 2.400 to 2.495GHz - 5.150 to 5.850GHz

• Supported frequency range: 2.300 to 2.700GHz - 4.900 to 5.925GHz

• Amplitude range: −100 dBm to −6.5 dBm

• Amplitude resolution: 0.5 dBm

• Bandwidth resolution: 58.036 to 812.500KHz (2.4GHz band, default: 214.286KHz)

and 53.571 to 750.000KHz (5GHz band, default: 464.286KHz)

The device is actually tuned using the default frequency range, but it can be used and it

works well also within the full supported range, which includes all the DSRC frequencies

[62].

It comes bundled with a professional software: Chanalyzer. This program, running

under Windows, is able to capture raw data and show it the user, drawing various plots

useful to monitor the different frequencies in the 2.4 and 5 GHz bands, including a typical

frequency-magnitude spectrum plot (in which average, peak and currentmagnitude values

are shown) and a 3D plot in which time is plotted on the y axis, frequency on the x axis

and the magnitude is shown by means of a heat map (a red marker means high power, a

blue one mean low power).

Utilization graphs (with % utilization vs frequency) are made available to the user

too and it is possible to record captures that happened in time, directly from within the

program.

131

4 – Analyzing the DSRC spectrum

Figure 4.2: MetaGeek Chanalyzer user interface during a capture session on the 2.4 GHz
band. It is possible to distinguish (1) a density view showing ”how often a signal is de-
tected at a specific amplitude” [63] (2) a waterfall view, showing also the time axis and
(3) a utilization plot

This is, however, a commercial program. It has the big advantage of offering professional-

grade tools just out of the box, with many options available to the users, but it may lack

of flexibility and customizability when it comes to new features which may be needed in

research.

Inside Chanalyzer almost every useful feature for WiFi monitoring is already imple-

mented, but in case new features (and/or small customizations) need to be added they

should be requested to Metageek and cannot be coded by the user.

Moreover, Chanalyzer fully supports the DSRC frequencies in the 5 GHz range, but

they are made available to the user only when a particular plug-in (the so called “Lab

Accessory”) is bought and installed.

Since this additional license was not available with the standard Chanalyzer license, we

decided to look at an open source software solution, interfacing with the Wi-Spy device,

132

4.3 – Kismet Spectools

at least for a part of the work with the spectrum analyzer.

4.3 Kismet Spectools

This software solution is represented by Kismet Spectrum-Tools (in short Spectools),

which is the only spectrum analysis open source program we were able to find.

At the moment of writing it is lacking a good number of useful features which are

instead available in the Metageek program (including the very useful session recording

tool), but being open source, as stated multiple times in this work, it offers a high degree

of flexibility, enabling the user to code its own features when needed and improve this

solution, possibly sharing its code with other users.

It is written completely in C and it is released under the GNU GPL license, which

enables modifications to the code. It runs under Linux and it uses the GTK and Cairo

libraries to create a user interface in which some of the plots presented before are drawn

[64].

It includes, as reported in [64], “userspace drivers for the hardware itself, a graphing

UI built GTK and Cairo, network protocols for remote device capture, and simple utilities

for developing additional tools”.

The planar view of the GUI seems to be very similar to the Chanalyzer one but it

computes the average values in a different way, making them less meaningful for our

purposes (they are always very low dBm values). The other values are instead computed

in the same way as Chanalyzer does.

In a future improvement to this work the way in which Spectrum-Tools computes the

average can be studied in a much deeper way, checking why it is giving different values

with respect to the Chanalyzer average ones.

The code managing this feature is in any case quite complex.

133

4 – Analyzing the DSRC spectrum

Figure 4.3: Spectrum-Tools GUI, providing three views: a Spectral View, equal to the
Chanalyzer waterfall view (but with no information providedwhenmoving the cursor over
the plot), an additional Topo View, showing signal peaks over time at a given frequency
and a Planar View, similar to the Chanalyzer one

4.3.1 Patching Kismet Spectools

In order to add the support for DSRC frequencies the Spectools software needed to

patched, since it provided only default frequency ranges just after being compiled and

executed.

Using the Linux Mint virtual machine running on the development PC, first of all

we downloaded the latest development tree of the software, through Git. The following

command has been used:

git clone https://www.kismetwireless.net/spectools.git

The Spectools code was downloaded inside the ”spectools” directory.

Moving to the spectools directory, it was possible to prepare the source and generate

134

4.3 – Kismet Spectools

the needed Makefiles by using a GNU autoconf 1 generated script:

cd spectools

./configure

It is important to note that the source code compilation requires the USB development li-

brary ”libusb-dev”, otherwise the configuration will fail. In order to install it inside Linux

Mint, we used the following ”apt-get” command:

sudo apt-get install libusb-dev

After the configuration, it was possible to build Spectrum-Tools for the first time using:

make

Every successive compilation was then performed by means of

make clean

make

to be sure to recompile all the files.

When compiling Spectrum-Tools, three executables are generated:

• spectool_curses: a tool extracting data from Wi-Spy and Ubertooth devices, with a

text user interface

• spectool_raw: a tool extracting raw data from the devices mentioned above; it can

be used to build other spectrum analysis tools and scripts [65]

• spectool_gui: the most complex tool, providing a GUI interfacing with the spectrum

analyzer and showing the signal magnitude in time and in the frequency domain in

a similar way as Chanalyzer does; this work focuses on this program

1More details are available here: https://www.gnu.org/software/autoconf/autoconf.html - “Autoconf is
an extensible package [...] that produce shell scripts to automatically configure software source code pack-
ages”

135

4 – Analyzing the DSRC spectrum

Part of the source code was then analyzed and patched in order to add the following

features to spectool_gui:

• Possibility to choose the dBm ranges in the plots which are drawn in the GUI. Be-

fore, the range was fixed to −95 dBm → −50 dBm. These ranges are a window

parameter, so they can be changed on any new window without affecting the other

open ones.

• Support for the DSRC frequencies (channel 172-184), adding the possibility to high-

light the 10 MHz wide IEEE 802.11p channels in the planar view and inserting

two new ranges for capture sessions: one including almost the full 5 GHz band and

adding the 802.11p channels and one specifically showing the DSRC channels only.

In order to launch the GUI of Spectrum-Tools in a faster way the following line was

added to the user .bashrc file, defining an alias every time the shell is started:

.bashrc

#set alias to run spectools gui

alias spectoolgui=”sudo ~/spectools/spectool_gtk”

The alias already includes the ”sudo” command to launch the program with root priv-

ileges; this is needed in order to avoid ”Operation not permitted” errors.

The patched code is presented below: for each file the most significant lines of code

for the patching work are shown. All the added or edited lines are introduced by in-line

comments starting with \\Patch: .

wispy_hw_dbx.c

wispy_hw_dbx.c

315 if (model == WISPYDBx_MODEL_DBxV1 ||

316 model == WISPYDBx_MODEL_DBxV2 ||

317 model == WISPYDBx_MODEL_DBxV3) {

136

4.3 – Kismet Spectools

318 // DBX devices get 2.4, 2.4 turbo, 5, 5-1, 5-2, 5-3

319 *num_ranges = 8; // Patch: increased by 2 the number of ranges for

WiSpy DBx devices (it was 6)

320 } else if (model == WISPYDBx_MODEL_24i ||

321 model == WISPYDBx_MODEL_24xV2) {

322 // 24i and x are 2.4 only, and get just the 2.4 and 2.4 turbo

323 *num_ranges = 2;

324 } else if (model == WISPYDBx_MODEL_900x ||

325 model == WISPYDBx_MODEL_900xV2) {

326 // 900x series gets 2 900mhz-ish ranges

327 *num_ranges = 2;

328 } else if (model == WISPYDBx_MODEL_950x) {

329 // 950x only does one range

330 *num_ranges = 1;

331 } else {

332 // We’ve failed somehow

333 fprintf(stderr, ”FAILURE: Couldn’t determine device model\n”);

334 return;

335 }

336

337 *ranges = (spectool_sample_sweep *) malloc(sizeof(

spectool_sample_sweep) * *num_ranges);

338

339 if (model == WISPYDBx_MODEL_DBxV1 ||

340 model == WISPYDBx_MODEL_DBxV2 ||

341 model == WISPYDBx_MODEL_DBxV3 ||

342 model == WISPYDBx_MODEL_24i ||

343 model == WISPYDBx_MODEL_24xV2) {

344

345 wispydbx_create_settings_from_preset(&((*ranges)[0]),

346 ”Full 2.4GHz Band”, 2400.0f, 2495.0f,

347 333.3f, 200, model);

348 wispydbx_create_settings_from_preset(&((*ranges)[1]),

349 ”Full 2.4GHz Band (Turbo)”, 2400.0f, 2495.0f,

137

4 – Analyzing the DSRC spectrum

350 1000.0f, 500, model);

351 }

352

353 if (model == WISPYDBx_MODEL_DBxV1 ||

354 model == WISPYDBx_MODEL_DBxV2 ||

355 model == WISPYDBx_MODEL_DBxV3) {

356 wispydbx_create_settings_from_preset(&((*ranges)[2]),

357 ”Full 5GHz Band”, 5150.0f, 5836.0f,

358 1497.070f, 428, model);

359 wispydbx_create_settings_from_preset(&((*ranges)[3]),

360 ”UNII Low/Mid (ch. 36-64)”, 5150.0f, 5350.0f,

361 748.535f, 428, model);

362 wispydbx_create_settings_from_preset(&((*ranges)[4]),

363 ”UNII Low/Mid (ch. 100-140)”, 5470.0f, 5725.0f,

364 1122.070f, 428, model);

365 wispydbx_create_settings_from_preset(&((*ranges)[5]),

366 ”UNII Low/Mid (ch. 149-165)”, 5725.0f, 5836.0f,

367 375.0f, 428, model);

368 // Patch: add a full 5 GHz range, including DSRC frequencies (U-NII

-4)

369 wispydbx_create_settings_from_preset(&((*ranges)[6]),

370 ”UNII Low/Mid/DSRC (ch. 149-184)”, 5150.0f, 5925.0f,

371 1497.070f, 428, model);

372 // Patch: add a DSCR/ITS range (U-NII-4 only) - the frequency

resolution parameter actually

373 // influences the accuracy at which frequencies are read and

requires more investigation/fine-tuning

374 // setting default value from https://support.metageek.com/hc

/en-us/articles/203802010-Wi-Spy-Data-Sheet

375 wispydbx_create_settings_from_preset(&((*ranges)[7]),

376 ”UNII DSRC/ITS (ch. 172-184)”, 5850.0f, 5925.0f,

377 464.286f, 428, model);

378 }

138

4.3 – Kismet Spectools

This code is used by Spectrum-Tools to manage the Wi-Spy DBx device, acting as a

driver for the spectrum analyzer. Through the function:

307 void wispydbx_create_settings_from_preset(spectool_sample_sweep *range

, char *name, float startFrequencyMHz , float stopFrequencyMHz ,

float frequencyResolutionkHz , float filterBandwidthkHz , int model)

new settings for the DBx device, such as frequency ranges, are defined. Every setting

is then written into a spectool_sample_sweep structure, which is used as a base for

capturing and managing data coming from Wi-Spy DBx.

In order to enable the selection of ITS frequencies, which are nevertheless supported

by the analyzer, two additional calls to wispydbx_create_settings_from_preset()

have been added. These calls are added just after the other similar ones, inside the

wispydbx_add_supportedranges() function, acting as a “channel range adder” for

the device.

This is sufficient to enable a very basic support for the 802.11p channels.

spectool_container.h

In order to allow these channels (from 172 to 184) to be displayed and correctly high-

lighted in the GUI (taking into account that they are 10 MHz wide), another file has been

modified.

spectool_container.h

248 struct spectool_channels {

249 /* Name of the channel set */

250 char *name;

251 /* Start and end khz for matching */

252 int startkhz;

253 int endkhz;

254 /* Number of channels */

255 int chan_num;

256 /* Offsets in khz */

257 int *chan_freqs;

139

4 – Analyzing the DSRC spectrum

258 /* Width of channels in khz */

259 int chan_width;

260 /* Text of channel numbers */

261 char **chan_text;

262 };

263

264 /* Some channel lists */

265 static int chan_freqs_24[] = {

266 2411000, 2416000, 2421000, 2426000, 2431000, 2436000, 2441000,

267 2446000, 2451000, 2456000, 2461000, 2466000, 2471000, 2483000

268 };

269

270 static char *chan_text_24[] = {

271 ”1”, ”2”, ”3”, ”4”, ”5”, ”6”, ”7”, ”8”, ”9”, ”10”, ”11”, ”12”, ”13”,

”14”

272 };

273

274 static int chan_freqs_5[] = {

275 5180000, 5200000, 5220000, 5240000, 5260000, 5280000, 5300000,

5320000,

276 5500000, 5520000, 5540000, 5560000, 5580000, 5600000, 5620000,

5640000,

277 5660000, 5680000, 5700000, 5745000, 5765000, 5785000, 5805000,

5825000

278 };

279

280 static char *chan_text_5[] = {

281 ”36”, ”40”, ”44”, ”48”, ”52”, ”56”, ”60”, ”64”, ”100”, ”104”,

282 ”108”, ”112”, ”116”, ”120”, ”124”, ”128”, ”132”, ”136”, ”140”,

283 ”149”, ”153”, ”157”, ”161”, ”165”

284 };

285

286 // Add ITS frequencies (patch)

287 static int chan_freqs_ITS[] = {

140

4.3 – Kismet Spectools

288 5860000, 5870000, 5880000, 5890000, 5900000, 5910000, 5920000

289 };

290

291 // Add ITS frequencies (patch)

292 static char *chan_text_ITS[] = {

293 ”172”,”174”,”176”,”178”,”180”,”182”,”184”

294 };

295

296 static int chan_freqs_900[] = {

297 905000, 910000, 915000, 920000, 925000

298 };

299

300 static char *chan_text_900[] = {

301 ”905”, ”910”, ”915”, ”920”, ”925”

302 };

303

304 /* Allocate all our channels in a big nasty array */

305 static struct spectool_channels channel_list[] = {

306 { ”802.11b/g”, 2400000, 2483000, 14, chan_freqs_24 , 22000,

chan_text_24 },

307 { ”802.11b/g”, 2402000, 2480000, 14, chan_freqs_24 , 22000,

chan_text_24 },

308 { ”802.11a”, 5100000, 5832000, 24, chan_freqs_5 , 20000, chan_text_5

},

309 { ”802.11a UN-II”, 5100000, 5483000, 14, chan_freqs_5 , 20000,

chan_text_5 },

310 { ”900 ISM”, 902000, 927000, 5, chan_freqs_900 , 5000, chan_text_900

},

311 { ”802.11p”, 5860000, 5920000, 7, chan_freqs_ITS , 10000,

chan_text_ITS }, // Add ITS frequencies (patch)

312 { NULL, 0, 0, 0, NULL, 0, NULL }

313 };

314

315 // Patch: struct definition for managing the min and max dBm settings

141

4 – Analyzing the DSRC spectrum

316 typedef struct _dbmranges {

317 int min;

318 int max;

319 } dbmranges;

320

321 #endif

This file (together with the linked .c file) acts a container class, where structures related

to the available channels are defined, among other things, including structures used for

sample sweeps and device data/API callbacks management.

The structure array static struct spectool_channels channel_list[] con-

tains a list of available channels. Each member of the array is a structure, as can be seen

from lines 248-262 of the displayed source code, containing the name of the channel set,

the frequency range, the number of channels, the central frequencies in terms of an integer

array (int *chan_freqs;), the channel width and the text to be shown for each channel

when they are displayed inside the GUI. All the frequencies are specified in kHz.

The modified code inserted two additional arrays containing the central frequencies of

the ITS channels and their IEEE numbers as strings to be displayed in the GUI.

These arrays are then used to define a new element inside the structure arraymentioned

before, choosing a 10MHz (10000 kHz) channel width as requested by 802.11p.

The size of the array is not initially specified and the array is scanned inside spec-

tool_gtk_channel.c using a for loop, until a terminating NULL element is found. This

allowed to add elements inside the array with flexibility, without the need of doing any-

thing else than adding a new line in its definition.

The for loop mentioned before is the following one:

spectool_gtk_channel.c

96 /* Try to figure out the channels we use for this spectrum */

97 for (x = 0; wwidget->chanopts != NULL &&

98 channel_list[x].name != NULL && wwidget->chanopts->chanset == NULL;

x++) {

142

4.3 – Kismet Spectools

A new dbmranges structure has been defined too, and it is used to store the minimum

and maximum dBm ranges which, after the patch, are completely selectable from the

GUI.

spectool_gtk.c

The dBm ranges patch required more work and more files to be modified. The relevant

lines of code are presented below and then briefly described.

spectool_gtk.c

84 typedef struct _nb_aux {

85 GtkWidget *nbvbox, *nodev_vbox;

86 GtkWidget *nblabel;

87 GtkWidget *mindbm_gtk , *maxdbm_gtk; // Patch

88 wg_aux *auxptr;

89

90 GtkWidget *planar, *spectral , *topo, *channel;

91 SpectoolWidgetController *p_con, *s_con, *t_con;

92

93 gint pagenum;

94

95 SpectoolChannelOpts *chanopts;

96

97 spectool_phy *phydev;

98 int wdr_slot;

99 GList *wdr_menu;

100 } nb_aux;

101

102 /* fwd defs */

103 static nb_aux *build_nb_page(GtkWidget *notebook , wg_aux *auxptr);

104

105 static void main_devopen(int slot, void *aux) {

106 nb_aux *nbaux = (nb_aux *) aux;

143

4 – Analyzing the DSRC spectrum

107 dbmranges range; // Patch

108

109 g_return_if_fail(aux != NULL);

110

111 // Patch: read the dBm ranges from the GUI

112 range.min=atoi(gtk_combo_box_text_get_active_text(nbaux->mindbm_gtk)

);

113 range.max=atoi(gtk_combo_box_text_get_active_text(nbaux->maxdbm_gtk)

);

114

115 // Patch: a new function spectool_widget_set_ranges accepts as

parameters the GtkWidget and

116 // a dbmranges structure (defined in spectool_container.h)

117 spectool_widget_set_ranges(nbaux->planar,range); // Patch

118 spectool_widget_set_ranges(nbaux->topo,range); // Patch

119 spectool_widget_set_ranges(nbaux->spectral,range); // Patch

120 spectool_widget_set_ranges(nbaux->channel,range); // Patch

121

122 spectool_widget_bind_dev(nbaux->planar, nbaux->auxptr->wdr, slot);

123 spectool_widget_bind_dev(nbaux->topo, nbaux->auxptr->wdr, slot);

124 spectool_widget_bind_dev(nbaux->spectral, nbaux->auxptr->wdr, slot);

125 spectool_widget_bind_dev(nbaux->channel, nbaux->auxptr->wdr, slot);

126

127 nbaux->phydev = wdr_get_phy(nbaux->auxptr->wdr, slot);

spectool_gtk.c

260 static nb_aux *build_nb_page(GtkWidget *notebook , wg_aux *auxptr) {

261 nb_aux *nbaux = (nb_aux *) malloc(sizeof(nb_aux));

262 GtkWidget *temp, *hbox, *arrow, *closebutton , *closeicon;

263 // Patch: minimum dBm values allowed (it is sufficient to change

this in order to add new admitted values)

264 // Valid values: from -100 to -70

265 const char *mindBm[] = {”-100”, ”-95”, ”-90”};

144

4.3 – Kismet Spectools

266 // Patch: maximum dBm values allowed (it is sufficient to change

this in order to add new admitted values)

267 // Valid values: from -50 to 0

268 const char *maxdBm[] = {”-50”,”-40”,”-30”,”-20”,”-10”};

269 // Patch: index to iterate through the previously defined arrays

270 int i;

271 nbaux->auxptr = auxptr;

272

273 /* Default label for the tab, packed into a hbox */

274 hbox = gtk_hbox_new(FALSE, 1);

275 gtk_widget_show(hbox);

276 nbaux->nblabel = gtk_label_new(”No device”);

277 gtk_box_pack_start(GTK_BOX(hbox), nbaux->nblabel, FALSE, FALSE, 0);

278

279 closebutton = gtk_button_new();

280 closeicon = gtk_image_new_from_stock(GTK_STOCK_CLOSE ,

GTK_ICON_SIZE_MENU);

281 gtk_container_add(GTK_CONTAINER(closebutton), closeicon);

282 gtk_button_set_relief(GTK_BUTTON(closebutton), GTK_RELIEF_NONE);

283 gtk_widget_show(closebutton);

284 gtk_widget_show(closeicon);

285 gtk_box_pack_end(GTK_BOX(hbox), closebutton , FALSE, FALSE, 0);

286

287 gtk_signal_connect(GTK_OBJECT(closebutton), ”clicked”,

288 GTK_SIGNAL_FUNC(close_nb_button), nbaux);

289

290 nbaux->nbvbox = gtk_vbox_new(FALSE, 1);

291 nbaux->pagenum = gtk_notebook_append_page(GTK_NOTEBOOK(notebook),

nbaux->nbvbox,

292 hbox);

293

294 /* Make the device picker buttons and label */

295 nbaux->nodev_vbox = gtk_vbox_new(FALSE, 0);

296 temp = gtk_label_new(”No device selected...”);

145

4 – Analyzing the DSRC spectrum

297 gtk_box_pack_start(GTK_BOX(nbaux->nodev_vbox), temp, FALSE, FALSE,

4);

298 gtk_widget_show(temp);

299

300 /* Build the arrow for using an open device */

301 hbox = gtk_hbox_new(FALSE, 0);

302 gtk_box_pack_start(GTK_BOX(nbaux->nodev_vbox), hbox, FALSE, FALSE,

2);

303

304 temp = gtk_button_new_with_label(”Open Device”);

305 g_signal_connect_swapped(G_OBJECT(temp), ”clicked”,

306 G_CALLBACK(main_menu_spawnpicker),

307 nbaux);

308 gtk_box_pack_start(GTK_BOX(hbox), temp, TRUE, TRUE, 0);

309 gtk_widget_show(temp);

310

311 temp = gtk_button_new();

312 arrow = gtk_arrow_new(GTK_ARROW_DOWN , GTK_SHADOW_OUT);

313 gtk_container_add(GTK_CONTAINER(temp), arrow);

314 g_signal_connect_swapped(G_OBJECT(temp), ”event”,

315 G_CALLBACK(main_nodev_menu_button_press),

316 nbaux);

317 gtk_box_pack_start(GTK_BOX(hbox), temp, FALSE, FALSE, 0);

318 gtk_widget_show(temp);

319 gtk_widget_show(hbox);

320 gtk_widget_show(arrow);

321

322 temp = gtk_button_new_with_label(”Open Network Device”);

323 g_signal_connect_swapped(G_OBJECT(temp), ”clicked”,

324 G_CALLBACK(main_menu_spawnnetpicker),

325 nbaux);

326 gtk_box_pack_start(GTK_BOX(nbaux->nodev_vbox), temp, FALSE, FALSE,

2);

327 gtk_widget_show(temp);

146

4.3 – Kismet Spectools

328

329 // Patch: adding combo box for setting minimum dBm value

330 hbox = gtk_hbox_new(FALSE, 0);

331 gtk_box_pack_start(GTK_BOX(nbaux->nodev_vbox), hbox, FALSE, FALSE,

2);

332

333 temp = gtk_label_new(”Minimum dBm value (default: -95 dBm): ”);

334 gtk_box_pack_start(GTK_BOX(hbox), temp, FALSE, FALSE, 2);

335 gtk_widget_show(temp);

336

337 nbaux->mindbm_gtk = gtk_combo_box_text_new();

338

339 gtk_box_pack_start(GTK_BOX(hbox), nbaux->mindbm_gtk , FALSE, FALSE,

2);

340 for (i=0; i<G_N_ELEMENTS(mindBm); i++) {

341 gtk_combo_box_text_append_text (GTK_COMBO_BOX_TEXT(nbaux->

mindbm_gtk), mindBm[i]);

342 }

343

344 gtk_combo_box_set_active(GTK_COMBO_BOX(nbaux->mindbm_gtk), 1); //

-95 dBm is the default value

345 gtk_widget_show(nbaux->mindbm_gtk);

346

347 gtk_widget_show(hbox);

348

349 // Patch: adding combo box for setting maximum dBm value

350 hbox = gtk_hbox_new(FALSE, 0);

351 gtk_box_pack_start(GTK_BOX(nbaux->nodev_vbox), hbox, FALSE, FALSE,

2);

352

353 temp = gtk_label_new(”Maximum dBm value (default: -50 dBm): ”);

354 gtk_box_pack_start(GTK_BOX(hbox), temp, FALSE, FALSE, 2);

355 gtk_widget_show(temp);

356

147

4 – Analyzing the DSRC spectrum

357 nbaux->maxdbm_gtk = gtk_combo_box_text_new();

358

359 gtk_box_pack_start(GTK_BOX(hbox), nbaux->maxdbm_gtk , FALSE, FALSE,

2);

360 for (i=0; i<G_N_ELEMENTS(maxdBm); i++) {

361 gtk_combo_box_text_append_text (GTK_COMBO_BOX_TEXT(nbaux->

maxdbm_gtk), maxdBm[i]);

362 }

363

364 gtk_combo_box_set_active(GTK_COMBO_BOX(nbaux->maxdbm_gtk), 0); //

-50 dBm is the default value

365 gtk_widget_show(nbaux->maxdbm_gtk);

366

367 gtk_widget_show(hbox);

368

369 /*

370 temp = gtk_button_new_with_label(”Close Tab”);

371 g_signal_connect_swapped(G_OBJECT(temp), ”clicked”,

372 G_CALLBACK(gtk_widget_destroy), G_OBJECT());

373 gtk_box_pack_start(GTK_BOX(nbaux->nodev_vbox), temp, FALSE, FALSE,

2);

374 gtk_widget_show(temp);

375 */

376

377 gtk_box_pack_start(GTK_BOX(nbaux->nbvbox), nbaux->nodev_vbox , FALSE,

FALSE, 0);

378

379 gtk_widget_show(nbaux->nodev_vbox);

380

381 gtk_widget_show(nbaux->nblabel);

382

383 /* Make the inactive devices */

384 nbaux->chanopts = (SpectoolChannelOpts *) malloc(sizeof(

SpectoolChannelOpts));

148

4.3 – Kismet Spectools

385 spectoolchannelopts_init(nbaux->chanopts);

386

387 nbaux->channel = spectool_channel_new();

388 spectool_widget_link_channel(nbaux->channel, nbaux->chanopts);

389 gtk_box_pack_end(GTK_BOX(nbaux->nbvbox), nbaux->channel, FALSE,

FALSE, 0);

390

391 nbaux->planar = spectool_planar_new();

392 spectool_widget_link_channel(nbaux->planar, nbaux->chanopts);

393 nbaux->p_con = spectool_widget_buildcontroller(GTK_WIDGET(nbaux->

planar));

394 gtk_box_pack_end(GTK_BOX(nbaux->nbvbox), nbaux->planar, TRUE, TRUE,

0);

395 gtk_box_pack_end(GTK_BOX(nbaux->nbvbox), nbaux->p_con->evbox, FALSE,

FALSE, 2);

396

397 nbaux->topo = spectool_topo_new();

398 spectool_widget_link_channel(nbaux->topo, nbaux->chanopts);

399 nbaux->t_con = spectool_widget_buildcontroller(GTK_WIDGET(nbaux->

topo));

400 gtk_box_pack_end(GTK_BOX(nbaux->nbvbox), nbaux->topo, TRUE, TRUE, 0)

;

401 gtk_box_pack_end(GTK_BOX(nbaux->nbvbox), nbaux->t_con->evbox, FALSE,

FALSE, 2);

402

403 nbaux->spectral = spectool_spectral_new();

404 spectool_widget_link_channel(nbaux->spectral , nbaux->chanopts);

405 nbaux->s_con = spectool_widget_buildcontroller(GTK_WIDGET(nbaux->

spectral));

406 gtk_box_pack_end(GTK_BOX(nbaux->nbvbox), nbaux->spectral , TRUE, TRUE

, 0);

407 gtk_box_pack_end(GTK_BOX(nbaux->nbvbox), nbaux->s_con->evbox, FALSE,

FALSE, 2);

408

149

4 – Analyzing the DSRC spectrum

409 spectool_channel_append_update(nbaux->channel, nbaux->planar);

410 spectool_channel_append_update(nbaux->channel, nbaux->topo);

411 spectool_channel_append_update(nbaux->channel, nbaux->spectral);

412

413 gtk_widget_show(nbaux->nbvbox);

414

415 auxptr->num_tabs++;

416

417 return nbaux;

418 }

spectool_gtk.c

472 gtk_window_set_title(GTK_WINDOW(window), ”WiSPY (Patch)”); //

Patch: now the title shows that this is a patched version

This file contains the code managing the GTK graphical interface of spectool_gui.

It is using the GTK+ library2, providing a toolkit for coding graphical user interfaces.

GTK+ is based itself on GObject (GLib Object System), which provides an object

based system to non object-oriented languages, such as C.

GUIs are based in this case on “GTK widgets”, such as text boxes, combo boxes,

arrows, vertical and horizontal boxes acting as containers for other widgets, and so on.

The main modifications, as it can be seen from the reported code, are the following:

• The function main_devopen(), which is called every time a device is opened from

the GUI, now reads the minimum and maximum dBm values to be displayed from

twoGTK “Combo Box”widgets3. These values are stored inside inside a dbmranges

structures, as explained before.

They are then passed as second argument to a newly defined function

spectool_widget_set_ranges(), which sets these values as attributes of the

2Home page: https://www.gtk.org/
3Added later on inside the code

150

https://www.gtk.org/

4.3 – Kismet Spectools

GtkWidget passed as first argument. Being them specific to a certain GtkWidget

graphical element, they fulfill the goal of being window independent.

In order to store the pointers to the combo boxes containing the user settings for the

dBm ranges, two new elements have been added to the nb_aux structure. This is

needed since the GUI is built from within another function and it is necessary to

keep track of the pointers to the proper widgets in order to retrieve the dBm ranges

data.

• build_nb_page() is the function which builds the GUI. Two new string arrays are

defined to set the user choices for the minimum and maximum dBm values to be

displayed.

Defining these two arrays at the beginning of the function makes the code quite

flexible for future fast modifications, since it is sufficient to add a value within the

allowed range (highlighted in the comments) to effectively enable a new admitted

value. Inside this function the new combo boxes are defined, containing the choice

for the minimum and maximum dBm values, which are obtained scanning the two

previously defined string arrays.

It is possible to notice that gtk_hbox_new() has been used to create a container

for the text label (“Minimum/Maximum dBm value (default: -xx dBm)”) and the

linked combo box. This function is now deprecated and should be substituted with

gtk_grid_new(), creating a new and more up-to-date type of container. We de-

cided, however, to keep the old function in order to maintain consistency with the

rest of the code.

• One last small modification was related to the window title: it was changed adding

“(Patch)” in order to clearly distinguish the patched spectool_gui version.

151

4 – Analyzing the DSRC spectrum

spectool_gtk_widget.h/.c

spectool_gtk_widget.h

77 struct _SpectoolWidget {

78 GtkBinClass parent;

79

80 int hlines;

81 /* Top of DB graph, max sample reported */

82 int base_db_offset;

83 /* Bottom of db graph, min sample reported */

84 int min_db_draw;

85

86 // Patch: added to store in a SpectoolWidget the dBm ranges read

from the GUI

87 dbmranges dbm_store;

88

89 /* Conversion data */

90 int amp_offset_mdbm;

91 int amp_res_mdbm;

92

93 /* Graph elements we’ve calculated */

94 int g_start_x , g_start_y , g_end_x, g_end_y,

95 g_len_x, g_len_y;

96 int dbm_w;

97 double wbar;

98

99 gint timeout_ref;

spectool_gtk_widget.c

260 static void spectool_widget_wdr_sweep(int slot, int mode,

261 spectool_sample_sweep *sweep, void *aux) {

262 SpectoolWidget *wwidget;

263

152

4.3 – Kismet Spectools

264 g_return_if_fail(aux != NULL);

265 g_return_if_fail(IS_SPECTOOL_WIDGET(aux));

266

267 wwidget = SPECTOOL_WIDGET(aux);

268

269 wwidget->dirty = 1;

270

271 /* Generic sweep handler to add it to our cache, all things get this

*/

272 if ((mode & SPECTOOL_POLL_ERROR)) {

273 wwidget->phydev = NULL;

274 if (wwidget->sweepcache != NULL) {

275 spectool_cache_free(wwidget->sweepcache);

276 wwidget->sweepcache = NULL;

277 }

278 wdr_del_ref(wwidget->wdr, wwidget->wdr_slot);

279 wwidget->wdr_slot = -1;

280 } else if ((mode & SPECTOOL_POLL_CONFIGURED)) {

281 if (wwidget->sweepcache != NULL) {

282 spectool_cache_free(wwidget->sweepcache);

283 wwidget->sweepcache = NULL;

284 }

285

286 if (wwidget->sweep_num_samples > 0) {

287 wwidget->sweepcache =

288 spectool_cache_alloc(wwidget->sweep_num_samples ,

289 wwidget->sweep_keep_avg ,

290 wwidget->sweep_keep_peak);

291 }

292

293 wwidget->amp_offset_mdbm =

294 spectool_phy_getcurprofile(wwidget->phydev)->amp_offset_mdbm;

295 wwidget->amp_res_mdbm =

296 spectool_phy_getcurprofile(wwidget->phydev)->amp_res_mdbm;

153

4 – Analyzing the DSRC spectrum

297

298 /*

299 wwidget->base_db_offset =

300 SPECTOOL_RSSI_CONVERT(wwidget->amp_offset_mdbm , wwidget->

amp_res_mdbm ,

301 spectool_phy_getcurprofile(wwidget->phydev)->rssi_max);

302 */

303 // Patch: now dBm draw and offset are set from the GUI

304 wwidget->base_db_offset = wwidget->dbm_store.max;

305 wwidget->min_db_draw = wwidget->dbm_store.min;

306 //wwidget->base_db_offset = -50;

307 // wwidget->min_db_draw = SPECTOOL_RSSI_CONVERT(wwidget->

amp_offset_mdbm , wwidget->amp_res_mdbm , 0);

308 // printf(”debug - min db draw %d\n”, wwidget->min_db_draw);

309 //wwidget->min_db_draw = -95;

310 //}

311

312 } else if (wwidget->sweepcache != NULL && sweep != NULL) {

313 spectool_cache_append(wwidget->sweepcache , sweep);

314 /*

315 wwidget->min_db_draw =

316 SPECTOOL_RSSI_CONVERT(wwidget->amp_offset_mdbm , wwidget->

amp_res_mdbm ,

317 sweep->min_rssi_seen > 2 ?

318 sweep->min_rssi_seen - 2: sweep->min_rssi_seen);

319 */

320 // Patch: now dBm draw and offset are set from the GUI

321 //wwidget->min_db_draw = -95;

322 wwidget->min_db_draw = wwidget->dbm_store.min;

323 }

324

325 /* Call the secondary sweep handler */

326 if (wwidget->wdr_sweep_func != NULL)

327 (*(wwidget->wdr_sweep_func))(slot, mode, sweep, aux);

154

4.3 – Kismet Spectools

328 }

spectool_gtk_widget.c

1075 // Patch: function to set the dBm ranges in a SpectoolWidget

1076 void spectool_widget_set_ranges(GtkWidget *widget, dbmranges ranges) {

1077 SpectoolWidget *wwidget;

1078

1079 // Check for correct object type

1080 g_return_if_fail(widget != NULL);

1081 g_return_if_fail(IS_SPECTOOL_WIDGET(widget));

1082

1083 // Check for correct ranges being read

1084 g_return_if_fail(ranges.min >= -100 && ranges.min <= -70);

1085 g_return_if_fail(ranges.max >= -50 && ranges.max <= 0);

1086

1087 wwidget = SPECTOOL_WIDGET(widget);

1088

1089 wwidget->dbm_store=ranges;

1090 }

The modifications to this file include:

• The definition of the new function spectool_widget_set_ranges(), which sets

the dBm ranges as attributes of the GTK widget specified as first argument. This

pointer actually refers to a SpectoolWidget object, which is derived from GtkBin,

which is itself, in the object hierarchy, derived from GtkWidget.

This object actually includes some additional attributes, including the newly inserted

dBm ranges, as it is possible to see from line 87 of spectool_gtk_widget.h.

• The function spectool_widget_wdr_sweep() now uses the dBm ranges con-

tained in the specified SpectoolWidget structure, instead of the previously fixed val-

ues of -95 and -50. Since this function manages the data captured from the device

155

4 – Analyzing the DSRC spectrum

and it is used at least a couple of times as a callback, its structure has not been mod-

ified and the dBm ranges are set directly in spectool_widget_set_ranges().

spectool_gtk_planar.c,spectool_gtk_topo.c

spectool_gtk_planar.c

741 static void spectool_planar_init(SpectoolPlanar *planar) {

742 SpectoolWidget *wwidget;

743 GtkWidget *scrollwindow;

744

745 GtkCellRenderer *cell;

746 GtkTreeViewColumn *column;

747 GtkTreeIter iter;

748 GtkTreeSelection *selection;

749

750 GtkWidget *clabel;

751 PangoAttrList *attr_lst;

752 PangoAttribute *attr;

753

754 GtkWidget *bhb;

755

756 GdkColor c;

757 GtkStyle *style;

758

759 spectool_planar_marker *mkr;

760

761 wwidget = SPECTOOL_WIDGET(planar);

762

763 wwidget->sweep_num_samples = SPECTOOL_PLANAR_NUM_SAMPLES;

764 wwidget->sweep_keep_avg = 1;

765 wwidget->sweep_keep_peak = 1;

766

767 wwidget->sweep_num_aggregate = 2;

156

4.3 – Kismet Spectools

768

769 wwidget->hlines = 8;

770 //wwidget->base_db_offset = -50; // Patch: commented this out (it

should be unnecessary)

771

772 wwidget->graph_title = ”Planar View”;

773 wwidget->graph_title_bg = ”#00CC00”;

774 wwidget->graph_control_bg = ”#A0CCA0”;

spectool_gtk_topo.c

457 static void spectool_topo_init(SpectoolTopo *topo) {

458 SpectoolWidget *wwidget;

459

460 GtkWidget *temp;

461 GtkWidget *legendv, *legendh;

462 PangoAttrList *attr_list;

463 PangoAttribute *attr;

464

465 wwidget = SPECTOOL_WIDGET(topo);

466

467 wwidget->sweep_num_samples = 60;

468

469 wwidget->sweep_keep_avg = 0;

470 wwidget->sweep_keep_peak = 0;

471

472 /* Aggregate a big chunk of sweeps for each peak so we do less

processing */

473 wwidget->sweep_num_aggregate = 1;

474

475 wwidget->hlines = 8;

476 //wwidget->base_db_offset = -50; // Patch: commented this out (it

should be unnecessary)

477

157

4 – Analyzing the DSRC spectrum

478 wwidget->graph_title = strdup(”Topo View”);

479 wwidget->graph_title_bg = strdup(”#CC00CC”);

480 wwidget->graph_control_bg = strdup(”#CCA0CC”);

The modifications to these files, defining the SpectoolTopo and SpectoolPlanar ob-

jects, derived from SpectoolWidget, are very marginal.

The only modification involves commenting out the

wwidget->base_db_offset = -50;

initialization lines, which should be no more necessary, since the maximum dBm value

is now specified by the user though the GUI.

4.3.2 Results of the patching work

Launching the program with spectoolgui, it is possible to see that the user interface

is showing two new options for setting the dBm ranges in the plots.

Figure 4.4: Spectrum-Tools GUI, now showing the options for the dBm values

Moreover, when connecting the Wi-Spy device to the PC, two new options are se-

lectable for the ITS frequencies, as shown in figure 4.5.

When starting a capture using one of the additional options, it is then possible to select

the 10 MHz wide channels from 172 to 184, for which data related to the frequency

spectrum can be now collected and displayed.

158

4.3 – Kismet Spectools

Figure 4.5: New options for the 802.11p channels’ spectrum analysis

Figure 4.6: ITS channels inside spectool_gui

159

4 – Analyzing the DSRC spectrum

4.4 Looking for possible interferences

This verification has been performed on three different days, looking at what Wi-Spy

actually captured in around 15 minutes sessions.

The device has been positioned very near to the position, at home, where the boards

are usually placed.

The results are reported in the following table:

Date Maximum dBm value over all the channels

2018-09-24 -93 dBm

2018-09-25 -93 dBm

2018-09-29 -92 dBm

The signal level resulted to be always less than -92 dBm, which can be considered as

electrical noise.

So, as it is also possible to see from figure 4.7, no interfering sources over the ITS

channels have been found.

Figure 4.7: Absence of interference during the 2018-09-24 test (channel 178 is high-
lighted)

160

4.5 – ALIX spectrum usage and transmission problems

4.5 ALIX spectrum usage and transmission problems

For what concerns the spectrum usage by the UNEXDCMA86P2WLAN cards, some

problems have arisen and they could be clearly visualized using the Wi-Spy device.

These problems were less visible without using any spectrum analyzer device, but they

were nevertheless present.

As it will be detailed later, these issues were not impeding at all the communication

to happen on the selected channel (thus all the previous results in which the boards com-

municate remain valid), but they could be the cause of possible random packet losses.

The first problem which was found out is shown in figure 4.8. When setting a high

output power out of the UNEX DCMA 86P2 cards (around 24 dBm set in iw, with the

5 dBi antenna), the filtering was probably not performed correctly, and caused the board

to invade frequencies outside the 10 MHz band, mainly when other devices are placed

nearby.

The figure shows the incorrect behavior when transmitting over channel 172 at 24

dBm, compared to the maximum values of the spectrum for a lower power transmission

on channel 178, which happened before.

When transmitting at lower power, in fact, the problem was hardly present and the

boards behaved almost correctly, inside their 10 MHz wide channels.

Figure 4.8: Incorrect frequencies for high power transmission with UNEX DCMA 86P2

Since future tests with the APU boards will show a much more polite spectrum usage,

with the same software platform installed inside (OpenWrt 18.06.1), even though the

maximum power of the newer UNEX cards is far below 24 dBm (the maximum allowed

161

4 – Analyzing the DSRC spectrum

Figure 4.9: Configuration which was used for the previously described test, with the Wi-
Spy device placed about 28 cm away from the antenna mounted on the ALIX board; the
test has been also repeated with iperf and two ALIX boards, with similar results

by the driver is 18 dBm), the problem has to be researched probably in how the hardware

of the WLAN cards is designed and has been produced.

It is possible to have an evidence of this issue also when using the ALIX boards to-

gether with the newer APU boards.

We set the two couples of boards as follows:

software level txpower channel iPerf port connected antenna?

ALIX 27 dBm (high) 178 (5890 MHz) 7000 no

APU 3 dBm (low) 176 (5880 MHz) 6000 no

Running a couple of iPerf server+client of each of them and trying to record data in

an almost synchronized way.

It was possible to detect a strong interference from the ALIX boards, with an evident

drop in the measured throughput for what concerns the APU communication, even though

the channels were different. The results are reported in figure 4.10.

162

4.5 – ALIX spectrum usage and transmission problems

Figure 4.10:ALIX boards interfering, at high power, evenwith adjacent channels, making
other boards drop their throughput even though they are not communicating at the same
frequency of the ALIX ones

The second problem is even worse, since it can cause random packet losses, and we

were not able to solve it by looking at the complex source code of the ath5k driver.

It can be described as follows: when transmitting, after an amount of time for which

we were unable to find a well defined pattern, sometimes the transmission power could be

unexpectedly increased to a very high value (showing also the problem described before),

after a short interruption of the transmission of typically less than 5/6 seconds.

Everything occurred while the software seemed to be unaware of the power increase,

since it always continued to show the previously set transmit power, when issuing “iw

dev”.

It was completely solved only when resetting the power with commands like (with a

previously set transmission power of 0 dBm):

163

4 – Analyzing the DSRC spectrum

iw dev wlan0 set txpower fixed 1500 # or any other mBm value different

than 0

iw dev wlan0 set txpower fixed 0

Changing channel would lower the overall power received by the Wi-Spy device, but

in any case, as we observed, at a higher level with respect to what was received before.

This behavior was observed, when setting a non ITS frequency of 5320MHz (channel

width 10MHz), both using the patched Spectrum Tools and Chanalyzer, excluding the

fact that it could be a problem of the Wi-Spy device interfacing with the development PC.

When triggered during any packet transmission test (with the C programs or with

iPerf), it caused packet loss, as it is possible to see from figures 4.11 and 4.12.

Figure 4.11: The problem of the unexpected power increase, as shown by Chanalyzer. It
was possible to detect the same problem also with Spectrum Tools, on true ITS channels
(172 to 184); the frequency “invasion” described before can also be seen

164

4.5 – ALIX spectrum usage and transmission problems

Figure 4.12: Packet loss as seen by an iPerf client just after an unexpected transmission
power increase occurred

The following figure (figure 4.13) shows instead two plots, which came out from a

succession of tests performed with the two ALIX boards placed at a distance of 3.25m

one from each other.

The tests involved an iPerf client running on one board and an iPerf server running

on the other one, recording packet loss and recored bandwidth, after setting the 3Mbit/s

data rate.

(a) Packet loss (b) Decreased average throughput

Figure 4.13: Problems during the 14 dBm test

165

4 – Analyzing the DSRC spectrum

As it is possible to see, a random packet loss occurred at a certain point, very probably

caused by this problem.

This second problem was not present with the old ath5k version used in the GCDC

2011 OpenWrt images; the driver has, however, changed a lot since then, and it was very

difficult to compare portions of code to try to find out where the problem could reside. It

was also using IBSS instead of the more proper OCB mode.

The presence of this behavior, which seemed difficult to predict and which could be

caused by some instability inside the combination of the latest version of ath5k andUNEX

DCMA 86P2, represented another reason to move to the newer APU boards, which are

described in the next chapter.

166

Chapter 5

APU boards and UNEX

DHXA-222

5.1 The APU boards

After integrating an open source 802.11p system inside the ALIX boards and doing

some considerations on how the ITS frequency spectrum can be analyzed, it was possible

to move to the newer PC Engines boards.

Moving to a newer system is actually justified not only by the fact that it is possible to

work on more up to date, still in production, hardware; in fact:

• Moving to newer hardware solves the instability and unreliability of the ath5k driver

used in conjunction with the UNEX DCMA 86P2 cards (described in 4.5), taking

also into account that several newer cards are now supported by the ath9k driver.

• miniPCI WLAN cards, such as the ones used in the ALIX boards, are become more

difficult to find, being replaced by PCIe cards, such as UNEX DHXA-222. This

means moving to hardware supporting PCIe (or mini PCIe) is very desirable [25].

• The APU boards are able to deliver much better performances when it comes to

167

5 – APU boards and UNEX DHXA-222

running operating systems or applications on top of them. They allow a much faster

system startup, more resource for more complex applications and possibly also the

possibility to switch to more demanding operating systems, such as Debian-based

ones, if needed. Here we will concentrate on OpenWrt, though, trying to test a plat-

form that could be integrated in a wider range of hardware boards, from less per-

forming to more powerful ones.

• The APU boards have been successfully used in several research projects, including

the validation of the OpenC2X platform, using APU 1d4 boards [36].

• The newer boards are supporting SSDs instead of Compact Flash cards. SSDs are

typically lasting long, in terms of read/write cycles, and offer higher speeds and

capacities. As a side effect, thanks to the USB support, this makes the whole devel-

opment process a bit more comfortable, since it is now possible to flash full system

images inside the SSD directly from a live USB device, in a fast and reliable way,

without the need of removing the memory, putting it inside an adapter and flashing

from the development PC.

We used two APU 1d boards, which have the following hardware characteristics [66]:

• CPU: AMDG series T40E, 1 GHz dual core processor with 64 bit support, designed

for embedded applications, with “32K data + 32K instruction + 512K L2 cache per

core”

• RAM: 2 GB DDR3-1066 DRAM

• Storage: SD card slot, possibility to boot from external USB, mSATA SSD (we used

a SATA III Transcend MSA370 MLC NAND Flash SSDs for each board, with a

capacity of 16 GB each)

• Power: 12V DC, with a power consumption of 6 to 12 W

168

5.1 – The APU boards

• Expansion: 2 miniPCI express slots to accommodate up to two wireless cards, LPC

bus (may require the selection of custom drivers inside the chosen Linux distribu-

tion), GPIO header, I2C bus, SIM slot, COM2 header

• Connectivity: 3 Gigabit Ethernet channels (Via Realtek RTL8111E)

• Ports and I/O: 2 external USB ports (plus 2 internal USB), DB9 serial port, three

LEDs and one push button (S1)

• Board size: 152.4 x 152.4 mm

• Firmware: coreboot

• Other: RTC battery, conductive cooling for the CPU and the south bridge to the

external enclosure, using “a 3 mm alu heat spreader”

One of the APU 1d boards is shown in figure 5.1. The attached post-it serves as a

remainder for the IP addresses which are set on the board and to easily recognize them.

Figure 5.1: ALIX 1d board view from outside, with the UNEX card and the enclosure
mounted on. It is possible to distinguish theDB9 serial connector, the three Ethernet ports,
two USB ports and the DC power connector, together with two RP-SMA connectors for
two antennas.

169

5 – APU boards and UNEX DHXA-222

The main components of these embedded boards are shown in figure 5.2.

Figure 5.2: APU 1d board, without enclosure, with UNEX card installed in

It is possible to distinguish the following main hardware components, along the ports

that are shown in figure 5.1, with reference to figure 5.2:

1. SD card slot

2. S1 push button

3. RTC battery

4. Three LEDs

5. DRAMmemory (half of the memory chips, the other half can be seen when viewing

the board from below)

6. 9 pin USB header (providing support for the 2 internal USB)

170

5.2 – UNEX DHXA-222

7. LPC and GPIO connectors

8. Transcend 16GB MLC SSD, mounted on the mSATA slot

9. UNEX DHXA-222 WLAN card, with two U.FL to RP-SMA pigtail connectors,

mounted on of the two mini PCIe slots (PCIe slot 2 has been used, because it al-

lowed an easier connection of the pigtail cables)

10. Additional mini PCIe slot

11. Below the board, it would be possible to see the AMD CPU, the south bridge, the

other half of the DRAM silicon memory chips and the SIM slot

The UNEX cards came in an half size mini PCIe format, while the APU boards are

designed for full size chips.

In order to adapt the UNEX cards to fit inside the APU boards, an half to full size

adapter has been printed using a MakerBot 3D printer and then further processed to dig

two small conduits where the pigtail cables could be placed, once connected to theWLAN

card.

The Ethernet ports are mapped by operating systems into different interfaces and this

fact gains more importance now, since more than one port is available.

The OpenWrt system actually maps the Ethernet ports to the same number of inter-

faces, according to the following scheme [67]:

--

--O---|DB9|---|eth0|---|eth1|---|eth2|-|USB|---(DC)----O--

--

5.2 UNEX DHXA-222

The DHXA-222WLAN cards used with the APU boards are produced by UNEX, just

like the UNEX DCMA 86P2 cards presented before.

171

5 – APU boards and UNEX DHXA-222

They are half size mini PCI express (version 1.2) chips, with two U.FL antenna con-

nectors for MIMO 2x2 operations, supporting all the ITS frequencies (not officially de-

clared, but they are actually used as ITS cards, mostly in research works) and dual-band

operations.

They also support Bluetooth 4.0.

Being based on the Atheros AR9462 chipset, they are supported by the ath9k driver,

which is actually used a lot in ITS research activities, including the use of the OpenC2X

environment [36] [25].

In particular, the CCSLabs team in Paderborn has released few patches targeted specif-

ically to this driver, in order to enable OCB operations and make it possible to manage

the 802.11p channels.

They provide a maximum output power which is lower than the DCMA 86P2 cards,

which allowed the system to output even over 30 dBm of effective transmission power.

Now, the maximum output power is declared to be 17 dBm (2 dBm for Bluetooth opera-

tions).

Other characteristics reported by the producer are summarized below [68]:

• Operation voltage: 3.3V DC ± 5%

• Wi-Fi receiver sensitivity: −71 dBm → −93 dBm, ±2 dBm tolerance

• Operation temperature range: −10° → +70°

The minimum settable transimit power seems to be, now, 3 dBm, at least when using

systems based on OpenWrt.

5.3 Installing a Linux based operating system on the SSD

In order to install an operating system inside the SSD, the procedure is a bit more

complex than the previous case (in which the CF card was simply removed and flashed

172

5.3 – Installing a Linux based operating system on the SSD

from the development PC), but, once done for the first time, it allows to more comfortably

load system images on the mSATA SSD.

In order to install OpenWrt, or possibly any other embedded Linux distribution, the

user can make use of the USB ports which are available in the APU boards.

In particular, to integrate a Linux distribution such as OpenWrt inside the SSD, the

following step shall be performed:

1. Download TinyCore Linux from the PCEngineswebsite: http://www.pcengines.

ch/tinycore.htm. This is a very lightweight Linux distribution, able to boot quickly,

for basic operations such as flashing something inside the SSD or update the BIOS.

2. Download the proper file, depending on which kind of operating system you are us-

ing: apu-tinycore-usb-installer.exe for Microsoft Windows or apu_tinycore.tar.bz2

for Linux/MacOS.

Under Windows, it is sufficient to run the installer after inserting an USB stick in

the development PC.

Under Linux/MacOS, additional steps may be required, as detailed in the link pre-

sented before.

3. Copy the desired operating system image or the system installation files into the

USB stick with TinyCore; we always put them directly on the main directory, and it

worked fine. For what concerns OpenWrt, the gzipped image file should be copied,

for instance: openwrt-x86-64-combined-ext4.img.gz.

4. Insert the USB stick in the board, connect the development PC to the APU board

using a serial cable1 and finally connect the APU board to the main through a proper

12V power supply.

5. It may be necessary to navigate, the first time, through the APUBIOSmenu, in order

to set the boot order putting the proper USB port on top of the list.

1Further details on the serial connection are reported afterwards

173

http://www.pcengines.ch/tinycore.htm
http://www.pcengines.ch/tinycore.htm

5 – APU boards and UNEX DHXA-222

6. After booting from the USB device and connecting through a suitable terminal win-

dow or terminal emulator (such as PuTTY in Serial mode or screen), it will be

possible to interact with TinyCore.

7. If you find out that the BIOSfirmware is outdated, in order to update it, run: flashrom

-w apu140908.rom (or any other *.rom file which is available inside the PC En-

gines TinyCore distribution); we will not, however, focus on BIOS updates in this

work.

8. It is possible instead to partition the SSD and run all the necessary files to unpack

and install a Linux distribution inside the SSD, thanks to the files which were added

to the USB stick main directory [25].

For what concerns OpenWrt, issue the fdisk -l command, to find out which is the

name assigned to the SSD device. In our case, it always resulted to be /dev/sda.

Then, run this command to start the extraction process, practically integrating the

OpenWrt image inside the SSD: zcat <image_name>.gz | dd of=/dev/sda

bs=16k

In our case, the commandwas the following one: zcat openwrt-x86-64-combined

-ext4.img.gz | dd of=/dev/sda bs=16k

9. Rebooting the board (issuing a poweroff command and disconnecting/reconnect-

ing the DC power supply - now poweroff should really turn the board completely

off), it should be now possible to interact with OpenWrt using the SSH server just

like in the ALIX boards case.

It may be interesting to point out also few additional considerations:

• We were not able to boot TinyCore from newer USB sticks with a capacity of 8 GB

and more. We were instead able to use an older 4 GB Transcend USB stick, shown in

figure 5.3. This device was then kept apart to perform any future installation process.

174

5.3 – Installing a Linux based operating system on the SSD

• Using USB sticks with a fat form factor may be a bad idea, since it may result im-

possible to fit it together with the DC power cable, which is placed near to the 2

external USB ports.

• In case, for any reason, the APU board keeps booting on theMemTest+ environment

with the serial console disabled, refusing to show the standard boot menu and/or to

boot from SD, USB or SSD, a possible solution may be to push the S1 button, and

boot the board keeping it pushed. This button allows the user to obtain the setup

options even when the serial console is disabled (as in the APU2 boards) [69].

• Since the zcat command actually extracts the image to standard output, which is

then piped to dd to copy the data inside the SSD, it is sufficient to have an USB

stick that is able to store the gzipped image; it is not necessary to have enough free

space also for the uncompressed *.img file (which may take over 1 GB of disk space,

depending on the configuration).

Figure 5.3: Transcend 4 GB USB stick with TinyCore and the OpenWrt image

5.3.1 Serial connection with the APU board

In order to connect with the boards for the first setup process, or to view the full boot

process with all its debug messages, it may be necessary to rely on a serial to USB con-

nection.

In our case, we used a Manhattan DB9Male to USB cable, with a Prolific chip inside,

together with a DB9 Female to Female cable.

175

5 – APU boards and UNEX DHXA-222

This cable does not work under Windows 10, due to driver problems which will not

be detailed here, but it works flawlessly when used from the Linux Mint virtual machine.

Figure 5.4: The RS232/DB9 to USB cable used to connect the development PC with the
boards, in order to interact with them through serial console

In order to connect with the APU boards, the following settings should be used [25]:

• Baud rate: 115200

• Data bits: 8

• Stop bits: 1

• Parity: none

Any terminal emulation program can be used, including PuTTY and, under Linux,

minicom.

We decided to use, however, the simpler screen utility, from within the Linux Mint

virtual machine.

We installed it using: sudo apt-get install screen.

176

5.3 – Installing a Linux based operating system on the SSD

Then, it was necessary to find out the name assigned to the device, through the com-

mand: dmesg | grep tty

Looking at the line related to the Prolific PL2303 chip, it is possible to find out the

required information.

In our case, we obtained, inside the full output of the command, the following line:

[22832.076391] usb 3-3.1: pl2303 converter now attached to ttyUSB0

telling that the serial device had been mapped to /dev/ttyUSB0.

After that, it was possible to start the connection with: sudo screen /dev/ttyUSB0

115200.

To detach from the current session, a sequence of Ctrl+A and Ctrl+D can be used.

It is important to note that, unless specific user permissions are set, sudo is always

required, under Linux, to open any serial port.

Figure 5.5: TinyCore running on one of the APU boards, through a live USB stick, with
screen showing the serial console on the Linux Mint (Xfce) terminal emulator

Connecting the boards through a serial cable has also a further advantage: just after

integrating OpenWrt, the boards are given, for their Ethernet ports, the 192.168.1.1/24 IP

address.

177

5 – APU boards and UNEX DHXA-222

It may be uncomfortable to access it when the boards are connected inside a local

network where 192.168.1.1 is already assigned to a gateway, but by means of the serial

cable it is possible to access the network configuration file and change it before actually

connecting with SSH.

It can be done, for instance, with the “vi” text editor, by launching: “vi /etc/config

/network”.

5.4 Compiling OpenWrt for the APU boards

In order to integrate OpenWrt 18.06.1 on the APU boards, some modifications to the

.config file where needed, through the make menuconfig configurator.

Before modifying the configuration file to match with the APU boards, the old ALIX

configuration was copied, in order to keep it for future reference and to compile images

more optimized for the ALIX boards:

~/openwrt-18.06.1 $ cp .config config_ALIX.config

In order to compile an optimized image, which canmake use the 64 bit support coming

from the AMD CPU, a new target had to be selected:

• Target system: x86

• Subtarget: x86_64

• Target Profile: Generic

After changing the target, we tried to make our configuration match most of the one

presented in the official OpenWrt page about the APU boards [67], while keeping all the

modifications and additional packages presented in chapter 3.

One important step is to select the needed kernel modules listed in [67], to allow proper

operation with the most important hardware modules:

• r8169: to enable support for the RTL8111/8168B PCI Express Gigabit Ethernet con-

troller

178

5.5 – Configuring the APU boards

• i2c_core + i2c_piix4: although not used in our case, it can be important for any

application requiring I2C

• usbcore + usb_storage: for USB support

• kmod-ata-ahci: SATA support

• kmod-sp5100_tco:Watchdog support, which, as reported in [67], should “allow wak-

ing up” (though an image without this package has not been tested)

We then tried to include all the packages we though to be useful from the configuration

file listed in the “Custom OpenWrt image” section in [67].

Our configuration file is reported in Appendix C.

We were then able to compile the new images, to be integrated inside the APU boards

following the procedure described before in section 5.3, with:

make clean

make -j10 V=s

The new images were then available in “./bin/targets/x86/64/”.

5.5 Configuring the APU boards

After installing OpenWrt inside the boards, it was possible to configure them, giving

them the proper IP addresses, changing the iw_startup script, and so on, in a similar

manner with respect to the ALIX boards.

As with the older boards, we decided to give them specific IP addresses (for both the

Ethernet and WLAN interfaces), which where then reported on two post-its applied to

the boards, in order to easily recognize them. In particular:

• Board 1: APU_1022, with:

2Again, names are just given to recognize the boards and they do not play any role inside in the boards’
communication

179

5 – APU boards and UNEX DHXA-222

– eth0 local IP address: 10.1.6.102

– wlan0 IP address: 10.10.6.102

– eth0 internet IP address: 192.168.1.182

• Board 2: APU_103, with:

– eth0 local IP address: 10.1.6.103

– wlan0 IP address: 10.10.6.103

– eth0 internet IP address: 192.168.1.183

We decided to start giving the boards two Ethernet IP addresses related to the lo-

cal network with Internet access (i.e. 192.168.1.182 and 192.168.1.183), instead of the

10.1.0.0/16 network, since they make it easier to perform the measurements, install new

packages with opkg and to, for instance, synchronize the date and time through NTP, as

described in the next section.

This required adding two cables to the Netgear switch connected to the local network

with Internet access, and plugging them into the APU boards; the ASUS adapter was in

this case no longer used, as reported in the desk configuration description in section 3.2.

In order to set these IP addresses, the /etc/config/network file has been modified just

like before, and the WLAN IP address was changed inside the iw_startup script, which

seems to work fine without any modification from the previous cases except:

• The aforementioned WLAN address

• Changing the line setting the initial transmission power to use, for instance, 15 dBm

(1500 mBm) instead of 0 dBm, which seems now unavailable (with the UNEX

DHXA-222 cards the minimum seems to be 3 dBm, but setting it directly with iw

does not seem to work all the times):

iw dev wlan0 set txpower fixed 1500

180

5.6 – NTP synchronization with chrony

• Removing the lines “wifi up” and “wifi down”, which seemed to create problems

with the configuration, other than being now, probably, completely unnecessary

We also modified the /etc/config/wireless file in order to enable the wireless interface,

by setting the line “option disabled ’1’” to “option disabled ’0’”.

All the configuration files for the two APU boards are reported in Appendix D, which

should be taken as reference for any future configuration operation.

After performing all the necessary configuration steps, it was then possible to start

OpenWrt on the boards, login to the root user, launch the iw_startup script and start

working with them in OCB mode.

5.6 NTP synchronization with chrony

In order to perform any indoor measurement, mainly when a GPS device providing the

UTC time (as reported in the IEEE standards) is not available yet, it can be very useful

to enable an NTP time synchronization system on the boards, using the standard Internet

connection through the Ethernet ports.

For instance, it can be used when there is the need of launching two iPerf clients

together, at the same time, or to synchronize any kind of measurement.

The same procedure can be applied when building and integrating OpenWrt images

on the ALIX boards (and possibly also several other boards) and it can be useful also for

a wide range of applications, not only for indoor measurements.

There are many tools for NTP synchronization in OpenWrt, including an already avail-

able system NTP deamon (included in busybox) and ntp-utils, for instance [70].

We will focus on how to configure OpenWrt for an NTP client functionality, getting

the time from the Internet and using it to adjust the system clock.

Before describing how to set up the boards to synchronize over NTP, it is important

to note that, after synchronization, the current time and date can be maintained with no

Internet connection (even if possible drifts and offsets will not be compensated anymore)

181

5 – APU boards and UNEX DHXA-222

as long as the board is connected to the DC power supply, or, if available, as long as the

RTC battery has enough power to keep the RTC running (the latter is the case of the APU

boards).

Among the available tools, we decided to give up using the pre-installed NTP daemon,

and move to chrony, which has to be manually included when preparing the build system

with make menuconfig (see 3.8). This decision was motivated by the fact that chrony

offers more advanced functionalities and quite precise time synchronization, accounting

for possible intermittent connection too (which may be the case of our boards, under some

situations); it can also be used to synchronize with reference clocks, such as GPS data, as

reported in [71].

According to the chrony website3, this tool is also smaller than other NTP synchro-

nization utilities, trying to reduce the memory and CPU usages, which may be useful in

less performing embedded systems.

The steps to be followed to set up the APU boards with chrony are presented below

(they are based on OpenWrt 18.06.1, but they should be completely repeatable for LEDE

17.01 too):

1. After including chrony, as reported in section 3.8, and booting OpenWrt, it is pos-

sible to use WinSCP (or similar programs) to navigate the boards file system and

locate the /etc/config/chrony configuration file.

2. Change the line “option hostname ’<server>’” inserting your preferred NTP

server (or leave the default OpenWrt server, which should be already there); we

decided to opt for one of the INRiM NTP servers, which are located in Turin (quite

near us) and are taking their reference from a very precise cesium atomic clock. So,

in our case the “hostname” line should be: “option hostname ’ntp1.inrim.it

’” [72].

Our file is reported in Appendix E.

3https://chrony.tuxfamily.org/comparison.html

182

https://chrony.tuxfamily.org/comparison.html

5.6 – NTP synchronization with chrony

3. In order to have only one NTP daemon running on the APU boards, it is suggested

to disable the pre-installed one (and this may be required, for instance, when using

other tools such as the ntpd package, as reported in [70]). It can be done by changing

few lines inside the /etc/config/system configuration file.

In particular, the line “option enabled ’1’”, after “config timeserver ’ntp

’”, should be set to “option enabled ’0’”, in order to disable the system NTP

client.

If the user wants to change the timezone too, the string after “option timezone”

can be modified from “UTC” (which is the default option) to any other valid value4.

For instance, to set the Italian time, the string “CET-1CEST,M3.5.0,M10.5.0/3” can

be used. We decided, in any case, to leave this to UTC (as required by the standard,

the UTC time should be used).

4. In order to completely achieve the previous goal, open an SSH connection (for exam-

ple using PuTTY) and disable the sysntpd service, enabling the chronyd one, which

is a daemon provided by chrony:

service sysntpd stop

service sysntpd disable

service chronyd enable

Reboot then the boards, for example shutting them off, removing the DC power sup-

ply and giving them power again:

poweroff

If it works correctly, the more proper “reboot” command can be used too, without

the need of performing a full power cycle.

5. Valid DNS servers are required by chrony to resolv the server name specified before.

Change the file /etc/dnsmasq.conf adding, at the end of the file, the lines:

4Valid values are listed, as of October 2018, here: https://openwrt.org/docs/guide-user/
base-system/system_configuration

183

https://openwrt.org/docs/guide-user/base-system/system_configuration
https://openwrt.org/docs/guide-user/base-system/system_configuration

5 – APU boards and UNEX DHXA-222

DNS servers for APU boards

server=8.8.8.8

server=8.8.4.4

These lines have been used to add the Google Public DNS servers.

6. Now chrony should be able to synchronize the date and time when the boards are

connected to the Internet.

In order to display useful information, the following commands can be used:

• date: it can be used to display the current date and time

• chronyc tracking: it can be used to display the current synchronization and sys-

tem clock performance data (which should now include the correct NTP server, as

it can be seen in figure 5.6).

• chronyc sourcestats -v: it can be used to print information “about the drift

rate and offset estimation process for each of the sources currently being examined

by [the chrony daemon] chronyd” [73]

Figure 5.6:Output of the “chronyc tracking” command after configuring chronywith
the INRiM NTP 1 server and synchronizing the date and time

184

5.7 – Sniffing with an APU board

When using OpenWrt, a chrony.conf file, inside /etc/chrony/, should be present too.

This file is in a format which is documented in the chrony documentation and it should

be included in the final chrony configuration, together with the other configuration file.

This file was not modified, in our case, when setting up the APU boards.

5.7 Sniffing with an APU board

Packet sniffing can be now performed using any board as a monitor device, capturing

traffic that other boards are exchanging, without being directly involved in this kind of

traffic.

We tested this configuration by using one of theAPUboards (for example “APU_102”),

with a monitor interface wlan1, capturing traffic coming from the two ALIX boards,

in which a sample client and server were running (they were written during one of the

courses in Politecnico and they are quite effective in testingwhether connectivity is present

or not): the client is a simple socket C program requesting the current date, only once, to

a server running on the other board.

The client was, in our tests, running on the ALIX_100 board, while the server was

running on the ALIX_101 board.

The only effective packet sniffing method, in this case, involved the use of tcpdump,

and the best method resulted to be the use of plink, tcdump and Wireshark (as detailed in

section 3.8.6).

By using this configuration, as it is possible to see from figure 5.7, it was possible to

capture all the TCP traffic between the client and the server, with the APU board listening

on the same frequency (5.89GHz).

185

5 – APU boards and UNEX DHXA-222

Figure 5.7: Packet sniffing using one of the APU boards, capturing traffic between the
ALIX boards (the date and time in the ALIX boards was not synchronized over Internet,
that’s why a wrong date is reported by the server)

5.8 Bitrates on the APU boards and correct way of mea-

suring them

While working with the APU boards, we noticed that the output of the command:

iw dev wlan0 station dump

which should report useful station statistics (such as the received power and the current

transmit bitrate), was giving us, sometimes, some unreliable information about data bi-

trates, at least when used with this particular hardware and the OCB mode.

186

5.8 – Bitrates on the APU boards and correct way of measuring them

In particular, the information about the last transmit bitrate proved to be quite unre-

liable, sometimes giving a different value both with respect to what we expected and to

what is actually reported in RadioTap headers, which can be captured using plink, tcp-

dump and Wireshark.

After performing some tests, we concluded that the information about the bitrate given

by “iw dev wlan0 station dump” should be, when possible, discarded, since it seems

to provide, at least in certain situations, wrong values. This does not happen, as we ob-

served, all the times, but it can be observed as long as measurements are performed.

The information given by RadioTap headers instead seems to be always the expected

one, thus capturing traffic with Wireshark (using a second board) and analyzing the Ra-

dioTap headers should be the best way of measuring the current physical transmit bitrate

of the sending board.

In order to better verify that what we mentioned before is actually correct, we set up

few additional tests, checking both the bitrate reported by iw and the one that is captured

by means of Wireshark.

In particular, we imposed a certain bitrate to the boards using:

• iw dev wlan0 set bitrates legacy-5 6, for 3 MBit/s

• iw dev wlan0 set bitrates legacy-5 12, for 6 MBit/s

• iw dev wlan0 set bitrates legacy-5 24, for 12 MBit/s

Other 802.11p values seems to be unsupported as of now: they cannot be selected and

they always return an “Invalid Argument” error.

A future improvement to this work could concentrate on the 802.11p bitrates and an-

alyze how they are managed both by the wireless subsystem and by the underlying driver

(ath5k or ath9k or possibly other ones), trying to introduce proper patches enabling them,

of course only if the connected WLAN cards provides the needed support.

After selecting a given bitrate, we used the same scripts which we wrote for the mea-

surements presented in chapter 6 (section 6.1.2 will also introduce them more in detail),

187

5 – APU boards and UNEX DHXA-222

adding a third script able to periodically report the rate read from “iw dev wlan0

station dump”.

This script is based on the NTP synchronization just like the ones used for the mea-

surements5, in order to align the rate reports to the iPerf server and client periodic ones.

It is then able to save in a proper log file, every second (using a while loop with a

“sleep 1” command inside), the rate which is extracted from “iw”, thanks to the “grep”

and “cut” system programs.

rateLooker.sh

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 rates=(0.5M 1M 1.5M 2M 2.5M 2.6M 2.7M 3M 5M 5.4M 5.5M 5.6M 5.7M 5.8M

5.9M 6M 7M 9M 10M 11M 11.5M 11.6M 11.7M 11.8M 11.9M 12M 100M 500M)

13 physrates=(3 6 12)

14

15 currwait=0

16 i=0 # Change this to match a specific test

17 p=0 # Change this to match a specific test

18 while [$p -lt ${#physrates[@]}]; do

19 while [$i -lt ${#rates[@]}]; do

20 echo ”Iteration started at second $(date | cut -d$’\t’ -f5 | cut -

d”:” -f3 | cut -d” ” -f1), waiting until second $currwait”

5More details are presented in chapter 6, in section 6.1.2

188

5.8 – Bitrates on the APU boards and correct way of measuring them

21 waituntil $currwait

22 echo ”Logging started on stdout”

23 secs=61

24 while [0 -ne $secs]; do

25 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1

)

26 echo ”$currsec - $(iw dev wlan0 station dump | grep ”bitrate:” |

cut -f3 | cut -d” ” -f1 | cut -d”.” -f1) MBit/s”

27 sleep 1

28 secs=$((secs-1))

29 done

30 echo ”Logging done.”

31 i=$((i+1))

32 currwait=$(((currwait+10)%60))

33 done

34 p=$((p+1))

35 i=0

36 done

A monitor mode interface (wlan1) has also been set on the APU_102 board and used

to capture the traffic with the development PC and Wireshark.

Looking at the tests in which the problem was present and taking for instance the test

with 12Mbit/s as physical bitrate and 7Mbit/s as iPerf offered traffic (it is the “UDP

bandwidth to send at”, specified by means of the -b option), this is the log obtained thanks

to the rateLooker.sh script:

00 - 3 MBit/s

01 - 3 MBit/s

02 - 3 MBit/s

03 - 3 MBit/s

04 - 3 MBit/s

05 - 3 MBit/s

06 - 3 MBit/s

07 - 3 MBit/s

189

5 – APU boards and UNEX DHXA-222

08 - 3 MBit/s

09 - 3 MBit/s

10 - 3 MBit/s

11 - 3 MBit/s

12 - 3 MBit/s

13 - 3 MBit/s

14 - 3 MBit/s

15 - 3 MBit/s

16 - 3 MBit/s

17 - 3 MBit/s

18 - 3 MBit/s

19 - 3 MBit/s

20 - 3 MBit/s

21 - 3 MBit/s

22 - 3 MBit/s

23 - 3 MBit/s

24 - 3 MBit/s

25 - 3 MBit/s

26 - 3 MBit/s

27 - 3 MBit/s

28 - 3 MBit/s

29 - 3 MBit/s

30 - 3 MBit/s

31 - 3 MBit/s

32 - 3 MBit/s

33 - 3 MBit/s

34 - 3 MBit/s

35 - 3 MBit/s

36 - 3 MBit/s

37 - 3 MBit/s

38 - 3 MBit/s

39 - 3 MBit/s

40 - 3 MBit/s

41 - 3 MBit/s

190

5.8 – Bitrates on the APU boards and correct way of measuring them

42 - 3 MBit/s

43 - 3 MBit/s

44 - 3 MBit/s

45 - 3 MBit/s

46 - 3 MBit/s

47 - 3 MBit/s

49 - 3 MBit/s

50 - 3 MBit/s

51 - 3 MBit/s

52 - 3 MBit/s

53 - 3 MBit/s

54 - 3 MBit/s

55 - 3 MBit/s

56 - 3 MBit/s

57 - 3 MBit/s

58 - 3 MBit/s

59 - 3 MBit/s

00 - 3 MBit/s

01 - 3 MBit/s

As it is possible to see, it clearly reports a bitrate of 3Mbit/s, even though 12Mbit/s

was set before.

Having a look at the iPerf server log, it is possible to already understand that there

should be something wrong with the “iw dev <interface> station dump” output:

--

Server listening on UDP port 7000

Receiving 1470 byte datagrams

UDP buffer size: 208 KByte (default)

--

[3] local 10.10.6.102 port 7000 connected with 10.10.6.103 port

43265

[ID] Interval Transfer Bandwidth Jitter Lost/Total

Datagrams

191

5 – APU boards and UNEX DHXA-222

[3] 0.0- 2.0 sec 1.75 MBytes 7.35 Mbits/sec 0.152 ms 1/ 1251

(0.08%)

[3] 2.0- 4.0 sec 1.75 MBytes 7.34 Mbits/sec 0.170 ms 0/ 1248

(0%)

[3] 4.0- 6.0 sec 1.75 MBytes 7.34 Mbits/sec 0.137 ms 0/ 1248

(0%)

[3] 6.0- 8.0 sec 1.75 MBytes 7.34 Mbits/sec 0.110 ms 0/ 1249

(0%)

[3] 8.0-10.0 sec 1.75 MBytes 7.34 Mbits/sec 0.135 ms 0/ 1248

(0%)

[3] 10.0-12.0 sec 1.75 MBytes 7.34 Mbits/sec 0.114 ms 0/ 1248

(0%)

[3] 12.0-14.0 sec 1.75 MBytes 7.34 Mbits/sec 0.159 ms 0/ 1248

(0%)

[3] 14.0-16.0 sec 1.75 MBytes 7.34 Mbits/sec 0.152 ms 0/ 1249

(0%)

[3] 16.0-18.0 sec 1.75 MBytes 7.34 Mbits/sec 0.143 ms 0/ 1248

(0%)

[3] 18.0-20.0 sec 1.75 MBytes 7.34 Mbits/sec 0.132 ms 0/ 1249

(0%)

[3] 20.0-22.0 sec 1.75 MBytes 7.34 Mbits/sec 0.118 ms 0/ 1248

(0%)

[3] 22.0-24.0 sec 1.75 MBytes 7.34 Mbits/sec 0.119 ms 0/ 1248

(0%)

[3] 24.0-26.0 sec 1.75 MBytes 7.34 Mbits/sec 0.150 ms 0/ 1248

(0%)

[3] 26.0-28.0 sec 1.75 MBytes 7.34 Mbits/sec 0.123 ms 0/ 1249

(0%)

[3] 28.0-30.0 sec 1.75 MBytes 7.34 Mbits/sec 0.135 ms 0/ 1248

(0%)

[3] 30.0-32.0 sec 1.75 MBytes 7.34 Mbits/sec 0.102 ms 0/ 1248

(0%)

[3] 32.0-34.0 sec 1.75 MBytes 7.34 Mbits/sec 0.111 ms 0/ 1248

(0%)

192

5.8 – Bitrates on the APU boards and correct way of measuring them

[3] 34.0-36.0 sec 1.75 MBytes 7.34 Mbits/sec 0.128 ms 0/ 1249

(0%)

[3] 36.0-38.0 sec 1.75 MBytes 7.34 Mbits/sec 0.164 ms 0/ 1248

(0%)

[3] 38.0-40.0 sec 1.75 MBytes 7.34 Mbits/sec 0.132 ms 0/ 1248

(0%)

[3] 40.0-42.0 sec 1.75 MBytes 7.34 Mbits/sec 0.131 ms 0/ 1249

(0%)

[3] 42.0-44.0 sec 1.75 MBytes 7.34 Mbits/sec 0.125 ms 0/ 1248

(0%)

[3] 44.0-46.0 sec 1.75 MBytes 7.34 Mbits/sec 0.131 ms 0/ 1248

(0%)

[3] 46.0-48.0 sec 1.75 MBytes 7.34 Mbits/sec 0.124 ms 0/ 1249

(0%)

[3] 48.0-50.0 sec 1.75 MBytes 7.34 Mbits/sec 0.172 ms 0/ 1248

(0%)

[3] 50.0-52.0 sec 1.75 MBytes 7.34 Mbits/sec 0.156 ms 0/ 1249

(0%)

[3] 52.0-54.0 sec 1.75 MBytes 7.34 Mbits/sec 0.135 ms 0/ 1248

(0%)

[3] 54.0-56.0 sec 1.75 MBytes 7.34 Mbits/sec 0.146 ms 0/ 1248

(0%)

[3] 56.0-58.0 sec 1.75 MBytes 7.34 Mbits/sec 0.149 ms 0/ 1248

(0%)

[3] 0.0-60.0 sec 52.5 MBytes 7.34 Mbits/sec 0.127 ms 1/37450

(0.0027%)

In fact reaching a throughput (“Bandwidth”) of 7.34Mbit/s with 0% packet loss would

be impossible with a 3Mbit/s physical bitrate.

Moreover, analyzing the traffic captured by the APU_102 board and filtering for the

RadioTap header’s field related to the data rate (as shown in figure 5.8), it was possible to

observe that all the UDP frames are effectively transmitted by iPerf using the 12,Mbit/s

mode, which is really the expected one.

193

5 – APU boards and UNEX DHXA-222

This also confirms the fact that the RadioTap information should be the correct and

reliable one.

As an important consideration, repeating exactly the 12M/7M test few days after, led

to iw always giving the correct information (12Mbit/s), which seems to confirm that the

behavior we described here is not observed all the times and it is not so easy to predict.

As a workaround, using the RadioTap header information should always give the ex-

pected information about the data rate.

Figure 5.8: Filtering for the data rate field of the RadioTap header in the test previously
described, in Wireshark, after capturing the traffic coming from the APU_103 board with
APU_102; using radiotap.datarate==12 as filter shows that all the UDP packets
should have been transmitted using a 12MBit/smode, which is not what iw was telling
us in that specific case

The information about the received power seems to be, instead, much more reliable.

194

Chapter 6

Measurements on the APU

boards and results

6.1 Throughput and packet loss measurements

After setting up the system with the APU board, the UNEX DHXA-222 WLAN cards

and the latest OpenWrt version (18.06.1), which actually represents the final software

platform of this work, we were able to perform more systematic measurements to assess

the system performance. We heavily relied on iPerf, as measurement tool.

After finding out the bandwidth usage and instability problems of the ALIX boards,

we decided to concentrate the tests on the newer PC Engines boards.

All the measurements will follow this scheme, after a short introduction: first, the net-

work and desk configuration are shown, indicating all the conditions under which the data

was collected, second, the used scripts and commands are reported, third, the obtained

plots are shown and commented, fourth, if necessary, additional considerations are pre-

sented to the reader.

This first set of measurements aims at collecting and analyzing data for what concerns

the reachable throughput and the packet loss for different values of offered traffic (the

195

6 – Measurements on the APU boards and results

iPerf client -b parameter); the measurement are repeated three times for three physical

layer bitrate values: 3, 6 and 12 Mbit/s.

6.1.1 Network configuration and conditions

The first measurements were performed under the following conditions:

• Variable physical bitrate

• 5 dBi antenna (MIMO) connected to the boards

• 3 dBm txpower set in OpenWrt (so, this should be the transmitted power without the

additional antenna gain of 5 dBi)

• Boards placed very near to each other, with 16 cm between the two enclosures

• Duration of each single test: 60 seconds

• iPerf port: 7000

• iPerf report interval: 2 seconds

• Layer 4 protocol: UDP

• Payload size: 1470 B (default iPerf value)

• UDP buffer size: 208 KB (default iPerf value)

• Channel: 178

UDP was chosen as protocol since it seemed to be the best choice both for simulating

IP-based transmissions, being compatible with iPerf, which is a de-facto standard in net-

work measurements, and for simulating future non-IPWSMs transmission when a proper

stack will be implemented.

All these transmissions are based upon the OCB mode, according to the IEEE stan-

dards.

196

6.1 – Throughput and packet loss measurements

Figure 6.1: Configuration of the desk and network topology when performing the first
throughput and packet loss measurements

The configuration of the desk during the tests is reported in figure 6.1

The APU_103 board was working as iPerf client, sending packets to the APU_102

board, in which an iPerf server was started.

6.1.2 Scripts and commands

The script we used is reported below. As most of the scripts presented in this chapter,

it is based on the fact that now the date and time are synchronized thanks to chrony, as

detailed in section 5.6, thus it needs the board to be connected to the Internet through

its Ethernet ports or, in case of unavailable Internet connection during the tests, to be

connected at least once to synchronize its time, which should then remain sufficiently

synchronized for the duration of the tests themselves.

For these first measurements it is not strictly necessary to synchronize, but it was nev-

ertheless very useful for example when we decided to study more in depth the current

physical layer rate reported by “iw”, as mentioned in section 5.8.

197

6 – Measurements on the APU boards and results

iperfclient7000.sh

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfclientb {

13 iperf -c 10.10.6.102 -u -i 2 -t 60 -b $1 -p 7000

14 }

15

16 rates=(0.5M 1M 1.5M 2M 2.5M 2.6M 2.7M 3M 5M 5.4M 5.5M 5.6M 5.7M 5.8M

5.9M 6M 7M 9M 10M 11M 11.5M 11.6M 11.7M 11.8M 11.9M 12M 100M 500M)

17 physrates=(3 6 12)

18

19 currwait=0

20 i=0

21 p=0

22 while [$p -lt ${#physrates[@]}]; do

23 wifiarate=$((${physrates[$p]}*2))

24 iw dev wlan0 set bitrates legacy -5 $wifiarate

25 echo ”Rate set to ${physrates[$p]} (iw dev wlan0 set bitrates legacy

-5 $wifiarate)”

26 sleep 1

27 while [$i -lt ${#rates[@]}]; do

28 echo ”Client started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

29 waituntil $currwait

198

6.1 – Throughput and packet loss measurements

30 echo ”------------------------------------”

31 echo ”Running test with -b ${rates[$i]} (iw dev wlan0 set bitrates

... ${physrates[$p]}”

32 iperfclientb ${rates[$i]}

33 echo ”Test with -b ${rates[$i]} terminated”

34 echo ”------------------------------------”

35 i=$((i+1))

36 currwait=$(((currwait+10)%60))

37 done

38 sleep 1

39 p=$((p+1))

40 i=0

41 done

The script defines a bash function, called waituntil and accepting one argument, that

waits until a certain “seconds’ value” (passed as first argument) occurs on the current time

and date.

For instance, if the current time is 15:46:23 and the argument is 30, the script will wait

for 7 seconds just as soon as the current time becomes 15:46:30.

Since this “seconds’ number” is specified inside the script, by using the same number

on two boards (i.e. on two scripts) at the same time, they can perform synchronized tests,

waiting until the same date and time occurs inside both of them.

Of course this is going to work only if both the boards have a reasonably synchronized

time reference and that is where chrony plays its role.

The current number of seconds is obtained thanks to the “date” command, which is

then filtered by means of “cut”, extracting the relevant data (i.e. the two digits indicating

the current value of the seconds).

A second function is defined just to shorten each call to the iPerf client in the main

script body.

Two arrays are then defined, containing all the offered traffic rates that should be tested

and the physical rates to be used.

199

6 – Measurements on the APU boards and results

For each of the physical rates (which are set in lines 23 and 24), all the values specified

in “rates” are tested.

The “sleep 1” command is just there to be sure that the system completed its con-

figuration in any possible situation, before proceeding further.

Then, an iPerf client with a certain -b value (i.e. one of the values contained in “rates”)

is started and it performs a 60 second lasting test.

The synchronizationmechanism takes into account this test duration: the first measure-

ment always starts when the time reaches “00” as seconds’ value (currwait=0); then,

the script will wait until this value reaches “10”, then “20” at the following iteration, and

so on, adding 10 seconds every time (currwait=$(((currwait+10)%60))). This

avoids the client finishing just after this “00” value and have to wait for more than 50

seconds before starting the next test.

In the first version of the script, which was actually used to collect data for the 3Mbit/s

physical rate configuration, there was a different definition of the rates arrays, that was

then improved for the later tests.

That is why it is possible to see a little mismatch between the point in the 3 Mbit/s plot

and what is reported inside this array.

Additional measurements, by manually running an iPerf client and server on the two

boards, have been then performed to further improve the final plots:

• we added 4 values of offered rates to the 6 Mbit/s tests: 4M, 13M, 14M, 15M

• we added 7 values to the 12 Mbit/s tests: 4M, 13M, 14M, 15M, 17M, 19M, 21M

The values related to 100M and 500M were then discarded since they did not allow to

properly show all the data in a single plot and since the results were almost the same as

the previous measurements (10M or 15M or 21M).

This script was launched on theAPU_103 board, working as client, while onAPU_102

it was sufficient to start a continuously running server with:

iperf -s -u -i 2 -p 7000 2>&1 | tee -a ”ServerLog.txt”

200

6.1 – Throughput and packet loss measurements

To briefly comment this command, it is possible to say that:

• An iPerf server is started on port 7000 (-p 7000), with periodic reports every 2

seconds (-i 2) and expecting UDP datagrams (-u)

• The standard error stderr, with descriptor 2, is redirected to the standard output

stdout, with descriptor 1, in order to log everything the program is providing as

output (2>&1)

• The “tee” command used to take the output of iPerf (both stderr and stdout at this

point) and both display it on standard output (i.e. on the SSH console) and store it

inside a log file (“ServerLog.txt”), appending new information to the already existing

one (-a)

201

6 – Measurements on the APU boards and results

6.1.3 Plots and results

The results are shown in the following plots, comparing packet loss and reachable

throughput for different values of offered traffic.

Figure 6.2: Measurements for 3Mbit/s of physical layer bitrate

202

6.1 – Throughput and packet loss measurements

Figure 6.3: Measurements for 6Mbit/s of physical layer bitrate

203

6 – Measurements on the APU boards and results

Figure 6.4: Measurements for 12Mbit/s of physical layer bitrate

As it is possible to see from the plots, the ideal throughput is never reached, even with

a quite big and “optimized” UDP payload as 1470B can be.

We noticed that as the physical rate is lower, we can arrive near to the ideal value, at

least as far as what iPerf is reporting, while as it is higher, the gap between the ideal and

real throughput becomes larger.

In particular, the following obtained values are worth to be mentioned:

204

6.1 – Throughput and packet loss measurements

Physical bitrate Maximum throughput* Maximum -b with 0% loss**

3 Mbit/s 2.62 Mbit/s 2.5M

6 Mbit/s 4.85 Mbit/s 4M

12 Mbit/s 8.45 Mbit/s 7M

Table 6.1: Important measurement data
*With the boards being placed quite near to each other
**It is not the absolute maximum: it’s the maximum over the selected values

Looking at the packet loss values, it is possible to notice that they progressively in-

crease, as the offered traffic is increased over the aforementioned 0% loss values.

These values of offered traffic which start to generate packet loss, of course, are always

more than what the network can bear, generating a congested situation.

This trend stabilizes around a certain percentage as -b continues to grow, which is:

• ~43% for 3 Mbit/s

• ~26% for 6 Mbit/s

• ~45% for 12 Mbit/s

This fact can be explained, very probably, with the presence of a WNIC buffer (or a

mac80211 buffer, or a driver buffer) between the iPerf application, mac80211 and the

physical hardware sending the frames over the air, which has its throughput limited to the

measured values (for instance, it cannot ever send 100 Mbit/s of data with an 802.11p

stack).

The exact position of this buffer has still to be analyzed more in details (the driver

source code resulted to be very complex and it is quite difficult to find a sufficiently com-

plete datasheet for the UNEX DHXA-222 cards); for the sake of simplicity, however, we

will call it “driver buffer”.

Here comes the concept of “socket buffer” (or “UDP buffer size”)1: iPerf uses sockets

1Thanks to Robert McMahon, from the iPerf 2 forums, for helping me clarify this concept

205

6 – Measurements on the APU boards and results

to send data out over the wireless medium and it sets a certain socket buffer size which is

used by higher layers to accept the data to be sent:

tcp_window_size.c

132 rc = setsockopt(inSock, SOL_SOCKET , SO_SNDBUF ,

133 (char*) &newTCPWin , sizeof(newTCPWin));

If this socket size is greater than the “driver buffer” size, which should be at a lower

level and nearer to the WNIC signal processing hardware, the data will be accepted by

the network stack as long as the iPerf buffer is not full.

The data, however, even if the kernel tries to deal with it as quick as possible, may be

dropped due to this lower level buffer not being able to accept new frames, for example

if the offered traffic is too much with respect to what the WNIC can deliver.

In the opposite case, when the buffer used by the iPerf’s socket has a lower size than the

driver’s buffer (which seems also to be different between ath5k+UNEX DCMA 86P on

the ALIX boards and ath9k+UNEX DHXA-222 on the APU boards), a lower loss should

be observed, as it is the networking stack that it should now be preventing too much data

to flow towards the driver, blocking new writes to the socket as long as the iPerf buffer

is not able to accommodate the new data. The drawback is that this can limit the traffic,

coming from the application, that is able to flow out from the board.

It is also important to take into account that the process of filling the buffer has a

different evolution depending on the packet size, and, as we observed, this is not always

linear with the size of the payload and the length of the iPerf buffer; moreover, drivers may

also implement flow control mechanisms, which can influence how buffers are managed.

iPerf usuallyworks, when inUDPmode, with a default buffer size of 208KB (212992B),

which can be changed using the “-w” parameter.

Since iPerf reserves this space by means of a call to setsockopt(), the buffer size

specified by the user is normally doubled by the kernel, to maintain a certain overhead

206

6.1 – Throughput and packet loss measurements

over the specified size2.

The maximum (and minimum) value is actually limited by the kernel, and it can be

changed by using the sysctl utility.

In particular, a script like the following one can be used:

Set_kernel_params.sh

1 #!/bin/sh

2 sysctl -w net.ipv4.udp_rmem_min=4096

3 sysctl -w net.ipv4.udp_wmem_min=4096

4 sysctl -w net.core.rmem_max=212992

5 sysctl -w net.core.rmem_default=212992

6 sysctl -w net.core.wmem_max=212992

7 sysctl -w net.core.wmem_default=212992

Here the default APU1d OpenWrt 18.06.1 values are reported, but any other value can be

set by the user, depending on his or her needs.

In particular, the meaning of each kernel parameter is resumed below:

• net.ipv4.udp_rmem_min: “Minimal size, in bytes, of receive buffers used by UDP

sockets in moderation”3

• net.ipv4.udp_wmen_min: “Minimal size, in bytes, of send buffer used by UDP

sockets in moderation”4

• net.core.rmem_max: maximum receive buffer size for all the connections

• net.core.rmem_default: default receive buffer size for all the connections

• net.core.wmem_max: maximum send buffer size for all the connections

• net.core.wmem_default: default send buffer size for all the connections

2As reported in “man 7 socket”, in the part related to “SO_SNDBUF”
3From “man udp”.
4From “man udp”.

207

6 – Measurements on the APU boards and results

The effect of the buffer can also be visualized in the following plot:

Figure 6.5: Evolution of packet loss and number of transmitted packets as the iPerf send
socket buffer size is increased

This plot has been obtained by choosing a physical rate of 3Mbit/s, “-b 10M”, Open-

Wrt txpower equal to 15 dBm and varying the buffer size with “-w”; no antennas were

connected (but the boards were placed very near to each other).

Other than that, the conditions were the same of the main test reported in this section.

The following values of “-w” have been tested:

208

6.1 – Throughput and packet loss measurements

-w Buffer size (KBytes) Packet loss (%) Transmitted packets Throughput (Mbit/s)

1K 2.25 0.078% 12865 2.52

2K 4 0% 12875 2.52

5K 10 0% 13351 2.62

10K 20 0% 13356 2.62

20K 40 0% 13362 2.62

50K 100 6.6% 14312 2.62

51K 102 6.8% 14360 2.62

52K 104 12% 15202 2.62

53K 106 12% 15173 2.62

54K 108 12% 15310 2.62

55K 110 16% 16026 2.62

60K 120 19% 16633 2.62

70K 140 30% 18989 2.62

80K 160 36% 20946 2.62

90K 180 43% 23447 2.62

104K 208 43% 23485 2.62

150K 300 43% 23481 2.62

200K 400 43% 23550 2.62

As it is possible to see, the number of transmitted packets tends to increase as the buffer

size is increased, letting iPerf try to write more data, until a certain value is reached.

The same trend is followed by the percentage packet loss, which is initially 0% or very

near to this value and it is then increased as we let more data flow towards the driver.

With very low values of buffer size (2.25K, 4K) we also observed a small reduction

in the throughput, which was lowered to a maximum of 2.52Mbit/s, which is a little less

than the value measured before.

It is important to note that this test has been performed trying to offer around 10Mbit/s,

which can never be fully transmitted when a physical datarate of 3Mbit/s is selected.

209

6 – Measurements on the APU boards and results

A better and more detailed characterization of the buffer behavior is presented in sec-

tion 6.2.

6.1.4 Additional considerations

During all the previous tests (except the one related to the socket buffer), the Wi-Spy

device has been kept connected to the development PC, in order to look at the spectrum

usage.

We were able to verify that the ALIX boards’ issues with the frequency usage and

the transmission power seemed not to affect the APU boards (with the UNEX DHXA-

222 cards), since the channel usage was much more polite (with no interference on nearby

channels, even though the transmission power was lower, in this case) and no “unexpected

power increase” was ever observed, even after a lot of data points had been collected.

Figure 6.6: Planar view showing the maximum spectrum usage during the previous tests,
which was quite the expected one

6.2 Characterization of the buffered transmission

After looking at the first packet loss and throughput measurements, we noticed a packet

loss which is actually compatible with the presence of one or more buffers in the sys-

tem, mainly WNIC/mac80211-side and also application-side, due to the presence of a

210

6.2 – Characterization of the buffered transmission

UDP transmission buffer, which can be set in any application, for instance, by means of

“setsockopt()”.

In order to better characterize the buffered transmission behavior, we performed ad-

ditional measurements using a purposely prepared script and a modified version of iPerf

2.0.12, patching its UDP send loop to output useful debug informations, which are nor-

mally unavailable to the user.

We first of all chose a physical rate of 6 Mbit/s and tried to measure the packet loss

and number of transmitted packets, progressively increasing the “UDP window size” (i.e.

the UDP socket send buffer size), for different values of packet size. Similar results are to

be expected also for the other selectable vales of physical rate.

The value of -w was instead kept constant, at its default value (208 KB), during all the

previous measurements.

We then tried to better explain this behavior by collecting and analyzing data related

to both the evolution of the UDP send buffer and to the evolution of the iPerf “running

delay”, which is better described in the section related to the “Scripts and commands,

iPerf UDP send loop”.

6.2.1 Network configuration and conditions

The buffer related measurements were performed under the following conditions.

Packet loss and number of packets:

• 6 Mbit/s physical bitrate

• 5 dBi antenna (MIMO) connected to the boards

• 3 dBm txpower set in OpenWrt (so, this should be the transmitted power without the

additional antenna gain of 5 dBi)

• Boards placed very near to each other, with 16 cm between the two enclosures

• Duration of each single test: 60 seconds

211

6 – Measurements on the APU boards and results

• iPerf port: 7000

• iPerf report interval: 2 seconds

• Layer 4 protocol: UDP

• Payload size: variable

• UDP buffer size: variable

• Channel: 178

Evolution of send buffer and running delay:

• 3 Mbit/s physical bitrate

• no antennas connected to the boards, which were in any case placed very near to

each other

• 15 dBm txpower set in OpenWrt

• Boards placed very near to each other, with around 2.5 cm between the two enclo-

sures

• Duration of each single test: 20 seconds

• iPerf port: 7000

• iPerf report interval: variable (0.1 seconds or 2 seconds)

• Layer 4 protocol: UDP

• Payload size: 1470 B (default)

• UDP buffer size: variable

• Channel: 178

212

6.2 – Characterization of the buffered transmission

The second set of measurements could be performed without the antennas, as the dis-

tance between the boards was small enough for any error-free communication over the

air and the received or transmitted power was irrelevant in this case, provided that the

communication could happen without errors due to the wireless medium.

All these transmissions are based again upon the OCB mode.

6.2.2 Scripts and commands, iPerf UDP send loop

For the first set of measurements, it was sufficient to set the physical rate to 6 Mbit/s

(with iw) and manually launch couples of iPerf server and client with variable values of

“-w” and “-l”.

In order to simplify and automatize the whole process, we wrote two scripts, one

for the iPerf clients (to be launched on APU_103 and connecting to APU_102 with IP

10.10.6.102) and one for the iPerf severs (to be launched on APU_102).

iperfserver_wtest.sh (APU_102)

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfserverblw {

13 echo ”# iperf -s -u -i 2 -p 7000 -l $2 -w $3 -t 64” >> ”Logs/

ServerLog_b_$1_l_$2B_w_$3.txt”

14 iperf -s -u -i 2 -p 7000 -l $2 -w $3 -t 64 | tee -a ”Logs/

ServerLog_b_$1_l_$2B_w_$3.txt”

213

6 – Measurements on the APU boards and results

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 6 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 12

28 sleep 1

29

30 windows=(2.25K 5K 10K 20K 50K 60K 70K 80K 90K 104K 150K 200K)

31 len=104

32 b=10M

33

34 currwait=0

35 i=0

36 while [$i -lt ${#windows[@]}]; do

37 echo ”Server started at second $(date | cut -d$’\t’ -f5 | cut -d”:”

-f3 | cut -d” ” -f1), waiting until second $currwait”

38 waituntil $currwait

39 echo ”------------------------------------”

40 echo ”Running test with -b $b -l $len -w ${windows[$i]}”

41 iperfserverblw $b $len ${windows[$i]}

42 echo ”Test with -b $b -l $len -w ${windows[$i]} terminated”

43 echo ”------------------------------------”

44 i=$((i+1))

45 currwait=$(((currwait+10)%60))

46 done

214

6.2 – Characterization of the buffered transmission

iperfclient_wtest.sh (APU_103)

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfclientblw {

13 echo ”# iperf -c 10.10.6.102 -u -i 2 -t 60 -p 7000 -l $2 -b $1 -w $3

” >> ”Logs/ClientLog_b_$1_l_$2B_w_$3.txt”

14 iperf -c 10.10.6.102 -u -i 2 -t 60 -p 7000 -l $2 -b $1 -w $3 | tee -

a ”Logs/ClientLog_b_$1_l_$2B_w_$3.txt”

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 6 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 12

28 sleep 1

29

215

6 – Measurements on the APU boards and results

30 windows=(2.25K 5K 10K 20K 50K 60K 70K 80K 90K 104K 150K 200K)

31 len=104

32 b=10M

33

34 currwait=0

35 i=0

36 while [$i -lt ${#windows[@]}]; do

37 echo ”Client started at second $(date | cut -d$’\t’ -f5 | cut -d”:”

-f3 | cut -d” ” -f1), waiting until second $currwait”

38 waituntil $currwait

39 echo ”------------------------------------”

40 echo ”Running test with -b $b -l $len -w ${windows[$i]}”

41 sleep 2

42 iperfclientblw $b $len ${windows[$i]}

43 echo ”Test with -b $b -l $len -w ${windows[$i]} terminated”

44 echo ”------------------------------------”

45 i=$((i+1))

46 currwait=$(((currwait+10)%60))

47 done

Both the scripts are based on the “iperfclient7000.sh” script presented in the previous

section, synchronizing the execution of the server on one board (which is set to last for

64 seconds to allow the client to have some margin) and on the client on the other board,

using NTP and the “waituntil” bash function. The client is started 2 seconds after the

server to let the system completely configure the socket, in such a way that the client,

when started, will find a ready server on the other board, avoiding any “cold start” packet

loss.

Each scripts performs a set of measurements for different values of “-w”, given a cer-

tain packet size.

In particular, the following values are tested:

216

6.2 – Characterization of the buffered transmission

-w Buffer size (KBytes)

2.25K 4

5K 10

10K 20

20K 40

50K 100

60K 120

70K 140

80K 160

90K 180

104K 208

150K 300

200K 400

Then, the packet size was changed by giving a different value to the “l” variable, on

line 31 of both scripts (it may be important to set the same value both server and client

side, so we always gave the same value to both of them).

The server and client outputs are logged respectively to two log files, using tee just

like before:

• ServerLog_b_10M_l_<length>_w_<buffersize_in_K>.txt

• ClientLog_b_10M_l_<length>_w_<buffersize_in_K>.txt

They were saved inside a “Logs” subfolder, which is automatically created by the script

if it was not already present (lines 17-24), and they have been both parsed to extract the

217

6 – Measurements on the APU boards and results

relevant data and stored for any future reference.

For what concerns the second set of measurements, instead, it was very difficult to

simply use bash scripts or already available tools, since the evolution of the UDP transmit

buffer size is not immediately obtainable, at least not in a synchronized way with iPerf

sending packets over the networking stack.

For a first analysis of the evolution, in time, of the data inside the transmission queue, it

was possible to write a script querying the “/proc/net/udp” file, which lists all the opened

UDP sockets, including information about the size of the send and receive queues (re-

spectively with the “tx_queue” and “rx_queue” fields).

Figure 6.7: Part of the output of “cat /proc/net/udp”, when executed on the
APU_103 board, in which an iPerf client was running, sending data to a server on the
APU_102 board. The socket of interest is highlighted.

With reference to figure 6.7, it is possible to highlight the following important fields:

• The “local_address” field lists the local IP address in an hexadecimal little-endian

format and the port; in this case 67060A0A corresponds to 10.10.6.103 (0A.0A.06.67)

and 9AD8 to the client port (39640).

• The “remote_address” field lists the remote IP address in an hexadecimal little-

endian format and the port; in this case 66060A0A corresponds to 10.10.6.102

(0A.0A.06.66) and 1B58 to the server port (specified with ‘‘-p 7000”)

218

6.2 – Characterization of the buffered transmission

• It is also possible to notice a non-empty “tx_queue” (with 0x0001A700 bytes occu-

pied at the moment of querying the file, corresponding to 105 KB), possibly indicat-

ing that the application is generating data faster than what the network card is able to

send; this field is equal to the kernel memory usage, in bytes, of packets which have

been buffered by the application but not yet sent by the kernel’s wireless subsystem

and the WNIC. It is expected, as iPerf, in this case, was set with “-b 10M” under a

3 Mbit/s physical rate.

In order to periodically log the “tx_queue” field, the following bash script has been

written:

procudp_monitor.sh

1 #!/bin/bash

2

3 # The script expects as argument the name to append to the log file

name (Log_txbuf_evolution_ <name>.csv

4 if [$# -ne 1]; then

5 echo ”Error. One argument was expected.”

6 exit 1

7 fi

8

9 # Create the log file in .csv format (to be easily imported inside

Matlab)

10 echo ”Logging on file Log_txbuf_evolution_$1.csv started”

11 echo ”Date,Txbuf” > ”Log_txbuf_evolution_$1.csv”

12

13 # Wait until the UDP socket is created (i.e. until grep returns

positively while looking for a line containing the APU_102 and

APU_103 IP addresses)

14 while true; do

15 cat /proc/net/udp | grep ”67060A0A” | grep ”66060A0A” 2>&1 > /dev/

null

16 if [$? -eq 0]; then

219

6 – Measurements on the APU boards and results

17 break

18 fi

19 done

20

21 # Considering an average 15.5 points/second (from previous tests) =

403 point for 26 s. The loop iterates for a period which is

estimated to be around 26 s: this value can then be used to plot

under Matlab

22 count=0

23 while [$count -lt 404]; do

24 # Extract the tx_queue field from the proper socket in /proc/net/udp

, using sed (with the substitution command s/)to remove multiple

consecutive spaces from the selected line (\s is a ”space”),

which can fool the cut utility, then using cat with ” ” (space)

and then ”:” as delimiters (’cut -d”:” -f2’ would have selected

the rx_queue field)

25 txbufB=$(cat /proc/net/udp | grep ”67060A0A” | grep ”66060A0A” | sed

’s/\s\s*/ /g’ | cut -d” ” -f6 | cut -d”:” -f1)

26 # Log this field after converting it to decimal ($((0x$txbufB))),

together with the current date and time

27 echo ”$(date),$echo $((0x$txbufB))” >> ”Log_txbuf_evolution_$1.csv”

28 # With this value of sleep (0.05 s), 15.5 pts/s seems to be

collected on average

29 ./millisleep 0.05

30 count=$((count+1))

31 done

The script should collect points in time corresponding to an estimated span of 26 seconds

from the moment in which the socket was created.

The time at which every point is collected is not accurate, being based on how many

points every second several previous test measurements could collect under the same

conditions, but it should be fine for general and more qualitative measurements.

For better and more precise measurements, as detailed later, it will be necessary to

220

6.2 – Characterization of the buffered transmission

modify the iPerf source code.

It is possible to notice that the scripts calls a “millisleep” binary, placed inside the

same folder.

This is a custom implementation of a very simple sleep utility that is able to support

waiting for less than a second. Its code is reported in Appendix F.

Before describing how we performed more precise measurements on the transmit

queue and “running delay” evolution, it may be important to briefly describe how iPerf

manages the client-side transmission of UDP packets.

Wewill concentrate on explaining what happens with the options that are actually used

in this work; variations to this scheme may be expected as other options are selected.

We also considered iPerf 2.0.12: with iPerf 3 or any future version of iPerf 2 variations

may occur.

Taking as reference the conceptual flow chart for the iPerf 2 send loop, reported in

figure 6.8, the transmission of UDP packets at a certain “bandwidth” (i.e. at a certain

value of “-b”) happens thanks to a “running delay”.

The value of offered traffic is translated in a delay that should occur between the trans-

mitted packet with a payload of a certain size (for instance the default size of 1470 B), in

order to respect what the user specified with “-b”.

This delay, called in the code “delay_target”, is computed according to the follow-

ing formula:

td =
L · ks−ns · kB−b

b

with:

• td: target delay [ns]

• L: payload size [B]

• ks−ns = 109: constant for the conversion of seconds to nanoseconds [ns/s]

• kB−b = 8: constant for the conversion of bytes to bits [bit/B]

221

Figure 6.8: Conceptual flow chart of the iPerf 2 UDP send loop, when the -b, -i, -u, -t
options are set, as in this work

6.2 – Characterization of the buffered transmission

• b: offered traffic [bit/s]

For instance, with “-b 10M”, with the default payload size the formula returns:

td =
L · ks−ns · kB−b

b
=

1470 · 109 · 8
10 · 1024 · 1024

= 1121521ns ∼= 1.1215ms

In an ideal case, if a sleep of 1.1215 ms would be inserted between each packet, the

transmission would be at around 10 Mbit/s, which is what the user specified.

However, each iteration of the loop takes time to be executed and this should be taken

into account.

This is done thanks to a “running delay”, which is a delay value stored for the whole

life of the thread running the client and adjusted at each iteration; it is called “delay” in

the code.

The adjustment is computed, at each iteration, in the following way:

• Adjustment = Target delay - last loop iteration time, if the write was successful

• Adjustment = - last loop iteration time, if the write was unsuccessful (i.e. nothing

was passed to the lower blocks of the wireless subsystem)

The loop time is computed thanks to the current timestamp (which will be inserted inside

the current UDP packet for jitter computation) and to the last transmitted packet times-

tamp, which is stored at each iteration.

This value is then used to adjust the running delay, which was initialized to 0 at the

beginning of the UDP send loop.

According to our understanding of this algorithm, it is possible to look at an example:

let’s suppose that the time for executing the instructions inside each iteration is always

equal to 10 µs ±1 µs, with a target delay of 1.1215 ms.

At the first iteration:

adjust = <target delay> - <loop time> = 1121521 ns - 10000 ns = 1111521 ns

delay = delay + adjust = 0 ns + 1111521 ns = 1111521 ns

223

6 – Measurements on the APU boards and results

At the second iteration, which will take the instruction time plus the previous delay

(supposing an instruction execution time of 11 µs):

adjust = <target delay> - <loop time> = 1121521 ns - (1111521+11000) ns = -1000 ns

delay = delay + adjust = 1111521 ns - 1000 ns = 1110521 ns

Which is in fact a little less than the first iteration value, to take into account the slower

iteration (11 µs). And so on.

In case the second iteration took 10 µs of instruction time rather than 11 µs:

adjust = <target delay> - <loop time> = 1121521 ns - (1111521+10000) ns = 0 ns

delay = delay + adjust = 1111521 ns + 0 ns = 1111521 ns

As it is possible to see, the delay is in this case equal to the first iteration value and it

is exactly equal to the target delay minus the time to execute the instructions in the loop.

Thanks to this mechanism the delay should be constantly adjusted to restrict the “band-

width” (the iPerf offered traffic) to the value specified by the user.

A negative value of this running delay means, as written in the code, that the “iperf

app is behind” and could not be fast enough to maintain the required delays.

In order not to let this running delay grow to values which are too negative, in the

aforementioned case, when it reaches a certain “lower bound” it is reset again to the target

value, at least as far as we correctly understood the algorithm.

This “lower bound” is computed considering the report interval, thanks to the follow-

ing formula:

timersosnd =
i · 1000000

2

tdLB
= −timersosnd · 103

with:

• tdLB
: delay lower bound [ns]

• timersosnd: socket write timeout [µs]

• i: report interval [s]

224

6.2 – Characterization of the buffered transmission

According to the comments inside the “Client.cpp” source file, the programs sets, when

writing data, a socket timeout, in order to allow responsive reporting even in case a write()

call would block the program for a long time, for any reason.

The delay lower bound is set to be equal to the negative of the socket timeout, in

nanoseconds.

Finally, the running delay actually translates into a wait procedure only if it is greater

than 1 µs, otherwise, being it very small, the next iteration starts immediately.

The running delay can be measured together with the UDP transmit queue length, in

order to better characterize the buffered communication which is used to perform most

of the measurements on the APU boards.

In order to log all these values in a synchronized way (i.e. to obtain the delay value

together with the current length of the transmit queue), the source code of a separate copy

of iPerf 2.0.12 has been downloaded5 and the source files managing the client have been

patched to properly output these values.

In particular, the extra information provided by the modified client is related to:

• UDP Tx buffer length, in bytes, before transmitting each packet (i.e. just before per-

forming a write on the socket)

• Running delay value, in nanoseconds, for each iteration of the loop (i.e. for each

transmitted packet, if all the transmissions are successful)

• The target delay, which is printed on standard output just after the client starts

• The delay lower bound, which is printed again on standard output, once after the

client starts

The data about the evolution of the buffer and of the running delay is stored inside two ar-

rays, which are printed on stderr only at the end of the UDP send loop execution, to avoid

5https://sourceforge.net/projects/iperf2/files/iperf-2.0.12.tar.gz/download

225

https://sourceforge.net/projects/iperf2/files/iperf-2.0.12.tar.gz/download

6 – Measurements on the APU boards and results

continuous write to files or on stdout/stderr which could potentially affect performance

in an evident way.

As data, at each iteration (i.e. at each packet number), the status of the buffer is stored,

together with the delay caused by that status plus all the instruction execution time.

This means that the delay should be stored inside the arrays with 1 index less than then

the one used for the buffer status, since the delay corresponding to a certain situation in

the buffer (making the write slower or faster) is computed only at the next iteration.

To better clarify this concept, let’s suppose to have, at the moment in which packet 100

should be transmitted, a full buffer, which causes a large delay in performing the write

operation. We will have:

• Iteration corresponding to packet 99: delay: short (related to packet 98 loop time),

buffer: not full

• Iteration corresponding to packet 100: delay: short (related to packet 99 loop time),

buffer: full

• Iteration corresponding to packet 101: delay: long (related to packet 100 loop time),

buffer: full/not full

In order to align “delay is long” with “buffer is full”, given arridx as the index of the

arrays, it is possible to store at each iteration the delay information in dlyarray[arridx

] and the buffer size in bufarray[arridx+1].

The modified code is presented more in details in Appendix F.

After renaming the compiled iPerf binary to “iperfdbg” and transferring it to the

boards, a server and a client were respectively launched on the APU_102 and APU_103

boards, using commands like the following ones:

./iperfdbg -s -u -i 2 -p 7000 -w 400K

and

./iperfdbg -c 10.10.6.102 -u -i 2 -t 20 -p 7000 -b 10M -w 400K 2>

logiperfdbg.txt

226

6.2 – Characterization of the buffered transmission

In both cases the ‘‘-i” and ‘‘-w” values were changed depending on the test.

The “2> logiperfdbg.txt” part of the second command allowed us to redirect the

values stored inside the two arrays, normally printed on stderr, to a log file (“logiperfdbg.txt”).

In order to be able to test large values of ‘‘-w”, it was also necessary to increase

the maximum send and receive buffer size, by modifying the net.core.rmem_max and

net.core.wmem_max kernel parameters:

Set_kernel_params.sh

1 #!/bin/sh

2 sysctl -w net.ipv4.udp_rmem_min=4096

3 sysctl -w net.ipv4.udp_wmem_min=4096

4 sysctl -w net.core.rmem_max=15728640

5 sysctl -w net.core.rmem_default=212992

6 sysctl -w net.core.wmem_max=15728640

7 sysctl -w net.core.wmem_default=212992

227

6 – Measurements on the APU boards and results

6.2.3 Plots and results: first set

The results of the first set of measurements are shown in the following plots. It may

be useful to note that during the first set of measurements the maximum buffer size has

been kept at is default value.

Figure 6.9: Packet loss measurements for 6Mbit/s of physical layer bitrate, with different
payload size and “UDP buffer size” values

228

6.2 – Characterization of the buffered transmission

Figure 6.10: Number of transmitted packets for 6Mbit/s of physical layer bitrate, with
different payload size and “UDP buffer size” values

As it is possible to see, the losses are very small as a small buffer size is selected, limit-

ing the overall traffic that iPerf is able to pass to the networking stack; they then increase,

depending on the packet size, as the buffer is increased, since more data is now written by

iPerf to the socket; this data, however, cannot be fully transmitted, as the selected offered

traffic (-b 10M) is much more than what the network can deliver.

As the payload size is increased, the maximum buffer size guaranteeing 0% losses

tends to decrease towards lower values, except for the 500 bytes case, showing a behavior

which is not always linear, probably due to the frames fitting in a better or worse way

inside the buffer and due to the combined effect of the UDP buffer at an application level

229

6 – Measurements on the APU boards and results

and of the behavior of the wireless subsystem when transmitting data.

In particular, we got the following data:

Payload size Max buffer size with 0% loss*

104 B 208 KB

208 B 180 KB

500 B 120 KB

1000 B 160 KB

1470 B 120 KB

* Among the chosen values

For what concerns the number of transmitted frames, it is proportional to the payload

size, as expected, meaning that a higher payload size will result in less independent frames

being generated and transmitted.

It also tends to increase as the buffer size is increased, even though the number tends to

remain quite stable for very low ‘‘-w” values and to stabilize, with a big packet loss value,

as the configuration approaches much bigger values, possibly due to a sort of equilibrium

between the dropped packets and what iPerf is trying to send, as detailed later on.

230

6.2 – Characterization of the buffered transmission

6.2.4 Plots and results: second set

For the second set of measurements, partly explaining the behavior observed in the

first set, it can be useful to comment one plot at a time.

Figure 6.11: First buffer evolution plot

When specifying a high value of ‘‘-b”, with respect to the maximum reachable value,

the buffer, depending on the moment, is actually completely filled in.

It starts by being gradually filled (with a lower packet loss in the moment in which

the transmission starts), until it is completely full. Then, it starts following a “zig-zag”

behavior, which limits the amount of traffic iPerf is able to push towards the lower levels.

Taking into account that in this case the target delay is equal to 1.121521 ms, the lower

bound is -1000 ms and looking closer at the first section of the buffer evolution plot it is

possible to better described the overall transmission behavior.

231

6 – Measurements on the APU boards and results

Figure 6.12: Zoom over a section of the first buffer evolution plot

It is possible to notice that the delay is initially around 1 ms, as the buffer gets filled

in.

When it is full, the write operation takes much more time, being it blocking until the

send timeout expires (which is not our case, here), dropping the delay down to a negative

value.

This will let theWNIC transmit a certain amount of packets, allowing the buffer to gain

some free space; the size of this “step” is very probably dependent on both the wireless

subsystem and the WNIC+driver behavior.

As suggested by Robert Hancock, a user in the OpenWrt forums, the fact that the

“write()” call blocks for more time with respect to the one that would be needed to

free up the space for a single packet is reasonable, since packets may get aggregated

(for instance for 802.11n and 802.11ac MPDU aggregation) and it would also be quite

inefficient, from the application point of view, to “wake up so frequently just to refill the

socket buffer” [74].

This will also make the program not to wait anymore, and try to push as much data as

possible to try moving the running delay towards the target value.

232

6.2 – Characterization of the buffered transmission

As the data is generated, the buffer is filled again, until it becomes full again. This time

the delayed write seems to have a much worse effect, causing the running delay to drop

over the delay lower bound (as it was already negative), which resets it to the target value,

making the process repeat in time.

Of course not all the packets can be transmitted by the WNIC, thus causing a packet

loss which is not plotted here.

However, as the UDP buffer size approaches higher values, this “zig-zag” behavior

seems to be quite similar between different values of ‘‘-w”, possibly explaining why the

packet loss seems to stabilize around 26% or 43-45%.

Looking at a situation with a lower value of UDP buffer size (it may be important to

remember that, during these tests, the server and client buffers are always aligned, as far

as size is concerned):

Figure 6.13: Second buffer evolution plot

It is possible to see that, as the buffer size is reduced, the “zig-zag” behavior becomes

much faster, with smaller delays to due blocking writes, which occur every time the buffer

is full. Thus, this seems both to limit the number of packets iPerf is able to transmit to its

lower layers and to cause the running delay to reset less often.

This also seems to explain the behavior shown in figure 6.10.

233

6 – Measurements on the APU boards and results

This evolution is even more evident when further reducing ‘‘-w”, for instance using

a 40KB buffer, which, according to the previous measurements, is able to guarantee a

packet number limitation such that a 0% loss is measured:

Figure 6.14: Third buffer evolution plot

It can be interesting now to show two extreme situations: one in which the offered

traffic can all be managed by the WNIC with a 3 Mbit/s physical rate (choosing “-b 1M”)

and one, with “-b 10M”, in which the buffer is so big that it is never filled in, letting iPerf

transmit all the data it can and causing a very high packet loss.

Figure 6.15: Fourth buffer evolution plot: low offered traffic; target delay: 11.215210 ms,
lower bound: -1000 ms

234

6.2 – Characterization of the buffered transmission

Figure 6.16: Fifth buffer evolution plot: very large UDP buffer size; target delay: 1.121521
ms, lower bound: -1000 ms

As it is possible to see, in the first case the buffer is always found empty by each write

operation, thus the delay is always around the target value, as shown by the datatip. This

is due to the WNIC always being able to delve with the offered volume of data.

In the second case, instead, the buffer is filled up to 4.02 MB, which seems to be the

maximum that the application (iPerf) is able to provide with its UDP send loop, but it

is never completely filled in. Exactly the same situation can be observed with any buffer

size greater than 4.04 MB.

This causes the running delay to always oscillate around the target value, with no write

operations causing larger delays. However, as there is never any large delay in the iPerf

write operations, this causes a very large packet loss in the WNIC side, just as soon as

this size is reached while increasing ‘‘-w”, as detailed later on.

As far as packet loss is concerned, it was possible to detect an abrupt step when passing

from the “zig-zag” situation to the one shown in figure 6.16, in particular:

235

6 – Measurements on the APU boards and results

Buffer size Packet loss Number of transmitted packets

800 KB 43.18% 23571

1.56 MB 43.06% 24007

2.02 MB 45.37% 25662

2.04 MB 73.68% 53498

6 MB 73.68% 53499

15 MB 73.84% 53499

This data is obtained over 60 seconds, with 1470 B as payload and “-b 10M”.

Figure 6.17: Packet loss and number of transmitted packets with large values of UDP
buffer size

236

6.2 – Characterization of the buffered transmission

As a final observation, it can be useful to notice that the “zig-zag” behavior highlighted

before depends also on the report interval.

Thus, the packet loss, due to the very peculiar algorithm used in the measurement

application, can be influenced by the report interval too, although huge variations should

not be expected.

This is probably due to the fact that the both the socket timeout and the delay lower

bound are depending on the report interval time.

For instance, looking at the plot for an 800 KB socket buffer size, with a report interval

of 0.1 seconds, and comparing it to the plot shown in figure 6.11, which was obtained for

“-i 2”, it is possible to notice a different behavior both in the evolution of the buffer and

in the one of the running delay.

Figure 6.18: Sixth buffer evolution plot, with report interval equal to 0.1 s; target delay:
1.121521 ms, lower bound: -50 ms

Here, due to the smaller lower bound value, the delay is more often reset to its default

value, always dropping around -50 ms when blocking writes occur.

This is probably suggesting us that, even if no timeout error occurs, the “write()”

calls are actually being unblocked by the timeout expiration.

Our hypothesis is that no error is returned due to the buffer having freed up enough

space to accommodate a single packet with 1470 B of payload.

237

6 – Measurements on the APU boards and results

6.3 More systematic throughput and packet loss measure-

ments

After briefly looking at how the buffered transmission and reception behaves, it was

possible to performmore systematic throughput and packet loss measurements, by choos-

ing different values of physical data rates: 3 Mbit/s, 6 Mbit/s, 12 Mbit/s.

For each set of measurements, we measured packet loss and throughput, progressively

increasing the amount of offered traffic (with ‘‘-b”).

For each physical rate, we also drew a different curve for 9 different payload length

values, from a less optimized small payload of 16 B to a more optimized payload of 1470

B (which is also the default value of the measurement application): 16 B, 48 B, 104 B,

208 B, 500 B, 700 B, 1000 B, 1200 B, 1470 B.

6.3.1 Network configuration and conditions

The network configuration is very similar to the one presented in section 6.1:

• Variable physical bitrate

• 5 dBi antenna (MIMO) connected to the boards

• 3 dBm txpower set in OpenWrt (so, this should be the transmitted power without the

additional antenna gain of 5 dBi)

• Boards placed very near to each other, with 16 cm between the two enclosures

• Duration of each single test: 60 seconds

• iPerf port: 7000

• iPerf report interval: 2 seconds

• Layer 4 protocol: UDP

238

6.3 – More systematic throughput and packet loss measurements

• Payload size: variable, over 9 different values

• UDP buffer size: 208 KB (default iPerf value)

• Channel: 178

6.3.2 Scripts and commands

In order to perform all the measurements, we used two scripts, based on the NTP

synchronization and “waituntil” function presented before.

We wrote one script for launching, in sequence, the different iPerf servers on the

APU_102 board and one script for the different iPerf clients on the APU_103 board.

In particular, for each payload length all the offered traffic values are tested, moving

then to the next length value, and so on.

Three different sets of very similar scripts have been used for each physical bitrate.

Since they involve several lines of code, they are reported in Appendix G.

These scripts produced one log for each 60 seconds test (both client-side and server-

side); all the server logs were then parsed on the Linux Mint virtual machine by means of

three purposely written data parsing bash scripts, extracting the meaningful information

from a large number of logs and producing .csv files in output, which could be easily

imported in Matlab.

These scripts are also reported in Appendix G.

239

6 – Measurements on the APU boards and results

6.3.3 Plots and results

The results are shows in the following plots, in which the physical rate is represented

by a dotted line:

Figure 6.19: Throughput measurements for 3Mbit/s of physical layer bitrate, with dif-
ferent payload size and offered traffic values

240

6.3 – More systematic throughput and packet loss measurements

Figure 6.20: Packet loss measurements for 3Mbit/s of physical layer bitrate, with differ-
ent payload size and offered traffic values

241

6 – Measurements on the APU boards and results

Figure 6.21: Throughput measurements for 6Mbit/s of physical layer bitrate, with dif-
ferent payload size and offered traffic values

242

6.3 – More systematic throughput and packet loss measurements

Figure 6.22: Packet loss measurements for 6Mbit/s of physical layer bitrate, with differ-
ent payload size and offered traffic values

243

6 – Measurements on the APU boards and results

Figure 6.23: Throughput measurements for 12Mbit/s of physical layer bitrate, with dif-
ferent payload size and offered traffic values

244

6.3 – More systematic throughput and packet loss measurements

Figure 6.24: Packet loss measurements for 12Mbit/s of physical layer bitrate, with dif-
ferent payload size and offered traffic values

As it is possible to see, the reachable throughput depends on the payload size which

is used by the application: with the tested values, the more the payload size, the more a

higher throughput can be reached.

Using a different protocol stack, for instancewhen aWSMP stackwill be implemented,

may cause come variations to there results; however, the trend should remain the same.

In particular, we were able to measure the following maximum throughput values:

245

6 – Measurements on the APU boards and results

Physical rate (Mbit/s) Payload size (-l) (B) Maximum throughput (Mbit/s)

3 16 0.207

3 48 0.543

3 104 0.977

3 208 1.470

3 500 2.100

3 700 2.300

3 1000 2.470

3 1200 2.540

3 1470 2.620

6 16 0.256

6 48 0.723

6 104 1.380

6 208 2.250

6 500 3.530

6 700 4.010

6 1000 4.470

6 1200 4.660

6 1470 4.860

12 16 0.306

12 48 0.866

246

6.4 – Traffic classes

12 104 1.720

12 208 3.040

12 500 5.340

12 700 6.370

12 1000 7.420

12 1200 7.910

12 1470 8.420

The packet loss trend is instead less linear, probably due to the combined effect of the

UDP buffer and the WNIC transmitting packets over the wireless medium.

In any case, as expected, increasing the value of offered traffic always causes an in-

crease in the packet loss values when the offered traffic is more than what the network

can manage, except for few oscillations, which are always under 3.5%.

The oscillations can be observed when concentrating the analysis around a certain

offered traffic value but, as stated before, they are never very big.

The exact amount of packet loss, when offering too much traffic, is also dependent on

how the application manages the packet transmission (in this case, the reported values are

always referring to the iPerf network measurement program).

As a side note, using a payload which is too small (such as 16 B) is never recommended

with UDP, as it can deliver much lower performance.

This may be different when using other non-IP based protocol stacks (i.e. WSMP).

6.4 Traffic classes

This section presents a set of measurements related to the communication over the

4 different traffic classes which EDCA sets available to the user (i.e. AC_BK, AC_BE,

AC_VI and AC_VO).

247

6 – Measurements on the APU boards and results

In particular, we measured the reachable throughput, the number of packets correctly

received by each board and a parameter which is an indication of the connection stability

when the two boards are contending the channel, both trying to send data using the same

or even different traffic classes. In order to do so, we launched a couple of client and server

on each board, with the client of one board connecting to server of the other board and

viceversa.

On the other hand, we also measured the reachable throughput with one client and

one server only, showing that there is actually an improvement over the maximum value

when using higher priority AC, corresponding to faster AIFS times and smaller contention

window sizes.

6.4.1 Network configuration and conditions

The network configuration is again similar to the previous cases. In particular, for what

concerns the first set of measurements the configuration was the following one:

• Variable physical bitrate

• 5 dBi antenna (MIMO) connected to the boards

• 3 dBm txpower set in OpenWrt (so, this should be the transmitted power without the

additional antenna gain of 5 dBi)

• Boards placed very near to each other, with 16 cm between the two enclosures

• Duration of each single test: 60 seconds

• iPerf port: 7000

• iPerf report interval: 2 seconds

• Layer 4 protocol: UDP

• Payload size: 1470 B (default iPerf value)

248

6.4 – Traffic classes

• UDP buffer size: 208 KB (default iPerf value when used with the APU boards)

• Channel: 178

• Theoretical offered traffic (iPerf “bandwidth”): 3Mbit/s for 3Mbit/s of physical rate,

10 Mbit/s for 6 Mbit/s and 12 Mbit/s for 12 Mbit/s (which is always more than what

the network can really deliver, to try to get maximum throughput values)

Instead, for what concerns the second set, the conditions are the same except the fact

of having now a single client+server running on the two boards.

6.4.2 Scripts and commands

The scripts we used for the first set of measurements are actually based on the

“server6000client7000.sh” and “server7000client6000.sh” scripts presented in section

3.8.4, with the small different of removing the third command line parameter for “-b”,

which is now set directly inside the script.

We wrote, then, an additional script, calling the client+server scripts mentioned before

with different values of AC and physical rates, which should be set by the user before

executing the script; this allowed us to automate the execution of the tests.

The script is unique for both the ALIX_102 and ALIX_103 boards, and the correct

device is chosen thanks to the first command line parameter (“2” for APU_102 and “3”

for APU_103).

The second parameter is instead the current physical data rate; this is used, however,

only to properly name the logs that are generated.

The script is reported below:

PCEngines_measurements_AC.sh

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

249

6 – Measurements on the APU boards and results

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 if [$# -ne 2]

13 then

14 echo ”Error running tests. Expected three parameters.”

15 echo ” 1. Board number (2,3)”

16 echo ” 2. Physical data rate (only for logging purposes)”

17 echo ”Warning! No consistency check for the parameters: writing”

18 echo ” wrong parameters may result in an undefined behaviour.”

19 exit 1

20 fi

21

22 if [$1 -eq 2]

23 then

24 name=APU102 # server6000

25 connto=10.10.6.103 # IP address=10.10.6.102

26 ACarray=(BK BK BK BK BE BE BE BE VI VI VI VI VO VO VO VO)

27 elif [$1 -eq 3]

28 then

29 name=APU103 # client6000

30 connto=10.10.6.102 # IP address=10.10.6.103

31 ACarray=(BK BE VI VO BK BE VI VO BK BE VI VO BK BE VI VO)

32 else

33 echo ”Invalid board number. Valid numbers are 2,3 (APU)”

34 exit 1

35 fi

36

37 # Check if the Logs directory exists. If not, create it.

38 if [! -d ”./Logs”]; then

250

6.4 – Traffic classes

39 echo ”Logs directory missing. It will be created now”

40 mkdir Logs

41 else

42 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

43 fi

44 read -p ”Press enter to continue”

45

46 # Read physical rate from the user specified arguments

47 physrate=$2

48

49 # Read current seconds in time

50 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

51

52 echo ”Seconds in current time: $currsec”

53 echo ”Current board: $name”

54 echo ”Ready to start the tests”

55 read -p ”Press enter to continue”

56

57 currwait=0

58 i=0

59

60 # parameters

61 len=1470

62

63 while [$i -lt ${#ACarray[@]}]; do

64 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

65

66 echo ”Synchronizing (actual sec: $currsec , target sec: $currwait)...

”

67 # Synchronize (NTP time is required , otherwise this is meaningless)

68 waituntil $currwait

69 echo ”------------------------------------”

70 echo ”Starting test with board: $name...”

251

6 – Measurements on the APU boards and results

71 echo ”Running test with -l $len -A ${ACarray[$i]} (phys. rate:

$physrate Mbit/s)”

72 if [”$name” = ”APU102”]; then

73 ./server6000client7000.sh $connto ${ACarray[$i]} | tee -a ”Logs/

APU102Log -$i-rate-$physrate -A-${ACarray[$i]}.txt”

74 else

75 ./server7000client6000.sh $connto ${ACarray[$i]} | tee -a ”Logs/

APU103Log -$i-rate-$physrate -A-${ACarray[$i]}.txt”

76 fi

77 echo ”Test terminated.”

78 echo ”------------------------------------”

79

80 # Increment index and set currwait

81 i=$((i+1))

82 currwait=$(((currwait+15)%60))

83 done

The different values of “-b” has been set, instead, by directly editing the “server6000-

client7000.sh” and “server7000client6000.sh” scripts, depending on the current test, and

the synchronization between the two boards happens, as usual, thanks to NTP and the

“waituntil” bash function.

For the second set of measurements we used instead two scripts (one for the client,

run on the APU_103 board and one for the server, run on the APU_102 board), which are

more similar to the ones presented in previous sections, performing a single client+server

test at each AC and for the three selectable values of physical bitrate, which, this time, are

automatically set.

These scripts are reported below:

iperfserver7000ACb10M.sh

1 #!/bin/bash

2

3 function waituntil {

252

6.4 – Traffic classes

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfserverirA {

13 iperf -s -u -i 2 -p 7000 -t 64 2>&1 | tee -a ”Logs/APU102Log -$1-rate

-$2-A-$3.txt”

14 }

15

16 # Check if the Logs directory exists. If not, create it.

17 if [! -d ”./Logs”]; then

18 echo ”Logs directory missing. It will be created now”

19 mkdir Logs

20 else

21 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

22 fi

23 read -p ”Press enter to continue”

24

25 ACarray=(BK BE VI VO)

26 physrates=(3 6 12)

27

28 currwait=0

29 i=0

30 p=0

31 while [$p -lt ${#physrates[@]}]; do

32 wifiarate=$((${physrates[$p]}*2))

33 iw dev wlan0 set bitrates legacy -5 $wifiarate

34 echo ”Rate set to ${physrates[$p]} (iw dev wlan0 set bitrates legacy

-5 $wifiarate)”

253

6 – Measurements on the APU boards and results

35 sleep 1

36 while [$i -lt ${#ACarray[@]}]; do

37 echo ”Server started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

38 waituntil $currwait

39 echo ”------------------------------------”

40 echo ”Running test with -A ${ACarray[$i]} (iw dev wlan0 set

bitrates ... ${physrates[$p]}”

41 iperfserverirA $i ${physrates[$p]} ${ACarray[$i]}

42 echo ”Test with -A ${ACarray[$i]} terminated”

43 echo ”------------------------------------”

44 i=$((i+1))

45 currwait=$(((currwait+12)%60))

46 done

47 sleep 1

48 p=$((p+1))

49 i=0

50 done

iperfclient7000ACb10M.sh

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfclientirA {

254

6.4 – Traffic classes

13 iperf -c 10.10.6.102 -u -i 2 -t 60 -A $3 -p 7000 -b 10M | tee -a ”

Logs/APU103ClientLog -$1-rate-$2-A-$3.txt”

14 }

15

16 # Check if the Logs directory exists. If not, create it.

17 if [! -d ”./Logs”]; then

18 echo ”Logs directory missing. It will be created now”

19 mkdir Logs

20 else

21 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

22 fi

23 read -p ”Press enter to continue”

24

25 ACarray=(BK BE VI VO)

26 physrates=(3 6 12)

27

28 currwait=0

29 i=0

30 p=0

31 while [$p -lt ${#physrates[@]}]; do

32 wifiarate=$((${physrates[$p]}*2))

33 iw dev wlan0 set bitrates legacy -5 $wifiarate

34 echo ”Rate set to ${physrates[$p]} (iw dev wlan0 set bitrates legacy

-5 $wifiarate)”

35 sleep 1

36 while [$i -lt ${#ACarray[@]}]; do

37 echo ”Client started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

38 waituntil $currwait

39 echo ”------------------------------------”

40 echo ”Running test with -A ${ACarray[$i]} (iw dev wlan0 set

bitrates ... ${physrates[$p]}”

41 sleep 4

255

6 – Measurements on the APU boards and results

42 iperfclientirA $i ${physrates[$p]} ${ACarray[$i]}

43 echo ”Test with -A ${ACarray[$i]} terminated”

44 echo ”------------------------------------”

45 i=$((i+1))

46 currwait=$(((currwait+12)%60))

47 done

48 sleep 1

49 p=$((p+1))

50 i=0

51 done

In order to extract data from the various logs, after the measurement sessions, and use

them to both obtain the relevant information and all the useful plots, we wrote a log data

extraction script, similar to the ones presented inAppendixG, which is able to parse all the

useful data from a certain set of logs (each set of logs corresponds to a certain board and

to a certain physical data rate, thus having 6 sets in total) and to output a corresponding

.csv file, which can be then easily imported inside Matlab.

The script is also able to extract an additional useful information: for each measure-

ment the maximum percentage variation of the measured throughput is extracted, as:

%max = 100 · throghputmax − throghputmin

throghputmax

where the throghput values are the ones returned by iPerf at each report interval (i.e.,

in a normal case, every 2 s). This can be useful as a measure of the connection stability

when using a certain AC against another AC used by another device.

As reference, it is reported below (line 100 is the one applying the formula mentioned

before):

logExtractor.sh

1 #!/bin/bash

2

3 if [$# -ne 2]; then

4 echo ”Error using program. Expected one or two parameters: ”

256

6.4 – Traffic classes

5 echo ”1) Rate (<3|6|12>)”

6 echo ”2) Board number (2 for APU_102, 3 for APU_103)”

7 exit 1

8 fi

9

10 if [$2 -eq 2]

11 then

12 name=APU102 # server

13 ACarray=(BK BK BK BK BE BE BE BE VI VI VI VI VO VO VO VO)

14 elif [$2 -eq 3]

15 then

16 name=APU103 # client

17 ACarray=(BK BE VI VO BK BE VI VO BK BE VI VO BK BE VI VO)

18 else

19 echo ”Invalid board number. Valid numbers are 2,3 (APU)”

20 exit 1

21 fi

22

23 shopt -s lastpipe # In order to run the while read cycle in the

current shell, otherwise the

24 # values of ”tputmin” and ”tputmax” would not keep their

values in the current shell;

25 # with this, the last pipeline segment is always executed in

the current shell and not

26 # in a subshell

27

28 bwidth=10

29 length=1470

30 physrate=$1

31

32 i=0

33 echo ”len,b,tput,loss,lostpkt,sentpkt,okpkt,maxvartputperc” > ”$name-

Rate$1_iperf_AC_test.csv”

34 while [$i -lt ${#ACarray[@]}]; do

257

6 – Measurements on the APU boards and results

35 filename=$(echo ”$name”Log-$i-rate-$physrate -A-${ACarray[$i]}.txt)

36

37 echo $filename

38

39 lastline=$(cat $filename | head -n -2 | tail -1)

40 if [[”$lastline” =~ ”out-of-order”]]; then

41 hcommand=-3

42 else

43 hcommand=-2

44 fi

45 #echo ”lastline: $lastline”

46 echo ”hcommand: $hcommand”

47

48 tput=$(cat $filename | head -n $hcommand | tail -1 | sed ’s/\s\s*/ /

g’ | cut -d” ” -f7)

49 umeas=$(cat $filename | head -n $hcommand | tail -1 | sed ’s/\s\s*/

/g’ | cut -d” ” -f8)

50 # Convert measurements in KBit/s to MBit/s

51 if [[$umeas = *”K”*]]; then

52 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

53 fi

54 lostpkt=$(echo $(cat $filename | head -n $hcommand | tail -1 | cut

-d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ” -f1 | rev)

55 sentpkt=$(cat $filename | head -n $hcommand | tail -1 | cut -d”/” -

f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

56 echo ”$(cat $filename | head -n $hcommand | tail -1)”

57

58 okpkt=$((sentpkt-lostpkt))

59 loss=$(echo ”$lostpkt $sentpkt” | awk ’{printf(”%.15f\n”,$1/$2*100)

}’)

60 i=$((i+1))

61

62 lindex=0

63 tputmax=-1

258

6.4 – Traffic classes

64 tputmin=1000000

65 # Extract maximum % variation of throughput values

66 cat $filename | head -n $((hcommand -1)) | tail -n +9 | sed ’s/\s\s*/

/g’ | while read line; do

67 if [[”$line” =~ ”out-of-order”]]; then

68 echo ”Skipping line...”

69 else

70 if [$lindex -lt 4]; then

71 tputcurr=$(echo $line | cut -d” ” -f8)

72 umeas=$(echo $line | cut -d” ” -f9)

73 else

74 tputcurr=$(echo $line | cut -d” ” -f7)

75 umeas=$(echo $line | cut -d” ” -f8)

76 fi

77

78 if [[$umeas = *”K”*]]; then

79 tputcurr=$(echo ”$tputcurr” | awk ’{printf(”%.5f\n”,$1/1000)

}’)

80 fi

81

82 # Maximum found

83 if [$(echo ”$tputcurr > $tputmax” | bc -l) -eq 1]; then

84 tputmax=$tputcurr

85 fi

86

87 # Minimum found

88 if [$(echo ”$tputcurr < $tputmin” | bc -l) -eq 1]; then

89 tputmin=$tputcurr

90 fi

91

92 lindex=$((lindex+1))

93 fi

94 done

95 lindex=0

259

6 – Measurements on the APU boards and results

96

97 echo ”Max throughput with -i 2: $tputmax”

98 echo ”Min throughput with -i 2: $tputmin”

99

100 maxvarperc=$(echo ”100*($tputmax -$tputmin)/$tputmax” | bc -l | sed ’

s/^\./0./’)

101

102 # Print parsed information

103 echo ”len=$length,b=$bwidth,tput=$tput,loss=$loss,lostpkt=$lostpkt ,

sentpkt=$sentpkt ,okpkt=$okpkt,maxvartputperc=$maxvarperc”

104 # Write to .csv file

105 echo ”$length,$bwidth,$tput,$loss,$lostpkt ,$sentpkt ,$okpkt,

$maxvarperc” >> ”$name-Rate$1_iperf_AC_test.csv”

106 done

This script shall always be put inside the same folder where the corresponding logs are

placed.

6.4.3 Plots and results: first set

The results are reported inside the following plots, respectively showing, for each phys-

ical bitrate, the maximum throughput, the number of correctly received packets and the

maximum percentage variation of the throughput when transmitting with a certain AC,

against another transmission at a different AC coming from the other board (the “Other

traffic AC”).

We decided to plot the number of packets which are correctly received instead of the

packet loss, as the latter seems to depend on the iPerf behavior, at least when trying to

measure the maximum throughput (offering a large amount of data), and as it is predom-

inantly due to the kernel dropping packets for the aforementioned reason, before they can

reach the physical medium. Thus, it would not be a measure of the number of packets

which may actually be lost in the air.

It is very important to take into account that iPerf requires unicast communication

260

6.4 – Traffic classes

for a certain measurement to be correctly performed. Thus, all these measurements are

referred to packet transmission between two boards, using their respective IP and MAC

address, not broadcast IP and MAC ones (i.e. 255.255.255.255 and FF:FF:FF:FF:FF:FF).

Broadcast communication still requires more investigation and, probably, some impor-

tant patching work, as detailed at the end of this chapter.

261

6 – Measurements on the APU boards and results

(a) Reachable throughput (Mbit/s) (b) Number of correctly received packets

(c) Maximum % variation in the throughput during the
test

Figure 6.25: Measurements related to the APU_103 board, at 3 Mbit/s of physical data
rate

262

6.4 – Traffic classes

(a) Reachable throughput (Mbit/s) (b) Number of correctly received packets

(c) Maximum % variation in the throughput during the
test

Figure 6.26: Measurements related to the APU_102 board, at 3 Mbit/s of physical data
rate

263

6 – Measurements on the APU boards and results

(a) Reachable throughput (Mbit/s) (b) Number of correctly received packets

(c) Maximum % variation in the throughput during the
test

Figure 6.27: Measurements related to the APU_103 board, at 6 Mbit/s of physical data
rate

264

6.4 – Traffic classes

(a) Reachable throughput (Mbit/s) (b) Number of correctly received packets

(c) Maximum % variation in the throughput during the
test

Figure 6.28: Measurements related to the APU_102 board, at 6 Mbit/s of physical data
rate

265

6 – Measurements on the APU boards and results

(a) Reachable throughput (Mbit/s) (b) Number of correctly received packets

(c) Maximum % variation in the throughput during the
test

Figure 6.29: Measurements related to the APU_103 board, at 12 Mbit/s of physical data
rate

266

6.4 – Traffic classes

(a) Reachable throughput (Mbit/s) (b) Number of correctly received packets

(c) Maximum % variation in the throughput during the
test

Figure 6.30: Measurements related to the APU_102 board, at 12 Mbit/s of physical data
rate

267

6 – Measurements on the APU boards and results

Looking at the plots which are presented here, it is possible to notice that everything

is working as expected and as the theory says.

In particular, when two boards are using the same traffic class to send their packets,

there’s a quite fair channel usage between them, with the throughput being quite well

divided in two. This is shown by an horizontal line which can be ideally be traced at

around 1.2 Mbit/s for 3 Mbit/s, 2.3 Mbit/s for 6 Mbit/s and 4.1 for 12 Mbit/s, of course

with some oscillations around these values.

Then, when communicating with a higher priority AC, as expected, the boards are able

to reach higher values of throughput even in presence of another traffic stream at a lower

AC.

The stability of the connection, for what concerns throughput (as shown by all the

“(c)” plots), has some non linearities with respect to the increasing priority AC, but more

or less it is again showing how, using a higher priority AC, it is possible to achieve not

only a better throughput, but also less oscillations in the measured values.

UsingAC_VI andAC_VO, it also never happens that a board is unable to communicate

over a full report interval (2 seconds - being unable to communicate for a full interval

would result in a 100% maximum throughput variation), no matter the traffic class used

by the “disturbing” traffic.

Moreover, looking at all the “(b)” plots, the trend of the number of correctly received

packets is always the same with respect to the throughput, showing that probably hardly

any packet is lost in the air in this case, but they are mostly lost in the kernel when trying

to push 10 Mbit/s over a congested channel, which can reach a much lower throughput

(mainly when using a lower priority AC).

Looking at how the packets are received, by filtering data from a Wireshark capture,

over a 20 seconds sample iPerf session with “-b 10M”, it is also possible to deduce that

probably, when using high values of “-b 10M”, losses are mainly due kernel drops.

The time at which the packets are received by the sever is in fact quite well distributed

around a certain value, with no big “jumps”, as it is possible too see from figure 6.31.

268

6.4 – Traffic classes

Figure 6.31: Time delta between frames, as seen by Wireshark, capturing frames from
the board in which an iPerf server is running; mean value: 4.494 ms.

6.4.4 Plots and results: second set

The goal of these measurements was to verify the maximum reachable throughput and

the connection stability, through the percentage variation mentioned before, when only

one data stream is transmitted from one board to the other, at different AC and at different

physical data rates.

The results are shown in the plots presented starting from the next page.

269

6 – Measurements on the APU boards and results

(a) Measured throughput (b) Maximum throughput percentage variation

Figure 6.32: Single traffic flow measurements over 60s for each AC and selectable data
rate

The measured values, which can be analyzed more in details, are reported in the fol-

lowing table:

Physical rate (Mbit/s) AC Measured throughput (Mbit/s)* Maximum variation (%)*

3 AC_BK 2.60 0.3846%

3 AC_BE 2.62 0.3817%

3 AC_VI 2.67 0.3731%

3 AC_VO 2.70 0.0000%

6 AC_BK 4.78 0.4175%

6 AC_BE 4.86 0.4107%

6 AC_VI 5.06 0.3945%

6 AC_VO 5.15 0.3876%

270

6.5 – Indoor received power and connectivity measurements

12 AC_BK 8.18 0.6090%

12 AC_BE 8.43 0.7092%

12 AC_VI 9.13 0.4372%

12 AC_VO 9.42 0.6363%

*Over 60 seconds, with 2 seconds report intervals.

As it is possible to see, the throughput values increases as the priority is increased. This

increase becomes more and more evident as higher physical data rates are used: this is

actually to be expected, since higher priority AC actually define shorter AIFS (which are

all different when working in OCB mode) and smaller contention window sizes; thus,

the time between each packet transmission is typically lower for higher priority traffic

classes and this effect becomes more important as packets are transmitted faster, i.e. as

the physical data rate is increased.

The stability of the measured throughput values is instead always quite high, being it

always less than 0.7092%; since only one traffic flow was present, this actually shown

that the WNIC we used, together with the our platform, are able to maintain a quite stable

throughput.

These values show an increasing behavior as the physical data rate is increased, with

some bigger oscillation when using 12 Mbit/s, but they nevertheless remain less than 1%.

Finally, combining these measurements with all the previous ones, it is possible to

conclude that AC_BE is the queue actually used when no explicit AC is specified.

6.5 Indoor received power and connectivity measurements

The aim of this final set of measurements is to provide us an idea on how far the boards

can communicate, still maintaining a good enough data rate and measured throughput.

271

6 – Measurements on the APU boards and results

Since the measurements are still performed indoors, instead of measuring a distance

wemeasured the received power, which is a moremeaningful quantity: in fact the commu-

nication, when performed indoors, is affected by the various obstacles which are present

and at the same distance different values of received power can be probably observed, as

the boards are placed in different points of the house or of the laboratory.

6.5.1 Network configuration and conditions

The conditions are similar to the previous experiments. Now, however, the boards are

placed in different points of the house.

In particular, the board running the iPerf client (APU_103) has been left on the desk,

shown multiple times in the previous sections and chapters, and the board running the

server (APU_102) has instead been placed on a chair, which was moved in different points

of the house.

It was possible to power up and connect the board to the local cabled network (in order

to enable access to the system via SSH) thanks to a small power strip with a long enough

cable; the Ethernet connection was then provided thanks to Powerline, as mentioned in

section 3.2.

• 6 Mbit/s physical bitrate

• 5 dBi antenna (MIMO) connected to the boards

• 10 dBm txpower set in OpenWrt (so, this should be the transmitted power without

the additional antenna gain of 5 dBi)

• Client placed on the desk (APU_103), server moved around the house (APU_102)

• Duration of each single test: 60 seconds

• iPerf port: 7000

• iPerf report interval: 2 seconds

272

6.5 – Indoor received power and connectivity measurements

• Layer 4 protocol: UDP

• Payload size: variable

• UDP buffer size: 208 KB (default value)

• Channel: 178

We decided to set a 10 dBm transmit power since it was a value allowing us to easily

move the board inside the house, without the necessity of maintaining a very short or long

distance from the client in order to get meaningful values of received power and measured

throughput.

6.5.2 Scripts and commands, meaning of the power values

In order to obtain the value of the received power, we decided to rely on the output

of “iw dev wlan0 station dump”, constantly looking at the average received signal

power, thanks to the following script, which was running on a separate PuTTY window:

watch_stationdump.sh

1 #!/bin/bash

2

3 while true; do

4 iw dev wlan0 station dump

5 ./millisleep 0.5

6 clear

7 done

This script relies again on the “millisleep” utility.

The first reported dBmvaluewas continuously controlled, during the test, and themore

frequent quantity was noted down in aMicrosoft Excel spreadsheet. However, oscillations

in the reported values of the order of 1 dBm were always present, so these values have to

be always considered with a ±1 dBm precision.

273

6 – Measurements on the APU boards and results

Moreover, no decimal digits are returned by “iw”, which is very probably obtaining

these values directly from the driver, and this limits the precision of the observed values.

In particular, we observed a particular situation in which “iw dev wlan0 station

dump”was returning the same average received signal level (-88 dBm) in two different, but

very near to each other, positions, with almost the same ±1 dBm oscillations. Probably,

however, the true received power was a little higher in one point with respect the other,

looking at how better results, in terms of throughput, were actually better.

In order to discriminate the two points and considering that probably the true power

was a little higher in one of the two, we assigned to it a value of -87.5 dBm: that’s the

meaning of this point that, when looking at the results, later on, could seem a bit odd.

The two scripts used for the measurements are then very similar to the ones presented

in this chapter. However, for the sake of completeness, they are also reported here.

iperfserve_powertest2.sh

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 # pl -> $1

13 # pw -> $2

14 # b -> $3

15 # rate -> $4

16 # l -> $5

17 # no -> $6

18 function iperfserver -pl-pw-b-rate-l-no {

274

6.5 – Indoor received power and connectivity measurements

19 echo ”# iperf -s -u -i 2 -p 7000 -l $5 -t 64 [txpower $2, place $1,

no. $6, -b $3]” > ”Logs/APU102-server-txpwr-$2-len-$5-place-$1-no

-$6-rate-$4-b-$3.txt”

20 iperf -s -u -i 2 -p 7000 -l $5 -t 64 2>&1 | tee -a ”Logs/APU102-

server-txpwr-$2-len-$5-place-$1-no-$6-rate-$4-b-$3.txt”

21 }

22

23 if [$# -ne 1]; then

24 echo ”Error. One argument expected:”

25 echo ” 1. Place number”

26 exit 1

27 fi

28

29 # Check if the Logs directory exists. If not, create it.

30 if [! -d ”./Logs”]; then

31 echo ”Logs directory missing. It will be created now”

32 mkdir Logs

33 else

34 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

35 fi

36 read -p ”Press enter to continue”

37

38 txpower=(1000)

39 len=(104 208 500 700 1000 1200 1470)

40

41 echo ”Starting... tests will last aproximately $((${#txpower[@]}*${#

len[@]}*60+${#txpower[@]}*${#len[@]}*15)) seconds”

42 echo ”Current place: $1”

43 sleep 1

44

45 # Parameters

46 b=10M

47 rate=6 # In Mbit/s

275

6 – Measurements on the APU boards and results

48

49 echo ”Setting physical layer data rate to $rate Mbit/s...”

50 wifiarate=$(($rate*2))

51 iw dev wlan0 set bitrates legacy -5 $wifiarate

52 sleep 1

53

54 currwait=0

55 i=0

56 p=0

57 while [$p -lt ${#txpower[@]}]; do

58 echo ”Setting txpower to txpower=${txpower[$p]} mBm...”

59 iw dev wlan0 set txpower fixed ${txpower[$p]}

60 sleep 1

61 echo ”Current settings: ” | tee -a ”Logs/APU102-txpwr-${txpower[$p

]}-iw-dev-log.txt”

62 iw dev | tee -a ”Logs/APU102-txpwr-${txpower[$p]}-iw-dev-log.txt”

63 sleep 1

64 while [$i -lt ${#len[@]}]; do

65 echo ”Server started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

66 waituntil $currwait

67 echo ”------------------------------------”

68 echo ”Running test with txpower=${txpower[$p]} mBm, phys. rate=

$rate Mbit/s,”

69 echo ” -b $b, -l ${len[$i]}, -t 60, number=$i”

70 iperfserver -pl-pw-b-rate-l-no $1 ${txpower[$p]} $b $rate ${len[$i

]} $i

71 echo ”Test with txpower=${txpower[$p]} mBm, -l ${len[$i]}, number=

$i terminated”

72 echo ”------------------------------------”

73 i=$((i+1))

74 currwait=$(((currwait+25)%60))

75 done

76 sleep 1

276

6.5 – Indoor received power and connectivity measurements

77 p=$((p+1))

78 i=0

79 done

iperfclient_powertest2.sh

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 # pl -> $1

13 # pw -> $2

14 # b -> $3

15 # rate -> $4

16 # l -> $5

17 # no -> $6

18 function iperfclient -pl-pw-b-rate-l-no {

19 echo ”# iperf -c 10.10.6.102 -u -i 2 -t 60 -b $3 -p 7000 -l $5 [

txpower $2, place $1, no. $6]” > ”Logs/APU103-client-txpwr-$2-len

-$5-place-$1-no-$6-rate-$4-b-$3.txt”

20 iperf -c 10.10.6.102 -u -i 2 -t 60 -b $3 -p 7000 -l $5 2>&1 | tee -a

”Logs/APU103-client-txpwr-$2-len-$5-place-$1-no-$6-rate-$4-b-$3.

txt”

21 }

22

23 if [$# -ne 1]; then

24 echo ”Error. One argument expected:”

277

6 – Measurements on the APU boards and results

25 echo ” 1. Place number”

26 exit 1

27 fi

28

29 # Check if the Logs directory exists. If not, create it.

30 if [! -d ”./Logs”]; then

31 echo ”Logs directory missing. It will be created now”

32 mkdir Logs

33 else

34 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

35 fi

36 read -p ”Press enter to continue”

37

38 txpower=(1000)

39 len=(104 208 500 700 1000 1200 1470)

40

41 echo ”Starting... tests will last aproximately $((${#txpower[@]}*${#

len[@]}*60+${#txpower[@]}*${#len[@]}*15)) seconds”

42 echo ”Current place: $1”

43 sleep 1

44

45 # Parameters

46 b=10M

47 rate=6 # In Mbit/s

48

49 echo ”Setting physical layer data rate to $rate Mbit/s...”

50 wifiarate=$(($rate*2))

51 iw dev wlan0 set bitrates legacy -5 $wifiarate

52 sleep 1

53

54 currwait=0

55 i=0

56 p=0

278

6.5 – Indoor received power and connectivity measurements

57 while [$p -lt ${#txpower[@]}]; do

58 echo ”Setting txpower to txpower=${txpower[$p]} mBm...”

59 iw dev wlan0 set txpower fixed ${txpower[$p]}

60 sleep 1

61 echo ”Current settings: ” | tee -a ”Logs/APU103-txpwr-${txpower[$p

]}-iw-dev-log.txt”

62 iw dev | tee -a ”Logs/APU103-txpwr-${txpower[$p]}-iw-dev-log.txt”

63 sleep 1

64 while [$i -lt ${#len[@]}]; do

65 echo ”Client started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

66 waituntil $currwait

67 echo ”------------------------------------”

68 echo ”Running test with txpower=${txpower[$p]} mBm, phys. rate=

$rate Mbit/s,”

69 echo ” -b $b, -l ${len[$i]}, -t 60, number=$i”

70 sleep 2

71 iperfclient -pl-pw-b-rate-l-no $1 ${txpower[$p]} $b $rate ${len[$i

]} $i

72 echo ”Test with txpower=${txpower[$p]} mBm, -l ${len[$i]}, number=

$i terminated”

73 echo ”------------------------------------”

74 i=$((i+1))

75 currwait=$(((currwait+25)%60))

76 done

77 sleep 1

78 p=$((p+1))

79 i=0

80 done

It can be interesting to note that the logs are now generated with several parameters

inside their names, in order to be able to manage them in an easier way, even in case other

measurements of the same kind will be performed in the future.

The parameters are:

279

6 – Measurements on the APU boards and results

Parameter Script name Parameter number inside script function*

Place index** pl ($1) 1

txpower pw (txpower[]) 2

Offered traffic b 3

Physical data rate rate 4

Payload length l (len[]) 5

Current measurement loop index no (i) 6

*The function this table refers at is “iperfclient-pl-pw-b-rate-l-no” or “iperfserver

-pl-pw-b-rate-l-no”, depending on the script.

**An arbitrary index was given to each place where the board running the server was

placed, in order to distinguish the various logs more easily.

After setting a certain txpower we also decided to log the output of “iw dev”, in order

to check whether this parameter was correctly set or not.

This script was then launched inside every single place to perform a set of measure-

ments for each position, with the logs being all saved inside the same folder (without any

issue due to them having different names depending on the place).

The relevant data was then extracted thanks to a log extraction script (generating a .csv

file), similar to all the other ones but adapted to work in this specific case, when placed,

again, inside the same folder where all the logs are stored (after copying everything to the

development PC: this script is not meant to be run directly on the boards).

logExtractor_power.sh

1 #!/bin/bash

2

280

6.5 – Indoor received power and connectivity measurements

3 # shopt is called in order to run the while read cycle in the current

shell, otherwise the

4 # values of ”tputmin” and ”tputmax” would not keep their values in the

current shell;

5 # with this, the last pipeline segment is always executed in the

current shell and not

6 # in a subshell

7 shopt -s lastpipe

8

9 # parameters

10 bwidth=10 # M

11 physrate=6

12

13 # arrays

14 txpower=(1000)

15 len=(104 208 500 700 1000 1200 1470)

16 places=(5 7 9 8 6) # In order of received power

17

18 i=0

19 p=0

20 pl=0

21 echo ”txpower,len,place,b,tput,loss,lostpkt,sentpkt,okpkt,

maxvartputperc ,jittermax” > ”APU102-power-tests -8090dBm.csv”

22 while [$p -lt ${#txpower[@]}]; do

23 while [$i -lt ${#len[@]}]; do

24 while [$pl -lt ${#places[@]}]; do

25 filename=$(echo APU102-server-txpwr-${txpower[$p]}-len-${len[$i]}-

place-${places[$pl]}-no-$i-rate-$physrate -b-”$bwidth”M.txt)

26

27 echo $filename

28

29 lastline=$(cat $filename | tail -1)

30 if [[”$lastline” =~ ”out-of-order”]]; then

31 hcommand=-1

281

6 – Measurements on the APU boards and results

32 else

33 hcommand=-0

34 fi

35 #echo ”lastline: $lastline”

36 #echo ”hcommand: $hcommand”

37

38 if [[”$lastline” =~ ”-----------------------------”]]; then

39 tput=0

40 jittermax=60000 # 60 seconds as a very big value (it would be +inf

theoretically)

41 lostpkt=0

42 sentpkt=0

43 okpkt=0

44 loss=100

45 maxvarperc=100

46 tputmax=0

47 tputmin=0

48

49 echo ”No connection could be established in this case.”

50 else

51 tput=$(cat $filename | head -n $hcommand | tail -1 | sed ’s/\s\s*/ /

g’ | cut -d” ” -f7)

52 umeas=$(cat $filename | head -n $hcommand | tail -1 | sed ’s/\s\s*/

/g’ | cut -d” ” -f8)

53 # Convert measurements in KBit/s to MBit/s

54 if [[$umeas = *”K”*]]; then

55 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

56 fi

57 lostpkt=$(echo $(cat $filename | head -n $hcommand | tail -1 | cut

-d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ” -f1 | rev)

58 sentpkt=$(cat $filename | head -n $hcommand | tail -1 | cut -d”/” -

f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

59

60 okpkt=$((sentpkt-lostpkt))

282

6.5 – Indoor received power and connectivity measurements

61 loss=$(echo ”$lostpkt $sentpkt” | awk ’{printf(”%.15f\n”,$1/$2*100)

}’)

62

63 lindex=0

64 tputmax=-1

65 tputmin=1000000

66 jittermax=-1

67 # Extract maximum % variation of throughput values

68 cat $filename | head -n $((hcommand -1)) | tail -n +9 | sed ’s/\s\s*/

/g’ | while read line; do

69 if [$lindex -eq 0]; then

70 echo ”First line: $line”

71 fi

72

73 if [[”$line” =~ ”out-of-order”]]; then

74 echo ”Skipping line...”

75 else

76 if [$lindex -lt 4]; then

77 tputcurr=$(echo $line | cut -d” ” -f8)

78 umeas=$(echo $line | cut -d” ” -f9)

79 jittercurr=$(echo $line | cut -d” ” -f10)

80 else

81 tputcurr=$(echo $line | cut -d” ” -f7)

82 umeas=$(echo $line | cut -d” ” -f8)

83 jittercurr=$(echo $line | cut -d” ” -f9)

84 fi

85

86 if [[$umeas = *”K”*]]; then

87 tputcurr=$(echo ”$tputcurr” | awk ’{printf(”%.5f\n”,$1/1000)}’)

88 fi

89

90 # Maximum found

91 if [$(echo ”$tputcurr > $tputmax” | bc -l) -eq 1]; then

92 tputmax=$tputcurr

283

6 – Measurements on the APU boards and results

93 fi

94

95 # Minimum found

96 if [$(echo ”$tputcurr < $tputmin” | bc -l) -eq 1]; then

97 tputmin=$tputcurr

98 fi

99

100 # Maximum jitter in every 2s report

101 if [$(echo ”$jittercurr > $jittermax” | bc -l) -eq 1]; then

102 jittermax=$jittercurr

103 fi

104

105 lindex=$((lindex+1))

106 fi

107 done

108 lindex=0

109

110 maxvarperc=$(echo ”100*($tputmax -$tputmin)/$tputmax” | bc -l | sed ’

s/^\./0./’)

111 fi

112

113 # Print parsed information

114 echo ”txpower=${txpower[$p]},len=${len[$i]},place=${places[$pl]},b=

$bwidth,tput=$tput,loss=$loss,lostpkt=$lostpkt ,sentpkt=$sentpkt,

okpkt=$okpkt,maxvartputperc=$maxvarperc ,jittermax=$jittermax ,max-

tput=$tputmax Mbit/s,min-tput=$tputmin Mbit/s”

115 # Write to .csv file

116 echo ”${txpower[$p]},${len[$i]},${places[$pl]},$bwidth,$tput,$loss,

$lostpkt,$sentpkt,$okpkt,$maxvarperc ,$jittermax” >> ”APU102-power-

tests -8090dBm.csv”

117 pl=$((pl+1))

118 done

119 i=$((i+1))

120 pl=0

284

6.5 – Indoor received power and connectivity measurements

121 done

122 p=$((p+1))

123 i=0

124 done

It is possible to notice, from line 16, that the data related to the different places (de-

pending on the arbitrary index that we assigned them) are ordered from higher to lower

received power, in order to extract the data from the logs in that order and obtain mean-

ingful plots, with points first related to places where a higher received power was detected

and then related to places with a lower received power.

285

6 – Measurements on the APU boards and results

6.5.3 Plots and results

The results are shown in the following plots:

Figure 6.33: Throughput measurements for different values of received power

286

6.5 – Indoor received power and connectivity measurements

Figure 6.34: Received number of packets for different values of received power; it is
possible to notice that as the payload is increase, the total number of transmitted packet
is reduced. This is actually expected, as we are always trying to offer the same amount of
traffic, which is very high, in order to assess the limits of our system.

287

6 – Measurements on the APU boards and results

Figure 6.35: Maximum percentage variation of the throughput over 60s tests, with 2 sec-
onds report intervals

288

6.5 – Indoor received power and connectivity measurements

As it is possible to see, the indoor connectivity remains stable, with good throughput

values, until the received power goes below -87 dBm. Then, both the connection stability

and the throughput heavily drop to much worse values, until no connectivity can happen

anymore.

As expected from the previous measurements, the larger the payload size, the higher

is the reachable throughput; at -89 dBm, when the connection is not very stable, this

relationship is no more strictly respected and all the measurements with a payload length

of 1000B or less give a throughput of maximum 203Kbit/s, for “-l 208”, which is a quite

low value. The highest throughput value remains, nevertheless, the one with a payload

length of 1470 B.

We were never able to see a value of -91 dBm or less when the boards were communi-

cating, even considering oscillations in these values, provided by the station dump. Thus,

we considered this value as a received power at which a throughput of 0 Mbit/s can be

reached, adding a corresponding point to each plot and for each payload size.

The related maximum variation value was set to 100% to show a completely unreliable

connection (in fact, it seems that the connection cannot be established at all in these con-

ditions), even through this is not a real 100% variation obtained from some iPerf reports

(which could eventually return 0%, but in this case the test could not even start).

For what concerns instead the maximum % variation plot, it is possible to notice that

oscillations and non linearities, with respect to the payload size, occur as soon as the

received signal becomes weak.

It was also possible to notice that even small variations of the position of the receiving

board could cause a non negligible variation in the received power; this was evident when

the signal was weak, i.e. when moving around -87 to -89 dBm, for which even 20/25 cm

were sufficient to vary the received power and the measured values.

By setting a txpower of 10 dBm (which is still far from the maximum of the UNEX

DHXA-222 cards), in any case, the boards were able to communicate even through a

closed door and in non-line-of-sight conditions.

289

6 – Measurements on the APU boards and results

6.5.4 Additional considerations

All the presented measurements are related to indoor tests, where obstacles, doors and

walls are present.

In a future improvement of this work it could be important to make outdoor and on

the field tests, using vehicles, to better assess the performance depending of the effective

distance between the two boards.

6.6 Broadcast communication issue with Linux kernel ver-

sion 4

To conclude this chapter, we want to present a problem that we discovered during the

last days before the end of this work.

The problem is basically due to the fact that, when using recent versions of the Linux

kernel (as in OpenWrt 18.06.1, with kernel 4.14.63), only one priority queue can be used

as far as broadcast communication is concerned. This problem seems not to affect older

kernel versions, such as version 3.18, on which OpenC2X was successfully tested.

When sending broadcasted data only AC_BE can be used, no matter the AC that the

user is trying to set in his or her application; this seems to happen every time a broadcast

destination MAC address is used (FF:FF:FF:FF:FF:FF), sending out packet which will

not be acknowledged by any device, even though they are properly received.

Instead, when sending unicast data, everything works fine and all the queues can be

used: it is the case of all the measurements presented in section 6.4, which require a

precise destination MAC address to be set in each packet, otherwise iPerf cannot start

any test.

It is possible to obtain statistics over the used queues and ACs thanks to ath9k, by

querying a particular file: “/sys/kernel/debug/ieee80211/phy0/ath9k/xmit”.

A script periodically displaying this file’s content has been written, in order to check

the updated queues’ status every 0.5 s (thanks to “millisleep”): as shown in figure 6.36,

290

6.6 – Broadcast communication issue with Linux kernel version 4

only AC_BE can be used when sending broadcast data.

Figure 6.36: Results of querying the .../ath9k/xmit file after running for a few
seconds the C program for broadcast transmission described in section 3.8.5 with
“./broadcastSend 6000 255.255.255.255 4 1 test_payload”. Even though
AC_VE (user priority equal to 4) was selected, only AC_BE seemed to be used.

The script is the following one:

watch_debugfs_ath9k_xmit.sh

1 #!/bin/bash

2

3 while true; do

4 cat /sys/kernel/debug/ieee80211/phy0/ath9k/xmit

5 ./millisleep 0.5

6 clear

7 done

This problem, after debugging the kernel with a patched version of OpenWrt, in which

291

6 – Measurements on the APU boards and results

various calls to “printk()” were added, both inside ath9k and mac80211, seems to be

caused by the introduction of the so-called intermediate software queues insidemac80211.

This feature was introduced to move the queuing implementation more towards the

software side of the wireless subsystem, allowing the hardware to keep only short queues

and enabling also more fairness between stations which are communicating, since these

queues, when in sending unicast data, seems to be kept for each station (and for each

Thread ID: “tid”).

The only documentation we were able to find about this patch comes from the “mac-

82011.h” header file, which reports:

“DOC: mac80211 software tx queueing

mac80211 provides an optional intermediate queueing implementation designed to al-

low the driver to keep hardware queues short and provide some fairness between different

stations/interfaces.

In this model, the driver pulls data frames from the mac80211 queue instead of letting

mac80211 push them via drv_tx(). Other frames (e.g. control or management) are still

pushed using drv_tx().

Drivers indicate that they use this model by implementing the .wake_tx_queue driver

operation.

Intermediate queues (struct ieee80211_txq) are kept per-sta per-tid, with a single per-

vif queue for multicast data frames.

The driver is expected to initialize its private per-queue data for stations and interfaces

in the .add_interface and .sta_add ops.

The driver can’t access the queue directly. To dequeue a frame, it calls ieee80211_tx_de-

queue(). Whenever mac80211 adds a new frame to a queue, it calls the .wake_tx_queue

driver op.

For AP powersave TIM handling, the driver only needs to indicate if it has buffered

packets in the driver specific data structures by calling ieee80211_sta_set_buffered(). For

frames buffered in the ieee80211_txq struct, mac80211 sets the appropriate TIM PVB bits

292

6.6 – Broadcast communication issue with Linux kernel version 4

and calls .release_buffered_frames().

In that callback the driver is therefore expected to release its own buffered frames and

afterwards also frames from the ieee80211_txq (obtained via the usual ieee80211_tx_de-

queue).”

From this documentation, it seems to be clear that only one queue has been imple-

mented for multicast (and broadcast) frames, not taking into account the necessity of

sending prioritized broadcast data, which is a very peculiar characteristic of VANETs.

Also the ath9k driver has been patched to support thesemac80211 intermediate queues,

with the result of queuing the broadcast data to AC_BE only.

In particular, the queuing and buffering inside the driver has been mostly removed,

keeping only the retry queue, and the driver now gets data directly from mac80211 when

needed [75].

Exchanging few e-mails with one of the developers of the ath9k patch, Dr. TokeHøiland-

Jørgensen, it is possible to speculate that themac80211 implementation (which was coded

before he started working on the code for ath9k) could actually be due to the fact that nor-

mally, outside the context of VANETs, it is not beneficial to allow high priority broadcast

traffic, since it may bring down the whole network performance, for instance when send-

ing too much multicast data over AC_VO.

VANETs, however, are working at different frequencies than normal Wi-Fi and really

require this feature to be implemented, making mac80211 allocate and manage 4 queues

for multicast, instead of one only. A good starting point, as suggested by Dr. Høiland-

Jørgensen, could be the analysis of the “struct ieee80211_vif” structure in mac80211,

managing the per-VIF data (as one multicast queue only is defined per-VIF).

This should be one of the most important improvements of this work, as it can be very

useful to be able to build 802.11p systems based on updated embedded Linux versions.

Of course, after the implementation of such a feature and the coding of a proper patch

(which requires working both on the mac80211 and ath9k source files), it will be impor-

tant to test this feature with measurement similar to the ones presented in section 6.4; this

293

6 – Measurements on the APU boards and results

will, however, require some patching work also on iPerf or, possibly, the use of a custom

measurement tool, since broadcast measurements are not possible at the moment, at least

as iPerf is concerned.

294

Chapter 7

Conclusions

7.1 APU boards startup

Before moving to the conclusions of this work, it can be useful to remind all the useful

steps to bring the APU boards to an operating state, when using the platform described

here, as we did every time we used them.

The suggested commands, after connecting the power supply to the main or to a suit-

able battery are:

1. Log in with “root” as user name; at the moment, to facilitate all the experiments,

no password has been set. It may be important, however, if you use OpenWrt, to set

up a strong enough password: this can be done using the “passwd” command or

with the LuCi graphical interface, which can be accessed by opening any browser

and writing the board’s Ethernet IP address.

2. Before doing anything else, always run “iw_startup” to launch the OCBmode and

802.11p startup script, in order to properly configure the boards.

3. If the bash shell is available, as in our case, run it by writing “bash”: since it is more

advanced that the built-in sh shell and it is able to store the commands history, it is

suggested to use it.

295

7 – Conclusions

7.2 Channel switching

During this work, we also performed an alternating channel switching test, as required

by the IEEE 1609.4 standard [30].

We verified that, due to time slots having a default duration of 50 ms, it is very diffi-

cult to rely only on “iw dev <interface> ocb leave” and “iw dev <interface>

ocb join <new channel frequency in MHz> 10MHz”, since they seem to intro-

duce too much delay, causing losses, even when launching a prototype of a possible chan-

nel switching daemon in both the boards and in a synchronized way (thanks to NTP and

the “waituntil” function in the script responsible for starting it). The implementation of

the IEEE 1609.4 features would also require implementing the proper queueing policy

for the packets, for instance allowing only non IP traffic to be queued for transmission on

CCH.

Moreover, since WLAN cards have reduced their overall cost lately, it could be more

efficient to implement an ETSI compliant system, which foresees two WNIC listening to

two different channels instead of looking into channel switching methods.

7.3 Improvements

This work leaves a lot of room for improvement and for the implementation of other

V2X features.

Other than what it is written throughout all the previous chapters, the following list

resumes the main improvements that can be done:

1. Implementation of 4 queues on mac80211 in order to enable again the EDCA traffic

prioritization for broadcast traffic, as detailed in section 6.6.

2. Analysis of why only 3 physical data rates are actually usable, and, if the cause is

not in the hardware device, implementation of a patch to enable other intermediate

rates and up to 27 Mbit/s; implementation of a patch making iw aware of 802.11p

296

7.4 – Conclusions

rates, allowing to simply set the rate by writing the real value, not its double. This

was mentioned before in section 5.8.

3. Measurements over true field tests, in real vehicles and outdoors, using batteries to

power up the boards and proper antennas.

4. Integration of OpenC2X inside OpenWrt 18.06.1, as in OpenC2X embedded/LEDE.

5. Implementation of other IEEE 1609.x V2X features, such as security.

7.4 Conclusions

After integrating the patchedOpenWrt platform inside theAPUboards and performing

all the measurements presented in chapter 6, we were able to confirm that the boards are

actually capable of performing 802.11p based communications.

In particular, we were able to show that the EDCA queues are actually working and

can prioritize the outgoing traffic, allowing higher priority traffic (AC_VI and AC_VO) to

obtain a higher throughput and a better connection stability with respect to lower priority

one (AC_BK and AC_BE), at least in the unicast case.

Unluckily broadcast traffic, as stated before, still cannot be properly prioritized in the

new Linux kernel versions, but the unicast measurements presented in this thesis can be

used as a base to show that EDCA is actually working as it should.

Also, the packet loss and throughput measurements were quite the expected ones;

through them we were also able to better characterize how the system composed by an

APU boards and a UNEX DHXA-222 WLAN card behaves.

The buffer characterization data is instead giving us few important information:

• When a programmer has to build an application, mainly when a lot of traffic is of-

fered or when it will be used in congested situations, it has to take into account that

there are buffers between his application and the physical medium. Some buffers,

such as the UDP buffer we used, are managed by the kernel and their size, set for

297

7 – Conclusions

instance by means of setsockopt() plays an important role both in the application

performance and in the process of detecting possible packet losses.

• Packets may not only be dropped when the wireless medium is very congested or

when the received detects an error, but they may also be dropped prior to the WNIC,

when it cannot handle all the traffic the user is trying to send. This is also related to

the socket send buffer mentioned before.

• All the packet loss measurements shown before, when trying to offer toomuch traffic

with respect to what the UNEX cards can handle, are depending on the specific

measurement application (i.e. iPerf) behavior, combined with the driver and WNIC

one; a different application or a different driver (or even a version of mac80211 with

new features inside) may influence these results, although they should maintain the

trend we were able to obtain (i.e. low losses when offering a reasonable amount of

traffic, higher losses as we offer more traffic with respect to the observed maximum).

In any case, we were able to verify that hardly any packet got dropped in the air.

Considering this, it is possible to conclude that our platform can be a good and func-

tional PHY andMAC layers skeleton, even though several improvements are still possible,

for future development of more complex applications and 1609.x protocol features on top

of the hardware and operating system.

7.5 Acknowledgements

For all the development of this work I want to thank Florian Klingler and the CCS

Labs team, working on V2X solution in University of Paderborn.

They developed the OpenC2X, ETSI compliant, platform, together with the funda-

mental patches to to OpenWrt and the Linux kernel to make everything work [36].

As mentioned before, these patches have been integrated in OpenWrt 18.06.1, together

with some custom ones, and effectively used during all the measurement sessions.

298

7.5 – Acknowledgements

Dr. rer. nat. Florian Klingler also kindly replied too all my e-mails, which I sent him

when I had doubts about their platform or about the patched LEDE system.

I also want to thank all the users in the iPerf 2 and OpenWrt forums, which provided

a valuable mean of getting in contact with other people using and developing networking

systems, together with Dr. Toke Høiland-Jørgensen, from Karlstad University, who is one

of the developers of the ath9k patch for the mac80211 intermediate software queues, with

whom we exchanged some e-mails related to this, giving me very useful advices.

Thanks a lot to Prof. Claudio Ettore Casetti and Dr. Marco Malinverno, who, as thesis

advisors, were always very kind and helped me with all this work, discussing together the

results, the possible issues and the next goals to try to achieve. It is also thanks to them

that I discovered the world of VANETs, which I find very interesting and stimulating.

Thanks to my family and my brother, who supported me a lot, also economically, and

always trusted me during these five years, which have been a very important part of my

life.

Thanks to all my friends, who really supported and helpedme during both the bachelor

and master degrees, in Politecnico di Torino.

299

Appendices

301

Appendix A

C programs for broadcast transmissions

rawsock library

Rawsock_lib/rawsock.h

1 #ifndef RAWSOCK_H_INCLUDED

2 #define RAWSOCK_H_INCLUDED

3

4 #include <net/ethernet.h>

5 #include <linux/udp.h>

6 #include <linux/ip.h>

7 #include <arpa/inet.h>

8 #include <stdio.h>

9 #include <stdbool.h>

10 #define MAC_FILE_PATH_SIZE 23

11 #define MAC_ADDR_SIZE 6

12

13 // Errors

14 #define ERR_WLAN_NOIF 0 // No WLAN interfaces

15 #define ERR_WLAN_SOCK -1 // socket() creation error

16 #define ERR_WLAN_GETIFADDRS -2 // getifaddrs() error

17 #define ERR_WLAN_INDEX -3 // Wrong index specified

18 #define ERR_WLAN_GETSRCMAC -4 // Unable to get source MAC address (if

requested)

302

C programs for broadcast transmissions

19 #define ERR_WLAN_GETIFINDEX -5 // Unable to get source interface index

(if requested)

20

21 #define ERR_IPHEADP_SOCK -10 // socket() creation error

22 #define ERR_IPHEAD_NOSRCADDR -11 // Unable to retrieve current device

IP address

23

24 // Names

25 #define MAC_NULL 0x00

26 #define MAC_BROADCAST 0x01

27 #define MAC_UNICAST 0x02

28 #define MAC_MULTICAST 0x03

29

30 // Useful constants

31 // Additional EtherTypes

32 #define ETHERTYPE_GEONET 0x8947

33 #define ETHERTYPE_WSMP 0x88DC

34

35 // IP constants

36 #define BASIC_IHL 5

37 #define IPV4 4

38 #define BASIC_UDP_TTL 64 // From Wireshark captures

39

40 // UDP constant

41 #define UDPHEADERLEN 8

42

43 // Useful masks

44 #define FLAG_NOFRAG_MASK (1<<6)

45 #define FLAG_RESERVED_MASK (1<<7)

46 #define FLAG_MOREFRAG_MASK (1<<5)

47

48 // Checksum protocols , to be used inside the validateCsum() function

49 // (0x00->0x7F should be simple types, 0x80->0xFF should be combined

types)

303

– Appendix A

50 #define CSUM_IP 0x00

51 #define CSUM_UDP 0x01

52 #define CSUM_UDPIP 0x80

53

54 // Size definitions (macros)

55 #define UDP_PACKET_SIZE(data) sizeof(struct udphdr)+strlen(argv[5])

56 #define IP_UDP_PACKET_SIZE(data) sizeof(struct iphdr)+sizeof(struct

udphdr)+strlen(argv[5])

57 #define ETH_IP_UDP_PACKET_SIZE(data) sizeof(struct iphdr)+sizeof(

struct iphdr)+sizeof(struct udphdr)+strlen(argv[5])

58

59 typedef unsigned char * macaddr_t;

60 typedef unsigned short ethertype_t;

61 typedef unsigned char byte_t;

62 typedef int rawsockerr_t;

63 typedef unsigned char csumt_t;

64 typedef __sum16 csum16_t;

65 struct ipaddrs {

66 in_addr_t src;

67 in_addr_t dst;

68 };

69

70 // General utilities

71 rawsockerr_t wlanLookup(char *devname, int *ifindex, macaddr_t mac,

unsigned int index);

72 macaddr_t prepareMacAddrT();

73 unsigned int macAddrTypeGet(macaddr_t mac);

74 void freeMacAddrT(macaddr_t mac);

75 void rs_printerror(FILE *stream,rawsockerr_t code);

76 void display_packet(const char *text,byte_t *packet,unsigned int len);

77 void display_packetc(const char *text,byte_t *packet,unsigned int len)

;

78

79 // Ethernet level functions

304

C programs for broadcast transmissions

80 void etherheadPopulateB(struct ether_header *etherHeader , macaddr_t

mac, ethertype_t type);

81 void etherheadPopulate(struct ether_header *etherHeader , macaddr_t

macsrc, macaddr_t macdst, ethertype_t type);

82 size_t etherEncapsulate(byte_t *packet,struct ether_header *header,

byte_t *sdu,size_t sdusize);

83

84 // IP level functions

85 rawsockerr_t IP4headPopulateB(struct iphdr *IPhead, char *devname,

unsigned char tos,unsigned short frag_offset , unsigned char ttl,

unsigned char protocol,unsigned int flags,struct ipaddrs *addrs);

86 rawsockerr_t IP4headPopulate(struct iphdr *IPhead, char *devname, char

*destIP, unsigned char tos,unsigned short frag_offset , unsigned

char ttl, unsigned char protocol,unsigned int flags,struct ipaddrs

*addrs);

87 void IP4headAddID(struct iphdr *IPhead, unsigned short id);

88 void IP4headAddTotLen(struct iphdr *IPhead, unsigned short len);

89 size_t IP4Encapsulate(byte_t *packet,struct iphdr *header,byte_t *sdu,

size_t sdusize);

90

91 // UDP level functions

92 void UDPheadPopulate(struct udphdr *UDPhead, unsigned short sourceport

, unsigned short destport);

93 size_t UDPencapsulate(byte_t *packet,struct udphdr *header,char *data,

size_t payloadsize ,struct ipaddrs addrs);

94

95 // Receiving device functions

96 byte_t *UDPgetpacketpointers(byte_t *pktbuf,struct ether_header **

etherHeader , struct iphdr **IPheader ,struct udphdr **UDPheader);

97 unsigned short UDPgetpayloadsize(struct udphdr *UDPheader);

98 bool validateEthCsum(byte_t *packet, csum16_t csum, csum16_t *

combinedcsum , csumt_t type, void *args);

99

305

– Appendix A

100 // Test functions , to inject errors inside packets - should never be

used under normal circumstances

101 void test_injectIPCsumError(byte_t *IPpacket);

102 void test_injectUDPCsumError(byte_t *UDPpacket);

103

104 #endif

306

C programs for broadcast transmissions

Rawsock_lib/rawsock.c

1 #include ”rawsock.h”

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <ifaddrs.h>

5 #include <string.h>

6 #include <unistd.h>

7 #include <linux/wireless.h>

8 #include <sys/types.h>

9 #include <sys/ioctl.h>

10 #include <arpa/inet.h>

11 #include ”ipcsum_alth.h”

12

13 /**

14 Fast UDP checksum calculation -

15 not an original work: coded by Andrea Righi in

16 the Minirighi IA-32 Operating System,

17 released under GNU GPL

18 Definition at line 29 of file udp.c

19 **/

20 uint16_t udp_checksum(const void *buff, size_t len, in_addr_t src_addr

, in_addr_t dest_addr) {

21 const uint16_t *buf=buff;

22 uint16_t *ip_src=(void *)&src_addr, *ip_dst=(void *)&dest_addr;

23 uint32_t sum;

24 size_t length=len;

25

26 sum = 0;

27 while (len > 1) {

28 sum += *buf++;

29 if (sum & 0x80000000)

30 sum = (sum & 0xFFFF) + (sum >> 16);

31 len -= 2;

307

– Appendix A

32 }

33

34 if (len & 1)

35 sum += *((uint8_t *)buf);

36

37 sum += *(ip_src++);

38 sum += *ip_src;

39 sum += *(ip_dst++);

40 sum += *ip_dst;

41

42 sum += htons(IPPROTO_UDP);

43 sum += htons(length);

44

45 while (sum >> 16)

46 sum = (sum & 0xFFFF) + (sum >> 16);

47

48 return ((uint16_t)(~sum));

49 }

50

51 /**

52 Prepare a macaddr_t variable -

53 allocates a six element byte array

54 to store any MAC address

55 **/

56 macaddr_t prepareMacAddrT() {

57 macaddr_t mac;

58 int i;

59

60 mac=malloc(MAC_ADDR_SIZE*sizeof(unsigned char));

61

62 for(i=0;i<MAC_ADDR_SIZE;i++) {

63 mac[i]=0xFF;

64 }

65

308

C programs for broadcast transmissions

66 return mac;

67 }

68

69 /**

70 Free a macaddr_t variable -

71 frees a previously allocated array

72 **/

73 void freeMacAddrT(macaddr_t mac) {

74 free(mac);

75 }

76

77 /**

78 Get the MAC address type -

79 starting from a MAC address type

80 its type is returned (unicast, multicast , broadcast)

81 **/

82 unsigned int macAddrTypeGet(macaddr_t mac) {

83 if(mac!=NULL) {

84 if(mac[0]==0x01) {

85 return MAC_MULTICAST;

86 } else if(mac[0]==0xFF && mac[1]==0xFF && mac[2]==0xFF && mac

[3]==0xFF && mac[4]==0xFF && mac[5]==0xFF) {

87 return MAC_BROADCAST;

88 } else {

89 return MAC_UNICAST;

90 }

91 } else {

92 return MAC_NULL;

93 }

94 }

95

96 /**

97 wlanLookup -

98 automatically look for available WLAN interfaces.

309

– Appendix A

99 When only one interface is available and ”0” is specified as index,

100 that interface name is returned inside ”devname”.

101 Then, if the other two arguments are not NULL, the interface index

and

102 the corresponding source MAC address (if available) is returned.

103

104 If more than one interface is present, the number of available

interfaces

105 is returned by the function and the index is used to point to a

specific interface

106 (for instance index=1 can be used to point to a possible ”wlan1”

interface).

107

108 Return values: if ok: number of found interfaces

109 ERR_WLAN_NOIF -> no interfaces found

110 ERR_WLAN_SOCK -> cannot create socket to look for wireless

interfaces

111 ERR_WLAN_GETIFADDRS -> error in calling getifaddrs()

112 ERR_WLAN_INDEX -> invalid index value

113 ERR_WLAN_GETSRCMAC -> unable to get source MAC address (if requested

)

114 ERR_WLAN_GETIFINDEX -> unable to get source interface index (if

requested)

115 **/

116 rawsockerr_t wlanLookup(char *devname, int *ifindex, macaddr_t mac,

unsigned int index) {

117 // Variables for wlan interfaces detection

118 int sFd=-1;

119 // struct ifaddrs used to look for available interfaces and bind to

a wireless interface

120 struct ifaddrs *ifaddr_head , *ifaddr_it;

121 // struct ifreq to check whether an interface is wireless or not.

The ifr_name field is used to specify which device to affect.

122 struct ifreq wifireq;

310

C programs for broadcast transmissions

123 // Pointers to manage the list containing all valid wireless

interfaces

124 struct iflist *iflist_head=NULL; // Head

125 struct iflist *curr_ptr=NULL; // Current element

126 struct iflist *iflist_it=NULL; // To iterate the list

127 struct iflist *iflist_u=NULL; // To free the list

128 int ifno=0;

129 int return_value=1; // Return value: >0 ok - # of found interfaces ,

<=0 error

130 // (=0 for no WLAN interfaces , =-1 for socket error,

=-2 for getifaddrs error)

131 // (=-3 for wrong index, =-4 unable to get MAC

address, =-5 unable to get ifindex)

132

133 // Linked list nodes to store the WLAN interfaces

134 struct iflist {

135 struct iflist *next;

136 struct ifaddrs *ifaddr_ptr;

137 };

138

139 // Open socket (needed)

140 sFd=socket(AF_INET,SOCK_DGRAM ,0); // Any socket should be fine (to

be better investigated!)

141 if(sFd==-1) {

142 return_value=-1;

143 goto sock_error_occurred;

144 }

145

146 // Getting all interface addresses

147 if(getifaddrs(&ifaddr_head)==-1) {

148 return_value=-2;

149 goto getifaddrs_error_occurred;

150 }

151

311

– Appendix A

152 // Looking for wlan interfaces

153 bzero(&wifireq,sizeof(wifireq));

154 // Iterating over the interfaces linked list

155 for(ifaddr_it=ifaddr_head;ifaddr_it!=NULL;ifaddr_it=ifaddr_it ->

ifa_next) {

156 if(ifaddr_it ->ifa_addr!=NULL && ifaddr_it ->ifa_addr ->sa_family ==

AF_PACKET) {

157 // fprintf(stdout ,”Checking interface %s for use.\n”,ifaddr_it ->

ifa_name);

158 // IFNAMSIZ is defined by system libraries and it ”defines the

maximum buffer size needed to hold an interface name,

159 // including its terminating zero byte”

160 // This is done because (from man7.org) ”normally, the user

specifies which device to affect by setting

161 // ifr_name to the name of the interface”

162 strncpy(wifireq.ifr_name ,ifaddr_it ->ifa_name ,IFNAMSIZ);

163

164 // Trying to get the Wireless Extensions (a socket descriptor

must be specified to ioctl())

165 if(ioctl(sFd,SIOCGIWNAME ,&wifireq)!=-1) {

166 // Check if the interface is up

167 if(ioctl(sFd,SIOCGIFFLAGS ,&wifireq)!=-1 && (wifireq.ifr_flags

& IFF_UP)) {

168 // If the interface is up, add it to the head of the ”iflist

” (it is not added to the tail in order to

169 // avoid defining an extra pointer)

170 // fprintf(stdout ,”Interface %s (#%d) is up. It may be used

.\n”,ifaddr_it ->ifa_name ,ifno);

171 ifno++;

172 curr_ptr=malloc(sizeof(struct iflist));

173 curr_ptr->ifaddr_ptr=ifaddr_it;

174 if(iflist_head==NULL) {

175 iflist_head=curr_ptr;

176 iflist_head ->next=NULL;

312

C programs for broadcast transmissions

177 } else {

178 curr_ptr->next=iflist_head;

179 iflist_head=curr_ptr;

180 }

181 } // else {

182 // fprintf(stdout ,”Interface is not up (or it is impossibile

to check that).\n”);

183 // }

184 } // else {

185 // fprintf(stdout ,”Interface is not wireless.\n”);

186 // }

187 }

188 }

189

190 // No wireless interfaces found (the list is empty)

191 if(iflist_head==NULL) {

192 // fprintf(stderr ,”No wireless interfaces found. The program will

terminate now.\n”);

193 return_value=0;

194 goto error_occurred;

195 } else if(ifno==1) {

196 // Only one wireless interface found -> it is possible to ignore ’

index’

197 strncpy(devname,iflist_head ->ifaddr_ptr ->ifa_name ,IFNAMSIZ);

198 // fprintf(stdout ,”Interface %s (#0) will be used.\n\n”,devname);

199 } else {

200 // Multiple wireless interfaces found -> use the value of ’index’

201 // fprintf(stdout ,”Please insert the interface # to be used: ”);

202 // fflush(stdout);

203 // fscanf(stdin ,”%d”,&ifindex);

204 if(index>=ifno) {

205 //fprintf(stderr ,”Invalid interface index. Aborting execution.\n

”);

206 return_value=-3;

313

– Appendix A

207 goto error_occurred;

208 }

209 return_value=ifno; // Return the number of interfaces found

210 // Iterate the list until the chosen interface is reached

211 iflist_it=iflist_head;

212 while(index<=ifno-2) {

213 iflist_it=iflist_it ->next;

214 index++;

215 }

216 strncpy(devname,iflist_it ->ifaddr_ptr ->ifa_name ,IFNAMSIZ);

217 // fprintf(stdout ,”Interface %s will be used.\n\n”,devname);

218 }

219

220 // Get MAC address of the interface (if requested by the user with a

non-NULL mac)

221 if(mac!=NULL) {

222 strncpy(wifireq.ifr_name,devname,IFNAMSIZ);

223 if(ioctl(sFd,SIOCGIFHWADDR ,&wifireq)!=-1) {

224 memcpy(mac,wifireq.ifr_hwaddr.sa_data,MAC_ADDR_SIZE);

225 } else {

226 return_value=-4;

227 goto error_occurred;

228 }

229 }

230

231 // Get interface index of the interface (if requested by the user

with a non-NULL ifindex)

232 if(ifindex!=NULL) {

233 strncpy(wifireq.ifr_name,devname,IFNAMSIZ);

234 if(ioctl(sFd,SIOCGIFINDEX ,&wifireq)!=-1) {

235 *ifindex=wifireq.ifr_ifindex;

236 } else {

237 return_value=-5;

238 goto error_occurred;

314

C programs for broadcast transmissions

239 }

240 }

241

242 error_occurred:

243 // iflist and the other list are no more useful -> free them

244 freeifaddrs(ifaddr_head);

245 for(iflist_it=iflist_head;iflist_it!=NULL;iflist_it=iflist_u) {

246 iflist_u=iflist_it ->next;

247 free(iflist_it);

248 }

249

250 getifaddrs_error_occurred:

251 // Close socket

252 close(sFd);

253

254 sock_error_occurred:

255 return return_value;

256 }

257

258 /**

259 Print more detailed error messages -

260 given a stream (for ex. stdout or stderr) and

261 the error name (see rawsock.h)

262 **/

263 void rs_printerror(FILE *stream,rawsockerr_t code) {

264 switch(code) {

265 case ERR_WLAN_NOIF:

266 fprintf(stream,”wlanLookup: No WLAN interfaces found.\n”);

267 break;

268

269 case ERR_WLAN_SOCK:

270 fprintf(stream,”wlanLookup: socket creation error.\n”);

271 break;

272

315

– Appendix A

273 case ERR_WLAN_GETIFADDRS:

274 fprintf(stream,”wlanLookup: getifaddrs() error.\n”);

275 break;

276

277 case ERR_WLAN_INDEX:

278 fprintf(stream,”wlanLookup: wrong index specified.\n”);

279 break;

280

281 case ERR_WLAN_GETSRCMAC:

282 fprintf(stream,”wlanLookup: unable to get source MAC address.\n”

);

283 break;

284

285 case ERR_WLAN_GETIFINDEX:

286 fprintf(stream,”wlanLookup: unable to get interface index.\n”);

287 break;

288

289 case ERR_IPHEADP_SOCK:

290 fprintf(stream,”IP4headPopulateB: socket creation error.\n”);

291 break;

292

293 case ERR_IPHEAD_NOSRCADDR:

294 fprintf(stream,”IP4headPopulateB: unable to retrieve source IP

address.\n”);

295 break;

296

297 default:

298 fprintf(stream,”Unknown error.\n”);

299 }

300 }

301

302 /**

303 Display packet in hexadecimal form -

304 packet length is required

316

C programs for broadcast transmissions

305 **/

306 void display_packet(const char *text,byte_t *packet,unsigned int len)

{

307 int i;

308

309 fprintf(stdout,”%s -> ”,text);

310 for(i=0;i<len;i++) {

311 fprintf(stdout,”%02x ”,packet[i]);

312 }

313 fprintf(stdout,”\n”);

314 fflush(stdout);

315 }

316

317 /**

318 Display packet in character form -

319 packet length is required

320 **/

321 void display_packetc(const char *text,byte_t *packet,unsigned int len)

{

322 int i;

323

324 fprintf(stdout,”%s -> ”,text);

325 for(i=0;i<len;i++) {

326 fprintf(stdout,”%c”,packet[i]);

327 }

328 fprintf(stdout,”\n”);

329 fflush(stdout);

330 }

331

332 /**

333 Populate broadcast Ethernet header -

334 the user shall specify an already existing ether_header structure ,

the source MAC

317

– Appendix A

335 and the Ethertype (either one type in net/ethernet.h or one type in

rawsock.h)

336 **/

337 void etherheadPopulateB(struct ether_header *etherHeader , macaddr_t

mac, ethertype_t type) {

338 unsigned char broadcastMAC[ETHER_ADDR_LEN]={0xFF,0xFF,0xFF,0xFF,0xFF

,0xFF};

339

340 memcpy(etherHeader ->ether_dhost ,broadcastMAC ,ETHER_ADDR_LEN);

341 memcpy(etherHeader ->ether_shost ,mac,ETHER_ADDR_LEN);

342 etherHeader ->ether_type = htons(type);

343 }

344

345 /**

346 Populate standard Ethernet header -

347 the user shall specify an already existing ether_header structure ,

the source MAC

348 the destination MAC and the Ethertype (either one type in net/

ethernet.h or one type in rawsock.h)

349 **/

350 void etherheadPopulate(struct ether_header *etherHeader , macaddr_t

macsrc, macaddr_t macdst, ethertype_t type) {

351 memcpy(etherHeader ->ether_dhost ,macdst,ETHER_ADDR_LEN);

352 memcpy(etherHeader ->ether_shost ,macsrc,ETHER_ADDR_LEN);

353 etherHeader ->ether_type = htons(type);

354 }

355

356 /**

357 Combine Ethernet SDU and PCI -

358 the user shall specify a buffer in which the full packet will be put

, the ethernet header, the SDU

359 (byte_t *sdu) and its size in bytes

360 **/

318

C programs for broadcast transmissions

361 size_t etherEncapsulate(byte_t *packet,struct ether_header *header,

byte_t *sdu,size_t sdusize) {

362 size_t packetsize=sizeof(struct ether_header)+sdusize;

363

364 memcpy(packet,header,sizeof(struct ether_header));

365 memcpy(packet+sizeof(struct ether_header),sdu,packetsize);

366

367 return packetsize;

368 }

369

370 /**

371 Populate standard IP version 4 header -

372 the user shall specify an already existing IP header structure , the

interface name (for instance ”wlan0”),

373 the destination IP address, the TOS value, the fragment offset value

, the TTL, the protocol, the flags (reserved, DF, MF).

374 The function, other than returning possible errors (ERR_IPHEADP_SOCK

or ERR_IPHEAD_NOSRCADDR), returns a structure

375 containing the source and destination IP addresses , if struct

ipaddrs *addrs is not NULL.

376 **/

377 rawsockerr_t IP4headPopulate(struct iphdr *IPhead, char *devname, char

*destIP, unsigned char tos,unsigned short frag_offset , unsigned

char ttl, unsigned char protocol,unsigned int flags,struct ipaddrs

*addrs) {

378 struct in_addr destIPAddr;

379 int sFd; // To get the current IP address

380 struct ifreq wifireq;

381

382 IPhead->ihl=BASIC_IHL;

383 IPhead->version=IPV4;

384 IPhead->tos=(__u8) tos;

385 IPhead->frag_off=htons(frag_offset);

386 IPhead->frag_off=(IPhead->frag_off) | flags;

319

– Appendix A

387 IPhead->ttl=(__u8) ttl;

388 IPhead->protocol=(__u8) protocol;

389 inet_pton(AF_INET,destIP ,(struct in_addr *)&destIPAddr);

390 IPhead->daddr=destIPAddr.s_addr;

391

392 // Get own IP address

393 sFd=socket(AF_INET,SOCK_DGRAM ,0);

394 if(sFd==-1) {

395 return -10;

396 }

397 strncpy(wifireq.ifr_name ,devname,IFNAMSIZ);

398 wifireq.ifr_addr.sa_family = AF_INET;

399 if(ioctl(sFd,SIOCGIFADDR ,&wifireq)!=0) {

400 close(sFd);

401 return -11;

402 }

403 close(sFd);

404 IPhead->saddr=((struct sockaddr_in*)&wifireq.ifr_addr)->sin_addr.

s_addr;

405 if(addrs!=NULL) {

406 addrs->src=IPhead->saddr;

407 addrs->dst=IPhead->daddr;

408 }

409

410 // Initialize checksum to 0

411 IPhead->check=0;

412

413 return 0;

414 }

415

416 /**

417 Populate broadcast IP version 4 header -

418 the user shall specify an already existing IP header structure , the

interface name (for instance ”wlan0”),

320

C programs for broadcast transmissions

419 the TOS value, the fragment offset value, the TTL, the protocol, the

flags (reserved, DF, MF).

420 The function, other than returning possible errors (ERR_IPHEADP_SOCK

or ERR_IPHEAD_NOSRCADDR), returns a structure

421 containing the source and destination IP addresses , if struct

ipaddrs *addrs is not NULL.

422 **/

423 rawsockerr_t IP4headPopulateB(struct iphdr *IPhead, char *devname,

unsigned char tos,unsigned short frag_offset , unsigned char ttl,

unsigned char protocol,unsigned int flags,struct ipaddrs *addrs) {

424 struct in_addr broadIPAddr;

425 int sFd; // To get the current IP address

426 struct ifreq wifireq;

427

428 IPhead->ihl=BASIC_IHL;

429 IPhead->version=IPV4;

430 IPhead->tos=(__u8) tos;

431 IPhead->frag_off=htons(frag_offset);

432 IPhead->frag_off=(IPhead->frag_off) | flags;

433 IPhead->ttl=(__u8) ttl;

434 IPhead->protocol=(__u8) protocol;

435 inet_pton(AF_INET,”255.255.255.255”,(struct in_addr *)&broadIPAddr);

436 IPhead->daddr=broadIPAddr.s_addr;

437

438 // Get own IP address

439 sFd=socket(AF_INET,SOCK_DGRAM ,0);

440 if(sFd==-1) {

441 return -10;

442 }

443 strncpy(wifireq.ifr_name ,devname,IFNAMSIZ);

444 wifireq.ifr_addr.sa_family = AF_INET;

445 if(ioctl(sFd,SIOCGIFADDR ,&wifireq)!=0) {

446 close(sFd);

447 return -11;

321

– Appendix A

448 }

449 close(sFd);

450 IPhead->saddr=((struct sockaddr_in*)&wifireq.ifr_addr)->sin_addr.

s_addr;

451 if(addrs!=NULL) {

452 addrs->src=IPhead->saddr;

453 addrs->dst=IPhead->daddr;

454 }

455

456 // Initialize checksum to 0

457 IPhead->check=0;

458

459 return 0;

460 }

461

462 /**

463 Add ID to a given (by the caller) IPv4 header

464 **/

465 void IP4headAddID(struct iphdr *IPhead, unsigned short id) {

466 IPhead->id=htons(id);

467 }

468

469 /**

470 Add Total Length to a given (by the caller) IPv4 header

471 **/

472 void IP4headAddTotLen(struct iphdr *IPhead, unsigned short len) {

473 IPhead->tot_len=htons(len);

474 }

475

476 /**

477 Combine IPv4 SDU and PCI -

478 the user shall specify a buffer in which the full packet will be put

, the ethernet header, the SDU

479 (byte_t *sdu) and its size in bytes

322

C programs for broadcast transmissions

480 **/

481 size_t IP4Encapsulate(byte_t *packet,struct iphdr *header,byte_t *sdu,

size_t sdusize) {

482 size_t packetsize=sizeof(struct iphdr)+sdusize;

483

484 header->tot_len=htons(packetsize);

485 header->check=0; // Reset to 0 in case of subsequent calls

486

487 header->check=ip_fast_csum((__u8 *)header, BASIC_IHL);

488

489 memcpy(packet,header,sizeof(struct iphdr));

490 memcpy(packet+sizeof(struct iphdr),sdu,packetsize);

491

492 return packetsize;

493 }

494

495 /**

496 Populate standard UDP 4 header -

497 the user shall specify an already existing UDP header structure , the

source port

498 and the destination port

499 **/

500 void UDPheadPopulate(struct udphdr *UDPhead, unsigned short sourceport

, unsigned short destport) {

501 UDPhead->source=htons(sourceport);

502 UDPhead->dest=htons(destport);

503

504 // Initialize checksum to 0

505 UDPhead->check=0;

506 }

507

508 /**

509 Combine UDP payload and header -

323

– Appendix A

510 the user shall specify a buffer in which the full packet will be put

, the UDP header, the payload

511 (byte_t *payload), its size in bytes and a structure (see the

definition in rawsock.h) containing

512 source and destion IP addresses , which are used to compute the

checksum

513 **/

514 size_t UDPencapsulate(byte_t *packet,struct udphdr *header,char *data,

size_t payloadsize ,struct ipaddrs addrs) {

515 size_t packetsize=sizeof(struct udphdr)+payloadsize;

516

517 header->len=htons(packetsize);

518 header->check=0; // Reset to 0 in case of subsequent calls

519

520 memcpy(packet,header,sizeof(struct udphdr));

521 memcpy(packet+sizeof(struct udphdr),data,packetsize);

522

523 header->check=udp_checksum(packet,packetsize ,addrs.src,addrs.dst);

524

525 memcpy(packet,header,sizeof(struct udphdr));

526

527 return packetsize;

528 }

529

530 /**

531 Get pointers to headers and payload in UDP packet buffer -

532 obtain, given a certain buffer containing an UDP packet, the pointer

to the headers

533 and payload sections

534 Example of call: payload=UDPgetpacketpointers(packet ,ðerHeader ,&

IPheader ,&udpHeader);

535 with:

536 struct ether_header* etherHeader;

537 struct iphdr *IPheader;

324

C programs for broadcast transmissions

538 struct udphdr *udpHeader;

539 byte_t *payload;

540 --------------------------------

541 packet is specified by the user,

542 payload is returned by the function (requires an already allocated

array!)

543 the ethernet header pointer is written by this function , as the IP

and UDP header pointers

544 **/

545 byte_t *UDPgetpacketpointers(byte_t *pktbuf,struct ether_header **

etherHeader , struct iphdr **IPheader ,struct udphdr **UDPheader) {

546 byte_t *payload;

547

548 *etherHeader=(struct ether_header*) pktbuf;

549 *IPheader=(struct iphdr*)(pktbuf+sizeof(struct ether_header));

550 *UDPheader=(struct udphdr*)(pktbuf+sizeof(struct ether_header)+

sizeof(struct iphdr));

551 payload=(pktbuf+sizeof(struct ether_header)+sizeof(struct iphdr)+

sizeof(struct udphdr));

552

553 return payload;

554 }

555

556 /**

557 Get UDP payload size as unsigned short (int), given a UDP header

pointer

558 **/

559 unsigned short UDPgetpayloadsize(struct udphdr *UDPheader) {

560 return (ntohs(UDPheader ->len)-UDPHEADERLEN);

561 }

562

563 /**

564 Validate the checksum of a raw ’Ethernet’ packet i.e.

565 of any packet containing a struct ether_header as first bytes -

325

– Appendix A

566 Arguments:

567 . byte_t *packet -> pointer to the full packet buffer

568 . csum16_t csum -> checksum value to be checked against the newly

computed value, from ’packet’

569 . csum16_t *combinedcsum -> should be NULL for non combined checksum

types, otherwise it should contain

570 the value of the second checksum to be checked (the oredring between

csum and *combinedcsum is the same

571 as the one in the checksum type constant - for instance: CSUM_UDPIP

requires csum<-UDP and *combinedcsum <-IP)

572 If NULL is specified for any combined type, the function will always

return ’false’.

573 . csumt_t type -> checksum protocol: various protocols can be

specified within the same function, in order to keep

574 it easier to extend as newer protocols will be implemented inside

the library.

575 The supported protocols are defined inside proper ”Checksum

protocols” constants in rawsock.h.

576 Both simple protocols and combined ones are supported: in the first

case, only the checksum related to the

577 specified protocol is checked (csum16_t csum), in the second case,

two checksums , contained inside the same

578 packet, are checked (csum16_t csum and csum16_t *combinedcsum) ->

this can be useful, for instance , to

579 check both the UDP and IP checksums all at once; in case a combined

mode is selected ’combinedcsum’ shall

580 be non-NULL, otherwise the function will always return ’false’.

581 . void *args -> additional arguments: these are typically dependant

on the specified protocol: for instance ,

582 using IP, they are not needed and NULL can be passed; instead, when

using UDP (or UDP+IP), they shall contain

583 the pointer to a single value which is the payload length (this may

avoid computing it multiple times, outside

326

C programs for broadcast transmissions

584 and inside this function , when a variable containing it is already

available)

585 **/

586 bool validateEthCsum(byte_t *packet, csum16_t csum, csum16_t *

combinedcsum , csumt_t type, void *args) {

587 csum16_t currCsum;

588 bool returnVal=false;

589 void *headerPtr; // Generic header pointer

590 void *payloadPtr; // Generic payload/SDU pointer

591 size_t packetsize; // Used in UDP checksum calculation

592 __sum16 storedCsum; // To store the current value of checksum , read

from ’packet’

593

594 // Directly return ’false’ (as an error occurred) if a combined type

is specified but combinedcsum is NULL

595 if(type>=0x80 && combinedcsum==NULL) {

596 return false;

597 }

598

599 // Discriminate the different protocols

600 switch(type) {

601 case CSUM_IP:

602 headerPtr=(struct iphdr*)(packet+sizeof(struct ether_header));

603

604 // Checksum should start with a value of 0x0000 in order to be

correctly computed:

605 // set it to 0 and restore it, to avoid making a copy of the

packet in memory

606 storedCsum=((struct iphdr *) headerPtr)->check;

607 ((struct iphdr *) headerPtr)->check=0;

608

609 currCsum=ip_fast_csum((__u8 *)headerPtr , ((struct iphdr *)

headerPtr)->ihl);

610

327

– Appendix A

611 ((struct iphdr *) headerPtr)->check=storedCsum;

612

613 returnVal=(currCsum==csum);

614 break;

615 case CSUM_UDP:

616 case CSUM_UDPIP:

617 // payloadsize should be specified , otherwise ’false’ will be

always returneds

618 if(args==NULL) {

619 returnVal=false;

620 } else {

621 // Get packetsize

622 packetsize=sizeof(struct udphdr)+*((size_t *) args);

623

624 headerPtr=(struct iphdr*)(packet+sizeof(struct ether_header));

625 payloadPtr=(struct udphdr*)(packet+sizeof(struct ether_header)

+sizeof(struct iphdr));

626

627 storedCsum=((struct udphdr *) payloadPtr)->check;

628 ((struct udphdr *) payloadPtr)->check=0;

629

630 currCsum=udp_checksum(payloadPtr ,packetsize ,((struct iphdr *)

headerPtr)->saddr ,((struct iphdr *)headerPtr)->daddr);

631

632 ((struct udphdr *) payloadPtr)->check=storedCsum;

633

634 returnVal=(currCsum==csum);

635

636 if(type==CSUM_UDPIP) {

637 if(combinedcsum==NULL) {

638 returnVal=false;

639 } else {

640 // Compute IP checksum

641 storedCsum=((struct iphdr *) headerPtr)->check;

328

C programs for broadcast transmissions

642 ((struct iphdr *) headerPtr)->check=0;

643

644 currCsum=ip_fast_csum((__u8 *)headerPtr , ((struct iphdr *)

headerPtr)->ihl);

645

646 ((struct iphdr *) headerPtr)->check=storedCsum;

647

648 returnVal=returnVal && (currCsum==(*combinedcsum));

649 }

650 }

651 }

652 break;

653 default:

654 returnVal=false;

655 }

656

657 return returnVal;

658 }

659

660 /**

661 Test function: inject a checksum error in an IP packet -

662 The pointer to the full IP packet shall be passed (IP header+payload

)

663 **/

664 void test_injectIPCsumError(byte_t *IPpacket) {

665 // Get header pointer

666 struct iphdr *IPheader=(struct iphdr *) IPpacket;

667

668 if(IPpacket!=NULL) {

669 // Change checksum, avoiding possible overflow situations

670 if(IPheader ->check!=0xFF) {

671 IPheader->check=IPheader->check+1;

672 } else {

673 IPheader->check=0x00;

329

– Appendix A

674 }

675 }

676 }

677

678 /**

679 Test function: inject a checksum error in an UDP packet -

680 The pointer to the full UDP packet shall be passed (UDP header+

payload)

681 **/

682 void test_injectUDPCsumError(byte_t *UDPpacket) {

683 // Get header pointer

684 struct udphdr *UDPheader=(struct udphdr *) UDPpacket;

685

686 if(UDPheader!=NULL) {

687 // Change checksum, avoiding possible overflow situations

688 if(UDPheader ->check!=0xFF) {

689 UDPheader ->check=UDPheader ->check+1;

690 } else {

691 UDPheader ->check=0x00;

692 }

693 }

694 }

330

C programs for broadcast transmissions

Rawsock_lib/ipcsum_alth.h

1 #ifndef IPCSUM_ALTH_INCLUDED

2 #define IPCSUM_ALTH_INCLUDED

3

4 #include <linux/types.h>

5

6 // This is all taken from Linux kernel 4.19.1 (this is not original

work)

7 __sum16 ip_fast_csum(const void *iph, unsigned int ihl);

8

9 #endif

331

– Appendix A

Rawsock_lib/ipcsum_alth.c

1 #include ”ipcsum_alth.h”

2

3 // This is all taken from Linux kernel 4.19.1 (this is not original

work)

4 static inline unsigned short from64to16(unsigned long x)

5 {

6 /* Using extract instructions is a bit more efficient

7 than the original shift/bitmask version. */

8

9 union {

10 unsigned long ul;

11 unsigned int ui[2];

12 unsigned short us[4];

13 } in_v, tmp_v, out_v;

14

15 in_v.ul = x;

16 tmp_v.ul = (unsigned long) in_v.ui[0] + (unsigned long) in_v.ui[1];

17

18 /* Since the bits of tmp_v.sh[3] are going to always be zero,

19 we don’t have to bother to add that in. */

20 out_v.ul = (unsigned long) tmp_v.us[0] + (unsigned long) tmp_v.us[1]

21 + (unsigned long) tmp_v.us[2];

22

23 /* Similarly , out_v.us[2] is always zero for the final add. */

24 return out_v.us[0] + out_v.us[1];

25 }

26

27 static inline unsigned long do_csum(const unsigned char * buff, int

len) {

28 int odd, count;

29 unsigned long result = 0;

30

332

C programs for broadcast transmissions

31 if (len <= 0)

32 goto out;

33 odd = 1 & (unsigned long) buff;

34 if (odd) {

35 result = *buff << 8;

36 len--;

37 buff++;

38 }

39 count = len >> 1; /* nr of 16-bit words.. */

40 if (count) {

41 if (2 & (unsigned long) buff) {

42 result += *(unsigned short *) buff;

43 count--;

44 len -= 2;

45 buff += 2;

46 }

47 count >>= 1; /* nr of 32-bit words.. */

48 if (count) {

49 if (4 & (unsigned long) buff) {

50 result += *(unsigned int *) buff;

51 count--;

52 len -= 4;

53 buff += 4;

54 }

55 count >>= 1; /* nr of 64-bit words.. */

56 if (count) {

57 unsigned long carry = 0;

58 do {

59 unsigned long w = *(unsigned long *) buff;

60 count--;

61 buff += 8;

62 result += carry;

63 result += w;

64 carry = (w > result);

333

– Appendix A

65 } while (count);

66 result += carry;

67 result = (result & 0xffffffff) + (result >> 32);

68 }

69 if (len & 4) {

70 result += *(unsigned int *) buff;

71 buff += 4;

72 }

73 }

74 if (len & 2) {

75 result += *(unsigned short *) buff;

76 buff += 2;

77 }

78 }

79 if (len & 1)

80 result += *buff;

81 result = from64to16(result);

82 if (odd)

83 result = ((result >> 8) & 0xff) | ((result & 0xff) << 8);

84 out:

85 return result;

86 }

87

88 __sum16 ip_fast_csum(const void *iph, unsigned int ihl)

89 {

90 return (__sum16)~do_csum(iph,ihl*4);

91 }

334

C programs for broadcast transmissions

Sender program

broadcastSend.c

1 #include <sys/socket.h>

2 #include <sys/timerfd.h>

3 #include <sys/ioctl.h>

4 #include <linux/wireless.h>

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include <string.h>

8 #include <unistd.h>

9 #include <time.h>

10 #include <math.h>

11 #include <poll.h>

12 #include ”Rawsock_lib/rawsock.h”

13 #include <linux/if_packet.h>

14

15 #define MAX_LEN 1470 // Maximum allowed payload length

16

17 #define SEC_TO_NANOSEC 1000000000

18 #define INDEFINITE_BLOCK -1

19 #define NO_FLAGS 0

20 #define SRCPORT 46772

21 #define START_ID 11349

22 #define INCR_ID 0

23

24 // After how many packets should the program inject an IP checksum

error, in test mode?

25 #define ERRORFREQ 10

26

27 int main (int argc, char **argv) {

28 int sFd;

29 int broadPerm=1;

335

– Appendix A

30 int up;

31 int broadPort;

32 size_t len;

33 int clockFd;

34

35 // Timer management variables

36 struct itimerspec new_value;

37 long nanosec;

38 double d_sec;

39 double d_time;

40 struct pollfd timerMon;

41

42 // Junk variable (needed to clear the timer event with read())

43 unsigned long long junk;

44

45 // wlanLookup() variables , for interface name, source MAC address

and return value

46 char devname[IFNAMSIZ]={0}; // It will contain the used interface

name

47 macaddr_t srcmacaddr=prepareMacAddrT();

48 int ret_wlanl_val;

49

50 // Ethernet header and packet container

51 struct ether_header etherHeader;

52 byte_t *ethernetpacket;

53

54 // IP header

55 struct iphdr ipHeader;

56 // IP address (src+dest) structure

57 struct ipaddrs ipaddrs;

58 // IP packet container

59 byte_t *ippacket;

60 // id to be inserted in the id field on the IP header

61 unsigned int id=START_ID;

336

C programs for broadcast transmissions

62

63 // UDP header

64 struct udphdr udpHeader;

65 // UDP packet container

66 byte_t *udppacket;

67

68 // sockaddr_ll (device-independent physical-layer address)

69 struct sockaddr_ll addrll;

70 // Index of the interface which is used (and returned by wlanLookup

())

71 int ifindex;

72

73 // Final packet size

74 size_t finalpktsize;

75

76 // Check command line arguments

77 if(argc!=6) {

78 fprintf(stderr,”Error. Expected five parameters.\nCorrect usage:

<%s> <broadcast port> <broadcast IP> <userpriority (0-7)> <

time interval> <payload >.\n”,argv[0]);

79 exit(EXIT_FAILURE);

80 }

81

82 // Get payload length

83 len=strlen(argv[5]);

84 if(len>MAX_LEN) {

85 fprintf(stderr,”Error. Payload string has length %zu, which is

over the allowed maximum (%d)”,len,MAX_LEN);

86 exit(EXIT_FAILURE);

87 }

88

89 // Open socket

90 sFd=socket(AF_PACKET ,SOCK_RAW ,htons(ETH_P_ALL));

91 if(sFd==-1) {

337

– Appendix A

92 perror(”socket() error”);

93 exit(EXIT_FAILURE);

94 }

95

96 // Look for available WLAN interfaces (wlan0 should be returned in

the APU/ALIX boards)

97 ret_wlanl_val=wlanLookup(devname ,&ifindex,srcmacaddr ,0);

98 if(ret_wlanl_val <=0) {

99 fprintf(stderr,”wlanLookup() error.\n”);

100 rs_printerror(stderr,ret_wlanl_val);

101 close(sFd);

102 exit(EXIT_FAILURE);

103 }

104

105 // Check if wlanLookup() was able to properly write the source MAC

address (which is normally initialized to broadcast)

106 if(macAddrTypeGet(srcmacaddr)==MAC_BROADCAST) {

107 fprintf(stderr,”Could not retrieve source MAC address.\n”);

108 close(sFd);

109 exit(EXIT_FAILURE);

110 }

111

112 // Prepare sockaddr_ll structure

113 bzero(&addrll,sizeof(addrll));

114 addrll.sll_ifindex=ifindex;

115 addrll.sll_family=AF_PACKET;

116 addrll.sll_protocol=htons(ETH_P_ALL);

117

118 // Bind to the wireless interface

119 if(bind(sFd,(struct sockaddr *) &addrll,sizeof(addrll))<0) {

120 perror(”Cannot bind to interface: bind() error”);

121 close(sFd);

122 exit(EXIT_FAILURE);

123 }

338

C programs for broadcast transmissions

124

125 // This works only with AF_INET sockets, so it should not be used

here

126 // if(setsockopt(sFd,SOL_SOCKET ,SO_BINDTODEVICE ,devname,strlen(

devname))==-1) {

127 // perror(”setsockopt() for SO_BINDTODEVICE error”);

128 // close(sFd);

129 // exit(EXIT_FAILURE);

130 // }

131

132 // Print AC corresponding to selected UP (and handle possible wrong

UP)

133 up=atoi(argv[3]);

134 switch(up) {

135 case 0:

136 case 3:

137 fprintf(stdout,”AC_BE is selected , with UP: %d.\n”,up);

138 break;

139

140 case 1:

141 case 2:

142 fprintf(stdout,”AC_BK is selected , with UP: %d.\n”,up);

143 break;

144

145 case 4:

146 case 5:

147 fprintf(stdout,”AC_VI is selected , with UP: %d.\n”,up);

148 break;

149

150 case 6:

151 case 7:

152 fprintf(stdout,”AC_VO is selected , with UP: %d.\n”,up);

153 break;

154

339

– Appendix A

155 default:

156 fprintf(stderr,”Wrong UP specified. AC_BE will be used.\n”);

157 up=0;

158 break;

159 }

160

161 // Set user priority using socket layer options

162 if(setsockopt(sFd,SOL_SOCKET ,SO_PRIORITY ,&up,sizeof(up))!=0) {

163 perror(”setsockopt() for SO_PRIORITY error”);

164 close(sFd);

165 exit(EXIT_FAILURE);

166 }

167

168 // Set broadcast permission using socket layer options (is this

really needed here?)

169 if(setsockopt(sFd,SOL_SOCKET ,SO_BROADCAST ,(void *) &broadPerm ,sizeof

(broadPerm))!=0) {

170 perror(”setsockopt() for SO_BROADCAST error”);

171 close(sFd);

172 exit(EXIT_FAILURE);

173 }

174

175 broadPort=atoi(argv[1]); // Read port from command line

176

177 // Preparing headers (it can be done here since they won’t change

during the execution , in this specific case)

178 //unsigned char dstaddr[6]={0xD8,0x61,0x62,0x07,0x9D,0xA8}; <-

example of use with non broadcast transmission

179 //etherheadPopulate(ðerHeader , srcmacaddr , dstaddr, ETHERTYPE_IP)

; <- example of use with non broadcast transmission

180 etherheadPopulateB(ðerHeader , srcmacaddr , ETHERTYPE_IP);

181 IP4headPopulateB(&ipHeader , devname, 0, 0, BASIC_UDP_TTL ,

IPPROTO_UDP , FLAG_NOFRAG_MASK , &ipaddrs);

340

C programs for broadcast transmissions

182 //IP4headPopulate(&ipHeader , devname, ”10.10.6.103”, 0, 0,

BASIC_UDP_TTL , IPPROTO_UDP , FLAG_NOFRAG_MASK , &ipaddrs); <-

example of use with non broadcast transmission

183 UDPheadPopulate(&udpHeader , SRCPORT, broadPort);

184

185 // Allocating packet buffers

186 udppacket=malloc(UDP_PACKET_SIZE(argv[5]));

187 ippacket=malloc(IP_UDP_PACKET_SIZE(argv[5]));

188 ethernetpacket=malloc(ETH_IP_UDP_PACKET_SIZE(argv[5]));

189

190 // Create monotonic (increasing) timer

191 clockFd=timerfd_create(CLOCK_MONOTONIC ,NO_FLAGS);

192 if(clockFd==-1) {

193 perror(”timerfd_create() error”);

194 close(sFd);

195 exit(EXIT_FAILURE);

196 }

197

198 // Get time from command line and convert it to sec and nanosec

199 d_time=strtod(argv[4],NULL);

200 if(d_time==0) {

201 perror(”strtod() to get time interval returned an error”);

202 close(sFd);

203 exit(EXIT_FAILURE);

204 }

205

206 nanosec=SEC_TO_NANOSEC*modf(d_time ,&d_sec);

207 new_value.it_value.tv_nsec=nanosec;

208 new_value.it_value.tv_sec=(time_t)d_sec;

209 new_value.it_interval.tv_nsec=nanosec;

210 new_value.it_interval.tv_sec=(time_t)d_sec;

211 // time_t is long in my case, but being implementation dependant , I

decided to print just d_sec as double with no decimal digits

341

– Appendix A

212 fprintf(stdout,”Sending period set to %.0f second(s) and %.3f

microsecond(s).\n”,d_sec,nanosec/1000.0);

213

214 // Fill pollfd structure

215 timerMon.fd=clockFd;

216 timerMon.revents=0;

217 timerMon.events=POLLIN;

218

219 // Start timer

220 if(timerfd_settime(clockFd,NO_FLAGS ,&new_value ,NULL)==-1) {

221 perror(”timerfd_settime() error”);

222 close(sFd);

223 exit(EXIT_FAILURE);

224 } else {

225 fprintf(stdout,”Timer successfully started. Sending triggered.\n\n

”);

226 }

227

228 while(1) {

229 // poll waiting for events happening on the timer descriptor (i.e.

wait for timer expiration)

230 if(poll(&timerMon ,1,INDEFINITE_BLOCK)>0) {

231 // ”Clear the event” by performing a read() on a junk variable

232 read(clockFd ,&junk,sizeof(junk));

233

234 // Prepare datagram

235 IP4headAddID(&ipHeader ,(unsigned short) id);

236 id+=INCR_ID;

237 UDPencapsulate(udppacket ,&udpHeader ,argv[5],strlen(argv[5]),

ipaddrs);

238 // ’IP4headAddTotLen’ may also be skipped since IP4Encapsulate

already takes care of filling the length field

239 // IP4headAddTotLen(&ipHeader, IP_UDP_PACKET_SIZE(argv[5]));

342

C programs for broadcast transmissions

240 IP4Encapsulate(ippacket, &ipHeader, udppacket , UDP_PACKET_SIZE(

argv[5]));

241 finalpktsize=etherEncapsulate(ethernetpacket , ðerHeader ,

ippacket, IP_UDP_PACKET_SIZE(argv[5]));

242

243 // Send datagram

244 if(sendto(sFd,ethernetpacket ,finalpktsize ,NO_FLAGS ,(struct

sockaddr *)&addrll,sizeof(struct sockaddr_ll))!=finalpktsize)

{

245 perror(”sendto() for sending broadcasted data failed”);

246 fprintf(stderr,”The program will be terminated now”);

247 break;

248 }

249 }

250 }

251

252 freeMacAddrT(srcmacaddr);

253 free(udppacket);

254 free(ethernetpacket);

255 free(ippacket);

256 close(sFd);

257 close(clockFd);

258

259 return 0;

260 }

343

– Appendix A

Receiver program

broadcastReceive.c

1 #include <sys/socket.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <unistd.h>

6 #include <linux/wireless.h>

7 #include ”Rawsock_lib/rawsock.h”

8 #include <linux/if_packet.h>

9

10 #define NO_FLAGS 0

11

12 int main (int argc, char **argv) {

13 int sFd;

14 ssize_t rcv_bytes;

15 byte_t packet[ETHERMTU]; // Packet buffer with size = Ethernet MTU

16

17 struct ether_header* etherHeader=NULL;

18 struct iphdr *IPheader=NULL;

19 struct udphdr *udpHeader=NULL;

20 byte_t *payload=NULL;

21

22 int ret_wlanl_val;

23 char devname[IFNAMSIZ]={0};

24 int ifindex;

25 struct sockaddr_ll addrll;

26

27 size_t payloadsize;

28

29 socklen_t AddrLen=sizeof(struct sockaddr);

30

344

C programs for broadcast transmissions

31 // Already get the pointers to the headers, given the buffer which

will contain the packet

32 payload=UDPgetpacketpointers(packet ,ðerHeader ,&IPheader ,&

udpHeader);

33

34 // Look for and bind to wireless interface , other than creating the

socket

35 ret_wlanl_val=wlanLookup(devname ,&ifindex,NULL,0);

36 if(ret_wlanl_val <=0) {

37 fprintf(stderr,”wlanLookup() error.\n”);

38 rs_printerror(stderr,ret_wlanl_val);

39 exit(EXIT_FAILURE);

40 }

41

42 sFd=socket(AF_PACKET , SOCK_RAW , htons(ETH_P_ALL));

43 if(sFd==-1) {

44 perror(”Cannot create socket: socket() error”);

45 exit(EXIT_FAILURE);

46 }

47

48 fprintf(stdout,”Using interface: %s - index: 0x%02x - number of VIFs

: %d\n”,devname,ifindex,ret_wlanl_val);

49

50 // Prepare sockaddr_ll structure

51 bzero(&addrll,sizeof(addrll));

52 addrll.sll_ifindex=ifindex;

53 addrll.sll_family=AF_PACKET;

54 addrll.sll_protocol=htons(ETH_P_ALL);

55

56 // Bind to the wireless interface

57 if(bind(sFd,(struct sockaddr *) &addrll,sizeof(addrll))<0) {

58 perror(”Cannot bind to interface: bind() error”);

59 close(sFd);

60 exit(EXIT_FAILURE);

345

– Appendix A

61 }

62

63 // This works only with AF_INET sockets, so it should not be used

here

64 // if(setsockopt(sFd,SOL_SOCKET ,SO_BINDTODEVICE ,devname,strlen(

devname))==-1) {

65 // perror(”setsockopt() for SO_BINDTODEVICE error”);

66 // close(sFd);

67 // exit(EXIT_FAILURE);

68 // }

69

70 fprintf(stdout,”Ready to receive datagrams.\n\n”);

71 while(1) {

72 // Receive datagram (blocking)

73 rcv_bytes = recvfrom(sFd,packet,ETHERMTU ,NO_FLAGS ,(struct sockaddr

*)&addrll ,&AddrLen);

74

75 // Go on only if it is a datagram of interest (in our case if it

is UDP)

76 if (ntohs(etherHeader ->ether_type)!=ETHERTYPE_IP) {

77 continue;

78 }

79 if (IPheader ->protocol!=IPPROTO_UDP) {

80 continue;

81 }

82

83 // Validate checksum (combined mode: IP+UDP): if it is wrong,

discard packet

84 payloadsize=UDPgetpayloadsize(udpHeader);

85 if(!validateEthCsum(packet, udpHeader ->check, &(IPheader->check),

CSUM_UDPIP , (void *) &payloadsize)) {

86 fprintf(stderr,”Wrong checksum! Packet will be discarded.\n”);

87 continue;

88 }

346

C programs for broadcast transmissions

89

90 if(rcv_bytes==-1){

91 perror(”An error occurred in receive last message”);

92 fprintf(stderr,”The execution will be terminated now.\n”);

93 break;

94 }

95

96 // Print payload and source IP address

97 fprintf(stdout,”Received a new packet from %s\n”,inet_ntoa(*(

struct in_addr*)&IPheader->saddr));

98 display_packetc(”Received a new packet with payload:”, payload,

payloadsize);

99 }

100

101 close(sFd);

102

103 return 0;

104 }

347

– Appendix A

Receiver program (using AF_INET socket)

This receiver program was written to validate the raw socket sender program when

using UDP.

It is using a standard AF_INET UDP datagram socket and it eventually supports a

“sequential” mode that, when sending packets containing sequential numbers as payload,

is able to provide, with a very basic mechanism, in which there is surely a lot of room for

improvement, a packet loss count.

testprogram_broadcastReceive.c

1 #include <sys/socket.h>

2 #include <arpa/inet.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <time.h>

6 #include <string.h>

7 #include <unistd.h>

8 #include <errno.h>

9

10 #define MAX_LEN 1470

11 #define NO_FLAGS 0

12

13 int main (int argc, char **argv) {

14 int sFd;

15 int broadPort=3000; // Set to 3000 by default

16 struct sockaddr_in servAddr; // It contains properties to specify

how the socket shall work

17 ssize_t rcv_bytes;

18 struct sockaddr_in srcAddr;

19 socklen_t srcAddrLen=sizeof(srcAddr);

20 char payload[MAX_LEN+1];

21 unsigned int sequential=0;

22 int curr_no,prev_no;

348

C programs for broadcast transmissions

23 unsigned int lostCount=0;

24 unsigned int report_interval=0;

25

26 if(argc!=2) {

27 if(argc!=4 || strcmp(argv[2],”-seq”)!=0) {

28 fprintf(stderr,”Error. Expected one mandatory (and two

optional) parameter.\nCorrect usage: <%s> <server port>

[-seq <report interval >].\n”,argv[0]);

29 exit(EXIT_FAILURE);

30 } else {

31 sequential=1;

32 fprintf(stdout,”Using sequential mode.\n”);

33 }

34 }

35

36 if(sequential) {

37 report_interval=atoi(argv[3]);

38 if(report_interval <1) {

39 fprintf(stderr,”Invalid report interval (in # of received frames

) specified.\n”);

40 exit(EXIT_FAILURE);

41 }

42 }

43

44 broadPort=atoi(argv[1]); // Read port from command line

45

46 // AF_INET (IPv4), SOCK_DGRAM (UDP for broadcast), 0 (socket is not

raw)

47 sFd=socket(AF_INET,SOCK_DGRAM ,0);

48 if(sFd==-1) {

49 perror(”Cannot create socket: socket() error”);

50 exit(EXIT_FAILURE);

51 }

52

349

– Appendix A

53 bzero(&servAddr ,sizeof(servAddr)); // Prepare servAddr struct (it

helps initializing everything to 0 and catch possibile bugs)

54 servAddr.sin_family=AF_INET; // Set address family (AF_INET for IPv4

, AF_INET6 for IPv6)

55 servAddr.sin_addr.s_addr=htons(INADDR_ANY); // Listen to any address

56 servAddr.sin_port=htons(broadPort); // Convert port number to

network byte order with htons (MSB first)

57

58 // Bind socket to port (accept connection based on properties

defined in the struct)

59 if(bind(sFd,(struct sockaddr *)&servAddr,sizeof(servAddr))!=0) {

60 perror(”Cannot bind socket: bind() error”);

61 close(sFd);

62 exit(EXIT_FAILURE);

63 }

64

65 fprintf(stdout,”Ready to received datagrams on port %d.\n\n”,

broadPort);

66 while(1) {

67 // Use recvfrom to received datagrams on the specified port

68 rcv_bytes=recvfrom(sFd,payload,MAX_LEN,NO_FLAGS ,(struct sockaddr

*)&srcAddr ,&srcAddrLen);

69 if(rcv_bytes==-1){

70 perror(”An error occurred in receive last message”);

71 fprintf(stderr,”The execution will be terminated now.\n”);

72 break;

73 }

74 // Append final ’\0’ to convert the payload to a proper string

75 payload[rcv_bytes]=’\0’;

76 // Sequential mode: do not print the message

77 if(sequential) {

78 // Check for missing sequential packets

79 curr_no=atoi(payload);

80 if(curr_no!=0 && curr_no-prev_no >1) {

350

C programs for broadcast transmissions

81 lostCount+=(curr_no-prev_no)-1;

82 }

83 if(curr_no%report_interval==0) {

84 fprintf(stdout,”%u/%d lost packets.\n”,lostCount ,

report_interval);

85 lostCount=0;

86 }

87 prev_no=curr_no;

88 } else {

89 fprintf(stdout,”Rx %d B from %s:%d: %s\n”,(int)rcv_bytes ,

inet_ntoa(srcAddr.sin_addr),srcAddr.sin_port ,payload);

90 }

91 }

92

93 close(sFd);

94

95 return 0;

96 }

351

– Appendix A

Compiler commands

In order to compile the sender and receiver programs, after putting our “rawsock”

library inside “./Rawsock_lib”, we used the following commands:

x86_64-openwrt-linux-musl-gcc -I ./Rawsock_lib/ -o broadcastSend -

static broadcastSend.c Rawsock_lib/rawsock.h Rawsock_lib/rawsock.c

Rawsock_lib/ipcsum_alth.h Rawsock_lib/ipcsum_alth.c

and

x86_64-openwrt-linux-musl-gcc -I ./Rawsock_lib/ -o broadcastReceive -

static broadcastReceive.c Rawsock_lib/rawsock.h Rawsock_lib/rawsock

.c Rawsock_lib/ipcsum_alth.h Rawsock_lib/ipcsum_alth.c

These are the commands for the APU boards, for the ALIX ones the only modification

should be in the name of the gcc compiler.

352

Appendix B

OpenWrt 18.06.1 patches

001-iperf-MAC_AC-patch.patch

In package/network/utils/iperf (custom)

1 --- a/include/Settings.hpp

2 +++ b/include/Settings.hpp

3 @@ -135,6 +135,7 @@ typedef struct thread_Settings {

4 // int’s

5 int mThreads; // -P

6 int mTOS; // -S

7 + int mMACUP; // -A

8 #if WIN32

9 SOCKET mSock;

10 #else

11 --- a/include/version.h

12 +++ b/include/version.h

13 @@ -1,4 +1,4 @@

14 -#define IPERF_VERSION ”2.0.12”

15 +#define IPERF_VERSION ”2.0.12 OpenWrt ITS patch”

16 #define IPERF_VERSION_DATE ”25 June 2018”

17 #define IPERF_VERSION_MAJORHEX 0x00020000

18 #define IPERF_VERSION_MINORHEX 0x000C0000

19 --- a/src/Locale.c

353

– Appendix B

20 +++ b/src/Locale.c

21 @@ -103,6 +103,7 @@ Server specific:\n\

22 -s, --server run in server mode\n\

23 -t, --time # time in seconds to listen for new

connections as well as to receive traffic (default not set)\n\

24 --udp-histogram #,# enable UDP latency histogram(s) with bin

width and count, e.g. 1,1000=1(ms),1000(bins)\n\

25 + -A, --accesscategory <AC> Forces a certain EDCA MAC access category

to be used (BK, BE, VI, VO)\n\

26 -B, --bind <ip>[%<dev>] bind to multicast address and optional

device\n\

27 -H, --ssm-host <ip> set the SSM source, use with -B for (S,G)

\n\

28 -U, --single_udp run in single threaded UDP mode\n\

29 @@ -125,6 +126,7 @@ Client specific:\n\

30 ” -n, --num #[kmgKMG] number of bytes to transmit (instead

of -t)\n\

31 -r, --tradeoff Do a bidirectional test individually\n\

32 -t, --time # time in seconds to transmit for (default

10 secs)\n\

33 + -A, --accesscategory <AC> Forces a certain EDCA MAC access category

to be used (BK, BE, VI, VO)\n\

34 -B, --bind [<ip> | <ip:port>] bind ip (and optional port) from

which to source traffic\n\

35 -F, --fileinput <name> input the data to be transmitted from a

file\n\

36 -I, --stdin input the data to be transmitted from

stdin\n\

37 --- a/src/PerfSocket.cpp

38 +++ b/src/PerfSocket.cpp

39 @@ -155,6 +155,15 @@ void SetSocketOptions(thread_Settings *

40 }

41 #endif

42

354

OpenWrt 18.06.1 patches

43 + // set MAC AC (access category) field, if specified only (i.e.

if mMACUP != -1)

44 + // AC is set starting from user priorities (UP)

45 + if (inSettings ->mMACUP >= 0) {

46 + int up = inSettings ->mMACUP;

47 + Socklen_t len = sizeof(up);

48 + int rc = setsockopt(inSettings ->mSock, SOL_SOCKET , SO_PRIORITY , (

char*) &up, len);

49 + WARN_errno(rc == SOCKET_ERROR , ”setsockopt SO_PRIORITY”);

50 + }

51 +

52 if (!isUDP(inSettings)) {

53 // set the TCP maximum segment size

54 setsock_tcp_mss(inSettings ->mSock, inSettings ->mMSS);

55 --- a/src/Settings.cpp

56 +++ b/src/Settings.cpp

57 @@ -131,6 +131,7 @@ const struct option long_options[] =

58 {”realtime”, no_argument , NULL, ’z’},

59

60 // more esoteric options

61 +{”accesscategory”, required_argument , NULL, ’A’},

62 {”bind”, required_argument , NULL, ’B’},

63 {”compatibility”, no_argument , NULL, ’C’},

64 {”daemon”, no_argument , NULL, ’D’},

65 @@ -198,6 +199,7 @@ const struct option env_options[] =

66 {”IPERF_REPORTSTYLE”,required_argument , NULL, ’y’},

67

68 // more esoteric options

69 +{”IPERF_MACAC”, required_argument , NULL, ’A’},

70 {”IPERF_BIND”, required_argument , NULL, ’B’},

71 {”IPERF_COMPAT”, no_argument , NULL, ’C’},

72 {”IPERF_DAEMON”, no_argument , NULL, ’D’},

73 @@ -218,7 +220,8 @@ const struct option env_options[] =

74

355

– Appendix B

75 #define SHORT_OPTIONS()

76

77 -const char short_options[] = ”1b:c:def:hi:l:mn:o:p:rst:uvw:x:y:zB:CDF

:H:IL:M:NP:RS:T:UVWXZ:”;

78 +// Edited to add the A: (A + 1 argument) short option

79 +const char short_options[] = ”1b:c:def:hi:l:mn:o:p:rst:uvw:x:y:zA:B:

CDF:IL:M:NP:RS:T:UVWZ:”;

80

81 /* --

82 * defaults

83 @@ -279,6 +282,7 @@ void Settings_Initialize(thread_Setting

84 //main->mThreads = 0; // -P,

85 //main->mRemoveService = false; // -R,

86 //main->mTOS = 0; // -S, ie. don’t set type

of service

87 + main->mMACUP = -1; // -A (set to an invalid

number as default -> with -1 no setsockopt will be called for AC)

88 main->mTTL = -1; // -T, link-local TTL

89 //main->mDomain = kMode_IPv4; // -V,

90 //main->mSuggestWin = false; // -W, Suggest the window

size.

91 @@ -692,6 +696,24 @@ void Settings_Interpret(char option, co

92 mExtSettings ->mTOS = strtol(optarg, NULL, 0);

93 break;

94

95 + case ’A’: // 802.11p/802.11e MAC layer access categories

96 + // Mapping between UP (0 to 7) and AC (BK to VO)

97 + if(strcmp(optarg ,”BK”) == 0) {

98 + mExtSettings ->mMACUP=1; // UP=1 (2) is AC_BK

99 + } else if(strcmp(optarg ,”BE”) == 0) {

100 + mExtSettings ->mMACUP=0; // UP=0 (3) is AC_BE

101 + } else if(strcmp(optarg ,”VI”) == 0) {

102 + mExtSettings ->mMACUP=4; // UP=4 (5) is AC_VI

103 + } else if(strcmp(optarg ,”VO”) == 0) {

356

OpenWrt 18.06.1 patches

104 + mExtSettings ->mMACUP=6; // UP=6 (7) is AC_VO

105 + } else {

106 + // Leave to default (-1), i.e. no AC is set to socket

, and print error

107 + fprintf(stderr, ”Invalid AC specified with -A\nValid

ones are: BK, BE, VI, VO\nNo AC will be set\n”);

108 + }

109 +

110 + //mExtSettings ->mMACUP = strtol(optarg, NULL, 0);

111 + break;

112 +

113 case ’T’: // time-to-live for both unicast and multicast

114 mExtSettings ->mTTL = atoi(optarg);

115 break;

357

– Appendix B

202-restore_ocb.patch

In package/network/utils/iw (custom)

1 --- a/Makefile

2 +++ b/Makefile

3 @@ -25,7 +25,7 @@ OBJS-$(HWSIM) += hwsim.o

4

5 OBJS += $(OBJS-y) $(OBJS-Y)

6

7 -OBJS_DISABLED = ocb offch cqm wowlan coalesce roc p2p ap

8 +OBJS_DISABLED = offch cqm wowlan coalesce roc p2p ap

9 OBJS:=$(filter-out $(patsubst %,%.o,$(OBJS_DISABLED)),$(OBJS))

10 ALL = iw

358

OpenWrt 18.06.1 patches

600-DE-openC2X-regdb.patch

In package/firmware/wireless-regdb (custom)

1 --- a/db.txt

2 +++ b/db.txt

3 @@ -368,6 +368,8 @@ country DE: DFS-ETSI

4 (5470 - 5725 @ 160), (500 mW), DFS

5 # short range devices (ETSI EN 300 440-1)

6 (5725 - 5875 @ 80), (25 mW)

7 + # ITS (802.11p)

8 + (5850 - 5925 @ 20), (33)

9 # 60 GHz band channels 1-4 (ETSI EN 302 567)

10 (57000 - 66000 @ 2160), (40)

359

– Appendix B

601-IT-regdb.patch

In package/firmware/wireless-regdb (custom)

1 --- a/db.txt

2 +++ b/db.txt

3 @@ -616,6 +616,8 @@ country IT: DFS-ETSI

4 (5170 - 5250 @ 80), (20), AUTO-BW

5 (5250 - 5330 @ 80), (20), DFS, AUTO-BW

6 (5490 - 5710 @ 160), (27), DFS

7 + # ITS (802.11p)

8 + (5842 - 5932 @ 20), (27), DFS

9 # 60 GHz band channels 1-4, ref: Etsi En 302 567

10 (57000 - 66000 @ 2160), (40)

360

OpenWrt 18.06.1 patches

998-ath5k_ocb.patch

In package/kernel/mac80211 (OpenC2X - CCS Labs)

1 --- a/drivers/net/wireless/ath/ath5k/base.c

2 +++ b/drivers/net/wireless/ath/ath5k/base.c

3 @@ -287,6 +287,9 @@ static bool ath5k_is_standard_channel(sh

4 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||

5 /* 802.11j 5.030-5.080 GHz (20MHz) */

6 (chan == 8 || chan == 12 || chan == 16) ||

7 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

8 + /* 802.11p (10MHz) */

9 + (chan == 172) || (chan == 174) || (chan == 176) || (chan == 178)

|| (chan == 180) || (chan == 182) || (chan == 184) ||

10 /* 802.11j 4.9GHz (20MHz) */

11 (chan == 184 || chan == 188 || chan == 192 || chan == 196));

12 }

13 @@ -1068,7 +1071,14 @@ ath5k_beaconq_config(struct ath5k_hw *ah

14 qi.tqi_aifs = 0;

15 qi.tqi_cw_min = 0;

16 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;

17 - }

18 + } else if (ah->opmode == NL80211_IFTYPE_OCB) {

19 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

20 + /*

21 + * OCB mode; backoff between 0 and (2 * cw_min).

22 + */

23 + qi.tqi_aifs = 0;

24 + qi.tqi_cw_min = 0;

25 + qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN; }

26

27 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON ,

361

– Appendix B

28 ”beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n”,

29 @@ -1436,7 +1446,8 @@ ath5k_receive_frame(struct ath5k_hw *ah,

30 ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg , rs->rs_rssi);

31

32 /* check beacons in IBSS mode */

33 - if (ah->opmode == NL80211_IFTYPE_ADHOC)

34 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

35 + if (ah->opmode == NL80211_IFTYPE_ADHOC || ah->opmode ==

NL80211_IFTYPE_OCB)

36 ath5k_check_ibss_tsf(ah, skb, rxs);

37 }

38

39 @@ -1837,7 +1848,8 @@ ath5k_beacon_setup(struct ath5k_hw *ah,

40 antenna = ah->ah_tx_ant;

41

42 flags = AR5K_TXDESC_NOACK;

43 - if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {

44 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

45 + if ((ah->opmode == NL80211_IFTYPE_ADHOC || ah->opmode ==

NL80211_IFTYPE_OCB) && ath5k_hw_hasveol(ah)) {

46 ds->ds_link = bf->daddr; /* self-linked */

47 flags |= AR5K_TXDESC_VEOL;

48 } else

49 @@ -2167,7 +2179,8 @@ ath5k_beacon_config(struct ath5k_hw *ah)

50

51 ah->imask |= AR5K_INT_SWBA;

52

53 - if (ah->opmode == NL80211_IFTYPE_ADHOC) {

54 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

55 + if (ah->opmode == NL80211_IFTYPE_ADHOC || ah->opmode ==

NL80211_IFTYPE_OCB) {

362

OpenWrt 18.06.1 patches

56 if (ath5k_hw_hasveol(ah))

57 ath5k_beacon_send(ah);

58 } else

59 @@ -2193,7 +2206,8 @@ static void ath5k_tasklet_beacon(unsigne

60 * transmission time) in order to detect whether

61 * automatic TSF updates happened.

62 */

63 - if (ah->opmode == NL80211_IFTYPE_ADHOC) {

64 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

65 + if (ah->opmode == NL80211_IFTYPE_ADHOC || ah->opmode ==

NL80211_IFTYPE_OCB) {

66 /* XXX: only if VEOL supported */

67 u64 tsf = ath5k_hw_get_tsf64(ah);

68 ah->nexttbtt += ah->bintval;

69 @@ -2552,7 +2566,8 @@ ath5k_init_ah(struct ath5k_hw *ah, const

70 BIT(NL80211_IFTYPE_AP) |

71 BIT(NL80211_IFTYPE_STATION) |

72 BIT(NL80211_IFTYPE_ADHOC) |

73 - BIT(NL80211_IFTYPE_MESH_POINT);

74 + BIT(NL80211_IFTYPE_MESH_POINT) |

75 + BIT(NL80211_IFTYPE_OCB); /* OCB patch by Florian Klingler <

klingler@ccs -labs.org>, date Thu Mar 30 16:32:13 2017 +0200 */

76

77 hw->wiphy->iface_combinations = &if_comb;

78 hw->wiphy->n_iface_combinations = 1;

79 --- a/drivers/net/wireless/ath/ath5k/mac80211-ops.c

80 +++ b/drivers/net/wireless/ath/ath5k/mac80211-ops.c

81 @@ -80,7 +80,9 @@ ath5k_add_interface(struct ieee80211_hw

82 mutex_lock(&ah->lock);

83

84 if ((vif->type == NL80211_IFTYPE_AP ||

85 - vif->type == NL80211_IFTYPE_ADHOC)

86 + vif->type == NL80211_IFTYPE_ADHOC ||

363

– Appendix B

87 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date

Thu Mar 30 16:32:13 2017 +0200 */

88 + vif->type == NL80211_IFTYPE_OCB)

89 && (ah->num_ap_vifs + ah->num_adhoc_vifs) >= ATH_BCBUF) {

90 ret = -ELNRNG;

91 goto end;

92 @@ -98,6 +100,7 @@ ath5k_add_interface(struct ieee80211_hw

93 case NL80211_IFTYPE_STATION:

94 case NL80211_IFTYPE_ADHOC:

95 case NL80211_IFTYPE_MESH_POINT:

96 + case NL80211_IFTYPE_OCB: /* OCB patch by Florian Klingler <

klingler@ccs -labs.org>, date Thu Mar 30 16:32:13 2017 +0200 */

97 avf->opmode = vif->type;

98 break;

99 default:

100 @@ -111,7 +114,9 @@ ath5k_add_interface(struct ieee80211_hw

101 /* Assign the vap/adhoc to a beacon xmit slot. */

102 if ((avf->opmode == NL80211_IFTYPE_AP) ||

103 (avf->opmode == NL80211_IFTYPE_ADHOC) ||

104 - (avf->opmode == NL80211_IFTYPE_MESH_POINT)) {

105 + (avf->opmode == NL80211_IFTYPE_MESH_POINT) ||

106 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date

Thu Mar 30 16:32:13 2017 +0200 */

107 + (avf->opmode == NL80211_IFTYPE_OCB)) {

108 int slot;

109

110 WARN_ON(list_empty(&ah->bcbuf));

111 @@ -134,6 +139,8 @@ ath5k_add_interface(struct ieee80211_hw

112 ah->num_adhoc_vifs++;

113 else if (avf->opmode == NL80211_IFTYPE_MESH_POINT)

114 ah->num_mesh_vifs++;

115 + else if (avf->opmode == NL80211_IFTYPE_OCB)

116 + ah->num_mesh_vifs++; /* OCB patch by Florian Klingler <

klingler@ccs -labs.org>, date Thu Mar 30 16:32:13 2017 +0200 */

364

OpenWrt 18.06.1 patches

117 }

118

119 /* Any MAC address is fine, all others are included through the

120 @@ -177,6 +184,8 @@ ath5k_remove_interface(struct ieee80211_

121 ah->num_adhoc_vifs --;

122 else if (avf->opmode == NL80211_IFTYPE_MESH_POINT)

123 ah->num_mesh_vifs --;

124 + else if (avf->opmode == NL80211_IFTYPE_OCB)

125 + ah->num_mesh_vifs --; /* OCB patch by Florian Klingler <

klingler@ccs -labs.org>, date Thu Mar 30 16:32:13 2017 +0200 */

126

127 ath5k_update_bssid_mask_and_opmode(ah, NULL);

128 mutex_unlock(&ah->lock);

129 @@ -426,6 +435,11 @@ ath5k_configure_filter(struct ieee80211_

130 rfilt |= AR5K_RX_FILTER_PROBEREQ |

131 AR5K_RX_FILTER_BEACON;

132 break;

133 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

134 + case NL80211_IFTYPE_OCB:

135 + rfilt |= AR5K_RX_FILTER_PROBEREQ |

136 + AR5K_RX_FILTER_BEACON;

137 + break;

138 case NL80211_IFTYPE_STATION:

139 if (ah->assoc)

140 rfilt |= AR5K_RX_FILTER_BEACON;

141 @@ -633,7 +647,8 @@ ath5k_reset_tsf(struct ieee80211_hw *hw,

142 * in IBSS mode we need to update the beacon timers too.

143 * this will also reset the TSF if we call it with 0

144 */

145 - if (ah->opmode == NL80211_IFTYPE_ADHOC)

146 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

365

– Appendix B

147 + if (ah->opmode == NL80211_IFTYPE_ADHOC || ah->opmode ==

NL80211_IFTYPE_OCB)

148 ath5k_beacon_update_timers(ah, 0);

149 else

150 ath5k_hw_reset_tsf(ah);

151 --- a/drivers/net/wireless/ath/ath5k/pcu.c

152 +++ b/drivers/net/wireless/ath/ath5k/pcu.c

153 @@ -670,6 +670,9 @@ ath5k_hw_init_beacon_timers(struct ath5k

154 break;

155 case NL80211_IFTYPE_ADHOC:

156 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG , AR5K_TXCFG_ADHOC_BCN_ATIM);

157 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

158 + case NL80211_IFTYPE_OCB:

159 + AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG , AR5K_TXCFG_ADHOC_BCN_ATIM);

160 default:

161 /* On non-STA modes timer1 is used as next DMA

162 * beacon alert (DBA) timer and timer2 as next

163 @@ -893,6 +896,16 @@ ath5k_hw_set_opmode(struct ath5k_hw *ah,

164 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;

165 beacon_reg |= AR5K_BCR_ADHOC;

166 if (ah->ah_version == AR5K_AR5210)

167 + pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;

168 + else

169 + AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);

170 + break;

171 +

172 + /* OCB patch by Florian Klingler <klingler@ccs -labs.org>, date Thu

Mar 30 16:32:13 2017 +0200 */

173 + case NL80211_IFTYPE_OCB:

174 + pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;

175 + beacon_reg |= AR5K_BCR_ADHOC;

176 + if (ah->ah_version == AR5K_AR5210)

177 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;

366

OpenWrt 18.06.1 patches

178 else

179 AR5K_REG_ENABLE_BITS(ah, AR5K_CFG , AR5K_CFG_IBSS);

367

– Appendix B

998-ath9k_allow_11p.patch

In package/kernel/mac80211 (OpenC2X - CCS Labs)

1 --- a/drivers/net/wireless/ath/ath9k/common-init.c

2 +++ b/drivers/net/wireless/ath/ath9k/common-init.c

3 @@ -86,6 +86,28 @@ static const struct ieee80211_channel at

4 CHAN5G(5785, 35), /* Channel 157 */

5 CHAN5G(5805, 36), /* Channel 161 */

6 CHAN5G(5825, 37), /* Channel 165 */

7 +

8 + /* 802.11p patch by Florian Klingler <klingler@ccs -labs.org>, date

Wed Mar 15 17:50:09 2017 +0100 */

9 + /* ITS frequencies */

10 + CHAN5G(5850, 38), /* Channel 170 */

11 + /* ITA-G5B */

12 + CHAN5G(5855, 39), /* Channel 171 */

13 + CHAN5G(5860, 40), /* Channel 172 */

14 + CHAN5G(5865, 41), /* Channel 173 */

15 + CHAN5G(5870, 42), /* Channel 174 */

16 + /* ITS-G5A */

17 + CHAN5G(5875, 43), /* Channel 175 */

18 + CHAN5G(5880, 44), /* Channel 176 */

19 + CHAN5G(5885, 45), /* Channel 177 */

20 + CHAN5G(5890, 46), /* Channel 178 - IEEE CCH */

21 + CHAN5G(5895, 47), /* Channel 179 */

22 + CHAN5G(5900, 48), /* Channel 180 */

23 + CHAN5G(5905, 49), /* Channel 181 */

24 + /* ITS-G5D */

25 + CHAN5G(5910, 50), /* Channel 182 */

26 + CHAN5G(5915, 51), /* Channel 183 */

27 + CHAN5G(5920, 52), /* Channel 184 */

28 + CHAN5G(5925, 53), /* Channel 185 */

29 };

368

OpenWrt 18.06.1 patches

30

31 /* Atheros hardware rate code addition for short premble */

32 --- a/drivers/net/wireless/ath/ath9k/hw.h

33 +++ b/drivers/net/wireless/ath/ath9k/hw.h

34 @@ -74,7 +74,8 @@

35

36 #define ATH9K_RSSI_BAD -128

37

38 -#define ATH9K_NUM_CHANNELS 38

39 +/* 802.11p patch by Florian Klingler <klingler@ccs -labs.org>, date

Wed Mar 15 17:50:09 2017 +0100 */

40 +#define ATH9K_NUM_CHANNELS 54 /* Increased from 38 to 54, adding all

the ITS channels */

41

42 /* Register read/write primitives */

43 #define REG_WRITE(_ah, _reg, _val) \

44 --- a/drivers/net/wireless/ath/regd.c

45 +++ b/drivers/net/wireless/ath/regd.c

46 @@ -43,13 +43,15 @@ static struct reg_dmn_pair_mapping *ath_

47 NL80211_RRF_NO_IR | \

48 NL80211_RRF_NO_OFDM)

49

50 +/* Register read/write primitives */

51 +/* 802.11p patch by Florian Klingler <klingler@ccs -labs.org>, date

Wed Mar 15 17:50:09 2017 +0100 */

52 /* We allow IBSS on these on a case by case basis by regulatory

domain */

53 #define ATH9K_5GHZ_5150_5350 REG_RULE(5150-10, 5240+10, 80, 0, 30, 0)

,\

54 REG_RULE(5260-10, 5350+10, 80, 0, 30,\

55 NL80211_RRF_NO_IR)

56 -#define ATH9K_5GHZ_5470_5850 REG_RULE(5470-10, 5850+10, 80, 0, 30,\

57 +#define ATH9K_5GHZ_5470_5925 REG_RULE(5470-10, 5925+10, 80, 0, 30,\

58 NL80211_RRF_NO_IR)

369

– Appendix B

59 -#define ATH9K_5GHZ_5725_5850 REG_RULE(5725-10, 5850+10, 80, 0, 30,\

60 +#define ATH9K_5GHZ_5725_5925 REG_RULE(5725-10, 5925+10, 80, 0, 30,\

61 NL80211_RRF_NO_IR)

62

63 #define ATH9K_2GHZ_ALL ATH9K_2GHZ_CH01_11 , \

64 @@ -57,11 +59,11 @@ static struct reg_dmn_pair_mapping *ath_

65 ATH9K_2GHZ_CH14

66

67 #define ATH9K_5GHZ_ALL ATH9K_5GHZ_5150_5350 , \

68 - ATH9K_5GHZ_5470_5850

69 + ATH9K_5GHZ_5470_5925

70

71 /* This one skips what we call ”mid band” */

72 #define ATH9K_5GHZ_NO_MIDBAND ATH9K_5GHZ_5150_5350 , \

73 - ATH9K_5GHZ_5725_5850

74 + ATH9K_5GHZ_5725_5925

75

76 #define REGD_RULES(...) \

77 .reg_rules = { __VA_ARGS__ }, \

370

OpenWrt 18.06.1 patches

999-Enable-queueing-in-all-4-ACs-BE-BK-VI-VO.patch

In package/kernel/mac80211 (OpenC2X - CCS Labs)

1 --- a/net/mac80211/wme.c

2 +++ b/net/mac80211/wme.c

3 @@ -215,9 +215,13 @@ u16 ieee80211_select_queue(struct ieee80

4

5 /* use the data classifier to determine what 802.1d tag the

6 * data frame has */

7 - qos_map = rcu_dereference(sdata->qos_map);

8 - skb->priority = cfg80211_classify8021d(skb, qos_map ?

9 - &qos_map->qos_map : NULL);

10 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:20:08 +0200 */

11 + // Commenting this out seems to disable, however, the IP ToS bit

setting the packet priority

12 +

13 + // Quick workaround to enable queueing in different AC (BE, BK, VO,

VI)

14 + // qos_map = rcu_dereference(sdata->qos_map);

15 + // skb->priority = cfg80211_classify8021d(skb, qos_map ?

16 + // &qos_map->qos_map : NULL);

17

18 downgrade:

19 ret = ieee80211_downgrade_queue(sdata, sta, skb);

371

– Appendix B

999-Get-hw-queue-pending-stats-from-ath9k-via-netlink.patch

In package/kernel/mac80211 (OpenC2X - CCS Labs)

1 --- a/drivers/net/wireless/ath/ath9k/ath9k.h

2 +++ b/drivers/net/wireless/ath/ath9k/ath9k.h

3 @@ -1017,6 +1017,10 @@ struct ath_softc {

4 struct survey_info *cur_survey;

5 struct survey_info survey[ATH9K_NUM_CHANNELS];

6

7 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

8 + struct flush_info hw_q_flush_info;

9 + u32 flush_hw_q_pending;

10 +

11 spinlock_t intr_lock;

12 struct tasklet_struct intr_tq;

13 struct tasklet_struct bcon_tasklet;

14 --- a/drivers/net/wireless/ath/ath9k/debug.c

15 +++ b/drivers/net/wireless/ath/ath9k/debug.c

16 @@ -593,7 +593,9 @@ static int read_file_xmit(struct seq_fil

17 struct ieee80211_hw *hw = dev_get_drvdata(file->private);

18 struct ath_softc *sc = hw->priv;

19

20 - seq_printf(file, ”%30s %10s%10s%10s\n\n”, ”BE”, ”BK”, ”VI”, ”VO”);

21 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

22 + // Changed %30s to %38s

23 + seq_printf(file, ”%38s %10s%10s%10s\n\n”, ”BE”, ”BK”, ”VI”, ”VO”);

24

25 PR(”MPDUs Queued: ”, queued);

26 PR(”MPDUs Completed: ”, completed);

27 @@ -1666,5 +1668,9 @@ int ath9k_init_debug(struct ath_hw *ah)

28 debugfs_create_file(”nf_override”, S_IRUSR | S_IWUSR,

372

OpenWrt 18.06.1 patches

29 sc->debug.debugfs_phy , sc, &fops_nf_override);

30

31 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

32 + debugfs_create_u32(”flush_hw_q_pending”, S_IRUGO | S_IWUGO,

33 + sc->debug.debugfs_phy , &sc->flush_hw_q_pending);

34 +

35 return 0;

36 }

37 --- a/drivers/net/wireless/ath/ath9k/debug.h

38 +++ b/drivers/net/wireless/ath/ath9k/debug.h

39 @@ -164,6 +164,8 @@ struct ath_interrupt_stats {

40 * @txstart: Number of times hardware was told to start tx.

41 * @txprocdesc: Number of times tx descriptor was processed

42 * @txfailed: Out-of-memory or other errors in xmit path.

43 + * @hw_flush_required: Number of times the hardware queue needs to be

flushed.

44 + * @hw_flush_not_required: Number of times the hardware queue was

found empty before pushing new packets to it.

45 */

46 struct ath_tx_stats {

47 u32 tx_pkts_all;

48 @@ -187,6 +189,9 @@ struct ath_tx_stats {

49 u32 txstart;

50 u32 txprocdesc;

51 u32 txfailed;

52 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

53 + u32 hw_flush_required;

54 + u32 hw_flush_not_required;

55 };

56

57 /*

58 --- a/drivers/net/wireless/ath/ath9k/main.c

373

– Appendix B

59 +++ b/drivers/net/wireless/ath/ath9k/main.c

60 @@ -2002,6 +2002,28 @@ static int ath9k_get_survey(struct ieee8

61 return 0;

62 }

63

64 +/* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

65 +static int ath9k_get_flush_stats(struct ieee80211_hw *hw, int idx,

struct flush_info *survey) {

66 + printk(KERN_ALERT ”%s:%d\n”, __FILE__, __LINE__);

67 + struct ath_softc *sc = hw->priv;

68 + // No more necessary?

69 + //if (config_enabled(CONFIG_ATH9K_TX99))

70 + // return -EOPNOTSUPP;

71 + survey->be_flush_req = sc->debug.stats.txstats[ATH_TXQ_AC_BE].

hw_flush_required;

72 + survey->be_flush_not_req = sc->debug.stats.txstats[ATH_TXQ_AC_BE].

hw_flush_not_required;

73 +

74 + survey->bk_flush_req = sc->debug.stats.txstats[ATH_TXQ_AC_BK].

hw_flush_required;

75 + survey->bk_flush_not_req = sc->debug.stats.txstats[ATH_TXQ_AC_BK].

hw_flush_not_required;

76 +

77 + survey->vi_flush_req = sc->debug.stats.txstats[ATH_TXQ_AC_VI].

hw_flush_required;

78 + survey->vi_flush_not_req = sc->debug.stats.txstats[ATH_TXQ_AC_VI].

hw_flush_not_required;

79 +

80 + survey->vo_flush_req = sc->debug.stats.txstats[ATH_TXQ_AC_VO].

hw_flush_required;

81 + survey->vo_flush_not_req = sc->debug.stats.txstats[ATH_TXQ_AC_VO].

hw_flush_not_required;

82 +

374

OpenWrt 18.06.1 patches

83 + return 0;

84 +}

85 +

86 static void ath9k_enable_dynack(struct ath_softc *sc)

87 {

88 #ifdef CPTCFG_ATH9K_DYNACK

89 @@ -2687,6 +2709,8 @@ struct ieee80211_ops ath9k_ops = {

90 .reset_tsf = ath9k_reset_tsf ,

91 .ampdu_action = ath9k_ampdu_action ,

92 .get_survey = ath9k_get_survey ,

93 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

94 + .get_flush_stats = ath9k_get_flush_stats ,

95 .rfkill_poll = ath9k_rfkill_poll_state ,

96 .set_coverage_class = ath9k_set_coverage_class ,

97 .flush = ath9k_flush ,

98 --- a/drivers/net/wireless/ath/ath9k/xmit.c

99 +++ b/drivers/net/wireless/ath/ath9k/xmit.c

100 @@ -2084,6 +2084,18 @@ static void ath_tx_txqaddbuf(struct ath_

101 if (list_empty(head))

102 return;

103

104 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

105 + if (sc->flush_hw_q_pending) {

106 + if (ath9k_hw_numtxpending(ah, txq->axq_qnum)) {

107 + // printk(KERN_ALERT ”flush and pending!”);

108 + TX_STAT_INC(txq->axq_qnum, hw_flush_required);

109 +

110 + } else {

111 + // printk(KERN_ALERT ”flush but nothing pending in queues!”);

112 + TX_STAT_INC(txq->axq_qnum, hw_flush_not_required);

113 + }

114 + }

375

– Appendix B

115 +

116 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);

117 bf = list_first_entry(head, struct ath_buf, list);

118 bf_last = list_entry(head->prev, struct ath_buf, list);

119 @@ -2877,6 +2889,7 @@ int ath_tx_init(struct ath_softc *sc, in

120

121 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)

122 error = ath_tx_edma_init(sc);

123 + sc->flush_hw_q_pending = 0; /* MAC queues enabler patch by Gurjashan

S. Pannu */

124

125 return error;

126 }

127 --- a/include/net/cfg80211.h

128 +++ b/include/net/cfg80211.h

129 @@ -627,6 +627,30 @@ struct survey_info {

130 s8 noise;

131 };

132

133 +/* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

134 +/**

135 + * struct flush_info - stats for flushing pending packets in hardware

queues

136 + *

137 + * @be_flush_req: number of times when there was need to flush a

pending packet for AC_BE

138 + * @be_flush_not_req: number of times when there was no pending

packet in AC_BE

139 + * @bk_flush_req: number of times when there was need to flush a

pending packet for AC_BK

140 + * @bk_flush_not_req: number of times when there was no pending

packet in AC_BK

376

OpenWrt 18.06.1 patches

141 + * @vi_flush_req: number of times when there was need to flush a

pending packet for AC_VI

142 + * @vi_flush_not_req: number of times when there was no pending

packet in AC_VI

143 + * @vo_flush_req: number of times when there was need to flush a

pending packet for AC_VO

144 + * @vo_flush_not_req: number of times when there was no pending

packet in AC_VO

145 + */

146 +struct flush_info {

147 + u32 be_flush_req;

148 + u32 be_flush_not_req;

149 + u32 bk_flush_req;

150 + u32 bk_flush_not_req;

151 + u32 vi_flush_req;

152 + u32 vi_flush_not_req;

153 + u32 vo_flush_req;

154 + u32 vo_flush_not_req;

155 +};

156 +

157 #define CFG80211_MAX_WEP_KEYS 4

158

159 /**

160 @@ -3065,6 +3089,10 @@ struct cfg80211_ops {

161 int (*dump_survey)(struct wiphy *wiphy, struct net_device *netdev,

162 int idx, struct survey_info *info);

163

164 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

165 + int (*dump_flush_stats)(struct wiphy *wiphy, struct net_device *

netdev,

166 + int idx, struct flush_info *info);

167 +

168 int (*set_pmksa)(struct wiphy *wiphy, struct net_device *netdev,

377

– Appendix B

169 struct cfg80211_pmksa *pmksa);

170 int (*del_pmksa)(struct wiphy *wiphy, struct net_device *netdev,

171 --- a/include/net/mac80211.h

172 +++ b/include/net/mac80211.h

173 @@ -3619,6 +3619,9 @@ struct ieee80211_ops {

174 struct ieee80211_ampdu_params *params);

175 int (*get_survey)(struct ieee80211_hw *hw, int idx,

176 struct survey_info *survey);

177 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

178 + int (*get_flush_stats)(struct ieee80211_hw *hw, int idx,

179 + struct flush_info *survey);

180 void (*rfkill_poll)(struct ieee80211_hw *hw);

181 void (*set_coverage_class)(struct ieee80211_hw *hw, s16

coverage_class);

182 #ifdef CPTCFG_NL80211_TESTMODE

183 --- a/include/uapi/linux/nl80211.h

184 +++ b/include/uapi/linux/nl80211.h

185 @@ -1198,6 +1198,10 @@ enum nl80211_commands {

186

187 NL80211_CMD_RELOAD_REGDB ,

188

189 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

190 + NL80211_CMD_FLUSH_STATS , // Related to flushing hardware queues

191 + NL80211_CMD_NEW_FLUSH_STATS ,

192 +

193 /* add new commands above here */

194

195 /* used to define NL80211_CMD_MAX below */

196 @@ -2584,6 +2588,9 @@ enum nl80211_attrs {

197

198 NL80211_ATTR_WIPHY_ANTENNA_GAIN ,

199

378

OpenWrt 18.06.1 patches

200 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

201 + NL80211_ATTR_FLUSH_INFO ,

202 +

203 /* add attributes here, update the policy in nl80211.c */

204

205 __NL80211_ATTR_AFTER_LAST ,

206 @@ -3441,6 +3448,23 @@ enum nl80211_survey_info {

207 NL80211_SURVEY_INFO_MAX = __NL80211_SURVEY_INFO_AFTER_LAST - 1

208 };

209

210 +/* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

211 +enum nl80211_flush_info {

212 + __NL80211_FLUSH_INFO_INVALID ,

213 + NL80211_FLUSH_REQ_BE ,

214 + NL80211_FLUSH_NOT_REQ_BE ,

215 + NL80211_FLUSH_REQ_BK ,

216 + NL80211_FLUSH_NOT_REQ_BK ,

217 + NL80211_FLUSH_REQ_VI ,

218 + NL80211_FLUSH_NOT_REQ_VI ,

219 + NL80211_FLUSH_REQ_VO ,

220 + NL80211_FLUSH_NOT_REQ_VO ,

221 +

222 + /* keep last */

223 + __NL80211_FLUSH_INFO_AFTER_LAST ,

224 + NL80211_FLUSH_INFO_MAX = __NL80211_FLUSH_INFO_AFTER_LAST - 1

225 +};

226 +

227 /* keep old names for compatibility */

228 #define NL80211_SURVEY_INFO_CHANNEL_TIME NL80211_SURVEY_INFO_TIME

229 #define NL80211_SURVEY_INFO_CHANNEL_TIME_BUSY

NL80211_SURVEY_INFO_TIME_BUSY

230 --- a/net/mac80211/cfg.c

379

– Appendix B

231 +++ b/net/mac80211/cfg.c

232 @@ -710,6 +710,16 @@ static int ieee80211_dump_survey(struct

233 return drv_get_survey(local, idx, survey);

234 }

235

236 +/* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

237 +static int ieee80211_dump_flush_stats(struct wiphy *wiphy, struct

net_device *dev,

238 + int idx, struct flush_info *survey)

239 +{

240 + struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);

241 +

242 + return drv_get_flush_stats(local, idx, survey);

243 +}

244 +

245 +

246 static int ieee80211_get_station(struct wiphy *wiphy, struct

net_device *dev,

247 const u8 *mac, struct station_info *sinfo)

248 {

249 @@ -3700,6 +3710,7 @@ const struct cfg80211_ops mac80211_confi

250 .get_station = ieee80211_get_station ,

251 .dump_station = ieee80211_dump_station ,

252 .dump_survey = ieee80211_dump_survey ,

253 + .dump_flush_stats = ieee80211_dump_flush_stats , /* MAC queues

enabler patch by Gurjashan S. Pannu */

254 #ifdef CPTCFG_MAC80211_MESH

255 .add_mpath = ieee80211_add_mpath ,

256 .del_mpath = ieee80211_del_mpath ,

257 --- a/net/mac80211/driver-ops.h

258 +++ b/net/mac80211/driver-ops.h

259 @@ -607,6 +607,16 @@ static inline int drv_get_survey(struct

260 return ret;

380

OpenWrt 18.06.1 patches

261 }

262

263 +/* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

264 +static inline int drv_get_flush_stats(struct ieee80211_local *local,

int idx,

265 + struct flush_info *survey)

266 +{

267 + int ret = -EOPNOTSUPP;

268 + if (local->ops->get_flush_stats)

269 + ret = local->ops->get_flush_stats(&local->hw, idx, survey);

270 + return ret;

271 +}

272 +

273 static inline void drv_rfkill_poll(struct ieee80211_local *local)

274 {

275 might_sleep();

276 --- a/net/wireless/nl80211.c

277 +++ b/net/wireless/nl80211.c

278 @@ -8051,6 +8051,92 @@ static int nl80211_dump_survey(struct sk

279 return res;

280 }

281

282 +/* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

283 +static int nl80211_send_flush_stats(struct sk_buff *msg, u32 portid,

u32 seq,

284 + int flags, struct net_device *dev,

285 + struct flush_info *survey)

286 +{

287 + void *hdr;

288 + struct nlattr *infoattr;

289 +

290 + hdr = nl80211hdr_put(msg, portid, seq, flags,

381

– Appendix B

291 + NL80211_CMD_NEW_FLUSH_STATS);

292 + if (!hdr)

293 + return -ENOMEM;

294 +

295 + if (nla_put_u32(msg, NL80211_ATTR_IFINDEX , dev->ifindex))

296 + goto nla_put_failure;

297 +

298 + infoattr = nla_nest_start(msg, NL80211_ATTR_FLUSH_INFO);

299 + if (!infoattr)

300 + goto nla_put_failure;

301 +

302 + if (nla_put_u32(msg, NL80211_FLUSH_REQ_BE , survey->be_flush_req))

303 + goto nla_put_failure;

304 + if (nla_put_u32(msg, NL80211_FLUSH_NOT_REQ_BE , survey->

be_flush_not_req))

305 + goto nla_put_failure;

306 + if (nla_put_u32(msg, NL80211_FLUSH_REQ_BK , survey->bk_flush_req))

307 + goto nla_put_failure;

308 + if (nla_put_u32(msg, NL80211_FLUSH_NOT_REQ_BK , survey->

bk_flush_not_req))

309 + goto nla_put_failure;

310 + if (nla_put_u32(msg, NL80211_FLUSH_REQ_VI , survey->vi_flush_req))

311 + goto nla_put_failure;

312 + if (nla_put_u32(msg, NL80211_FLUSH_NOT_REQ_VI , survey->

vi_flush_not_req))

313 + goto nla_put_failure;

314 + if (nla_put_u32(msg, NL80211_FLUSH_REQ_VO , survey->vo_flush_req))

315 + goto nla_put_failure;

316 + if (nla_put_u32(msg, NL80211_FLUSH_NOT_REQ_VO , survey->

vo_flush_not_req))

317 + goto nla_put_failure;

318 +

319 + int ret = nla_nest_end(msg, infoattr);

320 +

382

OpenWrt 18.06.1 patches

321 + genlmsg_end(msg, hdr);

322 + return ret;

323 +

324 +nla_put_failure:

325 + genlmsg_cancel(msg, hdr);

326 + return -EMSGSIZE;

327 +

328 +}

329 +

330 +static int nl80211_dump_flush_stats(struct sk_buff *skb,

331 + struct netlink_callback *cb)

332 +{

333 + struct flush_info survey;

334 + struct cfg80211_registered_device *rdev;

335 + struct wireless_dev *wdev;

336 + int survey_idx = cb->args[2];

337 + int res;

338 +

339 + // printk(KERN_ALERT ”%s:%d\n”, __FILE__, __LINE__);

340 + res = nl80211_prepare_wdev_dump(skb, cb, &rdev, &wdev);

341 + if (res)

342 + return res;

343 +

344 +

345 + if (!rdev->ops->dump_flush_stats) {

346 + res = -EOPNOTSUPP;

347 + printk(KERN_ALERT ”Operation not supported: %s:%d\n”, __FILE__,

__LINE__);

348 + goto out_err;

349 + }

350 +

351 + res = rdev_dump_flush_stats(rdev, wdev->netdev, survey_idx , &survey)

;

352 +

383

– Appendix B

353 + if (nl80211_send_flush_stats(skb,

354 + NETLINK_CB(cb->skb).portid,

355 + cb->nlh->nlmsg_seq , NLM_F_MULTI ,

356 + wdev->netdev, &survey)) {

357 + goto out;

358 + }

359 + out:

360 + cb->args[2] = survey_idx; // <- needed ????

361 + res = skb->len;

362 + out_err:

363 + rtnl_unlock(); // Changed to reflect latest updates to nl80211.c

364 + printk(KERN_ALERT ”returning %s:%d”, __FILE__ , __LINE__);

365 + return 0;

366 +}

367 +

368 static bool nl80211_valid_wpa_versions(u32 wpa_versions)

369 {

370 return !(wpa_versions & ~(NL80211_WPA_VERSION_1 |

371 @@ -13362,6 +13448,12 @@ static __genl_const struct genl_ops nl80

372 .internal_flags = NL80211_FLAG_NEED_NETDEV_UP |

373 NL80211_FLAG_NEED_RTNL ,

374 },

375 + /* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

376 + {

377 + .cmd = NL80211_CMD_FLUSH_STATS ,

378 + .policy = nl80211_policy ,

379 + .dumpit = nl80211_dump_flush_stats

380 + },

381

382 };

383

384 --- a/net/wireless/rdev-ops.h

385 +++ b/net/wireless/rdev-ops.h

384

OpenWrt 18.06.1 patches

386 @@ -644,6 +644,18 @@ static inline int rdev_dump_survey(struc

387 return ret;

388 }

389

390 +/* MAC queues enabler patch by Gurjashan S. Pannu <gspannu@mail.uni-

paderborn.de>, date Wed, 27 Jul 2016 14:23:38 +0200 */

391 + /* notification functions */

392 +static inline int rdev_dump_flush_stats(struct

cfg80211_registered_device *rdev,

393 + struct net_device *netdev, int idx,

394 + struct flush_info *info)

395 +{

396 + int ret;

397 + ret = rdev->ops->dump_flush_stats(&rdev->wiphy, netdev, idx, info);

398 + return ret;

399 +}

400 +

401 +

402 static inline int rdev_set_pmksa(struct cfg80211_registered_device *

rdev,

403 struct net_device *netdev,

404 struct cfg80211_pmksa *pmksa)

385

– Appendix B

999-ITS-G5D-channels-fix.patch

In package/kernel/mac80211 (custom)

1 --- a/drivers/net/wireless/ath/ath5k/base.c

2 +++ b/drivers/net/wireless/ath/ath5k/base.c

3 @@ -322,6 +322,23 @@ ath5k_setup_channels(struct ath5k_hw *ah

4 for (ch = 1; ch <= size && count < max; ch++) {

5 freq = ieee80211_channel_to_frequency(ch, band);

6

7 + /* ITS-G5D fix: added by Politecnico di Torino to enable channels

182

8 + and 184 on UNEX DCMA 86P2 cards */

9 + if(ch == 182 || ch == 184) {

10 + switch(ch) {

11 + case 182:

12 + freq=5910;

13 + break;

14 + case 184:

15 + freq=5920;

16 + break;

17 + default:

18 + break;

19 + }

20 + } else {

21 + freq = ieee80211_channel_to_frequency(ch, band);

22 + }

23 +

24 if (freq == 0) /* mapping failed - not a standard channel */

25 continue;

386

OpenWrt 18.06.1 patches

.bashrc (on the development PC) - modified lines

PATH environmental variable settings for OpenWrt toolchain

PATH=$PATH:/home/francesco/openwrt -18.06.1/staging_dir/toolchain -

i386_pentium_gcc -7.3.0_musl/bin/

export PATH

Set STAGING_DIR environment variable for the toolchain

STAGING_DIR=/home/francesco/openwrt -18.06.1/staging_dir/toolchain -

i386_pentium_gcc -7.3.0_musl/bin/

export STAGING_DIR

Set alias for writing ’compileboard ’ instead of the gcc full name (

OpenWrt toolchain)

alias compileboard=”i486-openwrt-linux-musl-gcc”

Function to compile for the PC Engines boards

compileboardstatic() {

i486-openwrt-linux-musl-gcc -o ”$1” -static ”$1.c”

}

The name “francesco” refers to the name of the account in the development PC: it should

be substituted with the current user name.

387

Appendix C

OpenWrt 18.06.1 configuration file for the APU boards

Only the actually selected options are shown (otherwise over 4800 lines and 100 pages

would have been generated), by invoking:

grep -v .config -e ”is not set” >> config.selected

over the .config file, not printing all the options which are not set.

config.selected (grep -v over .config)

#

Automatically generated file; DO NOT EDIT.

OpenWrt Configuration

#

CONFIG_MODULES=y

CONFIG_HAVE_DOT_CONFIG=y

CONFIG_TARGET_x86=y

CONFIG_TARGET_x86_64=y

CONFIG_TARGET_x86_64_Generic=y

CONFIG_HAS_SUBTARGETS=y

CONFIG_TARGET_BOARD=”x86”

CONFIG_TARGET_SUBTARGET=”64”

CONFIG_TARGET_PROFILE=”Generic”

CONFIG_TARGET_ARCH_PACKAGES=”x86_64”

CONFIG_DEFAULT_TARGET_OPTIMIZATION=”-Os -pipe”

388

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_CPU_TYPE=” ”

CONFIG_LINUX_4_14=y

CONFIG_DEFAULT_base -files=y

CONFIG_DEFAULT_busybox=y

CONFIG_DEFAULT_dnsmasq=y

CONFIG_DEFAULT_dropbear=y

CONFIG_DEFAULT_e2fsprogs=y

CONFIG_DEFAULT_firewall=y

CONFIG_DEFAULT_fstools=y

CONFIG_DEFAULT_ip6tables=y

CONFIG_DEFAULT_iptables=y

CONFIG_DEFAULT_kmod -button-hotplug=y

CONFIG_DEFAULT_kmod -e1000=y

CONFIG_DEFAULT_kmod -e1000e=y

CONFIG_DEFAULT_kmod -igb=y

CONFIG_DEFAULT_kmod -ipt-offload=y

CONFIG_DEFAULT_kmod -r8169=y

CONFIG_DEFAULT_libc=y

CONFIG_DEFAULT_libgcc=y

CONFIG_DEFAULT_logd=y

CONFIG_DEFAULT_mkf2fs=y

CONFIG_DEFAULT_mtd=y

CONFIG_DEFAULT_netifd=y

CONFIG_DEFAULT_odhcp6c=y

CONFIG_DEFAULT_odhcpd -ipv6only=y

CONFIG_DEFAULT_opkg=y

CONFIG_DEFAULT_partx -utils=y

CONFIG_DEFAULT_ppp=y

CONFIG_DEFAULT_ppp -mod-pppoe=y

CONFIG_DEFAULT_uci=y

CONFIG_DEFAULT_uclient -fetch=y

CONFIG_HAS_FPU=y

CONFIG_AUDIO_SUPPORT=y

CONFIG_GPIO_SUPPORT=y

389

7 – Appendix C

CONFIG_PCI_SUPPORT=y

CONFIG_PCIE_SUPPORT=y

CONFIG_PCMCIA_SUPPORT=y

CONFIG_USB_SUPPORT=y

CONFIG_RTC_SUPPORT=y

CONFIG_USES_SQUASHFS=y

CONFIG_USES_EXT4=y

CONFIG_USES_TARGZ=y

CONFIG_ARCH_64BIT=y

CONFIG_VIRTIO_SUPPORT=y

CONFIG_x86_64=y

CONFIG_ARCH=”x86_64”

#

Target Images

#

CONFIG_EXTERNAL_CPIO=””

#

Root filesystem archives

#

#

Root filesystem images

#

CONFIG_TARGET_ROOTFS_EXT4FS=y

CONFIG_TARGET_EXT4_RESERVED_PCT=0

CONFIG_TARGET_EXT4_BLOCKSIZE_4K=y

CONFIG_TARGET_EXT4_BLOCKSIZE=4096

CONFIG_TARGET_ROOTFS_SQUASHFS=y

CONFIG_TARGET_SQUASHFS_BLOCK_SIZE=256

CONFIG_TARGET_UBIFS_FREE_SPACE_FIXUP=y

CONFIG_TARGET_UBIFS_JOURNAL_SIZE=””

CONFIG_GRUB_IMAGES=y

390

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_GRUB_CONSOLE=y

CONFIG_GRUB_SERIAL=”ttyS0”

CONFIG_GRUB_BAUDRATE=115200

CONFIG_GRUB_BOOTOPTS=””

CONFIG_GRUB_TIMEOUT=”5”

CONFIG_TARGET_IMAGES_GZIP=y

#

Image Options

#

CONFIG_TARGET_KERNEL_PARTSIZE=20

CONFIG_TARGET_ROOTFS_PARTSIZE=3960

CONFIG_TARGET_ROOTFS_PARTNAME=””

#

Global build settings

#

CONFIG_SIGNED_PACKAGES=y

#

General build options

#

CONFIG_DISPLAY_SUPPORT=y

CONFIG_SHADOW_PASSWORDS=y

#

Kernel build options

#

CONFIG_KERNEL_BUILD_USER=””

CONFIG_KERNEL_BUILD_DOMAIN=””

CONFIG_KERNEL_PRINTK=y

CONFIG_KERNEL_SWAP=y

CONFIG_KERNEL_DEBUG_FS=y

CONFIG_KERNEL_KALLSYMS=y

391

7 – Appendix C

CONFIG_KERNEL_DEBUG_KERNEL=y

CONFIG_KERNEL_DEBUG_INFO=y

CONFIG_KERNEL_MAGIC_SYSRQ=y

CONFIG_KERNEL_COREDUMP=y

CONFIG_KERNEL_ELF_CORE=y

CONFIG_KERNEL_PRINTK_TIME=y

CONFIG_KERNEL_KEXEC=y

CONFIG_KERNEL_PROC_VMCORE=y

CONFIG_KERNEL_CRASH_DUMP=y

CONFIG_KERNEL_IP_MROUTE=y

CONFIG_KERNEL_IPV6=y

CONFIG_KERNEL_IPV6_MULTIPLE_TABLES=y

CONFIG_KERNEL_IPV6_SUBTREES=y

CONFIG_KERNEL_IPV6_MROUTE=y

#

Filesystem ACL and attr support options

#

#

Package build options

#

CONFIG_IPV6=y

#

Stripping options

#

CONFIG_USE_SSTRIP=y

CONFIG_USE_UCLIBCXX=y

#

Hardening build options

#

CONFIG_PKG_CHECK_FORMAT_SECURITY=y

392

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_PKG_CC_STACKPROTECTOR_REGULAR=y

CONFIG_KERNEL_CC_STACKPROTECTOR_REGULAR=y

CONFIG_PKG_FORTIFY_SOURCE_1=y

CONFIG_PKG_RELRO_FULL=y

CONFIG_DEVEL=y

CONFIG_BINARY_FOLDER=””

CONFIG_DOWNLOAD_FOLDER=””

CONFIG_LOCALMIRROR=””

CONFIG_AUTOREBUILD=y

CONFIG_BUILD_SUFFIX=””

CONFIG_TARGET_ROOTFS_DIR=””

CONFIG_EXTERNAL_KERNEL_TREE=””

CONFIG_KERNEL_GIT_CLONE_URI=””

CONFIG_EXTRA_OPTIMIZATION=”-fno-caller-saves -fno-plt”

CONFIG_TARGET_OPTIMIZATION=”-Os -pipe”

CONFIG_NEED_TOOLCHAIN=y

CONFIG_EXTRA_BINUTILS_CONFIG_OPTIONS=””

CONFIG_EXTRA_GCC_CONFIG_OPTIONS=””

CONFIG_YASM=y

CONFIG_GDB=y

CONFIG_USE_MUSL=y

CONFIG_SSP_SUPPORT=y

CONFIG_BINUTILS_VERSION_2_29_1=y

CONFIG_BINUTILS_VERSION=”2.29.1”

CONFIG_GCC_VERSION=”7.3.0”

CONFIG_LIBC=”musl”

CONFIG_TARGET_SUFFIX=”musl”

CONFIG_TARGET_PREINIT_SUPPRESS_STDERR=y

CONFIG_TARGET_PREINIT_TIMEOUT=2

CONFIG_TARGET_PREINIT_IFNAME=””

CONFIG_TARGET_PREINIT_IP=”192.168.1.1”

CONFIG_TARGET_PREINIT_NETMASK=”255.255.255.0”

CONFIG_TARGET_PREINIT_BROADCAST=”192.168.1.255”

CONFIG_TARGET_INIT_PATH=”/usr/sbin:/usr/bin:/sbin:/bin”

393

7 – Appendix C

CONFIG_TARGET_INIT_ENV=””

CONFIG_TARGET_INIT_CMD=”/sbin/init”

CONFIG_TARGET_INIT_SUPPRESS_STDERR=y

CONFIG_PER_FEED_REPO=y

CONFIG_FEED_packages=y

CONFIG_FEED_luci=y

CONFIG_FEED_routing=y

CONFIG_FEED_telephony=y

#

Base system

#

CONFIG_PACKAGE_base -files=y

CONFIG_PACKAGE_block -mount=m

CONFIG_PACKAGE_busybox=y

CONFIG_BUSYBOX_DEFAULT_HAVE_DOT_CONFIG=y

CONFIG_BUSYBOX_DEFAULT_INCLUDE_SUSv2=y

CONFIG_BUSYBOX_DEFAULT_LONG_OPTS=y

CONFIG_BUSYBOX_DEFAULT_SHOW_USAGE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VERBOSE_USAGE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_COMPRESS_USAGE=y

CONFIG_BUSYBOX_DEFAULT_LFS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_DEVPTS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_PIDFILE=y

CONFIG_BUSYBOX_DEFAULT_PID_FILE_PATH=”/var/run”

CONFIG_BUSYBOX_DEFAULT_FEATURE_SUID=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_PREFER_APPLETS=y

CONFIG_BUSYBOX_DEFAULT_BUSYBOX_EXEC_PATH=”/proc/self/exe”

CONFIG_BUSYBOX_DEFAULT_FEATURE_SYSLOG=y

CONFIG_BUSYBOX_DEFAULT_PLATFORM_LINUX=y

CONFIG_BUSYBOX_DEFAULT_CROSS_COMPILER_PREFIX=””

CONFIG_BUSYBOX_DEFAULT_SYSROOT=””

CONFIG_BUSYBOX_DEFAULT_EXTRA_CFLAGS=””

CONFIG_BUSYBOX_DEFAULT_EXTRA_LDFLAGS=””

394

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_BUSYBOX_DEFAULT_EXTRA_LDLIBS=””

CONFIG_BUSYBOX_DEFAULT_INSTALL_APPLET_SYMLINKS=y

CONFIG_BUSYBOX_DEFAULT_PREFIX=”./_install”

CONFIG_BUSYBOX_DEFAULT_NO_DEBUG_LIB=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_BUFFERS_GO_ON_STACK=y

CONFIG_BUSYBOX_DEFAULT_PASSWORD_MINLEN=6

CONFIG_BUSYBOX_DEFAULT_MD5_SMALL=1

CONFIG_BUSYBOX_DEFAULT_SHA3_SMALL=1

CONFIG_BUSYBOX_DEFAULT_FEATURE_FAST_TOP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_EDITING=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_EDITING_MAX_LEN=512

CONFIG_BUSYBOX_DEFAULT_FEATURE_EDITING_HISTORY=256

CONFIG_BUSYBOX_DEFAULT_FEATURE_TAB_COMPLETION=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_EDITING_FANCY_PROMPT=y

CONFIG_BUSYBOX_DEFAULT_SUBST_WCHAR=0

CONFIG_BUSYBOX_DEFAULT_LAST_SUPPORTED_WCHAR=0

CONFIG_BUSYBOX_DEFAULT_FEATURE_NON_POSIX_CP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_USE_SENDFILE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_COPYBUF_KB=4

CONFIG_BUSYBOX_DEFAULT_IOCTL_HEX2STR_ERROR=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_SEAMLESS_GZ=y

CONFIG_BUSYBOX_DEFAULT_GUNZIP=y

CONFIG_BUSYBOX_DEFAULT_ZCAT=y

CONFIG_BUSYBOX_DEFAULT_BUNZIP2=y

CONFIG_BUSYBOX_DEFAULT_BZCAT=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_BZIP2_DECOMPRESS=y

CONFIG_BUSYBOX_DEFAULT_GZIP=y

CONFIG_BUSYBOX_DEFAULT_GZIP_FAST=0

CONFIG_BUSYBOX_DEFAULT_FEATURE_GZIP_DECOMPRESS=y

CONFIG_BUSYBOX_DEFAULT_TAR=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TAR_CREATE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TAR_FROM=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TAR_GNU_EXTENSIONS=y

CONFIG_BUSYBOX_DEFAULT_BASENAME=y

395

7 – Appendix C

CONFIG_BUSYBOX_DEFAULT_CAT=y

CONFIG_BUSYBOX_DEFAULT_CHGRP=y

CONFIG_BUSYBOX_DEFAULT_CHMOD=y

CONFIG_BUSYBOX_DEFAULT_CHOWN=y

CONFIG_BUSYBOX_DEFAULT_CHROOT=y

CONFIG_BUSYBOX_DEFAULT_CP=y

CONFIG_BUSYBOX_DEFAULT_CUT=y

CONFIG_BUSYBOX_DEFAULT_DATE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_DATE_ISOFMT=y

CONFIG_BUSYBOX_DEFAULT_DD=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_DD_SIGNAL_HANDLING=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_DD_IBS_OBS=y

CONFIG_BUSYBOX_DEFAULT_DF=y

CONFIG_BUSYBOX_DEFAULT_DIRNAME=y

CONFIG_BUSYBOX_DEFAULT_DU=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_DU_DEFAULT_BLOCKSIZE_1K=y

CONFIG_BUSYBOX_DEFAULT_ECHO=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FANCY_ECHO=y

CONFIG_BUSYBOX_DEFAULT_ENV=y

CONFIG_BUSYBOX_DEFAULT_EXPR=y

CONFIG_BUSYBOX_DEFAULT_EXPR_MATH_SUPPORT_64=y

CONFIG_BUSYBOX_DEFAULT_FALSE=y

CONFIG_BUSYBOX_DEFAULT_FSYNC=y

CONFIG_BUSYBOX_DEFAULT_HEAD=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FANCY_HEAD=y

CONFIG_BUSYBOX_DEFAULT_ID=y

CONFIG_BUSYBOX_DEFAULT_LN=y

CONFIG_BUSYBOX_DEFAULT_LS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_FILETYPES=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_FOLLOWLINKS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_RECURSIVE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_WIDTH=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_SORTFILES=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_TIMESTAMPS=y

396

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_USERNAME=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_COLOR=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LS_COLOR_IS_DEFAULT=y

CONFIG_BUSYBOX_DEFAULT_MD5SUM=y

CONFIG_BUSYBOX_DEFAULT_SHA256SUM=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_MD5_SHA1_SUM_CHECK=y

CONFIG_BUSYBOX_DEFAULT_MKDIR=y

CONFIG_BUSYBOX_DEFAULT_MKFIFO=y

CONFIG_BUSYBOX_DEFAULT_MKNOD=y

CONFIG_BUSYBOX_DEFAULT_MKTEMP=y

CONFIG_BUSYBOX_DEFAULT_MV=y

CONFIG_BUSYBOX_DEFAULT_NICE=y

CONFIG_BUSYBOX_DEFAULT_PRINTF=y

CONFIG_BUSYBOX_DEFAULT_PWD=y

CONFIG_BUSYBOX_DEFAULT_READLINK=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_READLINK_FOLLOW=y

CONFIG_BUSYBOX_DEFAULT_RM=y

CONFIG_BUSYBOX_DEFAULT_RMDIR=y

CONFIG_BUSYBOX_DEFAULT_SEQ=y

CONFIG_BUSYBOX_DEFAULT_SLEEP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FANCY_SLEEP=y

CONFIG_BUSYBOX_DEFAULT_SORT=y

CONFIG_BUSYBOX_DEFAULT_SYNC=y

CONFIG_BUSYBOX_DEFAULT_TAIL=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FANCY_TAIL=y

CONFIG_BUSYBOX_DEFAULT_TEE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TEE_USE_BLOCK_IO=y

CONFIG_BUSYBOX_DEFAULT_TEST=y

CONFIG_BUSYBOX_DEFAULT_TEST1=y

CONFIG_BUSYBOX_DEFAULT_TEST2=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TEST_64=y

CONFIG_BUSYBOX_DEFAULT_TOUCH=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TOUCH_SUSV3=y

CONFIG_BUSYBOX_DEFAULT_TR=y

397

7 – Appendix C

CONFIG_BUSYBOX_DEFAULT_TRUE=y

CONFIG_BUSYBOX_DEFAULT_UNAME=y

CONFIG_BUSYBOX_DEFAULT_UNAME_OSNAME=”GNU/Linux”

CONFIG_BUSYBOX_DEFAULT_UNIQ=y

CONFIG_BUSYBOX_DEFAULT_WC=y

CONFIG_BUSYBOX_DEFAULT_YES=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_PRESERVE_HARDLINKS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_HUMAN_READABLE=y

CONFIG_BUSYBOX_DEFAULT_CLEAR=y

CONFIG_BUSYBOX_DEFAULT_DEFAULT_SETFONT_DIR=””

CONFIG_BUSYBOX_DEFAULT_RESET=y

CONFIG_BUSYBOX_DEFAULT_START_STOP_DAEMON=y

CONFIG_BUSYBOX_DEFAULT_WHICH=y

CONFIG_BUSYBOX_DEFAULT_AWK=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_AWK_LIBM=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_AWK_GNU_EXTENSIONS=y

CONFIG_BUSYBOX_DEFAULT_CMP=y

CONFIG_BUSYBOX_DEFAULT_SED=y

CONFIG_BUSYBOX_DEFAULT_VI=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_MAX_LEN=1024

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_COLON=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_YANKMARK=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_SEARCH=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_USE_SIGNALS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_DOT_CMD=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_READONLY=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_SETOPTS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_SET=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_WIN_RESIZE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_ASK_TERMINAL=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_VI_UNDO_QUEUE_MAX=0

CONFIG_BUSYBOX_DEFAULT_FEATURE_ALLOW_EXEC=y

CONFIG_BUSYBOX_DEFAULT_FIND=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_PRINT0=y

398

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_MTIME=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_PERM=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_TYPE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_XDEV=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_MAXDEPTH=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_NEWER=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_EXEC=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_USER=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_GROUP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_NOT=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_DEPTH=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_PAREN=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_SIZE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_PRUNE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_PATH=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FIND_REGEX=y

CONFIG_BUSYBOX_DEFAULT_GREP=y

CONFIG_BUSYBOX_DEFAULT_EGREP=y

CONFIG_BUSYBOX_DEFAULT_FGREP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_GREP_CONTEXT=y

CONFIG_BUSYBOX_DEFAULT_XARGS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_XARGS_SUPPORT_CONFIRMATION=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_XARGS_SUPPORT_QUOTES=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_XARGS_SUPPORT_TERMOPT=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_XARGS_SUPPORT_ZERO_TERM=y

CONFIG_BUSYBOX_DEFAULT_HALT=y

CONFIG_BUSYBOX_DEFAULT_POWEROFF=y

CONFIG_BUSYBOX_DEFAULT_REBOOT=y

CONFIG_BUSYBOX_DEFAULT_TELINIT_PATH=””

CONFIG_BUSYBOX_DEFAULT_FEATURE_KILL_DELAY=0

CONFIG_BUSYBOX_DEFAULT_INIT_TERMINAL_TYPE=””

CONFIG_BUSYBOX_DEFAULT_FEATURE_SHADOWPASSWDS=y

CONFIG_BUSYBOX_DEFAULT_LAST_ID=0

CONFIG_BUSYBOX_DEFAULT_FIRST_SYSTEM_ID=0

399

7 – Appendix C

CONFIG_BUSYBOX_DEFAULT_LAST_SYSTEM_ID=0

CONFIG_BUSYBOX_DEFAULT_FEATURE_DEFAULT_PASSWD_ALGO=”md5”

CONFIG_BUSYBOX_DEFAULT_LOGIN=y

CONFIG_BUSYBOX_DEFAULT_LOGIN_SESSION_AS_CHILD=y

CONFIG_BUSYBOX_DEFAULT_PASSWD=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_PASSWD_WEAK_CHECK=y

CONFIG_BUSYBOX_DEFAULT_DEFAULT_MODULES_DIR=””

CONFIG_BUSYBOX_DEFAULT_DEFAULT_DEPMOD_FILE=””

CONFIG_BUSYBOX_DEFAULT_DMESG=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_DMESG_PRETTY=y

CONFIG_BUSYBOX_DEFAULT_FLOCK=y

CONFIG_BUSYBOX_DEFAULT_HEXDUMP=y

CONFIG_BUSYBOX_DEFAULT_HWCLOCK=y

CONFIG_BUSYBOX_DEFAULT_MKSWAP=y

CONFIG_BUSYBOX_DEFAULT_MOUNT=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_MOUNT_HELPERS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_MOUNT_CIFS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_MOUNT_FLAGS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_MOUNT_FSTAB=y

CONFIG_BUSYBOX_DEFAULT_PIVOT_ROOT=y

CONFIG_BUSYBOX_DEFAULT_SWITCH_ROOT=y

CONFIG_BUSYBOX_DEFAULT_UMOUNT=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_UMOUNT_ALL=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_MOUNT_LOOP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_BEEP_FREQ=0

CONFIG_BUSYBOX_DEFAULT_FEATURE_BEEP_LENGTH_MS=0

CONFIG_BUSYBOX_DEFAULT_CROND=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_CROND_DIR=”/etc”

CONFIG_BUSYBOX_DEFAULT_CRONTAB=y

CONFIG_BUSYBOX_DEFAULT_LESS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_LESS_MAXLINES=9999999

CONFIG_BUSYBOX_DEFAULT_LOCK=y

CONFIG_BUSYBOX_DEFAULT_STRINGS=y

CONFIG_BUSYBOX_DEFAULT_TIME=y

400

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_BUSYBOX_DEFAULT_FEATURE_IPV6=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_PREFER_IPV4_ADDRESS=y

CONFIG_BUSYBOX_DEFAULT_VERBOSE_RESOLUTION_ERRORS=y

CONFIG_BUSYBOX_DEFAULT_BRCTL=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_BRCTL_FANCY=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_BRCTL_SHOW=y

CONFIG_BUSYBOX_DEFAULT_IFCONFIG=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IFCONFIG_STATUS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IFCONFIG_HW=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IFCONFIG_BROADCAST_PLUS=y

CONFIG_BUSYBOX_DEFAULT_IFUPDOWN_IFSTATE_PATH=””

CONFIG_BUSYBOX_DEFAULT_IP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IP_ADDRESS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IP_LINK=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IP_ROUTE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IP_ROUTE_DIR=”/etc/iproute2”

CONFIG_BUSYBOX_DEFAULT_FEATURE_IP_RULE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_IP_NEIGH=y

CONFIG_BUSYBOX_DEFAULT_NC=y

CONFIG_BUSYBOX_DEFAULT_NETMSG=y

CONFIG_BUSYBOX_DEFAULT_NETSTAT=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_NETSTAT_WIDE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_NETSTAT_PRG=y

CONFIG_BUSYBOX_DEFAULT_NSLOOKUP_OPENWRT=y

CONFIG_BUSYBOX_DEFAULT_NTPD=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_NTPD_SERVER=y

CONFIG_BUSYBOX_DEFAULT_PING=y

CONFIG_BUSYBOX_DEFAULT_PING6=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_FANCY_PING=y

CONFIG_BUSYBOX_DEFAULT_ROUTE=y

CONFIG_BUSYBOX_DEFAULT_TRACEROUTE=y

CONFIG_BUSYBOX_DEFAULT_TRACEROUTE6=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TRACEROUTE_VERBOSE=y

CONFIG_BUSYBOX_DEFAULT_DHCPD_LEASES_FILE=””

401

7 – Appendix C

CONFIG_BUSYBOX_DEFAULT_UDHCPC=y

CONFIG_BUSYBOX_DEFAULT_UDHCPC_DEFAULT_SCRIPT=”/usr/share/udhcpc/

default.script”

CONFIG_BUSYBOX_DEFAULT_UDHCP_DEBUG=0

CONFIG_BUSYBOX_DEFAULT_UDHCPC_SLACK_FOR_BUGGY_SERVERS=80

CONFIG_BUSYBOX_DEFAULT_FEATURE_UDHCP_RFC3397=y

CONFIG_BUSYBOX_DEFAULT_IFUPDOWN_UDHCPC_CMD_OPTIONS=””

CONFIG_BUSYBOX_DEFAULT_FEATURE_MIME_CHARSET=””

CONFIG_BUSYBOX_DEFAULT_FREE=y

CONFIG_BUSYBOX_DEFAULT_KILL=y

CONFIG_BUSYBOX_DEFAULT_KILLALL=y

CONFIG_BUSYBOX_DEFAULT_PGREP=y

CONFIG_BUSYBOX_DEFAULT_PIDOF=y

CONFIG_BUSYBOX_DEFAULT_PS=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_PS_WIDE=y

CONFIG_BUSYBOX_DEFAULT_BB_SYSCTL=y

CONFIG_BUSYBOX_DEFAULT_TOP=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TOP_CPU_USAGE_PERCENTAGE=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_TOP_CPU_GLOBAL_PERCENTS=y

CONFIG_BUSYBOX_DEFAULT_UPTIME=y

CONFIG_BUSYBOX_DEFAULT_SV_DEFAULT_SERVICE_DIR=””

CONFIG_BUSYBOX_DEFAULT_SH_IS_ASH=y

CONFIG_BUSYBOX_DEFAULT_BASH_IS_NONE=y

CONFIG_BUSYBOX_DEFAULT_ASH=y

CONFIG_BUSYBOX_DEFAULT_ASH_INTERNAL_GLOB=y

CONFIG_BUSYBOX_DEFAULT_ASH_BASH_COMPAT=y

CONFIG_BUSYBOX_DEFAULT_ASH_JOB_CONTROL=y

CONFIG_BUSYBOX_DEFAULT_ASH_ALIAS=y

CONFIG_BUSYBOX_DEFAULT_ASH_EXPAND_PRMT=y

CONFIG_BUSYBOX_DEFAULT_ASH_ECHO=y

CONFIG_BUSYBOX_DEFAULT_ASH_PRINTF=y

CONFIG_BUSYBOX_DEFAULT_ASH_TEST=y

CONFIG_BUSYBOX_DEFAULT_ASH_GETOPTS=y

CONFIG_BUSYBOX_DEFAULT_ASH_CMDCMD=y

402

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_BUSYBOX_DEFAULT_FEATURE_SH_MATH=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_SH_MATH_64=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_SH_NOFORK=y

CONFIG_BUSYBOX_DEFAULT_LOGGER=y

CONFIG_BUSYBOX_DEFAULT_FEATURE_SYSLOGD_READ_BUFFER_SIZE=0

CONFIG_BUSYBOX_DEFAULT_FEATURE_IPC_SYSLOG_BUFFER_SIZE=0

CONFIG_PACKAGE_dnsmasq=y

CONFIG_PACKAGE_dropbear=y

#

Configuration

#

CONFIG_DROPBEAR_CURVE25519=y

CONFIG_PACKAGE_ead=m

CONFIG_PACKAGE_firewall=y

CONFIG_PACKAGE_fstools=y

CONFIG_PACKAGE_fwtool=y

CONFIG_PACKAGE_jsonfilter=y

CONFIG_PACKAGE_libc=y

CONFIG_PACKAGE_libgcc=y

CONFIG_PACKAGE_libpthread=y

CONFIG_PACKAGE_librt=y

CONFIG_PACKAGE_libstdcpp=m

CONFIG_PACKAGE_logd=y

CONFIG_PACKAGE_mtd=y

CONFIG_PACKAGE_netifd=y

CONFIG_PACKAGE_om -watchdog=m

CONFIG_PACKAGE_openwrt -keyring=y

CONFIG_PACKAGE_opkg=y

CONFIG_PACKAGE_procd=y

#

Configuration

#

403

7 – Appendix C

CONFIG_PACKAGE_rpcd=y

CONFIG_PACKAGE_ubox=y

CONFIG_PACKAGE_ubus=y

CONFIG_PACKAGE_ubusd=y

CONFIG_PACKAGE_uci=y

CONFIG_PACKAGE_usign=y

#

Administration

#

#

openwisp

#

#

zabbix

#

#

Boot Loaders

#

CONFIG_PACKAGE_grub2=y

#

Development

#

#

Libraries

#

CONFIG_PACKAGE_ar=y

CONFIG_PACKAGE_binutils=y

CONFIG_PACKAGE_objdump=y

404

OpenWrt 18.06.1 configuration file for the APU boards

#

Extra packages

#

#

Firmware

#

#

ath10k IPQ4019 Boarddata

#

CONFIG_PACKAGE_ath9k -htc-firmware=y

CONFIG_PACKAGE_r8169 -firmware=y

CONFIG_PACKAGE_wireless -regdb=y

#

Fonts

#

#

DejaVu

#

#

Kernel modules

#

#

Block Devices

#

CONFIG_PACKAGE_kmod -ata-core=y

CONFIG_PACKAGE_kmod -ata-ahci=y

CONFIG_PACKAGE_kmod -scsi-core=y

405

7 – Appendix C

#

CAN Support

#

#

Cryptographic API modules

#

CONFIG_PACKAGE_kmod -crypto-acompress=m

CONFIG_PACKAGE_kmod -crypto-aead=y

CONFIG_PACKAGE_kmod -crypto-cbc=y

CONFIG_PACKAGE_kmod -crypto-crc32c=y

CONFIG_PACKAGE_kmod -crypto-des=m

CONFIG_PACKAGE_kmod -crypto-ecb=y

CONFIG_PACKAGE_kmod -crypto-fcrypt=m

CONFIG_PACKAGE_kmod -crypto-hash=y

CONFIG_PACKAGE_kmod -crypto-hmac=m

CONFIG_PACKAGE_kmod -crypto-hw-geode=y

CONFIG_PACKAGE_kmod -crypto-manager=y

CONFIG_PACKAGE_kmod -crypto-md4=m

CONFIG_PACKAGE_kmod -crypto-md5=m

CONFIG_PACKAGE_kmod -crypto-null=y

CONFIG_PACKAGE_kmod -crypto-pcbc=m

CONFIG_PACKAGE_kmod -crypto-pcompress=y

CONFIG_PACKAGE_kmod -crypto-sha1=y

CONFIG_PACKAGE_kmod -crypto-sha256=m

#

Filesystems

#

CONFIG_PACKAGE_kmod -fs-afs=m

CONFIG_PACKAGE_kmod -fs-autofs4=m

CONFIG_PACKAGE_kmod -fs-btrfs=m

CONFIG_PACKAGE_kmod -fs-cifs=m

406

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_PACKAGE_kmod -fs-configfs=m

CONFIG_PACKAGE_kmod -fs-cramfs=m

CONFIG_PACKAGE_kmod -fs-exportfs=m

CONFIG_PACKAGE_kmod -fs-ext4=y

CONFIG_PACKAGE_kmod -fs-fscache=m

CONFIG_PACKAGE_kmod -fs-jfs=m

CONFIG_PACKAGE_kmod -fs-minix=m

CONFIG_PACKAGE_kmod -fs-msdos=m

CONFIG_PACKAGE_kmod -fs-nfs=m

CONFIG_PACKAGE_kmod -fs-nfs-common=m

CONFIG_PACKAGE_kmod -fs-nfs-v3=m

CONFIG_PACKAGE_kmod -fs-nfs-v4=m

CONFIG_PACKAGE_kmod -fs-nfsd=m

CONFIG_PACKAGE_kmod -fs-ntfs=m

CONFIG_PACKAGE_kmod -fs-reiserfs=m

CONFIG_PACKAGE_kmod -fs-udf=m

CONFIG_PACKAGE_kmod -fs-vfat=m

CONFIG_PACKAGE_kmod -fs-xfs=m

CONFIG_PACKAGE_kmod -fuse=m

#

FireWire support

#

#

Hardware Monitoring Support

#

CONFIG_PACKAGE_kmod -hwmon-core=y

CONFIG_PACKAGE_kmod -hwmon-lm90=y

#

I2C support

#

CONFIG_PACKAGE_kmod -i2c-core=y

407

7 – Appendix C

CONFIG_PACKAGE_kmod -i2c-algo-bit=y

CONFIG_PACKAGE_kmod -i2c-piix4=y

#

Industrial I/O Modules

#

#

Input modules

#

CONFIG_PACKAGE_kmod -hid=y

CONFIG_PACKAGE_kmod -hid-generic=y

CONFIG_PACKAGE_kmod -input-core=y

CONFIG_PACKAGE_kmod -input-evdev=y

#

LED modules

#

CONFIG_PACKAGE_kmod -leds-gpio=y

CONFIG_PACKAGE_kmod -ledtrig-gpio=y

CONFIG_PACKAGE_kmod -ledtrig-heartbeat=y

CONFIG_PACKAGE_kmod -ledtrig-netdev=y

#

Libraries

#

CONFIG_PACKAGE_kmod -lib-crc-ccitt=y

CONFIG_PACKAGE_kmod -lib-crc-itu-t=m

CONFIG_PACKAGE_kmod -lib-crc16=y

CONFIG_PACKAGE_kmod -lib-crc32c=m

CONFIG_PACKAGE_kmod -lib-lzo=m

CONFIG_PACKAGE_kmod -lib-raid6=m

CONFIG_PACKAGE_kmod -lib-xor=m

CONFIG_PACKAGE_kmod -lib-zlib-deflate=m

408

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_PACKAGE_kmod -lib-zlib-inflate=m

CONFIG_PACKAGE_kmod -lib-zstd=m

#

Native Language Support

#

CONFIG_PACKAGE_kmod -nls-base=y

CONFIG_PACKAGE_kmod -nls-cp437=m

CONFIG_PACKAGE_kmod -nls-iso8859 -1=m

CONFIG_PACKAGE_kmod -nls-utf8=m

#

Netfilter Extensions

#

CONFIG_PACKAGE_kmod -ip6tables=y

CONFIG_PACKAGE_kmod -ipt-conntrack=y

CONFIG_PACKAGE_kmod -ipt-core=y

CONFIG_PACKAGE_kmod -ipt-nat=y

CONFIG_PACKAGE_kmod -ipt-offload=y

CONFIG_PACKAGE_kmod -ipt-tee=y

CONFIG_PACKAGE_kmod -nf-conntrack=y

CONFIG_PACKAGE_kmod -nf-conntrack6=y

CONFIG_PACKAGE_kmod -nf-flow=y

CONFIG_PACKAGE_kmod -nf-ipt=y

CONFIG_PACKAGE_kmod -nf-ipt6=y

CONFIG_PACKAGE_kmod -nf-nat=y

CONFIG_PACKAGE_kmod -nf-reject=y

CONFIG_PACKAGE_kmod -nf-reject6=y

#

Network Devices

#

CONFIG_PACKAGE_kmod -8139cp=y

CONFIG_PACKAGE_kmod -e1000e=y

409

7 – Appendix C

CONFIG_PACKAGE_kmod -igb=y

CONFIG_PACKAGE_kmod -mii=y

CONFIG_PACKAGE_kmod -r8169=y

CONFIG_PACKAGE_kmod -solos-pci=y

CONFIG_PACKAGE_kmod -via-rhine=y

#

Network Support

#

CONFIG_PACKAGE_kmod -atm=y

CONFIG_PACKAGE_kmod -dnsresolver=m

CONFIG_PACKAGE_kmod -ppp=y

CONFIG_PACKAGE_kmod -mppe=y

CONFIG_PACKAGE_kmod -pppoa=y

CONFIG_PACKAGE_kmod -pppoe=y

CONFIG_PACKAGE_kmod -pppox=y

CONFIG_PACKAGE_kmod -rxrpc=m

CONFIG_PACKAGE_kmod -sched-core=y

CONFIG_PACKAGE_kmod -slhc=y

#

Other modules

#

CONFIG_PACKAGE_kmod -button-hotplug=y

CONFIG_PACKAGE_kmod -pps=y

CONFIG_PACKAGE_kmod -ptp=y

CONFIG_PACKAGE_kmod -sp5100_tco=y

#

PCMCIA support

#

#

SPI Support

410

OpenWrt 18.06.1 configuration file for the APU boards

#

#

Sound Support

#

#

USB Support

#

CONFIG_PACKAGE_kmod -usb-acm=y

CONFIG_PACKAGE_kmod -usb-core=y

CONFIG_PACKAGE_kmod -usb-ehci=y

CONFIG_PACKAGE_kmod -usb-hid=y

CONFIG_PACKAGE_kmod -usb-ohci=y

CONFIG_PACKAGE_kmod -usb-ohci-pci=y

CONFIG_PACKAGE_kmod -usb-serial=y

CONFIG_PACKAGE_kmod -usb-serial-cp210x=y

CONFIG_PACKAGE_kmod -usb-serial-ftdi=y

CONFIG_PACKAGE_kmod -usb-serial-pl2303=y

CONFIG_PACKAGE_kmod -usb-storage=y

CONFIG_PACKAGE_kmod -usb-storage-extras=y

CONFIG_PACKAGE_kmod -usb-uhci=y

CONFIG_PACKAGE_kmod -usb2=y

CONFIG_PACKAGE_kmod -usb2-pci=y

CONFIG_PACKAGE_kmod -usb3=y

#

Video Support

#

#

Virtualization

#

411

7 – Appendix C

#

Voice over IP

#

#

W1 support

#

#

WPAN 802.15.4 Support

#

#

Wireless Drivers

#

CONFIG_PACKAGE_kmod -ath=y

CONFIG_ATH_USER_REGD=y

CONFIG_PACKAGE_ATH_DEBUG=y

CONFIG_PACKAGE_ATH_DFS=y

CONFIG_PACKAGE_kmod -ath5k=y

CONFIG_PACKAGE_kmod -ath9k=y

CONFIG_ATH9K_SUPPORT_PCOEM=y

CONFIG_PACKAGE_kmod -ath9k-common=y

CONFIG_PACKAGE_kmod -cfg80211=y

CONFIG_PACKAGE_kmod -mac80211=y

CONFIG_PACKAGE_MAC80211_DEBUGFS=y

CONFIG_PACKAGE_MAC80211_MESH=y

#

Languages

#

#

Erlang

412

OpenWrt 18.06.1 configuration file for the APU boards

#

#

Go

#

#

Java

#

#

Lua

#

CONFIG_PACKAGE_libiwinfo -lua=y

CONFIG_PACKAGE_lua=y

#

Node.js

#

#

Module Selection

#

#

PHP

#

#

Perl

#

#

Python

413

7 – Appendix C

#

#

Configuration

#

#

Configuration

#

#

Ruby

#

#

Tcl

#

#

Libraries

#

#

Compression

#

#

Filesystem

#

CONFIG_PACKAGE_libsysfs=y

#

Firewall

#

414

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_PACKAGE_libip4tc=y

CONFIG_PACKAGE_libip6tc=y

CONFIG_PACKAGE_libxtables=y

#

Instant Messaging

#

#

IoT

#

#

Languages

#

#

Networking

#

#

SSL

#

CONFIG_PACKAGE_libopenssl=y

CONFIG_OPENSSL_WITH_EC=y

CONFIG_OPENSSL_WITH_DEPRECATED=y

CONFIG_OPENSSL_WITH_NPN=y

CONFIG_OPENSSL_WITH_PSK=y

CONFIG_OPENSSL_WITH_SRP=y

#

Sound

#

415

7 – Appendix C

#

Telephony

#

#

database

#

#

libelektra

#

CONFIG_PACKAGE_libbfd=y

CONFIG_PACKAGE_libblkid=y

CONFIG_PACKAGE_libblobmsg -json=y

CONFIG_PACKAGE_libcap=y

CONFIG_PACKAGE_libcomerr=y

CONFIG_PACKAGE_libext2fs=y

CONFIG_PACKAGE_libf2fs=y

CONFIG_PACKAGE_libftdi1=y

CONFIG_PACKAGE_libgps=y

CONFIG_PACKAGE_libiwinfo=y

CONFIG_PACKAGE_libjson -c=y

CONFIG_PACKAGE_libkmod=y

CONFIG_PACKAGE_liblua=y

CONFIG_PACKAGE_liblucihttp=y

CONFIG_PACKAGE_liblucihttp -lua=y

CONFIG_PACKAGE_libncurses=y

CONFIG_PACKAGE_libnl -tiny=y

CONFIG_PACKAGE_libopcodes=y

CONFIG_PACKAGE_libpcap=y

#

Configuration

#

416

OpenWrt 18.06.1 configuration file for the APU boards

CONFIG_PACKAGE_libreadline=y

CONFIG_PACKAGE_libsmartcols=y

CONFIG_PACKAGE_libss=y

CONFIG_PACKAGE_libubox=y

CONFIG_PACKAGE_libubus=y

CONFIG_PACKAGE_libubus -lua=y

CONFIG_PACKAGE_libuci=y

CONFIG_PACKAGE_libuclient=y

CONFIG_PACKAGE_libusb -1.0=y

CONFIG_PACKAGE_libusb -compat=y

CONFIG_PACKAGE_libuuid=y

CONFIG_PACKAGE_linux -atm=y

CONFIG_PACKAGE_rpcd -mod-rrdns=y

CONFIG_PACKAGE_terminfo=y

CONFIG_PACKAGE_uclibcxx=y

CONFIG_PACKAGE_zlib=y

#

Configuration

#

#

LuCI

#

#

1. Collections

#

CONFIG_PACKAGE_luci=y

#

2. Modules

#

CONFIG_PACKAGE_luci -base=y

417

7 – Appendix C

#

Translations

#

CONFIG_PACKAGE_luci -mod-admin-full=y

#

3. Applications

#

CONFIG_PACKAGE_luci -app-firewall=y

#

4. Themes

#

CONFIG_PACKAGE_luci -theme-bootstrap=y

#

5. Protocols

#

CONFIG_PACKAGE_luci -proto-ipv6=y

CONFIG_PACKAGE_luci -proto-ppp=y

#

6. Libraries

#

CONFIG_PACKAGE_luci -lib-ip=y

CONFIG_PACKAGE_luci -lib-jsonc=y

CONFIG_PACKAGE_luci -lib-nixio=y

#

9. Freifunk

#

#

418

OpenWrt 18.06.1 configuration file for the APU boards

Mail

#

#

Select postfix build options

#

CONFIG_POSTFIX_TLS=y

CONFIG_POSTFIX_SASL=y

CONFIG_POSTFIX_LDAP=y

CONFIG_POSTFIX_CDB=y

CONFIG_POSTFIX_SQLITE=y

CONFIG_POSTFIX_PCRE=y

#

Multimedia

#

#

Streaming

#

#

Network

#

#

BitTorrent

#

#

Captive Portals

#

#

419

7 – Appendix C

Download Manager

#

#

File Transfer

#

#

Filesystem

#

#

Firewall

#

CONFIG_PACKAGE_ip6tables=y

CONFIG_PACKAGE_iptables=y

CONFIG_PACKAGE_iptables -mod-tee=y

#

Firewall Tunnel

#

#

FreeRADIUS (version 3)

#

#

IP Addresses and Names

#

#

Instant Messaging

#

420

OpenWrt 18.06.1 configuration file for the APU boards

#

Linux ATM tools

#

CONFIG_PACKAGE_br2684ctl=y

#

NMAP Suite

#

#

NTRIP

#

#

OLSR.org network framework

#

#

Open vSwitch

#

#

Printing

#

#

Routing and Redirection

#

CONFIG_PACKAGE_tc=y

#

SSH

#

421

7 – Appendix C

#

THC-IPv6 attack and analyzing toolkit

#

#

Telephony

#

#

Telephony Lantiq

#

#

Time Synchronization

#

CONFIG_PACKAGE_chrony=y

#

VPN

#

#

Version Control Systems

#

#

WWAN

#

#

Web Servers/Proxies

#

CONFIG_PACKAGE_uhttpd=y

422

OpenWrt 18.06.1 configuration file for the APU boards

#

dial-in/up

#

#

tcprelay

#

#

wireless

#

CONFIG_PACKAGE_hostapd -common=y

CONFIG_PACKAGE_iperf=y

CONFIG_PACKAGE_iperf3=y

CONFIG_PACKAGE_iw=y

CONFIG_PACKAGE_odhcp6c=y

CONFIG_PACKAGE_odhcp6c_ext_cer_id=0

CONFIG_PACKAGE_odhcpd -ipv6only=y

#

Configuration

#

CONFIG_PACKAGE_odhcpd_ipv6only_ext_cer_id=0

CONFIG_PACKAGE_ppp=y

CONFIG_PACKAGE_ppp -mod-pppoa=y

CONFIG_PACKAGE_ppp -mod-pppoe=y

CONFIG_PACKAGE_pppdump=y

CONFIG_PACKAGE_pppstats=y

CONFIG_PACKAGE_soloscli=y

CONFIG_PACKAGE_tcpdump=y

CONFIG_PACKAGE_uclient -fetch=y

CONFIG_WPA_MSG_MIN_PRIORITY=3

CONFIG_DRIVER_11N_SUPPORT=y

CONFIG_DRIVER_11W_SUPPORT=y

423

7 – Appendix C

CONFIG_PACKAGE_wpad -mini=y

#

Sound

#

#

Utilities

#

#

Boot Loaders

#

#

Compression

#

#

Disc

#

CONFIG_PACKAGE_partx -utils=y

#

Editors

#

#

Encryption

#

CONFIG_PACKAGE_px5g -standalone=m

#

Filesystem

424

OpenWrt 18.06.1 configuration file for the APU boards

#

CONFIG_PACKAGE_e2fsprogs=y

CONFIG_PACKAGE_mkf2fs=y

#

Image Manipulation

#

#

Microcontroller programming

#

#

RTKLIB Suite

#

#

Shells

#

CONFIG_PACKAGE_bash=y

#

Telephony

#

#

Terminal

#

CONFIG_PACKAGE_script -utils=y

CONFIG_PACKAGE_setterm=y

CONFIG_PACKAGE_wall=y

#

Virtualization

425

7 – Appendix C

#

#

Zoneinfo

#

#

database

#

CONFIG_PACKAGE_dmidecode=y

CONFIG_PACKAGE_flashrom=y

CONFIG_PACKAGE_gpsd=y

CONFIG_PACKAGE_hwclock=y

CONFIG_PACKAGE_iwinfo=y

CONFIG_PACKAGE_jshn=y

CONFIG_PACKAGE_libjson -script=y

CONFIG_PACKAGE_pciutils=y

CONFIG_PACKAGE_strace=y

#

Xorg

#

#

font-utils

#

426

Appendix D

APU boards network configuration files and iw_startup

These files are related to configuring the Ethernet and WLAN interfaces of the APU

boards, as reported in section 5.5.

APU_102

/etc/config/network

1

2 config interface ’loopback ’

3 option ifname ’lo’

4 option proto ’static’

5 option ipaddr ’127.0.0.1’

6 option netmask ’255.0.0.0’

7

8 config globals ’globals’

9 option ula_prefix ’fdfb:5452:15c1::/48’

10

11 config interface ’lan’

12 # option type ’bridge’

13 option ifname ’eth2’

14 option proto ’static’

15 option ipaddr ’192.168.1.182’

427

7 – Appendix D

16 option netmask ’255.255.255.0’

17 option gateway ’192.168.1.1’

18 # option ip6assign ’60’

19

20 config interface ’wan’

21 option ifname ’eth0’

22 option proto ’dhcp’

23

24 config interface ’wan6’

25 option ifname ’eth0’

26 option proto ’dhcpv6’

428

APU boards network configuration files and iw_startup

/etc/config/wireless

1

2 config wifi-device ’radio0’

3 option type ’mac80211 ’

4 option channel ’36’

5 option hwmode ’11a’

6 option path ’pci0000:00/0000:00:15.0/0000:05:00.0’

7 option htmode ’HT20’

8 option disabled ’0’

9 option txpower ’3’

10

11 config wifi-iface ’default_radio0 ’

12 option device ’radio0’

13 option network ’lan’

14 option mode ’ap’

15 option ssid ’OpenWrt’

16 option encryption ’none’

429

7 – Appendix D

/root/iw_startup

1 #!/bin/sh

2

3 echo ”Waiting 5 seconds...”

4 sleep 5

5 echo ”Pacthed Italian Frequency Register Set”

6 iw reg set IT

7 sleep 1

8 echo ”Turn off wlan0”

9 ifconfig wlan0 down

10 sleep 1

11 echo ”Set Mode OCB”

12 iw dev wlan0 set type ocb

13 echo ”Turn on wlan0”

14 ifconfig wlan0 up

15 sleep 1

16 echo ”Leave possibile OCB...”

17 iw dev wlan0 ocb leave

18 echo ”Set Frequency 5890 MHz (CCH) and channel width 10MHz (802.11p)”

19 iw dev wlan0 ocb join 5890 10MHz

20 echo ”IP address set to 10.10.6.102”

21 ifconfig wlan0 10.10.6.102 netmask 255.255.0.0

22 echo ”Set Rate 3M and txpower 15 dBm, using iw”

23 iw dev wlan0 set bitrates legacy -5 6

24 iw dev wlan0 set txpower fixed 1500

25 echo ”Completing configuration , waiting 8 seconds...”

26 sleep 8

27 echo ”Configured as: ”

28 iw dev

430

APU boards network configuration files and iw_startup

APU_103

/etc/config/network

1

2 config interface ’loopback ’

3 option ifname ’lo’

4 option proto ’static’

5 option ipaddr ’127.0.0.1’

6 option netmask ’255.0.0.0’

7

8 config globals ’globals’

9 option ula_prefix ’fd36:b1bb:9cb5::/48’

10

11 config interface ’lan’

12 # option type ’bridge’

13 option ifname ’eth2’

14 option proto ’static’

15 option ipaddr ’192.168.1.183’

16 option netmask ’255.255.255.0’

17 option gateway ’192.168.1.1’

18 # option ip6assign ’60’

19

20 config interface ’wan’

21 option ifname ’eth0’

22 option proto ’dhcp’

23

24 config interface ’wan6’

25 option ifname ’eth0’

26 option proto ’dhcpv6’

431

7 – Appendix D

/etc/config/wireless

1

2 config wifi-device ’radio0’

3 option type ’mac80211 ’

4 option channel ’36’

5 option hwmode ’11a’

6 option path ’pci0000:00/0000:00:15.0/0000:05:00.0’

7 option htmode ’HT20’

8 option disabled ’0’

9 option txpower ’3’

10

11 config wifi-iface ’default_radio0 ’

12 option device ’radio0’

13 option network ’lan’

14 option mode ’ap’

15 option ssid ’OpenWrt’

16 option encryption ’none’

432

APU boards network configuration files and iw_startup

/root/iw_startup

1 #!/bin/sh

2

3 echo ”Waiting 5 seconds...”

4 sleep 5

5 echo ”Pacthed Italian Frequency Register Set”

6 iw reg set IT

7 sleep 1

8 echo ”Turn off wlan0”

9 ifconfig wlan0 down

10 sleep 1

11 echo ”Set Mode OCB”

12 iw dev wlan0 set type ocb

13 echo ”Turn on wlan0”

14 ifconfig wlan0 up

15 sleep 1

16 echo ”Leave possibile OCB...”

17 iw dev wlan0 ocb leave

18 echo ”Set Frequency 5890 MHz (CCH) and channel width 10MHz (802.11p)”

19 iw dev wlan0 ocb join 5890 10MHz

20 echo ”IP address set to 10.10.6.103”

21 ifconfig wlan0 10.10.6.103 netmask 255.255.0.0

22 echo ”Set Rate 3M and txpower 15 dBm, using iw”

23 iw dev wlan0 set bitrates legacy -5 6

24 iw dev wlan0 set txpower fixed 1500

25 echo ”Completing configuration , waiting 8 seconds...”

26 sleep 8

27 echo ”Configured as: ”

28 iw dev

433

Appendix E

chrony and system configuration files

These files are all related to setting up the APU (and ALIX) boards for NTP synchro-

nization, as reported in section 5.6.

/etc/config/chrony

1 config pool

2 option hostname ’ntp1.inrim.it’

3 option maxpoll ’12’

4 option iburst ’yes’

5

6 config dhcp_ntp_server

7 option iburst ’yes’

8

9 config allow

10 option interface ’lan’

11

12 config makestep

13 option threshold ’1.0’

14 option limit ’3’

434

chrony and system configuration files

/etc/config/system

1

2 config system

3 option hostname ’OpenWrt’

4 option timezone ’UTC’

5 option ttylogin ’0’

6 option log_size ’64’

7 option urandom_seed ’0’

8

9 config timeserver ’ntp’

10 option enabled ’0’

11 option enable_server ’0’

12 list server ’0.openwrt.pool.ntp.org’

13 list server ’1.openwrt.pool.ntp.org’

14 list server ’2.openwrt.pool.ntp.org’

15 list server ’3.openwrt.pool.ntp.org’

16

17 config led ’led_wan’

18 option name ’WAN’

19 option sysfs ’apu2:green:led3’

20 option trigger ’netdev’

21 option mode ’link tx rx’

22 option dev ’eth0’

23

24 config led ’led_lan’

25 option name ’LAN’

26 option sysfs ’apu2:green:led2’

27 option trigger ’netdev’

28 option mode ’link tx rx’

29 option dev ’br-lan’

30

31 config led ’led_diag ’

32 option name ’DIAG’

435

7 – Appendix E

33 option sysfs ’apu2:green:power’

34 option default ’1’

436

chrony and system configuration files

/etc/chrony/chrony.conf

1 # This file is included from config file generated from /etc/config/

chrony

2

3 # Log clock errors above 0.5 seconds

4 logchange 0.5

5

6 # Don’t log client accesses

7 noclientlog

8

9 # set the system clock else the kernel will always stay in UNSYNC

state

10 rtcsync

437

Appendix F

millisleep utility and iPerf debug modifications

millisleep

The millisleep utility, used in section 6.2, is a very simple custom implementation of

sleep to wait for fraction of seconds (which is not currently supported by the OpenWrt’s

sleep).

It is based on Linux timers. In particular:

• Amonotonic increasing file descriptor-based timer is created using “timerfd_create

()”.

• The waiting time (in seconds) is parsed from the command line.

• Since the execution time of this utility has still not been measured in details (even

though the “time” Linux utility seems to prove that it is working properly), any wait

less than 10 ms is forbidden, since accuracy may be no more guaranteed (also based

on the broadcast transmission C programs, using Linux timers).

• A proper “struct itimerspec” is filled in with the wait time in seconds and nanosec-

onds.

• A proper “struct pollfd” is filled for the subsequent calls to “poll”, which waits for

certain events to happen on a given file descriptor.

438

millisleep utility and iPerf debug modifications

In our case the file descriptor is the timer one: “timerMon.fd=clockFd;”

Then, we set “timerMon.events=POLLIN;” to wait until “there is data to read” on

the file descriptor, i.e. until the timer expires.

• The timer is started with “timerfd_settime()”.

• A while loop continuously runs until the timer expires and “poll()” returns a pos-

itive value.

This program is meant to be run on the target boards, thus the need of cross compiling it,

rather than generating the binaries by direct compilation.

millisleep.c

1 #include <sys/timerfd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <time.h>

5 #include <poll.h>

6 #include <math.h>

7 #include <unistd.h>

8

9 #define SEC_TO_NANOSEC 1000000000

10 #define INDEFINITE_BLOCK -1

11 #define NO_FLAGS 0

12

13 int main (int argc, char **argv) {

14 int clockFd;

15 struct itimerspec new_value;

16 long nanosec;

17 double d_sec;

18 double d_time;

19 struct pollfd timerMon;

20

21 if(argc!=2) {

439

7 – Appendix F

22 exit(EXIT_FAILURE);

23 }

24

25 // Create monotonic (increasing) timer

26 clockFd=timerfd_create(CLOCK_MONOTONIC ,NO_FLAGS);

27 if(clockFd==-1) {

28 perror(”timerfd_create() error”);

29 exit(EXIT_FAILURE);

30 }

31

32 // Get time from command line and convert it to sec and nanosec

33 d_time=strtod(argv[1],NULL);

34 if(d_time==0) {

35 perror(”strtod() to get time interval returned an error”);

36 close(clockFd);

37 exit(EXIT_FAILURE);

38 }

39

40 if(d_time <0.01) {

41 fprintf(stderr,”Cannot wait for less than 10 ms.\n”);

42 close(clockFd);

43 exit(EXIT_FAILURE);

44 }

45

46 nanosec=SEC_TO_NANOSEC*modf(d_time ,&d_sec);

47 new_value.it_value.tv_nsec=nanosec;

48 new_value.it_value.tv_sec=(time_t)d_sec;

49 new_value.it_interval.tv_nsec=nanosec;

50 new_value.it_interval.tv_sec=(time_t)d_sec;

51

52 // Fill pollfd structure

53 timerMon.fd=clockFd;

54 timerMon.revents=0;

55 timerMon.events=POLLIN;

440

millisleep utility and iPerf debug modifications

56

57 // Start timer

58 if(timerfd_settime(clockFd,NO_FLAGS ,&new_value ,NULL)==-1) {

59 perror(”timerfd_settime() error”);

60 close(clockFd);

61 exit(EXIT_FAILURE);

62 }

63

64 while(poll(&timerMon ,1,INDEFINITE_BLOCK)<=0);

65

66 close(clockFd);

67

68 return 0;

69 }

iPerf debug modifications

This section reports the modified iPerf client code, used in section 6.2.

As mentioned in chapter 6 the modifications are related to the UDP send loop, which

has been modified in order to output otherwise unavailable (or more difficult to obtain)

information, such as the running delay and the UDP transmission buffer evolutions.

Two C++ files have been modified, both related to the client, ./src/Client.cpp, for what

concerns the UDP send loop only, and its header file, ./src/Client.hpp.

The relevant sections are presented below, followed by a brief comment on each mod-

ification.

./include/Client.hpp

1 /*---

2 * Copyright (c) 1999,2000,2001,2002,2003

3 * The Board of Trustees of the University of Illinois

4 * All Rights Reserved.

5 *---

441

7 – Appendix F

6 * Permission is hereby granted, free of charge, to any person

7 * obtaining a copy of this software (Iperf) and associated

8 * documentation files (the ”Software”), to deal in the Software

9 * without restriction , including without limitation the

10 * rights to use, copy, modify, merge, publish, distribute ,

11 * sublicense , and/or sell copies of the Software, and to permit

12 * persons to whom the Software is furnished to do

13 * so, subject to the following conditions:

14 *

15 *

16 * Redistributions of source code must retain the above

17 * copyright notice, this list of conditions and

18 * the following disclaimers.

19 *

20 *

21 * Redistributions in binary form must reproduce the above

22 * copyright notice, this list of conditions and the following

23 * disclaimers in the documentation and/or other materials

24 * provided with the distribution.

25 *

26 *

27 * Neither the names of the University of Illinois , NCSA,

28 * nor the names of its contributors may be used to endorse

29 * or promote products derived from this Software without

30 * specific prior written permission.

31 *

32 * THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND,

33 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

34 * OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND

35 * NONINFRINGEMENT. IN NO EVENT SHALL THE CONTIBUTORS OR COPYRIGHT

36 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY ,

37 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE ,

38 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE

39 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

442

millisleep utility and iPerf debug modifications

40 * __

41 * National Laboratory for Applied Network Research

42 * National Center for Supercomputing Applications

43 * University of Illinois at Urbana-Champaign

44 * http://www.ncsa.uiuc.edu

45 * __

46 * Client.hpp

47 * by Mark Gates <mgates@nlanr.net>

48 * ---

49 * A client thread initiates a connect to the server and handles

50 * sending and receiving data, then closes the socket.

51 * ---

52 */

53

54 #ifndef CLIENT_H

55 #define CLIENT_H

56

57 #include ”Settings.hpp”

58 #include ”Timestamp.hpp”

59

60 /* ---

*/

61 class Client {

62 public:

63 // stores server hostname , port, UDP/TCP mode, and UDP rate

64 Client(thread_Settings *inSettings);

65

66 // destroy the client object

67 ~Client();

68

69 // Set up the traffic thread and invokes

70 // appropriate traffic loop per the protocol

71 // and type of traffic

72 void Run(void);

443

7 – Appendix F

73

74 // For things like dual tests a server needs to be started by the

client,

75 // The code in src/launch.cpp will invoke this

76 void InitiateServer();

77

78 private:

79 void WritePacketID(void);

80 void InitTrafficLoop(void);

81 void FinishTrafficActions(void);

82 void FinalUDPHandshake(void);

83 void write_UDP_FIN(void);

84 bool InProgress(void);

85

86 ReportStruct *reportstruct;

87 double delay_lower_bounds;

88 max_size_t totLen;

89

90 // TCP plain

91 void RunTCP(void);

92 // TCP version which supports rate limiting per -b

93 void RunRateLimitedTCP(void);

94 // UDP traffic with isochronous and vbr support

95 void RunUDPIsochronous(void);

96 // UDP traffic with threads synced to transmit at near the same

time

97 void RunUDPTxSync(void);

98 // UDP plain

99 void RunUDP(void);

100 // client connect

101 void Connect();

102 void HdrXchange(int flags);

103

104 thread_Settings *mSettings;

444

millisleep utility and iPerf debug modifications

105 char* mBuf;

106 Timestamp mEndTime;

107 Timestamp lastPacketTime;

108 Timestamp now;

109 char* readAt;

110 Timestamp syncTime;

111

112 double *dlyarray;

113 unsigned int *bufarray;

114

115 }; // end class Client

116

117 #endif // CLIENT_H

• Lines 112-113: two pointer definitions have been added inside the “Client” class:

these will be used to allocate two arrays containing all the data related to the evo-

lution of the running delay (double *dlyarray) and the length of the UDP trans-

mission queue (unsigned int *bufarray)

445

7 – Appendix F

./src/Client.cpp (UDP send loop only)

464 /*

465 * UDP send loop

466 */

467 void Client::RunUDP(void) {

468 struct UDP_datagram* mBuf_UDP = (struct UDP_datagram*) mBuf;

469 int currLen;

470

471 double delay_target = 0;

472 double delay = 0;

473 double adjust = 0;

474

475 const int arraysize=100000;

476

477 unsigned int bufsize;

478

479 fprintf(stdout,”Entering UDP send loop!\n”);

480

481 // Allocating dlyarray

482 dlyarray=(double *)malloc(arraysize*sizeof(double));

483 if(!dlyarray) {

484 fprintf(stderr,”Unable to allocate dlyarray. Panic exit.\n”);

485 exit(EXIT_FAILURE);

486 }

487

488 // Allocating bufarray

489 bufarray=(unsigned int *)malloc(arraysize*sizeof(unsigned int));

490 if(!bufarray) {

491 fprintf(stderr,”Unable to allocate bufarray. Panic exit.\n”);

492 free(dlyarray);

493 exit(EXIT_FAILURE);

494 }

495

446

millisleep utility and iPerf debug modifications

496 int arridx=0;

497 bufarray[0]=0;

498

499 // compute delay target in units of nanoseconds

500 if (mSettings ->mUDPRateUnits == kRate_BW) {

501 // compute delay for bandwidth restriction , constrained to [0,1]

seconds

502 delay_target = (double) (mSettings ->mBufLen * ((kSecs_to_nsecs *

kBytes_to_Bits)

503 / mSettings ->mUDPRate));

504 } else {

505 delay_target = 1e9 / mSettings ->mUDPRate;

506 }

507 if (delay_target < 0 ||

508 delay_target > 1.0 * kSecs_to_nsecs) {

509 fprintf(stderr, warn_delay_large , delay_target / kSecs_to_nsecs);

510 delay_target = 1.0 * kSecs_to_nsecs;

511 }

512

513 fprintf(stdout,”Target delay with -b %d: %f ms\n”,(int) mSettings

->mUDPRate ,delay_target/1e6);

514 fprintf(stdout,”Delay lower bounds: %f ms\n”,delay_lower_bounds/1

e6);

515

516 // Set this to > 0 so first loop iteration will delay the IPG

517 currLen = 1;

518 double variance = mSettings ->mVariance;

519

520 while (InProgress()) {

521 // Test case: drop 17 packets and send 2 out-of-order:

522 // sequence 51, 52, 70, 53, 54, 71, 72

523 //switch(datagramID) {

524 // case 53: datagramID = 70; break;

525 // case 71: datagramID = 53; break;

447

7 – Appendix F

526 // case 55: datagramID = 71; break;

527 // default: break;

528 //}

529 now.setnow();

530 reportstruct ->packetTime.tv_sec = now.getSecs();

531 reportstruct ->packetTime.tv_usec = now.getUsecs();

532 if (isVaryLoad(mSettings) && mSettings ->mUDPRateUnits ==

kRate_BW) {

533 static Timestamp time3;

534 if (now.subSec(time3) >= VARYLOAD_PERIOD) {

535 int var_rate = lognormal(mSettings ->mUDPRate ,variance);

536 if (var_rate < 0)

537 var_rate = 0;

538

539 delay_target = (double) (mSettings ->mBufLen * ((kSecs_to_nsecs *

kBytes_to_Bits)

540 / var_rate));

541 time3 = now;

542 }

543 }

544

545 // store datagram ID into buffer

546 WritePacketID();

547 mBuf_UDP->tv_sec = htonl(reportstruct ->packetTime.tv_sec);

548 mBuf_UDP->tv_usec = htonl(reportstruct ->packetTime.tv_usec);

549

550 if (!isSeqNo64b(mSettings) && (reportstruct ->packetID & 0x80000000L)

) {

551 // seqno wrapped

552 fprintf(stderr, ”%s”, warn_seqno_wrap);

553 break;

554 }

555 // Adjustment for the running delay

556 // o measure how long the last loop iteration took

448

millisleep utility and iPerf debug modifications

557 // o calculate the delay adjust

558 // - If write succeeded , adjust = target IPG - the loop time

559 // - If write failed, adjust = the loop time

560 // o then adjust the overall running delay

561 // Note: adjust units are nanoseconds ,

562 // packet timestamps are microseconds

563 if (currLen > 0)

564 adjust = delay_target + \

565 (1000.0 * lastPacketTime.subUsec(reportstruct ->packetTime));

566 else

567 adjust = 1000.0 * lastPacketTime.subUsec(reportstruct ->

packetTime);

568

569 lastPacketTime.set(reportstruct ->packetTime.tv_sec,

570 reportstruct ->packetTime.tv_usec);

571 // Since linux nanosleep/busyloop can exceed delay

572 // there are two possible equilibriums

573 // 1) Try to perserve inter packet gap

574 // 2) Try to perserve requested transmit rate

575 // The latter seems preferred , hence use a running delay

576 // that spans the life of the thread and constantly adjust.

577 // A negative delay means the iperf app is behind.

578 delay += adjust;

579 dlyarray[arridx]=delay;

580 arridx=(arridx+1)%arraysize;

581

582 // Don’t let delay grow unbounded

583 if (delay < delay_lower_bounds) {

584 delay = delay_target;

585 }

586

587 reportstruct ->errwrite = 0;

588 reportstruct ->emptyreport = 0;

589

449

7 – Appendix F

590 // Log UDP buffer status before sending the next packet

591 ioctl(mSettings ->mSock,TIOCOUTQ ,&bufsize);

592 bufarray[arridx]=bufsize;

593

594 // perform write

595 currLen = write(mSettings ->mSock, mBuf, mSettings ->mBufLen);

596 if (currLen < 0) {

597 reportstruct ->packetID --;

598 reportstruct ->errwrite = 1;

599 reportstruct ->emptyreport = 1;

600 currLen = 0;

601 if (

602 #ifdef WIN32

603 (errno = WSAGetLastError()) != WSAETIMEDOUT &&

604 errno != WSAECONNREFUSED

605 #else

606 errno != EAGAIN && errno != EWOULDBLOCK &&

607 errno != EINTR && errno != ECONNREFUSED &&

608 errno != ENOBUFS

609 #endif

610) {

611 WARN_errno(1, ”write”);

612 break;

613 }

614 }

615

616 // report packets

617 reportstruct ->packetLen = (unsigned long) currLen;

618 ReportPacket(mSettings ->reporthdr , reportstruct);

619 // Insert delay here only if the running delay is greater than 1

usec,

620 // otherwise don’t delay and immediately continue with the next tx.

621 if (delay >= 1000) {

622 // Convert from nanoseconds to microseconds

450

millisleep utility and iPerf debug modifications

623 // and invoke the microsecond delay

624 delay_loop((unsigned long) (delay / 1000));

625 }

626 if (!isModeTime(mSettings)) {

627 /* mAmount may be unsigned, so don’t let it underflow! */

628 if(mSettings ->mAmount >= (unsigned long) currLen) {

629 mSettings ->mAmount -= (unsigned long) currLen;

630 } else {

631 mSettings ->mAmount = 0;

632 }

633 }

634

635 }

636

637 // Print to stderr all the running delays and then all the buffer

status data

638 for(int aidx=0;aidx<arridx;aidx++) {

639 fprintf(stderr,”%f\n”,dlyarray[aidx]);

640 }

641

642 fprintf(stderr,”-----------------------\n”);

643

644 for(int aidx=0;aidx<arridx;aidx++) {

645 fprintf(stderr,”%u\n”,bufarray[aidx]);

646 }

647

648 fprintf(stdout,”Exiting UDP send loop!\n”);

649

650 FinishTrafficActions();

651 }

• General note: as reported in chapter 6, “the data about the evolution of the buffer

and of the running delay is stored inside two arrays, which are printed on stderr

451

7 – Appendix F

only at the end of the UDP send loop execution, to avoid continuous write to files or

on stdout/stderr which could potentially affect performance in an evident way”.

• Lines 475-477: The size of the additional arrays (i.e. themaximum number of histor-

ical points to be collected) is defined as a constant “arraysize” and a second unsigned

integer variable is declared: it will be used to store the current number of bytes inside

the UDP transmission queue.

• Lines 479: An additional debug printf on standard output has been inserted, telling

that the UDP loop has been correctly started.

• Lines 481-494: The two arrays mentioned before are dynamically allocated. In case

of error, the program is immediately terminated.

• Lines 496-497: An additional index is defined, in order to scan the arrays and print

all the data inside them when the UDP loop execution is going to terminate. The

first element of the buffer size array is then initialized to 0, due to the mechanism

of memorizing the buffer size at one index more with respect to the running de-

lay (otherwise there is the risk of having uninitialized random data inside this first

element).

• Lines 513-514: The target delay and the lower bound are printed, in ms.

• Lines 579-580: The current value of the running delay (variable “delay”) is saved

inside the current element of the delay array and the index is (cyclically, storing at

most “arraysize” values) incremented.

• Lines 590-592: The status of the UDP buffer is stored inside “bufsize”, using the

TIOCOUTQ request within the “ioctl” system call. It is then stored inside the proper

element of the “bufarray”, at one index more with respect to the running delay stored

in “dlyarray”, as detailed in section 6.2.

452

millisleep utility and iPerf debug modifications

• Lines 637-646: After the UDP send loop terminates the regular transmissions, the

two arrays are printed, sequentially, on stderr (first, the delay array, then, the buffer

size array). This choice allows the user to log them to a separate file by just redirect-

ing stderr with “2>”, without affecting stdout.

• Line 648: A final debug printf is inserted to tell the user that the UDP send loop has

terminated its execution, except for the final handshake.

In order to cross-compile this larger project for the APU boards, using GNU configure

and GNU make, we used the following commands, after configuring the toolchain and

moving to the iPerf directory (with “cd”):

./configure --build=x86_64-unknown-linux-gnu --host=x86_64-openwrt-

linux-musl

make CC=x86_64-openwrt-linux-musl-gcc LD=x86_64-openwrt-linux-musl-ld

After “build” the user should write the output of the command “./config.guess”,

while, after “host”, the proper OpenWrt architecture, where the compiled binaries will be

run, should be specified (in our case “x86_64-openwrt-linux-musl”).

More details are available inside theOpenWrt documentation1, where, however, “uClibc”

(if it is still present, as at the time of writing this) should be substituted by “musl”, in all

the most recent OpenWrt versions.

1https://openwrt.org/docs/guide-developer/crosscompile

453

https://openwrt.org/docs/guide-developer/crosscompile

Appendix G

Scripts for systematic measurements of throughput and

packet loss

These are the scripts used for the measurements reported in section 6.3.

They use bash arrays, so they require the bash shell to be installed on the target boards.

Small modifications can be noticed when looking at the scripts used with 3 Mbit/s of

physical rate with respect to the ones used with 6 and 12 Mbit/s: they are little enhance-

ments that have been introduced to improve the measurements after the first data set has

been collected.

3 Mbit/s

iperfclient7000L3.sh (client)

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

454

Scripts for systematic measurements of throughput and packet loss

10 }

11

12 function iperfclientbl_log {

13 echo ”# iperf -c 10.10.6.102 -u -i 2 -t 60 -b $1 -p 7000 -l $2” >> ”

Logs/ClientLog_b_$1_l_$2B.txt”

14 iperf -c 10.10.6.102 -u -i 2 -t 60 -b $1 -p 7000 -l $2 2>&1 | tee -a

”Logs/ClientLog_b_$1_l_$2B.txt”

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 3 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 6

28 sleep 1

29

30 rates=(0.5M 1M 1.5M 2M 2.2M 2.4M 2.6M 2.8M 3M 5M 7M 9M 10M 12M)

31 len=(16 48 104 208 500 700 1000 1200 1470)

32

33 echo ”Starting... tests will last aproximately $((${#rates[@]}*${#len[

@]}+${#rates[@]}*${#len[@]}*10/60)) minutes”

34 sleep 1

35

36 currwait=0

37 i=0

38 l=0

39 while [$l -lt ${#len[@]}]; do

455

7 – Appendix G

40 while [$i -lt ${#rates[@]}]; do

41 echo ”Client started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

42 waituntil $currwait

43 echo ”------------------------------------”

44 echo ”Running test with -b ${rates[$i]} -l ${len[$l]}”

45 iperfclientbl_log ${rates[$i]} ${len[$l]}

46 echo ”Test with -b ${rates[$i]} -l ${len[$l]} terminated”

47 echo ”------------------------------------”

48 i=$((i+1))

49 currwait=$(((currwait+10)%60))

50 done

51 sleep 1

52 l=$((l+1))

53 i=0

54 done

iperfserver7000L3.sh (server)

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfserverl_log {

13 echo ”# iperf -s -u -i 2 -p 7000 -l $2 -t 62” >> ”Logs/

ServerLog_b_$1_l_$2B.txt”

456

Scripts for systematic measurements of throughput and packet loss

14 iperf -s -u -i 2 -p 7000 -l $2 -t 62 2>&1 | tee -a ”Logs/

ServerLog_b_$1_l_$2B.txt”

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 3 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 6

28 sleep 1

29

30 rates=(0.5M 1M 1.5M 2M 2.2M 2.4M 2.6M 2.8M 3M 5M 7M 9M 10M 12M)

31 len=(16 48 104 208 500 700 1000 1200 1470)

32

33 echo ”Starting... tests will last aproximately $((${#rates[@]}*${#len[

@]}+${#rates[@]}*${#len[@]}*10/60)) minutes”

34 sleep 1

35

36 currwait=0

37 i=0

38 l=0

39 while [$l -lt ${#len[@]}]; do

40 while [$i -lt ${#rates[@]}]; do

41 echo ”Server started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

42 waituntil $currwait

43 echo ”------------------------------------”

457

7 – Appendix G

44 echo ”Running test with -b ${rates[$i]} -l ${len[$l]}”

45 iperfserverl_log ${rates[$i]} ${len[$l]}

46 echo ”Test with -b ${rates[$i]} -l ${len[$l]} terminated”

47 echo ”------------------------------------”

48 i=$((i+1))

49 currwait=$(((currwait+10)%60))

50 done

51 sleep 1

52 l=$((l+1))

53 i=0

54 done

458

Scripts for systematic measurements of throughput and packet loss

Development PC data log data extraction script - 3 Mbit/s

This script should be placed inside the same folder where the 3 Mbit/s logs are placed.

logExtractor.sh (3 Mbit/s)

1 #!/bin/bash

2

3 if [$# -ne 1]; then

4 if [$# -ne 2 -o ! $2 = ”-M”]; then

5 echo ”Error using program. Expected one or two parameters: ”

6 echo ”1) Rate (<3|6|12>)”

7 echo ”2) [-M] for log files with an extra ’M’ after ’b’”

8 exit 1

9 fi

10 fi

11

12 # Defining rates (-b) and len (-l) arrays to correctly extract data

from the logs

13 rates=(0.5M 1M 1.5M 2M 2.2M 2.4M 2.6M 2.8M 3M 5M 7M 9M 10M 12M)

14 len=(16 48 104 208 500 700 1000 1200 1470)

15

16 i=0

17 l=0

18 echo ”len,b,tput,loss,lostpkt,sentpkt,okpkt” > ”Rate$1_iperf_bl_test.

csv”

19 while [$l -lt ${#len[@]}]; do

20 while [$i -lt ${#rates[@]}]; do

21 b=$(echo ${rates[$i]} | sed ’s/.$//’)

22 if [! -z ”$2” -a ”$2” = ”-M”]; then

23 tput=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f7)

24 umeas=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1 | sed ’s/\s\s*/ /g’ | cut -d” ” -f8)

25 # Convert measurements in KBit/s to MBit/s

459

7 – Appendix G

26 if [[$umeas = *”K”*]]; then

27 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

28 fi

29 lostpkt=$(echo $(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt

| tail -1 | cut -d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ”

-f1 | rev)

30 sentpkt=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1 | cut -d”/” -f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

31 echo ”$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1)”

32 else

33 tput=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f7)

34 umeas=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f8)

35 # Convert measurements in KBit/s to MBit/s

36 if [[$umeas = *”K”*]]; then

37 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

38 fi

39 lostpkt=$(echo $(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt

| tail -1 | cut -d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ”

-f1 | rev)

40 sentpkt=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail

-1 | cut -d”/” -f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

41 echo ”$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail

-1)”

42 fi

43 okpkt=$((sentpkt-lostpkt))

44 loss=$(echo ”$lostpkt $sentpkt” | awk ’{printf(”%.15f\n”,$1/$2

*100)}’)

45 i=$((i+1))

46

47 # Print parsed information

460

Scripts for systematic measurements of throughput and packet loss

48 echo ”len=${len[$l]},b=$b,tput=$tput,loss=$loss,lostpkt=$lostpkt ,

sentpkt=$sentpkt,okpkt=$okpkt”

49 # Write to .csv file

50 echo ”${len[$l]},$b,$tput,$loss,$lostpkt ,$sentpkt ,$okpkt” >> ”

Rate$1_iperf_bl_test.csv”

51 done

52 l=$((l+1))

53 i=0

54 done

461

7 – Appendix G

6 Mbit/s

iperfclient7000L6.sh (client)

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfclientbl_log {

13 echo ”# iperf -c 10.10.6.102 -u -i 2 -t 60 -b $1 -p 7000 -l $2” >> ”

Logs/ClientLog_b_$1_l_$2B.txt”

14 iperf -c 10.10.6.102 -u -i 2 -t 60 -b $1 -p 7000 -l $2 2>&1 | tee -a

”Logs/ClientLog_b_$1_l_$2B.txt”

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 6 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 12

462

Scripts for systematic measurements of throughput and packet loss

28 sleep 1

29

30 rates=(0.5M 1M 1.5M 2M 4M 4.2M 4.4M 4.6M 4.8M 5M 7M 9M 10M 12M 14M 16

M 18M 20M)

31 len=(16 48 104 208 500 700 1000 1200 1470)

32

33 echo ”Starting... tests will last aproximately $((${#rates[@]}*${#len[

@]}+${#rates[@]}*${#len[@]}*10/60)) minutes”

34 sleep 1

35

36 currwait=0

37 i=0

38 l=0

39 while [$l -lt ${#len[@]}]; do

40 while [$i -lt ${#rates[@]}]; do

41 echo ”Client started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

42 waituntil $currwait

43 echo ”------------------------------------”

44 echo ”Running test with -b ${rates[$i]} -l ${len[$l]}”

45 sleep 2

46 iperfclientbl_log ${rates[$i]} ${len[$l]}

47 echo ”Test with -b ${rates[$i]} -l ${len[$l]} terminated”

48 echo ”------------------------------------”

49 i=$((i+1))

50 currwait=$(((currwait+10)%60))

51 done

52 sleep 1

53 l=$((l+1))

54 i=0

55 done

iperfserver7000L6.sh (server)

463

7 – Appendix G

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfserverl_log {

13 echo ”# iperf -s -u -i 2 -p 7000 -l $2 -t 64” >> ”Logs/

ServerLog_b_$1_l_$2B.txt”

14 iperf -s -u -i 2 -p 7000 -l $2 -t 64 2>&1 | tee -a ”Logs/

ServerLog_b_$1_l_$2B.txt”

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 6 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 12

28 sleep 1

29

30 rates=(0.5M 1M 1.5M 2M 4M 4.2M 4.4M 4.6M 4.8M 5M 7M 9M 10M 12M 14M 16

M 18M 20M)

464

Scripts for systematic measurements of throughput and packet loss

31 len=(16 48 104 208 500 700 1000 1200 1470)

32

33 echo ”Starting... tests will last aproximately $((${#rates[@]}*${#len[

@]}+${#rates[@]}*${#len[@]}*10/60)) minutes”

34 sleep 1

35

36 currwait=0

37 i=0

38 l=0

39 while [$l -lt ${#len[@]}]; do

40 while [$i -lt ${#rates[@]}]; do

41 echo ”Server started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

42 waituntil $currwait

43 echo ”------------------------------------”

44 echo ”Running test with -b ${rates[$i]} -l ${len[$l]}”

45 iperfserverl_log ${rates[$i]} ${len[$l]}

46 echo ”Test with -b ${rates[$i]} -l ${len[$l]} terminated”

47 echo ”------------------------------------”

48 i=$((i+1))

49 currwait=$(((currwait+10)%60))

50 done

51 sleep 1

52 l=$((l+1))

53 i=0

54 done

465

7 – Appendix G

Development PC data log data extraction script - 6 Mbit/s

This script should be placed inside the same folder where the 6 Mbit/s logs are placed.

logExtractor.sh (3 Mbit/s)

1 #!/bin/bash

2

3 if [$# -ne 1]; then

4 if [$# -ne 2 -o ! $2 = ”-M”]; then

5 echo ”Error using program. Expected one or two parameters: ”

6 echo ”1) Rate (<3|6|12>)”

7 echo ”2) [-M] for log files with an extra ’M’ after ’b’”

8 exit 1

9 fi

10 fi

11

12 # Defining rates (-b) and len (-l) arrays to correctly extract data

from the logs

13 rates=(0.5M 1M 1.5M 2M 4M 4.2M 4.4M 4.6M 4.8M 5M 7M 9M 10M 12M 14M 16

M 18M 20M)

14 len=(16 48 104 208 500 700 1000 1200 1470)

15

16 i=0

17 l=0

18 echo ”len,b,tput,loss,lostpkt,sentpkt,okpkt” > ”Rate$1_iperf_bl_test.

csv”

19 while [$l -lt ${#len[@]}]; do

20 while [$i -lt ${#rates[@]}]; do

21 b=$(echo ${rates[$i]} | sed ’s/.$//’)

22 if [! -z ”$2” -a ”$2” = ”-M”]; then

23 tput=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f7)

24 umeas=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1 | sed ’s/\s\s*/ /g’ | cut -d” ” -f8)

466

Scripts for systematic measurements of throughput and packet loss

25 # Convert measurements in KBit/s to MBit/s

26 if [[$umeas = *”K”*]]; then

27 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

28 fi

29 lostpkt=$(echo $(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt

| tail -1 | cut -d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ”

-f1 | rev)

30 sentpkt=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1 | cut -d”/” -f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

31 echo ”$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1)”

32 else

33 tput=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f7)

34 umeas=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f8)

35 # Convert measurements in KBit/s to MBit/s

36 if [[$umeas = *”K”*]]; then

37 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

38 fi

39 lostpkt=$(echo $(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt

| tail -1 | cut -d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ”

-f1 | rev)

40 sentpkt=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail

-1 | cut -d”/” -f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

41 echo ”$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail

-1)”

42 fi

43 okpkt=$((sentpkt-lostpkt))

44 loss=$(echo ”$lostpkt $sentpkt” | awk ’{printf(”%.15f\n”,$1/$2

*100)}’)

45 i=$((i+1))

46

47 # Print parsed information

467

7 – Appendix G

48 echo ”len=${len[$l]},b=$b,tput=$tput,loss=$loss,lostpkt=$lostpkt ,

sentpkt=$sentpkt,okpkt=$okpkt”

49 # Write to .csv file

50 echo ”${len[$l]},$b,$tput,$loss,$lostpkt ,$sentpkt ,$okpkt” >> ”

Rate$1_iperf_bl_test.csv”

51 done

52 l=$((l+1))

53 i=0

54 done

468

Scripts for systematic measurements of throughput and packet loss

12 Mbit/s

iperfclient7000L12.sh (client)

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfclientbl_log {

13 echo ”# iperf -c 10.10.6.102 -u -i 2 -t 60 -b $1 -p 7000 -l $2 (rate

12M)” >> ”Logs/ClientLog_b_$1_l_$2B.txt”

14 iperf -c 10.10.6.102 -u -i 2 -t 60 -b $1 -p 7000 -l $2 2>&1 | tee -a

”Logs/ClientLog_b_$1_l_$2B.txt”

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 12 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 24

469

7 – Appendix G

28 sleep 1

29

30 rates=(0.5M 1M 1.5M 2M 3M 5M 7M 8M 8.1M 8.2M 8.3M 8.4M 8.5M 10M 13M

16M 19M 22M)

31 len=(16 48 104 208 500 700 1000 1200 1470)

32

33 echo ”Starting... tests will last aproximately $((${#rates[@]}*${#len[

@]}+${#rates[@]}*${#len[@]}*10/60)) minutes”

34 sleep 1

35

36 currwait=0

37 i=0

38 l=0

39 while [$l -lt ${#len[@]}]; do

40 while [$i -lt ${#rates[@]}]; do

41 echo ”Client started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

42 waituntil $currwait

43 echo ”------------------------------------”

44 echo ”Running test with -b ${rates[$i]} -l ${len[$l]}”

45 sleep 2

46 iperfclientbl_log ${rates[$i]} ${len[$l]}

47 echo ”Test with -b ${rates[$i]} -l ${len[$l]} terminated”

48 echo ”------------------------------------”

49 i=$((i+1))

50 currwait=$(((currwait+10)%60))

51 done

52 sleep 1

53 l=$((l+1))

54 i=0

55 done

iperfserver7000L12.sh (server)

470

Scripts for systematic measurements of throughput and packet loss

1 #!/bin/bash

2

3 function waituntil {

4 while true; do

5 currsec=$(date | cut -d$’\t’ -f5 | cut -d”:” -f3 | cut -d” ” -f1)

6 if [$currsec -eq $1]; then

7 break

8 fi

9 done

10 }

11

12 function iperfserverl_log {

13 echo ”# iperf -s -u -i 2 -p 7000 -l $2 -t 64 (rate 12M)” >> ”Logs/

ServerLog_b_$1_l_$2B.txt”

14 iperf -s -u -i 2 -p 7000 -l $2 -t 64 2>&1 | tee -a ”Logs/

ServerLog_b_$1_l_$2B.txt”

15 }

16

17 # Check if the Logs directory exists. If not, create it.

18 if [! -d ”./Logs”]; then

19 echo ”Logs directory missing. It will be created now”

20 mkdir Logs

21 else

22 echo ”Logs directrory exists. Make a backup of its content before

proceeding.”

23 fi

24 read -p ”Press enter to continue”

25

26 echo ”Setting rate to 12 MBit/s...”

27 iw dev wlan0 set bitrates legacy -5 24

28 sleep 1

29

30 rates=(0.5M 1M 1.5M 2M 3M 5M 7M 8M 8.1M 8.2M 8.3M 8.4M 8.5M 10M 13M

16M 19M 22M)

471

7 – Appendix G

31 len=(16 48 104 208 500 700 1000 1200 1470)

32

33 echo ”Starting... tests will last aproximately $((${#rates[@]}*${#len[

@]}+${#rates[@]}*${#len[@]}*10/60)) minutes”

34 sleep 1

35

36 currwait=0

37 i=0

38 l=0

39 while [$l -lt ${#len[@]}]; do

40 while [$i -lt ${#rates[@]}]; do

41 echo ”Server started at second $(date | cut -d$’\t’ -f5 | cut -d”:

” -f3 | cut -d” ” -f1), waiting until second $currwait”

42 waituntil $currwait

43 echo ”------------------------------------”

44 echo ”Running test with -b ${rates[$i]} -l ${len[$l]}”

45 iperfserverl_log ${rates[$i]} ${len[$l]}

46 echo ”Test with -b ${rates[$i]} -l ${len[$l]} terminated”

47 echo ”------------------------------------”

48 i=$((i+1))

49 currwait=$(((currwait+10)%60))

50 done

51 sleep 1

52 l=$((l+1))

53 i=0

54 done

472

Scripts for systematic measurements of throughput and packet loss

Development PC data log data extraction script - 12 Mbit/s

This script should be placed inside the same folder where the 12Mbit/s logs are placed.

logExtractor.sh (12 Mbit/s)

1 #!/bin/bash

2

3 if [$# -ne 1]; then

4 if [$# -ne 2 -o ! $2 = ”-M”]; then

5 echo ”Error using program. Expected one or two parameters: ”

6 echo ”1) Rate (<3|6|12>)”

7 echo ”2) [-M] for log files with an extra ’M’ after ’b’”

8 exit 1

9 fi

10 fi

11

12 # Defining rates (-b) and len (-l) arrays to correctly extract data

from the logs

13 rates=(0.5M 1M 1.5M 2M 3M 5M 7M 8M 8.1M 8.2M 8.3M 8.4M 8.5M 10M 13M

16M 19M 22M)

14 len=(16 48 104 208 500 700 1000 1200 1470)

15

16 i=0

17 l=0

18 echo ”len,b,tput,loss,lostpkt,sentpkt,okpkt” > ”Rate$1_iperf_bl_test.

csv”

19 while [$l -lt ${#len[@]}]; do

20 while [$i -lt ${#rates[@]}]; do

21 b=$(echo ${rates[$i]} | sed ’s/.$//’)

22 if [! -z ”$2” -a ”$2” = ”-M”]; then

23 tput=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f7)

24 umeas=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1 | sed ’s/\s\s*/ /g’ | cut -d” ” -f8)

473

7 – Appendix G

25 # Convert measurements in KBit/s to MBit/s

26 if [[$umeas = *”K”*]]; then

27 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

28 fi

29 lostpkt=$(echo $(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt

| tail -1 | cut -d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ”

-f1 | rev)

30 sentpkt=$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1 | cut -d”/” -f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

31 echo ”$(cat ServerLog_b_${rates[$i]}M_l_${len[$l]}B.txt | tail

-1)”

32 else

33 tput=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f7)

34 umeas=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail -1

| sed ’s/\s\s*/ /g’ | cut -d” ” -f8)

35 # Convert measurements in KBit/s to MBit/s

36 if [[$umeas = *”K”*]]; then

37 tput=$(echo ”$tput” | awk ’{printf(”%.3f\n”,$1/1000)}’)

38 fi

39 lostpkt=$(echo $(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt

| tail -1 | cut -d”/” -f2 | cut -d”/” -f1) | rev | cut -d” ”

-f1 | rev)

40 sentpkt=$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail

-1 | cut -d”/” -f3 | sed ’s/^[\t]*//’ | cut -d” ” -f1)

41 echo ”$(cat ServerLog_b_${rates[$i]}_l_${len[$l]}B.txt | tail

-1)”

42 fi

43 okpkt=$((sentpkt-lostpkt))

44 loss=$(echo ”$lostpkt $sentpkt” | awk ’{printf(”%.15f\n”,$1/$2

*100)}’)

45 i=$((i+1))

46

47 # Print parsed information

474

Scripts for systematic measurements of throughput and packet loss

48 echo ”len=${len[$l]},b=$b,tput=$tput,loss=$loss,lostpkt=$lostpkt ,

sentpkt=$sentpkt,okpkt=$okpkt”

49 # Write to .csv file

50 echo ”${len[$l]},$b,$tput,$loss,$lostpkt ,$sentpkt ,$okpkt” >> ”

Rate$1_iperf_bl_test.csv”

51 done

52 l=$((l+1))

53 i=0

54 done

475

Bibliography

[1] PCEngines home page, PCEngines, [Online]. Available: https://www.pcengines.

ch/ (visited on 08/11/2018).

[2] N. Agafonovs, G. Strazdins, and M. Greitans, «Accessible, Customizable, High-

Performance, IEEE 802.11p Vehicular Communication Solution,» 2012 Vehicular

Communications and Applications Workshop, pp. 128–129, 2012.

[3] «Directive 2010/40/EU of the European Parliament and of the Council of 7 july

2010 on the framework for the deployment of Intelligent Transport Systems in the

field of road transport and for interfaces with other modes of transpor,» Official

journal of the European Union, L 207/1, pp. 1–13, Jul. 7, 2010. [Online]. Available:

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:

2010:207:0001:0013:EN:PDF.

[4] Vehicle-to-Vehicle Wireless Communications for Virtual Traffic Lights, Istituto di

Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, [Online].

Available: http://www.wcsg.ieiit.cnr.it/people/bazzi/VTL.html

(visited on 08/11/2018).

[5] G. Avino, M. Malinverno, C. Casetti, C. F. Chiasserini, F. Malandrino, M. Rapelli,

and G. Zennaro, «Support of Safety Services through Vehicular Communications:

The IntersectionCollisionAvoidanceUseCase,» IEEE AUTOMOTIVE 2018, pp. 1–

6, 2018. [Online]. Available: https://iris.polito.it/retrieve/handle/

11583/2707415/199413/AUTOMOTIVE_2018_Preprint.pdf.

476

https://www.pcengines.ch/
https://www.pcengines.ch/
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF
http://www.wcsg.ieiit.cnr.it/people/bazzi/VTL.html
https://iris.polito.it/retrieve/handle/11583/2707415/199413/AUTOMOTIVE_2018_Preprint.pdf
https://iris.polito.it/retrieve/handle/11583/2707415/199413/AUTOMOTIVE_2018_Preprint.pdf

BIBLIOGRAPHY

[6] L. G. Nisi, «Sperimentazione di comunicazioni veicolari IEEE 802.11p per l’of-

floading di reti cellulari,» Università di Bologna, 2014.

[7] O. K. Tonguz, N. Wisitpongphan, and F. Bai, «DV-CAST: a distributed vehicular

broadcast protocol for vehicular ad hoc network,» IEEE Wireless Communications,

pp. 47–57, Apr. 2010.

[8] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, «Performance Assessment of

IEEE 802.11p with an Open Source SDR-Based Prototype,» IEEE transactions on

mobile computing, vol. 17, no. 5, p. 1, May 2018.

[9] Intelligent Roadside Unit, NXP, [Online]. Available: https://www.nxp.com/

applications / solutions / automotive / connectivity / intelligent -

roadside-unit:INTELLIGENTRSU (visited on 08/13/2018).

[10] Z. Iqbal, T. Saeed, andN.A. Zafar, «Effective FormalUnicast Routing forVANETs,»

2017 Fifth International Conference on Aerospace Science & Engineering (ICASE),

Nov. 14, 2017.

[11] S. He, J. Li, and T. Z. Qiu, «Vehicle-to-Pedestrian Communication Modeling and

Collision Avoiding Method in Connected Vehicle Environment,» Transportation

Research Record Journal of the Transportation Research Board, vol. 2621, pp. 21–

30, Jan. 2017. [Online]. Available: https://www.researchgate.net/publication/

309034893_Vehicle_to_Pedestrian_Communication_Modeling_and_

Collision_Avoiding_Methodology_in_Connected_Vehicle_Environment

(visited on 09/14/2018).

[12] M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Malandrino, and S.

Scarpina, «PerformanceAnalysis of C-V2I-basedAutomotive CollisionAvoidance,»

IEEE WoWMoM, Mar. 24, 2018. arXiv: 1803.08798v1 [quant-ph].

[13] J. A. Sanguesa, J. Barrachina, M. Fogue, P. Garrido, F. J. Martinez, J.-C. Cano,

C. T. Calafate, and P. Manzoni, «Sensing Traffic Density Combining V2V and V2I

477

https://www.nxp.com/applications/solutions/automotive/connectivity/intelligent-roadside-unit:INTELLIGENTRSU
https://www.nxp.com/applications/solutions/automotive/connectivity/intelligent-roadside-unit:INTELLIGENTRSU
https://www.nxp.com/applications/solutions/automotive/connectivity/intelligent-roadside-unit:INTELLIGENTRSU
https://www.researchgate.net/publication/309034893_Vehicle_to_Pedestrian_Communication_Modeling_and_Collision_Avoiding_Methodology_in_Connected_Vehicle_Environment
https://www.researchgate.net/publication/309034893_Vehicle_to_Pedestrian_Communication_Modeling_and_Collision_Avoiding_Methodology_in_Connected_Vehicle_Environment
https://www.researchgate.net/publication/309034893_Vehicle_to_Pedestrian_Communication_Modeling_and_Collision_Avoiding_Methodology_in_Connected_Vehicle_Environment
https://arxiv.org/abs/1803.08798v1

BIBLIOGRAPHY

Wireless Communications,» ResearchGate Sensors, Dec. 2015. [Online]. Avail-

able: https://www.researchgate.net/publication/287406124_Sensing_

Traffic_Density_Combining_V2V_and_V2I_Wireless_Communications?

_sg=ocHlImjCYgTQ8P__homizl4Fx461b08rSJihJ1bx9X14ihS_m5YwpmTSZMOiQeg68BHw-

b-Qzw.

[14] X. Xiang, X. Wang, and Z. Zhou, «Self-Adaptive On-Demand Geographic Routing

for Mobile Ad Hoc Networks,» IEEE transactions on mobile computing, vol. 11,

no. 9, pp. 1572–1586, Aug. 18, 2011.

[15] P.-H. Lee and T.-C. Huang, «An Improved Distance-Based Scheme for Broadcast

Storm Suppression in VANETs,» 2014 9th IEEE International Conference on Net-

working, Architecture, and Storage, pp. 200–206, Aug. 6, 2014.

[16] J. Heinovski, F. Klingler, F. Dressler, and C. Sommer, «Performance Comparison

of IEEE 802.11p and ARIB STD-T109,» 2016 IEEE Vehicular Networking Con-

ference (VNC), Dec. 8, 2016.

[17] IEEE Std 802.11-2016 Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications, IEEE Std 802.11™-2016, IEEE Computer

Society, 2016.

[18] Intelligent Transport Systems (ITS); Access layer specification for Intelligent Trans-

port Systems operating in the 5 GHz frequency band, Draft ETSI EN 302 663

V1.2.0 (2012-11), 2012. [Online]. Available: https://www.etsi.org/deliver/

etsi_en/302600_302699/302663/01.02.00_20/en_302663v010200a.

pdf.

[19] Intelligent Transport Systems (ITS); Communications Architecture, ETSI EN 302

665 V1.1.1 (2010-09), 2010. [Online]. Available: https://www.etsi.org/

deliver/etsi_en/302600_302699/302665/01.01.01_60/en_302665v010101p.

pdf.

478

https://www.researchgate.net/publication/287406124_Sensing_Traffic_Density_Combining_V2V_and_V2I_Wireless_Communications?_sg=ocHlImjCYgTQ8P__homizl4Fx461b08rSJihJ1bx9X14ihS_m5YwpmTSZMOiQeg68BHw-b-Qzw
https://www.researchgate.net/publication/287406124_Sensing_Traffic_Density_Combining_V2V_and_V2I_Wireless_Communications?_sg=ocHlImjCYgTQ8P__homizl4Fx461b08rSJihJ1bx9X14ihS_m5YwpmTSZMOiQeg68BHw-b-Qzw
https://www.researchgate.net/publication/287406124_Sensing_Traffic_Density_Combining_V2V_and_V2I_Wireless_Communications?_sg=ocHlImjCYgTQ8P__homizl4Fx461b08rSJihJ1bx9X14ihS_m5YwpmTSZMOiQeg68BHw-b-Qzw
https://www.researchgate.net/publication/287406124_Sensing_Traffic_Density_Combining_V2V_and_V2I_Wireless_Communications?_sg=ocHlImjCYgTQ8P__homizl4Fx461b08rSJihJ1bx9X14ihS_m5YwpmTSZMOiQeg68BHw-b-Qzw
https://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.02.00_20/en_302663v010200a.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.02.00_20/en_302663v010200a.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.02.00_20/en_302663v010200a.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/302665/01.01.01_60/en_302665v010101p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/302665/01.01.01_60/en_302665v010101p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/302665/01.01.01_60/en_302665v010101p.pdf

BIBLIOGRAPHY

[20] Intelligent Transport Systems (ITS); Decentralized Congestion Control Mechanisms

for Intelligent Transport Systems operating in the 5 GHz range; Access layer part,

ETSI TS 102 687 V1.1.1 (2011-07), 2011. [Online]. Available: https://www.

etsi.org/deliver/etsi_ts/102600_102699/102687/01.01.01_60/ts_

102687v010101p.pdf.

[21] (Mar. 8, 2012). SAE J2735 DSRC Message Dictionary Overview. Hosted on the

Car 2 Car Consortium website, CAMP - VSC3 Consortium, [Online]. Available:

https://www.car-2-car.org/fileadmin/user_upload/OEM_Workshop_

WOB/Message_Dictionary_Overview.pdf (visited on 08/14/2018).

[22] Coexistence Interoperability of ETSI ITS-G5 & DSRC, ETSI, [Online]. Available:

https://www.etsi.org/about/what-we-do/plugtests/calendar-of-

events/coexistence-interoperability-of-etsi-its-g5-dsrc (visited

on 08/14/2018).

[23] SDK, Cohda Wireless, [Online]. Available: http://www.cohdawireless.com/

solutions/sdk/ (visited on 08/15/2018).

[24] B. Bloessl, F. Klingler, F.Missbrenner, and C. Sommer, «A Systematic Study on the

Impact of Noise and OFDM Interference on IEEE 802.11p,» 2017 IEEE Vehicular

Networking Conference (VNC), Nov. 27, 2017.

[25] J. de Jongh, J. van de Sluis, D. Heuven, A. Voronov, and I. Passchier, IEEE 802.11p

[CTU-IIG] on PCEngines APU1D running Voyage, v0.7, Feb. 11, 2016.

[26] XCVR2450, Ettus Research, [Online]. Available: https://kb.ettus.com/

XCVR2450 (visited on 08/19/2018).

[27] IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Network-

ing Services, IEEE Std 1609.3™-2016, IEEE Vehicular Technology Society, 2016.

[28] IEEE Standard for Wireless Access in Vehicular Environments - Security Services

for Applications and Management Messages, IEEE Std 1609.2™-2016, IEEE Ve-

hicular Technology Society, 2016.

479

https://www.etsi.org/deliver/etsi_ts/102600_102699/102687/01.01.01_60/ts_102687v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102600_102699/102687/01.01.01_60/ts_102687v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102600_102699/102687/01.01.01_60/ts_102687v010101p.pdf
https://www.car-2-car.org/fileadmin/user_upload/OEM_Workshop_WOB/Message_Dictionary_Overview.pdf
https://www.car-2-car.org/fileadmin/user_upload/OEM_Workshop_WOB/Message_Dictionary_Overview.pdf
https://www.etsi.org/about/what-we-do/plugtests/calendar-of-events/coexistence-interoperability-of-etsi-its-g5-dsrc
https://www.etsi.org/about/what-we-do/plugtests/calendar-of-events/coexistence-interoperability-of-etsi-its-g5-dsrc
http://www.cohdawireless.com/solutions/sdk/
http://www.cohdawireless.com/solutions/sdk/
https://kb.ettus.com/XCVR2450
https://kb.ettus.com/XCVR2450

BIBLIOGRAPHY

[29] IEEE Guide for Wireless Access in Vehicular Environments (WAVE) Architecture,

IEEE Std 1609.0™-2013, 2013.

[30] IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-

Channel Operation, IEEE Std 1609.4™-2016, IEEE Vehicular Technology Soci-

ety, 2016.

[31] IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Identifier

Allocations, IEEE Std 1609.12™-2016, 2016.

[32] A. Al-Jzari and K. Iviva, «Cyclic Prefix Length Determination for Orthogonal Fre-

quency Division Multiplexing System over Different Wireless Channel Models

Based on the Maximum Excess Delay Spread,» American Journal of Engineer-

ing and Applied Sciences, vol. 2015, 8 (1), pp. 82–93, Apr. 10, 2015. [Online].

Available: http://thescipub.com/pdf/10.3844/ajeassp.2015.82.93

(visited on 08/20/2018).

[33] Y. Li, «An overview of the DSRC/WAVE technology,» International Conference on

Heterogeneous Networking for Quality, Reliability, Security and Robustness, Jan.

2012.

[34] (May 2007). AMD Geode™ CS5536 Companion Device Data Book, AMD, [On-

line]. Available: https://support.amd.com/TechDocs/33238G_cs5536_

db.pdf (visited on 09/16/2018).

[35] seagreen. (Apr. 7, 2009). What’s the difference between ”dB”, ”dBm”, and ”dBi”.

DSLReports.com, Ed., [Online]. Available: http://www.dslreports.com/

faq/14091 (visited on 10/02/2018).

[36] S. Laux, G. S. Pannu, S. Schneider, J. Tiemann, F. Klingler, C. Sommer, and F.

Dressler, «OpenC2X - An Open Source Experimental and Prototyping Platform

Supporting ETSI ITS-G5,» in 8th IEEE Vehicular Networking Conference (VNC

2016), Demo Session, Columbus, OH: IEEE, Dec. 2016, pp. 152–153. doi: 10.

1109/VNC.2016.7835955.

480

http://thescipub.com/pdf/10.3844/ajeassp.2015.82.93
https://support.amd.com/TechDocs/33238G_cs5536_db.pdf
https://support.amd.com/TechDocs/33238G_cs5536_db.pdf
http://www.dslreports.com/faq/14091
http://www.dslreports.com/faq/14091
https://doi.org/10.1109/VNC.2016.7835955
https://doi.org/10.1109/VNC.2016.7835955

BIBLIOGRAPHY

[37] OpenWrt. (2018). Table of Hardware, [Online]. Available: https://openwrt.

org/toh/start (visited on 09/17/2018).

[38] F. Klingler. CCSLabsOpenC2X (PaderbornUniversity), [Online]. Available: http:

//www.ccs-labs.org/software/openc2x/ (visited on 09/17/2018).

[39] OpenWrt. (Jun. 23, 2018). Supported Devices, [Online]. Available: https : / /

openwrt.org/supported_devices (visited on 09/17/2018).

[40] ——, (Aug. 8, 2018). OpenWrt Version History, [Online]. Available: https://

openwrt.org/about/history (visited on 09/17/2018).

[41] ——, (Aug. 3, 2018). About theOpenWrt/LEDEproject, [Online]. Available: https:

//openwrt.org/about (visited on 09/17/2018).

[42] ——, (Aug. 23, 2016). OpenWrt’s build system –About, [Online]. Available: https:

//wiki.openwrt.org/about/toolchain (visited on 09/17/2018).

[43] G. Kroah-Hartman, «The Kernel Configuration and Build Process,» Linux Journal

(online), May 1, 2003. [Online]. Available: https://www.linuxjournal.com/

article/6568 (visited on 09/17/2018).

[44] A. Abunei, C.-R. Comşa, and I. Bogdan, «Implementation of a Cost-effective V2X

hardware and software platform,» IEEE 2016 International Conference on Com-

munications (COMM), pp. 367–370, Jun. 9, 2016. doi: 10.1109/iccomm.2016.

7528312.

[45] R. Lisový, M. Sojka, and Z. Hanzálek, «IEEE 802.11p Linux Kernel Implementa-

tion,» Technical report, Czech Technical University in Prague, Dec. 10, 2014. [On-

line]. Available: https://rtime.felk.cvut.cz/publications/public/

ieee80211p_linux_2014_final_report.pdf (visited on 09/17/2018).

[46] F. Chou. (Mar. 15, 2015). Linux Wireless Networking: a short walk. L. (blog), Ed.,

[Online]. Available: https://www.linux.com/blog/linux-wireless-

networking-short-walk (visited on 10/01/2018).

481

https://openwrt.org/toh/start
https://openwrt.org/toh/start
http://www.ccs-labs.org/software/openc2x/
http://www.ccs-labs.org/software/openc2x/
https://openwrt.org/supported_devices
https://openwrt.org/supported_devices
https://openwrt.org/about/history
https://openwrt.org/about/history
https://openwrt.org/about
https://openwrt.org/about
https://wiki.openwrt.org/about/toolchain
https://wiki.openwrt.org/about/toolchain
https://www.linuxjournal.com/article/6568
https://www.linuxjournal.com/article/6568
https://doi.org/10.1109/iccomm.2016.7528312
https://doi.org/10.1109/iccomm.2016.7528312
https://rtime.felk.cvut.cz/publications/public/ieee80211p_linux_2014_final_report.pdf
https://rtime.felk.cvut.cz/publications/public/ieee80211p_linux_2014_final_report.pdf
https://www.linux.com/blog/linux-wireless-networking-short-walk
https://www.linux.com/blog/linux-wireless-networking-short-walk

BIBLIOGRAPHY

[47] iPerf. iPerf Home Page, [Online]. Available: https://iperf.fr/ (visited on

10/02/2018).

[48] CTU-IIG 802.11p-linux project, Czech Technical University, Industrial Informatics

Research Center, [Online]. Available: https://github.com/CTU-IIG/802.

11p-linux (visited on 08/11/2018).

[49] OpenWrt. (Sep. 19, 2018). Build system – Installation, [Online]. Available: https:

/ / openwrt . org / docs / guide - developer / build - system / install -

buildsystem (visited on 11/08/2018).

[50] ——, (Aug. 29, 2018). Build system – Usage, [Online]. Available: https : / /

openwrt.org/docs/guide-developer/build-system/use-buildsystem?

s[]=make&s[]=defconfig (visited on 10/03/2018).

[51] ——, (Mar. 4, 2018). Cross Compile, [Online]. Available: https://openwrt.

org/docs/guide-developer/crosscompile (visited on 10/04/2018).

[52] ——, (Jun. 7, 2018). Filesystems, [Online]. Available: https://openwrt.org/

docs/techref/filesystems.

[53] ——, (Feb. 17, 2018). Working with patches in the build system, [Online]. Avail-

able: https://openwrt.org/docs/guide-developer/build-system/use-

patches-with-buildsystem?s[]=quilt (visited on 10/04/2018).

[54] TCPDUMP. (2018). Manpage of TCPDUMP, [Online]. Available: http://www.

tcpdump.org/manpages/tcpdump.1.html (visited on 10/05/2018).

[55] (Jun. 25, 2015). iptables-extensions man, [Online]. Available: http://ipset.

netfilter.org/iptables-extensions.man.html (visited on 10/05/2018).

[56] RadioTap. Defined Fields, [Online]. Available: http://www.radiotap.org/

fields/defined (visited on 10/07/2018).

482

https://iperf.fr/
https://github.com/CTU-IIG/802.11p-linux
https://github.com/CTU-IIG/802.11p-linux
https://openwrt.org/docs/guide-developer/build-system/install-buildsystem
https://openwrt.org/docs/guide-developer/build-system/install-buildsystem
https://openwrt.org/docs/guide-developer/build-system/install-buildsystem
https://openwrt.org/docs/guide-developer/build-system/use-buildsystem?s[]=make&s[]=defconfig
https://openwrt.org/docs/guide-developer/build-system/use-buildsystem?s[]=make&s[]=defconfig
https://openwrt.org/docs/guide-developer/build-system/use-buildsystem?s[]=make&s[]=defconfig
https://openwrt.org/docs/guide-developer/crosscompile
https://openwrt.org/docs/guide-developer/crosscompile
https://openwrt.org/docs/techref/filesystems
https://openwrt.org/docs/techref/filesystems
https://openwrt.org/docs/guide-developer/build-system/use-patches-with-buildsystem?s[]=quilt
https://openwrt.org/docs/guide-developer/build-system/use-patches-with-buildsystem?s[]=quilt
http://www.tcpdump.org/manpages/tcpdump.1.html
http://www.tcpdump.org/manpages/tcpdump.1.html
http://ipset.netfilter.org/iptables-extensions.man.html
http://ipset.netfilter.org/iptables-extensions.man.html
http://www.radiotap.org/fields/defined
http://www.radiotap.org/fields/defined

BIBLIOGRAPHY

[57] (Jan. 26, 2015). Linux Wireless: mac80211 support for radiotap, [Online]. Avail-

able: https://wireless.wiki.kernel.org/en/developers/documentation/

radiotap#mac80211_support_for_radiotap (visited on 10/07/2018).

[58] (Aug. 24, 2018). The Linux Kernel Archives: Active kernel releases, [Online].

Available: https://www.kernel.org/category/releases.html (visited

on 10/05/2018).

[59] (Sep. 29, 2018). OpenWrt Forums:What is the purpose of ”200-reduce_size.patch”

in iw-4.14? [Online]. Available: https://forum.openwrt.org/t/what-is-

the-purpose-of-200-reduce-size-patch-in-iw-4-14/22267 (visited on

10/05/2018).

[60] OpenWrt. (Sep. 3, 2018). 4/32 warning, [Online]. Available: https://openwrt.

org/supported_devices/432_warning (visited on 10/05/2018).

[61] K. Technologies, Ed., Keysight Technologies: Spectrum Analysis Basics, Applica-

tion Note 150, Nov. 2, 2016. [Online]. Available: http://literature.cdn.

keysight.com/litweb/pdf/5952-0292.pdf (visited on 09/24/2018).

[62] J. Crane. (Jul. 4, 2017). Wi-Spy Data Sheet. MetaGeek, Ed., [Online]. Available:

https://support.metageek.com/hc/en-us/articles/203802010-Wi-

Spy-Data-Sheet (visited on 09/24/2018).

[63] ——, (2018). Chanalyzer + Wi-Spy User Guide. MetaGeek, Ed., [Online]. Avail-

able: https://support.metageek.com/hc/en-us/articles/201872824-

Chanalyzer-Wi-Spy-User-Guide?utm_campaign=Software&utm_medium=

Chanalyzer%205&utm_source=Help%20Menu (visited on 09/24/2018).

[64] Kismet. Kismet Spectrum-Tools (Home page), [Online]. Available: https : / /

www.kismetwireless.net/spectools/ (visited on 09/25/2018).

[65] Ubuntu. Man page for spectool_raw. Canonical, Ed., [Online]. Available: http:

//manpages.ubuntu.com/manpages/trusty/man1/spectool_raw.1.html

(visited on 09/25/2018).

483

https://wireless.wiki.kernel.org/en/developers/documentation/radiotap#mac80211_support_for_radiotap
https://wireless.wiki.kernel.org/en/developers/documentation/radiotap#mac80211_support_for_radiotap
https://www.kernel.org/category/releases.html
https://forum.openwrt.org/t/what-is-the-purpose-of-200-reduce-size-patch-in-iw-4-14/22267
https://forum.openwrt.org/t/what-is-the-purpose-of-200-reduce-size-patch-in-iw-4-14/22267
https://openwrt.org/supported_devices/432_warning
https://openwrt.org/supported_devices/432_warning
http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf
http://literature.cdn.keysight.com/litweb/pdf/5952-0292.pdf
https://support.metageek.com/hc/en-us/articles/203802010-Wi-Spy-Data-Sheet
https://support.metageek.com/hc/en-us/articles/203802010-Wi-Spy-Data-Sheet
https://support.metageek.com/hc/en-us/articles/201872824-Chanalyzer-Wi-Spy-User-Guide?utm_campaign=Software&utm_medium=Chanalyzer%205&utm_source=Help%20Menu
https://support.metageek.com/hc/en-us/articles/201872824-Chanalyzer-Wi-Spy-User-Guide?utm_campaign=Software&utm_medium=Chanalyzer%205&utm_source=Help%20Menu
https://support.metageek.com/hc/en-us/articles/201872824-Chanalyzer-Wi-Spy-User-Guide?utm_campaign=Software&utm_medium=Chanalyzer%205&utm_source=Help%20Menu
https://www.kismetwireless.net/spectools/
https://www.kismetwireless.net/spectools/
http://manpages.ubuntu.com/manpages/trusty/man1/spectool_raw.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/spectool_raw.1.html

BIBLIOGRAPHY

[66] PC Engines apu1d product file, PC Engines, [Online]. Available: https://www.

pcengines.ch/apu1d.htm (visited on 10/12/2018).

[67] OpenWrt. (May 2, 2018). PCEnginesAPU, [Online]. Available: https://openwrt.

org/toh/pcengines/apu (visited on 10/12/2018).

[68] UNEX DHXA-222, Unex Technology Corporation, [Online]. Available: https:

//unex.com.tw/products/wi-fi/interfaces/pcie-wifi/80211n-

bluetooth/detail/dhxa-222 (visited on 10/12/2018).

[69] PC Engines apu2 series system board, PC Engines, Dec. 10, 2017. [Online]. Avail-

able: https://www.pcengines.ch/pdf/apu2.pdf (visited on 10/12/2018).

[70] ——, (Jun. 2, 2018). NTP client / NTP server, [Online]. Available: https://

openwrt.org/docs/guide-user/services/ntp/client-server?s[]=ntp

(visited on 10/21/2018).

[71] (Sep. 26, 2017). chrony - Introduction, chrony, [Online]. Available: https://

chrony.tuxfamily.org/ (visited on 10/21/2018).

[72] (2018). NTP (Network Time Protocol), INRiM, [Online]. Available: http : / /

rime.inrim.it/labtf/ntp/ (visited on 10/21/2018).

[73] (Aug. 28, 2018). chronyc(1) Manual Page, chrony, [Online]. Available: https:

//chrony.tuxfamily.org/doc/3.4/chronyc.html (visited on 10/21/2018).

[74] (Nov. 11, 2018). OpenWrt Forums: OpenWrt, Linux kernel and sockets: how much

time awrite() call is blocked in front of a full buffer? [Online]. Available: https://

forum.openwrt.org/t/openwrt-linux-kernel-and-sockets-how-much-

time-a-write-call-is-blocked-in-front-of-a-full-buffer/24803/6

(visited on 11/13/2018).

[75] (Sep. 2, 2016). Patchwork: [v5] ath9k: Switch to usingmac80211 intermediate soft-

ware queues., [Online]. Available: https://patchwork.kernel.org/patch/

9311037/ (visited on 11/14/2018).

484

https://www.pcengines.ch/apu1d.htm
https://www.pcengines.ch/apu1d.htm
https://openwrt.org/toh/pcengines/apu
https://openwrt.org/toh/pcengines/apu
https://unex.com.tw/products/wi-fi/interfaces/pcie-wifi/80211n-bluetooth/detail/dhxa-222
https://unex.com.tw/products/wi-fi/interfaces/pcie-wifi/80211n-bluetooth/detail/dhxa-222
https://unex.com.tw/products/wi-fi/interfaces/pcie-wifi/80211n-bluetooth/detail/dhxa-222
https://www.pcengines.ch/pdf/apu2.pdf
https://openwrt.org/docs/guide-user/services/ntp/client-server?s[]=ntp
https://openwrt.org/docs/guide-user/services/ntp/client-server?s[]=ntp
https://chrony.tuxfamily.org/
https://chrony.tuxfamily.org/
http://rime.inrim.it/labtf/ntp/
http://rime.inrim.it/labtf/ntp/
https://chrony.tuxfamily.org/doc/3.4/chronyc.html
https://chrony.tuxfamily.org/doc/3.4/chronyc.html
https://forum.openwrt.org/t/openwrt-linux-kernel-and-sockets-how-much-time-a-write-call-is-blocked-in-front-of-a-full-buffer/24803/6
https://forum.openwrt.org/t/openwrt-linux-kernel-and-sockets-how-much-time-a-write-call-is-blocked-in-front-of-a-full-buffer/24803/6
https://forum.openwrt.org/t/openwrt-linux-kernel-and-sockets-how-much-time-a-write-call-is-blocked-in-front-of-a-full-buffer/24803/6
https://patchwork.kernel.org/patch/9311037/
https://patchwork.kernel.org/patch/9311037/

	Introduction
	Intelligent Transport Systems
	VANETs
	Basics
	Components and types of communication
	Routing
	Standards for physical and MAC layers

	Existing embedded solutions for VANETs
	Used boards and objectives

	IEEE WAVE
	WAVE physical layer
	WAVE MAC layer
	EDCA
	IEEE 1609.4 for multi-channel operations

	ALIX boards, UNEX DCMA 86P2, OpenWrt and Linux wireless subsystem
	ALIX boards and development host
	Desk configuration and connections
	UNEX DCMA 86P2
	Used antennas
	The OpenWrt Linux distribution
	The Linux wireless subsystem

	Connecting with the boards
	PuTTY
	WinSCP

	OpenWrt GCDC 2011 and network configuration
	Configuration of the boards
	iPerf
	Testing the VTL Java code
	Moving to newer versions of OpenWrt

	LEDE 17.01 and OpenC2X
	LEDE toolchain
	LEDE images, SquashFS and ext4
	Patch creation and management: quilt
	Patching ath5k and iperf
	C programs for broadcast transmissions
	Packet sniffing: methodologies

	Packet sniffing: RadioTap
	OpenWrt 18.06.1

	Analyzing the DSRC spectrum
	Introduction
	MetaGeek Wi-Spy DBx and Chanalyzer
	Kismet Spectools
	Patching Kismet Spectools
	Results of the patching work

	Looking for possible interferences
	ALIX spectrum usage and transmission problems

	APU boards and UNEX DHXA-222
	The APU boards
	UNEX DHXA-222
	Installing a Linux based operating system on the SSD
	Serial connection with the APU board

	Compiling OpenWrt for the APU boards
	Configuring the APU boards
	NTP synchronization with chrony
	Sniffing with an APU board
	Bitrates on the APU boards and correct way of measuring them

	Measurements on the APU boards and results
	Throughput and packet loss measurements
	Network configuration and conditions
	Scripts and commands
	Plots and results
	Additional considerations

	Characterization of the buffered transmission
	Network configuration and conditions
	Scripts and commands, iPerf UDP send loop
	Plots and results: first set
	Plots and results: second set

	More systematic throughput and packet loss measurements
	Network configuration and conditions
	Scripts and commands
	Plots and results

	Traffic classes
	Network configuration and conditions
	Scripts and commands
	Plots and results: first set
	Plots and results: second set

	Indoor received power and connectivity measurements
	Network configuration and conditions
	Scripts and commands, meaning of the power values
	Plots and results
	Additional considerations

	Broadcast communication issue with Linux kernel version 4

	Conclusions
	APU boards startup
	Channel switching
	Improvements
	Conclusions
	Acknowledgements

	Appendices
	Appendix A
	C programs for broadcast transmissions
	rawsock library
	Sender program
	Receiver program
	Receiver program (using AF_INET socket)
	Compiler commands

	Appendix B
	OpenWrt 18.06.1 patches
	001-iperf-MAC_AC-patch.patch
	202-restore_ocb.patch
	600-DE-openC2X-regdb.patch
	601-IT-regdb.patch
	998-ath5k_ocb.patch
	998-ath9k_allow_11p.patch
	999-Enable-queueing-in-all-4-ACs-BE-BK-VI-VO.patch
	999-Get-hw-queue-pending-stats-from-ath9k-via-netlink.patch
	999-ITS-G5D-channels-fix.patch
	.bashrc (on the development PC) - modified lines

	Appendix C
	OpenWrt 18.06.1 configuration file for the APU boards

	Appendix D
	APU boards network configuration files and iw_startup
	APU_102
	APU_103

	Appendix E
	chrony and system configuration files

	Appendix F
	millisleep utility and iPerf debug modifications
	millisleep
	iPerf debug modifications

	Appendix G
	Scripts for systematic measurements of throughput and packet loss
	3 Mbit/s
	Development PC data log data extraction script - 3 Mbit/s
	6 Mbit/s
	Development PC data log data extraction script - 6 Mbit/s
	12 Mbit/s
	Development PC data log data extraction script - 12 Mbit/s

