


Abstract

In the last years a branch of physics, called Heliophysics, concentrated its work in
studying the Sun due to the considerable importance this star has for us. Many
missions started and spacecrafts were sent to gather as much information as possible
to try to have an insight on the phenomena occurring on its surface. Due to the
increase of satellites and aerospatial traffic, nowadays the researches don’t have the
sole purpose to comprehend the star, but also to forecast its events to protect the
instruments and humans in space. The thesis’ work is located in this ambit, its
prime goal is to use an approach based on the latest findings of the deep learning
community to classify significant episodes involving the Earth’s magnetic field.

The Disturbance Storm-Time index (DST) is a useful hint about the way the
magnetic field is affected by the solar wind and the phenomena occurring on the
solar corona, such as the coronal mass ejections (CME), and for this reason we
used it as label for our classification problem. Mainly the DST is the summary of
the metrics collected by near equatorial observatories reflecting the influence the
solar wind has on out planet. Thus, the solar wind parameters, collected by the
spacecrafts in situ, are used as features composing the datasets given as input to
the neural networks. The solar wind parameters are a composition of its proton
parameters and magnetic field, each of them with the respective vector and modular
components.

The work produced in this thesis is the combination of different phases, one built
on top of the other to chose the best way to represent the starting dataset given to
us and the best neural network architecture among the suitable ones, to have good
prediction results. The phases of our work can be synthetised in the following ones

• Statistical analysis on the initial dataset to understand how is composed and
which are its characteristics.

• Application of data augmentation techniques to prepare different datasets to
highlight different characteristics of the original one

• Choice of the best dataset among the ones prepared using a simple neural
network
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• Choice of the best neural network architecture among the ones proposed for our
purpose, using the dataset chose at the preceding step evaluated considering
different available metrics

• Selection of how much in the future the forecasting is possible, analysing not
only the outcomes from the neural networks but also the statistical analysis
conducted in the past steps.

For each of the described phases the outcomes are described as well as the
difficulties encountered and how they were addressed.

The results conducted on the datasets showed the predilection towards more
complicated ones, with a particular structure, but also the inutility in having a
huge window of observations since they do not increase the quality of the classifi-
cation made by the neural network. This made us lean on datasets with less but
more significant samples. On the other hand the usage of a good neural network
influences the quality of the classification due to its ability in recognising the pat-
tern in the dataset, but also in considering the entire window given and not only
the last samples. When coming to forecasting the amount of time in the future we
want to forecast impacts the quality of the predictions computed, especially when
using samples really further in time from the interval given as input.
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Chapter 1

Introduction

Sun and its related phenomena such as solar flares and coronal mass ejections
(CME) can dangerously impact Earth and its near space environment, affecting its
atmosphere and also the geomagnetic field that surround it, putting in danger not
only technology but also society. Numerous are the researches started along the
years to try to understand better the phenomena happening on Sun’s surface, which
in reality are a consequence of nuclear fusions occurring in its core and their energy
spreading through its structure until reaching the outermost part. The events of
our interest, solar wind and CME, are generated due to the release of the energy
accumulated in the inner part of the star and follow the solar cycle which lasts 11
years.

Every cycle has its own characteristics and scientists work to improve our ability
to predict the strength and duration of them, mainly because our ability to forecast
this event can help us protect properly radio communications on Earth and also
astronauts, for instance. It can also be dangerous to not shielded satellites, electrical
transmission line facilities and disrupt radio transmissions, causing radio blackouts,
due to the alteration of the ionosphere.

Many are the researches conducted along the years to study this phenomena
and try to forecast them applying the deep learning knowledge to such complicated
subject, an example are Monica G Bobra and Couvidat, 2015 and M. G.

Bobra and Ilonidis, 2016 which are two different studies based on the same
dataset, the SDO/HMI vector magnetic field data, but tackling two different sides
of the same problem. In the first one a Support Vector Machine (SVM) is used to
predict solar flares while in the second one the same machine learning network is
used to understand which features are mainly involved in the creation of solar flares
and which of them will lead to CMEs. Another study, based on the same data,
was conducted by Florios et al., 2018 with the intent of forecasting solar flare
comparing different machine learning algorithms to non machine learning ones. The
main subject of all these researches is the SDO/HMI vector magnetic field data, also
called magnetogram, a pictorial representation of the solar magnetic field, using it
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1 – Introduction

directly or its derived features.
Our work is introduced in this scenario with the aim of carrying a different point

of view both in the approach used and also in the dataset implied, comprising
features coming from different spacecraft and having as forecasting goal not the
occurrence of the phenomena itself, but of its consequences on the Earth. Another
aspect of our work is given by the temporal characteristic of our data and the lack
of images and visual representations, but the use of only numerical data.

1.1 Contents of the thesis

Chapter 2 describes the Sun as the star of our system, its parts and the inner
activities that take part in the creation of the physical phenomena we are interested
in, together with a description of how they affect our life and activities on the Eath
and a briefly introduction to NASA’s missions involved.

In chapter 3 we present the starting, raw, data. Here we study their charac-
teristics, from a statistical point of view, analysing the issues and addressing the
problems encountered while during their manipulation to make them suitable and
well-formed as input for a neural network. Every issue has been investigated and
the available solutions evaluated to have the best outcome.

Chapter 4 introduces all the technologies involved in the development of the the-
sis and while presenting the common neural networks used in forecasting problems,
we present our architecutures, explaining why they were chosen and their possible
weakness. We also illustrate which metrics are used to evaluate the results, apart
from the standard one, and compare them.

Chapter 5 illustrates the steps taken to chose the best dataset and neural network
model between the ones proposed. This process involves the experiments conducted
among all the datasets and the neural networks created, based on the comparison of
the results evaluated with the chosen metrics. After the selection of the best dataset
and neural network we proceeded with the fine tuning of the hyperparameters
involved to enhance the forecasting ability.

In chapter 6 we depict the conclusions of our work and describe our proposal for
further researches and studies.
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Chapter 2

Sun and its activity

The Sun is known to be the star at the centre of the solar system. It influences every
aspect of our life, from economics to culture, and its effect reaches even Neptune
and Pluto, the furthest planetary body of the solar system. In this chapter, we
present the characteristics of the Sun and the solar events occurring on its corona
that are of significant interest to the thesis’ study.

2.1 The structure of the Sun

The Sun is a yellow dwarf star and is composed mostly by ionised chemical elements
like hydrogen and helium and heavier elements, as metals, for less than the 2% of
its mass. Its essential elements combine into what is called plasma, which through
its convective motion is responsible for the magnetic field characterising the star.
The Sun’s structure is composed of several layers that actively concur to produce
its energy, in the form of photons:

• Core: composing the innermost 20-25% of the radius, it is 150 times denser
than water and the place where nuclear fusions take place due to the high
temperature, around 22 million degrees Celsius, and pressure. Here hydrogen
is transformed into helium through an exothermic reaction.

• Radiative zone: going from the radius’ 20-25% to the 70%, in this region the
energy coming from the core is slowly transferred by mean of radiation since
convection is not possible due to the distance from the surface.

• Tachocline: the boundary between the radiative and convective regions.

• Convective zone: comprehending the region from the 70% of the radius to the
point close to the visible surface it transports the energy from the radiative
zone to the surface through convection cells.
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2 – Sun and its activity

• Visible portion: since the Sun does not have a defined surface, due to its
volatile nature, we can distinguish only the parts visible from us:

– Photosphere: the deeper of the visible parts composed of granules, columns
of hotter gases surrounded by narrow cooler areas. Here the pressure is less
than 10% of Earth’s pressure at sea level, and the density is ten-thousand
of Earth’s atmospheric density at sea level. The Sun does not have a solid
surface like Earth’s one, but this layer is recognised as its surface, in this
sense the ray of the star is measured considering it as a limit.

– Atmosphere: a sort of halo surrounding the Sun, transparent to most
visible radiation, composed by the chromosphere, solar transition region,
corona and heliosphere. This is the most important layer of the Sun for
our work, in particular, the corona is the region of our interest since is the
place where the events studied takes place and from there spread in the
medium interstellar, impacting with the atmosphere of our planet.

Figure 2.1: Sun structure (Wikipedia Commons/kelvinsong)

2.2 Sun cycle

The solar cycle lasts 11 years and marks the variations in Sun’s activity, for example
in the levels of solar radiation and material ejection, and also in its appearance, as
in the number of sunspots and flares.

The solar cycle can be divided into two parts, recognisable by the number of
sunspots (darker spots on the Photosphere) visible on the surface:
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2.3 – Solar Wind

• Solar minimum: a period in which for entire months and years there are no
sunspots on the photosphere. In this phase, the number of coronal holes, dark
regions where the temperature and density are low, and the magnetic field is
weak, increase near the poles.

• Solar maximum: the most significant moment of the Sun’s cycle, during this
period the number of solar flares and coronal mass ejections (CME) increase,
sending a considerable amount of solar material into space. The quantity of
material sent into space arises because the solar wind’s density decreases along
with its power to block them.

At the end of each cycle, there is a reorganisation of the Sun’s magnetic field,
causing the inversion of the poles. Every cycle is different from the other and
scientists work to improve our ability to predict the strength and duration of them.

2.3 Solar Wind

The solar wind is a continuous stream of plasma, composed mainly of electrons,
protons and alpha particles, varying over the 11-years cycle of Sun’s activity in
density, temperature and solar latitude and longitude. Thanks to coronal holes,
where the usually closed loops of the magnetic field on the Sun’s surface, are open
into space, the fast component of the solar wind is accelerated spreading coronal
matter in the interstellar medium.

2.4 Coronal mass ejection

Sometimes the solar atmosphere enclosed in magnetic loops present on the Sun’s
surface suddenly and violently release magnetised plasma, composed of charged
particles and electromagnetic radiation, into the solar wind. This phenomenon
is called coronal mass ejection (CME) and it is widespread during the period of
activity of the Sun known as solar maximum. These particles flow outward into
the solar system at a speed of about 400 kilometres per second.

Three are the features characterising a coronal mass ejection:

• Cavity of low electron density

• Dense core

• Bright leading edge

A CME is often associated with solar flares and is present during a solar promi-
nence, although they are present even during other forms of solar activity, making
difficult to define a broad theoretical understanding of it.
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2 – Sun and its activity

Figure 2.2: Coronal Mass Ejection

Closely linked to CME is the phenomenon called magnetic reconnection, the
event for which there is a sudden rearrangement of the magnetic field lines when two
oppositely directed magnetic fields collide. This reconnection releases the energy
contained inside the stressed magnetic fields which become twisted forming a helical
structure. Becoming more and more twisted, the CME forms as a way to release the
increasing magnetic field and energy, expanding outwards. For this is the reason
why coronal mass ejections and solar flares erupt from the active regions on the
Sun’s surface where magnetic fields are stronger.

2.5 Impact on Earth

Due to the continuous activity of the Sun, the solar wind is always present it the
interplanetary atmosphere, reaching the Earth and the other planets of the solar
system. The magnetic field blocks the majority of the carried plasma, so humans
and all the devices present on the surface of our planet are protected.

Although when CME’s shock wave impact with the Earth’s magnetic field causes
an event called geomagnetic storm, a disturbance in the Earth’s magnetosphere.
From a physic point of view, the Earth’s magnetosphere is compressed on the
day side and extended on the night side, creating a magnetic tail. When on the
night side the particles stream back to the poles, through magnetic reconnection,
they release energy generating massive visual phenomena like aurorae Australis and
Borealis.

Despite the magnificence of this events, it could cause huge damages to humans
to higher altitudes as astronauts or people on aeroplanes since the material with
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2.6 – Heliophysics

which the means are built can’t reduce the unleashed energy, especially when a CME
occurs. It can also cause danger to not shielded satellites, electrical transmission
line facilities and disrupt radio transmissions, causing radio blackouts, due to the
alteration of the ionosphere.

These are the reason why the primary objective of scientists is to study the inter-
actions between the Sun and our planet, potentially forecasting their occurrences
to properly shield humans and devices.

2.6 Heliophysics

The study of the Sun and its interaction with the Earth goes under the name of He-
liophysics. This branch sees the Sun, the Earth and the planetary environments as
an interconnected macro-system, where all its components interact. It studies how
the Sun influences the solar system and in particular the Earth itself, providing not
only cultural but also economic and political impact in modern society. Sunlight
can be thought of as the base of life, but, as said above, it can also produce radi-
ation and magnetic energy which can damage and disrupt a planet’s atmosphere
and life on it. Even near-Earth the material ejected by the Sun can interfere with
our communications, satellites and power grids when too extreme. For these rea-
sons, heliophysics can help us to understand better the nature of this star and, in
addition, to protect humans and devices both in space and atmosphere. To this
aim, heliophysics exploits all the research subjects that we discussed in the previous
sections which are sustained from the collection of related data by the number of
spacecraft together with the theoretical knowledge acquired through the years.

2.6.1 Solar observation missions

The presence of solar winds and solar activities is known since the 1950s, but
scientist still does not know how they evolve. Therefore, a group of spacecrafts
is involved in the Heliophysics flight missions, forming a single observatory called
Heliophysics System Observatory (HSO), which enables a vast investigation thanks
to their collaboration. The HSO gains its power mostly by being composed of single
different missions, which gives it enough distribution, flexibility and the capacity
of evolving easily at each addition of a new mission.

Of the many missions involved in the HSO, in the following sections, we discuss
in particular of two of them, which gathers the data of our interest: ACE and
WIND.

2.6.2 ACE

ACE, standing for Advanced Composition Explorer, observes the particles arriv-
ing on the Earth from the Sun and interstellar and galactic sources. It bears six
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2 – Sun and its activity

high-resolution and three monitoring instruments that sample a wide range of en-
ergy, both low energy from the Sun and high energy from galactic particles. Being
positioned approximately at 1/100 of the distance between Earth and Sun, it has
a privileged position and can provide near-real-time information, warning of geo-
magnetic storms with an advance of about an hour. The main objective of ACE is
to measure and compare the composition of different samples of matter, from the
solar corona to galactic matter.

The study of the material contributes to our understanding of the formation and
evolution of the solar system and the astrophysical process involved. Moreover, it
can provide help in shielding astronauts and protect power grids from possible
overloading leading to the destruction of communications on Earth.

During the mission period, huge progress has been made, but the cyclic solar
activity itself can help make new discoveries and take the research a step further.
New challenges are always on the way and one of them is to reach the knowledge
neit iseded to forecast space weather fully.

Figure 2.3: Lagrange points

2.6.3 WIND

WIND is one of the first two missions, launched on 1 November 1994, and it is
a spacecraft positioned from 2004 in the Earth’s L1 Lagrange point (Lagrangian
points, also called oscillation points, are points in space where the gravitational
forces of two planetary bodies with a huge mass allow another one, with smaller
mass, to maintain a stable position with respect them). It monitors radio waves
and plasma in the solar wind about to impact Earth, as an interplanetary compo-
nent of the International Solar Terrestrial Physics (ISTP) program. WIND carries
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2.6 – Heliophysics

instruments to analyse both the magnetic field (Magnetic Field Investigation, MFI)
and solar wind (Solar Wind Experiment, SWE) with the objective of gather

• Plasma, energetic particle and magnetic field input for magnetospheric and
ionospheric studies.

• Investigate plasma processes occurring in the near-Earth solar wind.

• Determine the magnetospheric output to interplanetary space in the upstream
region.

2.6.4 Current algorithms

ALTEC, in collaboration with the Italian Institute of Astrophysics (INAF), is cur-
rently directly involved in the development of an algorithm able to predict the
events described in this chapter that are strictly correlated with the Disturbance
Storm Time (DST) index value. The DST index measures the intensity of the
so-called "ring current", an electric current carried by charged particles trapped in
a planet’s magnetosphere, derived from a network of near-equatorial geomagnetic
observatories and capable of shielding the Earth’s lower latitudes.

Other studies have been conducted with the same objective, but using different
kind of data, such as images taken from chronographs, and not raw data as done
in this work.
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Chapter 3

Datasets and data

augmentation

In this chapter, we describe the data involved in the project, their characteristics
and how certain peculiarities have been addressed to make them suitable for the
chosen neural network models.

3.1 Dataset composition

The initial data are the raw samples collected from the NASA’s spacecrafts in
situ and the Disturbance Storm-Time Index (DST) values collected on Earth’s
observatory. Since the samples follow a temporal order, we interpret the dataset as
a time series and all the analysis and methods applied reflect this assumption.

3.1.1 Solar wind experiment data

Solar Wind Experiment (SWE) and magnetic field data are gathered from the
spacecrafts and they constitute the features of our dataset, used to train the neural
networks. Their components are the following:

• The proton parameters of the solar wind obtained from non-linear fitting to
the ion current distribution function (CDF) and with moment techniques. In
particular, they are:

– The three spatial components of the solar wind’s speed, expressed in
[km/s]:

∗ P+_VX_GSE_NONLIN

∗ P+_VY_GSE_NONLIN

∗ P+_VZ_GSE_NONLIN
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3 – Datasets and data augmentation

– P+_W_NONLIN: scalar (or isotropic) proton thermal speed [km/s] taken
from the trace of anisotropic temperatures

– Two components of the proton thermal speed [km/s] and its density cm-3:

∗ P+_WPERP_NONLIN: Proton thermal speed perpendicular to the
magnetic field direction

∗ P+_WPAR_NONLIN: Proton thermal speed parallel to the magnetic
field direction

∗ P+_DENSITY: Proton number density Np from non-linear analysis

• Three components of the magnetic field, averaged over plasma measurement,
calculated from the 3-second Magnetic Field Investigation (MFI) experiment:

– Bx [nT]

– By [nT]

– Bz [nT]

They are expressed from the Geocentric Solar Ecliptic system (GSE) point
of view, a reference system based on the Earth-Sun line where the X-axis is
towards the Sun and the Z-axis is perpendicular to the plane of the Earth’s
orbit around the Sun (positive North).

Each parameter is showed in figure 3.1, they are sampled every 92 seconds start-
ing from the 01 January 2005 and for each epoch time the corresponding feature
sample. In the figure the holes correspond to the cases in which the data are not
present.
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3.1 – Dataset composition

Figure 3.1: SWE components plots
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3.1.2 Disturbance Storm-Time index data

The raw DST data, sampled at 1 hour, is composed of

• Date and time of the sample collection

• DST value for that instant, expressed in [nT]

We used the DST to label our samples for the classification problem since its
value is the one we want to classify with our neural network models. In particular,
we explored both binary and categorical classification and for this reason, we used
different values as thresholds to distinguish the classes.

For the binary classification the threshold is set to -50 nT, the alarm value
used from the observatory on Earth, while in case of multiclass classification the
threshold values are the following:

• -30 nT: warning threshold

• -50 nT: alarming threshold

• -100 nT: destructive threshold

These values are suggested by the ASI’s physicist and have been chosen con-
sistently with physical event and their relevance, combined with the necessity of
populating each class with a minimum number of events which can help the neural
network to learn their patterns.

Figure 3.2: DST plot

Although all the classes are populated, both in binary and in multiclass classi-
fication, they are far from being balanced mainly due to the nature of the Sun’s
activity. Indeed, it is characterised from long periods of not relevant activity to
reach sudden manifestations, like a CME, which does not last for long in time.
Since collecting more data is not helpful in improving the quality of the considered
parameters, we have to employ other methods to address the problem.
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3.1 – Dataset composition

3.1.3 Class imbalance

The problem of imbalanced data typically affects classification problems where the
classes are not represented equally and it can refer to both binary and multi-class
classification problems. In particular, the problem occurs when there is a huge
difference between the number of instances populating each class: a small difference
often does not matter to the extent of training. This problem is mainly caused by
the expectation by neural networks in receiving almost equally populated classes,
therefore when this not occurs the model tends to make predictions biased towards
the most populated class. The neural network learns too well to categorise the
instances as belonging to the most populated class almost ignoring the rarest ones.
In this cases we can encounter the accuracy paradox, a model will have an excellent
accuracy value, even around 90%, but this value only reflects the underlying class
distribution and it is not indicative of the model’s quality. At this extent, we might
end up considering a model as a good classifier, even if it is not the case, only
because we do not have a correct view of the results.

The high interest in this problem comes both from the recurrences it has in
many different researches and the importance of a correct classification in such
sensible fields. We can take as example the cancer research in which case is really
important a correct prediction, even if it leads to diagnosing cancer to people who
does not really have it, and the population of healthy and sick patients are not quite
balanced. Thus the issue regarding imbalanced problems is coming to the attention
of many, which are conducting a large number of studies in this subject, as He and
Garcia, 2009 affirms. In their paper, they identify two types of imbalanced dataset
which are of our concern

• Relative imbalance: it is the most common type and it is characterised by the
fact that even collecting new samples and letting the populations of the classes
increase, the ratio of samples constituting the populations remains the same.
This situation leads to poor results not only for the difference in numbers, but
for the fact that most of the times is interleaved with the dataset complexity.
The union of this issues hinders the neural network in correctly learning the
dataset pattern.

• Absolute imbalance (or rarity): in this case collecting more data cannot help
in easing the problem to the nature of the data we are sampling because the
minority class will aways be limited in number. In this case the learning will
be difficult and we could think about changing point of view and posing the
problem as an anomaly detection problem, always in the case there is not the
chance of collecting data for the smaller class.

In our dataset the presence of relative imbalance is evident when observing the
composition of our classes. There is a huge amount of negative events and a small
number of positive and relevant events: when adopting multiclass classification the
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problem is particularly visible and the population composing the rarest class is
really small compared to the other classes as we can see in table 3.1. Although it
does not matter the amount of data we collect, the proportion between the number
of samples populating the classes remain the same.

Classification type Number events Percentage

Binary
Negative class 102529 97.47%
Positive class 2663 2.53%

Multiclass
First class 95514 90.80%
Second class 7015 6.67%
Third class 2428 2.31%
Fourth class 235 0.22%

Table 3.1: Samples distribution in classes

Problem mitigation

Many options are available to overcome class imbalance and the majority of them
can be applied to both binary and multi-class classification. The followings are
some of the most used and advised methods that we adopted in this work:

• Use of different metrics from the accuracy which can not be used in imbalanced
datasets resulting in the accuracy paradox we have talked about in the past
section. This metrics can give a cross-section in how a neural network model
classifies the events given, helping in understanding its real performances.
They can be aggregated score, as the F1 score, or else the raw classification
predictions of the model without any sort of aggregation, evaluated against
the ground truth.

• Rebalance the classes affecting the cost function implied: change the weights
the neural network value more the minor classes despite the most populated
ones. In this case we are only changing the importance one class has with
respect to the other, or others. While training the model will be penalized
more in case of wrongly predicting the less frequent class than in the case of
the most populated ones. With this mechanism it will be able to learn the
rarest classes.

• Resample data applying common techniques such as oversampling and under-
sampling. In the case of oversampling the instances of the least represented
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class would be duplicated, whilst in the case of undersampling the class most
represented is undersampled, deleting some of its elements. To apply these
techniques there are different methods, but the random one is usually preferred
to keep the representation of the various samples equal. Both techniques can
be used together to balance the dataset.

We tried using the oversampling technique on our dataset, trying to enhance the
minor population, but it had the same effects of changing the weights of the cost
function: the model just change its threshold for the classification of the events,
the number of correctly categorised events of the smaller class rises, but also the
number of elements belonging to the bigger class wrongly assigned to the smaller
one. The neural network does not truly learn to classify correctly each class, it just
changes the threshold probability on which deciding whether a samples belong to a
class or the other not leading to the improvement we wanted. The only real viable
solution is to use alternative metrics to the accuracy to have a better view on the
classification process carried forward by the neural network.We discuss about them
later, in chapter 4.

During the experiments we investigated these techniques but discarded other
ones:

• Creating synthetic samples with the help of systematic algorithms as SMOTE.
For a time series, in particular the one examined in our project, it may be risky
creating new samples without an effective control on the new data created since
we do not truly know which are the relationships among the features. More-
over, this is not the case in which lacking values are substituted by synthetic
but potentially correct values, but it is the case in which a completely new
time series is created. To address this issue a new brand new project should
be started to study the best way to create new samples specifically for this
problem.

• Retrieving new data to increase the number of samples we have is not possible
since our dataset is purely composed by data collected by NASA’s missions
and we do not have other sources to take them from to add more informations
on the solar cycles.

3.1.4 Missing values

The presence or absence of missing data can influence not only the accuracy of the
results and inhibit the use of some machine learning algorithm, but also the statis-
tical distribution and characteristics of parameters. In the case of models robust to
missing values we could use datasets not depurated, but the neural network could
have difficulties in learning the pattern of the dataset besides understanding that
the missing values are not helpful in the final forecasting. The causes for missing
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data can vary hugely from problem to problem and, in general, it can be caused by
equipment errors and incorrect measurements.

Our data are heavily affected by missing values, thus we decided to address
this problem before proceeding in any further analysis. We tested different recom-
mended best practices to deal with them, some are most specific for time series,
while others are more generic and used in different ambit and with different prob-
lems. In general, there is not a solution specifically designed for each kind of dataset
we want to use as input for our machine learning algorithm, but there are many
different ways in pursuing the same goal, which can be used in different cases,
altogether or separately, accordingly to the scenario we are addressing.

The first approach in studying our dataset, before going further in the research,
is to look at the raw data as they were given us, to have a better knowledge of its
characteristics. What we observed is a huge lack of values, mainly in the dataset
regarding the SWE samples. This lack of samples is due to possible problems with
instruments on spacecrafts and it can assume two different forms:

• Inter-row missing: the entire sample for a particular date and time is missing,
causing the absence of data about all the features.

• Intra-row missing: the sample is present for the particular date and time, but
one or more features which values are substituted by a default one: 99999.9.

In this scenario we found a temporal hole in the original data, going from the
24 September 2014 to the 01 December 2014 that can be considered the biggest
inter-column lack of samples. This constitutes an additional reason for which we
decided to invest effort in addressing this problem since it is possible that smaller
or nearly equal and also we used this temporal hole in dividing the dataset later.

An insight on how missing values are distributed can help us in understanding
the extension of the issue and how to deal with it. For each feature we calculated the
number of instances missing and reported them in the table 3.2, both as absolute
number and in percentage with respect the total size of the dataset we have.

From the table, we can see that the percentage relative to a single feature is
not relevant since it does not exceed the 5% for any feature, but summed together
it reaches circa the 10% of the dataset size, becoming a significant slice of it.
Moreover, the three components of the magnetic field have the same number of
missing values: this is because their absence is always correlated and they miss in
the same samples.

What this table does not take in account is the absence of features due to the
total lack of the sample for that particular date and time, the samples forming the
inter-row missings. A visual inspection of them shows that the size of the missings’
window can comprehend from 1-2 samples until reaching the lack of 6 hours of
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Feature Number of values Percentage

P+_VX_GSE_NONLIN 900 0.03%
P+_VY_GSE_NONLIN 9592 0.28%
P+_VZ_GSE_NONLIN 6120 0.18%
P+_W_NONLIN 164176 4.78%
P+_WPERP_NONLIN 54378 1.58%
P+_WPAR_NONLIN 111935 3.26%
P+_DENSITY 2 0.01%
BX 3628 0.11%
BY 3628 0.11%
BZ 3628 0.11%

Table 3.2: Percentage of missing values.

data and more, thus the percentages rise and their total becomes far more than
the 10%. To explore more in deep this issue, we tried to cover the missing rows
artificially, filling the temporal gaps with samples containing only missing values
for each feature and for the specific date and time. The result is a dataset having
rows formed by real collected data and manually inserted rows representing the
missing observations. Starting from this dataset we can calculate the real number
of missing values and also have a complete vision of how they are distributed along
the dataset.

The table 3.3 is the result of our process and it is easy to compare its results
with the ones in table 3.2. The percentages are much higher and since we are
dealing with a time series, the lack of these data may deprive the neural network of
important pieces of information useful to learn the characteristics of them. What is
worse is the potential difficulty we could found in replacing them and the problems
we could have linked to the methods used to solve this kind of problem since any of
them could lead to changes in the distribution of the dataset and inhibit the neural
network to learn.

MCAR, MAR and MNAR

Before choosing the right algorithm to recover missing values, we analysed our
dataset to classify the kind of missingness by which is affected. Taking the results
as a starting point, we can decide which is the best method to cover missings.

• MCAR: it stands for "missing completely at random" and represents the case
in which the missing values are randomly distributed along the observations.

• MAR: standing for "missing at random", it means that the missing values are
not randomly distributed across observations but there might some sort of

19



3 – Datasets and data augmentation

Feature Number of values Percentage

P+_VX_GSE_NONLIN 683313 16.60%
P+_VY_GSE_NONLIN 692005 16.81%
P+_VZ_GSE_NONLIN 688533 16.73%
P+_W_NONLIN 846589 20.57%
P+_WPERP_NONLIN 736791 18.00%
P+_WPAR_NONLIN 794348 19.30%
P+_DENSITY 682415 16.60%
BX 686041 16.67%
BY 686041 16.67%
BZ 686041 16.67%

Table 3.3: Percentage of missing values
after filling the missing samples.

dependency from the other variables composing the dataset.

• MNAR: it stands for "missing not completely at random", it describes the
probability of an observation being missing depending on unobserved mea-
surements, therefore the value of the observed data depends on information
not available for the analysis, maybe a feature not sampled. This kind of
missingness is called non-ignorable.

For this analysis, we implied the dataset we discussed in the past section, ob-
tained by filling the original data with the rows of missing samples, to have a
complete idea on how they influence the dataset statistics. We first tried to ex-
clude the possibility of MCAR missing type despite Schafer & Graham Schafer

and Graham, 2002 affirms the only way to test it is to acquire the values corre-
sponding to the missing positions to correctly test the how much we are to that
values through out tests. To test the hypothesis we chose Little’s MCAR test first
introduced by Little, 1988, one of the most common, which tests the null hy-
pothesis that data are MCAR. If the p value is greater than 0.5 then missings can
be classified as MCAR and missingness is assumed to be not important for the
analysis.

Results of the Little’s MCAR test show that the dataset is not MCAR since the
value of p, in the 3.3 reported as Significance, is beneath the threshold value. In
this case, the result is said to be significant and further analysis has to be done to
classify data between MAR or MNAR type.

A way to test for MAR data is imputing the missing values with the ones avail-
able and then see if the predictions are consistent with the rest of the dataset or
not. This kind of tests is classified as exploratory since they try different imputed
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Figure 3.3: Little’s MCAR test results

values, verifying each time which one fits better. A common statistical method
used to evaluate the association between missings and the measured variable is the
t-test, especially for continuous variables.

The t-test can be applied in different ambits and it is part of the family of
statistical hyphothesis tests in which the test statistics follows the Student’s t-
distribution. It is generally used to compare two groups of variables by computing
their means to assess whether they come from the same population and its statistic
is based on the number of freedom degrees it can calculates from the compared
groups. In the test a significant result highlight that the missingness of the features
is correlated to the other measured variables in the dataset and this correlation can
be used to impute the missing values other than predict their missingness. On the
contrary, if data are not correlated, the missing values cannot be predicted by the
present features and therefore the dataset is MNAR.

The default threshold for the t-test to estimate the missing correlation for a
particular variable is a percentage of missing values above or equal the 5% and in
our case all the features cover this requirement. The results are shown in the 3.4.

For the t-test to be significant the P(2-tail) parameter has to be <=0.05, meaning
that the missing cases in the row variables are highly correlated to the column
variable. In 3.4 the results are reported. Not all the features have consistent
correlation one with the other, an example is P_VX_GSE_NONLIN which value
with respect to the other features, but for P_DENSITY, is greater than 0.05.
For almost the rest of the features listed, the value of P(2-tail) is low enough to
let us think that the variables are MAR, thus correlated one with the other, but
this it is not valid for all of them. Despite the results we cannot exclude totally
the probability for our features to be MNAR, especially when we know that the
missingness of data is due to external causes and we do not have enough information
about the way data are collected.

Starting from this study, we can now step further, considering possible meth-
ods to recover missings and evaluating their effectiveness on data distribution and
the forecasting afterwards. In fact knowing which kind of missingness affects our
dataset narrows the path towards with methods to use with respect others not
suitable for our problem or time series.
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Figure 3.4: T-test results

Methods to handle missing data

Following the considerations above and attesting the MAR hypothesis, we can move
forward choosing which best practices apply to our dataset. After the application
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of each method, we will test the outcome to know which one is the best choice. In
particular, we evaluated as applicable to our dataset the following techniques:

• Listwise deletion, the simplest approach, the rows containing missing values
are removed. This method creates a dataset without missing values, but the
number of data to give as input to the neural network is highly decreased and
it can damage the quality of our predictions.

• Using an imputing method, such as replacing the missings with a particular
value, which can be a computed one as mean or median of the features or a
value belonging to the domain of the particular feature, but not in the range
to its possible values. Any of this imputing methods will need to be performed
on the future datasets used as input for the model.

• Adding a masking layer to the neural network, a solution halfway between
listwise method and forcing the neural network to learn that a particular value
stands for missing.

• Methods more specific for time series, which in general convey more accuracy
in the prediction of the missing samples, for example

– Interpolating data using linear or spline interpolation, it works well when
adjacent observations are similar and when there is not a strong seasonality
in the dataset

Between the methods specific for time series we also read about Last ob-
servation carried forward (LOCF) and Next observation carried backwards
(NOCB), but they have been proven to introduce biases by Lachin, 2016
since, as they affirm

“The only condition where LOCF is unbiased is when [...] the data
used as the basis for the LOCF imputation has the same distribution
as does the unknown missing data. Since it can never be proven that
these distributions are the same, all LOCF analyses are suspect and
should be dismissed.”

Moreover, this methods are effective only when the missing data are sparse
along the dataset, but the huge gaps in our data may lead to many synthetic
and incorrect values influencing negatively the forecastings made by the model.

We have also to remember that when a method is used, it has to be applied
to all the datasets used as input to the neural network, not only the one used for
training.
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Listwise deletion

Implying this method, we decided to go through the entire dataset and remove
every row containing one or more missing values. The result is a dataset where
intra-row missing is handled, but we will have a bigger inter-rows hole. From this
starting point we have two options, take the samples as they are and use them as
input of the neural network model, or decide to resample them to try to avoid the
holes created.

In the first case, the creation of batches to give as input to the neural network
leads to batches of different dimensions, not accepted from neural networks de-
manding same-size ones. The only way to overcome this condition is filling each
batch with empty rows, note as zero-padding, but since we are dealing with a time
series this padding cannot be added to the end of the valid data, instead it must
be inserted punctually inside the sample, to not change the time correlation of the
series. Moreover, this choice may lead us to the original problem, inserting new
missing values, instead of definitively deleting them. The request in having same-
size batches could take us to the point where no batch can be created due to the
incapacity of finding enough contiguous data to fill them, leaving us with no data
to train the model.

The latter solution is the one used in our experiments and takes into consid-
eration the frequency to which the datasets are collected. Since the DST has a
frequency of 1 hour while the features of 92 seconds we can decide to undersample
them. To do so we first apply the listwise deletion and then for each DST value we
consider the date and time of sampling as reference. Around it we consider a small
window of time, going from 10 minutes before it was sampled and the punctual
moment. For each window we check whether there are one or more SWE rows
in the interval, in case more are present the nearest to the DST sampling time,
temporally talking, is chosen.

The choice of using a window instead of the exact value to select the features
samples comes from the different times of sampling and from the attempt to cover
the samples missing while not creating new ones, assuming that in 10 minutes the
features’ values do not change too abruptly and knowing that the lack of samples for
hours is rare inside the dataset, especially when choosing only 1 sample every hour.
For the same reason we decided to apply the listwise deletion before undersampling,
otherwise we could introduce manually rows with missing features, causing the
creation of temporal holes even after the application of the method.
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Interpolation

The interpolation method is the second approach we used to overcome the inter-
column lack of samples. The interpolation method applied is the cubic spline in-
terpolation, the most commonly used thanks to the smoother interpolating poly-
nomials and the smaller errors compared to other interpolating polynomials func-
tions, besides, it is more reliable since it tends to reduce the oscillations between
data points. In particular, cubic spline interpolation is the only method posing
constraints on the continuity of the first and second derivative, to have smooth
connections between the polynomials computed based on two points.

To compose the new interpolated dataset as new time series, we used the func-
tion interp1d of the Scikitlearn library which accepts as input the new dates and
times created at the chosen frequency and the value indicating the missing feature:
99999.9, in our case. With this method, we overcome the presence of both inter
and intra column missings by generating new, equally spaced samples. Tests were
done to decide which interpolation frequency is the best to correctly describe the
features with the minimum loss of information.

For first we decided to use as frequency the same of the starting features, 92
seconds since our goal is not to oversample them, but only to recover the values
missing in the dataset. Then we tested also the interpolation at 1, 2, 3 and 4
minutes, to understand if a different frequency could lead us to big differences in
how the dataset is composed. The difference in interpolating also leads to dataset
with a smaller size and carrying less impact on the training performances.

If we take as metrics to compare the dataset created with cubic interpolation
the mean and standard deviation of every feature, we can compare the different
outcomes, starting from the results obtained from the original dataset in table 3.5
to the inteporlated datasets in tables 3.6.

Figure 3.5: Original dataset results

The use of interpolation changes our dataset considerably influencing its dis-
tribution. The only case in which the interpolation has almost the same metrics’
results is the one with 92 seconds, but not for all the features. In the case of in-
terpolation at higher frequencies, the distribution is completely different from the
original one due to the undersampling we do when creating the datasets at 2, 3
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Figure 3.6: Interpolation datasets results

and 4 minutes and the oversampling that takes place when applying the 1 minute
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interpolation.
Since we will apply this method to all the datasets given as input, we are sure the

neural networks will learn the new representation and will be able to classify never
seen data, but this method could introduce new relationships between the features,
not present in the initial one. In this optic, when we will analyse the results of the
neural networks we have to take into account the possible bias deriving from the
method.

We decided to apply interpolation to our dataset also to have better perfor-
mances with the neural networks since most of them are slow to train, and apply-
ing this technique could help us in making the process faster, especially when using
frequencies as 1, 2, up to 4 minutes without loosing too many samples.

Imputing

Applying this method to our dataset is particularly simple since it means to not
delete the values which mark the missings due to the fact that they are already a
value in the domain of our features, but not belonging to the ones that can take
from them.

The data needs, hovewer, to be elaborated before being given to the neural
network due to the inconstant sampling frequency time. One approach used is to
fill the dataset’s temporal holes with synthetic rows containing only missing values
for all the features and then to undersample the rows at 1 hour, as we discussed
above, but without implying the listwise deletion. In this way, the neural network
will have to learn the meaning of the missings and learn to ignore them.

In this case we take advantage of the robustness of the neural networks in un-
derstanding whether a value can be considered as non important for the ultimate
goal to which the model is preposed. Another option is to avoid undersampling
and use the dataset, after filling the missing rows, as it is, but in our case it would
be extremely difficult to create batches of the same size, as we discussed for the
listwise deletion.

Later in the chapter we will discuss the outcomes of interpolating on the dataset
compared to other methods described in this sections based on further statistical
analysis and also the performances of the neural networks in chapter 5.

3.1.5 Time series decomposition

To address the problems characterising our data is necessary to analyse the features
that constitutes it starting from their decomposition as time series. Each time series
can be described with a simple formula

Yt = lt + mt + st + ǫt

where
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• lt is the average value in the series

• mt is the trend

• st is the seasonality

• ǫt is the noise, the random variation present in the series

The temporal series can be seen as an additive signal, as we wrote in the formula
above, or as multiplicative signal, where the components are multiplied.

Figure 3.7: DST additive seasonality

28



3.1 – Dataset composition

Figure 3.8: SWE additive seasonality
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The graph 3.8 shows the study conducted on the SWE features. It has been
computed and plotted after eliminating the rows containing the missing features
present inside the dataset to avoid the possible alterations originating from them.
Each feature has been decomposed and seen as a single signal, separated from the
others. Aside from the gaps of missing values, highlighted by straight lines, we can
observe that almost all the features are characterised by a seasonality which repeats
itself, even if there are slight differences from one cycle to another. A huge example
of seasonality is given by the feature BX [nT], for this feature the seasonality is
evident and it has a cyclicity of circa 2 hours. On the other side, we can see that
the trend is not monotonic, following the non monotonic nature of the phenomena’s
occurrences.

We also analysed the DST seasonality and figure 3.7 shows the results. There
is a clear daily seasonality characterising it, each cycle lasts almost 1 day, mostly
following the Earth’s revolution around the Sun. Even in this case, the trend is not
monotonic, but it fluctuates, accordingly with the values of the DST itself.

Numerous are the studies conducted on trend and seasonality, most of the times
in the researches seasonality is eliminated from the data gathered following a pro-
cedure called seasonality adjustment, used especially when seasonality could mask
more important events present in the data. This process is also applied to give as
input a so-called stationary time series, making the modeling easier, especially for
statistical modeling methods.

On the other hand, we risk to delete from the features relevant information about
the problem that could help in forecasting. We must add that in the case the time
series has a non linear trend even after the process of seasonality adjustment, other
temporal structure could be present. Thus this operation becomes iterative, needing
the repetition of the process more times.

3.1.6 Methods for statistical analysis

In this section, we present the statistical parameters and metrics we used to describe
the dataset and used in the comparison between the original dataset and the ones
obtained after applying the methods we will see in the following sections. In this way
we can understand how the alterations applied change and influence the distribution
and characteristics of the raw data: our knowledge can be used to better asses the
result coming from the neural networks and also try different paths searching for
the one that suits better our interests.

A note needs to be done: not all the datasets are analysed with these methods
since the presence of missing values, as 99999.9, alter the statistical properties.

We employed different statistical metrics, in particular the ones which may help
us in discovering some sort of correlation between the features, ranging over the
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most common ones to the most specific for continuous statistical variables and time
series:

• Correlation: correlation measures how close two random variables are to hav-
ing a linear correlation one with the other. On time series it can be applied
as cross-correlation: it measures the similarity between two series as function
of the displacement of one with respect to the other.

• Distance correlation: it has the same definition of the correlation, but when
measuring the correlation, but it has been demonstrated that Correlation =
0 does not imply independence, contrary to Distance correlation = 0 which
implies independence.

Many other metrics have been tested such as Kendall’s Tau and Distance Cor-
relation, but without adding more information to the results found with the ones
listed.

Feature Mean Median

Mode Standard deviation

P+_VX_GSE_NONLIN 900 0.03%
P+_VY_GSE_NONLIN 9592 0.28%
P+_VZ_GSE_NONLIN 6120 0.18%
P+_W_NONLIN 164176 4.78%
P+_WPERP_NONLIN 54378 1.58%
P+_WPAR_NONLIN 111935 3.26%
P+_DENSITY 2 0.01%
BX 3628 0.11%
BY 3628 0.11%
BZ 3628 0.11%

Table 3.4: Percentage of missing values.

Features correlation

Correlation is a good metric to understand how parameters are associated one with
another especially when we do not have full knowledge of the physics phenomena
linking them as in our work. It helps in confirming what we sense by the simple
observation of the dataset and gives us hints about not straightforward relation-
ships. The kind of correlation we described above have been computed on the
original dataset and also to the augmented datasets, after the transformations we
described, to compare them. To compute correlation, features must have the same
length to make a correct comparison, for this reason, in almost all the test we have
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done, we can not take into account the values of DST, due to the difference in
sample frequency we described.

The figure 3.9 show the results of the computed correlation applied to the initial
dataset and its different elaborations, we will go through them to understand how
these changes influence it.

• Figure 3.9a shows the correlation applied to the original dataset, taken as it
is, without deleting the missing values or applying interpolation. It confirms
what we already know about the parameters: the ones known to be linked
from a physical point of view show a high positive correlation even in this case
Features not known to be correlated do not actually show any correlation even
after this analysis and the presence of missing values do not seem to alter the
analysis.

• Figure 3.9b: here the correlation is computed over the same original dataset
but after deleting all the samples containing missing values: new correla-
tions are highlighted, not only positive but also negative ones. In compar-
ison with the preceding results, in this case correlations before highlighted are
not present anymore, for example, the case of the P+_VZ_GSE_NONLIN
features that before had a positive correlation with the other two compo-
nents of the SWE speed while now it seems uncorrelated from all the fea-
tures. Whilst some features seem now uncorrelated, some of the ones that
before were positively correlated are now negatively correlated, an example is
the first component of SWE speed P+_VY_GSE_NONLIN with respect its
parallel and perpendicular components, P+_WPERP_GSE_NONLIN and
P+_WPAR_GSE_NONLIN.

• Figures 3.9c and 3.9d describe a completely different scenario. After interpo-
lating the features, the correlation changes abruptly and it seems as new rela-
tionships are established between features. The computation is done starting
from two different interpolated datasets that are respectively the ones used
in the fig 3.9a and 3.9b. Relationships and correlations not present in the
dataset before applying interpolation are now present and hugely relevant be-
tween the features. From this point of view we can affirm that interpolating
causes the features to change drastically and that it is similar in applying a
new representation of them,

An additional observation is about the correlation of the DST, we interpolated
the DST to 2 minutes along with the other features and there is a total lack of
correlation between them when the samples are considered at the same instant
of time even though the value of DST depends on the features.

• The last graph 3.9e describes the relationships between the features under-
sampled at 1 hour, after deleting the samples containing missings, in order to
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understand how the features are related to the values of DST without modi-
fying it. In this case there are relationships both between the features and the
DST, as we know that the DST value depends on the features.

From this analysis, we can affirm that missing values can interfere and influence
heavily the relationships between features as we can see from the differences between
figure 3.9 and 3.9b along with the usage of interpolation which changes completely
them and creates a completely new representation. In addition figures 3.9b and 3.9e
seems really similar and this is due to the deletion of samples containing missings
before any operations, the relationships between the features does not change even
in case of change in frequency of sampling.

Cross correlation

Since we are dealing with a forecasting problem, our interest is to forecast correctly
the event occurring but also to anticipate them to prevent the damages they can
cause. Thus our attention is directed in understanding not only the immediate
correlation between the features and the values we want to predict but also their
interaction and relationships through time. The analysis we followed is made with
four datasets analysed in the past section, where two are the ones used also in the
analysis of correlation of the past section

• Dataset interpolated at 92 seconds

• Dataset undersampled at 1 hour

• Dataset undersampled at 1 hour with missings

• Dataset undersampled at 1 hour where missings values are deleted after the
undersampling operation

In figure 3.10 we can see how interpolation does not guarantee any kind of
temporal correlation between the DST and the features, no matter how further we
go in future nor if the compute the correlation punctually between features and
DST, whilst for figures 3.13 and 3.12 the situation appears different. Here almost
all the features have some correlation with DST values, both positive and negative,
despite the component of solar wind velocity on the z-axis and the two components
of the magnetic field on x and y axis, whose correlation values are near the zero,
meaning independence between them and the DST.

From cross-correlation we can understand the temporal relationships between
DST and the features, choosing how much in the future we will forecast the events
to have a good accuracy, but also anticipation in classification. Figures 3.13 and 3.12
show mainly that from the current time till 8 hours in the future the correlation is
almost constant for all the features, while for P+_DENSITY and BZ the correlation
is high for the first ours and then slowly decreases.
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For this reason, we will concentrate on our model in forecasting the first hours
and comparing the results with the ones given by forecasting further in time, for
example for 8 hours in the future.

Undersampling is also influenced by the moment in which the rows with missings
are deleted, whether is done before or after the operation, since it can happen in
our operation that a row containing missing values is selected. This values when
calculating the cross-correlation influence the results as in figure 3.11, here the
correlation between the DST and the features is almost zero, hiding the real rela-
tionship existing between them, in this optic is better to delete samples containing
missings before any computation is performed on the dataset.

3.1.7 Dataset preparation

After analysing the data we proceeded with the creation of the datasets to be given
as input to the neural networks.

Data division

In the creation of our dataset, we applied the common scheme of division in train,
validation and test sets, following the 80:20 ratio commonly used in literature. In
particular, we took advantage of the lack of samples in the original data, spacing
from the 25 September 2014 to the 01 December 2014 to divide the train from the
other two sets. In this way, the percentages of data are

• Traning set: 82.77%

• Validation set: 8.83%

• Test set: 8.40%

Following this division and the different methods for the creation of the dataset,
the amount of events we want to forecast changes from the percentages we described
in table 3.1, but the proportion between them remains the same.

During the creation of each dataset the feature scaling was applied in the form of
standardization method, to have homogeneity among different features with largely
different scales, letting each feature to contribute equally to the neural network
model training. This process makes the values of each features have zero-mean and
unit-variance and It is applied also because many machine learning methods, as
the usage of objective functions and gradient descent, will not work properly. Its
formula is the one reported below and its one of the many feature scaling techniques
that we can apply.

x′ =
x − x

σ
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Mini-batch technique

The mini-batch technique is widely used in machine learning to let the neural
network model update its weights before all the dataset has been passed as input,
in this way the model is faster in learning and reaches better results in less epochs.
We used this technique to give at each iteration to the neural network a window of
data to consider to classify the events, this is a way to mimic the observation done by
researchers that take in account an amount of the past samples to understand which
will be the future outcome. The different sampling frequency has been decisive in
choosing this method, especially in the case of interpolation at 92 seconds where
there is not the possibility to have a one-to-one relationship between the samples
and the corresponding label.

The windows size in our case, called batch size, is decided considering how much
we want the neural network model to look in the past to do a proper classification.
We chose principally four sizes having a significant temporal meaning to us:

• 6 hours

• 12 hours

• 24 hours

• 48 hours

For each window, we tested the response of the neural network to understand
which one is the best to learn and correctly forecast the events, especially because
each window has a different number of samples from which the model can learn and
make predictions. We decided to have so many different windows length mainly for
two reasons:

• We wanted to understand the amount of information the neural network needs
to make a good classification of the events

• In the case we are using the dataset undersampled at 1 hour, a window of 6
hours means we have batch composed by only 6 samples, which seemed to us
a small amount of data compared to the needed one and to the number of
samples composing the batch size in the case of the dataset of interpolating
at 92 seconds thus we wanted to address the issue.

Dataset created

At the end of the analysis done in this chapter, the final datasets created to be
used in the experiments are 4 and they are used amongst all the neural networks
described in the following sections. For each of them we will repot the amount of
events and the size of the mini-batches created for each window considered.
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3 – Datasets and data augmentation

• Dataset without missings and undersampled at 1 hour

• Dataset without missings and undersampled at half an hour

• Dataset with missing data and undersampled at half an hour

• Dataset interpolated at 92 seconds

These are our starting point for the studies we will conduct and after choosing
the best one we will apply different adjustments to reach better results.
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3.1 – Dataset composition

(a) Features with missing values (b) Features without missing values

(c) Interpolation at 92 seconds (d) Interpolation at 2 minutes

(e) Features undersampled at 1 hour

Figure 3.9: Features correlation
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Figure 3.10: Cross correlation between interpolated at 92 seconds dataset
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3.1 – Dataset composition

Figure 3.11: Cross correlation applied to undersampled at 1 hour dataset with
missings
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3 – Datasets and data augmentation

Figure 3.12: Cross correlation applied to undersampled at 1 hour dataset,
missings deleted after undersampling
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3.1 – Dataset composition

Figure 3.13: Cross correlation applied to previously depurated
undersampled at 1 hour dataset
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Chapter 4

Proposed deep learning

architectures

This chapter will go through the hardware employed in the thesis and the software
architectures used to conduct experiments together with analysing their results
and the statistical analysis performed. Furthermore, we will introduce the neural
networks employed in this work and the architectures realised for our project.

4.1 Hardware and software environment

What follows is a description of the workstation used, from both the hardware and
software point of view.

4.1.1 The machine

All the work has been done on AMERICA, a workstation of the Politecnico di
Torino. This machine is comparable to a high-end machine for video render-
ing/gaming applications. The machine is composed of:

1. HDD: 1.3 TB

2. RAM: 11 GB

3. CPU: Intel® Xeon® E5640 - 2.67 GHz

4. GPU: NVIDIA GTX 1080 Ti: 12 TFLOPs, 12GB VRAM

4.1.2 Software environment

The experimental server AMERICA has been the machine used for the development
of deep learning models. The access to it can be via ssh or using the Jupyter Hub
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interface, other than physical. While the ssh connection is suitable for maintenance
tasks, the development for its entiery is performed using the Jupyter Hub Interface
because it provides a more comfortable interface.

4.1.3 Scientific stack

The major components of the project are Python and Jupyter, running on Ubuntu,
the Linux Operating System. Python is a general-purpose programming language,
while Jupyter is a server-client application that allows editing and running notebook
documents via a web browser. Jupyter Notebooks are documents that contain
both code (e.g., python) and rich text elements (paragraph, equations, figures,
links). Notebook documents are powerful because they are both human-readable
documents that contain descriptions and results, as well as executable documents
which can be run to perform computations.

All the work is based on Python 3.5.2, which is the language of choice of the
deep learning community and it has solid scientific libraries. This allows us to
experiment solutions and iterate extremely fast. It is to be noted that almost all
Deep Learning and scientific libraries use Python exclusively as an interface, in
fact, the majority of the code is written in C, C++, and Fortran for speed. The
main Python libraries used in this work are:

1. SciPy McKinney, 2010: A Python-based ecosystem of open-source software
for mathematics, science, and engineering.iosresize

2. NumPy van der Walt et al., 2011: The fundamental computing library of
Python. It adds support for large, multi-dimensional arrays and matrices,
along with an extensive collection of high-level mathematical routines.

3. Scikit-learn Pedregosa et al., 2011: A machine learning library. It contains
various classification, regression, and clustering algorithms and is designed to
interoperate with NumPy and SciPy.

4. Pandas McKinney, 2010: A data manipulation and analysis library. In par-
ticular, it offers an interface to organise and manipulate tables and time series.

5. Matplotlib Hunter, 2007: A library to plot 2D graphics.

The IBM SPSS Statistics software IBM Analytics, 2018 has been chosen,
instead, to compute the statistical studies seen in chapter 3. This software is
able to reliably take care of all the processes and statistical pipeline of gathering,
analysing and displaying analysis performed on dataset and thanks to the many
instruments available is one of the most common tools in this ambit.
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4.1.4 Deep learning stack

Many are the deep learning libraries developed in the last years and most of them
perform the same set of operations, but each one preserves its strength point. Keras
and TensorFlow are predominantly used in this work to create models and test the
results.

Tensorflow

TensorFlow is an open source software library for numerical computation that uses
data flow graphs and nowadays it is the most common framework used for deep
learning. Nodes in the graph represent mathematical operations, while the graph
edges represent the tensors transferred between them. Tensorflow allows balancing
of the computation on one or more CPUs or GPUs in a desktop, server, or mobile
device with a single API.

Keras

Keras is a high-level neural network API compatible with the TensorFlow, CNTK
and Theano backends. Its primary goal is to help in fast experimentation. It was
chosen because it is the “lingua franca” of deep learning, meaning that we can
define a model with Keras and then convert it to different frameworks that may
work better in production.

Figure 4.1: Keras software and hardware stack, adopted from Chollet, 2017

4.2 Experimental methodology

In this section, we will explain the experimental methodology we followed to make
sure that the state, setup and experimental conditions were the same on all models
used. Moreover, we will present the strategy and mathematical means we used for
all measures performed in our study.
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4.2.1 Experiment reproducibility

Experiment reproducibility is essential because it allows tracking and replicating
results, enabling more detailed analysis on the reasons of success and failure of a
model, while guaranteeing a proof of work for the client. In a machine learning
scenario characterized by its iterations, full reproducibility is achieved only if all
the steps are constantly tracked. To be more precise, it is necessary “tracking the
steps, dependencies between the steps, dependencies between the code and data
files and all code running arguments”dvc.

On the contrary, in the exploratory phase, such a protocol is not necessary, and
it would eventually slow the whole process without clear advantages. Nonetheless,
during the definition of the model, we may need reproducibility for a limited time.
These moments include the situations where we have to run experiments to find
good hyperparameter values for our pipeline. In such situations all things but the
target hyperparameter should be fixed, therefore it is not necessary to keep track
of anything.

4.2.2 Resources management

In deep learning experiments, we often use all the available resources, meaning
that all CPU cores and the full power of the GPU should be dedicated to a single
experiment. When this is not possible, we have seen that the training time does not
increase when the CPU is used for other tasks that are not particularly intensive.

For what concerns the GPU, it should be used only by a process at a time. We
tried to run multiple models at the same time, and we have seen that the GPU
scheduling is not predictable, and it is possible that a model starves the other
one. Moreover, we have noted that when multiple models run at the same time
the performances decrease severely for both of them, making it faster to train the
models sequentially.

The only way to let more models run at the same time is to access directly
TensorFlow’s backend and assign to the particular Session a fraction of the GPU
in use. This can be a good solution while exploring all the possible solutions and
hyperparameters combinations, but during the final tuning of the model is not
advisable to use.

4.2.3 Hyperparameter optimization

After the network is defined we proceed with the definition of the hyperparameters
of the neural network. Usually we start with the default ones and after some
experiments, we can choose manually reasonable ranges for the hyperparameters.
It is important to note that we can make this manual adjustment because we start
with good models that usually have built-in mechanisms to prevent overfitting.
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4.3 Neural network models and architectures

There are numerous neural network models available for training and we decided
to employ the most common and suitable for time series. In addition, the charac-
teristics of our dataset bounded us in a way that not all the models are suitable
to our intent, especially the ones in need of a one-to-one correspondence between
sample and label, such as Support Vector Machines. This is due to the different
sampling rate present in most of the data we are working on and our decision in
structuring the input as observation windows. For our experiments we applied su-
pervised binary and multiclass classifiers, giving both the features and the labels,
called truth ground, and letting the classifier learn from data themselves.

4.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are one of the most popular neural networks
used in the study of time series and Natural Language Processing (NLP) problems.
The idea behind them is to use sequential information as input and use their "mem-
ory" to store the previous computation in order to let the current output depend
from present and past steps. This mechanism can be really useful when we want
to make predictions based on time, especially when the model needs context to
make predictions, but there are some limitation on how much they can go back,
lacking the capacity to depict long-term relationships in data. This kind of net-
work exploits Backpropagation Through Time (BPTT) as mechanism to learn and
it is the Backpropagation commonly used by normal neural networks applied to
an unrolled RNN which means that the error is back-propagated from the last to
the first timestep, unrolling all of them, allowing the update of the weights. RNNs
tend to suffer mainly of two problems regarding the gradient which makes other
and more powerful neural networks preferable

• Vanishing gradient: the gradient becomes smaller at each iteration and the
model stops learning or else it takes too long to do it.

• Exploding gradient: in this case the model assigns a value too high to the
weights, but this problem can be solved truncating the gradient itself as for
example using the technique called gradient clipping.

These problems prevent the RNNs to go too far back in time and learn much
more complex patterns, for this reason we have to take in consideration other
networks more advisable for our purposes and also able to bear a deeper architecture
compared to the ones possible with RNNs, such as IndRNN and LSTMs.
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Independently Recurrent Neural Network

The Indipendently Recurrent Neural Network (IndRNN) has been recently pro-
posed by Li et al., 2018 which tries to overcome the known problems of RNNs
and their difficulty in training. It introduces independence between neurons be-
longing to the same layer and allows the connection between neurons belonging to
different layers, as one neuron also receives as input all the outputs of the neurons
appertaining to the previous layer, allowing exploration through time. In this way,
the common problems involving the gradient are avoided and a major depth of the
neural network can be reached, translating in the capacity of processing longer se-
quences, without causing the gradient decay that affects other neural networks such
as LSTM and GRU. Always in Li et al., 2018 they states that an IndRNN have
a behavior similar to the one of CNNs, which can be seen as a big improvement
compared to the many issues defining RNNs. These are the reasons we decided to
employ this architecture with respect the classic RNN one.

The independence of the neurons allows also the parallel computation of outputs
increasing the speed of IndRNNs and making them preferable to RNNs and LSTMs,
much slower.

Figure 4.2: IndRNN architecture

4.3.2 Long-Short Term Memory

Long-Short Term Memory neural networks have been introduced as extension of
RNNs by Hochreiter and Schmidhuber, 1997, involving principally an exten-
sion of their memory. Their memory gives the opportunity to remember the inputs
over long period of times thanks to the composition of their basic cell.
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LSTMs on the other hand, make small modifications to the information by
multiplications and additions while it flows through a mechanism known as cell
states. In this way, LSTMs can selectively remember or forget things and the
information in a particular cell state depends from three different factors

• The previous cell state (i.e. the information that was present in the memory
after the previous time step)

• The previous hidden state (i.e. this is the same as the output of the previous
cell)

• The input at the current time step (i.e. the new information that is being fed
in at that moment)

This model is also able to prevent the problems affecting the RNNs thank to its
activation function consisting to an identity function, in this way the backpropa-
gated gradient does not vanishes nor explodes, remaining costant. Now they are
widely used for their characteristics and their capability of being applied to many
different tasks.

Figure 4.3: LSTM architecture

4.3.3 Convolutional Neural Network

Despite the common association between time series and recurrent neural net-
works, nowadays Convolutional Neural Networks (CNN), outperform really well
the results obtained on the same tasks by both RNNs and LSTMs, as stated by
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D̊BLP:journals/corr/abs-1301-3781. They conducted benchmarks on 9 common
problems applied to RNNs and the results were far better in accuracy, but also in
the amount of training time and the quantity of memory needed from the network.

Along with the classical CNN architecture, we also tested the Temporal Convolu-
tional Network (TCN) family of architectures, a particular CNN created combining
the best practices of the classical CNN and improving the behaviour of classical
RNN. Even the usual problems affecting RNNs such as exploding and vanishing gra-
dient are avoided, but on the other side the characteristic inherited about transfer
learning is lost.

One of the downsides of such a complex neural network stands in the quantity
of data required to train it.

(a) Classical CNN archi-
tecture (b) TCN architecture

Figure 4.4: CNN architectures

What we have to underline is the necessity to tune a different number of pa-
rameters for CNNs with respect to LSTMs since some of them influences heavily
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the architecture of the model. Principally we refer to the size and number of filters
implied: since the datasets used do not have all the same size and in particular two
of them, the ones having data undersampled at 1 and half hour, have batches of
small dimensions, this parameters have to follow. In figure 4.4a, the architecture
used for the datasets more populated, the one with data interpolated at 92 seconds,
is reported, with a kernel size equal to 3, while in the other cases we had to use a
kernel size of 1.

comment Taking advantage of the CNNs and how are easy to train, we tried to
merge together the different problems of classification and regression in the case of
this problem. Since with machine learning models it is possible to have a neural
network running simultaneously on two separate tasks we decided to train our
CNN to receive the usual input and give as output the classification value of the
phenomena and also the DST value for each single batch. Even if the regression
was not our first interest this gave the opportunity to the network to learn a

The TCN model in figure 4.4b seems small but only because a single layer
contains a complex architecture to apply the capacity of LSTM to the Convolutional
Neural Networks.

4.4 Measurement methodologies

Due to the nature of the dataset and to its composition, as we have seen before,
we cannot rely only on accuracy as metric for our experiments, this decision comes
from the definition of accuracy itself

Accuracy =
TP + TN

TP + TN + FP + FN

where

• TP are the True Positives

• TN are the True Negatives

• FP are the False Positive

• FN are the False Negative

From the formula it is easy to understand how is possible to end up in a situation
where accuracy has an high value even if the model does not perform quite well
identifying the positive class, due to the high imbalance between the classes, leading
to the accuracy paradox we mentioned in the past chapter.

Thus, we decided to use also alternative metrics that could give us a complete
view of the results given by the neural networks, some of them are more classi-
fication related, such as F1 score, Log Loss score, ROC’s area under the curve,
while others are more general like Confusion matrix and Precision-Recall curve.
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The Confusion Matrix comes in handy especially in our case, while dealing with
imbalanced datasets, since it provides a cross-section on how the predictions are
distributed across the classes.

The F1 score measures the accuracy taking in consideration both precision and
recall, where

Precision =
TP

TP + FP
Recall =

TP

TP + FN

and

F1score = 2 ·

precision · recall

precision + recall

while the Log loss measures the performance of a classifier through the difference
between the predictions made by the model and the ones expected. Since the F1
and Log Loss scores are inversely proportional, we decided to adopt only one of
them, and for the amount of information that could give us and the possibility to
use it in both binary and multiclass classification valuably, we leant on the first one
to evaluate the future results.

We have also to underline that in the library sklearn the function to compute it
is present, but evaluates the results in two different ways taking in consideration the
two different kinds of classification: binary and multiclass. In case of binary clas-
sification the metric follow the formula reported above, while in case of multiclass
classification we can chose between two different modalities: micro and macro. In
case of micro computation, the metric is calculated globally taking into account the
true and false positive and false negatives, whilst when using the macro modality
the F1 score is calculated for every label, not taking care of the possible imbalance
of the dataset determining the average. Thus, the macro F1 score is preferred to
evaluate the results since in this case the classes have the same weight, no matter
how much imbalanced is the dataset evaluated as stated by Narasimhan et al.,
2016, while in the case of micro the importance of each class is given by the number
of samples populating it, giving more importance to more populated classes.

Precision and Recall are also valuable metrics to consider, not only used in the
ambit of F1 score, but also separately. Precision tells us how many of the classified
events actually belong to that specific class, for example, in a study about cancer,
it says how many of the people diagnosed having cancer, really have cancer. Whilst
Recall, also called Sensitivity, measures the quantity of events part of a class are
recognized by the model, in the case of people affected by cancer, it says how many
people having cancer are correctly diagnosed as having it by the model. In this
work, our main objective is having a higher value in Recall and a lower value in
Precision since we want to correctly classify as many elements as possible in the
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class of our interest, the one describing the values of DST for us relevant, despite
giving value to the correct classification of a small number of them.

While F1 score, Precision and Recall are useful during the evaluation of the
neural network model, the ROC and Precision-Recall curves can be used in a later
stage of the work, when there is the need to balance the classes’ weights and fine
tune the chosen model. In this optic the value of accuracy becomes quite unim-
portant, but always useful to understand how a particular model is training, in the
final result is possible that we will have a lower accuracy value despite the better
ability of the model in classify the events.
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Chapter 5

Experiments’ results

In this chapter we will analyse the results of the experiments run on the neural
network architectures described in chapter 4 and conducted on the datasets defined
in chapter 3. Our experiments were divided mainly into three phases:

• The choice of the most promising dataset based on the results given by a
preliminary analysis of a simple CNN architecture.

• The usage of the dataset chosen in the first step as input for the neural networks
depicted in 4: starting from basic architectures we chose the best one to create
a more complex architecture and fine tune its hyperparameters to reach our
goal.

• The choice of how much in the future forecast knowing the best dataset and
neural network available for this goal.

5.1 Dataset selection

For first we ran all the datasets on the CNN model since it is known to be faster
than both the IndRNN and LSTM, allowing us a quick evaluation of which dataset
is the best to employ. Each dataset has been used as input for binary and multiclass
forecasting and the results had on the test set are listed in the tables present in
this section, comparing the different windows of observation, which provide to the
neural network the recent history of the features.

We also want to remember that the F1 score in case of multiclass classification
is using the macro average in order to give unbiased results and correctly reflect
the forecastings done by the model.

Even if it may seem obvious that giving to the neural network a higher number
of data will lead to a higher accuracy, we have to take in account the characteristics
of each neural network model since they may not benefit from a bigger batch of
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data. In our case the 48 hours window is a hint of the probability a neural network
may ignore data too much in the past. When it happens the gradients assume
a particular form, they have a high value for the samples considered to take the
decisions, the ones at the end of the window and nearer in a temporal sense, while
going back in time, in the same window, the gradient decline, going really fast
to zero. This means that smaller are the values of the gradient, smaller is the
importance it has for the forecasting operations and this pattern can be observed
with almost all the neural network architecture we created as we will see in next
section. The only exception is the CNN which considers the entire temporal sample
of data. The reason can be brought back to the nature of the CNN, they are born
with the intent of observing an image to be able to classify them, and for this
purpose, they need all the data given as input, not only the last ones.

Relative to this problem we can affirm that in every sampling method the win-
dows giving us the poorest results was the 48 hours one: the higher amount of
data is not helping the neural network in understanding the pattern beneath them.
Instead, it seems the models struggle to learn and predict the classes, no matter the
kind of forecasting we are dealing with. At the other extreme, we have the batches
composed by only 6 hours of samples which, although the small amount of data
compared to the other windows, give the chance to the network to train correctly.
We have to especially underline the results given by the dataset undersampled at
one hour in table 5.7, with a window of only 6 hours of data: in multiclass classi-
fication the F1 score is even higher than the ones of the other windows, and even
in the other datasets its results are always better than the ones given by the 48
hours window. We can conclude that not always a vast amount of data, especially
when given all at the same time, can give excellent results and for this reason, the
observation window comprising 48 hours was not considered as input dataset.

Despite the good performances, the 6 hours window is not giving the best results
in either of the datasets, even if comparable with the ones given by the bigger
windows such as 12 and 24 hours. Thus, it will not be used for our experiments.
However, the datasets undersampled at 92 seconds is the one standing out among
the others, even considering this small window.

The most notable, but also predictable, results are showed in tables 5.4 and 5.5.
The composition of the batches, a mix of missing values and not enough valuable
samples, does not give the ability to the neural network to learn from the dataset
and this is shown by the zero values of the F1 score and consequently of Precision
and Recall. Even in the case of multiclass forecasting, the F1 score always has
the same value, showing that the model is not actually paying attention to the
input, but it always forecasts the same and most populated class. The high value
of accuracy is given by the amount of false negative forecasted, as can be observed
from the confusion matrix in table 5.3, here the real distribution of the predictions
made by the neural network are shown. We took as an example of confusion matrix
the one from 12 hours window since it seems the one giving better results on the
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other experiments, but even with this dataset, the outcome is not the best one. The
results concerning the other windows are not reported because are quite similar to
this one.

Window Accuracy F1 score Precision Recall

6 hours 98% 0.40 0.57 0.31
12 hours 99% 0.51 0.64 0.42
24 hours 99% 0.51 0.73 0.39
48 hours 98% 0.25 0.33 0.20

Table 5.1: half hour undersampled without missings dataset
- binary classification

Window Accuracy F1 score

6 hours 91% 0.40
12 hours 91% 0.48
24 hours 92% 0.42
48 hours 91% 0.36

Table 5.2: Half hour undersampled without missings dataset
- multiclass classification

Predicted

Actual
8625 0
147 0

Table 5.3: half hour undersampled with missings dataset
- confusion matrix

Window Accuracy F1 score Precision Recall

6 hours 98% 0.0 0.0 0.0
12 hours 98% 0.0 0.0 0.0
24 hours 98% 0.0 0.0 0.0
48 hours 98% 0.0 0.0 0.0

Table 5.4: Half hour undersampled with missings dataset
- binary classification
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Window Accuracy F1 score

6 hours 91% 0.24
12 hours 91% 0.24
24 hours 91% 0.24
48 hours 91% 0.24

Table 5.5: Half hour undersampled with missings dataset
- multiclass classification

Excluding the windows with 6 and 48 hours of samples, the windows with 12
and 24 hours of samples are the ones giving the best results, both in binary and
multiclass problems. In the case of 5.6 the window composed by 24 hours gives
better results, while considering the other two datasets, the window with data for
12 hours is the best one, making us leaning to this particular window size. We have
to point out that overall, the results given by the dataset interpolated at 92 seconds
are far better in binary classification, especially for what concerns the Recall that
is the highest among all the datasets and being of our concern to maximise it we
decided to employ this dataset in our future experiments.

In conclusion, the dataset of our choice is the one interpolated at 92 seconds
with a window composed of 12 hours of observations.

Window Accuracy F1 score Precision Recall

6 hours 98% 0.40 0.59 0.30
12 hours 99% 0.46 0.69 0.35
24 hours 98% 0.46 0.48 0.43
48 hours 98% 0.0 0.0 0.0

Table 5.6: one hour undersampled dataset - binary classification

Window Accuracy F1 score

6 hours 91% 0.43
12 hours 92% 0.41
24 hours 92% 0.41
48 hours 90% 0.34

Table 5.7: one hour undersampled dataset - multiclass classification
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Window Accuracy F1 score Precision Recall

6 hours 98% 0.43 0.62 0.33
12 hours 98% 0.53 0.61 0.47
24 hours 98% 0.20 0.37 0.14
48 hours 97% 0.07 0.10 0.05

Table 5.8: 92 seconds dataset - binary classification

Window Accuracy F1 score

6 hours 91% 0.38
12 hours 92% 0.46
24 hours 91% 0.40
48 hours 94% 0.36

Table 5.9: 92 seconds dataset - multiclass classification

Looking at the results listed in the tables is easy to observe how the accuracy
values depict a circumstance utterly different from the ones highlighted by the other
metrics, which are more descriptive of the classification made by the neural network
exclusively due to the accuracy paradox we talked about in chapter 3.

In the next sections, we will use as dataset the one composed of the samples
interpolated at 92 seconds with a window of 12 hours, being the one giving us the
best outcome compared to the other ones. The results computed in this section
concerning this dataset will be our baseline to chose the definitive model to use in
forecasting the classes of events in which we are interested.

5.2 Model selection

After selecting the best dataset between the ones analysed, we proceed with the
training of the architecture chosen to understand which of them is suitable for our
goal. In this section we will go through the results had from running the dataset,
we will evaluate their performances not only in the optic of the quality of their
predictions but also considering other parameters. The models used to run this
preliminary selection are the ones listed in chapter 4, they are quite simple, but
they are a good baseline to understand which model to use later.

The results, both for binary and multiclass classification, for each model are
showed in tables 5.15 , 5.12, 5.10 and 5.18.

The brand new model architectures such as IndRNN and TCN have outcomes
way worse than the classical architectures. TCN has the worst outcomes compared
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to the others, especially with respect to our baseline, even if this model has been
chosen purposefully to be a CNN built for time series.

5.2.1 TCN

The TCN on the dataset selected performs poorly, taking as the point of reference
the outcomes from the CNN in tables 5.8 and 5.9, our baseline. The outcomes are
comparable to the ones had with the 48 hours windows. From the experiments,
we run we saw how no matter the size of the window given, the interest of the
networks was always focused only on the last hours of information. This peculiarity
can be observed looking through the plot of the gradient with respect the input
considering the different windows composing the datasets in figures 5.1, 5.2, 5.3,
5.4. The plots all refer to the binary classification, but also the ones concerning the
multiclass problem are affected by the same issue. Even considering the possibility
to enhance the amount of data given as input, in this case it will not be proportional
to the amount of F1 score we hope for, in fact in the case of binary classification,
we tried to give bigger samples windows, but the F1 score does not go further than
the 0.26 in the case of the 48 hours window, highlighting a small improvement in
the overall results. For this reason is better to give as input to the TCN model
smaller batches, letting the neural network to learn better on the smaller amount
of data we give and frequently update its hyperparameters.

The high value of F1 score for the multiclass classification is justified by the
confusion matrix, the bias towards the first class is high, but the neural network
can learn how the other classes are composed and to classify them, even in the case
of the fourth and rarest class. The ability of the model carries to a discrepancy
with the accuracy value, lower than the one computed for binary classification.

Window Accuracy F1 score Precision Recall

Binary 98% 0.16 0.20 0.14
Multiclass 87% 0.34 / /

Table 5.10: TCN results

Predicted

Actual

7534 401 67 7
495 98 20 3
83 34 21 7
0 0 1 1

Table 5.11: IndRNN - multiclass confusion matrix
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Figure 5.1: TCN - Gradient w.r.t. input - 6 hours window

Figure 5.2: TCN - Gradient w.r.t. input - 12 hours window

Figure 5.3: TCN - Gradient w.r.t. input - 24 hours window

5.2.2 IndRNN

The IndRNN results show a big improvement with respect the TCN, despite the
gradient shows the interest of the neural network is focused even in this case on the
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Figure 5.4: TCN - Gradient w.r.t. input - 48 hours window

hours of the entire window of samples, making the size of the window useless since
to predict the class it is not taken in consideration its entirety as in figure 5.5.

Figure 5.5: IndRNN - Gradient w.r.t. input - 12 hours window

The evaluation of this model is in table 5.12, as we announced they are far better
with respect the TCN, but they do not outperform the results given by our baseline.
What is evident is the Precision value which is almost nearly the perfection in the
case of binary classification, but in return the Recall is almost comparable to the
TCN one, lowering the overall F1 score. Being the Recall our primary interest, the
high value of its counterpart makes us wonder which is the actual distribution of
FP and FN while classifying the events.

Window Accuracy F1 score Precision Recall

Binary 99% 0.33 0.94 0.20
Multiclass 92% 0.33 / /

Table 5.12: IndRNN results

Table 5.13 the confusion matrix regarding the binary classification display the
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distribution of the predictions made by the neural network which are highly biased
towards the negative class, having a high number of FN which influences the Pre-
cision since it does not consider them in its computation, in fact, the Recall which
takes them into account is really small. In case of the multiclass problem, the value
of the F1 score is the same and the confusion matrix regarding it does not improve,
rather it shows the bias towards the most populated class in an amplified way, as
stated by the table 5.14. Most of the samples are classified as belonging to the first
class, even the ones belonging to the second and third which are more populated
than the four, counting only 2 samples. What is important to observe is the second
class, for which there is no correct prediction despite the higher number of samples
which are classified for the most as belonging to the first class, but also as third
class.

Predicted

Actual
8623 2
118 29

Table 5.13: IndRNN - binary confusion matrix

Predicted

Actual

8002 3 4 0
605 0 11 0
110 0 35 0
0 0 2 0

Table 5.14: IndRNN - multiclass confusion matrix

5.2.3 LSTM

The LSTM has better results than the IndRNN, despite the equal value of accuracy
the F1 score is higher due to the higher value of Recall. This neural network has
more balanced values between Precision and Recall and it is more coherent with our
intent in improving Recall despite the Precision. For what concerns the multiclass
problem, the F1 score is slightly lower compared to both TCN and IndRNN but
looking and the confusion matrix in table 5.17, the predictions are more balanced,
even if still biased towards the first class. We can see that now the second class is
recognised correctly even if with some issues conversely to the IndRNN architecture,
it seems like the neural network now is slightly moved towards the central classes
when doing its predictions and even if most the samples are categorised as belonging
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to the first class, even the third is now more considered when predicting the result.
The same problem is affecting the binary classification in table 5.16, where the
number of FP is considerably higher with respect the one computed for IndRNN.

The gradient in figure 5.6 has the same trend of the IndRNN’s one due especially
to the shared nature they have, taking into account the last observations to predict
the classes for every sample.

Window Accuracy F1 score Precision Recall

Binary 99% 0.45 0.82 0.31
Multiclass 91% 0.32 / /

Table 5.15: LSTM results

Predicted

Actual
8601 24
119 28

Table 5.16: LSTM - binary confusion matrix

Predicted

Actual

7928 34 47 0
572 15 29 0
103 0 42 0
0 0 2 0

Table 5.17: LSTM - multiclass confusion matrix

5.2.4 CNN

The CNN is our baseline of comparison between all the neural network architec-
tures we implemented. Its results are summed in table 5.18 and they refer to ones
reported in the tables of the preceding section. The results are the best we had
compared to all the models on which the dataset was run, not only for the value of
the F1 score that it is even better than the LSTM one but also for what concerns
the Recall metric. This means that the CNN can recognise better the positive class
and also to predict less false negatives, in fact, the confusion matrices in tables 5.19
and 5.20 show this ability by the CNN to classify better the other classes even if it
disregards the most populated one.
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Figure 5.6: LSTM - Gradient w.r.t. input - 12 hours window

Window Accuracy F1 score Precision Recall

Binary 98% 0.53 0.61 0.47
Multiclass 92% 0.46 / /

Table 5.18: CNN results

Predicted

Actual
8581 41
78 69

Table 5.19: CNN - binary confusion matrix

Predicted

Actual

7859 134 16 0
458 122 36 0
52 34 52 7
0 0 1 1

Table 5.20: CNN - multiclass confusion matrix

The CNN’s gradient in figure 5.7 is different compared to the other neural net-
works since it shows that the model considers the entire window of samples to make
the correct predictions giving the chance to the network to learn better from the
datasets.

Overall the CNN is the neural network that is better dealing with the dataset
we chose
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Figure 5.7: CNN - Gradient w.r.t. input - 12 hours window

The figure 5.7 refers to the binary classification, but the one for multiclass clas-
sification makes no difference, a sign that is a real peculiarity of the neural network
to look at all the input given before making decisions.

This bias towards the first and third class we observed in all the neural networks
we studied, but especially in the IndRNN and LSTM could be due to the division
itself of the dataset. If we think about it, the first interval is composed by all the
samples >=-30, the second class is composed by the ones <=-30 and >=-50 while
the third is composed by the interval <=-50 and >=-100. The second class has a
small range of values composing it and it is possible that it makes it difficult for
the neural network to understand the patterns. This issue can be attributed to the
composition of the dataset mainly because is common to all the neural networks,
even when it is not so evident, and not specific of a particular one: when not sure,
the neural network chooses the first or the third class, but not the second.

An interesting point to observe is the ability of the neural network of recognis-
ing, even partially, the pattern characterising such a rare class as the fourth one,
composed by only 2 samples. Even if it is not able in all the experiments to classify
them as part of that, the neural network always makes the mistake of attributing
the samples to the nearest class, the third one. This is really important since it
means that the model learnt the pattern of the last and rarest classes, otherwise it
would attribute the samples not recognised to the first and most populated class.

Due to the performances of the CNN, this is the neural network we decided to
use for the last part of our experiments in which we study how much further in
time we can forecast the class of DST to which the events belong.

CNN improvements

To try to improve the architecture chosen, starting from the neural network we
improved the depth of the neural network or also tried to tune its hyperparameters
such as the number of filters to use in each layer of the CNN itself.
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The first test was done increasing the number of Convolutional layers to four
for each block, where each original block can be thought as composed of two Con-
volutional layers and one Max Pooling layer. Adding the number of layers to the
CNN can help the neural network in extracting features from the dataset passed
as input thanks to the increased depth. This lets each layer and further blocks
to extrapolate ore characteristics from the dataset to be analysed by the following
layers. In table 5.21 the results are shown

Window Accuracy F1 score Precision Recall

Binary 98% 0.44 0.58 0.36
Multiclass 91% 0.40 / /

Table 5.21: CNN results - 4 convolutional layers

After the increase of layers per block, we decided to add even more depth to
the neural network adding more filters, but only to the first layer, leaving the rest
of the neural network with the same number of filters as the architecture used to
compute the baseline. Since usually when increasing the number of filters, we give
the neural network the ability in learning more features from the dataset, adding
more filters to the first block we give the chance to learn new features directly from
the input data, before passing through all the layers of the neural network. In this
way we also let the CNN extrapolate more characteristics from the dataset to be
analysed by the following layers.

Window Accuracy F1 score Precision Recall

Binary 98% 0.46 0.44 0.48
Multiclass 91% 0.39 / /

Table 5.22: CNN results -
4 convolutional layers and 16 filter

Despite the efforts, the tables 5.21 and 5.22 display that this change does not
seem to improve the quality of our predictions, on the contrary, the value of the
F1 score decrease or remained the same, even though the complexity of the neural
network was higher. Even though in table 5.22 there is an improvement in the
Recall value, it is not a huge one and for this reason, we decided to stick with
the initial neural network, since complicating the architecture without any visible
improvement is not helpful and may lead to overfitting or instabilities in the training
process.
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5.2.5 Forecasting hours

Our first intent is to forecast the important values of the DST on Earth for the
reason we discussed in chapter 2. The importance of forecasting is linked to our
ability to anticipate the events occurring to take precautions and avoid huge dam-
ages. Thus, it is important to not only forecast the current value, considering the
past hours, but also to use these observations to predict future values. In this
section we will evaluate how much in the future we can predict the classes of the
events preserving a good quality in our results, considering as a starting point the
cross correlation study we have done in chapter 3. For this purpose, we shifted the
DST labels some steps in the future to let the neural network learn how to forecast,
in particular, we chose to forecast in the future for 1, 2, 3 and 4 hours which were
the most important hours in the cross correlation analysis.

Even in this case, we based our choices on both binary and multiclass classifica-
tion.

For what concerns binary classification the results in table 5.23 may seem con-
tradictory, the classifications made at 1 hour in the future have better results for
what concerns the F1 score and also the Precision an Recall, which seem balanced,
but on the other hand the results coming from the 4 hours forecasting reach our
goal of having a higher Recall with respect the Precision and also the F1 score.

Window Accuracy F1 score Precision Recall

1 hour 99% 0.46 0.59 0.40
2 hours 91% 0.35 0.28 0.43
3 hours 98% 0.35 0.44 0.29
4 hours 94% 0.28 0.18 0.65

Table 5.23: Model forecasting - binary

The confusion matrix 5.24 regarding the forecasting at 4 hours shows the increase
in the quality of the predictions, the number of true positive is higher than our
baseline. This kind of outcomes let us forecast 4 hours in advance the events,
with a higher accuracy, even though we have to deal with the high number of false
positives.

Predicted

Actual
8188 432
51 95

Table 5.24: CNN - binary confusion matrix

Considering the multiclass classification, the results are different from the ones
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showed in case of binary one. Here the most accurate predictions are the ones
interested in predicting the classes 2 hours in the future. The value of F1 score is
distinguished by the other test, which has all the same results, both for accuracy
and F1 score. In particular in the case of 4 hours forecasting the bias towards the
first class is so high that even the events belonging to the fourth one are assigned
to it.

Window Accuracy F1 score

1 hour 91% 0.34
2 hours 91% 0.41
3 hours 91% 0.34
4 hours 91% 0.34

Table 5.25: Model forecasting - multiclass

5.2.6 Training time

In table 5.26 the training time for each neural network model is reported being a
metric influencing actively the choice of which neural network to use. Indeed, when
a model is deployed and used not only for research purpose but also to recognise
and forecast the events of interest, it is really important to have a response in a
reasonable time. Moreover, when the model requires a huge amount of time in
training, a less amount of time is available to do more experiments and investigate
deeper the solutions applicable to that problem. We have also to think about the
contribution of this time to the learning of the neural network itself when it does
not allow the model to add knowledge it is a waste of time that could be used to
train a better or improved model.

Model Binary Multiclass

LSTM 40’ 60’
IndRNN 30’ 50’
TCN 51” 52”
CNN 30” 40”

Table 5.26: Model training time per epoch

The table 5.26 shows a big difference from the CNN and TCN time required
from training and the rest of the neural networks, this is the reason why many
researches currently are focused on this kind of neural networks and in particular
on the advantages of using them over the classical approaches conceived expressly
for that purpose. This is mostly given by the ability of CNNs to learn, if not better,

69



5 – Experiments’ results

surely in a smaller amount of time the pattern characterising a dataset due to their
design and their ability to run in parallel.
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Chapter 6

Conclusions and future

works

6.1 Objectives and findings

This thesis final goal was to find a neural network able to predict the classes to
which the DST belongs using the data collected about the features of the solar winds
that from the Sun reach our planet. The complexity of this physical phenomena is
reflected by the features we used and the difficulty in finding the best approach to
correctly define the feature’s values, while on the other hand, the relevant presence
of missing values pushed us in searching for a method to address them, but only
after considering all the characteristics of the features and a careful evaluation.

The proposed neural networks are simple, but effective in this ambit, although
the quality of the dataset is not the best. The classical approaches performed
better than the new architectures, despite their defects, with their ability in feature
extraction and to learn a more complex pattern.

Forecasting in advance the events is important to protect both humans in orbit
and instruments. This is the main objective of this thesis, and for this reason, we
tried to train the neural network to learn to predict the class in the future, varying
the gap between the observed features and the DST value.

What was evident in each experiment was the difficulty in letting the neural
network divide the classes without leaning on one rather than the other. In all the
tests the changes applied to the best model we selected led us to predictions giving
more importance to one class with respect to the other, but not in an improvement
of the forecasts and the correct identification of the classes. This could also be due
to the pattern of the initial data, they are more concentrated in a definite interval
while some and rare events, the most notable, depart from them. Being the data
all concentrated in the same interval, the neural networks also have difficulties in
understanding to which class the samples belong when they are too close to the
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threshold values as in figure 6.1. In this figure, the green dots are the correctly
classified events, while the red ones are the wrong ones and it is evident that the
neural network struggles in this points.

Figure 6.1: TP and TN versus FN and FP

6.2 Future work

For what concerns the possible future implementations and developments of this
project we can think about two different ambits on which act: the dataset and the
neural network involved.

6.2.1 Dataset

From the point of view of the dataset, we can act in different ways, starting from
especially from the studies we have don in chapter 3. In the first moment, we could
think to remove the seasonality from the features to understand whether new and
valid information is hidden under it, together with possible trends. We could also
think to address the problem of missing data using a different approach and trying
to take advantage of the capacity of models in learning patterns to impute the
missing samples.

A completely different and interesting point could be the use of a different rep-
resentation of the dataset, not using anymore the time domain, but the frequency
domain to represent the features. This change of representation could benefit the
classification process giving to the neural network to understand better the pattern
within.
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6.2.2 Neural Network Model

The simplest improvement could be the usage of attention to the architectures used
to let them understand which features are the most important and which are the
time steps to take into account in this classification problem. Attention is now
one the most used techniques in machine learning, especially in Natural Machine
Translation (NMT), where to understand how to properly translate a sentence from
one language to the other it is useful to understand which are the most important
pieces of a sentence and where to put the translated words accordingly to the
different grammars. In applying this method, we let the neural network decide
which part of the sentence to maintain at each step and which not, this can also be
applied to our problem to let the model understand which time steps are important
in forecasting the class of the events.

An interesting ambit which may be worth to explore is the union of the past
researches with the one conducted, especially link together the works on the Solar
Dynamics Observatory’s Helioseismic and Magnetic Imager instrument, based on
images, with the work conducted in this thesis composing a bigger and more com-
plex neural network able to join the patterns learnt from such different datasets.
The complexity of such a neural network can increase the ability in forecasting
and completeness in the description of such complex phenomena can be achieved.
Following the idea of combining different datasets and purposes, we could train
the same neural network both for classification and regression, even though our
first purpose is to classify the events. In this way, the neural network could learn
different patterns and improve its ability in predictions only by learning to address
both tasks instead of the only classification.

To conclude, in such a vast an unexplored ambit such as the impact the solar
activity has on the Earth, many more researches can be conducted, even using
different datasets. The future investigations can take advantage of the many open
points regarding this project and continue to improve our ability in forecasting such
essential phenomena.
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