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1. Introduction

With the gradual progress of information technology, people become much more easier to 
create, store and disseminate information in electronic form. Billions of users on Internet 
create quintillion of bytes everyday, even though the rich information is beneficial for human 
beings on several levels, the amount of information and knowledge are growing 
exponentially, which makes people difficult of find useful information. Taking into account 
the efficiency of information utilization, a viable solution for getting critical information from
a large collection of document is to generate readable and concise summaries containing the 
most relevant information automatically. For example, news articles that focuses on the same 
issue may have many redundant fact and related point of view from different individuals, an 
automatic summary may collect the most relevant facts and common views in several 
sentences, avoiding getting lost in the large set of original tests.

The automatic summarization technology mainly includes two kinds, mechanical and 
comprehension. Mechanical summarization can be applied to unrestricted domains, which is 
consistent with the current trend of natural language processing technology for real corpus 
and practicality, while comprehension summarization sacrificing the width of the field in 
exchange for the depth of understanding, its value as a theoretical exploration is high, but 
hard for practice. In recent years, along with the dramatic increase in computer storage and 
computation, data mining and machine learning algorithms are rapidly evolving, it is possible 
to obtain information from a large amount of data to assist in the completion of tasks. For 
summary tasks, text mining is a solution.

Text mining refers to the acquisition of valuable information an knowledge from text data, 
which is a method in data mining. The most important and basic application in text mining is 
to realize the classification and clustering of texts. The former is a supervised mining 
algorithm and the latter is an unsupervised mining algorithm. The disciplines associated with 
text mining are very broad, with the combination of the knowledge in probability theory and 
statistical mathematical analysis, and the application of data mining and machine learning 
techniques, text mining is applied in natural language processing and information extraction, 
many studies are working to introdue new technologies to bring improvements to text mining.

So far, lots of research has been devoted to generating summaries that best summarize the 
content of the document in various ways. They mainly consist of two main categories, for 
keywords and for sentences. For analyzing and filtering sentences, there are several ways: (i) 
clustering, (ii) graph ranking, (iii) optimization strategies, and (iv) frequent itemset mining. 
And also studies linguistic or semantic analysis are used for benefits the generation of 
summary.

Although text mining can accomplish tasks well in many fields, in the summary task, it has 
limited information because the size of datasets are usually quite small(only a few kByte).  On
the other hand, machine learning algorithms for the text have sprung up. Word embedding 
technology makes it possible for computers to understand words. By converting words into 
vectors that can express word features, computers can better understand the relationship 
between words and words, words and paragraphs.
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  The goal of this thesis work is to exploit the powerfulness of word embedding to improve 
multilingual summarization performance. Specifically, it aims at integrating pre-trained word 
vector information into a state-of-the-art multilingual summarization approach. The 
summarizer generates a summary of a collection of textual documents consisting of a 
selection of the most significant sentences. It analyzes the correlation among multiple text 
words to drive sentence selection. Based on word embeddings, we are able to discriminate 
between significant sentences and not according to the relevance of the contained words.

The proposed methods were applied to DUC’04. TAC’11, MultiLing’13 corpus 
respectively, and the generated summaries are evaluated according to the corresponding 
standard, then compared with the scores of other summarizers state-of-the-art. The results 
show that the use of word vectors in pre-processing stage can effectively improve the results, 
but in the sentence selection stage does not achieve the results as expected. For the use of 
word vector in pre-processing stage, the results of experiment can reach the top level. This 
method is stable in multi-language environment and is not affected by language types.

The article is organized as follows. Section 2 introduce the previous approaches and posts
the  pros  and cons.  Section  3  introduce  the  previous  researches  on  word  embedding  and
toolkits  with  pre-trained  vector  models  state-of-the-art.  Section  4  proposes  the  main
approaches  for  improve  the  summarizer.  Section  5  lists  our  experiments,  results  and
comparisons. And section 6 draws conclusions and put forward directions for future work.
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2. Literature review

Document summarization is a general term for a class of tasks that generate concise text 
summary that describes the content of one ore more text documents. There are currently two 
main approaches for document summarization, sentence-based document summarizers and 
keyword-based document digests, depending on the type of generated summaries. The 
sentence-based approach generally splits the document into sentences and select the sentence 
that is most relevant to the content of document  to form the summary[1,2]. The keyword-
based approach detects the keywords that best represent the article, and then uses co-
occurrence metrics or latent semantic analysis to generate document summaries. In order to 
generate a quality document summary, you must choose a sentence that is more suitable for 
generalizing the article. The summarizer structure presenting in this article is derived from 
MWI-Sum which is an sentence-based frequent itemset mining approach. Section 2.1 
introduces the current strategies for sentence selection, and Section 2.2 introduces the main 
principle and structure of MWI-Sum, which the approach proposed in this article is based on. 

2.1 Main categories of sentence-based summarization algorithms

There are currently several strategies for high quality sentence selection: (i) clustering, (ii) 
graph ranking, (iii) optimization strategies, and (iv) frequent itemset mining.  In the field of 
summarization generation, lots of research has been done on these strategies, and a brief 
introduction will be made below.

2.1.1 Clustering based approaches

Clustering based approaches [1][2][3] are used to select sentences that meet the needs of the
summarization. One idea is to find the subset of sentences that best represent the entire cluster
from the set where sentence are represented in unique form[2], such as the sentence closest to 
the centroid or medoid of cluster. Another idea the MEAD summarizer[3] is to use the 
document set as a criterion for clustering evaluation. In this case, the centroid of the 
corresponding cluster is a pseudo-document consisting of a sentence selected by evaluating 
the tf-idf value[4] of the corresponding phrase. In addition, there are approaches to use the 
incremental clustering algorithm[5] or related algorithms to dynamically update the original 
summary[1] when adding or deleting some of the documents in the dataset without 
recalculating the entire cluster model. Clustering algorithms are especially useful for 
documents or sentences that could be divided into different topics.

2.1.2 Graph-based approaches

The general idea of the graph-based algorithm[6][7][8] is to construct a graph with the 
document sentences as nodes, whose edges of the connected nodes are weighted by 
comparing the similarities of the connected nodes, and pruned according to the minimum 
similarity threshold to reduce the complexity of subsequent program, and then use the 
indexing strategy[9] to extract the sentences that best fit the composition summary. Some 
studies[6][7] combine knowledge provided by user-generated content with graph-based 
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models to improve the quality of abstracts. Other studies[8] use the association rules between 
the term pairs to generate graphics,and then use the HITS[10] algorithm to sort the sentences.

2.1.3 Optimization strategies

Optimization strategies are also used to select the most appropriate sentence to form a 
subset. Some methods transform the sentence selection process into a min-max optimization 
problem, which is then solved by a combination optimization strategy[11]. Approach 
described in [12] uses a similar approach to summarize the differences between the 
collections. Other approach use Singular Value Decomposition(SVD)[13], Integer Linear 
Programming, and submodular function optimization techniques[14][15] to screen for 
appropriate sentences. The summarizer CLASSY[16][17] generates summaries for document 
sets by combining the optimization with the Markov model. Some approaches[13][17][18] 
that utilize an optimization strategy can be applied to multi-language file sets.

2.1.4 Frequent itemset mining

Frequent itemset mining is a very important research basis in data mining research[19]. It 
can tell us the objects that often appear together in the dataset and provide some support for 
possible decisions. Frequent itemsets have a wide range of applications, including document 
summaries. In [20], [21] and [22], the researchers initially studied the application summary of
the application set. A document is considered to be a dataset consisting of terms. By 
researching the co-occurrence of itemsets, the approaches will find the itemsets which 
benefits more to the summary. And in order to distinguish more meaningful items according 
to relevance or attention ones, some studies propose approaches for weighting items by 
indexing strategies or known information. The weight of items was considered to help 
improve  the quality of abstract generation in a multilingual environment[23]. The approach 
proposed in [20] abstracts all the distinct words in each document into a single transaction, 
while [21] and [22] treats each sentence of document as a transaction. The approach proposed 
in [22] measures the importance of each sentence by the association between document items,
the disadvantage of this approach is the loss of high-order association between 
terms(combination of multiple terms more than 2). [23] has made improvements on the basis 
of [22], while using the weight itemset, term frequency – document frequency(tf-df) is also 
used instead of the original tf-idf as the relevance score. It is more suitable for processing file 
sets in related fields.

In the field of text processing, linguistic and semantic analysis has always had a place. 
Despite the rapid development of data mining technology in recent years, non-semantic 
methods have become popular, but the traditional methods still have the advantage that can 
not be ignored, that is, when technologies of artificial intelligence is not perfect, compared 
with the data mining algorithm based on word frequency, linguistic and semantic based 
analysis can better understand the meaning of text. In previous studies, [24][25] used 
ontology to find the meaning that was closest to what the user queried, while [26][27] 
separately studied the context used to generate the digest in the corresponding (mobile, 
business, disaster management) application domain, and [28][29][30] used the text argument 
structure. Another type of approach is the summarize generator with the lexical chain. The 
lexical chain usually comes from ontologies or lexical databases[31], the choice of language 
model will have a great impact on its effectiveness, which is largely influenced by the 
language and the type of document. 
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2.2 MWI-Sum[23]

MWI-Sum is a multilingual summarizer based on frequent weighted itemsets. It has shown
outstanding  results  in  collection  of  news  documents  in  multilingual  environment.  The
approaches proposed in this paper is based on this summarizer, improve the quality of the
results by improve some of its stages. The summarizer consists of four main stages: document
(i)pre-processing,  (ii)sentence  filtering,  (iii)frequent  weighted  itemset  mining  and itemset-
based model generation,  (iv)sentence evaluation and selection.  In pre-processing stage, the
summarizer does stemming and stopword elimination for documents, and calculate tf-df value
to establish a weight matrix, then the program filter sentences by the position of sentences and
the total weight of words. After the sources are pruned, an itemset-based model is generated
for frequent weighted text mining. At last the output of frequent itemsets will be used for
evaluate sentences, the sentences with most itemsets covered and high relevance score will be
selected greedily to form the required summary. Although this approach has already achieved
good scores,  it  is  still  limited  in  the  dataset  to  be  summarized.  Therefor,  by  introducing
external information from pre-trained word vector model, it still as space for improvement.
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3. Word embedding

The summarization approach mentioned in this article combines word embedding with the 
original one, resulting in better results for multi-language text summarization tasks. This 
section will introduce related content of word embedding. Section 3.1 will introduce what 
does word embedding do and the related technologies for word embedding, Section 3.2 
introduces word embedding toolkits state-of-the-art, and Section 3.3 introduces the pre-
trained vectors model used in the summarization approach exposed in this article.

3.1 Theory on word embedding

Word embedding is a technique for mapping word vectors in high-dimensional space into 
vector spaces with lower dimensions to obtain more characteristic and easier-to-handle word 
vectors. It allows people to convert the one-hot vectors whose original dimension is 
equivalent to the number of words(e.g. millions) into a very small dimension(100-300) by a 
certain means of generation(e.g. co-occurrence matrix, neural network, etc.) and make the 
vector easier to express some characteristics of words(e.g. similar relationship). 

3.1.1 Vectors to represent words

In natural language processing (NLP) tasks, the first point is to consider how words are 
represented in the computer. Traditionally, rule-based or statistical-based natural semantic 
processing methods which treat words as an atomic symbol are called one-hot representation. 
One-hot representation is equivalent to assigning an id to each word, which could not 
showing the relationship between words. In addition, one-hot representation will result in a 
very large characteristic space, even though this makes many tasks linearly separable, it 
requires huge processing space and storage space. Word embedding technique could convert 
words into a distributed representation, which is called the word vectors. In this form, there is 
a concept of ‘distance’ between words, which is very helpful for computer to ‘understand’ the 
relationship between two words. For example, in a well-prepared model for words of 
countries and cities, the cosine distance between the vector(Rome) and vector(Italy) is bigger 
than word Rome to France. Furthermore, recently research[32] shows that the word vectors 
capture may linguistic regularities. For example, the value vector(‘Rome’) – vector(‘Italy’) is 
very close to the value vector(‘Paris’) - vector(‘Frence’). Therefor, the distributed 
representation of words after word embedding have more advantages in natural language 
processing. In addition, most of the algorithms state-of-the-art uses bag-of-words(BOW) 
model discussing the relationship between a word and its context, words due to the same root 
which may have similar context will receive vectors very close to each other, the word vectors
could also make an effort on stemming.

Most of the current mainstream word vector generation methods are based on the 
relationship between the context and the word, that is, the word can be inferred according to 
its context, or its context can be inferred based on the word. Initially people used statistical 
methods such as co-occurrence matrix and singular value decomposition (SVD), and then 
methods of word embedding with latent semantic analysis and language models are 
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successively proposed[33][34][35][36]. In 2000, a research[37] presented a method based on 
feedforward neural network and nonlinear hidden layer, which proposed to use a “distributed 
representation” of words, that is, dimensionality reduction to obtain word vectors that are 
conducive to natural language analysis. In 2013, a team at Google led by Tomas Mikolov 
invented a toolkit called word2vec[38] for word embedding, which trains vector space models
faster than ever. After word2vec, a lot of comparable toolkits[39][40] are developed.

3.1.2 Language model

The language model generates word vector by training the neural network language 
model(NNLM), where the word vector is the incidental output of the language model. The 
basic idea in NNLM is to predict the words that appear in the context. This prediction of the 
context is essentially a study of the co-occurrence statistics. Currently known methods for 
generating word vectors using the neural network language model are: Skip-gram, CBOW, 
GloVe[40] and so on. Since the word vector models used in this article is generated by 
word2vec[38] and FastText[39] which used  Skip-gram and CBOW model, sections 3.1.2.1 
and 3.1.2.2 will introduce these two methods briefly.

3.1.2.1 Continuous Bag-of-Words(CBOW) model

CBOW is a common model for word embedding, which uses word-of-bags model takes the 
context of words as input, and then outputs the distributed representation of the word. The 
main idea of CBOW is to predict the intermediate word by the context. After we specify the 
window size of the context, for each word CBOW will represents all words in its context 
window as one-hot format, with the same weight for the input of the neural network. So the 
input layer of the neural network has twice the window size. These vectors pass through the 
hidden layer and then passed to the output layer. The number of neuron in hidden layer is 
equivalent to the dimension of word vector we want to generate, i.e. each hidden layer 
represents a “feature”. The size of output layer is the same as the total number of words, and 
each neuron outputs a probability value. The goal of training is to expect the softmax 
probability of a particular word corresponding to the training sample to be the greatest, i.e., 
through its context, we can predict what the word is most likely to appear in the middle.

3.1.2.2 Skip-gram neural network model[41][42]

Skip-gram is another neural network model for training the vector representation of words. 
which seems reversed to CBOW, Skip-gram model receives a word as input, and the output is 
the context of the word, which has a window size to control the number of words in context. 
What the neural network needs to do is, when given a particular word in a sentence, it tells us 
the probability that each word in vocabulary whether it is the context for the word.

Before processing the data, the program first encodes the word as one-hot representation, 
constructs a vector space with corresponding dimensions according to the number of words. 
The words are represented by their vector corresponding to their unique number. Each vector 
is processed through the hidden layer and then passed to the output layer, whose numbers 
equals to the size of vocabulary.  The hidden layer is a weight matrix,whose number of rows 
is equal to the size of the word list, and the number of columns is equal to the number of 
features to be learned, that is, the dimension of the resulting word vectors. In fact, this weight 
matrix is the ultimate goal of the word embedding: the dimension-reduced word vectors. 
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Since the initial input is a unit vector, the hidden layer actually plays the role of acquiring the 
current word vector and the recorder of word vector. The output layer is a softmax classifier. 
Each output neuron produce their output value in 0-1 and the sum of all output value is 1. The
system does not accept the offset of the output word from the input, it does not learn a 
different set of probabilities for words before and after the input word.

In this article, we use word vectors generated by Skip-gram.

3.1.3 Measure quality of the word vectors

For the word vector models generated by word embedding methods, we care whether it can 
reflect the characteristics of words and the relationship between words correctly. In general, 
vectors of similar words should exhibit stronger cosine correlation, and the cosine distance of 
two words with specific aspects should show specificity, and same type of words(such as 
“apple” and “banana” are all “fruit”) should be more inclined to present aggregation. 
Therefore, many word embedding toolkits provide testable data for these features. Take 
word2vec as an example, it provides a large number of analogy word pairs, such as 
“man”-“king” and “woman”-“queen”, after calculate the cosine distance in each word pair, 
compare the difference of the values, if the difference is small enough, it is considered as 
passing. Finally the pass rate is calculated to measure the quality of the generated word vector
model.

3.1.4 Limitations of word embedding and advanced technology

Although the word vector is very helpful for the computer to understand the meaning of the 
word, it still has its limitations, that is, a word may have many meanings, but they are mixed 
and represented by a single vector. The solution so far is in the ongoing research of sense 
embeddings[43], which recognize the different individual meanings of a same word, separate 
them and represent them as different vectors in space.

3.2 Word embedding toolkits

There are many word embedding toolkits shared by different teams since the word2vec 
toolkit was presented in 2013. Sections 3.2.1 to 3.2.3 introduces the toolkits among the most 
popular ones state-of-the-art that offer at least one pre-trained vector model.

3.2.1 Word2vec[38]

Word2vec, which was created by a team of researchers led by Tomas Mikolov at Google, is 
a group of related models for producing word embeddings to generate word vectors. With the 
benefits of performance improvements, word2vec could train large amount of text(e.g. several
gigas) and generate vectors for millions of words. The vectors, with hundreds of dimensions 
could represent the characteristics of words well, that is ,words with similar contexts are close
in vector space.

Word2vec is well developed to process huge size of data. In a huge sample set, the most 
frequent words will appear in millions of times, such as: in, the,a, etc. These words tend to 
carry a small amount of information relative to rare words. For example, skip-gram has a 
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much higher degree of benefit from observing the combination of ‘France’ and ‘Paris’ than 
from the observation of the combination of ‘France’ and ‘the’, because the combination with 
‘the’ is common appear in most of the sentences. In response to this phenomenon, word2vec 
provides a frequent word sampling mechanism that makes the frequency of a word appear to 
be approximately inversely proportional to the probability of the retaining the word, and also 
provides a parameter ‘sample’ to control the threshold of sampling, which makes it different 
to retain words that appear too frequent.

There are two main methods for training word vectors in word2vec, CBOW and Skip-gram.
The offset of context words does no effort on the prediction. General CBOW or Skip-gram 
neural networks may complete the same training tasks as word2vec, but in case of large 
amount of data and in vector space of large dimension, the time it takes to process all the data 
will increase exponentially. To avoid these problem, word2vec does not use the traditional 
DNN model. Firstly, data structure optimized for use is to replace the hidden layer and the 
output layer with binary tree of Huffman coding. Moreover, word2vec introduced other 
algorithm like Hierarchical Softmax[44] and Negative Sampling , which could be used as 
optional add-ons to speed up the program as will as make the result more precise. 

Negative sampling is a unique method used by word2vec to increase program speed. When 
a large number of sample s are used to train a neural network, the size of the vocabulary will 
leads to a large amount of weight data. If all the weights are updated when training each 
sample, the program will consume a lot of time and resources. Negative sampling solves this 
problem by having each training sample modify only a small portion of the weight instead of 
the full. When a network is trained using a word, the correct output of the network is the 
neuron output 1 corresponding to its context-dependent words, which are regarded as 
“positive” words, and the neuron output 0 for all other unrelated words, which are regarded as
“negative” words. In the case of negative sampling, word2vec will randomly select a small 
number of “negative” words to update the weights while updating all “positive” words. Each 
word is given a probability associated with its frequency, from which frequent words are more
likely to be choose as the negative sample. The number of negative samples for smaller 
datasets is 5-20 words, and for large datasets only 2-5 words, which reduces the complexity of
each training update from O(n) to O(1). Despite this, the value of updates is still large, 
because the number of weights each word needs to update is equal to the dimension of the 
features.

Hierarchical Softmax is another algorithm used by word2vec to greatly improve 
computational efficiency. It uses a binary tree to represent the output layer and a word matrix 
to represent leaf nodes. For each node, the probability of its child nodes is clearly indicated. 
In the initial research[44], some methods for constructing tree structures were proposed, as 
well as the impact on training time and model accuracy. In word2vec, this method is 
combined with binary Huffman coding because it assigns short codes to frequent 
vocabularies, making training faster.

In addition, word2vec believes that a phrase consisting of multiple words should be treated 
as an independent unit and should have a unique word vector, for example the phrase 
‘New_York’ should be independent of ‘New’ or ‘York’. Also because word2vec has improved
the processing speed of the program, they are able to train vectors for a huge amount of 
vocabulary. The toolkit counts the times of word combination appears in the text, and then 
uses those counts in the equation to determine which words are combined into a phrase. This 
design avoids some common combinations such as ‘this is’, ‘and a’, etc. As it shows in the 
model they published, there are 3 million words and phrases in the model, which cover most 
common words and phrases. At the same time, the toolkit provides a stitching mechanism for 
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phrases that are not presented in the word list. The vector of the phrase can be calculated by 
splitting at the hyphen and based on the vector of all words that make up the phrase.

The final quality of the results depend on the parameters such as sub-sampling which filter 
words with frequency above a certain threshold, dimensionality of the features observed from 
word(the size of word vector to produce), context window which delimit the size of context, 
and the optional algorithms selected to use for training the model.

3.2.2 FastText[39]

FastText is a word vector calculation and text categorization toolkit that Facebook opened 
up in 2016. It is not much innovative in academics, but its advantages are also very obvious. 
In the text classification task, FastText(shallow network) can often achieve the accuracy 
comparable to the deep network, but it is many orders of magnitude faster than the deep 
network in training time. The main function of the fasttext model is that when a word stream 
is given, it classifies it and outputs its probability of belonging to different category. The 
model extracts information from words and phrases, constructs feature vectors, and maps 
them to labels through linear transformations. Unlike word2vec, its prediction object is label, 
not the middle word of the context corresponding to word2vec. And inherits the idea of 
word2vec, using Hierarchical softmax classifiers to speed up the program.

Since the word-of-bag model does not take use of the position of  words, it loses the 
information expressed by relative position of the words. So FastText adds n-gram features for 
the words to take advantage of them to improve accuracy. In addition, for a string with more 
public characters, word2vec regard them as one-hot representation in the front, the correlation
between them can only be kept by similar context. In FastText, there is a n-gram feature of the
character lever simultaneously adopted, word is split into sub-strings having n characters, and 
vectors which can represent these sub-strings is obtained through training, and is used to 
represent the words composed thereof. This approach allows us to generate word vector for 
new word based on the substrings that make up them, even after the model has finished 
training.

3.2.3 GloVe[40]

GloVe is another word embedding toolkit derived from word2vec, using an unsupervised 
learning algorithm for obtaining vector representations for words. It improves the system by 
solving the missing part of relationship information in the word2vec due to the negative 
sampling. In addition, the Skip-gram algorithm in word2vec makes it easy to get too much 
weight for high-exposure words. GloVe with  Global Vector combines the global statistical 
information of the matrix decomposition Latent Semantic Analysis(LSA) and the advantages 
of local context window, and integrates the global prior statistical information. These 
measures can control the relative weight of words while speeding up the training of the 
model. 

3.3 Pre-trained vector models

In this article, we chose two models provided by word2vec and FastText. This is
because they are currently available on the network, with the largest amount of 
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training data and best quality compared to others. Word2vec provides an model 
training by news corpus in English. Which is consistent with the type of our test 
set; while FastText provides a model that covers the widest variety of languages, 
wich corresponds to the multilingual test we use.

 

3.3.1 GoogleNews-Vectors-negative300

This pre-trained vectors model is offered by the word2vec team led by Tomas Mikolov at 
google[38], it using a simple data-driven approach of the skip-gram model with negative 
sampling. The training dataset is from Google News with about 100 billion word, and the 
generated vectors are 300-dimensional for 3 million words and phrases, conclude most 
English words, abbreviations, and some of the words in other languages that appeared in 
original English news. The word2vec group offers the model in both binary format and text 
format.

3.3.2 FastText Pre-trained vectors model

This model set is published by the Facebook FastText team generated by training Wikipedia
data  on  Fasttext.  It  contains  vectors  in  dimension 300 for  294 languages.  The  vectors  is
obtained using a Skip-gram model[39] with default parameters. These are published as both
binary format and text formats, for the binary format, it has the unique form which could be
interpreted by FastText into a trained model, then the program can train new datasets on the
model, or generate word vectors for a list of words, even the words not originally appeared in
the model.
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4. THE PROPOSED SUMMARIZER

In this study we considered two different methods to integrate word embeddings into the 
itemset-based summarization process: pre-processing stage driven by word vectors and 
sentence evaluation stage driven by word vectors, and try to improve the performance of the 
summarizer through the word embedding based pre-trained word vector model. Since the 
vector set is produced by a way of data mining to make computer “understand” the meaning 
of vocabulary, this program makes it possible to get more benefits from the document without
having understand the complex linguistic or grammatical analysis in advance. Benefiting from
the feature, the program can be applied to a wide range of languages and yields better results 
in most languages. The following content will introduce the main ideas and working methods 
of the two approaches.

4.1 Document preprocessing with pre-trained vectors

Since our approach is based on weighted itemsets, the weight of the items is critical to the 
outcome. In MWI-Sum, the program uses tf-idf/tf-df to calculate the weight matrix of the 
terms, and removes the sentences that does not contain the term with higher weight by prune, 
then it performs frequent weighted itemset mining. In the approach proposed in this paper, we
use the word vector to generate the weight matrix. The word vector contains far more features
than tf-idf/tf-df, which makes it easier for us to study the meaning relationship between each 
term and each document. The key of this approach is to build the feature vector for each 
document according to the terms concluded, and then generate a weight matrix for terms 
according to the cosine distance between the feature vector of term and document. Since the 
contexts of terms in the same document or document set describing the same event are 
relatively close, their feature vectors should be close to each other, and the summation can be 
used yo remove their heterogeneous components and strengthen their homogeneous 
components. Thereby generating a feature vector of document. Because the feature vector 
expresses the homogeneity of the terms contained in the document, whether a term is related 
to the meaning of the document can be expressed by how close their feature vectors are, and 
the higher the value of cosine distance, the more likely it is to qualify for the document, and it
should be given a higher weight.

In practice, first we get a Bag-of-words representation for each sentence by stemming, 
which is a collection of several word prototypes. Inherited from MWI-Sum, we also use 
prune, keeping the first N sentences of the document as the most meaningful part. Then we 
generate feature vector for each document based on term, which is the normalization of the 
sum of all term vectors. Then with the calculating of cosine distance value of the feature 
vectors between each term and each document, a weight matrix of D×T size is 
generated(where T represents the number of terms and D represents the number of 
documents). Each column of the matrix corresponds to a term that indicates the weight of the 
term for each document. The sum of the values of the column gives the total weight of the 
term on all documents, we select the k terms with the most top total weight, further prune the 
sentences that do not contain these terms. After the pruning,  recalculate the weight matrix. 
This matrix is then used to perform frequent itemset mining. The following is the main 
process of the implementation of the approach:
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a. make dictionary: for each term in document, if not in dictionary, add term into dictionary. 
A dictionary is a collection of term which contains all the words(after stemming)  as a list. It 
may contains a number of total words, or just display the words one by one.

Figure 4.1 Example 1 of dictionary, first line is the total number of words and then the list of
words

Figure 4.2 Example 2 of dictionary, the displayment of words, especially for Fasttext

b. load vectors from pre-trained package: for each term in dictionary, if term in package, get
vector of the word, otherwise remove word from dictionary and document (the term which 
could not be found in package is not considered for summarization). For the GoogleNews pre-
trained vectors model, the program does a reduce work by read each word and its vector from 
the model package, and find if the word is appeared in the dictionary, and for the Fasttext 
Wiki pre-trained vectors model, the binary-form model package must be resolved by Fasttext, 
and the program will generate a reduced vectors file. When encountering a word which is 
appeared in the dictionary but not found in the pre-trained vector model, we will try to split it 
into several pieces and find if all the pieces could be found in the vector model. Fasttext has 
its own set of methods for generating vectors for words that have never been seen through the 
pre-trained models. Each vector will be normalized into unit vector.

For example, if the word “pre-trained” is not seen in the GoogleNews pre-trained vectors 
model, it will be split into “pre” and “trained”, then try to find vectrs vector(“pre”) and 
vector(“trained”)  in the model. After the two vectors are found, the vector of “pre-trained” 
will be calculated as the sum of the two vectors. Finally, the vector will be normalized into 
unit vector: vector(“pre-trained”) = norm(vector(“pre”) + vector(“trained”)).
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Figure 4.3 the word vectors, after reduce, all the words appeared in this file are also in the
documents for summary. The first line records the number of words(748 in total) and the

dimension of vectors(300 features)

c. select the first n-sentences of each document, take away the follow-up. For example if the
parameter nSentence = 3, only the first 3 sentences will be considered to generate the 
summary.

d. calculate the vector of each document as follows:

D⃗i=

∑
j=1

LDi

T⃗ ij

|∑
j=1

LDi

T⃗ ij|
where D⃗i is the vector of the i-th document, LDi is the number of terms in Di , T⃗ ij

is the vector the j-th term in Di

In this way, the vector to represent each document is made as the normalized sum of all the 
terms in the document, expressing features similar to terms. 

e. for each document and each term, make a matrix which has documents numbers of rows, 
and term numbers of column as follow:

M ij=D⃗i⋅ T⃗ j

where M ij is the cell at i-th row and j-th column in the matrix, D⃗i is the vector of the i-
th document, T⃗ i is the vector the j-th term in dictionary.

Each cell in the matrix is a value of cosine distance between the word and the document 
corresponding to the column and row, which could be considered as the similarity of the word
to the document, this value is used to measure whether the word can represent the main 
meaning of the document.
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f. select k-top words: 

for each term, calculate the sum of matrix value of the column as total weight:

Weight j=∑
i=1

LDi

Mij

where Weight j is the total weight of j-th term in dictionary, LD i is the number of terms 
in Di , M ij is the cell at i-th row and j-th column in the matrix.

The weight value represent the total representable of the word to all the documents in the 
same topic.Select the top k words which has the highest weight, and remove the sentences 
which do not have any word in the top-k word list.

g. make the matrix again as the step-e did.

4.2 Sentence evaluation and selection with pre-trained vectors

Sentence evaluation and selection is another important step, based on the results given by 
the frequent weighted itemset, in order to find fewer sentences to cover more high-weight 
itemsets. In MWI-Sum, this work is done by a greedy algorithm that assigns a relevance value
to each sentence by the weight of the frequently weighted itemset, and then selects the 
sentence with the highest relevance value between the sentences covering the most uncovered 
itemsets each time into the final summary. Here we adopt the concept of the coverage of 
sentences relative to the itemset, that is, a single sentence may not totally cover the meaning 
of single itemset, on the other side, even though the itemset is not covered by the sentence, 
they may have some common meanings innerly. Therefore, we use the coverage ratio to 
represent the coverage of a single sentence set by a single sentence, the value of which is 
expressed as the cosine distance between the feature vector of the sentence and the feature 
vector of the itemset. As with the generation method of the feature vector of document in 
section 4.1, the feature vectors of sentence and itemset canbe represented by the normalization
of the sum of the term vectors. Similarly, sentences with the highest total coverage of all 
frequent itemsets that are not fully covered will be greedily selected to form the final 
summary.

The flow of this approach is as follows:

a. for each sentence in document, calculate the relevance score as follow:

SentScoreki=

∑
j=1

LSi

M kj

LSi

where SentScoreki is the score of i-th sentence in k-th document, LSi is the number
of terms contains in the sentence, M kj is the cell at k-th row and j-th column in the matrix, 
which measure the represent ability degree of the j-th term to the k-th document. 

b. calculate vector for each itemset and each sentence:

I⃗t i=

∑
j=1

LIt i

T⃗ ij

|∑
j=1

LIt i

T⃗ ij|
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where I⃗t i is the vector of the i-th itemset, LIt i is the number of terms in It i , T⃗ ij

is the vector the j-th term in It i

S⃗ i=

∑
j=1

LS i

T⃗ ij

|∑
j=1

LS i

T⃗ ij|
where S⃗ i is the vector of the i-th sentence, LSi is the number of terms in S i , T⃗ ij

is the vector of the j-th term in S i

c. for each sentence, calculate the coverage vectors and cover percent of the whole itemsets:
S⃗C i=It S⃗ i

T

where S⃗C i is the coverage vector of the i-th sentence on the itemsets, It is the 
matrix of itemset vectors where i-th row is the vector of the i-th itemset, S⃗ i is the vector of 
the i-th sentence

Cover i=

∑
j=1

n

(S⃗ i⋅ I⃗t j )

n

where Cover i is the cover percent of the i-th sentence, S⃗ i is the vector of the i-th 
sentence, I⃗t i is the vector of the i-th itemset, n is the total number of itemsets.

d. use a greedy method, to choose sentences, which covers most itemsets:

ALGORITHM: Greedy sentence selection with itemset vector and sentence vector

Require: vector of sentences SV
Require: vector of itemsets IV
Require: set of sentence coverage vectors SC
Require: set of sentence relevance scores SR
Ensure: summary SU
SU = ∅
SC  = set to all zeros() /*initialize the summary coverage vector with only zeros */∗
/* Cycle until SC  contains only values not less than 1 (i.e., until the generated summary ∗
covers all the itemsets
of the model) */
while SC  contains at least one value less than 1 do∗
MaxCoverageSentences = max coverage sentences(S, SC) /* Select the sentences with the 
highest coverage percent */
if MaxCoverageSentences is not empty then

Sbest  = arg max s j∈MaxCoverageSentences SR( S j ) /* Select the sentence with maximum 
relevance score among the ones in MaxCoverageSentences */
SU = SU ∪ Sbest /* Add the best sentence to the summary */
/* Update the summary coverage vector SC  . SC(∗ Sbest )  SC is the sentence coverage ∈
vectorassociated with the best sentence Sbest  */
SC  = SC + SC(∗ ∗ Sbest ) /* Set the values associated with the itemsets covered by Sbest  
to the total coverage */
/* Update the sentence coverage vectors in SC */
for all SC ij in SC do
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if SC ij>1− SC j∗ then 
SC ij=1 − SC j∗ /* if the coverage of sentence i to  itemset j is larger than the part need to 

cover, it is set to the coverage of the required part*/
end for
end if
end while
return SU
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5. Experiment results

In this section, some datasets of English-written and multilingual news documents are 
selected to generate summaries by vector driven MWI-Sum (Section 5.1),  the generated 
summaries are scored by ROUGE system (Section 5.2).  We compare the performance of 
vector driven MWI-Sum and other state-of-the-art summarizers on these datasets(Sections 5.3
and 5.4), and analyze the impact of algorithm parameters on the scores of summaries(Section 
5.5). We performed the experiments on a 64-bit PC with 2.80GHz Intel Core i7-7700HQ 
CPU, 16GB memory and the system is Ubuntu 16.04 LTS (kernel 4.15.0-36-generic).

5.1 Textual Document Collections

The performance evaluation of vector driven MWI-Sum is tested on (i) DUC’04 English 
news clusters of the 2nd task [45], it is an English-written document collection of news which
used as a competition for DUC’04, (ii) the  TAC’11 datasets[46], a multi.lingual document 
collection of news which also used as a competition, and (iii) the MultiLing’13 datasets[47], 
which are the reference collection of the MultiLing’13 multilingual summarization task[48] in
ACL 2013[Association for Computational Linguistics 2013]. The following will give a brief 
introduction to these collections.

5.1.1 DUC2004 English news clusters

This benchmark collection contains 50 event topics of news chosen by NIST, for each topic,
10 documents are chosen  from the AP newswire and New York Times newswire. The 2nd 
task is to create a short multi-document summary (<= 665 bytes) of each cluster within fixed 
amount of time and space while the topic is unknown, and the summary will be truncated over
the target length if it is beyond the limit. For each cluster, a short summary (<= 665 bytes) are 
created by NIST assessors manually, which could be regarded as the golden summary for 
ROUGE evaluation.

5.1.2 TAC2011 Multilingual news clusters

This benchmark collection is a human created multi-lingual documents set for news which 
are freely available from Internet. It contains 10 topics and each topic contains 10 documents. 
All of the documents are translated into seven languages (Arabic, Czech, English, French, 
Greek, Hebrew, Hindi) by native speakers. The task aims to create a short multi-document 
summary for each topic in each language, and a golden summary is offered for ROUGE 
evaluation. In this article, we test Arabic, Czech, English, French, Greek and Hindi languages 
for each documents cluster.

5.1.3 MultiLing2013 dataset

This dataset is a subset of a 2010 corpus which is created from Wikipedias originally used 
to measure the performance of summarizer on non-English documents outside the news 
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domain. Each language in this collection has no less than 30 articles in suitable size. In this 
article, we extract 15 clusters of Arabic, Czech, English, French, Greek, Hindi, Romanian and 
Spanish languages for generating summaries to be evaluated.

5.2 ROUGE[49] toolkit

ROUGE, which is short for Recall-Oriented Understudy for Gisting Evaluation, is a 
benchmark toolkit originally developed for DUC2002 to score the generated summary with a 
model summary for reference. The toolkit contains several methods such as ROUGE-N(N-
gram based co-occurrence statics), ROUGE-L(LCS-based statistics), ROUGE-W(Weighted 
LCS-based statistics that favors consecutive LCSes), ROUGE-S(Skip-bigram-based co-
occurrence statistics), ROUGE-SU(Skip-bigram plus unigram-based co-occurrence statistics).
ROUGE-4 is a ROUGE-N method which calculate 4-gram co-occurrences between reference 
and the summary to be evaluated. It offers scores of Recall, Precision and F1-measure, by 
which the merits of the summary can be measured. In this article, we mainly use the Recall 
score of ROUGE-4 to evaluate the summaries generated by the summarizer.

Since the original ROUGE toolkit recognize tokens by regular expressions using English 
alphabet, it is applicable to English texts only. For Multilingual datasets, we use JRouge[50], 
which is a ROUGE metric implementation in JAVA using Unicode regular expressions to 
match tokens and punctuations, which making JRouge available  through a variety of 
languages.

5.3 Performance of vector driven MWI-Sum compare with other state-of-the-art summarizers
on English-written datasets

  In order to verify whether the vector-driven MWI-Sum system improves the quality of the
summarization, firstly we test the program on DUC’04 dataset and compare the score with
other  state-of-the-art  summarizers.  The  comparison  includes  the  following  summarizers:
ICSIsumm[51], OTS[52], TexLenAn[53],  itemSum[20] and some summarizers involved in
DUC’04 competition. In accordance with the requirements of the DUC’04 competition, we
truncated all the results into 665 bytes to eliminate the impact of lenths on the score. The
scores  are  shown in Table  5.1.  The data  of other  summarizers  are  derived from previous
studies[23] and DUC’04 reports[45].

  From table 5.1, we can see that in the approaches described in this paper, the differences in
the  models(possibly  training  methods  or  training  materials)  have  a  certain  impact  on  the
quality of the automatic summary. The appropriate model(GoogleNews pre-trained vectors
model) has a significant improvement over the original system(MWI-Sum) with the vector
driven  preprocessing  approach,  while  the  Fasttext  pre-trained  model  did  not  significantly
improve the results. On the other side, the approach on sentence selection stage could not
bring a positive influence, and may even cause a drop in quality.
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Table 5.1 Experiment on English-written DUC’04 Collections, comparison between the
vector driven MWI-Sum(for googlenews vector driven preprocessing, support threshold =

3%, kTop = 26, nSentence = 8; for googlenews vector driven sent-selection, support threshold
= 3%, kTop = 20, nSentence = 4; for fasttext driven preprocessing, support threshold = 3.5%,

kTop = 24, nSentence = 6; for fasttext driven sent-selection, support threshold = 3%,
kTop=24, nSentence = 3) and the other approaches

DUC2004 – English ROUGE-4 ROUGE-2
Summarizer Recall Recall

ELSA 0.0170 0.0860
ICSISumm Tuned [Hong et al. 2014] 0.0165 0.0905

TextRank 0.0161 0.0896
DPP [Hong et al. 2014] 0.0158 0.0952

Classy-peer67 0.0157 0.0854
RegSum [Hong et al. 2014] 0.0152 0.0914

Submodular 0.0148 0.0935
CLASSY04 [Hong et al. 2014] 0.0146 0.0860

Classy-peer65 0.0146 0.0863
googlenews_vec_driven_preprocessing_MWI_Sum 0.0140 0.0928

ClusterCMRW 0.0139 0.0889
CLASSY11 [Hong et al. 2014] 0.0137 0.0852
Submodular [Hong et al. 2014] 0.0135 0.0907

Classy-peer66 0.0134 0.0833
Centroid 0.0130 0.0806

MWI-sum 0.0128 0.0860
OCCAMS V [Hong et al. 2014] 0.0127 0.0884

fasttext_vec_driven_preprocessing_MWI_Sum 0.0127 0.0933
googlenews_vec_driven_sent-selection_MWI_Sum 0.0125 0.0794

ICSISumm Standard 0.0124 0.0829
Peer81 0.0123 0.0763

GeedyKL [Hong et al. 2014] 0.0122 0.0820
LexPageRank 0.0121 0.0822

peer124 0.0117 0.0780
fasttext_vec_driven_sent-selection_MWI_Sum 0.0116 0.0789

Coverage 0.0116 0.0739
Centroid [Hong et al. 2014] 0.0115 0.0771
FreqSum [Hong et al. 2014] 0.0103 0.0781
TsSum [Hong et al. 2014] 0.0101 0.0763

peer102 0.0099 0.0795
peer104 0.0099 0.0803
peer19 0.0099 0.0751
peer35 0.0099 0.0777

ILP 0.0090 0.0680
LexRank [Hong et al. 2014] 0.0086 0.0741

peer34 0.0081 0.0716
AMTS 0.0078 0.0598
Lead 0.0063 0.0527
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Table 5.2 Experment on Arabic-written collections of TAC’11, comparison between the 
vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support threshold = 
7.5%, kTop = 10, nSentence = 3, minimum 15 sentences for extend mode; for Fasttext vector 
model driven sentence selection, support threshold = 0.6%, kTop = 18, nSentence = 3, 
minimum 15 sentences) and the other approaches

Table  5.3 Experment  on  Czech-written collections  of  TAC’11,  comparison  between  the
vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support threshold =
5.5%, kTop = 12, nSentence = 3, minimum 15 sentences for extend mode; for Fasttext vector
model  driven  sentence  selection,  support  threshold  =  0.4%,  kTop  =  12,  nSentence  =  4,
minimum 15 sentences) and the other approaches

Arabic ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.2060 0.2750
fasttext vect-driven preprocessing MWI-Sum(extended) 0.1707 0.2370

ELSA 0.1520 0.2167
0.1469 0.2090

fasttext vect-driven preprocessing MWI-Sum 0.1453 0.2030
JRC 0.1340 0.1931
LIF 0.0889 0.1579

CLASSY 0.0800 0.1577
UoEssex 0.0697 0.1213
ItemSum 0.0678 0.1195

MWI-Sum 0.0671 0.1172
TALN_UPF 0.0600 0.1125

CIST 0.0502 0.1010
AMTS 0.0482 0.0768

UBSummarizer 0.0374 0.0761
ICSIsumm 0.0216 0.0334

fasttext vect-driven sent_selection MWI-Sum

Czech ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.0885 0.1775
ELSA 0.0744 0.1610

fasttext vect-driven preprocessing MWI-Sum(extended) 0.0678 0.1513
CIST 0.0660 0.1265
JRC 0.0646 0.1476

CLASSY 0.0613 0.1430
MWI-Sum 0.0592 0.1392

fasttext vect-driven preprocessing MWI-Sum 0.0583 0.1305
LIF 0.0583 0.1280

0.0539 0.1384
ICSIsumm 0.0536 0.1257

UBSummarizer 0.0447 0.0926
OTS 0.0411 0.1033

AMTS 0.0214 0.0557

fasttext vect-driven sent_selection MWI-Sum
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Table 5.4 Experment on  English-written collections  of  TAC’11,  comparison between the
vector  driven MWI-Sum(for  googlenews vector  driven preprocessing,  support  threshold =
4%, kTop = 12, nSentence = 6, minimum 15 sentences for extend mode; for googlenews
vector driven sent-selection, support threshold = 0.2%, kTop = 22, nSentence = 3, minimum
15 sentences; for fasttext driven preprocessing, support threshold = 4%, kTop = 20, nSentence
=  6,  minimum  15  sentences  for  extend  mode;  for  fasttext  driven  sent-selection,  support
threshold = 0.2%, kTop=22, nSentence = 3, minimum 15 sentences) and the other approaches

English ROUGE-4 ROUGE-2
Summarizer Recall Recall

0.0792 0.1926
GoogleNews vect-driven preprocessing MWI-Sum(extended) 0.0791 0.1924

GoogleNews vect-driven sent_selection MWI-Sum 0.0787 0.1878
GoogleNews vect-driven preprocessing MWI-Sum 0.0785 0.1905

fasttext vect-driven preprocessing MWI-Sum 0.0775 0.1922
fasttext vect-driven preprocessing MWI-Sum(extended) 0.0775 0.1922

Tuned ELSA 0.0751 0.1906
ICSIsumm 0.0728 0.1977

JRC 0.0680 0.1736
MWI-Sum 0.0628 0.1733

ELSA 0.0628 0.1742
CLASSY 0.0541 0.1707
TexLexAn 0.0531 0.1550

LIF 0.0522 0.1517
Coverage 0.0503 0.1287

OTS 0.0470 0.1407
ItemSum 0.0441 0.1211

SIEL_IIITH 0.0432 0.1362
ClusterCMRW 0.0404 0.1161

UoEssex 0.0377 0.1212
CIST 0.0374 0.1216

TextRank 0.0371 0.1006
Centroid 0.0362 0.0991

Submodular 0.0355 0.1111
TALN_UPF 0.0350 0.1068

AMTS 0.0348 0.1094
LexPageRank 0.0316 0.0922

ILP 0.0306 0.1048
Lead 0.0192 0.0745

UBSummarizer 0.0178 0.0967

fasttext vect-driven sent_selection MWI-Sum
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Table  5.5 Experment  on  French-written collections  of  TAC’11,  comparison between the
vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support threshold =
8%, kTop = 10, nSentence = 3, minimum 15 sentences for extend mode; for Fasttext vector
model  driven  sentence  selection,  support  threshold  =  0.4%,  kTop  =  10,  nSentence  =  3,
minimum 15 sentences) and the other approaches

5.4 Performance of vector driven MWI-Sum compare with other state-of-the-art summarizers
on Multi-lingual datasets

  Experiments on multilingual datasets are concentrated in TAC’11 and MultiLing’13. For the
English part, we use both GoogleNews-Vectors-negative300 and FastTest vector models, and
for other languages we only use the vector model provided by FastText. 

  In order to ensure fairness, we use the evaluation criteria of MultiLing’13 to measure the
results, that is, the summaries are truncated to 250 words and then scores through the Jrouge
system, and the quality of the generated summaries are measured according to the Recall
value in the score. 

French ROUGE-4 ROUGE-2
Summarizer Recall Recall

fasttext vect-driven preprocessing MWI-Sum(extended) 0.1126 0.2267
Tuned ELSA 0.1078 0.2232

ELSA 0.0996 0.2109
0.0991 0.2055

ICSIsumm 0.0952 0.2201
fasttext vect-driven preprocessing MWI-Sum 0.0860 0.1768

JRC 0.0824 0.1913
MWI-Sum 0.0753 0.1865

OTS 0.0612 0.1637
CLASSY 0.0565 0.1848
Coverage 0.0535 0.1362

Submodular 0.0518 0.1339
LIF 0.0517 0.1531

UBSummarizer 0.0474 0.1410
ClusterCMRW 0.0461 0.1311

ILP 0.0451 0.1367
CIST 0.0436 0.1409

AMTS 0.0434 0.0992
TextRank 0.0377 0.1037

SIEL_IIITH 0.0346 0.1165
LexPageRank 0.0337 0.1048

TexLexAn 0.0316 0.1221
Centroid 0.0278 0.0875

Lead 0.0260 0.0865
TALN_UPF 0.0208 0.0977

fasttext vect-driven sent_selection MWI-Sum
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Table  5.6 Experment  on  Greek-written collections  of  TAC’11,  comparison  between  the
vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support threshold =
6.5%, kTop = 18, nSentence = 3, minimum 15 sentences for extend mode; for Fasttext vector
model  driven  sentence  selection,  support  threshold  =  0.8%,  kTop  =  10,  nSentence  =  6,
minimum 15 sentences) and the other approaches

Table  5.7 Experment  on  hindi-written collections  of  TAC’11,  comparison  between  the
vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support threshold =
12%, kTop = 15, nSentence = 4, minimum 15 sentences for extend mode; for Fasttext vector
model  driven  sentence  selection,  support  threshold  =  1.5%,  kTop  =  28,  nSentence  =  7,
minimum 15 sentences) and the other approaches

Greek ROUGE-4 ROUGE-2
Summarizer Recall Recall

fasttext vect-driven preprocessing MWI-Sum(extended) 0.0380 0.1379
Tuned ELSA 0.0368 0.1268

0.0361 0.1265
CLASSY 0.0352 0.1354

MWI-Sum 0.0351 0.1207
fasttext vect-driven preprocessing MWI-Sum 0.0349 0.1271

ELSA 0.0311 0.1210
JRC 0.0228 0.1103
CIST 0.0218 0.0883
LIF 0.0186 0.1062
OTS 0.0182 0.0805

AMTS 0.0173 0.0594
ICSIsumm 0.0168 0.0636

UBSummarizer 0.0149 0.0695

fasttext vect-driven sent_selection MWI-Sum

Hindi ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.1144 0.3680
fasttext vect-driven preprocessing MWI-Sum(extended) 0.0988 0.3446

ELSA 0.0961 0.3454
0.0948 0.3350

fasttext vect-driven preprocessing MWI-Sum 0.0903 0.3083
CLASSY 0.0847 0.3332

SIEL_IIITH 0.0794 0.3048
JRC 0.0767 0.2938

MWI-Sum 0.0730 0.2887
CIST 0.0712 0.3023
LIF 0.0484 0.2178

TALN_UPF 0.0476 0.2597
UBSummarizer 0.0474 0.2824

AMTS 0.0464 0.1603
ICSIsumm 0.0148 0.0580

fasttext vect-driven sent_selection MWI-Sum
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Table 5.8 Experment on Arabic-written collections of MultiLing’13, comparison between 
the vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support 
threshold = 7.5%, kTop = 10, nSentence = 3, minimum 15 sentences for extend mode; for 
Fasttext vector model driven sentence selection, support threshold = 0.6%, kTop = 18, 
nSentence = 3, minimum 15 sentences) and the other approaches

Table 5.9 Experment on Czech-written collections of MultiLIng’13, comparison between the
vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support threshold =
7.5%, kTop = 12, nSentence = 3, minimum 15 sentences for extend mode; for Fasttext vector
model  driven  sentence  selection,  support  threshold  =  0.4%,  kTop  =  12,  nSentence  =  4,
minimum 15 sentences) and the other approaches

Arabic ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.1479 0.2085
fasttext vect-driven preprocessing MWI-Sum(extended) 0.1285 0.1911

fasttext vect-driven preprocessing MWI-Sum 0.1113 0.1653
0.1111 0.1657

ELSA 0.1097 0.1723
WBU 0.0997 0.1668

MWI-Sum 0.0894 0.1476
Maryland peer1 0.0715 0.1320
Maryland peer11 0.0673 0.1326
Shamoon peer5 0.0596 0.1002

CIST 0.0573 0.1188
Maryland peer21 0.0492 0.1059
Shamoon peer51 0.0367 0.0856

AMTS 0.0364 0.0608
Lancaster 0.0201 0.0522
ICSIsumm 0.0147 0.0236

fasttext vect-driven sent_selection MWI-Sum

Czech ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.1153 0.2046
fasttext vect-driven preprocessing MWI-Sum(extended) 0.1067 0.1901

ELSA 0.1032 0.1884
0.0948 0.1828

WBU 0.0934 0.1788
fasttext vect-driven preprocessing MWI-Sum 0.0841 0.1547

Maryland peer11 0.0772 0.1662
Maryland peer21 0.0706 0.1514
Maryland peer1 0.0697 0.1551

ICSIsumm 0.0589 0.1347
CIST 0.0587 0.1232

AMTS 0.0202 0.0513
MWI-Sum 0.0123 0.0341

fasttext vect-driven sent_selection MWI-Sum
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Table 5.11 Experment on English-written collections of MultiLIng’13, comparison between
the vector driven MWI-Sum(for googlenews vector driven preprocessing, support threshold =
2%, kTop = 12, nSentence = 6, minimum 15 sentences for extend mode; for googlenews
vector driven sent-selection, support threshold = 0.2%, kTop = 22, nSentence = 3, minimum
15 sentences; for fasttext driven preprocessing, support threshold = 4%, kTop = 20, nSentence
=  6,  minimum  15  sentences  for  extend  mode;  for  fasttext  driven  sent-selection,  support
threshold = 0.2%, kTop=22, nSentence = 3, minimum 15 sentences) and the other approaches

The ROUGE system is rated by the n-gram comparison between generated summary and gold
summary and calculate the coverage, the longer the summary, the higher the coverage, the
higher  the  score.  Therefore,  length  control  of  the  generated  summary  is  very  necessary.
Generally, in order to make a fair judgement, we should make each summary longer than the
requirement and then truncate it, but for MWI-Sum, it is difficult to generate long summaries
more than 250 words due to the explosive growth of runtime and memory required. In order
to make the generated summary long enough, we introduce an extend mode here. The extend 

English ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.0746 0.1862
GoogleNews vect-driven preprocessing MWI-Sum(extended) 0.0719 0.1817

GoogleNews vect-driven preprocessing MWI-Sum 0.0719 0.1817
ICSIsumm 0.0713 0.1938

ELSA 0.0692 0.1829
fasttext vect-driven preprocessing MWI-Sum(extended) 0.0671 0.1711

fasttext vect-driven preprocessing MWI-Sum 0.0664 0.1702
0.0663 0.1693

GoogleNews vect-driven sent_selection MWI-Sum 0.0649 0.1650
WBU 0.0640 0.1711

Maryland peer1 0.0502 0.1614
Maryland peer11 0.0492 0.1610

MWI-Sum 0.0462 0.1389
CIST 0.0447 0.1467

Maryland peer21 0.0415 0.1418
Coverage 0.0335 0.0931

Shamoon peer5 0.0315 0.1105
ClusterCMRW 0.0259 0.0794

TextRank 0.0248 0.0716
Centroid 0.0241 0.0704

Submodular 0.0237 0.0813
AMTS 0.0224 0.0567

Shamoon peer51 0.0224 0.0965
LexPageRank 0.0211 0.0690

ILP 0.0204 0.0763
Lancaster 0.0169 0.0828

Lead 0.0128 0.0565

fasttext vect-driven sent_selection MWI-Sum

27



Table 5.12 Experment on French-written collections of MultiLIng’13, comparison between
the  vector  driven  MWI-Sum(for  Fasttext  vector  model  driven  preprocessing,  support
threshold = 8%, kTop = 10, nSentence = 3, minimum 15 sentences  for extend mode; for
Fasttext  vector  model  driven  sentence  selection,  support  threshold  =  0.4%,  kTop  =  10,
nSentence = 3, minimum 15 sentences) and the other approaches

mode is to set a minimum number of sentences, when in the sentence selection stage, if the
total number of sentences in the generated summary does meet the minimum value setted, and
there are still  sentences not selected,  the program will fill  the summary with the sentence
which has the highest coverage until the summary has enough sentences.  In the experiment,
the minimum sentences number is set to 15.

Table 5.2 – 5.7 shows the performance of vector driven MWI-Sum in Arabic, Czech, English,
French, Greek and Hindi in dataset TAC’11, and table 5.8-5.15 shows the performance of
vector  driven MWI-Sum in Arabic,  Czech,  English,  French,  Greek,  Hindi,  Romanian  and
Spanish in dataset MultiLing2013.

The experiment results show that in most cases, both approaches can improve the summary
quality of the multi-language test set under the MultiLing’13 standard, and the vector driven
preprocessing method is more obvious than the vector driven sentence selection method. In
addition, although the MWI-Sum system can produce high quality summaries with the two
approaches,  we  can  still  further  improve  the  rating  by  extend  mode  since  the  generated
summaries  were  not  long enough.  In  the  end,  the  overall  perforamance  of  vector  driven
preprocessing MWI-Sum is best, and its performance is better than all the other state-of-the-
art approaches except Tuned ELSA.

French ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.1168 0.2309
fasttext vect-driven preprocessing MWI-Sum(extended) 0.1126 0.2267

ELSA 0.1063 0.2167
ICSIsumm 0.1012 0.2243

WBU 0.1007 0.2134
0.0999 0.2081

fasttext vect-driven preprocessing MWI-Sum 0.0860 0.1768
Maryland peer11 0.0816 0.2013
Maryland peer1 0.0806 0.2008

MWI-Sum 0.0768 0.1858
Maryland peer21 0.0625 0.1772

Coverage 0.0585 0.1412
Submodular 0.0570 0.1383

ClusterCMRW 0.0564 0.1418
CIST 0.0560 0.1660
ILP 0.0480 0.1390

AMTS 0.0463 0.1006
TextRank 0.0403 0.1061

LexPageRank 0.0373 0.1086
Centroid 0.0311 0.0920

Lead 0.0265 0.0868

fasttext vect-driven sent_selection MWI-Sum
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Table 5.10 Experment on  Greek-written collections of MultiLIng’13, comparison between
the  vector  driven  MWI-Sum(for  Fasttext  vector  model  driven  preprocessing,  support
threshold = 6.5%, kTop = 18, nSentence = 3, minimum 15 sentences for extend mode; for
Fasttext  vector  model  driven  sentence  selection,  support  threshold  =  0.8%,  kTop  =  10,
nSentence = 6, minimum 15 sentences) and the other approaches

Table 5.13 Experment on  Hindi-written collections of MultiLIng’13, comparison between
the  vector  driven  MWI-Sum(for  Fasttext  vector  model  driven  preprocessing,  support
threshold = 12%, kTop = 15, nSentence = 4, minimum 15 sentences for extend mode; for
Fasttext  vector  model  driven  sentence  selection,  support  threshold  =  1.5%,  kTop  =  28,
nSentence = 7, minimum 15 sentences) and the other approaches

Greek ROUGE-4 ROUGE-2
Summarizer Recall Recall

fasttext vect-driven preprocessing MWI-Sum(extended) 0.0405 0.1368
Tuned ELSA 0.0390 0.1294

fasttext vect-driven preprocessing MWI-Sum 0.0352 0.1204
ELSA 0.0338 0.1243

0.0338 0.1209
Maryland peer11 0.0329 0.1237
Maryland peer1 0.0313 0.1200
Maryland peer21 0.0312 0.1117

MWI-Sum 0.0285 0.1074
WBU 0.0260 0.1104
CIST 0.0195 0.1002

ICSIsumm 0.0142 0.0567
AMTS 0.0142 0.0512

fasttext vect-driven sent_selection MWI-Sum

Hindi ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.1144 0.3680
fasttext vect-driven preprocessing MWI-Sum(extended) 0.0988 0.3446

ELSA 0.0961 0.3454
0.0948 0.3355

WBU 0.0934 0.3192
fasttext vect-driven preprocessing MWI-Sum 0.0903 0.3083

Maryland peer11 0.0874 0.3439
CIST 0.0809 0.3456

Maryland peer21 0.0800 0.3285
Maryland peer1 0.0795 0.3348

MWI-Sum 0.0679 0.2425
AMTS 0.0464 0.1603

ICSIsumm 0.0091 0.0482

fasttext vect-driven sent_selection MWI-Sum
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Table  5.14 Experment  on  Romanian-written collections  of  MultiLIng’13,  comparison
between the vector driven MWI-Sum(for Fasttext vector model driven preprocessing, support
threshold = 6.5%, kTop = 15, nSentence = 4, minimum 15 sentences for extend mode; for
Fasttext  vector  model  driven  sentence  selection,  support  threshold  =  2%,  kTop  =  20,
nSentence = 4, minimum 15 sentences) and the other approaches

Romanian ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.0960 0.1910
0.0919 0.1833

fasttext vect-driven preprocessing MWI-Sum(extended) 0.0821 0.1777
fasttext vect-driven preprocessing MWI-Sum 0.0801 0.1654

ELSA 0.0760 0.1637
WBU 0.0681 0.1655

Maryland peer21 0.0496 0.1381
Maryland peer1 0.0493 0.1489

ICSIsumm 0.0469 0.1504
Maryland peer11 0.0437 0.1392

CIST 0.0385 0.1202
AMTS 0.0332 0.0714

MWI-Sum 0.0152 0.0461

fasttext vect-driven sent_selection MWI-Sum
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Table 5.15 Experment on Spanish-written collections of MultiLIng’13, comparison between
the  vector  driven  MWI-Sum(for  Fasttext  vector  model  driven  preprocessing,  support
threshold = 4.5%, kTop = 10, nSentence = 4, minimum 15 sentences for extend mode; for
Fasttext  vector  model  driven  sentence  selection,  support  threshold  =  0.6%,  kTop  =  16,
nSentence = 5, minimum 15 sentences) and the other approaches

5.4 Analysis of Parameters

  From the experiments of multi-language dataset, we can see that in the same language, the
parameters that give the optimal solution have certain commonalities and rules to follow. We
analyzed  the  effects  of  several  parameters  of  the  program,  looked  for  a  more  suitable
parameter combintion for the program by observing the influence of the Recall score judged
by JROUGE with the change of the specific parameter. Inherited from MWI-Sum, there are
three parameters worthy of our attention: support threshold, kTop an nSentence.

  Support threshold represents the ratio between the minimum weight and the total weight of
items that can be selected for text mining. In theory, too small an support threshold will cause
the program to contain too many low-weight(inefficent) items, wich will put a lot of burden
on the performance of the program, whilt too large the support threshold value will lead to a
loss  of  some  important  items  for  the  documetns,  which  will  cause  a  loss  of  a  lot  of
information. We set the values of the ramining two parameters kTop = 10 and nSentence = 6,
then gradually reduce the st value and do experiment on MultiLing’13 dataset to observe the
change of the Recall score of generated summaries with the driven of Fasttext model vectors

Spanish ROUGE-4 ROUGE-2
Summarizer Recall Recall

Tuned ELSA 0.1408 0.2773
0.1356 0.2597

fasttext vect-driven preprocessing MWI-Sum(extended) 0.1187 0.2500
ELSA 0.1145 0.2458

fasttext vect-driven preprocessing MWI-Sum 0.1138 0.2429
MWI-Sum 0.1133 0.2377
ICSIsumm 0.1116 0.2565

WBU 0.1039 0.2274
Coverage 0.1008 0.1994

Maryland peer11 0.0877 0.2180
ILP 0.0716 0.1723

ClusterCMRW 0.0705 0.1702
Maryland peer1 0.0670 0.1975

CIST 0.0669 0.1801
Submodular 0.0625 0.1647

Maryland peer21 0.0596 0.1754
AMTS 0.0534 0.1011

Centroid 0.0488 0.1308
TextRank 0.0474 0.1357

Lead 0.0469 0.1198
LexPageRank 0.0428 0.1253

fasttext vect-driven sent_selection MWI-Sum
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judged by JROUGE. The results are shown in figure 5.1 – 5.8, which shows the impact of
results on Arabic, Czech, English, French, Greek, Hindi, Romanian and Spanish. The figures
show that for all languages, when support threshold shrinks, the score tends to rise.When the
support threshold value is to a certain small value, due to too many itemsets to be processed in
the program, the time and space consumed by the program will increase exponentially, so it is
difficult to obtain subsequent related results.

Figure 5.1 Experment on Arabic-written collections of MultiLIng’13, the impact of support
threshold, with the other parameters ktop = 10, nSentence = 6.

  The parameter kTop represents how many terms to choose as the essential ones for sentences
to be kept for further mining in preprocessing stage. And nSentence represents the number of 
sentences the program extracts from each document to remove the subsequent sentences 
which mary contain less information. Since the frequency of words in different languages and 
the amount of information contained in each sentence are different, the influence of these two 
parameters on the results presents the specificity based on the type of language. With the 
support threshold in an appropriate value, we experimented the MultiLing’13 dataset using 
the FastText vector driven preprocessing MWI-Sum. The results are presented in Figure 5.9-
5.14. Overall, the results of the experiments show that, in most cases, the program is more 
likely to achieve better results when the value of nSentence is smaller. The effect of kTop 
value on the results is different among languages. Some languages such as Arabic, Czech, 
French, Hindi tends to present good results when kTop is lower(10-15), while the others such 
as English and Greek show advantage when K value is higher(18-20).
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Figure 5.2 Experment on Czech-written collections of MultiLIng’13, the impact of support
threshold, with the other parameters ktop = 10, nSentence = 6.

Figure 5.3 Experment on English-written collections of MultiLIng’13, the impact of support
threshold, with the other parameters ktop = 10, nSentence = 6.
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Figure 5.4 Experment on French-written collections of MultiLIng’13, the impact of support
threshold, with the other parameters ktop = 10, nSentence = 6.

Figure 5.5 Experment on Greek-written collections of MultiLIng’13, the impact of support
threshold, with the other parameters ktop = 10, nSentence = 6.
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Figure 5.6 Experment on Hindi-written collections of MultiLIng’13, the impact of support
threshold, with the other parameters ktop = 10, nSentence = 6.

Figure 5.7 Experment on Romanian-written collections of MultiLIng’13, the impact of
support threshold, with the other parameters ktop = 10, nSentence = 6.
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Figure 5.8 Experment on Spanish-written collections of MultiLIng’13, the impact of support
threshold, with the other parameters ktop = 10, nSentence = 6.

  

Figure 5.9 Experment on Arabic-written collections of MultiLIng’13, the impact of kTop
and nSentence, with support threshold = 7.5%
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Figure 5.10 Experment on Czech-written collections of MultiLIng’13, the impact of kTop
and nSentence, with support threshold = 7.5%

Figure 5.11 Experment on English-written collections of MultiLIng’13, the impact of kTop
and nSentence, with support threshold = 4%
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Figure 5.12 Experment on French-written collections of MultiLIng’13, the impact of kTop
and nSentence, with support threshold = 8%

Figure 5.13 Experment on Greek-written collections of MultiLIng’13, the impact of kTop
and nSentence, with support threshold = 6.5%
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Figure 5.14 Experment on Hindi-written collections of MultiLIng’13, the impact of kTop
and nSentence, with support threshold = 6.5%
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6. Conclusions and future work

This paper proposes two novel methods to improve the performance of the original 
summarizer by combining word embedding technology with text mining based on weighted 
itemsets. These approach can be widely used in various languages and plays a very effective 
role in generating document summaries. The experimental results show that the proposed 
approach for pre-processing stage can effectively improve the quality of the generated 
summaries, and is favorably to the other current summarizers.

Since the information introduced from word embedding does improve the original system, 
we envision whether more information can be used(such as adding analysis at the phrase 
level), the approach proposed in this paper produces the feature vector of document and 
sentence by summation, it still lose many information which may be worthy for the summary 
task. Another idea is to improve the performance of the system. In the research of this paper, 
we find that MWI-Sum based on the weighted itemset is weak in the completion of the 
summary task requiring more words(e.g. MultiLIng2013 standard 250 words). In addition, 
due to the addition of the vector processing module on the basis of text mining, the program is
slowed down and memory required increased significantly. Solving these issues will further 
improve the quality of the abstract. On the other side, the existing approach needs to set the 
parameters according to experience, but the values of parameters should be regular, or can be 
learned through the study of the corpus by the program, how to let the program automatically 
set the parameters remains to be studied.

For word embedding, we expect new progress in research on sense embedding technology, 
which will help our system understand more about the documents and words. In addition, in 
the research of this paper, the model trained through news data shows better results on the test
set of news corpus. We consider whether the material type used to train the model has an 
influence on the performance of the summarizer.

The approaches described in this paper has only been tested on the test set of news content,
but  given  the  versatility  of  word  vectors  and  itemset,  we  believe  that  it  is  likely  to  be
applicable to the summary tasks of other stylistics.
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