PoLITECNICO DI T ORINO

FACULTY OF ENGINEERING

Master in Computer Engineering
Embedded Systems

Convolutional Neural Networks-based recognition
pipeline for Robot Manipulation

Supervisor: Candidate:
Prof. Andrea Calimera Alessandro Costantini
Maitr:232520

DECEMBER 2018

Contents

List of Figures ii
List of Tables iv
Acknowledgements v
1 Introduction 1
1.1 Introduction 1

2 Background 3
2.1 Problem Statement 3
2.2 First Stage: from Classification to Detection 5
2.2.1 Support Vector Machine 6

222 SIFT e 7

223 BOVW. 7

2.2.4 Convolutional Neural Networks 8

2.2.5 Object Detection 14

2.3 Second stage: Pose Estimation 17
23.1 ICP 18

2.3.2 Particle Filter o 19

2.4 Performance Metrics 20
2.5 Object Segmentation L 21

3 Related Work 22
4 Two-Stage Framework For Scene Estimation 26
4.1 Software 28
4.1.1 Pytorch 28

4.1.2 CUDA 31

4.2 Hardware 32
4.3 Dataset 33
4.4 Baseline 35
4.4.1 First Stage: Faster-RCNN 35

4.4.2 Second Stage: ICP oL 38

CONTENTS i
4.5 SAND . . 39
4.5.1 First Stage: Pyramid-CNN 39

4.5.2 Second Stage: Particle Filter 46

4.6 Adversarial attack oL 47
4.7 Robot Grasping A7
4.8 Feature-Based Approach 48
4.8.1 First Stage: SIFT o 48

4.8.2 Second Stages with SIFT 50

5 Experimental Results 51
5.1 Results Representation 51
5.2 Computational Complexity 52
5.3 Analysis of Baseline 53
5.3.1 Mobilenet 53

5.4 Baseline VS SAND 54
5.5 Adversarial Example 0o 55
5.6 Power Analysis 57
5.7 Mention on SIF'T 58

6 Conclusions 62
Bibliography 64

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

4.1
4.2
4.3
4.4
4.5
4.6

5.1

5.2

2.3
5.4

Framework Approach
Usage of GPUILSVRC
Representation of SIFT descriptor
Visual representation of filtersina CNN
ReLU function
Basic Scheme of Convolutional Layer
AlexNet Architecture
Possible configurations of VGG L.
Example of Residual Block
Example of a input scene image
Example of detector o
Example of a Sliding Window
YOLO workflow
YOLO vs SSD vs Faster-RCNN
Front view of Detergent Bottle cloud point
Example of ICP algorithm applied on a 2D group of point
Example of Image segmentation

Baseline and SAND pipelines
One image for each class in the progress dataset
Example of an Heatmap created by Pyramid-CNN
Pyramid-CNN prediction Example
Pyramid-CNN architecture
Training algorithm for Pyramid-CNN

Accuracy curve for each object in the test scene. This graphs are the
results of VGG16 within the SAND pipeline
Average curve of all object in the test scenes. This graphs are the
results of VGG16 within the SAND pipeline
Accuracy of MobileNet (Baseline)
The final pose estimation accuracy of the baseline approach composed
of Faster-RCNN and ICP. The y-axis is the accuracy percentage based
on different distance threshold on x-axis.

ii

LIST OF FIGURES

iii

5.5

2.6

5.7
2.8
2.9
5.10
5.11

The final pose estimation accuracy of the SAND filter approach com-
posed of Pyramid-CNN and particle filtering. The y-axis is the accu-
racy percentage based on different distance threshold on x-axis.

Pose accuracy of the SAND filter approach comparing with baseline
approach.
Full process with adversarial example
Energy consumption and runtime measurements
Adversarial Attacks with SIF'T + Particle filter
SIFT +ICP
SIFT + Particle Filter

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2

5.3
5.4

2.5

COCO object detection results comparison using different frameworks
and network architectures.

Hardware configuration of Nvidia Jeston TX2 operating mode
Comparison between NVIDIA Titan XP and Jetson TX2
OHNM applied on Pyramid-CNN
OHNM applied on Faster-RCNN
Differences between Baseline & SAND

Computation complexity for Faster-RCNN with various CNN model .
Object detection (first stage) accuracy among different networks with

progress dataseto
Baseline implemented with MobileNet
Pose estimation (second stage) accuracy among different networks

using a distance threshold of O.1m.
Accuracy of SIFT-based first stage

iv

32
33
43
43
A7

53

54
54

o6

Acknowledgements

This thesis represents the final step in my studies, and it contains the overview
of six months of work at the Brown University Engineering Research Center. In
particular, I took part in a robotic project designed by Professor Iris Bahar of Brown
University and professor Odest Chadwicke Jenkins of University of Michigan.

This project aims to develop a new computational flow to aid in the design of
robot perception techniques. Within this project scope, Professor Jenkins and his
group at the University of Michigan will explore robust methods for simultaneous
object and pose recognition and professor Bahar and her group at Brown University
will explore efficient methods for CNN-based convolution. The project has been
executed as a tightly coordinated collaboration via weekly video conference meet-
ings with the entire research group and through smaller face-to-face meetings with
researchers from each institution.

I would first like to thank my thesis advisor Andrea Calimera of the Politecnico
di Torino. He gave me the possibility to participate in this project supporting me
in my travel in the US.

I would also like to thank Professor Iris Bahar, my supervisor at Brown Univer-
sity, that accepted me to take part in the robotic project and introduced me in the
powerful world of machine learning.

Moreover, I would to express my respect to professor Odest Chadwicke Jenk-
ins, person in charge for University of Michigan, for the great knowledge that he
transmitted to me.

In the end, I must express my very gratitude to my colleagues Yanqi Liu (Brown
University) and Zhigiang Sui, Zhefan Ye, Shiyang Lu (University of Michigan) for
the great job that we made together and for the mutual support, without which we
would not be able to achieve the obtained results.

Author

Alessandro Costantini

Chapter 1

Introduction

1.1 Introduction

The future of robotics predicts that robots will interact more every day with
human beings and their environments. To achieve this integration, robots need to
acquire human intelligence, which is defined as the ability to learn and to apply
knowledge and skills. There is a urgent need for algorithms to provide robots with
such kind of skills. In particular, for robots to autonomously perform manipulation
tasks in human environments, they should have a proper understanding of objects
of objects in the surrounding environment, as well as their pose state and their
geometry. These information are paramount to make robots able to take the right
action. For common human environments, such perceptual understanding remains
an open issue, super challenging when considering cluttered environments.

Object detection techniques used for robot perception have greatly improved over
the last years, due to the wide involvement of convolutional neural networks (CNNs).
However, the excellent performance achieved by CNNs depend heavily on large
numbers of floating point operations, requiring considerable energy consumption.
In particular, this cost grows with the number of layers and weight parameters in
the CNN. For efficiency, however, this computation cost is not a viable solution
for embedded platforms and on-board processing for autonomous robots, where
resources available are not unlimited, and cloud computing is not always applicable.

The basic assumption behind this work is that very high accuracies are not
needed for certain applications, like grasping and manipulation. Hence, the relaxed
accuracy constraint might help to improve efficiency.

This analysis is performed within a two-stage framework composed by a Faster-

RCNN object detection followed by pose estimation, via the Iterative Closest Point

1.1 Introduction 2

(ICP) algorithm. In particular, it shows that a smaller network model reaches
comparable accuracy to generate grasping results, as a larger CNN model. By
accuracy, it has been considered not just the bounding boxes produced by the CNN
network in its ability to detect objects, but more importantly, in the final pose
estimation that represents the output from the second stage of our approach. This
distinction is important because an CNN accuracy measurement may not reflect the
value of their output as it is passed to pose estimation stage. Accuracy from the
first stage is not necessarily an indication of overall accuracy after the second stage.

All the experiments has been done using a small dataset created specifically
for the study in order to perform physical experiments. This work shows that
a large dataset is not needed to achieve high accuracy. Moreover, runtime and
energy consumption for Faster-RCNN object detection has been conducted on two
different systems: a powerful GPU and a embedded platform for machine learning
application.

Before the arrival of Convolutional Neural Networks, object recognition was
performed using features-based algorithms, such as SIFT (Scale-Invariant Feature
Transform). Unlike CNNs, which are power-hungry models, such algorithms does
not require great computational resources, making them more suitable for resource-
constrained application. A SIFT-based object detection approach in the first stage
has been developed and tested to understand if it could guarantee reasonable toler-
ance.

Furthermore, this work shows that relying solely on the CNN to make hard
decisions for scene perception tasks leaves several open issue and vulnerabilities,
especially when dealing with complex scenes (e.g., with non-ideal lighting or clutter).
It has been explored how a generative sample approach for pose estimation in the
second stage can improve performance of the entire framework. These experiments
vary CNN model complexity for object recognition and evaluate levels of inaccuracy
that can be recovered by generative pose inference. These experiment shows promise
in providing robust robot manipulation for complex scenes, that also have some

similarities to scenarios used for malicious attacks.

Chapter 2

Background

2.1 Problem Statement

Robot manipulation in human environments is predicted to grow, as the num-
ber of researches done with the aim to provides robots with autonomous skills. In
order to interact autonomously, robots should have knowledge about object in the
surrounding human environments, such as location and pose state. However, per-
forming manipulation in unstructured and cluttered environments is particularly
challenging due to many factors.

In this study, it has been designed a physical model whit the aims to develop a
new computational flow to aid in the design of robot perception techniques. The
physical environment is composed by a robot in front of a table that contains a
random scene of objects. The model receives as input a RGB-D observation from
the robot’s camera and provides a motion trajectory for robot execution of a ma-
nipulation action. The perception problem can be split in three stage: detection
of relevant objects, pose estimation for these objects, and generation of the ma-
nipulation motion trajectory, as illustrated in Figure 2.1. This study concerns and
presents only the first two stages. The manipulation is assumed successful if the
pose estimation is correct. Formation of robot trajectories are mostly considered
through the invocation of one of many possible motion planning algorithms [43]. In
the first stage, input is provided as RGB image which contains a complex scene of
objects, as shown is figure 2.1(a). For each relevant object, the detector will predict a
2D image-space rectangular, called bounding box, around the region of interest (i.e.
where the interested object has been predicted) and a class label representing the
identifier of the predicted class. An example of detection is showed in figure 2.1(b),
where the spray bottle has been surrounded by a red bounding boxes predicted by

2.1 Problem Statement 4

the object detector.

Color Image (@ First Stage: Object Detector (b)

Robot Action

(e) Second Stage: Pose Estimatior(rd)

Depth Image + Object Sample

(c)

Figure 2.1: Framework Approach: detection, pose estimation, robot manipulation

Starting from first stage outputs, in the second stage, a 6DoF (six degree-of-
freedom) pose will be estimated for each detected object, figure 2.1(d). It has been
assumed that only one instance per object can be in the same scene. In the third
stage,figure 2.1(e), manipulation actions consist of move a certain object from its
estimated location to a desired pose.

Convolutional Neural Networks has reached high accuracy in computer vision
tasks, such as classification and detection, founding place also in robotic applica-
tions where machine has to perform autonomously. In figure 2.2 is represented
the usage of GPUs by the winner project of ImageNet Large Scale Visual Recog-
nition Competition (ILSVRC) from 2010 to 2014. In 2012, with the appearance of
Alexnet [23], GPUs has been stater to be utilized due to the high computational
resource requested by the neural networks. With the appearance of deeper and im-
proved networks, for example VGG [41] in 2014, the increasing ratio of GPU usage
has been more significant respect the decreasing ratio of the error rate.

However the computational power of these network are not always available in
embedded platform world. In this work has been performed an analysis of different
model of Neural Networks within the framework described above, in order to com-
prehend how the accuracy, hence the power consumption, affects the final results

2.2 First Stage: from Classification to Detection 5

30% - r 100%
% Teams using GPUs ol
25% | s0%
20% | Winning % Error - 70%
I 60%
15% 4 I 50%
- 40%
10% - -
- 20%
5% 4
F 10%
0% T T T T D%

2010 2011 012 2013 2014

Figure 2.2: Usage of GPU by winner networks in ILSVRC over the year (source:
nvidia.com)

of a system that does not rely only on CNN. Moreover, a generative-sample pose
estimation stage has been developed to improve the robustness of the entire process.

2.2 First Stage: from Classification to Detection

For robots to autonomously perform manipulation tasks, they must recognize
which objects are in the surrounding environment. Similar to human perception,
machine works with images. When a computer sees an image (receive an image as
input), it sees an array of pixel values, with a variable dimension depending on the
resolution and size of that image. For example, with a color image (24 bit RGB
JPG format) with size is 480 x 480, the computer receive an array with size equal to
480 x 480 x 3 bytes. Each of these bytes is a value from 0 to 255 which describes the
pixel intensity. These numbers, meaningless to human, are the only inputs available
to the computer.

In computer vision, classification consists of receive as input an image, and to
outputs numbers that represent the probability of the image to belong to a certain
class(like cat, dog, car, human, etc...). Starting form this number (i.e. pixel values)
and with classification algorithms, the machine can recognize which objects are in
the image.

Before 2012, most of researches made use of features-extraction algorithms and
linear classifiers [40] [56]. But in the last years, machine learning, in particular deep

2.2 First Stage: from Classification to Detection 6

neural networks, has changed profoundly image classification approach, becoming
the state-of-art for this type of applications.

2.2.1 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm usually used
for classification problems. Supervised means that it requires labeled training data.
Given a training set of images, SVM represents them in a space whose dimensions
are equal to the number of features of each point. SVM attempts to create a lin-
early separable hyperplane through these points in order to classify the data into two
separated groups, maximizing the margin. Margin is the distance between the hy-
perplane and the closest points, called support vector. Test images are then mapped
into the space and predicted to belong to a class based on region, which are created
by the hyperplane, where they fall. When the number of features and images are
huge, the separation hyperplane is not trivial to found, and the SVM can only pro-
vide an accurate solution. Exact solutions require very long time to be computed.

In order to reach the most accurate solution, SVM has tunable parameters:

e Kernel: is a function that maps data to a higher dimension where the data is
separable. Most popular are Gaussian and Polynomial.

» Regularization(also called C): determines the influence of SVM misclassifi-
cation. For large values of C, the optimization will choose a smaller-margin
hyperplane if that hyperplane could classify correctly all the training points.
Conversely, a very small value of C will cause the optimizer to look for a
larger-margin separating hyperplane, even if that hyperplane misclassifies more

points.

Raw pixels data are no easy to be elaborated for machine learning tasks, or
for images comparison in general. For example, taken images of the same objects
changing scale, distance or light condition, could change dramatically the pixel value
or even only the location (shifted and transformed in a complex way). Moreover,
they can not be used by the SVM as representation of point in the space. Features,
informally defined as interesting parts of images, instead, are at more holistic level
than raw pixels, and they can be used by SVMs. SIFT represent a well studied
technique developed to detect and describe features which can be used cleverly by
a linear classifier, such as SVM.

2.2 First Stage: from Classification to Detection 7

2.2.2 SIFT

Scale-Invariant Feature Transform (SIFT) is a features detection algorithm that
locate and characterize local features (called keypoints) in images and it collects
them in "large local features vectors'. Keypoints can be represented by a circular
image with an orientation through four parameters: {x,y} coordinates of the center,
scale of the region and orientation (angle). A SIFT keypoint is invariant to scaling,
orientation, illumination changes, and it is not sensible in the presence of little
quantity of noise [30], making it suitable for classification tasks. A SIFT descriptor,
figure 2.3 [8], is a local image gradients at selected scale and rotation that describes
each keypoint region.

X = | T #
TAEE U K 3

--...}‘\
— " 1 ¥ - ow |
- — -4 —_— -]]
e | A1 Al b Z | 7
\t Ny TH P o <
~ *

N[A

Image gradients Keypoint descriptor

N

Figure 2.3: Representation of SIF'T descriptor

2.2.3 BOVW

SIFT alone, like SVM, is not able to perform as image classifier, because it
provides only a way to extract features. Bag of Visual Word (BoVW) [6], instead,
is a framework that combines both approaches creating a objects classifier. Born
initially for document classification, as Bag of Word, it has found place in computer
vision [44] [42], where documents has been replaced with images and words with
features, and the name has been updated to Bag of Visual Word. The algorithm is
usually composed by three steps:

o Features Extraction: find interesting point in the images; SIFT, HOG (his-
togram oriented gradient) or SURF (Speeded up robust features) are the most
common algorithm used in this step.

¢« Codebook Generation after the first step each image is represented as a

2.2 First Stage: from Classification to Detection 8

vector of features. This features has needed to be grouped by similarity. Every
class in the dataset has certain characteristic features, also well recognizable
by human eye. Similar features can provide an approximate estimate as to
what the image is. Therefore when the machine is trained over several images,
similar features are able to describe similar portions of a class, and they can
be grouped together to develop a vast vocabulary base (or codebook). The
grouping phase is called clustering. The most common algorithm to perform
clustering is K-Means. Each of these groups collectively represents a word and
all groups in totality shape a complete vocabulary generated from the training
data.

e Train & Test The SVM are trained with the vocabulary. Then features are
extracted from the test images and classified by the SVM model trained before.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks are, as ordinary Neural Networks, inspired by
biological brain: they are connected neurons that have learnable weights and biases.
Each neuron receives some inputs, performs a matrix multiplication and pass the
results to one or many other neurons. Differently for regular Neural Networks,
where all neurons of one layer are connected with all neurons of the next layer(fully
connected), in CNNs neurons in one layer do not connect to all the neurons in the
next layer but only to a small region of it. Moreover, CNN layers are organized
in 3 dimensions: width, height and depth. CNN are typically used in computer
vision tasks, such as image classification, where they represent the state-of-the-art:
starting from the raw image pixels the predict class scores. Their name derives from
the mathematical operation most involved in the hidden layer: the convolution.
Actually, in CNNs, it is a cross-correlation rather than a convolution, but this term
is used by convention. As regular Neural Network, CNN are composed by one input
layer, one output layer and multiple hidden layer. The hidden layers of a CNN are
typically of the following types:

Convolution Layer : Convolution is an operation on two functions (usually rep-
resented by matrices) of a real value [27] to produce a third function (also
a matrix). In other words, it merges two sets of information. In this way
the network is able to recognize interesting patterns (vertical edges, horizontal
edges, round shapes, etc.). The two matrix used in the convolution are part

of the input image and a small matrix called filter (or kernel). For example,

2.2 First Stage: from Classification to Detection 9

in VGG architecture filters are 3x3 matrices. Number contained in filters are
called weights. Depending on these weights in the filter, the output matrix
detects specific patterns present in the input image. Weights value are learned
(i.e. updated) by the network during the backpropagation, that is the mile-
stone in machine learning, and it is described in the next paragraph. CNNs
are composed by various numbers of consecutive layers. Each layer is able to
learn large number of kernels, depending of its dimensions. After that a layer
has performed the convolution through its filters, it passes the outputs to the
next layer that are able to learn their own kernels based on the received con-
volved image. This is what gives the CNN ability to "see" the various pattern
in images and build them up into larger features. Figure 2.4' represents a

visualization of filters in a convolution layer.

Figure 2.4: Visual representation of filters in a CNN

ReLU (Rectified Linear Units): The rectifier function is an activation function
f(2) = Maz(0,z) which can be used by neurons to add non linearity to the
network (Figure 2.5). ReLU usually follow a convolution layer and sets all
negative values in the matrix produce by the convolution to zero and all other
values are kept constant. Applying the rectifier function increase the non-
linearity in the input images. A linear equation is easy to solve but it is
limited in their complexity and have less power to learn complex functional
mappings from data. Adding a non-linearity increase the learning power of
the network. ReLU is the most common activation function because it can
be computed efficiently respect other activation function (like the sigmoid and

1Source: CS231N course

2.2 First Stage: from Classification to Detection 10

hyperbolic tangent) without making a significant difference to generalization
accuracy.

RelLU

R(z) =max(0, z)l

-10 -5 0 5 i

Figure 2.5: ReLLU function

Dropout : it is a regularization method that randomly sets to zero the activations
of hidden units at each training epochs. Randomly ignoring nodes prevents
dependencies between nodes. This allows the network to learn more robust

relationship and it prevents overfitting problem [18].

Pooling combine the outputs of neuron clusters at one layer into a single neuron
in the next layer. The pooling layer serves to progressively reduce the spatial
size of the layer, hence to reduce the number of parameters and amount of
computation of the network. The most common used pooling layer is maz-
pooling, which slides a window on the input, like a normal convolution, and
get the biggest value on the window as output. Other type of pooling units
are average pooling or L2-norm pooling. Max-pooling, as ReLLU, are the most

used due to the lower complexity to be extracted.

Fully Connected fully connected (FC) layer takes all neurons in the previous layer
(they can be part of fully connected, pooling, or convolutional layer) and con-
nects it to every single neuron of the next layer. After feature extraction
network need to classify the data into classes, this can be done using a FC
neural network. In place of fully connected layers, it is also possible to use a
SVM. But FC is generally added instead of SVM to make the model end-to-end
trainable.

Convolution layer plus non-linear element (e.g. ReLU) plus the polling layer
form the Convolutional Layer, as shown in figure 2.6

The feature extraction and learning process of SIFT is very different than CNNs.
SIF'T is much more simpler to design and it has less number of parameters compared

to CNNs, hence SIFT needs much less processing power and memory. Moreover

2.2 First Stage: from Classification to Detection 11

Convolution Mon-Linear Pooling N Mext

Input Layer Element Layer Layer

h 4
k.

Convolutional Layer

Figure 2.6: Basic Scheme of Convolutional Layer

SIFT is comparatively fast. Although, SIFT is more relevant for identification tasks
while CNNs has good generalization abilities, due to the learning capacity, and they
reach better for classification and categorization tasks.

Training a CNN

CNNs are a sub-family of Deep Learning algorithm, hence they have some type
of gradient descent in order to learn. In CNNs world, gradient descent is performed
by backpropagation. Backpropagation can be resumed into 4 steps: the forward
pass, the loss function, the backward pass, and the weights update. During the
forward pass, the network receives the image as input and predicts the output.
After the prediction, the loss function is calculated. It represents the difference
between the estimated and the true values respect the input image. The goal is to
have a prediction equal to the original label of the image. This is reached by the
minimization of the loss function. The aim of backward pass is to find which weights
are more meaningful in order to reduce the loss function and to adjust them. Once
computed this derivative, weight are update. Once trained the CNN, test phase can
be performed: using new images(never seen by the network), it consists of comparing

the outputs with the ground truth and see if the network works.

AlexNet

Created in 2012 by Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton [23],
to compete in the ImageNet Large Scale Visual Recognition Challenge(ILSVRC), it
reached a Top-5 error rate of 15.3%. Top-5 error meaning that the predicted label
is one of top 5 predictions (the 5 ones with the highest probabilities).

It can be considered the pioneer CNN network and it has great impact in the
world of computer vision. It is composed by 5 Convolutional Layers and 3 Fully
Connected Layers and the inputs are RGB image of size 256x256 pixels. Random
crops of size 227x227 (instead of 224x224%) were generated from inside the 256x256

Zpaper contains input images equal to 224x224, but numbers make sense only of actually 227 by 227

2.2 First Stage: from Classification to Detection 12

images to feed the first layer of AlexNet. Relu is applied after convolutional and
fully connected layer while dropout is applied before the first and the second fully
connected layer (Fig. 2.7).

Input data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8

& ==

13x 13 x 384 13x 13 x 384 13% 13 X 256

27x 27 x 256

55% 55 x 96 L]
1000

227 227 x 3 4096 4096

Figure 2.7: AlexNet Architecture

The network has 62.3 million parameters, and needs 1.1 billion computation units
in a forward pass. Convolutional layers, which contain 65% of all the parameters,

consumes ~95% of the computation.

VGG

Visual Geometry Group (VGG) is a convolutional neural network model, pro-
posed by K. Simonyan and A. Zisserman, appeared in ILSVRC in 2014 [41]. VGG
substitutes first two layers of Alexnet (with size 11 e 5) with concatenated filter of
size 3x3, which increases the depth of the network and enables to learn more com-
plex features. The VGG convolutional layers are followed by 3 fully connected layers
as Alexnet. It achieves the top-5 accuracy of 92.3 % on ImageNet. Figure 2.8 shows
different implementations of vgg architecture: VGG11, VGG13, VGG16, VGG19
are represented respectively by lecter A,B,D,E. This architectures are different in
the number of layers. Deeper networks have more filter, hence they can learn and
detect most pattern, reaching higher accuracy. On the other hand, smaller networks
require less data in order to converge, and the training time results faster. By ob-
serving the addition of layers one by one, with VGG-16 and VGG-19 the accuracy
improvement is slowing down. Adding more layer can not bring best results and
it can also lead to a performance degradations. This issues will be solved with
the ResNet architectures. When people are talking about VGGNet, they usually
mention VGG-16 and VGG-19.

2.2 First Stage: from Classification to Detection 13

ConvNet Configuration

A A-LRN B C D E
T weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers

input (224 x 224 RGB image)

conv3-64 comv3-6d conv3-64 conv3-6d conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-6d conv3-64

maxpool
conv3-128 [conv3-128 | conv3-128 | conv3-128 | conv3-128 | comv3-128
| conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool

conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 [conv3-312 | conv3-312 | conv3-312 | conv3-312 | conv3-512
conv3-512 | conv3-512 | conv3-512 | comv3-512 | conv3-512 | comv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 [conv3-312 | conv3-312 | conv3-312 | conv3-312 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | comv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096
FC-1000
soft-max

Figure 2.8: Possible configurations of VGG

ResNet

As it is possible to see, from Alexnet to VGG, increasing the depth of the network
also accuracy increases, but with a limit. During the backpropagation phase, the
signal that should change the weights, becomes very small at the earlier layers,
because of increased depth. Hence the learning rate of that earlier layers are almost
negligible. This issue is called vanishing gradient.

Another problem related to the depth of a neural network is called degradation
problem. With network depth increasing, accuracy gets saturated and then degrades
rapidly and adding more layer leads to higher training error. The core idea of
Residual networks, ResNet [15] is introducing a "identity skip-connections" that skips
one or more layers. ResNet allows training of such deep networks by constructing
the network through blocks called residual block (Figure 2.9). ResNet won 1st place
in the ILSVRC 2015 classification competition with top-5 error rate of 3.57%

In this work, four different ResNet has been used: ResNet18, ResNet34, ResNet50,
ResNet101, ResNet152, where the number represent the number of layers. Resnet152
had 152 layers, 10 times deeper than VGG16 networks. The residual module permit
to reach such depth, never reachable by a VGG architecture due to the problem
described above.

2.2 First Stage: from Classification to Detection 14

X
identity

Figure 2.9: residual block: the fundamental building block of ResNet. Source
https://arxiv.org/pdf/1512.03385.pdf

MobileNet

MobileNets [19], are a efficient convolutional neural network class for mobile
and embedded vision designed by researches at Google. MobileNets split the classi-
cal convolution into a 3x3 depthwise convolution and a 1x1 pointwise convolution.
A depthwise convolution performs convolution keeping the channels separate. In
CNNs, where the depth is equal to three, MobileNets use one filter for each of the
three dimensions in the depthwise convolution. Pointwise convolution, instead uses
a 1x1 kernel, or a kernel that iterates through every single point. MobileNets are
not usually as accurate as the bigger network, but it find application context where
resource-accuracy trade-off has more tolerance. Table shows the computational com-
plexity between MobileNet and VGG16, extracted from [19].

Mult&Add Paramenters

Framework Model mAP (Billion) (Million)
Faster R-CNN VGG16 22.9% 64.3 138.5
MobileNet 16.4% 25.2 6.1

Table 2.1: COCO object detection results comparison using different
frameworks and network architectures.

2.2.5 Object Detection

In this work, the goal is to detect multiple instance of different objects in the
same image, hence it is necessary to transform the classification problem into a
detection problem. In very simple terms, classification means answering what, and
detection means answering where and to answer to the latter question is obviously
more difficult, but there are algorithm that permit to transform a classification task
into a detection one:

2.2 First Stage: from Classification to Detection 15

e Sliding Window Algorithm
e region proposals network

¢« YOLO solution

Figures 2.10 and 2.11 shows an example of a detection: red bounding boxes are
drawn around the interesting object in order to describe their location in the image.

Figure 2.10: Example of a input im- Figure 2.11: Example of Object De-
age: table with household objects tection on the input image. Red line
(some belonging to the dataset and are called Bounding Boxes

some not). Not all the object are
completely visible.

Sliding Window

A rectangular region of fixed dimensions that "slides" across an image creating a
set of sub-images, each of which contains only a region of the initially image. Each
of these sub-image are used as input by the normal classifier, which determines if
the region contains some "object of interest", converting the classifier into a detector.
The parameters of this algorithm are the dimensions of the window and the bin size.
The bin size is the step, in pixels, of the window when it slides across the x or y
axes. (Figure 2.12).

In Figure 2.12 the dimensions of the image are 600*400. Using a window’s size
equal to 150*150 and a bin size of 50 (a black square of the grid is 50*50). Hence the
total number of sub-images are 45. Halving the bin size, the number of total sub-
images grows by a factor of four, obtaining 180. A small size creates more number
of sub-image to be elaborated, increasing the runtime of the algorithm. On the

2.2 First Stage: from Classification to Detection 16

—

8
e
ol
LS|

: el

-
|

y.

|

Figure 2.12: Example of a Sliding Window Approach: the image is divided in sub-image,
and every image is elaborated separately

other hand, choosing a big windows size increase the noise amount in the image(i.e.
background), probably making more difficult the classification task.

Region Proposal

In order to use CNNs in detection applications instead of the merely classification,
many studied have proposed different approaches showing that a CNN can lead
to higher object detection performance as compared to systems based on simpler
features extractor. The first region proposal can be found in RCCN [11], where
these region are created using a process called Selective Search. Selective Search
creates windows of different sizes, and for each size tries to group together adjacent
pixels by texture or color. These region proposals are warped into a square in order
to be elaborated by a convolutional neural network.The CNN works as a feature
extractor. These features are inputs for a SVM that classify the region proposal.
Although it has shown good results, the number of regions (around 2000 per image)
makes the execution time not indifferent. A further improve comes with Faster-
RCNN [38], where, to predict region proposals, an additional network, called RPN,
is used instead of using selective search algorithm to find the region proposals. An
Faster-RCNN is a network that simultaneously predicts object bounds and object
scores at each position, merging RPN module and Fast R-CNN into a single network

by sharing their convolutional features. RPN can be summarized in 3 steps:
o from the input image, a convolution network extracts a feature maps

o Then sliding window is run on these feature maps. The size of sliding window

is n x n. For each sliding window, a set of n x n anchors are generated which

2.3 Second stage: Pose Estimation 17

all have the same center.

« Finally, the n x n spatial features extracted from the feature maps are elab-
orated by another network which has two tasks: classification and regression.
The first output is the class probability while the second outputs determines
a predicted bounding box.

YOLO

YOLO (You Only Look Once), is a framework for object detection [37] that gets
rid of region proposal, that are the milestone for RCNN family, and involve a single
neural network predicts bounding boxes and class probabilities directly from full
images in one evaluation. YOLO divides the input image into an SxS grid. Each
grid predicts B bounding boxes and confidence scores and a set of class probability.
At test time YOLO multiplies the class probabilities and the box confidence score
obtaining a class confidence scores for each box. YOLO has 24 convolutional layers
followed by 2 fully connected layers. The former are used to extract features from
the input image, while the latter predicts output probabilities and coordinates. Dif-
ferently from Faster-RCNN, that is composed by two networks, YOLO benefits of
only one network to reduce the total runtime, that makes it extremely fast.

Class probability map

Figure 2.13: YOLO workflow

However, has shown in figure 2.14° YOLO accuracy fails to achieve comparable
accuracy as Faster-RCNN, hence the latter has been chosen for this work.

2.3 Second stage: Pose Estimation

In robotic manipulation tasks, it is required to estimate the pose of objects in
order to plan motion actions. However, unlike the first stage, only the 2D-image can

3source: https://cv-tricks.com/

2.3 Second stage: Pose Estimation 18

Accuracy
&0 @ Yoloy2
@ ssD
- @ Faster-RCNN
40
. .
[]
20
[]
[]
0
Small Objects Medium Objects large Objects

Figure 2.14: YOLO vs SSD vs Faster-RCNN for various sizes

be not enough to estimate this pose. Hence the use of RGB-D camera is required.
It provides a depth map of the scene represented by acloud of points. A point cloud
is a collection of points in 3D-space, which are on the external surfaces of objects.
Hence, this map contains information about the distance of each point of the scene’s
surfaces from the camera. An example in figure 2.15, which it contains the complete
point cloud of a bottle od Downy, objects presents in the dataset used for this study.
It is obtained merging many depth images of the object that has been taken from
different views.

Figure 2.15: Front view of Detergent Bottle cloud point

2.3.1 ICP

[terative closest point [1] is an algorithm which purpose is to find the "minimum
distance" between two collections of points. ICP represent the state-of-art in pose

2.3 Second stage: Pose Estimation 19

estimation to achieve optimal path planning for robots. The main idea of the al-
gorithm is iteratively modify the translation and the rotation needed to minimize
the distance from the input sample point cloud to the reference. This distance is
defined as the sum of squared differences between the coordinates of the two point
clouds. Fig.2.16 shows an ICP example applied on a line (2d function).

/".\
/\/_" - 7 \ ,_.
|

Figure 2.16: Example of ICP algorithm applied on a 2D group of point

Due to the fact that there is no information about the initial pose of object, ICP
can take different time (i.e. number of iteration) to find the match between the two
cloud. This means that ICP is sensitive to the initial pose of the object.

2.3.2 Particle Filter

Particle filters or Sequential Monte Carlo (SMC) is a family of algorithm used
for estimating information starting from partially or noisy observation. The particle
filtering can be resumed in the following steps:

1. Generate with a random distribution of a collection of samples (particles).

2. Assign a weight to each sample. This value represents how likely the particle
is respect the observation. If the particle is very similar to the observation, the
weight will be high, otherwise, a low value will be assigned to it. In this way,
part of the collection appears to be more likely than the others.

3. Resampling: substitute the particles with low weight with other generated
sample. This new sample are not generated with a random distribution like
the first ones, but they will be generated based on the particles with higher

value.

4. Diffusion: the regenerated particle will have the same weight to the old ones,
making them useless. With diffusion, a random transformation is applied on
the whole collection.

2.4 Performance Metrics 20

5. Re-evaluate the collections of sample, i.e update the weight after the diffu-
sion, and repeat the resampling-diffusion until all the particle converge to be
consistent with the observation.

In this work the observation are represented by the point clouds cropped by
the bounding boxes and the sample are hypothesis of the pose state of the objects.
Unlike the ICP, this approach is not sensitive to the initial pose of the object because

many initial orientation are compared at the same time.

2.4 Performance Metrics

In order to evaluate detection results, a metrics is necessary for both object
detection and pose estimation. For the detection side,it has been use the evaluation
standard method from the Pascal VOC Challenge [7]. The first stage has as output
a set of bounding boxes, each of which hold a confidence score. For each test scene
a annotation file contains all the ground truth bounding box.

If the overlapping area, defined as intersection over union (IoU), between the
detected bounding box with a certain class label and the ground truth of the same
class is greater than 0.5, the detection is considered correct, or called true positive
(TP). Otherwise, if the IoU is under 0.5 it is called false positive (FP). For each
class of object, if the predicted bounding box does not overlap any ground truth If
no detections satisfy the overlapping criterion with the ground truth, it becomes a
false negative (FN).

Average Precision (AP) is the mean precision given different recall thresholds,

TP

which describes the shape of the PR curve. Precision is defined as and recall

TP+FP’
is defined as = P:CFI; - Finally, the mean average precision (mAP) of all object classes
is obtained through all the AP for each object class.

For evaluating pose accuracy, the formula of mean of the pairwise point distance

from two sets of point clouds from [17] has been used:
m = avgaen(Ming,en(||(Rel + T) — (Re2 = T)|)) (2.1)

Where M is the estimated model, R and T respectively the ground truth rotation
and translation, and R and T the estimated rotation and translation, while x are
the model point. This metric is also able to consider symmetric objects, which is
useful for some object in the dataset. Such object are: sugar box,toy, salt box, red
bowl,coke can, cloroz bottle, blue cup, ranch bottle.

2.5 Object Segmentation 21

2.5 Object Segmentation

With object recognition, the neural network (or any of the other approach for
object recognition) "draw' a bounding box around the desired object in a image. In
most of the computer vision tasks, this type of object labeling can be acceptable
enough for the scope. Although, many other tasks, require more precision about
the boundaries of wanted objects, and bounding boxes are too generic. If object
detection is able to locate the region that contains object, the object segmentation
responds to the need to locate the boundaries in addition to that region. Image seg-
mentation assigns a label to every pixel, and it is able to create different bounding
shape instead of simply rectangular. Fig 2.17 shows an example of object segmen-
tation applied on a vehicle recognition. All the pixel that are detected to belong
to the "car" are colored in green, while all the other (black ones) are not labeled
or label as "background". In the end, before the training phase, all the images have
to be labeled in a right way in order to train correctly the network, and labeling
is done by human. While bounding boxes are simple a couple of coordinates (two
vertices of the rectangle), the segmented section is a complex and usually long list
of pixel coordinates that compose the outline of the image. So label one image for
segmentation require a bigger effort than to label for detection. For datasets that
contain thousand images for train (like the one used for this study), the time used to
create the dataset is not irrelevant. For this reason, segmentation is not taken into
account in this work, but a further explanation of advantages and disadvantages
within a possible future use of segmentation has discussed in the Chapter 4, where
the two different pipeline used for this study are explained in detail.

Figure 2.17: Example of Image segmentation

Chapter 3

Related Work

After the appearance of AlexNet [23] in the ImageNet LSVRC-2010 contest, us-
age of neural networks in computer vision tasks has grown more and more. One of
the most popular object detector framework, Regional Convolutional Neural Net-
work (RCNN) [11], combines convolutional layers to extract the features of proposed
bounding boxes and a linear classifier to classify the object. However, the execution
time did not make it possible to use it in real time applications, due to the large
number of region of interest (ROI) proposed by the selective search. (/2,000). Fast
RCNN [10] improves the runtime of the object detector, warping ROIs into one
single layer using the Rol pooling, . With a speedup solution,a further improve-
ment has been presented in Faster RCNN [38], by adding a extra convolutional
network as a Region Proposal Network (RPN) that shares convolutional layers with
the object detection network and reduces the cost of computing regional propos-
als. While the R-CNN family approach treats the task as a classification task, the
YOLO approach [37] do it as a unified regression problem. It forgets the regional
proposal pipeline,the milestone in all RCNN study, and uses a single CNN network
for both classification and localizing the object using bounding boxes. However,
it is not able to achieve a comparable accuracy as faster RCNN. A recent study,
Mask-RCNN [55], shows an extension of Faster RCNN that with the addition of a
new branch, it predicts a binary mask indicating whether or not a given pixel is part
of an object, which greatly improves the detection accuracy. However, Mask-RCNN
requires that training images with annotation specifically created for segmentation,
requiring huge effort respect bounding box methods.

With the increasing of neural network depth, there was also a considerable in-
crease in accuracy [48], but the energy consumption has become more significant

withal. Recent works have explored the hardware complexity of the neural network

22

23

and how to design lighter networks that are more hardware friendly, while achieving
similar accuracy. In particular, the work of [47] presents a summary of popular deep
neural network architectures trained on ImageNet in terms of accuracy as well as
computation complexity. The work of [47] also introduces various algorithms and
hardware optimization for designing energy efficient deep neural network. However,
there are no works targeted specifically on analysis accuracy, hardware cost or and
energy consumption for CNN involved as object detector within robot manipulation
applications.

Given the large number of floating point operations required in neural network,
coupled with the sparsity in weights and feature maps, a lot of works have focused
on network compression. Two common strategies are pruning to reduce the number
of weights and quantization to reduce bits used to store weights. In the work of Han
et al. [14], the authors learn connections within networks, prune low weight connec-
tions, and fine-tune sparse network in order to compress network parameters by 9x
and 13x for AlexNet[23] and VGG16[41] respectively. For network quantization, pre-
cision reduction of both weights and feature maps are used. One common technique
is floating point to fixed point conversion [28]. BinaryNet [5] and TernaryNet [60]
further compress the network by having weights and activations represented as (-1,
1) and (-1,0,1) respectively. This not only reduces the network size but also replaces
most arithmetic operations with bit-wise operations.

There are a few works that present CNN designs specifically for embedded hard-
ware applications. For instance, SqueezeNet [22] and MobileNet [19] are two CNN
architectures that are designed for embedded and mobile applications. Squeezenet
uses 1 x 1 filters and decreases the number of input channels to reduce the network
parameters while increasing the network depth. MobileNet uses depth-wise separa-
ble convolution to reduce the parameters and computations, which also makes the
model more amenable to hardware parallel computing.

Long et al. [29] propose fully convolutional networks (FCN) for semantic segmen-
tation by replacing fully connected layers in traditional CNN with 1x 1 convolutional
layers. FCNs take images of arbitrary size and provide per-pixel classification la-
bels. However, FCNs are not able to separate neighboring objects within the same
category to obtain instance-level labels; hence it is not possible to directly re-task
FCN for object detection purposes. Nonetheless, most unified approaches are based
on FCN to localize and classify objects using the same networks. Recently, there
has been a trend to utilize FCN to perform both object localization and classifica-
tion [39], [38] [37], [20]. Sermanet et al. propose an integrated CNN framework for

24

classification, localization and detection in a multiscale and sliding window fashion
[39]. Morris et al. [31] propose a fully-convolutional Pyramid Network in operate at
successive resolutions as information flows up the pyramid to the lowest resolution.
In this work, the input to SAND approach’s CNN stage is a pyramid of images with
different scales in order to generate a heatmap for the second stage.

Moreover, while many study [23] [41] [12] make use of large database, other
research has been focused on training network with smaller datasets. In the works
of Lai et al. [26, 25] and Silberman et al. [33], has been utilized dataset composed
composed of a much less significant number comparing to ImageNet. As explainded
it these work, with this study is shown that , in order to achieve high level of
accuracy, a huge database is not necessayThese representative datasets resemble of
the scale of training assumed in this paper.

Reliable operation of autonomous mobile manipulators remains an open challenge
for robotics, where perception remains a critical bottleneck. Within the well-known
sense-plan-act paradigm, truly autonomous robot manipulators need the ability to
perceive the world, reason over manipulation actions afforded by objects towards
a given goal, and carry out these actions in terms of physical motion. However,
performing manipulation in unstructured and cluttered environments is particularly
challenging due to many factors. Particularly, to execute a task with specific grasp
points demands first recognizing object and estimating its precise pose.

For object and pose estimation, PR2 interactive manipulation [3] segments non-
touching objects from a flat surface by clustering of surface normals. This work
uses RGBD data from cameras that provide both color and depth values at every
pixel. Similarly, Collet et al.presented a discriminative approach, MOPED, to detect
object and estimate object pose using iterative clustering-estimation (ICE) using
multiple color cameras [4]. Narayanan et al. [32] integrate A* global search with
the heuristics neural networks to perform scene estimation from RGBD, assuming
known identification of objects. Papazov et al. [35] used a bottom-up approach
of matching the 3D object geometries using RANSAC and retrieval by hashing
methods.

Deep learning on RGBD has also been applied to robotic grasp detection through
deep reinforcement learning, such as work by Gualtier et al. [13], and supervised
shape completion, such as by Varley et al. [53]. For manipulation in cluttered en-
vironments, Ten Pas et al. have shown success detecting viable grasp poses in
RGBD point clouds using geometric inference [51] and estimation by deep neural

networks [50]. Sui et al. [45] built on these methods to recognize objects as well as

25

graspable poses, in order to perform purposeful goal-directed manipulation. This
work combines the output of discriminative inference methods, such as CNNs, with
probabilistic generative inference to improve robustness. While demonstrating ef-
fectiveness, the methods above use neural network architectures, such as VGG16,
that is expensive in both computation and energy. These models also assume im-
proved recognition accuracy directly implies improvement in robot manipulation,
which needs greater validation experimentally.

Szegedy et al.[49] demonstrated that adversarial examples are misclassified by
different classifiers both in the case of different architectures or different subsets
of the training data[21] [2][52]. These results are confirmed also in cases where
the differences between these examples were indistinguishable to the human eye.
Kurakin et al. [24] confirmed the results in a simple physical scenario. Papernot
et al. [36] showed a case of a black-box attack against a neural network, where
adversaries have no knowledge about the model. Others works proposed a possible
solution during the training phase: Panda et al. [34] proposed to inject random noise
on the training data and Zheng et al. [59] presented a stability training method to
avoid mis-prediction due small input distortion.

Defending against adversarial examples is not a trivial problem because it re-
quires neural network models to produce good outputs for every possible input;
however, in a physical scenario neural networks must work well only on a very small
number of all the many possible inputs. In this work, in order to deal with adver-
sarial scenarios,it has been chosen to not modify the initial training set, thereby

avoiding an excessive human effort during the data collection phase.

Chapter 4

Two-Stage Framework For Scene

Estimation

The purpose of this work is to demonstrate that for certain tasks, such as robot
manipulation, the same final results can be reached with neural network which are
not necessarily deep, and therefore the most accurate.

In order to validate this statement, a neural network analysis has been performed
through a two-stage pipeline for robot perception called Baseline, discussed in sec-
tion 4.4. This pipeline is composed by a Faster-RCNN object detector plus a simple
pose estimation method through the Iterative Closest Point Algorithm. After the
results obtained by this pipeline,hence a full scene estimation, robot can plan motion
actions.

Moreover,CNNs output are usually used as input by a different system in order
to take some type decisions. These decisions can be very crucial in those tasks, such
as robot manipulation in cluttered human environment, that require a certain level
of robustness. In the section 4.5, it is explained a further two-stage pipeline, called
SAND, that introduce a different pose estimation method through a generative prob-
abilistic inference that is able to recover potentially imperfect decisions produced by
a CNN increasing the robustness of the entire framework. SAND method, beside
compensate hard-decisions made by the first stage, and it also permits to use less ac-
curate networks in the first stage, hence less computational effort, hence less energy
consumption. While the Baseline first-stage is implemented by the Faster-RCNN,
for the SAND a Pyramid-CNN framework has been chosen in order to create an
output more exploitable by the novel pose estimation method. Figure 4.1 resumes
the main sections of the two distinct pipeline used for this study. Starting from the
same inputs, a single colored image and a single depth image of the same scene,

26

27

both approaches will produce a full scene estimation. The scene estimation will be
further used by the robot in order to carry out actions in terms of physical motions.

—

Faster-RCNN SEFE

Depth Image : : :
RGB-D : Baseline : Scene

Camera - isanp Estimation
RGB Image :

Pyramid-CNN 32 . EE= Particle Filter

Stage 1 Stage 2
Object : Pose
Detection Estimation

Figure 4.1: Baseline and SAND pipelines

For both approaches, different neural network architectures have been imple-
mented in order to examine the implications of the depth, hence the energy con-

sumption, on the final accuracy:

AlexNet

VGG11, VGG13, VGG16, VGG19

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152

Mobilenet (only for Baseline)

In the end, a further first-stage based on a feature detector plus a linear classifier
has been developed and described in section 4.8. This stage does not imply the use

of neural networks, and require less computational power, but with a low accuracy.

4.1 Software 28

4.1 Software

4.1.1 Pytorch

Pytorch ! is an open source end-to-end deep learning platform, developed by
Facebook’s artificial-intelligence research group, that permit fast development for
Machine Learning application.

The main advantages provided by this library are:

PyTorch Tensors : multidimensional arrays, similar to Numpy arrays, with the
advantages that they can be elaborated on GPUs (thanks to CUDA supports).
This permits to strongly reduce the development time. Moreover, Pytorch

provides a full set of mathematical operation that may have Tensor as terms.

Run on GPUs : Pytorch has been developed in order to run on GPUs with CUDA
support(section 4.1.2). To perform the computation on the GPU instead on
CPU (set by default), it is enough to copy input data and network models on
the GPU, using the function .cuda(). This function is available for all type of
tensors and modules. Calling .cuda() within a module, Pytorch will take care
of copying recursively all child modules into the GPU.

Autograd module PyTorch uses a technique called automatic differentiation to
compute the gradient, the essential element in machine learning. It provide a
recorder that records what operations are performed during the entire process,
and then it replays it backward to compute final gradients. Therefor, it is not
required to the programmer to compute the gradient descent by hand, saving
a lot of effort. For CNN, backpropagation (how to neural network calculate
gradient descent) are also implemented in this module. Listing 4.1 reports the

implementation code of backpropagation use in Pyramid-CNN in the SAND

pipeline.
1 if not opts.is_test:
2 opts.optimizer.zero_grad()
3 loss.backward()
4 opts.optimizer.step()

Listing 4.1: Code for backpropagation pass for Pyramid-CNN

"https://pytorch.org/

4.1 Software 29

The first line is used to differentiate the train phase from the test phase. In
fact, during the test phase, the backpropagation must not be calculated. At
the end of each epoch, gradients have to set to zero in order to avoid accumu-
lation derived by backward process, so the zero grad() function can be used.
loss.backward() calculates the gradient, and .step() update the weights in the

network.

Optim module provides optimization algorithms used for building neural net-
works, necessary also to specify how to perform loss function for backpropaga-
tion. Pytorch implementation code of backpropagation use in Pyramid-CNN
has shown in Listing 4.2

1 net = alexnet (pretrained=True,
num_classes=opts.num_cls, num_shape=opts.num_shape)

2 opts.optimizer = optim.SGD (

3 net.parameters (), lr=opts.lr, momentum=opts.momentum,

4 weight_decay=opts.w_decay)

5

6 if torch.cuda.is_available() :

7 net.cuda ()

8 net = torch.nn.DataParallel (

9 net, device_ids=range (torch.cuda.device_count ()))

10

11 if opts.loss == 'ce':

12 opts.criterion = nn.CrossEntropyLoss ()

13 elif opts.loss == 'bce':

14 opts.criterion = nn.BCELoss ()

Listing 4.2: optimizer and loss function configuration for Pyramid-CNN

The first line is used to initialize the network, AlexNet in this case. After the
initialization the stochastic gradient descent method has configured and the
model is copied on th GPU. In the end, type of loss function has been selected.
CrossEntropyLoss is used for multi-class classifier, while BCFEloss(Binary Cross
Entropy) is used for single class classification problem.

nn module The nn package contains a set of Modules, which are similar to neu-
ral network layers. Each Module receives input and computes corresponding
output, holding internal learnable parameters if needed. Note that all inputs,
outputs and parameters are simply Tensors. The nn package also provides a

set of different loss functions, useful during neural networks training, in or-

4.1 Software 30

der to understand how accurate is the network. Listing 4.3 shows AlexNet
architecture build with nn module for Pyramid-CNN.

self.features = nn.Sequential (
nn.Conv2d (3, 64, kernel_size=11, stride=4, padding=2),
nn.RelU (inplace=True),
nn.MaxPool2d (kernel_size=3, stride=2),
nn.Conv2d (64, 192, kernel_size=5, padding=2),
nn.RelU (inplace=True),
nn.MaxPool2d (kernel_size=3, stride=2),

nn.Conv2d (192, 384, kernel_size=3, padding=1l),

© oo ~ (=] ot [w [V =

nn.RelLU (inplace=True),

nn.Conv2d (384, 256, kernel_size=3, padding=1l),

-
o

[un
=

nn.RelU (inplace=True),

=
N

nn.Conv2d (256, 256, kernel_size=3, padding=1l),

-
w

nn.RelU (inplace=True),

nn.MaxPool2d (kernel_size=3, stride=2),

.
IS

-
o

)

Listing 4.3: AlexNet Architecure Example

For example, the first layer of AlexNet is a convolution layer with input channel
equals to 3, output channel equal to 64 and kernel size, stride and padding
respectively 11,4,6. In Pytorch this layer is created with line 2 of Listing 4.3:
nn.Conv2d(3, 64, kernel _size=11, stride=4, padding=2).

Pretrained Model Pytorch provides CNN model pretrained on ImageNet. A pre-
trained model is merely a list of saved internal parameters that was previously
computed by training the network on a dataset. In particular, all Pytorch
pretrained model has been pretrained on ImageNet. Usually, when a network
is initialized for the first time, the weights (internal parameters) inside are
random numbers. Instead of initializing the model with these random weights,
initializing it using a pretrained weights reduces the number of steps necessary
for the output to converge, therefore reducing the training time. This is true
also if the two dataset (for the pretraining and for the training) contain differ-
ent classes, because for classification task, features may be similar. Available
pretrained models allow to save a lot of time because, for example, 14 days
are needed in order to train ResNet-50 on ImageNet using an NVIDIA M40
GPU [58]. Code 4.4 shows how to load a model of AlexNet pretrained on Im-
ageNet using Pytorch. Note that definition of AlexNet architecture (used in

4.1 Software

31

line 8) is defined in different file, for instance Listing 4.3.

10

11

12

13

14

15

import torch.nn as nn

import torch.utils.model_zoo as model_zoo

model_urls = {

def

'alexnet':

'https://download.pytorch.org/models/alexnet-owt-4df8aa7l.pth',

alexnet (pretrained=False, xxkwargs):
model = AlexNet (xxkwargs)
if pretrained:
pretrained_dict = model_zoo.load_url (model_urls|['alexnet'])
model_dict = model.state_dict ()
pretrained_dict = {k: v for k,v in pretrained_dict.items()
if k in model_dict}
model_dict.update (pretrained_dict)
model.load_state_dict (model_dict)

return model

Listing 4.4: Example of how to use load pretrained weight when a netwrok is

initialized

4.1.2 CUDA

In the early days in the history of machine learning, algorithms were executed in

single processor environments, where bottlenecks can lead to substantial delays in

model processing. The aim of deep learning is to speed up the convergence of model

training using multiple nodes, so applying data parallelism is rather intuitive. In the

recent years, GPUs had evolved into highly parallel multi-core systems allowing very

efficient data parallelism. Hence Training time is highly reduced with GPUs. For

instance, training on a GPU is more than ten times faster than the corresponding

process on a CPU. In order to speed up deep learning computing, NVIDIA provides

a parallel computing platform called CUDA®?. This platform permits the developer

to direct the compiler to the portion of the application that maps to the GPU.

https://developer.nvidia.com/cuda-zone

4.2 Hardware 32

4.2 Hardware

In this work all the networks has been trained and tested on a desktop environ-
ment with a NVIDIA Titan XP, and Intel Xeon Processor E5. The graphic card
is an high-performance GPU developed specifically for deep learning application
with 38400 cuda core, that are responsible for dealing with all the data that moves
through a GPU.

Moreover, all networks implemented with Faster-RCNN model are also tested
on the embedded system-on-module NVIDIA Jetson TX2 after the training on the
desktop environment equipped with the Titan XP. NVIDIA Jetson TX2 finds place
many application field, from image stabilization to self-driving car. Running deep
learning experiment on a desktop environment, such as the computer with the Titan
XP, is clearly faster than the Jeston board, but the energy consumption is not com-
parable, due to the fact that Jetson only consume fifteen watts, while the Titan XP
can reach 260 watts. In a embedded system or a mobile robot, energy consumption
surely represents a very strong constraint.

The Jetson CPU is composed by a dual-core Nvidia Denver 2.0 and a quad-core
ARM Cortex A57. The Jetson TX2 has three power modes:

Max-Q = maximum energy efficiency, about 7.5 Watts.
Max-P = higher frequency (and power consumption) respect Max-Q.
Max-N = full clock speeds, around 15 Watts.

Table 4.1 report for each power mode the configuration and the working fre-
quency for each CPU and GPU. Obviously, the GPU in Max P (max performance)

works with higher frequency, therefore CNNs will operate faster, sacrificing power

consumption.

| Mode | Mode Name | Denver 2 | Freq | ARM A57 | Freq | GPU Freq |
0 Max-N 2 | 2.0 GHz 41| 2.0GHz | 1.30 GHz
1 Max-Q 0 4| 1.2GHz | 0.85 GHz
2 Max-P Core-All 2 | 1.4 GHz 4| 1.4 GHz 1.12 GHz
3 Max-P ARM 0 4120GHz | 1.12 GHz
4 Max-P Denver 2 | 2.0 GHz 0 1.12 GHz

Table 4.1: Hardware configuration of Nvidia Jeston TX2 operating mode

For the Jetson TX2, networks has been tested at 3 different GPU frequencies:
1.30GHz, 1.12GHz and 0.85 GHz. Table 4.2 reports the main differences between

4.3 Dataset 33

the two systems. Titan XP has more CUDA core respect the embedded board,
hence the latter will consume less power, with the trade-off of perform operation in
more time. Due to this difference in the time performance, it is not useful to train
all model on both system. Therefore all the networks has been trained on the Titan
XP and loaded on the board afterwards in order to perform measures about runtime
and energy consumption.

’ ‘ Titan XP ‘ Jetson TX2 ‘

No. Cuda Core 3840 256
Memory Size (GB) 12 8
Memory Bandwidth (GB/sec) 547.7 59.7

Table 4.2: Comparison between NVIDIA Titan XP and Jetson TX2

4.3 Dataset

Unlike most of the latest researches on image classification [41] [23] [37] [38],
that use well known datasets, such as the large Imagenet or COCO?, that contains
more than 1 million of image, in this work has been developed a own dataset in
order to perform the real experiments. The dataset, called progress, is composed by
15 household object (Fig.4.2), plus the background class.

01 blue cup 02 clorox 05 downy

06 ranch 07 red bowl 08 salt 09 scokch brite 10 spray bottle
Q . v"..
-

11 sugar 12 sunscreen 15 waterpot

Figure 4.2: One image for each class in the progress dataset

About 200 images are taken for each class, except for the background that have

3http://cocodataset.org/

4.3 Dataset 34

about one thousand sample, with a total of 4500 training images for the whole
dataset, a small number compared to other datasets. For example MNIST database
(Modified National Institute of Standards and Technology database) has 6000 images
per class. On the other side, Imagenet have 1.2 million images for 1000 class of
objects. Respect the dataset just mentioned, the progress dataset is obviously lighter
in terms of memory required to be stored. Also the effort used by human to produce
and annotate all images is much smaller. However this bring to a drawback: having
a light dataset, during the training, the number of images could not allows the neural
network to achieve the required convergence. This is obliviously more true for large
networks. The use of pretrained model and data augmentation permits to overcome
this problem. Pretraining is explained in section 4.1.1, while data augmentation
consists of geometrically transform (e.g. flip,shift, scale,etc) original images and to
add them in the dataset. Purpose of the project is to recognize object in a cluttered
scene placed in a random manner. Hence, for each class in the dataset, sample
images has been taken from different point of view and orientation. This permit to
have a framework robust to the orientation of objects. In addition to the training
images, which contain an instance of only one class each, there are also 60 complex
image, thirty of which are used for train & validate, while the other thirty are used
for the test. Figs 2.10 2.11 shows an example of test complex scene and the bounding

boxes predicted with the object detector. Every complex scene contains:

o Up to one images for each class of the dataset. Not all of these object are
completely visible from the camera: one purpose of this project is to create

robust manipulation in cluttered human environment.

e Object that are not present in the dataset. This can create False Positive
detection.

For each image (train or test, single object or complex scene) a text file has
been created with the annotation on all the information useful to the training like
the example 4.5, such as the label of the objects in the image, his location and

orientation.

1 <object>

2 <name>ranch</name>

3 <pose>

4 <x>-1.59645</x>

5 <y>-2.63976</y>

6 <z>-0.010124</z>

7 <roll>0.764579</roll>

8 <pitch>0.114293</pitch>
9 <yaw>0.734804</yaw>

4.4 Baseline 35

10 </pose>

11 <truncated>0</truncated>
12 <difficult>0</difficult>
13 <bndbox>

14 <xmin>180</xmin>

15 <ymin>103</ymin>

16 <xmax>331</xmax>

17 <ymax>198</ymax>

18 </bndbox>

19 </object>

Listing 4.5: Example of annotation file of one object in a complex scene

All annotations file has been created by scratch by human, requiring expensive

human effort. Therefore, this aspect dictate the choice of use a small dataset.

4.4 Baseline

Faster-RCNN represents the stat-of-the-art object detection, therefore it is used
in this work as first stage of the first pipeline approach. ICP, alike, is a well-
known method involved to obtain 6D pose estimation. The union of these methods
creates a two-stage pipeline applicable on the robot manipulation system. In this
work, this approach is called Baseline. Considering the good level of performance
reached by both in the literature, no further optimization has been described in
this work for this approach. In fact, the purpose of this section is to study the
relationship between cost of computation and accuracy of a neural network within
robot perception application. CNNs with many layers have shown themselves to
have best accuracy, with the drawback of more energy consumption. In autonomous
mobile robotic, the energy represents a hard constraint during the development
phase. Demonstrate that a good amount of energy consumption can be reach at the

expense of a small loss of accuracy is useful to respect the constraint.

4.4.1 First Stage: Faster-RCNN

Faster R-CNN from this work has been developed from [57]. This code has
been extended in order to work whit the progress dataset. Moreover, all network
implementation has been developed to work with this framework. Such network are
MobileNet, AlexNet, VGG(11,13,16,19), ResNet(18,34,50,101,152). This model is
composed by the following high-level blocks:

e Anchor Generation: generates a fixed number of anchors of different scales

and aspect ratios.

4.4 Baseline 36

Proposal block: Transform the anchors according to the bounding box re-

gression coefficients to generate transformed anchors.

Anchor Target Layer: produce a set of anchors and the corresponding class
labels and target regression coefficients to train the Region Proposal Network.

RPN loss compute the loss function for the RPN in order to train the RPN.

Proposal Target Block: reduces the list of anchors produced by the proposal
block and produce class specific bounding box regression used by the proposal
block.

ROI Pooling: perform the spatial pooling on the region proposed by the

previous layer.
Classification predicts the class probability for each region proposal.

Classification Loss: compute the loss function for the classification block.

At the end of the process, the network is able to produce a set of bounding boxes

for each object for each test scene. These bounding boxes are composed by the

coordinates and the dimension of the 2d rectangle and the class score. High score

correspond to high probability that the bounding box contains the object. These

outputs are then passed to se second stage in order to perform the pose estimation.

An example of a Faster-RCNN output can be see in the following box with the fomat

{ Ymin, Xmin, Ymazx, Xmin, Score }:

39 286 161 390 0.878
26 215 340 402 0.084
97 290 278 373 0.016
94 129 220 359 0.015
101 85 198 196 0.014
472 584 479 639 0.007
39 0 140 37 0.002

62 573 224 639 0.002
120 227 240 307 0.002

Training & Test

After the initialization and the loading of the pretrained weights, the network

is not yet able to preform the detection on the progress dataset, because it do not

4.4 Baseline 37

"know" the objects contained in that dataset. Hence, a training phase is necessary.
During the training, sample images are elaborated by the network and the predicted
outputs are compared with the ground truth label, the loss function is derivate, and
the weights updated. This procedure is done with the entire training dataset, for
many times (epochs), lead to a convergence in the model, and it is able to perform
in a right way. An epoch is a complete "view" of the dataset by the network. In
order to train the network a python script has been developed. This script receive

the following input:

o Network Name: chosen among all the model cited before. In the initializa-
tion phase, the correspondent pretrained weights are loaded.

» Total epochs number: the number of complete passes through the training
dataset. Big number of epochs equivalent longer time for training. After ~100
epochs accuracy value converges and no improvements has been shown. Thus,
for this work, each networks has been trained for one hundred epochs. At the
beginning of the training, in order to augment the data sample, each images has
been flipped horizontally and added to the dataset, doubling its size. In each
epoch, the order of elaboration of the images is created randomly, augmenting
the non-linearity:.

« Validation epochs: Every batch of epochs equal to this parameter, the net-
work is tested with the thirty complex scenes of the validation set in order to
calculate the accuracy. Every objects present in the validation scenes is also
present in the training set of images. In this way the network should be able
to recognize "in a easy way ", or in other words, with high value of probability,
aforesaid object. In an ideal world, the accuracy of the validation phase should
be 100%. At the end of validation, if the accuracy is greater than the previous
value, the model is saved. Saving model every defined period of time permits

also to stop the training in order to resume it in a different moment.

« Batch size: number of training samples (i.e. images) elaborated by the net-
work consecutively before to update the weights with back propagation. Little
batch size means updating the model frequently, costing more computationally
and taking significantly longer to train models. Big batch size, instead, may
result in premature convergence of the model to a less optimal set of parame-
ters. Hence, popular batch sizes include 32,48(used in this work), 64, and 128
samples.

4.4 Baseline 38

4.4.2 Second Stage: ICP

The purpose of second stage is to estimate object pose starting from a bounding
box, composed by a rectangular region plus a label, provided by the first stage.
Second stage extracts the point cloud delimited by the bounding box and through
ICP it estimate the pose. ICP is a discriminative method that iteratively minimize
the distance between two sets of points cloud. This distance is defined as the sum
of Euclidean squared error between two point clouds. During each iteration, the
algorithm selects two subsets of points using RANSAC [9] from their correspond-
ing point clouds to calculate the distance. In this work, a implementation of ICP
provided by Point Cloud Library (PCL)* has been used. After the distance between
two point sets is lower than the convergence threshold, a rotation and a translation
has been obtained. They represents the transformation to the sample image in the
database final object pose. They will use successively to plan the motion actions of
the robot.

As cited in section 2.3.1, ICP is sensitive to initial pose of the object, and in this
work, the number of iterations has been fixed, in order to not fall in a infinite or
very long loop. Some algorithm has been developed in order to obtain a quasi-initial
pose of the object, like PCA (principal component analysis) [16]. However, due to
the random nature of the disposition of the object in the scene, PCA has not lead
improvements.

The bounding boxes predicted by the first-stage is used to crop the point cloud of
the depth image with the RGB-D camera on the robot. The point cloud of the entire
scene contains all the group of point of the interesting object, but also it contains
point of other the background. Whatever it is accuracy of the bounding box, every
cropped region of the depth image will have some noisy point. This noise can affect
the performance of the ICP because the point cloud matching could be make using
point that are not of the required object. A possible solution, that remove part
of the noisy point, is the segmentation, as used in [54] where ICP is combined
with a neural network-based object segmentation stage. As said in Section 2.5, this
approach has not been used in this work, but surely it pose a next step in this
research that can help to increase the accuracy. However, the ICP still does not
have some of the advantages provided by SAND approach.

“http://pointclouds.org/

4.5 SAND 39

4.5 SAND

Perception is the main bottleneck to perform autonomous mobile manipulation
tasks. This bottleneck also increase in cluttered environment, where only part of
the target are visible and the pose estimation is not easy. In this section, a differ-
ent two-stage paradigm, called SAND (SAmpling Network Density filter) [46], for
object detection and 6D pose estimation is described. This approach performs the
scene estimation through a end-to-end CNN detection stage plus a generative pose
estimation method based on sampling-based local search. Differently for ICP used
in Baseline, this work demonstrate that the SAND can recover some hard-decisions
made by neural network stage, improving the robustness of the framework, also
against adversarial attack.

4.5.1 First Stage: Pyramid-CNN

The first stage of the SAND method (i.e. the object detector) is a simple CNN
network classifier mutated in a detector with a sliding window stage applied on the
input image. Every single input image (or tested image), has been elaborated by the
CNN at 5 different level of scale (0.75, 1.0, 1.5, 2.0, 2.5). While the Faster-RCNN
produces a set of bounding boxes for each object in the scene, the output of the
Pyramid-CNN is instead a heatmap. For each level of scale, each pixel that belong
to a region created during the sliding window, after be elaborated by the CNN, hold
a value. This value it is the probability of the pixels to fall in a certain class. The
value of the pixels in the same region, due to not overlapped sliding window, is the
same. For each input image, for each object and for each level of scale, the pyramid
CNN produces a different heatmap, as shown by figure 4.3.

Here a file representation of part of a heatmap for one object({ Ymin Xmin Ymax

Xmazx Score}:

4.5 SAND 40

0.000014
0.000012
0.000010
0.000008
0.000006
0.000004
0.000002

0.0004

0.0003

0.0002

woN e o

0.0001

-

00 25 50 75 10.0 125

]

5

10

15
0 5 10 15 20

0

0.8

0.6

0.4

0.2

0.14
0.12
0.10
0.08
0.06
0.04
0.02

10

20

30

0 10 20 30 40

Figure 4.3: Example of an Heatmap created by Pyramid-CNN

21 21 319 319 0.000000

21 64 319 362 0.000000

21 107 319 405 0.000000
21 149 319 447 0.000000
21 192 319 490 0.000000
21 235 319 533 0.000000
21 277 319 575 0.238473
21 320 319 618 0.000001
21 363 319 640 0.000009

Figure 4.4 shows Pyramid-CNN prediction with cloroz class score less than 0.7.
A thresholding as used for visualization because the number of predictions is too
big to be clear visualized in the same image.

Moreover, the Pyramid-CNN architecture, is composed by two different branches,
as shown in Fig. 4.5. The first is the classifier, the ordinary branch which is found in
all the CNN, that classify images. The other branch, instead, is used to discovered,

4.5 SAND 41

clorox detections with p(clorox | box) >= 0.7000

 ErEE——
cla

clorox 0,921 'ﬂ

Figure 4.4: Pyramid-CNN prediction Example. Red bounding box is the ground truth

not the class of the object, but the shape of that object (i.e the orientation in the
space).

Fig. 4.5 [46] shows the architecture of Pyramid-CNN that implements the VGG16
layers. Note that the image shows only the VGG16 architecture, but the additional
branch has been implemented in all the networks used for the study. Python code of
this architecture is defined in listing 4.6 where the two branches are self.classifierl
and self.shape.

m

Ratio

Figure 4.5: Pyramid-CNN architecture

1 class VGG(nn.Module) :

2

3 def ____init___ (self, features, num_ classes=16, num_shape=T7):
4 super (VGG, self).__ init__ ()

5

self.features = features

4.5 SAND 42

6 self.classifierl = nn.Sequential(

7 nn.Conv2d (512, 4096, kernel_ size=7),

8 nn.ReLU(inplace=True) ,

9 nn. Dropout () ,

10 nn.Conv2d (4096, 4096, kernel_size=1),

11 nn.ReLU(inplace=True) ,

12 nn.Dropout () ,

13 nn.Conv2d (4096, num_ classes, kernel size=1),

14)

15 self.shape = nn.Sequential (

16 nn.Conv2d (512, 4096, kernel_ size=7),

17 nn.ReLU(inplace=True) ,

18 nn. Dropout () ,

19 nn.Conv2d (4096, 4096, kernel_ size=1),

20 nn.ReLU(inplace=True) ,

21 nn. Dropout () ,

22 nn.Conv2d (4096, num_shape, kernel_ size=1),

23)

24 self. initialize weights ()

25

26 def forward(self, x):

27 feat = self.features(x)

28

29 class_label = self.classifierl (feat)

30 shape_label = self.shape(feat)

31 return [class_label, shape_label]

32 cfg = {

33 'Av: [64, '™M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],

34 ‘B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],

35 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512,
512, 'M'],

36 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M',
512, 512, 512, 512, 'M'],

37}

38 def vggl6(pretrained=False, xxkwargs):

39 """VGG 16-layer model (configuration '"D")"""

40 model = VGG(make_layers(cfg['D']), xxkwargs)

41 if pretrained:

42 pretrained__dict = model_zoo.load__url(model_ urls['vggl6'])

43 model__dict = model.state_dict ()

44 pretrained_dict = {k: v for k,v in pretrained_dict.items() if k in model_dict}

45 model_dict.update(pretrained_dict)

46 model.load__state_ dict(model dict)

47 return model

Listing 4.6: Implementation of Pyramid-CNN with VGG16

Respect the Faster-RCNN, this first stage produce more false positive. This
number is not high in Faster-RCNN due to the involvement of RPN, that removes
region that are considered not interesting, performing a thresholding. The thresh-
olding has been avoided in the SAND pipeline in order to not rely solely on the
decision produced by first stage.

Offline Hard Negative Mining

During the training phase of a classifier, both positive and negative examples
are used. Positive example are images of the object that must be classified (e.g.
the battle of cloroz), while the negative example are images that does not contain
the aforesaid object (for example background images or images with other object).
Also with these two type of images, the classifier could still predict falsely the ob-

4.5 SAND 43

ject. With Offline Hard Negative Mining(OHNM), also called Offline Hard Example
Mining, these false prediction are added to the train set and labeled as negative ex-
ample (i.e. they do not contain the object). Once these images have been added, the
classifier model have been retrained with the new dataset, increasing the accuracy.
However, increasing of number of images in the dataset lead to longer training time.

Pyramid-CNN alone, produces many false positives, decreasing the accuracy, due
to the big number of input image(created by the sliding window). In order to reduce
this number, the OHNM has been applied twice during the training of each CNN
model. Table 4.3 shows the mAP before and after the hard negative mining. As it is
possible to see the OHNM brings growth for all network models, therefore reducing
the number of false positive. To compare the two approaches(Baseline €& SAND) in
a fairly way the same method has been applied also on the Faster-RCNN detector,
but the OHNM does not provide improvements, as shown in the Table 4.4. There
is no accuracy gain by reason of the accuracy of the Faster-RCNN is already very
high, this involves that the number of false positive is very small, such as the falsely
detected object. For instance, the number of image added with OHNM to the dataset
of a Pyramid-CNN network is about~ 300, while for the same network implemented
through the Faster-RCNN is about =~ 50. Consequently the latter number, added
in the progress database can not bring sensible improvements. Finally, considering
that the OHNM at least double up the training time (one re-training with more
images), this method has not been used in the Baseline.

mAP mAP mAP mAP
Network | before after Network | before after
OHNM | OHNM OHNM | OHNM
AlexNet 0.301 0.327 Alexnet 0.876 0.848
VGG11 0.219 0.246 VGGI11 0.877 0.892
VGG13 0.223 0.279 VGG13 0.914 0.928
VGG16 0.216 0.296 VGG16 0.944 0.930
VGG19 0.212 0.247 VGG19 0.896 0.907
ResNet18 0.129 0.225 ResNet18 0.903 0.901
ResNet34 0.159 0.188 ResNet34 0.913 0.910
ResNet50 0.173 0.242 ResNet50 0.907 0.897
ResNet101 0.157 0.236 ResNet101 0.902 0.921
ResNet152 0.137 0.217 ResNet152 0.924 0.926
Table 4.3: OHNM applied on Table 4.4: OHNM applied on

Pyramid-CNN Faster-RCNN

4.5 SAND 44

Training & Test

As referring to section 4.4.1, a similar training procedure is used for Pyramid-
CNN, with the addition of OHNM. In order to apply the OHNM the loss function
and the accuracy are calculated and monitored with Tensorboard. When accuracy
reached value higher than 99%, the training phase was stopped and OHMN applied.
Note that the accuracy is calculated on the training data. This procedure has been
applied twice for each network, resulting in three training phase. Each complete
training phase lasted ~2 hours for small networks (like AlexNet) and a4 hours
for the very deep ones (like VGG16, VGG19). Figure 4.6 show the flowchart of a
complete training procedure for Pyramid-CNN.

4.5 SAND

45

Load Training
Dataset on GPU

v

Initiliaze Network
Model with
random weights

1]
Load pretrained
weight
1]
cnt_epoch = 0;
cnt_ohnm = 0;

Perform one train
epoch

cnt_epoch =0

|

accuracy >> 99%
Yes

No

Validation Phase

perform OHNM

cnt_epoch ++

Update Dataset

cnt_epoch =0;

Figure 4.6: Training algorithm for Pyramid-CNN

4.5 SAND 46

4.5.2 Second Stage: Particle Filter

The output created by Pyramid-CNN, a pyramid of heatmaps, are used as pro-

posals by the second stage, called Particle filter. Each pixel in the heatmap repre-

sents a bounding box with a categorical distribution of all object classes and each

heatmap corresponds with a fixed shape of bounding box, defined by the shape

branch of the Pyramid-CNN. The generative sampling-based search in the second

stage of the SAND is inspired by sampling methods. In order to estimate the pose

of one object predicted by the first stage, the Particle filter executes this procedure:

1.

Started from the label of the object a a collection of samples are initialized.
Each sample represent an hypotheses or the final pose and it contains a weight
score. The weight is calculate combining the class score predicted from the
first stage and the score of the geometric correspondence with the point cloud
obtained by cropping the scene through the bounding box of the first stage
(i.e. the detecte region that should contain the object)

. Evaluation of the weights of each new sample obtained by the previous phase.

. Resamping and Diffusion phase. After the weight of each sample has been

evaluated, a resampling and diffusion process is performed over the collection
of samples. Resampling consists of update the weight of the sample with last
computed weight. Diffusion, instead, consists in appling a translation or a
rotation or a mix of both in random way to the point cloud sample. Each
sample in the collection receives a different type of diffusion.

. The process of evaluation, resampling, diffusion repeats until convergence of

the object pose.

. In final iteration, the sample with higher score is selected and a rotation and

a translation has been obtained. They represents the transformation to the

sample image in the database final object pose.

Since a wrong prediction made by the first stage will lead to a not correct ma-

nipulation by the robot, these method provides robustness over the search space,

permitting to recover some imperfect first stage output. Table 4.5 resumes the main

difference between the two approaches: Baseline and SAND.

4.6 Adversarial attack 47

’ Baseline ‘ SAND ‘
output first stage bounding boxes heatmaps
Thresholding yes no (sand uses false positive
to generate more hypothesis)
OHNM no (mAP does not change) yes (help to remove some
false positive)

Table 4.5: Differences between Baseline & SAND

4.6 Adversarial attack

Many researches [49][21] [2][52] has shown the weakness against adversarial at-
tacks or misleading examples. Defending against adversarial examples is not a trivial
problem because it requires neural network models to produce good outputs for ev-
ery possible input; however, in a physical scenario neural networks must work well
only on a very small number of all the many possible inputs. In this work, in or-
der to deal with adversarial scenarios, it has been chosen to not modify the initial
training set, and to exploit the robustness provided by the particle filer. It has been
assumed that the attacker has not the possibility to tamper the robot or modify the
image after it has been taken by the camera. He has only the possibility of modify

the scene environment in three ways:
« Changing the surface aspect of an object

o Increasing the clutter in the scene introducing new object, hiding parts of some
object

o Changing the light conditions

4.7 Robot Grasping

As obtained the pose estimation of an object, the robot can plane its motion and
perform the grasping task. In this work, the development motion/grasping is not
taken in account, assuming that correct pose estimation leads a correct motion and
grasping. This assumption has been posit through different physical experiments.
For the Baseline experiments has been run 10 trails of the robot grasping task for
both VGG11 and VGG16. For both approaches it has been achieved 6/10 success
rate. For the SAND approach, instead, the robot grasping has been performed
during the analysis with adversarial attack. In the end, both second stages are not

4.8 Feature-Based Approach 48

able to understand if the prediction provided by the second stage is correct or wrong.
In particular, if the first stage labels a region with a certain class, the second stage
will provided anyhow the best pose estimation of that object in that region, even
if the object is not present in that region. Future works will include more detailed

solution for this open problem.

4.8 Feature-Based Approach

As mentioned before, CNNs depict the state-of-art object detection algorithm.
However, the computational complexity required by neural network can not be pro-
vided by all the system. In particular, in mobile applications, not always there are
unlimited resource (or even just a GPU) as they can be found in a desktop environ-
ment. One possible solution is to use neural network developed for this type of task,
such as MobileNet. MobileNet reduce the number of layer in order to reduce the en-
ergy consumption, at the expense of the accuracy. One other possible solution is not
use neural network model-based approach, as BoVW described in section 4.8. For
this work, the wl_feat® library has been choose (MATLAB version). This library
provides all the component required to perform the Bag Of Word model.

» features extraction through dense multi-scale SIFT descriptors(vl_dsift) .
The main advantage of using vl dsift over vl sift is speed. DenseSIFT is more
fast (about x30 speedup), moreover, the type of feature descriptors used by
DenseSIFT is usually used for object categorization. VLFeat provides examples
to how set hyperameters of DenseSIFT to perform as SIFT.

o Elkan k-means for fast visual word dictionary construction. Elkan’s algo-
rithm is a variation of k-means algorithm that uses the triangular inequality
to avoid many distance calculations when assigning points to clusters, making

the codebook construction faster than the main apporch.

e SVM classifiers

4.8.1 First Stage: SIFT
The main steps of the SIFT-based first stage follow the flows of the original BoW:

1. Feature Extraction by DenseSIFT on the train set of images. DenseSIFT
computes descriptors for densely sampled keypoints with identical size. The

®http://www.vlfeat.org/

4.8 Feature-Based Approach 49

same training dataset of Pyramid-CNN has been use: 15 classes plus the back-
ground class. Respect the Pyramid-CNN, for this approach the number of
background images has been increased by ten times to reduce part of wrong

prediction.

2. Dictionary Definition Constructed using k-means (provided by VL_ Feat)
on the features extracted by the DenseSIFT.

3. Train SVMs. One SVM is created for each class of the fifteen objects of the
dataset, plus one for the background.

4. Sliding Window every test image is divided in sub-images exploiting the
Sliding Window method. Many different size of the window has been tested.
Too small window are not able to detect objects, but using a too large one
increases the risk that in the same examined region there are more objects,
making the detection not easy. Big windows size lead also to increase more
background, hence more noise in every sub-image. At the end, five different
window’s size has been chose: 90,120,150,180,200 (side measure in pixels). Bin
sliding window size(step in pixel of the window respect to the x and y axes)
is equal to 32 pixels. 64 pixels have proven themselves to be too big for this
work, because a entire object could contained in about 64 pixels, making the
classification not trivial. Bin size of 16 pixels, instead, makes runtime too
long, without significant increases in accuracy. Moreover, the number of false
positive increase with the number of sub-images, hence using small window

size or small bin can affect badly the final accuracy.

5. Test: once obtained the weight from the SVM, each sub-images is testes with
each SVM and a set of probability for each class is created for each sub-images.

6. Prune False Positive: as for the Pyramid-CNN, each region created by the
sliding window must have a predicted label. Since the detector has not high
accuracy, the number of False Positives has been resulted to be high, misleading
the second stage. In order to reduce FP, it has been removed all regions with
a certain label, which have not at least a "neighboring" region with the same
label. This approach reduces both FP and TP, but with a reducing radio more
higher for FP.

4.8 Feature-Based Approach 50

4.8.2 Second Stages with SIFT

The previous first-stages (Faster-RCNN and Pyramid-CNN) has been studied in
order to produce a right output format for the corresponding second stage. In fact,
Faster-RCNN bounding boxes are not usable within the SAND approach because the
latter requires an heatmap as input. In the same time, the heatmap created by the
Pyramid-CNN are not operable by ICP, that would use only the region with higher
probability. The SIF'T approach, instead, has been designed in order to work with
both second-stages. Considering that the sliding window (in the SIFT), are applied
with different size, it is possible to produce heatmaps for the particle filter. Merging
all the region for every size dimension, with the same label, a final bounding box
for ICP can be obtained.

Chapter 5

Experimental Results

5.1 Results Representation

In order to have a comprehensive view of the results from the first stage, a

python algorithm has been developed to calculate the mAP of each network using

the predicted bounding boxes and the ground truth annotations for the thirty test

scenes, using the metric explain in section 2.4. Here, an example of the results, after

a test phase:

Fval: downy, AP: 0.272933646016
FEval: toy, AP: 0.145952879464

Eval: blue__cup, AP: 0.282473296347
Fval: coke, AP: 0.373721340388

Eval: ranch, AP: 0.384120088527

Eval: spray_bottle, AP: 0.11408089339)
Fval: sugar, AP: 0.233317730962

Fval: tide, AP: 0.362564009566

Fval: detergent, AP: 0.405121223561
FEval: clorox, AP: 0.164186729837
FEval: scotch__brite, AP: 0.0969596140052
FEval: red_bowl, AP: 0.512405611909
Eval: waterpot, AP: 0.396016637352
FEval: sunscreen, AP: 0.242525998981
FEval: salt, AP: 0.5394781780116

mAP: 0.292077432028

For the second stage, after the test phase, a curve of accuracy is provid

led for

each object, figure 5.1, as the average curve on the entire test set, figure 5.2. On the

o1

5.2 Computational Complexity 52

Y axis is reported the accuracy, while on X axis is reported the Distance Threshold.

Pose Estimation Accuracy

rrrrrr

%
)
@

—_
L
Accuracy
o o
w &

)
N

T H i | -
oo o b i be Te oo eb W ol o el b ok ok ok ok Distance Threshold (meter)
Figure 5.1: Accuracy curve for each object Figure 5.2: Average curve of
in the test scene. This graphs are the re- all object in the test scenes.
sults of VGG16 within the SAND pipeline This graphs are the results
of VGG16 within the SAND
pipeline

5.2 Computational Complexity

Table 5.1 shows a comparison of computation complexity of the Faster-RCNN
framework implemented with various CNN architectures. For time reason, this
comparison has not been extracted for Pyramid CNN, but the consumption trend is
reasonably the same. MACC (multiply and accumulate operations),activation (size
of feature map) and weight parameter has been estimated from NetScope'. Number
of MACC operations represents the index of computation complexity of the network.
Number of weight parameters and the size of the intermediate feature map are used
to determine if the model can be loaded on an embedded platform. For instance,
the Jetson TX2 has 8GB of memory, so it is able to handle all the CNN models
used in for this work. Referring to the table, adding more convolutional layers has
a much bigger impact on total number of MACC operations and memory activation
than the number of weight parameters. Therefore depth of the network impacts

total energy consumption more than number of weights.

Thttps://dgschwend.github.io/netscope/quickstart.html

5.3 Analysis of Baseline 53

‘ H AlexNet ‘ MobileNet ‘ VGGI11 ‘ VGG13 ‘ VGG16 ‘ VGG19 ‘ ResNet18 ‘ ResNet34 ‘ ResNet50 ‘ ResNet101 ‘ ResNet152 ‘

conv layers 5 27 8 10 13 16 17 33 49 100 151
filter size 35,11 1,3 3 3 3 3 37 3,7 1,37 1,37 1,37
channels 1-256 3-1024 3-512 3-512 3-512 3-512 3-512 3-512 3-2048 3-2048 3-2048

filters 96-384 32-1024 64-512 | 64-512 | 64-512 | 64-512 64-512 64-512 64-2048 64-2048 64-2048
MACCs 107 170 799 1160 1560 1950 56 94 111 147 183

(billions)

activations 0.18 0.27 1.60 2.52 2.77 3.02 0.16 0.24 0.68 0.91 1.19
(billions)

parameters 0.058 0.005 0.131 0.132 0.137 0.142 0.012 0.022 0.028 0.047 0.060
(billions)

Table 5.1: Computation complexity for Faster-RCNN with various CNN model

5.3 Analysis of Baseline

Table 5.2 reports the accuracy achieved by the object detector implemented
with various CNN models from either first stages. More complex networks do not
necessarily generate better results than smaller networks, even though more complex
networks can produce less prediction error on ImageNet [41]. For example, in this
work, VGG13 has higher mAP accuracy respect the deeper VGG19. Similarly, in the
ResNet family, the 50-layers network has better mAP than the 101-layers one. This
result is due in part to the limited size of our training dataset progess. Compared to
ImageNet, that has also categories of objects completely different from each other,
progress dataset is very small. However, small dataset does not necessarily indicates
that a small network should always choose.

Figure 5.4 shows the accuracy vs. distance threshold results for the pose estima-
tion produced by baseline. The table 5.4 shown the same number of the graph using
a distance threshold of 0.1m. Direct comparisons between pose estimation accuracy
values and object detection accuracy values are not meaningful since these values are
derived in different ways. With this analysis, it has been demonstrated that lower
first stage accuracy does not necessarily lead to lower second stage accuracy. For
example, VGG11 and VGG16 have different mAP in the first stage, but they achieve
the same pose estimation accuracy after ICP stage. These results demonstrate that
the object detection accuracy should not be the sole predictor of accuracy in the
pose estimation stage. Using smaller CNNs for detection can generate comparable
result as using bigger networks.

5.3.1 M