
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Master Degree Thesis

Cryptocurrency and Blockchain:
An experimental analysis
of the Miners’ Ecosystem

Candidate: Advisors:

Manuel Rafeli Prof. Squillero Giovanni

PhD. Edoardo Fadda

Academic Year 2017/2018

Acknowledgement

In primis vorrei ringraziare il prof. Giovanni Squillero per avermi dato la

possibilità di realizzazione una tesi su questo argomento.

Ringraziamento speciale al PhD. Edoardo Fadda per la sua immensa

disponibilità e soprattutto per esser stato un riferimento importante in tutte

le fasi dello sviluppo di questo lavoro di tesi nonostante la distanza logistica.

Alla azienda in cui lavoro, IFM srl di Catanzaro, che mi ha concesso la

possibilità di poter dedicare del tempo allo studio, e a tutti i miei colleghi

che mi hanno supportato in questa sfida.

Voglio poi dire Grazie a Mamma e Papà per aver sempre creduto in

me, per avermi costantemente spronato a dare il meglio e per aver sempre

sostenuto le mie iniziative.

A mio fratello e mia sorella, che con il suo supporto tecnico ed emotivo

ha reso meno tortuoso il cammino verso questo traguardo.

Infine un grazie va ai miei amici, tutti, per aver creduto in me e elogiatomi

facendo sentire ancora più importante quanto fatto.

2

Abstract

In 2008, a man under the alias of Satoshi Nakamoto invented the Bitcoin,

an electronic cash system completely decentralized that does not rely on a

central authority for currency issuance or settlement and validation of trans-

actions. The technology which avoids this system is called ‘Blockchain’, an

incorruptible digital distributed ledger that provides a secure way of making

and recording transactions. In this thesis our goal is to study the blockchain

technology and its main aspects focusing on miner’s features in such a way

that we are able to build a blockchain simulator which permits to enforce

various miner behaviour patterns and analyzing the outputs to understand

better miners’ ecosystem.

3

Contents

1 Introduction 7

1.1 Blockchain . 8

1.2 Permissionless vs Permissioned 8

1.3 Distributed Ledger Technologies Frameworks 9

1.4 Blocks . 11

1.5 Trustless . 13

1.6 Cryptography . 14

1.7 Distributed . 16

1.8 Mining . 17

1.8.1 Proof of Work . 17

1.8.2 Proof of Stake . 18

1.8.3 Mining Pool . 19

1.9 Fork . 20

1.9.1 Hard Fork . 20

1.9.2 Soft Fork . 21

1.10 Smart contracts . 22

1.10.1 Definition . 22

1.10.2 Dapp . 23

1.11 Critical issues . 25

4

1.11.1 Scalability . 25

1.11.2 Privacy . 25

1.11.3 Double-spend attack 26

1.11.4 Formal contract verification 28

1.11.5 Storage constraints . 29

1.11.6 Quantum computing threat 29

1.11.7 Others . 30

2 Bitcoin 31

2.1 Concepts . 32

2.1.1 Overview . 32

2.1.2 Transaction . 32

2.1.3 Proof-of-work . 34

2.1.4 Assembling chain . 36

2.1.5 Protocol . 37

2.2 API for working with Bitcoin Blockchain 40

2.2.1 BitcoinJ . 40

2.2.2 Bitnodes . 44

2.2.3 Blockchain.com . 46

3 The Simulator 49

3.1 Introduction . 50

3.2 Design . 50

3.3 Use Cases . 52

3.3.1 Mining block . 53

3.3.2 Add block to blockchain 53

3.3.3 Stale block . 54

3.3.4 Orphaned block . 54

5

3.3.5 Miner budget . 55

3.4 Implementation . 55

3.4.1 Initialize Ecosystem . 56

3.4.2 Run method . 57

3.4.3 Broadcast one . 58

3.4.4 Mining . 59

3.4.5 Add block . 60

3.4.6 Miner budget . 62

3.4.7 Print graph . 63

4 Numerical Experiments 64

4.1 Introduction . 65

4.2 First experiment . 66

4.3 Second experiment . 67

4.4 Third experiment . 67

4.5 Fourth and fifth experiment 68

4.6 Sixth experiment . 69

4.7 Seventh experiment . 70

5 Conclusion 72

6

Chapter 1

Introduction

7

1.1 Blockchain

Blockchain technology is a set of concepts and techniques to implement a

system that provides a secure way of making and recording transactions,

agreements and contracts. It is based on a distributed peer-to-peer network

and its name derives from the way of storing data in a digital ledger. It is

also called Distributed Ledger Technology and it is below of Bitcoin and all

cryptocurrencies.

Blockchain stores information as transactions into a global digital ledger

which is distributed and replicated in each node of the same network. The

data lake consists of a chain of blocks where each of them contains some

data and when a change happens it is distributed globally because anyone

can participate in verifying the transaction. The blocks are concatenated

each other avoiding the possibility to remove or to alter existing data.

By Cryptography, the recordings are secure and essentially unalterable

on the ledger. It is important to verify the authorship of transaction using a

form of digital signature.

According to be public, the blockchain is accessible to anyone and it is

completely transparent, all of participants can read the blocks and monitoring

the data exchanges between the users. In this case, blockchain is called

Permissionless. On the other hand, a Permissioned blockchain is a private

network where each participants could be a different visibility level.

1.2 Permissionless vs Permissioned

Permissionless blockchains are systems where anyone can participate with-

out receive any permission. They are open, not created to be controlled

by a system admin and they have not a owner [1]. Any person can be-

8

come a participant downloading the code and running a public node on own

local device which permits to start validating transactions in the network,

participating in the consensus process, or sending transactions through the

network. Running the client on local make users actors of the network as a

simple user, if they send or receive valid transaction, or as a Miner, if the

participant complete the consensus process. In public blockchains, it does

not need to maintain central servers so there are not infrastructure costs.

Typical examples are cryptocurriences such as Bitcoin, Ethereum or IOTA.

By contrast, Permissioned blockchain has evolved as an alternative way to

permit anyone to take part of the ecosystem. Participating in the process of

verifying transactions is allowed only for particular group of entities, defined

as Trusted, selected by network admin who share a mutual goal. They should

be identified and their roles need to be defined if they are to play a part in the

network. A Permissioned blockchain can use the traditional Byzantine-fault

tolerant consensus which is a protocol based on Byzantine General’s Prob-

lem. Permissioned ledgers permit to define special rules about data visibility

ensuring more transaction privacy. It means that these blockchains can be

controlled introducing the concept of Governance wanted by institutions and

big companies. These features reduce transaction costs and data redundan-

cies causing greater speed of the network. The best example of Permissioned

blockchain is Hyperledger. [2]

1.3 Distributed Ledger Technologies Frameworks

Blockchain landscape has evolved since Bitcoin, first blockchain implemen-

tation, was introduced by Satoshi Nakamoto. At first, it was dominated

by different blockchain protocols payments oriented but soon new various

9

protocols were born keeping in mind the different use cases and objectives

introducing important technological innovations. Nowadays, new companies

are supporting distributed ledger technologies and they are implementing en-

terprise solutions for business uses such as supply chain or financial markets.

Bitcoin is the earliest blockchain protocol and it is blockchain first ori-

ented because you work directly with the given blockchain tools and stack.

Bitcoin is a Permissionless blockchain and uses a Proof-of-Woork consensus

algorithm. Immutable data is ensured by using cryptographic hash function,

digital signature and private-and-public key encryption. [3]

Ethereum philosophy is similar to Bitcoin, it is the first innovation blockchain

from Bitcoin. It uses also a Permissionless blockchain and PoW consensus

algorithm but, unlike Bitcoin, which was built for allowing cryptopayment

transactions over a decentralized network, Ethereum blockchain was designed

to permit developers to create their own blockchain projects, including their

own cryptocurrencies. It is based on Smart contracts, pieces of code which

allows execution of legal functions according required conditions.

IOTA is a next-generation blockchain focused on provide trust transac-

tions between the machines within Internet of things context. Its particular

feature is that there are not miner but all participant of the network par-

ticipate actively in the consensus mechanism. In fact, a node who wants to

make a transaction has to approve two past transactions. That makes IOTA

more decentralized than any blockchain.

This framework improves scalability of the system achieving high trans-

action throughput exploiting parallel validation of transaction with no limit

as to the number of transaction that can be confirmed in a certain interval. [4]

10

As its website say, Hyperledger is an open source collaborative effort

created to advance cross-industry blockchain technologies. It is a global col-

laboration, hosted by The Linux Foundation, including leaders in finance,

banking, IoT, supply chain, manufacturing and technology. It implements a

Permissioned blockchain and follows the specific requirements of large enter-

prises such as high scalability, transaction speed and trusted entities should

join the network. [5]

1.4 Blocks

Blockchain is a ledger of transactions shared across multiple computers.

Technically, it is a huge file divided in a set of data which are collected

and processed to fit in a block through a process called mining.

A block contains a set of transactions and some other attributes needed

to sustain correctly the mechanism. Data are stored in these transactions

which are format depending on type of blockchain we are using.

Each block has a digital fingerprint created using a cryptographic hash

based on data inside transactions and block’s attributes. It will be contained

in the next block as an attribute of it so that blocks can form a chain from

the first block ever (known as the Genesis Block) to the formed block.

11

Hash value of the block is unique in the network and it permit to identify

the block uniquely on the ledger. It is not contained inside the block’s data

structure but it is computed by each node when they receive the block from

neighbor. Block’s hashes might be stored in a separate database to retrieve

easily blocks from disk. Another way to identify a block is by height in the

blockchain. Height is the position of the block inside the chain, for example

first block has 0 height value. When a block is added to the chain, its height

will be higher of one than its parent block. Unlike the block hash, the height

does not identify uniquely the block because more block could compete for

the same position in the chain. The height value does not also store inside

the block’s data structure but it might retrieve from database.

A general block structure is composed of a header and a body. In the

figure we can see that the header is structured by followed metadata :

• Block version: track bitcoin protocol upgrades

• Merkle Tree Root: data structure which summarize all transaction in

the block

• Timestamp: timestamp creation of the block

• nBits: difficulty target for this block used in the Proof-of-Work Algo-

rithm

• Nonce: counter used in The Proof-of-Work algorithm counter

• Previous block hash: a reference to the parent block in the blockchain

12

The body contains a list of transactions which are limited on depend of

the size of the block and the size of each

1.5 Trustless

The main feature of blockchain is to be Trust. Generally, if two people who

don’t know each other want to exchange something as money, they entrust

to a third part as a bank to guarantee the exchange. It happens because

people don’t trust each other and it needs the third part to oversee it.

Blockchain eliminates the need for a third party because its property per-

mits to have a distributed trustless consensus which guarantee that transac-

tions is valid and safe for both.

Two important aspects make possible this innovation:

• Cryptography, every transaction is signed by the author using a digital

signature so nobody can crate a transaction which doesn’t own him-

self. This form of encryption requires consensus from everyone in the

network to unlock and make changes to.

13

• Distributed, the digital ledger contains all transactions and each node

has a copy of it. The new transactions are distributed on the whole net-

work and each node, after validating, aggregate them in a block which

will be added in the ledger only after reaching a distributed consensus

on it. This process ensures that the ledger will be immutable.

1.6 Cryptography

Cryptography is a method of storing and transmitting data in a particular

form in such a way that only those for whom it is intended can read and

process it. Blockchain uses two technique already known in the modern

system: Asymmetric Cryptography and Hashing.

Asymmetric Cryptography permits to identify uniquely the author of

transaction guaranteeing the contents of it have not been altered in tran-

sit. This type of cryptography, also know as Public-Key Cryptography, has

made safer the concept of to use only one secret to protect data. It uses two

related keys respectively called public and private key where the first may

be freely distributed, while its paired private key had to remain a secret.

They are strongly correlated with each other through some mathematical

relationship.

In particular, Digital signature implements the previous concepts. If you

want to sign a digital document by a digital signature, you have to do a

fingerprint of it, an hash typically, and encrypting this fingerprint using the

signer’s private key. The test of the sign are made decrypting the fingerprint

signed using the signer’s public key and comparing it with a fingerprint of the

original document. If they are not equal the sign is not valid or the digital

document has been corrupted.

14

In the blockchain technology, users own public and private key which are

stored in a digital wallet.

Public key, also called address, identify the wallet in the network and it

"belongs" to the network after first transaction refers to it is written on the

blockchain. If you want to exchange any things with another user you have

to create the transaction using him address.

3Au6uLAKnRB6id5kaxGqZ5mf8mkrjEVPT6

example of the address

Private key is used by user to sign the transaction created. It is vital

to maintain it in a secure place because the private key’s owner proves that

data refer to a certain public key belong to him. In particular, blockchain

exploit the digital signature in this way: when a transaction is created, the

author signs digitally the transaction using his private key. This signature

ensures that only the owner of the wallet has created the transaction.

As we have seen previous, Hash function is an another cryptographic

method used by blockchain technologies. It implements the concept of tak-

ing an arbitrary amount of input data, applying an algorithm to it, and

generating a fixed-size output data called hash. The hash represents a mark

of the input data which will be unique inside a particular context. In the

blockchain, hash function permits to identify uniquely a certain block in a

chain which will be include in the header of next block. The result is that

each block are related each of other because hash algorithm is applied on

the block’s transactions plus the previous block’s hash and the last hash

calculated represent the current state of the world.

15

1.7 Distributed

Blockchain is based on the peer-to-peer distributed network with no central

authority figure where each peer or node gives a contribution to maintain

the net safe. It is a architectural change because there is no more a central

system that preserves all data but we have distributed peers which have the

same copy of the data. This architecture limits the risks of errors or changes

on data but also attacks on the system.

The main purpose of the distributed network is to achieve a "distributed

consensus". In a central system all decisions are taken by the leader or a few

superior actor. In the blockchain anyone does not prevail on another because

all nodes have the same role and it needs to obtain a global consensus.

Any participants that receive a valid transaction which has not seen before

use the technique known as flooding for propagate the data. It consists to

forward immediately the transaction to all other participants to which it is

connected. In this circumstance, the transactions are not still valid but it

needs that a node aggregates some transactions creating a block and reaching

the distributed consensus on them.

Consensus permits that an agreement is reached using a decision-making

process which can benefit the entire group in the best interest of the whole

and it is needed when it wants to create a more equal and fair society. To

reach a consensus on a distributed system is a problem knows as "Byzan-

tine Generals’ Problem." It consists of trying to agree on a course of action

or the state of a system by exchanging information over an unreliable and

potentially compromised network.

Consensus mechanism is the method by which Byzantine Generals’ Prob-

lem is solved. It exists a lot of different consensus algorithm such a Proof-

of-Stake or Proof-of-Elapsed-Time but the most used is the Proof-of-Work

16

which are used in Bitcoin Blockchain.

1.8 Mining

Transactions just created are propagated across the network but they does

not become part of the blockchain until they are verified and included in a

block by a process called mining. Mining is the process crucial to achieve a

consensus on decentralized networks to prove the fairness of elections, lot-

teries, asset registries, digital notarization, and more. It is done by miners

and its function is to generate new tokens in a decentralized and distributed

system. Every participant of the network could be a Miner and each of them

competes to be the first to create a new block. In the most cases, first miner

who creates a new block adds it into blockchain and he is remunerated with

a fee. This is a blockchain with a reward system because miners are encour-

aged to mining by coins obtained. Exists a lot of protocol which implement

mining process such as Proof of Work or Proof of Stake.

1.8.1 Proof of Work

Bitcoin blockchain uses a Proof-of-Work algorithm for reaching a consensus.

Miners have to find a hash value that must be smaller than a certain number

which is the difficulty level set by the network. Hash value is calculated

with the header of the new block plus a nonce. Nonce is a number which

is changed in every iteration of hashing function until it reaches the right

number.

The difficulty level is dynamically tuned by the Bitcoin network protocol

and its value is crucial to maintain steadily that one block is produced every

ten minutes. After 2016 blocks, this value is changed calculating a new one

17

based on time spent to produce the previous 2016 blocks.

Proof-of-Work in Bitcoin blockchain has a key role because it proves that

you consumed power to create a new block introducing a economy barrier

to protect the network. If an malicious would want to alter the data in one

block, all previous of that block must be re-written and a huge amount of

calculation is necessary spending a lot of money.

However, the blockchain may use other mechanisms of consensus. Instead

of hash functions, for example, a blockchain may use Scrypt for proof-of-work

algorithm.

1.8.2 Proof of Stake

Proof of Stake is an alternative protocol for process mining. It resolves the

main critical problem of Proof of Work which encourage the global energetic

expenditure and favors the centralization of computing power in few places

on the world. Unlike the proof-of-Work, where the algorithm uses the power

competing to solve the block, with th Proof-of-Stake, who create a new block

is chosen depending on coin-age and randomness. Coin-age is the amount of

tokens owned by user and it gives a guarantee in creating new block. The

larger is the amount of tokens owned by a user, the greater the chances that

he is not violating the system and the more likely he is to behave in an

optimal way.

This protocol needs three feature:

• A sufficient number of miners nodes within the network

• A minimum amount of tokens associated with each miner’s profile

• The need for there to be already in the circle of tokens in the network

18

In the most cases where Proof-of-stake is used, cryptocurrencies are al-

ready mined and users enter on by participation. It means that the total

amount of cryptos is established at the beginning. A miner, when create a

block, does not get any reward but he takes only the transaction fees.

As we observed, the main problem of this solution is that is needed to have

a minimum amount of tokens within the network but low energy consumption

is a great advantage.

1.8.3 Mining Pool

Mining Pool is a set of miner which contribute together to the find a new

block, and then split the block reward according the contributed processing

power.

Generally, in the competition of finding new block the miner works alone

but when he is not well equipped, in terms of hardware for PoW or of stake

for PoS, this search seems to a lottery. Rising of difficulty network over time

makes increasingly creating new block and obtaining the reward. It means

that a miner who invests a part of own budget on mining could not return

the investment at the end.

Mining Pool is the right compromise to reduce the enormous risk and

amortizing the cost of equipment. Participating in a mining pool, it is able

to earn a regular payouts over that period. Peers who take part to a mining

pool are coordinated by pool server which uses a specialized pool-mining

protocols. The pool server synchronizes the effort of miners’ equipment to

search a solution for the candidate block. Once find new block, it will share

the reward among peers who belong to a mining pool based on their mining

contribution.

Payment could be done in two ways: sending directly to miners through

19

his wallet when they ask for them or setting the coinbase transaction to pay

the block reward to their wallet once a block is found. The latter has the

advantage that it never happen that any Bitcoin are stolen on your pool

server.

1.9 Fork

In decentralized system can occur that data structure of each node is not

always the same. Blockchain follows this rule in cause of its propagation

mechanism of new blocks. Different nodes might receive different blocks at

the same time causing the peers have different perspectives of the blockchain.

It means that each node must maintain at least two different chain but they

will consider as main chain the one with the longest chain or greatest cumula-

tive work. When more than one chain exist means that a Fork has happened.

Indeed, it consists in a temporary diverge between versions of the blockchain

which will be resolved by re-convergence in one single chain after one or more

blocks are mined. Fork may happen when as a result of transmission delays

in the entire network or when two or more miners mine a block with the

same height.

1.9.1 Hard Fork

This type of fork is a naturally fork because occurs as part of the consen-

sus operation. On the other hand, exists another type of fork called Hard

fork which does not occur naturally and does not converge onto a single

blockchain. It happens when part of the network want to change the con-

sensus rules because they want to fix some bugs or deliberate change in the

implementation. In this scenario, the chains of the different version evolve

20

independently. and it is not "forward compatible".

Hard fork requires coordination between all nodes in the system. It means

that each participant in the new system must upgrade his client so they

can implement new consensus rules and switching on the new blockchain

version. Bitcoin Cash and Bitcoin Gold are examples of hard fork because

they adopted a different competing implementation introducing new rules.

1.9.2 Soft Fork

When the change is implemented in such a way that an old client still sees

the transaction or block created by new client as valid, it is called Soft Fork.

Soft fork updates the consensus rules but it is forward-compatible to the

previous. It means that older client can continue to operate in consensus

with the new rules.

The fundamental aspect of a soft fork is that it does not require that all

clients must upgrade and does not force non-upgraded nodes out of consensus.

21

In the case of a deliberate change to the consensus rules, a software fork

precedes the hard fork. However, for this type of hard fork to occur, a new

software implementation of the consensus rules must be developed, adopted,

and launched.

1.10 Smart contracts

Smart contracts are an evolution of the initial blockchain and the concepts

will be the leader in blockchain technology in the next years. They was

introduced by Ethereum and it is the main innovation of its platform.

1.10.1 Definition

Traditional contracts are created by professional legal and they are written

in a legal language that often result to be ambiguous. Often people do not

understand the legal language and if one party does not respect the terms

of the contract, the public judiciary system resolves the issue for them. This

process has a cost in terms of resources, time and amount of paperwork used.

On the other hand, smart contracts are completely digital and they are

written by programming languages. They are easy to understand because

there is not much technical legal language and the code dictate the terms of

consequences of the contract. Moreover, none third party is necessary for the

enforcement of the contract. [6]

Once smart contract is implemented, it will put on the blockchain causing

its activation automatic. After that, it become part of the chain and there

is no chance that a third part may modify or stopping it. It will make

automated deductions and will perform the consequences of the terms written

on it based on the event which will happen.

22

A debit card is a typical example where we can look the powerful of

smart contracts. Whenever the owner uses his debit cart, the third party

will decrease his amount on bank account making automated deduction. The

same behaviours are done by smart contract but the difference is that occurs

in distributed way. Exploiting feature of blockchain, smart contracts can

execute without that a third party influences this execution in contrast of

the debit card where the bank can decide to act on the account. Moreover,

transactions derive from smart contrast are safe because it is impossible to

hack a blockchain.

One possible disadvantage of smart contract is that on the public blockchain

all data written can be seen by anyone. It may be a problem if the smart

contract contains information which must be not available to the public. For

example, a company that makes a smart contract with some supplier and it

does not want that his concurrent acquire information about that.

1.10.2 Dapp

Dapp, also known as a decentralized application, are the first real uses of

smart contracts and they are in the Ethereum marketplace. A dapp is a set

of smart contracts which define the function of the decentralized application.

It was introduced by Ethereum platform and they are written in Solidity,

a programming language much similar to Javascript. After its introduction,

other platform was born for implementing Daap design such as Hyperledger

or NEO.

Daap has the three main following features:

• Open-source: its code is totally open-source and anyone can see how it

is written.

23

• Decentralized: it makes available by more servers, not only one, allow-

ing developers to distribute the profit among them

• Privacy: it does not need of personal information because it works on

blockchain which identifies an user by an public key (address).

A Dapp is divided in back-end and front-end. Back-end stays on the

decentralized peer-to-peer network, the blockchain, while Front-end is a in-

terface that collects data and interacts with the users. The latter must be

implemented in such a way to be compatible with back-end. Oraclize, also

defined as Web API, is the one of the most famous available front-end and

it takes care of fetch data into Ethereum smart contract from outside world.

[7]

24

1.11 Critical issues

Blockchain is a one of the last new technology innovation and it is not clear

what is your real value. As new technology trend, there are some challenges

that blockchain has to overcome for becoming a real innovation today. It has

several major technical barriers that could be make them impractical.

1.11.1 Scalability

Decentralized Consensus protocol, as we have seen previous, has a crucial role

in the blockchain because ensures security and political neutrality removing

the central party authority. Every single node on the network is responsible

for securing the system by processing every transaction and maintaining a

copy of the entire state. All of this comes at the cost of scalability because

decentralized by definition limits the node to process an limited amount of

transactions. It implies a low throughput, blockchain can process only a

limited number of transaction, and slow transaction times, the time required

to process a block of transactions is slow, for example in Bitcoin this time

is 10 minutes. As consequence, growing up of the network will bring an

inefficiency because there will be more transactions to validate but the low

throughput is steady.

1.11.2 Privacy

Public blockchain is completely transparent because all data are stored within

the ledger which is distributed along the network. We have seen that each

transaction is referred to a address comprised solely of numbers and letters.

It could be appear that the transactions are anonymous and anyone can

associate them to an real identity. However, it’s not really that. If someone

25

makes the connection between the pseudonym and a real identity the secret

is revealed and the person lost his or her privacy.

Furthermore, when we use a blockchain where smart contracts are stored,

it provides a lot information about user such as senders and recipients or

transaction data itself. Unauthorized users, hackers and competitors could

view data and retrieving important information for own aims.

1.11.3 Double-spend attack

Double-spend or 51% attack is a vulnerability which affect Proof-of-Work

consensus. It consists of trying to spend cryptos on blockchain twice by

miner or group of miners.

For example in Bitcoin Blockchain, a miner Alice spend 1 BTC on a

computer. Her Bitcoin is transferred from her to company and she will get

the computer. By performing a double-spend attack, miner Alice can now

try to reverse that Bitcoin transfer which it permits her to possess both the

computer and her Bitcoin, allowing her to spend that Bitcoin again.

This type of attack can conduct when a miner or group of miners control-

ling more than 50% of a network’s mining power, 51% is enough. It permits

to find the hash solution more quickly than other miners and so creating a

chain longer.

Corrupted miner creates blocks in parallel with other miners but he does

not broadcast their block to the network. In this way there will be two version

of blockchain, one version corrupted which is malicious miner working on and

one that is being followed by uncorrupted miners.

26

While corrupted miner are mining new block on his chain, he will spend

some Bitcoin creating new transaction which will include on truthful version

on blockchain and not in his malicious version.

The blockchain is programmed to follow a model of democratic gov-

ernance. Miners when receive more than one block referred to different

blockchain they decide on depending which is longest. Having more than

50% of a network’s mining power permits malicious miner to find the hash

solution more quickly than other miners and so creating a chain longer.

As soon as the corrupted miner achieves a longer blockchain, he broad-

casts this version of the blockchain to the rest of the network. Other miners

will follow the longest chain switching own version to the corrupted received

by corrupted miner.

27

In conclusion, corrupted version of blockchain will be considered the

truthful blockchain and transactions that are not included on this chain will

be reversed immediately. It is called double-spend because miner has spent

his Bitcoin thought a transaction but it will be reverse and miner can spent

these Bitcoin again.

1.11.4 Formal contract verification

An unsolved problem in the world of smart contracts is the "Formal verifi-

cation". It is comparable to a “formal proof” in mathematics where using

the foundational axioms of mathematics and primitive inference rules it is

checked by computer. Formal verification is in relation to a software program

and it consists in a methodology to verify if the program, with certain input

data, follows specification giving correct data output. In other words, we

first state an invariant about the program, and then we are obliged to prove

or disprove that statement.

One example of a specification language is Isabelle, which is a generic

proof assistant that allows mathematical formulas to be expressed in a formal

language and provides tools for proving those formulas in a logical calculus.

Formal verification for programs encoded within smart contracts is cru-

cial. Immutability is the main feature of a smart contract and you can’t

update or fix them once they have been deployed onto the network. It means

that before to use those contracts in real-world applications it’s needed that

everything is right. Moreover, smart contracts are public and data stored

within smart contracts is open for anyone to view. While this provides open-

ness and transparency, it also makes smart contracts very attractive targets

for hackers.

28

1.11.5 Storage constraints

One advantage of public blockchain is to able to maintain all data writing

on it indefinitely. It means that every information which wants to store

will be append on blockchain with previous data. More users exchange data

and bigger will be the size of the blockchain ledger. Moreover, according

to feature of blockchain, every new information will be diffused among the

network so that all data remain on every node.

As a result, storing information on a public blockchain database means

that:

• every full node in the network stored data.

• blockchain is immutable and store data indefinitely.

Therefore, these features impose a huge cost on a decentralized network

where every full node has to store more and more data into infinity. It causes

that for any realistic application that gets built on the blockchain remains a

huge handicap.

1.11.6 Quantum computing threat

Most dangerous threat to cryptography and in consequence to cryptocurrency

is the issue of quantum computers.

In the future, large quantum computer could be efficiently broken public-

key algorithms. Nowadays, quantum computers are still somewhat limited

in what types of problems they can solve but it won’t always be that way.

It’s important that as we design and build the blockchain and the cryp-

tography that underlies it, we need to be thinking about how to make these

properties quantum-proof.

29

1.11.7 Others

I explain the main disadvantage of blockchain but there are others equally

important such as to have a reliable and efficiently consensus mechanism or

missed of central authority that while on one hand, this affords us the dream

we all are after — a completely trustless, open, and permissionless system

— on the other hand, there literally is no safe upgrade path for the protocol,

and no one responsible for setting and maintaining standards.

30

Chapter 2

Bitcoin

31

2.1 Concepts

2.1.1 Overview

The first implementation of blockchain technology is Bitcoin and it is useful

to have a look it to understand how this invention works and how it was

developed.

Bitcoin is a powerful blockchain application and consist in a digital money

ecosystem where you can buy and use an asset electronically. As a traditional

currency, it can be exchanged among participants in the Bitcoin network to

transfer value from sender to recipient directly, rather than having to be

mediated through financial institutions.

Users of Bitcoin own keys which need to sign transactions to unlock the

value and spend it. These keys are the unique prove of ownership of Bitcoin

in the network, if you lose them you lose the coins. Therefore, it is crucial

to store them in a safe place as digital wallet on each user’s computer or

smart-phone or external hardware.

Mining is the process that takes care of creating Bitcoin and consist in

a competition among "miners" to find solutions to a mathematical problem

while validating Bitcoin transactions. Any participant in the Bitcoin network

can be a miner, using their computer’s processing power to verify and record

transactions.

2.1.2 Transaction

In Bitcoin blockchain, a transaction has one or more inputs and one or more

outputs. Input is like a debit against a Bitcoin account and it is a reference

to a transaction’s output. On the other hand, outputs are like credits adding

an amount to a new owner’s Bitcoin address.

32

example of transaction in Bitcoin blockchain

In simple terms, a transaction tells the network that the owner of some

bitcoin value has authorized the transfer of that value to another owner. The

new owner can now spend the bitcoin by creating another transaction that

authorizes transfer to another owner, and so on, in a chain of ownership. The

value moves from transactions input to transactions output.

When transactions are created, outputs are slightly less than inputs be-

cause it is payed a small transaction fee to the miner who includes the trans-

action in the ledger. First transaction is a special transaction called coinbase

which has only one output and it represents miner’s reward for the mining

effort.

Once transaction created, it is sent to node’s neighbor forwarding across

the entire bitcoin network. However, before propagating transactions, a bit-

coin node will first validate them. Indeed, only valid transactions are prop-

agated over the network while the invalid will be discarded. That just val-

idated will add in transaction pool (memory pool) which contains a pool of

33

valid unconfirmed transactions.

2.1.3 Proof-of-work

As can be seen, Mining is the process to achieve a consensus on decentralized

network. It consists in a competition among miners which ends with the

propagation of a new block and the beginning of the next round. This new

block is valid because miner has founded the solution for the Proof-of-Work

(PoW) algorithm. PoW is the algorithm used in the bitcoin blockchain to

achieve the consensus which takes advantage of hashes function to implement

own mechanism.

A hash function gets arbitrary data in input and convert it into a fixed-

length output data. If we modify this data any way and the hash re-run,

a new output data is produced, so there is no way to change the data to

determinate the result in advance. It means that the only way to find a

particular solution is to try again and again modifying randomly the input

data.

PoW algorithm means that it must give a proof of the work performed. In

bitcoin blockchain, the proof is a value, which does not exceed a certain value

called target, founded by performed more time an hash SHA-256 function

which represents the work.

The process of founding this value consists that a miner build a candidate

block with some transactions. Moreover, the candidate block contains a

particular transaction called Coinbase which is used by miners to collect

any transaction fees and block reward. It is the first transaction into the

block and the only difference with others is that it has a single blank input.

Next, the miner applies the hash function on the block header and than he

calculates the hash of block header’s hash plus a nonce. This final step is

34

executed more time until the result obtained from the process is less than

the target threshold. In the last step, the nonce is the part of the input that

change on every iteration.

When the target is high, the difficulty to find a hash that is below the

target is less. Consequently, a lower target means it is more difficult to find

a hash below the target. Its value is crucial to balance the network because

a bitcoin’s feature is that a block must be generated every 10 minutes, on

average. This time must be constant and adjusting target value periodically

is vital to maintain it steady. [8] In simple terms, if a block is founded faster

than every 10 minutes, the target increases while it will be decreased if it is

slower than expected.

Difficulty depends on the the global hash-rate of the network. It is calcu-

lated by the current difficulty, expected rate of finding a block and the actual

rate of finding a block in the last 2016 blocks. It could be summarize in this

equation

New Target = Old Target * (Actual Time of Last 2016 Blocks / 20160

minutes)

New target compared with miner’s hash-rate gives information to a miner

how much his probability to find blocks. Miner’s hash-rate is the capacity

to calculate hash in a time lapse of miner’s hardware, for example 1 TH/s is

1,000,000,000,000 (one trillion) hashes per second. [3] It is possible calculate

the expected value of mined blocks by miner in 24 hours. Dividing difficulty

by miner’s hash-rate, you have the average time required to solve a block.

Considering that in one day there are 86400 seconds, dividing this number

by previous you obtain the value wanted.

35

Once a miner found the right result of the process just explained, he

broadcasts the new block to all its neighbor which will validate and than

propagate the block on entire network. The block received will be add to

own copy of blockchain by each node. Immediately, mining nodes stop to

find the block for the same height and start computing a new block using

last block received as the "parent”.

2.1.4 Assembling chain

The last step in bitcoin’s decentralized consensus mechanism is to add the

blocks received into chains and the selection of the chain with the most Proof-

of-Work. We are talking about more chains because a node maintains two

chain: the main chain and another that form branches off the main blockchain

(secondary chains). A branch of the main chain is used for future reference.

When a miner receives a block, there are three possible scenarios that can

happen:

• A block received to a miner has a parent block which is known and it is

at the top of miner’s main chain. In this case, at first the miner verifies

that and than it will slot the block into its main chain.

• Parent of the received block is known but it has not the same hash of

the block which is at the top of miner’s main chain. This block is a stale

block for the miner. A stale block is a block that can not attach to the

main chain but it could take a part in the secondary chain. It means

that will be created a branch of the main chain, a secondary chain,

starting from the parent block present into the main chain. If already

exists a secondary chain and its last block is the parent block of the

block received, the latter will be added on top of last block extending

36

the alternative chain. [9]

• Orphaned block is a block just arrived but its previous hash is not

known. They usually occur when more blocks which were mined within

a short time and the child block arrives before the parent. Orphan

blocks are maintained in a set where stay until its parent is not resolved.

When a miner identifies a block as orphaned, he asks to neighbors if

they know its parent sending the parent hash. Neighbors which know

the parent block send it to miner who verifies that this block exists

into its chain. This process continues until orphaned block’s chain are

resolved and the miner has extended main or secondary chain attaching

it.

As mentioned before, nodes maintains a main chain and a secondary

chain. In the latter two scenarios these data structures could switch each

other for the following principle. The main chain is the chain that must have

the most cumulative Proof-of-Work associated with it. It means that it has

the longest length chains and it contains the most blocks in it proving that

it has worked most. When a new block is received, it could be not attached

to the main chain but it could be extended the secondary chains which will

be longest than the first. If it happens, the node switches the secondary

chain into the main because it has more cumulative work than other chain.

A miner who will start mining the next block will construct the candidate

block extending this new chain "voting" with his mining power the consensus.

2.1.5 Protocol

Bitcoin blockchain implements its feature though intensive communications

between peers of the network. These communications are done following a

37

protocol which consists on exchange of particular messages.

Typical Bitcoin protocol messages are [10]:

• version - Exchanged during first connecting, provide information about

version of protocol.

• verack - Response to a version message, it informs sender to that we

are willing to connect.

• addr - Set of known IP addresses and ports of the network .

• inv - Advertise its knowledge of blocks or transactions.

• getdata - Send to retrieve a block or transaction by hash.

• getblocks - Return an inv containing all blocks in a range.

• getheaders - Return a headers message containing all headers of blocks

in a range.

• tx - Response to a getdata request. It sends a transaction

• block - Response to a getdata request. It sends a block

• headers - Response to a getheaders message. It sends up block headers

downloading the headers of blocks instead of entire blocks.

• getaddr - Request information about known-active peers in the net-

work. The response is an addr message.

Every message has a certain importance in Bitcoin protocol and each of

them are used on a specific scenario.

38

Connection

When a peer wants to connect to another, first it sends a version message

containing own version number, current time and block count. If the remote

peer is accepting connections, he sends back a verack message and his own

version message. Received this message, the peer responds with own verack

if he is accepting connections from his version. Then, he exchanges getaddr

and addr messages which are able to know new address in the network, addr

messages could contain one or more address.

Standard relaying

An inv is the message that introduces new transaction in the network.

This message informs peer’s neighbors about the transaction on request to

the full transaction through getdata message. Once received, the peers verify

the transaction and if it is valid they will broadcast it to all of their neighbors

with an another inv. However, peers who have already new transactions will

not ask for. Similarly, only peer who never broadcast a transaction will send

it to the network. It works the same when a peer finds new block. When

someone wants to broadcast new block, he creates an inv message containing

it and as above he sends it to all of their neighbors.

These mechanisms of broadcast among peers is possible because bitcoin

protocol provides particular messages for monitoring the neighbors. These

messages allow to each peer to have a clear picture of which IPs are connected

to the network at a certain moment. In particular, every 24 hours each peer

broadcasts an addr containing their own IP. These addr messages are relayed

to a few of own peers and store the address if it is new to them.

39

Initial block download

Once a peer has connected to another, he sends a getblocks message which

contains the hash of the latest block that he knows. The peer who receives

this message verifies if this block is really the lastest and if is not, he send

an inv message which contains up to 500 blocks ahead of the one he listed.

Then, peer requests all of these blocks with getdata and the remote peer

will send them to him with block messages. In this way, all of these blocks

are downloaded and processed until the peer does not have all of the blocks,

exchange of these message is repeated more time.

2.2 API for working with Bitcoin Blockchain

Before design and implementing the blockchain simulator, we propose the

goal of monitoring Bitcoin blockchain. In this section, we look at which API

we used to help us to understand better how all actors within blockchain

work: BitcoinJ, Bitnodes and Blockchain.com.

2.2.1 BitcoinJ

BitcoinJ is a open source Java-based library which provides functionality

for working with Bitcoin network. As its website say, it can maintain a

wallet, send/receive transactions without needing a local copy of Bitcoin

Core and has many other advanced features. [11] It is one of the first library

which permits strong interaction with Bitcoin protocol and so implementing

complex Java applications that interact with the Bitcoin blockchain.

By using BitcoinJ API, you can create a Bitcoin address on wallet saving

40

it to disk or retrieving the genesis block or establishing connections to the

Bitcoin test network. According to be open source project, its code can check

out easily from github repository into Eclipse giving a contribute to maintain

the code or modifying for own purposes.

The main entities of BitcoinJ framework are:

• NetworkParameters selects the network which will work on. Network

can be production or test where the first is the bitcoin network pro-

duction while the latter is a test network which permits to experiment

new features.

• ECKeys and Wallet permit respectively to create a Bitcoin address

following elliptic curve cryptography(ECC) standard and storing the

address and other data into a Wallet.

• PeerGroup is vital to manage the network connections investigating

about neighbors and synchronization of the network.

• BlockChain handles the global data structure which Bitcoin network

work on.

• BlockStore stores the data structure on somewhere, for example on a

database (Postgres) or in main-memory.

Our first experiment with these objects was to create a Peer Listener. It

connects to a set of peers listening about new connections or disconnections

and new block which arrives and observing how many neighbors each peer

has. When one of them happened, we stored the data event on a file or a

database which helped us to evaluate the behaviours of the nodes into the

network.

41

As we have seen, PeerGroup is the entity which permits to manage con-

nections to peers. According to choice which networks we want to use and

where stores blockchain which will download, a PeerGroup needs a way to

discover the peers inside the network and a limit of max connections which

will create. In our case, we added a DNSDiscovery and set max connections

as system argument.

Once the DNS discovery on the peer group started, we added a set of

event listeners required to observe our goals. All listeners were added after

a peer connected to our node including the peer disconnected event listener.

In both events we wrote node’s ip address to which connect/disconnect and

the time when it happened.

The followed picture shows another listener about new received block.

42

Last listener added was for counting number of neighbors belong to every

peer. It was done easily by exploiting the getAddr function provided on a

Peer object. It returns a list of AddressMessage that contains neighbor’s host

address.

Analyzing data which we stored, we estimated that the connections among

peer are not always permanent but some of them often go down. Although

we observed that the blocks arrive at peers about at the same time, some

peer’s disconnections could cause some slight delay on receive new block.

Another experiment performed was to download entire blockchain from

the network identifying from each block who was the miner.

To do that, we connected to one peer and we added a BlocksDownload-

edEvent listener. After our client was connected to unique peer, we started

43

to download entire blockchain from it. Identifying miner’s block means de-

tect a transaction that has first input which is not a reference to an output

of another transaction. BitcoinJ provides Transaction object which contains

a list of TransactionInput and TransactionOutput. Verifying the outpoint of

first transaction input permits to identify miner’s transaction and retrieving

the only transaction output from it, we obtained miner address and block’s

reward.

2.2.2 Bitnodes

Bitnodes is a open-source Python library developed with the goal of estimat-

ing the size of the Bitcoin network by finding all the reachable nodes in the

network. [12]

44

Starting from a set of seed nodes, Bitnodes sends a series of getaddr

messages for reaching all peers in the network. It involves only nodes running

Bitcoin protocol version 70001 while nodes which runs an older protocol

version will be skipped.

Bitnodes implements all Bitcoin protocol messages and so provides func-

tions which permit to interact with nodes of the Bitcoin network. It uses

Redis, an in-memory key-value store, where the project’s scripts write values

as key-value data which are crucial to maintain information about network.

The main feature of this library is to able on creating a clear picture of

the network as we can see from image below.

Moreover, Bitnodes provides a list of API useful for obtain a lot informa-

tion about peers such as status or node’s bitcoin address or a list of nodes.

These API are implemented by REST services and they return JSON objects.

Exploiting protocol.py file, we used this library to understand how Bitcoin

network really works. In particular, we used getaddr and addr function

respectively to send requests about known-active peers in the network and

to retrieve IP address and ports of peers. These features are allowed us to

45

build a small part of the bitcoin network evaluating for particular nodes how

many neighbors they have.

2.2.3 Blockchain.com

Blockchain.com, known also as Blockchain.info, is one of the most website

visited in the crypto landscape. It is a private website which belongs to

a company called "Blockchain" established in Luxembourg. At first it was

launched as provider of Bitcoin data but now the company also offers cryp-

tocurrency wallets supporting Bitcoin, Bitcoin Cash (BCH) and Ethereum

(ETH). Moreover, Blockchain.com provides also market information, statis-

tics, data chats and a Bitcoin blockchain explorer which includes a complete

view about last block inserted into Bitcoin blockchain looking the frequency

in minutes of them.

Blockchain.com APIs are another interested services because permits eas-

ily to create a full Bitcoin application. [13] There are available as library for

various languages such as Java, Python or Node or through Websocket, a

low-latency channel on stream sockets. It means that by subscribing to the

channel it will stay on listen to receive real-Time notifications about data

when some events happen.

These are different API which are divided in four section:

46

• Receive Payments consists of simple HTTP GET requests which per-

mits websites to receive Bitcoin payments easily

• Blockchain Wallet permits to send and receive payments from Bitcoin

wallet but it is needed to install local a small service which be responsi-

ble for managing your wallet which will interact with this service locally

via HTTP API.

• Blockchain Data offers services for querying JSON data about blocks

and transactions. This data can be retrieved also by Websocket

• Exchange Rates provides information about market prices and currency

data from the main Bitcoin exchanges.

We were interested in API which could permit to observe when new

blocks were mined into Bitcoin blockchain therefore we exploit some fea-

ture of Blockchain Data API. In particular, we were focused on WebSocket

API subscribing to a service which sends notifications when a new block is

mined. The main purpose was to evaluate if notifications received were faster

than BitcoinJ library explained before.

To perform a WebSocket API we exploited from Blockchain.com Web-

Socket API echotest at "http://websocket.org/echo.html". We connected to

connection URL "wss://ws.blockchain.info/inv" and subscribed to the chan-

nel by sending the JSON message {"op":"blocks_sub"}. Once subscribed

we were receiving data each time a new block was found.

47

As we can see, JSON object received contains all important information

about new block. In conclusion, data received from eBlockchain.com Web-

Socket API is resulted faster of some seconds than BitcoinJ library.

48

Chapter 3

The Simulator

49

3.1 Introduction

In this chapter I focus on an implementation of concepts discussed in previ-

ous chapters, a Blockchain Simulator. The design of the blockchain simulator

has evolved over all period of study about theoretical and practical aspects.

Primary contribute was the study on some library discussed previously about

Bitcoin world such as BitcoinJ, Bitnodes and Blockchain.info. These frame-

works and tools has highlighted in more detailed what our simulator needed

and its requirements described in the next section.

After defined the requirements, we have to choose which programming

language used. The choice was Python because we exploited an existed

library which was able to create a graph among nodes and distribute an object

over the network. We used this code as base of simulator and evolved it with

all features that I will explain later. The software was developed following

an Object-oriented programming without using any particular framework or

complex design pattern.

3.2 Design

The purpose of building a simulator was to create a test environment that

can represent a miner ecosystem where we can test different methods to

executing on a live blockchain.

A simulator must accept input parameters through which it is possible

change behaviour of the system. It is crucial to distinguish between input

parameters of the network with those of the each miner. While the first deter-

mine in which condition the system and all miners works, miner parameters

define what is the own strategy within the network. Changing these param-

eter we will have different outputs which permit to evaluate the impacts of

50

diverse strategies.

Requirements system were defined based on all study discussed in previ-

ous chapters but they were modified during developed steps. Primary goal

of design was to identify autonomous entities and their fields:

• Ecosystem represents the ecosystem within the entire network works.

Its main attributes are n-node and n-iteration. First indicates how

many nodes must have the system while n-iteration is the number of

block that will be mined during execution of the ecosystem. wait is

an another significant attribute because it establishes how long the

network must wait to mine next block since it has mined last block.

• Miner corresponds to a particular node inside the blockchain world. It

has a initial budget, a energy cost that spent for mining, an hashrate and

he can belong to a Mining Pool. In addition, he maintains three type of

chains: the main chain, which extends with blocks that he mines, the

secondary chain, a branch of the main chain, and orphaned set, block

without parent that he has to resolve at the end of the iteration.

• MiningPool contains a list of miners and a total power which is a sum of

miner’s computational power which belongs to this mining pool. This

field is useful when the system establishes the amount of reward for

each miner.

• Block represents a block and it has a parent block, a time which is

when it is created, the height of the block in the blockchain, an hash

block calculated when the block is mined based on previous informa-

tion. Besides it has a list of transactions where the first is the coinbase

transaction which indicates who is the miner that has mined this block.

51

• Transaction has inNode and inAmount which are respectively miner

who are sending the coin and amount of coin to send. The are the

same attribute about who receives the coin, outNode, and amount of

coin received, outAmnout. fee field is the fee which miner will receive

from transaction. The entity was designed thinking about the purpose

of the simulator but it does not actually reflect a real transaction in

Bitcoin world.

Flow chart in below image illustrates the fully scheme about entities and

how they relate to each other within a system.

3.3 Use Cases

Before implementing the simulator it was useful writing some use cases to

understand if the system requirements defined met the needs of mine. Use

cases helped us to capture how entities will interact each other to achieve a

52

specific goal. By them, I described the step by step process how complete a

certain goal and which were actors’ role within the process.

3.3.1 Mining block

First use case designated was the process of mining new block. As in really

world happen, miner’s probability to find a new block is given by his hash

rate.

One way to represent the hash rate is though a n intervals of numbers

dividing a certain unit, for example 1. When Ecosystem will create, it will

divide randomly 0-1 unit in n intervals assigning each of them to each miner.

For example, a miner will have 0,12-0,18 range or another will have 0,68-0,81.

There will be miners with an hash rate high and others with lower like really

happen in Bitcoin network.

Block mined will emulate extracting one number among 0-1 unit. The

miner who has the interval which includes the number extracted, will be the

miner of the new block.

3.3.2 Add block to blockchain

Another important use case defined was about how miners add a block into

own blockchain. Miner of a new block manages it differently rather than

other nodes because while the first adds it directly to own main chain, a

node who is not the miner before checks if block’s parent is on the top of

own main chain.

The first one does not verify none because he builds new block putting

as new block’s parent the last block added on own main chain extending the

latter one.

53

Nodes who are not new block’s miner have to check if they can extend

own main chain with this block. They will verify if the block that stays on

the top of own main chain and block’s parent are the same. If that is true,

these nodes will grow up own main chain with new block, otherwise they

must handle it in different way.

3.3.3 Stale block

When a miner can not extend own main chain with block received, this block

is called Stale for the miner. It is identified as stale when new block has the

parent different than last block which is on top of miner’s main chain.

This type of block causes the creation of a secondary chain which will be

a branch of the main chain where last one o more blocks are different. The

secondary chain must be maintained to the miner because next blocks that

arrive may extend it rather the main chain.

Now that exists two chains, miner will check for next blocks if they will

take part of the main chain or if they will be attached to the secondary chain.

Each time the latter scenario will happen, miner will have to do one more

action. It consist to verify which chains has the most accumulated proof-of-

work, in simple terms what is the longest chain. In case the secondary chain

is the longest, miner must switch current secondary as main chain.

3.3.4 Orphaned block

Exists another last scenario to handle during process of assembling the chain.

It occurs when new block can not extend either main chain and secondary

chain. Orphaned block is a new block that has a unknown parent for the

miner because it does not stay on none of miner’s chains.

54

Orphaned block is added by miner to a list and they will be resolved at

the end of the one iteration in the same time of when block arrived.

Resolving an orphaned block means that the miner will ask recursively

to all neighbors if they know block’s parent until he attach it to main or

secondary chain.

Once finally block is resolved, the miner will handle of choice which chains

must consider as main between current main and secondary chain like explain

in previous section.

3.3.5 Miner budget

One fundamental information that simulator must give back is the current

budget of the miner. It is important both during the simulator running and

at the end of the execution.

Miner starts with an initial budget given from configuration settings.

It decreases of energy cost every iteration because miner spend money for

mining and it increase with the rewards when miner finds new blocks.

However, increases are not permanent because we must consider an im-

portant aspect of the blockchain. Not all blocks mined will be part of the

global main chain because miner may build new block on the top of the main

chain which is not coherent with the entire network.

3.4 Implementation

In this section we explain how we implemented use cases discussed before.

We will show some pieces of simulator’s code focusing on the main functions

and explaining what is the reasoning about their implementation.

55

3.4.1 Initialize Ecosystem

One purpose of simulator is to enforce various behaviour patterns on the

network. Behaviour is a object that represents a behaviour pattern that we

want to apply to simulator. It implements a method that returns a set of

initial miners which will take part of the Ecosystem. Moreover, a Behaviour

must provide a function for handling miner’s dead and others two method

respectively that say if the simulator has to mine and has to stop.

Default class is a Behaviour object that accepts as parameter the number

of network’s nodes, the number of block to mine and the time of waiting for

the next block to mine. After setting constant values such as energy cost or

budget, it creates n miners assigning as hash-rate a random interval.

WaitUntilFullBroadcast is an another Behaviour object which implements

a pattern where next block will be mined only after previous block has

achieved all nodes of the network while ValueChange is a behaviour that

sets miner’s values such as budget and hash-rate randomly also when a new

miner is introduced into the network.

Once Ecosystem has obtained miners from Behaviour object, it creates

the erdos renyi graph using the set of nodes and p where p is the probability

for edge creation. Erdos Reny is a model for generating model graphs where

nodes have the same probability to have neighbors. Graph’s nodes represent

the miners into the network while graph’s edges are the connections between

56

miners.

3.4.2 Run method

An Ecosystem with a certain behaviour is ready to work. Calling run method,

it starts the operations of mining and propagation of blocks over the network.

The following code is contained inside run function.

First if is relative to process of mining. It extracts a random value and it

passes this number to miner’s mining function who return one or more blocks

if he is the miner.

57

Next, broadcast_one propagates of one unit time the blocks which are

into the network and are not already arrived to all. The propagation on a

unit time consists in a crossing of an edge from a node to other.

Finally, for each miner the function prints the blockchain on log, resolve

orphaned blocks and remove miner from the network if miner’s budget is

spent.

3.4.3 Broadcast one

Broadcast is one of the most complex function in the simulator. It propagates

a set of blocks from a node to another and it happens if the node destination

has not received at least one of these blocks. At the end of the broadcast,

a block which has achieved all nodes will be remove from list of blocks to

propagated. In case the list is empty, the function does nothing and return

false informing that nothing into the network has changed.

The following code is the core of the function

58

It iterates over the nodes not active where a node not active is a node

which have almost one block that have not received. Each of these not

active first gets the list of neighbors. Next, it verifies if there are some

node’s neighbors which have some blocks that the node has not received yet

otherwise jump to next miner.

maxhash contains the block’s hash which is owned by more neighbors.

This block has the priority to add into miner’s blockchain while other blocks

will be added after it. After a miner adds the block into his blockchain, the

function maintains which miner has received that block.

3.4.4 Mining

Mining is the first function that are not in Ecosystem object because it is

provided by Miner object. It simulates the mining process for a miner. Miner

spends money for energy that consumes during mining process so every time

that this function is called we decrease the budget of energy cost. Then,

function verifies if the rate extracted belong to miner’s interval because it

means that he is the miner of the current block. Miner creates the block

including the special coinbase transaction and he extends his main chain

with this block.

Next, miner adds the block to "blocks_to_release" list which will contain

all blocks to shared unless he does not want to release the block immediately

for some reasons.

According to a particular condition, the function ends adding the blocks

which are not released in the previous iteration to "blocks_to_release" list.

It is performed by each node, also who is not the current miner. In our

case the condition is very simple because we only check if the current time

is higher than block’s time.

59

3.4.5 Add block

Add Block function implements most activities that a miner does when he

receives a new block. First, he verifies if block’s parent is on the top of main

chain. It means that new block must be added into main chain without do

any other operation.

When it does not happen, a branch of the chain, called secondary, main-

tained by miner join the game.

Block will extend it in case its parent is on the top of secondary chain

causing that chain is longest than the main. It means that it has the most

accumulated proof-of-work and so it becomes the main chain. Otherwise,

block is a orphan and it is added into orphans list which will discuss soon.

Secondary chain may not already created by miner for to be extended.

60

However, his creation is not so obvious because it exists if block’s parent is

contained into main chain in any position. A unknown block’s parent does

not allow making a secondary chain and this block will be added into orphans

list as previous.

Orphaned blocks are maintained into orphans list and they are resolved

at the end of each iteration_one function by resolve orphans block. The

miner iterates over orphans list and for each orphan, he asks to his neighbors

if they know the block trying to rebuild the right chain. If a neighbor has

not got this orphan within chains, miner asks to next neighbor until he finds

61

a known parent. In case he does not resolve the orphaned chain, he discards

the block and move on to the next one.

3.4.6 Miner budget

Retrieving miner’s budget could be easily implemented by adding coins each

time that a miner creates new block. However, it introduces a bug because

a new block mined might not take part of the global main chain.

To avoid this, the global budget is divided in two part, initBudget and

chainBudget. The initBudget is given by the initial budget less the energy

cost which is spent over iterations. On the other hand, the chainBudget is

calculated on miner’s main chain iterating over blocks and transactions. It

is the sum of the all OutAmount belongs to a transaction where the miner is

the OutNode to which is subtracted the sum of OutAmount where the miner

is an InNode.

get_budget function return the miner’s global budget.

62

3.4.7 Print graph

In addition to previous behaviors, we designed a function which could visual-

ize how simulator really works. Print graph creates a series of pictures about

the trend of the network over the simulation showing how blocks move among

nodes. Each picture displays the state of the network in a certain instant

of time t. Circles represent the miners while the edges are the connections

between them. It exploits matplotlib library, in particular pyplot module,

which is able to draw a graph created by networkx.

When a miner finds a new block, he is associated to a colour and miner’s

circle is colored with this color. Next, also neighbors which receive new block

will be colored with the same color until all circles are colored. It could

happen that there are new more blocks in the same iteration and in this case

there will be circles colored with different colors. The followed picture is an

example of picture created by our function.

63

Chapter 4

Numerical Experiments

64

4.1 Introduction

The main goal of building a blockchain simulator was to enforce various miner

behaviour patterns and analyzing the outputs. In this section we will show

a series of experiments applied on the simulator and will discuss about the

results.

To understand clearly the significance of outputs we decided to build a

dashboard where choose the experiment to run and visualize the result by

charts.

As we can see by picture, Dashboard is a web application which is divided

in front-end and back-end. They communicate each other through REST

services provided by back-end.

Front-end sends the inputs to back-end which executes a set of threads

that runs the simulator with input received. These threads collect the sim-

ulator’s outputs and store them on a Mongodb. While the threads works,

front-end waits the outputs doing a polling every 30 seconds to back-end.

When all threads complete their work, front-end receives the results and

shows them using the Google chart tools, in particular line chart and bubble

chart. All experiments were done using constant values such as number node

as 20 and number iteration as 40.

65

4.2 First experiment

As first experiment, we decided to observe how number of branches of chains

were created into network by varying the waiting time. The waiting time is

the time that the network must wait before mine the next block.

We started with a waiting time of 1, that means every instant of time t

there was a new block, ending with 9 t value.

The chart above shows how a small waiting time causes an high number

of branches of the chain. Only after a value higher of 1 t all nodes converge

in a unique main chain.

When miners start generating new blocks within a period of time shorter

than network latency, different parts of the network become inconsistent.

Moreover, this behavior introduces delay in the network because it occurs

multiple interaction between nodes to synchronize their chains.

Overall, we deduct that the network needs a certain waiting time to guar-

antee a synchronization between nodes. The real world of Bitcoin blockchain

works in the same way. A block is mined every 10 minutes to avoid more

frequent forks of the main chains.

66

4.3 Second experiment

In the second experiment we observed by varying the connection between

miners, how long a new block takes to achieve all nodes. The connection

between miners into the simulator is given by the probability p for edge

creation explained in previous chapter. A p value equals to 1 means that all

nodes are connected to each other.

The plot starts with an high value of broadcast time because the graph has

a low connectivity. That value decreases when the probability of connection

between nodes is 0.30 or higher. On a strong connected graph, new blocks

take only one step to achieve entire network.

This experiment shows how is crucial that the network must have an

high connection between nodes. Low connectivity means delay which causes

inconsistent and increasing of interactions among nodes with more consumes

of resources. An high connectivity helps to maintain a good healthy of the

network.

4.4 Third experiment

The third experiment is a specialization of the first. It wants to view how

many nodes have the global main chain, as blue line, and how many have

67

secondary chains, as red line, by varying the waiting time. Also in this

experiment, we started with a waiting time of 1 ending with 9 t value.

As previous experiment showed, an high number of branches of the chain

occurs when the waiting time is small. In particular, this experiment high-

lights that with a waiting time one, the number of nodes which have got a

secondary chain is higher than the number of who own the main chain.

By contrast, a waiting time value of 2 or more implies that all miners are

synchronized on the same main chains and none build other branches.

The same conclusion of the previous experiment are deducted. A good

healthy of the network is guarantee by a certain waiting time.

4.5 Fourth and fifth experiment

Fourth and fifth experiments were designed to observe respectively the dead

of miners by varying the waiting time and variance of miners’ hash-rate. This

latter value represents how the hash-rate is distributed among miners. A low

value of variance means that the network is balanced because all nodes have

about the same hash-rate. On the other hand, an high variance implies a set

of miners which own a huge power and another set with a little power.

68

Experiment four shows how miners dead and waiting time are not much

correlated. It occurs changes and decrease overall, only after a waiting time

value of seven the line is steady.

By contrast, fifth experiment gives information about relation between

the features. Miners dead shows a slow and steady increase over the graph.

As we expected, the dead are few when the variance is low because the

network is balanced, and more dead when there are powerful miners and

miners which own a little power.

4.6 Sixth experiment

Different from previous, sixth experiment examines many miner’s features

such as power, budget, energy cost and his age when he died where initial

power, budget and energy cost are assigned randomly. It wants to provide

69

information about It wants to provide information about miner when his

budget is over.

A better visualization is given by a bubble chart which adds information in

terms of size compared to a line chart. In particular, a big bubble represents

an high budget while the words "Medium" and "High" mean that a miner had

a medium or high energy cost. This graph illustrates how the budget could

be crucial because two miners which have the same power live in different

way. The miner with a little budget and a low energy cost dies soon in

contrast with the others that have an high energy cost and less powerful but

they live more.

4.7 Seventh experiment

The last experiment observes the trend of miner’s budget over the simulation.

It wants to identify what is the miner’s strategy that works better. A miner

strategy represents the initial values of budget, hash-rate and energy cost.

70

The plot above visualizes for each miner how the budget changes over

the time in a situation where the simulator has 20 nodes and initial values

of miners were assigned randomly. The peak of 12 that we see on some lines

is caused by the reward that a miner receives from the network when finds

a new block. Also in this last experiment, the trend of the graph is like we

expect. Miners which have an high hash-rate (6-7%) and an energy cost low

(0.15-0.20 max) grows their budget over the time though they have a little

budget. The same progress is performed by miners with an energy cost about

0.30 underling that an powerful hash-rate follows an income of coins. It also

true that when spending on energy starts to become high such as 0.50 or 0.60

a miner goes at a loss. The lines which decrease are referred to strategies

with an high energy cost or an low hash-rate. An huge budget helps only to

maintain the miner alive for more time but the result is that he will dead.

71

Chapter 5

Conclusion

Blockchain is an disruptive technology having an huge potential and it is

at the beginning of its technological evolution. In particular, Bitcoin is a

powerful blockchain application and consist in a digital money ecosystem

where you can buy and use an asset electronically which eliminates the need

for a third party because its property permits to have a distributed trustless

consensus. However, it still has some limits such as low throughput or high

energy consumption which do not fit with enterprise applications.

Our work was fundamental to have a global knowledge about this emerg-

ing technology. It allowed us to understand the advantages and the disadvan-

tages about DLT but also to realize that many aspects are yet to be discov-

ered. These studies highlighted in more detailed what our simulator needed

and its requirements. A further contribute is given by the study on some

library about Bitcoin world such as BitcoinJ, Bitnodes and Blockchain.info.

The choice of Python as programming language allowed to speed up the

implementation of simulator because we exploited an existed library which

was able to manage a graph and propagating an object over the network.

The execution of experiments discussed in chapter 4 permitted to verify

72

empirically some behaviours of the network in certain initial conditions. An-

alyzing the outputs provided by simulator is demonstrated that while some

miner behaviours are very steady, some others depend of how the network

evolves in terms of miner features. In some experiments, varying input pa-

rameters as number of nodes or number of iterations does not change the

trend of the results, for example in the first three experiments. On the other

hand, fourth or seventh alter their outputs over more test though inputs are

always the same.

73

Bibliography

[1] K. Wust and A. Gervais, “Do you need a blockchain?,” vol. 37, p. 4,

2008.

[2] V. Buterin, “On public and private blockchains,” 2017. IACR Cryptology

ePrint Archive.

[3] A. M. Antonopoulos, Mastering Bitcoin. giu. 2017.

[4] “Iota docs.” https://iota.readme.io/.

[5] V. R. P. N. N Gaur, L Desrosiers, Hands-on Blockchain with Hyperledger.

2018.

[6] J. Reed, Blockchain - Smart contracts. 2016.

[7] “Oraclize docs.” http://docs.oraclize.it/home.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” vol. 37,

p. 4, 2008.

[9] “Bitcoin api.” https://bitcoin.org/en/bitcoin-for-developers.

[10] “Bitcoin wiki.” https://en.bitcoin.it/wiki/MainPage.

[11] “bitcoinj docs.” https://bitcoinj.github.io/.

74

[12] “bitnodes api.” https://github.com/ayeowch/bitnodes.

[13] “Blockchaininfo.com.” https://www.blockchain.com/.

75

