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Abstract 

In this thesis work the problem of mapping an indoor environment is handled, using 

a wheeled robot that autonomously moves and builds the map without the 

intervention of a human operator. 

The robot chosen for this task is TurtleBot3, developed to be compatible with ROS 

(Robot Operating System), the meta operating system used in this research. 

Through ROS it is possible to acquire data received from TurtleBot3 laser sensor in 

"real-time", process them using a Python program and then accomplish tasks like 

localization, mapping and navigation. In this way the robot can move avoiding 

obstacles and reporting them into a 2D top-view map of the considered building. 

The thesis arises from an opportunity provided by the PIC4SeR, PoliTO 

Interdepartmental Centre for Service Robotics. The research is conducted at the 

Mechatronic Laboratory LIM (Laboratorio Interdisciplinare di Meccatronica) of the 

Politecnico di Torino, in a team of students. Thus, in chapter 1 an introduction of 

the whole work is performed, introducing the environment of the project and the 

allocation of tasks within the team. 

In chapter 2 the software environment of ROS and the hardware environment of 

the TurtleBot3 are analysed. In chapter 3 the probabilistic theory needed to get 

into the thesis context is studied. Hence, an introduction to probabilistic filters is 

accomplished, followed by a research on Bayes filter and the probabilistic 

algorithms that arise from this latter. 

From the various available algorithms, the Occupancy Grid Mapping is adopted for 

the realization of the map. In chapter 4, the reader can look at the path from the 

choice of the probabilistic filter to the development of the Python program that 

carries out the build of the map. The mapping program divides the environment in 

a fixed-number of fixed-dimension cells and assigns to each cell a value, stating the 

probability that the cell is occupied by an obstacle or not. 

Finally, in chapter 5 results are presented. A comparison is accomplished between 

the developed mapping algorithm and Gmapping, a common algorithm for the 
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build of 2D maps using a laser scanner. Some problems arise with the robot 

localization and these also affect the reliability of the map. 
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Sommario 
In questa tesi è stato affrontato il problema di mappare un ambiente interno, 
utilizzando un robot su ruote che autonomamente si muove e costruisce la mappa 
senza l’intervento di un operatore umano. 

Il robot scelto per questo compito è il TurtleBot3, sviluppato per essere compatibile 

con ROS (Robot Operating System), il meta sistema operativo usato in questa 

ricerca. Attraverso ROS è possibile acquisire i dati ricevuti dal sensore laser del 

TurtleBot3 in “tempo-reale”, processarli utilizzando un programma Python e 

quindi svolgere determinati compiti come la localizzazione, la mappatura e la 

navigazione. In questo modo il robot può muoversi evitando gli ostacoli e 

riportandoli in una mappa 2D vista dall’alto dell’edificio considerato. 

Questa tesi nasce da un’opportunità offerta dal PIC4SeR, PoliTO Interdepartmental 

Centre for Service Robotics. La ricerca è condotta al laboratorio di meccatronica 

LIM (Laboratorio Interdisciplinare di Meccatronica) del Politecnico di Torino, in un 

team di studenti. Quindi, nel capitolo 1 viene eseguita un’introduzione dell’intero 

lavoro di tesi, presentando l’ambiente del progetto e la suddivisione dei compiti 

all’interno del team. 

Nel capitolo 2 l’ambiente software di ROS e l’ambiente hardware del TurtleBot3 

vengono analizzati. Nel capitolo 3 è studiata la teoria probabilistica necessaria ad 

entrare nel contesto della tesi. Quindi, viene eseguita un’introduzione sui filtri 

probabilistici, seguita da una ricerca sul filtro di Bayes e sugli algoritmi che nascono 

da quest’ultimo. 

Tra i vari algoritmi disponibili, la Mappatura a Griglia di Occupazione viene 

adottata per la realizzazione della mappa. Nel capitolo 4, il lettore può osservare il 

percorso dalla scelta del filtro probabilistico fino allo sviluppo del programma 

Python che porta a termine la costruzione della mappa. Il programma di 

mappatura divide l’ambiente in un numero fisso di celle di fissa grandezza e 

assegna ad ognuna un valore, il quale attesta la probabilità che la cella sia 

occupata da un ostacolo o meno. 
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Infine, nel capitolo 5 vengono presentati i risultati. Viene eseguito un confronto tra 

l’algoritmo di mappatura sviluppato e Gmapping, un comune algoritmo per la 

costruzione di mappe 2D utilizzando i dati provenienti da un scannerizzatore laser. 

Alcuni problemi sorgono per quanto riguarda la localizzazione del robot e questi 

compromettono anche la credibilità della mappa. 
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1 Introduction 
 

 
The scope of this work is the implementation of an algorithm to solve the 

Simultaneous Localization and Mapping (SLAM) problem for indoor environment, 

without the human handling. 

This task is accomplished using a wheeled robot named TurtleBot3 Burger. This 

robot must be able to navigate into an area avoiding all the obstacles and, at the 

same time, to report them into a map. For the realization of the map, the robot 

must track its position and orientation in time, with respect to an initial fixed 

reference frame. It must be localized into the built map. Without localization, the 

robot cannot associate the relative measurements gathered by its sensors to the 

fixed reference frame of the map. Then, the map cannot be built. At the same 

time, the robot cannot localize itself without a map where it can be located. This 

is the chicken-and-egg problem. Localization and mapping processes must 

proceed simultaneously and cannot exist without each other. 

The thesis arises from a project of the PIC4SeR, PoliTO Interdepartmental Centre 

for Service Robotics. The program for the autonomous navigation has been 

developed by Lorenzo Galtarossa, another student of Politecnico di Torino. 

Instead, the mapping algorithm is the object of this work. The thesis will focus on 

the mapping purpose, but it is also necessary to perform the robot localization. 

For the localization task, the wheel encoders are used to take odometry data. 

From these data position and orientation of the Burger are evaluated. Since only 

encoders are used to localize the robot, the developed algorithm can be executed 

only in indoor environment. On a flat floor, encoders are quite reliable. If the 

Burger is placed on the ground, when it deals with holes or a rough terrain, the 

encoders get an excessively faulty odometry and the localization is lost. 

The mapping task is accomplished by means of the 360° laser scanner of the 

Burger. Laser data sets are collected and processed to build a top-view 2D map of 
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the environment. Map must report all the obstacles detected by the laser sensor. 

Sometimes the robot detects moving objects and walking people. Random moving 

obstacles must be avoided and removed by the map. 

The presented program, that carries out the Simultaneous Localization and 

Mapping task, is a probabilistic filter algorithm. This algorithm is developed using 

the Python language. 

The achieved mapping algorithm is an open-source code. In the following 

chapters, all the needed theoretical and practical concepts are provided to the 

reader, to allow him to interact with and implement the program. 
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2 Software and Hardware 
 

 
The software and hardware environment, in which the thesis research is carried 

out, is introduced in the following sections. As for the software, the thesis project 

has been conducted on the ROS environment. As hardware for the thesis work a 

robot called TurtleBot3 has been employed. The third section consists in a brief 

guide to set up the working environment. An introduction to the useful and used 

commands is accomplished to provide to the reader a complete insight into the 

used tools. 

 

2.1 ROS 
 

The thesis work is developed in a software environment called ROS (Robotic 

Operating System). The readers that already know ROS, can skip to the next 

section, while now a brief introduction on ROS will be carried out. 

Like its name suggests, ROS is a meta-operating system. It is not a real operating 

system like Linux or Mac OS X (ROS has to be installed in the current operating 

system), but it has low level device control, implementation of commonly used 

functionalities, package management, share of messages between processes and 

it works with tools and libraries to obtain, write, build and run codes across 

multiple computers, like an operating system. Its goal is to improve and simplify 

the programming and the use of robots, creating a framework of processes that 

are loosely coupled at runtime. Through ROS, both the programmer and the user 

can manage a wide amount of data that a remote computer, one or more robots 

and a Cloud server on internet (if exploited) need to share with each other, making 

use of an internet connection. The interaction with a Cloud is possible but it is not 

topic of this work, so it will be left aside. 
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A ROS runtime framework is a network where every single process is a base unit, 

called node. In this way, every task is performed by its own node. For example, to 

handle a wheeled robot: there will be a node to manage the laser scanner, another 

node for the camera, another one for the wheels control, etc. So, there is a node 

for every requested task, but who handles all the nodes? How do nodes share their 

data with each other? 

To answer the first question a special node must be introduced, the ROS Master 

node. This is the first node that must be launched, usually from the remote 

computer and not from the onboard robot computer. The reason is that remote 

computer has in general a faster processor, but above all, onboard computer must 

be as free as possible to not slow the robot functionalities. Indeed, the latter must 

control all the processes for the robot motion and sensors operation. Moreover, 

this node has to be unique. There must be only one Master node for ROS network. 

Every other node, when started up, automatically registers itself on the Master. 

Thus, the ROS Master holds the task to manage all the nodes and their behaviours, 

which information a node must send and which one it has to read. For the sake of 

simplicity, the reader can understand better this structure from the following 

figures. 

 

 

Figure 2.1 
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The missing part concerns how nodes share data with each other. They do it in 

two ways: through topics or services. In the first case, nodes exchange information 

publishing and subscribing messages on topics. It is like a notice-board, where 

each node can post a message of a defined type or it can read a message of that 

type posted by another node. For each topic, a node can only publish or subscribe 

to it at the same time, not both, but there is a potentially infinite number of nodes 

that can publish or subscribe to this topic. In the case of services, there is a server-

client model, where a node registers a service and then, any other node can ask 

for it and get a reply. With this process, there is a mutual exchange of information, 

because the request has the possibility to hold some data too, contrary to topics 

system. For the purposes of this work, the best solution for data sharing between 

nodes is the use of topics. 

As a practical example, it is considered a robot that moves somewhere in some 

way, equipped with a laser scanner in such a way that the user is advised, on its 

laptop, when the robot comes up against an obstacle. The program that manages 

this behaviour is run on the remote computer, as usual, to leave the robot 

computer free from laborious calculations. How does ROS handle this task? Firstly, 

the Master node is launched from the remote PC, then a node is started up by the 

robot onboard computer, it registers to the Master and publishes data coming 

from the laser sensor to a topic, that can be called "/advisor". Finally, a node is 

started from the remote pc and it registers to the Master too, but this time it 

subscribes to the topic /advisor. This node, when reads data from /advisor, 

stamps, on the screen of the remote computer, an alert message with some 

information about the distance of the robot from the obstacle detected. The 

Figure 2.2 displays this structure. 
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Figure 2.2 

 

It has been said that nodes are the base units of a ROS framework. Every single 

node is a piece of a complex program and it must perform one of the various tasks. 

Thus, a single node is a program written in C++ or python language and there may 

be more nodes into the same ROS system, running at the same time, using a 

different programming language. This possibility is a strength of ROS, that can 

match these diverse codes. The user can start up a node individually or several of 

them, using a launch file. This type of file is an XML code, a markup language 

similar to HTML, that, when launched by the user, starts up nodes with the 

possibility of setting parameters, remapping topics to which the nodes publish or 

subscribe, changing the nodes names used in the ROS network and other minor 

features. All the C++, python, launch files and other ones needed to set up 

parameters and environments, like a simulated world for a robot, are collected 

into ROS packages. When a package is built on a computer, three folders appears 

into the package: the src one contains the source code and its files can be edited, 

the build and devel ones must not be modified because are only used by the 

system at build and run time. 

To check the ROS tree made by nodes, topics and their connections, the rqt_graph 

tool is used. This tool allows to get a graphical display of the data flow in the ROS 

system. Then, rqt_graph is useful for checking and debugging the nodes codes, 
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observing the correctness of links and, in case, which nodes are excluded from the 

tree. 

A simple exemplifying case is given by the ROS tree shown below in Figure 2.3. 

There are 3 nodes: the Master, a node (called for example “/talker”) publishing a 

fixed string, every 10 seconds, on a topic (named “/chatter”) and another node 

(named “/listener”) subscribed to the same topic. 

 

 

Figure 2.3 

 

It can be noted that, in a rqt_graph, the nodes are represented as ovals, topics as 

rectangles and the arrows, linking nodes and topics, point out if data flow from a 

node to a topic (publication) or vice versa (subscription). In this example the 

/talker publishes any fixed sentence, for example “Hello!”, after every 10 seconds 

and the /listener reads the string, whenever available, and it does nothing else. 

 

2.2 TurtleBot3 
 

Regarding the hardware environment, the devices employed in this work are a 

remote computer like a laptop, that acts as a control centre because of its faster 

processor, and a TurtleBot3, a two-wheeled robot manufactured by ROBOTIS. The 

latter is an open source robot, both from the hardware and software point of view, 

born to be programmed in the ROS environment. Indeed, the TurtleBot series 

(TurtleBot, TurtleBot2 and TurtleBot3) is the standard platform for students and 

developers that have their first approach with ROS. TurtleBots are built with the 

purpose of teaching how to program a device in ROS, so there is a wide 
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documentation on this subject on the websites of ROBOTIS[4] and ROS Wiki[1]. For 

these reasons, the most recent TurtleBot3 has been selected to work in the ROS 

system. 

The third version of TurtleBot is available on the market in three models. All of 

them are composed of three or four support plates of injection molded plastic 

arranged one on top of the other, supported from thin metal cylinders. The 

material used for the plates allows to achieve a cheaper and, at the same time, 

open source hardware device. In fact, it is possible to download the 3D CAD model 

of the plats and to produce them with a 3D printer. 

In the figure below the three TurtleBot3 models are shown. 

 

 

Figure 2.4 

 

Each TurtleBot3 has a single-board computer (SBC), two electric motors joint to 

two wheels, one ball caster for the Burger model and two ball casters for the 

Waffle and Waffle Pi models, one LIPO battery of 11.1V and 1,800mAh, a 

controller board (OpenCR1.0) to which the SBC, the motors and the battery are 

connected and finally some movement and detection sensors. Regarding the 

latter, all three models are fitted with three-axis gyros, accelerometers and 

magnetometers, wheel encoders and one 360 Laser Distance Sensor LDS-01, 

connected to the SBC through a small interface board USB2LDS. These are the 

parts common to the three TurtleBot3 models, now the differences will be shown. 
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Considering Figure 2.4, the first model on the left is the Burger one, more compact 

in base dimensions but taller than the other two, 138 x 178 x 192 (L x W x H, mm). 

It is composed of four support layers, on which there are: on the bottom one two 

Dynamixel XL430-W250 motors and the LIPO battery, on the lower middle one the 

OpenCR1.0, on the higher middle one a Raspberry Pi 3 Model B, which acts as SBC, 

and the USB2LDS and on the top layer the Lidar LDS-01. From this arrangement 

derives the name Burger. The other two models are the Waffle and the Waffle Pi. 

They are very similar in structure: 281 x 306 x 141 (L x W x H, mm) and three 

support plates. On the bottom layer there are two Dynamixel XM430-W210 

motors and the LIPO battery, on the middle one the OpenCR1.0, the SBC and the 

USB2LDS are located. The SBC mounted on Waffle is an Intel® Joule™ 570x, 

whereas the SBC of the Waffle Pi is a Raspberry Pi 3 Model B, like in the Burger 

model. On the top layer there is the Lidar, like on the Burger, and in addition a 

camera, an Intel® RealSense™ R200 for the Waffle and a Raspberry Pi Camera 

Module v2.1 for the Waffle Pi. These are the structures of the three TurtleBot3 

models. For a better understanding of the hardware part of these robots, now the 

individual hardware devices are analysed one at a time. 

 

 

Figure 2.5 

 

The SBC of the Burger and the Waffle Pi is the Raspberry Pi 3 Model B. It is an 

open-source single-board computer equipped with an Ethernet port and Wi-Fi 
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connection. It has one CPU 64-bit quad-core ARM Cortex-A53 at 1.2 GHz and a 

RAM of 1 Gigabyte shared with GPU. The most common operative systems 

officially released by the manufacturer are based on GNU/Linux, but the board can 

support other operative systems, like Windows 10 IoT. 

 

 

Figure 2.6 

 

The SBC mounted on the Waffle, instead, is an Intel® Joule™ 570x. Its Computer 

Processing Unit is a 64-bit quad-core Intel® Atom™ T5700 at 1.7 GHz with burst 

up to 2.4 GHz. This single-board computer has a 4 GB LPDDR4 RAM and a Wi-Fi 

connection. The operative system released from the manufacturer is Linux. It is 

made to support the Intel® RealSense™ cameras and their libraries. In fact, the 

Waffle has an Intel® RealSense™ R200 camera mounted on itself. 

 



- 11 - 
 

 

Figure 2.7 

 

As mentioned earlier, the various SBCs are connected to the battery and the 

motors through the OpenCR1.0. OpenCR stands for “Open-source Control module 

for ROS”, it is a controller board developed for ROS embedded systems, supplying 

open-source hardware and software. The main chip of the OpenCR1.0 is based on 

a 32-bit ARM Cortex-M7. Arduino IDE is the software used to manage the board. 

The OpenCR1.0 has the 3-axis gyroscope, 3-axis accelerometer and 3-axis 

magnetometer mentioned a few paragraphs above. Thanks to these sensors, the 

board can provide an “IMU” measure, available on ROS as messages published on 

the topic /imu. A message of this type holds the measures of “orientation”, 

“orientation_covariance”, “angular_velocity”, “angular_velocity_covariance”, 

“linear_acceleration” and “linear_acceleration_covariance”. 
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Figure 2.8 

 

Take the distance and visual sensors into consideration. All three models of 

TurtleBot3 has on top of their structure a 360 Laser Distance Sensor LDS-01. It is a 

360-degrees 2D laser scanner with a resolution of 1 degree, that detects obstacles 

in a plane parallel to the ground plane. Thus, it rotates at 5 Hz frequency, taking 

one distance measure every 1 degree for a total of 360 measures per round and 

performing 5 complete rotations per second. So, the LDS-01 can take a measure 

for each its relative position every 0.2 seconds. The distance range is 120 mm – 

3500 mm, with distance accuracy of ± 15 mm from 120 mm to 499 mm and ± 5.0% 

from 500 mm to 3500 mm. Instead, the distance precision is ± 10 mm from 120 

mm to 499 mm and ± 3.5% from 500 mm to 3500 mm. 

 

 

Figure 2.9 
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The camera mounted on Waffle is the Intel® RealSense™ R200, compatible with 

the SBC of the robot, the Intel® Joule™ 570x. This is a 3D RGB-Depth camera, that 

can provide color, depth and infrared video streams. With this device it is possible 

to carry out object, gesture and scene recognition thanks to the depth sensor. To 

analyze the device technical specifications, the color and depth sensors must be 

considered separately. The RGB camera has a video resolution of 1920 x 1280 and 

2M, works on 30 fps and has (70±2)° and (43±2)° of horizontal and vertical field of 

view respectively. The infrared system is composed from an IR laser projector and 

two IR cameras, right and left. This IR depth system has a resolution of 640 x 480 

VGA, works on 60 fps and has a horizontal/vertical field of view of (59±5)°/(46±5)°. 

The overall of the camera range in nominally between 30 cm and 400 cm. 

 

 

Figure 2.10 

 

The camera used for the Waffle Pi is the Raspberry Pi Camera Module v2.1. This 

camera is perfectly compatible with the Raspberry Pi 3 B used as onboard 

computer. It is an RGB camera that can take high-definition videos with its 8 

megapixels. It is mounted on this TurtleBot3 model because it is not very 

expensive and easy to use for who is approaching to the ROS environment. The 

sensor resolution is 3280 x 2464 pixels, the video modes are 1080p at 30Hz, 720p 

at 60 Hz and 640x480p at 90 Hz. Then 90 fps is the maximum frame rate. Lastly, 
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the camera has 62.2° of horizontal and 48.8° of vertical field of view and the focus 

range, given from the onboard fixed focus lens, is 1 meter to infinity. 

This was the last noteworthy hardware device mounted on TurtleBots3. Now the 

processes performed in this thesis work, starting from the operating system and 

software installation on the various used devices, are analyzed. 

 

2.3 ROS and TurtleBot3 configuration 
 

This thesis has been developed using a laptop as remote computer and the 

Turtlebots3 employed are the Burger and Waffle models. The ROS version 

recommended to be run on TurtleBots3 is ROS Kinetic Kame, released the May 

23rd, 2016. The Kinetic version is primarily target for the Linux Ubuntu 16.04 LTS 

release, but it is supported by other Linux systems, Mac Os X, Android and 

Windows at various degrees. So, Ubuntu 16.04 LTS with ROS Kinetic has been 

installed in the three devices.  

On ROBOTIS e-Manual website[4], under the section “SetupPC Setup” there is a 

“Download link” to download the ISO file of Ubuntu 16.04 for the laptop. Instead, 

under the section “SetupSBC Setup” there are links to download the ISO file of 

Ubuntu MATE 16.04 for both the Raspberry Pi 3 and Intel® Joule™ 570x boards. 

The MATE version of Ubuntu is very similar to the original one, but developed for 

SBCs boards. In order to install Ubuntu 16.04 and Ubuntu MATE 16.04 a USB flash 

drive is needed, in which the Ubuntu image file is put, creating a bootable Ubuntu 

USB stick. To make this type of bootable sticks there is a tutorial on the official 

website of Ubuntu[8] for each of the operating systems Microsoft Windows, Mac 

OS X and Linux. When the bootable Ubuntu stick is ready, Ubuntu can be installed 

on devices. Considering the laptop PC, the installation starts inserting the USB 

flash drive and entering the system-specific boot menu. From this menu it is 

possible to select the USB device to boot and start installing Ubuntu with the 

desired settings. The installation procedure for the Turtlebot3 Burger with the 

Raspberry Pi 3 is the same as just seen. The only difference is the use of a USB flash 
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drive with the ISO of Ubuntu MATE 16.04. For the Turtlebot3 Waffle the 

installation of Ubuntu MATE is more complicated because of the need for a second 

USB drive with Ubuntu Core 16 image for the Intel® Joule™. Moreover, the board 

may require having its BIOS updated to version #193. For the Ubuntu installation 

on Waffle, it is better to refer to the web page of ROBOTIS[4], section “SetupSBC 

SetupIntel Joule 570x”, linked to the Ubuntu official website[9]. 

Once Ubuntu is been installed and configured on the different devices, the 

procedure to install ROS Kinetic is available on ROS Wiki website[10]. It is important 

to pay attention to the initially required setups and, when asked, the “Desktop-

Full” installation is recommended, to add all the available packages for ROS, robot 

tools and robot simulators. When the environment setup and the installation of 

dependencies for the build of packages are completed, it is necessary to return to 

the previous ROBOTIS page. At this point, the following step is the installation of 

“Dependent Packages” for TurtleBot3 control both from the remote PC and from 

the TurtleBots3 themselves. For the latter there is a further step for the removal 

of some packages needed only for the laptop, not the onboard SBC. Thus, the 

packages are built. For the TurtleBots3 there is an extra command to launch to 

allow the use of USB port for the OpenCR1.0 without acquiring root permission. 

The last step before using TurtleBots3 with ROS is the “Network Configuration”, 

always described in the e-Manual of ROBOTIS website. The ROS framework is 

based on an internet network, so each device must be configured to robustly 

connect itself with the same ROS structure. Then a static IP address is needed for 

each device, so that each one has a permanent number assigned to it. For this 

reason, it is used a private Wi-Fi internet network, where the laptop and the 

TurtleBots3 are connected. There is the possibility to employ more devices 

connected to different private Wi-Fi networks, but it is out of the scope of this 

work. Then, always using the same Wi-Fi network, the IP addresses of the laptop 

and of the TurtleBots3 are found using the command 

$ ifconfig 
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from a terminal window of each computer. The searched IP is the number tagged 

as “inet addr” into the “wlp2s0” section. When the IPs are been identified, the 

.bashrc file located in the Home folder can be modified. This is a fundamental step. 

In the .bashrc file two lines must be added at the end of the document: 

export ROS_MASTER_URI=http://<remote_PC_IP>:11311 

export ROS_HOSTNAME=<current_PC_IP> 

Both in the laptop and in the Turtlebots3 the ROS_MASTER_URI carries the IP of 

the laptop, because this parameter identifies the IP where the current device 

searches for the ROS Mater node. On the contrary, the ROS_HOSTNAME has the 

IP of the working device, because the parameter identifies the current device to 

be connected to the ROS Master before indicated. This step closes the installation 

and setup of the laptop and the TurtleBots3. 

The TurtleBot3 Waffle Pi, not considered here, has the same SBC Raspberry Pi 3 of 

the Burger model, so it can be handled in the same way for the Ubuntu and ROS 

installation. Once Ubuntu MATE 16.04 and ROS Kinetic Kame have been set up, 

since there are no differences in the use of the same operating system on a 

Turtlebots3 with Raspberry Pi 3 or Intel® Joule™ 570x, from now on the 

discussion will be focused only on the Burger model. 

Now the ROS system can be started. The laptop and the SBC of the TurtleBot3 

Burger are powered on. The robot is in this moment connected to a screen, a 

mouse and a keyboard, like a desktop PC. The first action to be completed is the 

start-up of the ROS Master node to which all the other nodes have to register. 

Then, from the laptop a first terminal window is opened and the command 

$ roscore 

is launched. This command stays active until the node is shut down, so the window 

is unusable for other actions and can be minimized. It is time to start the 

TurtleBot3 functionalities, bringing up the basic packages. For this purpose, they 

are launched from a terminal window of the robot: 

$ roslaunch turtlebot3_bringup turtlebot3_robot.launch 
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The first word identifies the start of a .launch file on ROS, “turtlebot3_bringup” is 

the ROS packages where this file is located and “turtlebot3_robot.launch” is the 

file to launch. If the user opens this file, he discovers that it starts up other two 

.launch files. They are “turtlebot3_core.launch” and “turtlebot3_lidar.launch”. 

The first is the program that starts all the nodes relative to the motion control of 

the robot wheels and the measurements of IMU and encoders sensors. The second 

program starts the node of the Lidar sensor. Using a Waffle or a Waffle Pi the 

commands 

$ roslaunch turtlebot3_bringup turtlebot3_realsense.launch 

$ roslaunch turtlebot3_bringup turtlebot3_rpicamera.launch 

must be launched respectively on a second terminal of the robot SBC, to start the 

nodes of Intel® RealSense™ R200 and Raspberry Pi cameras. Once these launches 

are completed, screen, mouse and keyboard can be removed from the robot and 

this can be placed on the floor. The effective control of the robot takes place 

through the laptop. Then, to connect the remote computer to the TurtleBot3 via 

ROS, a second terminal is opened on the laptop and the commands 

$ export TURTLEBOT3_MODEL=burger 

$ roslaunch turtlebot3_bringup turtlebot3_remote.launch 

are launched. The first line is used by the system to identify the model of the 

TurtleBot3 to which the laptop must be connected. Working with the Burger 

model, the TURTLEBOT3_MODEL parameter is set to “burger”. All the .launch files 

seen so far are necessary for the operation of the ROS working environment, thus 

the terminals, where they have been started, cannot be closed until the end of the 

robot activity. 

At any time, it is possible to check all the nodes and the topics active in the ROS 

framework. To see them another terminal is opened from the laptop, then several 

commands can be used. 

$ rosnode list 
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This shows the list of the active nodes. If the user wants to check some other 

parameter like the frequency at which a node posts or reads something from a 

topic, he can write “rosnode” and, instead of “list”, push twice the TAB button to 

make appear a list of possible related commands. These are useful for handling 

nodes in ROS: 

• $ rosnode info /“node_name”: displays on screen information about a 

node, with publications and subscriptions; 

• $ rosnode kill /“node_name”: kills a node process disactivating that node; 

• $ rosnode list: shows the list of active nodes; 

• $ rosnode machine /“machine_name”: shows the list of nodes running on 

a specific machine; 

• $ rosnode ping /“node_name”: pings a node repeatedly; 

• $ rosnode cleanup: deletes the registration of any node that cannot be 

immediately contacted. 

To show the list of the topics used by the nodes, the following command must be 

launched: 

$ rostopic list 

In the same way, if “rostopic” is written in the terminal and TAB is double pressed, 

the possible commands used to check a specific topic appears. 

• $ rostopic bw /“topic_name”: displays on screen the bandwidth used by a 

topic; 

• $ rostopic delay /“topic_name”: displays on screen the delay for a topic 

which has a header; 

• $ rostopic echo /“topic_name”: displays on screen messages published by 

a topic; 

• $ rostopic find “msg_type”: finds topics filtering them according to the 

message type; 

• $ rostopic hz /“topic_name”: displays on screen the publishing rate of a 

topic; 
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• $ rostopic info /“topic_name”: displays on screen information about a 

topic; 

• $ rostopic list: shows the list of active topics; 

• $ rostopic pub /“topic_name” “msg_type” “msg”: publishes the message 

“msg” on a topic; 

• $ rostopic type /“topic_name”: displays on screen the type of a topic. 

To show the complete ROS structure tree, the tool called rqt_graph is used. This 

has been presented in the first subchapter. It displays all the nodes and topics 

active in that moment, using arrows to represent a publication or a subscription 

to a topic for posting and reading messages. After the bringing up of the TurtleBot3 

Burger, the ROS tree of nodes and topics sketched by rqt_graph is depicted in 

Figure 2.11. 

 

 

Figure 2.11 

Now the Burger is ready to run any compatible package or script. There are various 

ROS packages available for the SLAM purpose, some developed from researches 

but still ongoing projects, some completed, tested and perfectly functioning. An 

example of the latter is the tool named Gmapping, the most common ROS package 

aimed at building a map. Gmapping makes a progressive 2D map of the 
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environment as the robot moves in it. The map can be visualized on the screen of 

the laptop in real time, during the building, running the viewer tool rviz in a new 

terminal window. The sensor used by Gmapping package is the Lidar of the Burger. 

In Figure 2.12 there is a screenshot of the system running Gmapping and rviz, 

during a mapping process. In this case the robot moves controlled by the user 

through the keyboard of the laptop, using a ROS package named teleop. 

 

 

Figure 2.12 

 

In the example shown in this figure, a limitation of Gmapping tool is revealed. In 

order to map the whole environment, the robot must be moved by the user, since 

it is not autonomous. To implement some kind of autonomous navigation 

algorithm, it may be necessary to access the map in image format, for selecting 

the next goal to reach. This is very hard using the map created by Gmapping. Thus, 

it is necessary to work with a mapping program that provides an easily accessible 

map, in order to guarantee an efficient autonomous navigation. Therefore, it was 

chosen to build a progressive 2D map using a program written in Python language, 

through the 360° laser sensor mounted on TurtleBot3. Since this work consists in 

writing a mapping program from scratch, it has been decided to build a 2D map, 

for a simpler implementation and debug. Switching to 3D mapping can be 
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considered as a future implementation, achievable using data coming from 

cameras of Waffle and Waffle Pi TurtleBot3 models. 

Thus, the first step is to study the probabilistic filters theory, needed for selecting 

and employing the best filter suitable for building a reliable map. 
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3 Probabilistic filters 
 

 
This chapter aims to provide the reader with a higher level of awareness about the 

probabilistic theory. Probabilistic filters are introduced from the general to the 

particular. Firstly, the discussion enters into the detail of the Bayes filter, the most 

common basic filter. From this, the two main macro groups arises: Gaussian filters 

and Non-parametric filters. 

 

3.1 A general view on probabilistic filters 
 

When studying a robot that navigates in the real world, a probabilistic approach is 

needed. A probabilistic model is necessary to partially compensate for the 

uncertainty in robot perception and action. 

Every sensor and actuator hold a certain grade of uncertainty. A fixed Lidar can 

detect the same fixed object at different ranges, in different time instants. This 

behaviour can be experienced positioning the TurtleBot3 Burger in front of a 

straight wall at a distance of 0.5 metres, hence checking data taken from the 360° 

Lidar and sent to the /scan topic. The results of this test are reported in the table 

in Appendix A, where only the first measure of each vector data, corresponding to 

the angle 0°, are considered. The real distance from the wall is around 0.5 metres, 

because of the error given by the manual positioning of the robot. How far is the 

TurtleBot3 from the wall then? There are three more frequent distances in the set 

of data, not one. These and the other less frequent measures belong to the 

uncertainty associated to sensor detection, instead the “0.0 m” data represents a 

failure of the device. 

Similarly to uncertainty related to the laser sensor, the other sensors and the 

wheel motors of a robot have their degree of precision. Thus, each sensor holds 

its own accuracy and precision and its measurements must have their weight of 
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reliability. The error in robot sensing can be caused directly from sensors used for 

objects detection, or indirectly from other upstream sensors and actuators. 

As it has been shown through the Lidar of the Burger, the environment perceived 

from the robot can be different from the real one. Probabilistic algorithms could 

represent a valid compensation to the various degree of uncertainty given from 

information received by the robot. A good rule of thumb is the following: 

“A robot that carries a notion of its own uncertainty and that acts 

accordingly is superior to one that does not.” [11] 

A probabilistic approach works better than a not-probabilistic one in not 

completely known environments and it is necessary in unknown, unstructured and 

complex areas. Estimation problems like the famous “kidnapped robot problem”, 

in which robot must recover from localization failure, or other tasks like mapping 

a huge facility, need the same type of approach for being carried out. A 

probabilistic algorithm is more robust and it can deal with sensors noise, sensors 

limitation, dynamism of the environment and so on. 

The goal of this work is the building of a 2D map using a 360° laser sensor. A map 

is a scan of the environment around the robot, represented by obstacles and free 

spaces. A problem arises suddenly when objects are detected by the Lidar like 

series of points. An obtained point may not match with the real position of the 

found object, but this latter can be located in an area around that point, with an 

uncertainty diameter smaller according to the accuracy of the laser sensor. Then 

the object can be at the measured distance, closer or further from the laser device. 

The detected point located one degree after the previous one, belonging to the 

same object, has the same issue. Hence it is difficult perfectly recreating the 

environment in a map, because even a straight line is collected like a 2D point 

cloud, making hardly to understand its real direction. This is a first reason for 

implementing a probabilistic algorithm, that takes into account the uncertainty 

arising from the point cloud. Relying blindly on measurements of the Lidar brings 

to an inaccurate map. Let us consider a wall. If the same point of it is detected at 

a certain distance and one second later at another closer distance, the wall 
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represented in the map will be thicker than a line, since this logic still stands for all 

points of the wall. In this case the map is faulty and using an algorithm to obtain a 

midline, that represents the wall, can be dangerous, because the robot could hit 

it. 

A second reason for which the implementation of a probabilistic approach is a 

better solution, is the possible presence of moving objects and persons. If the 

robot has to map an office with people working, getting around, moving objects 

or with other robots in movement, the built map must not include them. For this 

purpose, a probabilistic algorithm can easily ensure that dynamic obstacles are not 

reported, however providing identification and avoidance. 

In the studied context, a probabilistic approach is implemented like a probabilistic 

filter. This filter makes quantities like sensor measurements, controls, robot states 

and map states to be modelled as random variables. These latter follow 

probabilistic laws and are derived from other random variables, such as those 

modelling sensor data. Using a probabilistic approach, a variable does not assume 

one single value of a set of possible values, named sample space, but at each point 

of this space a relative likelihood is associated. The function that accomplishes this 

association is a probability density function. 

There has been talked about robot and map states. A state of a system is a 

collection of variables which fully describe that system. For the robot state, these 

variables can be position, orientation, velocity, angular velocity, acceleration, etc. 

The map has its state too, that represents its content, its information according to 

the used mapping approach. A state can be static if its variables do not change 

value in time and it is dynamic, on the contrary, when the variable values change 

over time. In a probabilistic environment, states are usually dynamic. Robot state 

changes within the time and during the navigation. Map state changes when 

detecting walking people or when an object is moved. 

Another important characteristic for a state is the completeness. A state can be 

considered complete when the knowledge of past states, past robot controls and 

past taken measurements does not add any additional information, compared to 
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the present state, for the prediction of the future next state. Then, in the case of 

complete state, the past and the future states are independent. 

Working in a real environment and not in a simulated one, it is important to 

consider not a deterministic future, but a stochastic one. In the real world 

everything can happen, a robot controlled to move always straight ahead can step 

on an unexpected pebble and deviate its direction. Or during a mapping process a 

person can get into the visual field of the robot and erroneous measurements 

bring the map state to be incorrect. Thus, the best solution is to work with a 

stochastic model describing the future. 

A stochastic process where the future of the process can be predicted based only 

on the present state, as well as knowing its full history, is considered to be a 

Markov chain, or Markov process. The property that a stochastic process has to 

satisfy to be a Markov chain is named Markov property, whose concepts are 

similar to those of the completeness property. Therefore, a complete state 

modelled in a stochastic environment is a Markov chain. 

Any Markov chain has a state space that can be continuous or discrete. An example 

of continuous state space is that formed by a robot pose with its position and 

orientation, hence continuous variables. An example of discrete space is any 

binary state variable that monitors the functionality of an internal device of the 

robot, like a sensor. If a state contains both continuous and discrete variables, the 

state space is hybrid. A Markov process has an index set too. In most cases this 

index represents time, that can be continuous or discrete. Time is continuous as is 

well known, but in robotics problems it is considered discrete. This is due to the 

fact that, to update the robot or the map states, some algorithms have to be 

executed on the onboard robot PC or on a remote PC and they take a little quantity 

of time. Thus, a dead time is introduced, in which these states cannot be updated. 

Moreover, any sensor takes its samples at a certain frequency, introducing 

another forced dead time between an available measurement and the next one. 

Therefore, in the studied context states will have a discrete time index. The update 

rate of the states depends on frequency at which sensors work and time needed 

to run any required algorithm. 
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To sum up, in the studied robotics problem of mapping an indoor environment 

with a wheeled robot, two states are needed: robot state and map state. Ideally, 

these states must be complete, that is information carried by the present state 

should be sufficient to predict the future next state, with the knowledge of the 

next control and measurements. Indeed, a complete state for any realistic robot 

system cannot exist, because this state should carry any type of information 

inherent to the robot and the environment, like content of its computer memory, 

position of every not detectable pebble or trash, etc. Due to the huge amount of 

information real states are irremediably incomplete. However, from a practical 

point of view, a very small state is adequate for predicting the future in an 

appropriate manner. Thus, this state can be considered complete. Every snag can 

be partially or totally overcome by the stochastic environment model. The 

evaluation of the next state is obtained with stochastic probabilistic laws, so these 

complete states can be considered Markov chains. Dealt states have a continuous 

or a hybrid state space and are evaluated in a discrete time. 

The last fundamental concept in this introduction is that of belief. It arises from 

the need to distinguish the real state from the internal state of the robot. A robot 

has its knowledge about itself and its environment, that can be different from the 

real one. Let us consider a robot placed into a room, after a specific motion the 

robot sees itself in a specific location, specified in the pose variable. This 

measurement can be momentary wrong and so it differs from the real one. Pose, 

such us other state variables, is not directly measurable, but it is obtained from 

sensor data and previous state through some algorithms. Hence it is easy that the 

internal state of the robot does not coincide with the real one. Therefore, in a 

robotic system there is a true state and the belief with regards to that state, the 

one known by the robot. 

Considering a state variable xt, the belief of this variable is bel(xt). The belief 

allocates a probability value to each possible hypothesis regarding the real state. 

For the computation of the belief, the most common families of algorithm derive 

from the Bayes filter algorithm. Therefore, first the Bayes filter will be studied and 
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then, one of the algorithms that arise from this filter will be selected and 

examined. 

 

3.2 Bayes filters 
 

The Bayes filter is an approach for the estimation of unknown probability density 

functions, like the random state of dynamic systems. It is a probabilistic tool that 

works on complete states modelled in discrete time. By definition, such states can 

be inferred from themselves evaluated at the previous time step, depending on 

the current measurements. Because of that, this method is recursive and the 

Bayes filter approach is also named Recursive Bayesian estimation. Time can be 

continuous, however, as mentioned above, it is always handled like it was discrete, 

when referring to robot states. 

In robotics problems, one seeks to estimate the probability density function, or 

the belief, of the state based on all available real-time information, which is usually 

the received sensors data. Thus, an estimation is needed every time the robot gets 

a set of measurements. In this scenario a recursive filter, and in particular the 

Bayes filter, is a suitable solution. 

A Bayes filter process is divided into two phases, prediction and update. In 

prediction a prior probability density function of the state is computed using the 

system model, before incorporating the current measurements. Since this model 

is usually affected by unknown disturbances, the unpredictable noise makes this 

prior faulty. Then, during the update phase, the latest data coming from sensors 

are implemented in the system to correct the prior. The result is the achievement 

of the posterior probability density function of the state. In the next time step a 

new prior will be obtained from this latter posterior, and so on. 

To be recursive, the Bayes filter needs to associate a probability density function 

to the initial state, when measurements have not yet been performed. If the initial 

state of the system is known, the probability density function is a distribution 

centred in the correct value with zero probability anywhere else. Instead, if the 
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system starts from an unknown initial state, a uniform distribution over the 

domain of the state can be used. These two cases are the most common, but there 

may be cases in which state is partially known and it is expressed by a not uniform 

distribution. 

Let us consider a practical example of implementation of the Bayes filter 

algorithm: the robot localization problem. The goal is to obtain the belief of the 

robot state bel(xt) using the control and measurement data. The state consists of 

the robot pose and the initial state is known. The map on which the robot must be 

localized is given and static. As mentioned above, the filter is divided in two steps. 

In the prediction step the prior belief distribution bel(xt) is evaluated from the 

previous posterior belief bel(xt-1) and the control data ut. Then in the update step, 

from the prior bel(xt) and the current measurements zt the posterior distribution 

bel(xt) is obtained. The algorithm just discussed is shown in the following table. 

 

1 Bayes_filter_algorithm(bel(xt−1), ut, zt): 
2     for all xt do 
3         bel(xt) = ∫ p(xt | ut, xt−1) bel(xt−1) dx 
4         bel(xt) = η p(zt | xt) bel(xt) 
5     endfor 
6     return bel(xt) 

Table 3.1 

 

In line 2 the control ut is processed to estimate the variation in pose of the robot 

from the previous belief of the pose bel(xt-1). Specifically, bel(xt) is the belief 

assigned to the state xt at time t, computed integrating the product of the belief 

distribution at time t-1, bel(xt-1), and the probability that control ut leads to 

transition from xt-1 to xt. 

At line 4 the posterior belief bel(xt) is achieved incorporating the measurement 

data. The prior belief bel(xt) just accomplished is multiplied by the probability that 

the measurement zt have been observed from xt and by η, a normalization factor. 

With this latter, an integration of the resulting product is led to 1, like a probability 
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distribution. bel(xt) is the result returned by the Bayes filter algorithm, given the 

posterior belief of the previous time step, bel(xt-1), and the current control and 

measurement data, ut and zt. 

Let us introduce a case where the state is binary (x = 0 or x = 1), that is discrete. 

The objective is again the estimation of the belief of the state, processing current 

control data and measurements. Firstly, considering the full ignorance of the initial 

state, an equal probability is assigned to each of the two possible states: 

 

bel(x0=0) = 0.5 

bel(x0=1) = 0.5 

 

Furthermore, the control ut is an action for the interaction with the state. Let us 

assume that action is aimed at bringing the state to 1. Then, the transition 

probabilities considering this ut are: 

 

p(xt=1 | ut, xt-1=1) = 1 

p(xt=0 | ut, xt-1=1) = 0 

p(xt=1 | ut, xt-1=0) = pu,high 

p(xt=0 | ut, xt-1=0) = pu,low 

 

The first two probabilities are valid in most of cases where the action ut, that brings 

the state from 0 to 1, is different from the one that brings the state from 1 to 0. 

Instead, pu,high is usually a high probability value like 0.9, if the actuator works 

correctly, and pu,low is hence its complementary value to 1 (pu,low = 0.1). Indeed, 

taken a specific previous state (xt-1 = 1 or xt-1 = 0) and executing the action ut, the 

integration over the state space of the computed probabilities of the state p(xt) 
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must lead to 1. Working in a discrete state space the integral becomes a finite sum, 

so the following equations must be verified: 

 

p(xt=1 | ut, xt-1=1) + p(xt=0 | ut, xt-1=1) = 1 

p(xt=1 | ut, xt-1=0) + p(xt=0 | ut, xt-1=0) = 1 

 

Even the sensors are noisy, so their measurements have a certain uncertainty 

degree. Given a state value, the sensor can detect it or not. The probability that 

sensors get a correct measurement added to the probability that they do not get 

it, must be equal to 1 for each of the two states. 

 

p(zt=1 | xt=1) = pz1,1 

p(zt=0 | xt=1) = pz0,1 

 

with:  pz1,1 + pz0,1 = 1 

 

and 

 

p(zt=0 | xt=0) = pz0,0 

p(zt=1 | xt=0) = pz1,0 

 

with:  pz0,0 + pz1,0 = 1 

 

Now it is possible to evaluate recursively the belief of the binary state of the 

system, by means of the Bayes filter algorithm shown in Table 3.1. For example, 
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suppose to evaluate the belief at time t = 1, with the control u1 considered until 

now and receiving a sensor data z1 = 1. The prior belief is obtained by way of the 

equation in line 3 of the Table 3.1, substituting the integral with a sum. 

 

bel(x1) = p(x1 | u1, x0=0) bel(x0=0) + p(x1 | u1, x0=1) bel(x0=1) 

 

Introducing numerical values for each probability (considering pu,high = 0.9 and 

pu,low = 0.1), the computed believes are: 

 

bel(x1=1) = p(x1=1 | u1, x0=0) bel(x0=0) + p(x1=1 | u1, x0=1) bel(x0=1) = 

                 = pu,high ⋅ 0.5 + 1 ⋅ 0.5 = 

                 = 0.9 ⋅ 0.5 + 1 ⋅ 0.5 = 

                 = 0.95 

 

bel(x1=0) = p(x1=0 | u1, x0=0) bel(x0=0) + p(x1=0 | u1, x0=1) bel(x0=1) 

                 = pu,low ⋅ 0.5 + 0 ⋅ 0.5 = 

                 = 0.1 ⋅ 0.5 + 0 ⋅ 0.5 = 

                 = 0.05 

 

Then, the posterior belief is calculated from the prior using the equation in line 4 

of the Table 3.1. 

 

bel(x1) = η p(z1=1 | x1) bel(x1) 
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Suppose the probabilities related to the measurement correctness are the 

following: 

 

pz1,1 = 0.6  pz0,1 = 0.4  pz0,0 = 0.7  pz1,0 = 0.3 

 

Thus, the posterior believes are obtained: 

 

bel(x1=1) = η p(z1=1 | x1=1) bel(x1=1) 

                 = η pz1,1 ⋅ 0.95 = 

                 = η 0.6 ⋅ 0.95 = 

                 = η 0.57 

 

bel(x1=0) = η p(z1=1 | x1=0) bel(x1=0) 

                 = η pz1,0 ⋅ 0.05 = 

                 = η 0.3 ⋅ 0.05 = 

                 = η 0.015 

 

Since the two posteriors must be complementary to 1, the normalization factor 

can be calculated. 

 

η 0.57 + η 0.015 = 1 

η = (0.57 + 0.015)-1 = 1.7094 

 

Then, the two posteriors are: 
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bel(x1=1) = 0.9744 

bel(x1=0) = 0.0256 

 

As evidenced, the incorporation of sensor data improves the belief precision. This 

example will help the reader to better understand calculations performed in the 

next sections, about an algorithm that arises from the Bayes filter, named 

occupancy grid mapping. 

The Bayes filter is the base for the more important existing probabilistic filters. In 

the following sections parametric filters, like Kalman filter, and non-parametric 

filters, like grid-based filter, are introduced. 

 

3.3 Gaussian filters 
 

After observing the Bayes filter from a general point of view, considering a generic 

continuous or discrete state space, it is needed to step a little further into the 

concepts. The main goal is still the research of a probabilistic approach suitable to 

build the map of a building. 

The probabilistic approaches that arises from the Bayes filter can be assigned to 

two broad categories: the parametric and the non-parametric filters. 

The former are better known as Gaussian filters and are implemented working on 

continuous state spaces. In Gaussian filters the probability density functions of the 

believes are considered to be Gaussian distributions. They are, then, multivariate 

normal distribution of the form: 

 

p(x) = det(2πΣ)−
1
2 exp { −

1
2

 (𝑥𝑥 − 𝜇𝜇)𝑇𝑇 Σ−1 (𝑥𝑥 − 𝜇𝜇)} 
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The distribution over the variable x is characterized by means of two parameters, 

µ and Σ. µ is the mean vector and has the same dimensionality of the state x. Σ is 

the covariance matrix, a square, symmetric and positive semi-definite matrix with 

dimensionality equal to that of the state x squared. Some Gaussian algorithms, like 

Kalman filter, handle directly mean and covariance, other methods works on other 

two parameters, that are functions of the first two. Implementing a Gaussian 

approach, all the estimated believes are Gaussian distributions. In parallel, the 

measurement model must allow for extracting a measurement probability p(zt | 

xt) of Gaussian form. The Gaussian filter has the goal to evaluate the posterior 

belief of the state and this latter is always a Gaussian distribution, because of its 

computation. Since a Gaussian can be described by two parameters, the goal of a 

Gaussian filter turns into the research of these ones. For this reason, these filters 

are named “parametric”. Discussing Gaussian filters, the term belief is set aside 

and the prior and the posterior refers directly to the state, of which the 

characterizing parameters are sought. 

 

3.3.1 Kalman filter 
The best known Gaussian filter is the Kalman filter. As mentioned above, it is used 

to evaluate the value of the mean and the covariance of the posterior, at each 

time step. Implementing a Kalman filter an additional assumption is needed: all 

the probability density functions have to be linear functions of its arguments plus 

a Gaussian noise. This means that probability functions p(xt | ut, xt-1) and p(zt | xt) 

of the Bayes filter algorithm become linear. 

In the prediction step the prior is computed like: 

 

xt = At xt-1 + Bt ut + δt                                                                                                      (3.1) 

 

xt, xt-1 and ut are state and control vectors, each one with its dimension. At and Bt 

are the matrices that linearize the function. Finally, δt is the Gaussian noise vector, 
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which models the randomness in the state transition from xt-1 to xt. δt must have 

the same dimension of xt and is composed by a mean value equal to zero and a 

covariance Dt. Therefore, the mean of the prior is achieved by means of the 

equation (3.1), substituting the mean values of xt-1, the posterior of the previous 

time step, and of δt, equal to zero. The covariance of the prior is derived from the 

same equation, considering the covariances of xt-1 and δt (ut has not a covariance 

matrix). Then the prior is always a Gaussian distribution with a new mean vector 

µt and a new covariance matrix Σt. 

In the update step, the measurement probability p(zt | xt) must also to be a 

Gaussian function linear in its arguments, with an additional Gaussian noise. 

 

zt = Ct xt + γt 

 

γt is the Gaussian noise vector and models the noise of sensor measurement. It 

has the same dimensionality of zt. Its mean value is zero and is covariance matrix 

is Qt. 

The Kalman filter algorithm is shown in Table 3.2. 

 

1 Kalman_filter_algorithm(µt-1, Σt-1, ut, zt): 
2     µt = At µt-1 + Bt ut 
3     Σt = At Σt-1 AtT + Dt 
4     Kt = Σt CtT (Ct Σt CtT + Qt)-1 
5     µt = µt + Kt (zt - Ct µt) 
6     Σt = (I - Kt Ct) Σt 
7     return µt, Σt 

Table 3.2 

 

The mean µt and the covariance Σt of the prior state of the system are computed 

from the previous posterior and the control ut, at line 2 and 3. These two 
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calculations are accomplished once at a time, considering separately the mean and 

the covariance of the involved arguments. As mentioned above, in line 2 µt is 

calculated from the equation (3.1), substituting µt-1 to xt-1 and 0 to δt. In parallel, 

in line 3, Σt is obtained using the covariances of xt-1 and δt, Σt-1 and Dt respectively. 

The mean and the covariance of the posterior are computed in the update step at 

line 4, 5 and 6 of the Kalman filter algorithm. Kt is a variable called Kalman gain. It 

estimates the degree of the impact of the new measurements on the current state. 

The posterior mean µt is calculated at line 5, in which the prior mean µt is 

corrected by means of the deviation of the actual measurement zt from the mean 

predicted one (zt – Ct µt). This deviation is weighted by the Kalman gain Kt. The 

posterior covariance is obtained at line 6. Σt is computed adjusting the prior 

covariance Σt for the Kalman gain Kt. 

In Kalman filter algorithm the initial state x0 must be represented by a Gaussian 

distribution. So, the initial state probability is: 

 

p(x0) = det(2πΣ0)−
1
2 exp { −

1
2

 (x0 − μ0)T Σ0−1 (x0 − μ0)} 

 

with known mean and covariance parameters, µ0 and Σ0. This type of initial state 

is needed to provide that the next state probability is again a Gaussian distribution. 

This is an important requirement for the implementation of the algorithm. Indeed, 

the Kalman filter is not suitable for the localization problem of “lost robot” or 

other problems which imply an unknown initial state. 

 

3.3.2 Information filter 
Another probabilistic filter belonging to the family of Gaussian ones is the 

Information filter. It can be considered the dual of the Kalman filter. It has the 

same requirements and the same steps of the Kalman. The difference stands in 

the choice of the describing parameters of the Gaussian distributions. In the 
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Kalman filter a probability density is parameterized by the mean vector µ and the 

covariance matrix Σ. The Information filter makes use of an information vector ξ 

and an information matrix Ω. Both these parameters can be easily evaluated from 

the Kalman ones. The information vector is equal to: 

 

ξ = Σ-1 µ 

 

The information matrix, also named precision matrix, is equal to: 

 

Ω = Σ-1 

 

The Information filter algorithm is shown in the following Table 3.3. 

 

1 Information_filter_algorithm(ξt-1, t-1, ut, zt): 
2     Ωt = (At Ωt-1-1 AtT + Dt)-1 
3     ξt = Ωt (At Ωt-1-1 ξt-1 + Bt ut) 
4     Ωt = CtT Qt-1 Ct + Ωt 
5     ξt = CtT Qt-1 zt + ξt 
6     return ξt, Ωt 

Table 3.3 

 

In the Kalman filter the update step is the most time and computing expensive of 

the two, because of the inversion matrix calculation. Instead, in the Information 

filter, the most time and computing consuming step becomes the prediction one. 

For this reason, the Information filter is the dual of the Kalman. At every step it is 

possible to move from a representation to the other, transforming the 

parameters. 
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3.3.3 Extended Kalman filter 
In these two filters the assumption of linear probability functions, with added 

Gaussian noise, is not reflected in most of the practical robotics problems. For 

example, a robot that follows a circular trajectory cannot have a linear probability 

state transition p(xt | ut, xt-1). In order to overcome this problem, non-linear 

versions of these algorithm are introduced: the Extended Kalman filter (also called 

EKF) and the Extended Information filter (or EIF). Since the two filters are one the 

dual of the other, only the Extended Kalman filter is taken in consideration here. 

The Extended Kalman filter approximates the state distributions by Gaussians and 

the non-linear state transition and measurements functions by means of 

linearization. The non-linear functions transform Gaussians in distributions of 

other shape, interrupting the recursion of Gaussian states. Linearization 

approximates a non-linear function by a linear one, tangent to the first at a specific 

point. Working on normal distributions, a logical choice of this tangent point is the 

mean of the Gaussian implied in the process. As a result, the linearized probability 

function leads to a new Gaussian distribution, after the state transition or the 

measurement update. This recursively ensures to achieve a Gaussian posterior 

state at each time step. 

In the Extended Kalman filter the linearization is accomplished by means of a 

Taylor expansion of the first order. Then, a first order Taylor expansion is the 

following: 

 

f(ut, xt-1) ≈ f(ut, xt-1,0) + f’(ut, xt-1,0) (xt-1 – xt-1,0) 

 

with 

 

f’(ut, xt-1,0) = ∂f(ut, xt-1,0)/ ∂xt-1,0 
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As mentioned above, the linearization of the non-linear function is evaluated at 

the mean of the Gaussian distribution xt. The Taylor expansion becomes: 

 

f(ut, xt-1) ≈ f(ut, µt-1) + f’(ut, µt-1) (xt-1 – µt-1) 

 

Let us assume the state transition probability function processing the control 

information is equal to the non-linear function g(ut, xt-1). Then, the update 

probability function processing the measurement data is equal to h(xt). The first 

derivatives g’(ut, µt-1) and h’(µt) are shortened in Gt and Ht. The first Taylor 

expansions are: 

 

g(ut, xt-1) ≈ g(ut, µt-1) + Gt (xt-1 – µt-1) 

 

and 

 

h(xt) ≈ h(µt) + Ht (xt - µt) 

 

With the linearization, the prior and the posterior can be approximated to 

Gaussian distributions: 

 

p(xt | ut, xt-1) ≈ det(2π𝐷𝐷𝑡𝑡)
−12 exp { −1

2
 [𝑥𝑥𝑡𝑡 − 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝜇𝜇𝑡𝑡−1) − 𝐺𝐺𝑡𝑡(𝑥𝑥𝑡𝑡−1 −

                            𝜇𝜇𝑡𝑡−1)]𝑇𝑇 𝑅𝑅𝑡𝑡−1[ 𝑥𝑥𝑡𝑡 − 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝜇𝜇𝑡𝑡−1) − 𝐺𝐺𝑡𝑡(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇𝑡𝑡−1)]} 

p(zt | xt) ≈ det(2π𝑄𝑄𝑡𝑡)
−12 exp { −1

2
 [𝑧𝑧𝑡𝑡 − ℎ(𝜇𝜇𝑡𝑡) − 𝐻𝐻𝑡𝑡(𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑡𝑡)]𝑇𝑇 𝑄𝑄𝑡𝑡−1[ 𝑧𝑧𝑡𝑡 −

                    ℎ(𝜇𝜇𝑡𝑡) − 𝐻𝐻𝑡𝑡(𝑥𝑥𝑡𝑡 − 𝜇𝜇𝑡𝑡)]} 
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The Extended Kalman filter algorithm is shown in Table 3.4. 

 

1 Extended_Kalman_filter_algorithm(µt-1, Σt-1, ut, zt): 
2     µt = g(ut, µt-1) 
3     Σt = Gt Σt-1 Gt + Dt 
4     Kt = Σt HtT (Ht Σt HtT + Qt)-1 
5     µt = µt + Kt (zt – h(µt)) 
6     Σt = (I - Kt Ht) Σt 
7     return µt, Σt  

Table 3.4 

 

This algorithm is similar to the Kalman filter one, thus its analysis is avoided. 

 

3.3.4 Mapping with Gaussian filters 
The Gaussian filters just seen can be easily deployed for the localization of a robot, 

given a fixed map. In case the map is not given and/or not fixed, it has to be built 

and updated using the measurement data, collected by the robot from the 

environment. The probabilistic filter structure is still the same. Development of a 

mapping algorithm using a Gaussian filter adds some computations during the 

measurement update phase. The robot must build the map and, at the same time, 

localize itself into this map. Then, during the prediction step, the robot pose 

relating to the map is estimated. Therefore, sensor data are processed. Obstacles 

already present in the map before the measurements are used to correct the 

predicted pose. New obstacles are added to the map. Moreover, the map itself is 

updated. If an obstacle previously seen has been moved, or at the previous step a 

walking person has been detected, the map must be updated and corrected too. 

The map saved into the robot can have an its own state, separated from the robot 

state, or can belong to a larger system state. This latter includes both the robot 

state and the map state. Anyway, the estimation state procedure is the same, 

although the computation is a little different. 
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As mentioned, the Kalman filter, and therefore also its Extended version, can be 

used only in continuous state space. Under this condition the map state is usually 

a vector with a dynamic dimension, that increases every time a new obstacle is 

detected and added to the map. This vector can also have a large fixed dimension 

and be initially filled with a value indicating the absence of feature. When a new 

obstacle is detected from the laser scanner of the robot, it is represented like a 

point series. Using a suitable algorithm, a feature extraction is accomplished. Now 

from series of points, the robot has a series of features. At each feature is usually 

associated three parameters: two for the feature position on the map, xf and yf, 

and one for the signature, sf. This latter parameter is used to distinguish a feature 

from another during the update step of the map. The map built with this method 

is continuous and, if plotted, it is a top-view 2D map. An example of continuous 

map can be seen in the following Figure 3.1. 

 

 

Figure 3.1 

 

The feature extraction algorithm is fundamental for the obstacle detection. There 

exist algorithms for the extraction of simple geometric primitives, like straight 

lines and corners, and others for the extraction of polygons. The more elaborated 

the type of feature is, the more complex and computational consuming the 

algorithm is. 
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Gaussian filters have advantages and disadvantages. They are computationally 

efficient and fast to process. These characteristics are ensured by the state 

evaluation by means of Gaussian distributions. On the other hand, a normal 

distribution is unimodal, i.e. it has a single maximum. In localization problems, this 

translates to having a single area and a single maximum point where the robot 

could be located. There is not the possibility to track more distinct areas and 

maximums at the same time. Then, the Extended Kalman filter is not suitable for 

localization problem in fully or partial given maps with lost initial position. Some 

extensions of this filter overcome this problem using a mixture of Gaussian 

densities, like the Multi-Hypothesis Extended Kalman filter. This implies a higher 

computational complexity and a greater process time consumption. Another 

limitation is the impossibility of Gaussian filter to work on discrete state space and 

on hybrid state space. As mentioned above, this group of filters only works on 

continuous variables, approximating them by normal distributions. 

 

3.4 Non-parametric filters 
 

Non-parametric filters are another important group of filters. They not require a 

fixed function form for the posterior state distribution or the measurement 

probability model, like Gaussian filters. Non-parametric filters have a finite 

number of multiple hypothesis, to each of which corresponds an area in the 

continuous state space. More areas of the state space are then considered in time. 

Some non-parametric techniques rely on approximating posterior distributions 

taking some samples from it, others are based on decomposition of the state 

space. Therefore, these filters can be used with both continuous, discrete and 

hybrid state spaces. 

The posterior is characterised by a variable number of parameters. Let us 

reconsider the distinction between real state and belief of that state. Increasing 

the number of the parameters of a posterior belief, this latter converges to the 

true state. Updating a higher number of parameters, the computational cost and 

complexity can easily grow. This price is greater compared to an Extended Kalman 
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filter. But the number of employed parameters can be adapted to the complexity 

of the posterior function. Some techniques can adapt this number online and are 

named adaptive. If they adapt the number of parameters based on the 

computational resources available for the posterior estimation, they are named 

resource-adaptive. 

 

3.4.1 Particle filters 
Two non-parametric filters are discussed in this thesis: the Particle filter and the 

family of Histogram filters. The Particle filter represents the posterior belief by a 

set of random points, or samples, taken by the posterior distribution of the state 

space. This approach has the goal to approximate the posterior with the best 

degree of reliability, like Gaussian filters do. The difference is that the form of the 

original distributions has not to fulfil any requirement, so the Particle filter can be 

applied to many more cases. Moreover, the approximation is more reliable 

depending on the number of considered samples. This filter can adapt the number 

of samples, and then the reliability, basing on the computational resource 

available, so it belongs to the class of resource-adaptive methods. 

During each time step, the particle filter collects a number of samples that are 

named particles. The set of samples taken at time t can be denoted as: 

 

χt  =  xt[1],  xt[2],  xt[3],  …  ,  xt[Ns] 

 

Ns is the number of samples. It can be fixed or variable, depending on time, 

computational resource availability or other parameters. Each particle xt[n] (1 ≤ n 

≤ Ns) is a distinct hypothesis about the real state considered at time t. If an area 

of the state space is densely populated by particles, then the true state has a high 

likelihood to belong to that area. A mentioned above, the samples are taken 

randomly, but they are weighted and selected before being included in the particle 
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set. The probability for a sample to be annexed is proportional to the posterior 

belief of that state, estimated by means of the Bayes filter algorithm. 

 

xt[n] ≈ p(xt[n] | xt-1[m], ut, zt) 

 

The Particle filter is a recursive technique, like the other methods arisen from 

Bayes filter. The set of particles at time t, χt, is evaluated from the previous set χt-

1, depending from the current controls ut and measurements zt. m identifies the 

corresponding particle of the set χt-1 from which the new particle xt[n] is evaluated. 

In general, 1 ≤ m ≤ Ms, with Ms ≠ Ns. The basic variant of the Particle filter 

considers a fixed number of particles, thus a fixed value of Ns in time. This basic 

variant is shown in Table 3.5. 

 

1 Particle_filter_algorithm(χt-1, ut, zt): 
2     χt = χt = ∅ 
3     for m = 1 to M do 
4         sample xt[m] ≈ p(xt | ut, xt-1[m]) 
5         wt[m] = p(zt | xt[m]) 
6         χt = χt + 〈xt[m], wt[m]〉 
7     endfor 
8     for m = 1 to M do 
9         draw i with probability ∝ wt[i] 
10         add xt[i] to Xt 
11     endfor 
12     return χt 

Table 3.5 

 

In line 2, the particle set χt and a temporary particle set χt are initialized to be 

empty. 

From line 3 to 7, the temporary set χt is filled. At line 4, each particle xt-1[n] is 

updated processing the control information ut. This process involves the 
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resolution of the probability p(xt[n] | ut, xt-1[n]), not always easy to implement to 

certain probability distribution. However, from this equation the Ns particles 

obtained represents the prior belief bel(xt). The measurement data are 

incorporated at line 5, where they are processed to achieve the weighting 

parameters of the Ns particles. These parameters are also named importance 

factors wt[n]. Importance factors are computed using the probability function of 

the measurement update step of the Bayes filter, p(zt | xt[n]). Multiplying the 

importance factor wt[n] and the corresponding particle xt[n] obtained at the 

previous line, a weighted particle is achieved, that represents the posterior belief 

bel(xt) of that particle. At line 6 each particle xt[n] with the corresponding 

importance factor wt[n] is added to the momentary particle set χt. 

From line 8 to 11, the final particle set χt is achieved. After computing the various 

particles xt[n], they must be selected to build the new particle set. This procedure 

is named resampling. This term comes from the complete replacement of the 

previous particles into the particle set. Indeed, at line 2, the particle set χt is 

cleaned out and, in this step, it is refilled. The particles selecting method is based 

on relevance given from the weighting factors. The particles are drawn randomly 

from the temporary set χt and, when extracted, they are inserted into the particle 

set χt. However, each particle in χt is accompanied by its own importance factor, 

that weights the particle likelihood to be randomly drawn. The new particle set χt 

will be formed by many duplicates of those samples with a high importance 

weight. Because of this, the particles with a low value of the information factor 

will be easily discarded and lost. 

After the first for cycle (lines 3 to 7), the distribution of particles xt[n] present in the 

momentary particle set χt can be associated to the prior belief bel(xt) of a Bayes 

filter. After the resampling step (lines 8 to 11), the distribution of particles xt[n] in 

the final particle set χt can be associated to the posterior belief bel(xt). Indeed, this 

latter distribution comes from a random selection weighted by an importance 

factor. This factor is computed by means of the probability p(zt | xt[n]). Therefore, 

the particle distribution returned from the Particle filter algorithm can be 

associated to the Bayes posterior belief distribution bel(xt) = η p(zt | xt). bel(xt). 
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There exist many variations of the proposed Particle filter. The difference from 

one filter to the other usually stands in the resampling step. The above explained 

resampling method is named Importance sampling. Another version of the 

algorithm never resamples and update the importance factor multiplying it 

recursively, with an initial value equal to 1. Other algorithms differ in resampling 

frequency. A too frequent resampling can lead to a loss of diversity in the particle 

set. A too infrequent resampling can lead to a loss of samples in low probability 

areas. Then, various Particle filters play around this problem and develop different 

sampling algorithms. 

There are two other main problems connected with the Particle filter. The former 

stays in the generation of particles. Particles are initially produced by the previous 

particles of the set χt-1 and the control data ut. Measurements are not included in 

this procedure. So, using a robot with an inaccurate motion and very accurate 

sensors leads to the generation of a set of particles which cannot match with the 

measures of the following step. This leads to an inefficient filter. The second 

problem arises using a high-dimensional state space. Increasing the dimension of 

the state space, the likelihood of not finding a sample near the true state 

increases. Thus, in these cases it is necessary to consider a larger number of 

samples. The same problem can be translated in a lower-dimensional state space 

with a too little number of samples. If the available samples are not enough a 

solution is to force the introduction of random ones drawn by a second algorithm. 

At this point the request is to find a suitable number of samples to approximate 

the posterior distribution. This number depends on the dimensionality of the state 

space and the degree of uncertainty of the filter distributions. 

 

3.4.2 Histogram filters 
Another type of non-parametric filters are the Histogram filters. Histogram filters 

works on discrete state spaces with a finite number of possible state values. In 

order to process a continuous state space, the filter must decompose it in a 

discrete space. A discretized space has many regions, each one characterized by a 

single cumulative probability value. The posterior is represented by a histogram. 
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Every region is a constant bar of the histogram, characterized by its value of 

probability regarding the posterior belief. 

In discrete spaces with a finite number of possible state values, the posterior belief 

is a discrete probability distribution, that allocates a probability value to all the 

possible states. This distribution is given by the Bayes filter algorithm used for 

discrete cases. This algorithm has been described at the section 3.2 and is reported 

in the following Table 3.6. 

 

1 Discrete_Bayes_filter_algorithm(bel(xt−1), ut, zt): 
2     for all n do 
3         bel(xt=xn) = ∑i p(xt=xn | ut, xt−1=xi) bel(xt−1=xi) 
4         bel(xt=xn) = η p(zt | xt=xn) bel(xt=xn) 
5     endfor 
6     return bel(xt) 

Table 3.6 

 

The control ut and the measurements zt, performed at each time step, recursively 

update the posterior belief bel(xt) and, therefore, recursively update the 

probability associated to every state of the state space. If control and 

measurements do not involve a state, its probability value does not change. 

Continuous state spaces must be decomposed. This decomposition, or 

discretization, translates a continuous space in a continuous series of regions of 

that space. These regions can be denoted as x1,t, x2,t, x3,t, … , xN,t. Each region is 

convex and does not intersect another region. If the state space is not finite, it has 

to be truncated. As mentioned above, the Histogram filter works on discrete finite 

spaces, i.e. with a finite number of possible states. 

Regions of a discretized state space are usually cells and the whole space appears 

as a grid. For this reason, this filter is also called grid-based. The cells dimension is 

named granularity of the grid, or of the decomposition. The granularity 

distinguishes the quality of a Histogram filter from another one. A high granularity, 



- 48 - 
 

hence a small cell dimension, provides a great accuracy of the filter, but increases 

the computational cost. Then the cell dimension is a variable parameter, basing 

on requirements and processing limitations. In high-dimensional or considerably 

extensive state spaces, a larger number of cells is needed, at the same granularity. 

But increasing too much the number of cells means the achievement of an 

unsustainable computational cost. Otherwise, the dimension of the cells can be 

increased, but in too wide state spaces, this option leads to an inaccurate posterior 

distribution. Therefore, a Histogram filter has a limitation on the state space 

dimension, given from the available computational resources and available 

memory. 

The decomposition of the continuous state space can be fixed or adaptive. A fixed 

cell decomposition builds a grid of cells with a predefined dimension. It is easy to 

implement but requires an advance rough idea of the granularity needed. 

Moreover, a waste of computational resources may occur for the process of a high 

number of cells in low probability region. On the other hand, a more inaccurate 

posterior approximation may be accomplished in regions with a concentrated high 

probability. An adaptive cell decomposition uses a generally bigger size of cells and 

develops a further decomposition of the area in regions with a higher probability 

value. The decomposition is recursively pursued, proportionally to the probability 

value, until a certain resolution. This process must be accomplished online in real 

time and involves an additional computational cost. An example of fixed and 

adaptive decomposition is shown in the following Figure 3.2. 
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Figure 3.2 

 

The probability value given to a cell is the cumulative probability value of the 

whole cell area. The resulting probability assigned to a cell is uniform and 

corresponds to a bar of the posterior belief histogram. Considering N cells, x1,t, x2,t, 

x3,t, … , xN,t, this uniform probability can be obtained by means of the following 

equation: 

 

p(xt) = 
pn,t

|xn,t|
 

 

where pn,t is the probability of the n-cell (1 ≤ n ≤ N) and |xn,t| is the volume of that 

region. The probability value is usually associated to the centre of the cell. If the 

cell is small enough, this association is better defined and the posterior 

distribution acquires a better accuracy. 
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3.4.3 Mapping with Histogram filters 
Mapping with a Histogram filter presents some advantages and some limitations. 

The state space usually represents the real environment. This is a continuous 

space, then it is decomposed in a grid. Each cell of the grid represents a region of 

the environment. Each cell is associated to a binary variable, that specify its state. 

The cell can be free, thus navigable, or occupied by an obstacle, that the robot 

must avoid. A cell cannot be half occupied and half free. When this latter case 

arises, the algorithm must consider the cell in one of the two possibilities. The 

greater the granularity of the grid, the more this problem becomes irrelevant. 

Because of the method used, when the Histogram filter is used for the mapping 

purpose, the filter technique is named Occupancy Grid Mapping. Essentially, the 

map state space is the robot representation of the environment to map. This 

continuous state space is decomposed in a finite grid. Each cell of the grid is 

represented by its middle point and this point is a binary map state variable. The 

value of each map state variable is usually represented in the Boolean notation: 0 

stands for free cell, 1 for occupied cell. The posterior belief of the map state is 

always a histogram. Each bar of the histogram is associated to the middle point of 

a cell, thus to a binary map state variable, and represents the belief of the robot 

regard the state of that cell, by means of a probability value. 

It is easy to implement respect to a Particle filter and avoids the sampling 

problems. As mentioned before about Histogram filters, wide areas, then wide 

state spaces, are hard to process, because of the high storage capacity required. 

Also a Particle filter may present some problems mapping large environments. A 

high number of parameters and samples are required to achieve an accurate 

posterior belief. In the outdoor case a Gaussian filter works better. A Gaussian 

filter builds a map recognising new obstacles, translating them in features and 

finally adding them to the map state. Free spaces are not inserted in the map state, 

so they do not fill the memory. This means that sparse environments are easier to 

map. On the contrary, areas full of obstacles are hard to map with a Gaussian filter. 

The filter must be very accurate to distinguish different objects and associate the 

already-seen ones. This involves a higher computational effort. Problems with a 

Gaussian filter arise more easily in indoor environments, that are usually not 
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sparse. Instead, the Occupancy Grid Mapping handles every cell of the grid in the 

same way, verifying if it is occupied or not. This filter is not affected by the density 

of objects found, because it only updates the probability value associated to 

determined cells. Therefore, the Occupancy Grid Mapping is limited by the 

extension of the environment, Gaussian filters by the quantity of faced obstacles. 
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4 Occupancy Grid Mapping 
development 

 

 
The mapping algorithm is developed using the Python language. In the first section 

the probabilistic filter used for the mapping purpose is selected. Thus, it is 

described in detail. In the second section, the inputs needed to the selected 

algorithm and the obtained outputs are analyzed. In the third section the achieved 

code is explained, one part at a time. 

 

4.1 Choice of the mapping filter 
 

The mapping technique used in this thesis work is the Occupancy Grid Mapping. It 

is easy to implement and has a lower processing effort. It does not rely on a feature 

detector, like a Gaussian filter, that involves an additional computational cost. 

Moreover, it is hard to develop a robust algorithm for a correct feature detection. 

A laser range sensor detects a series of points. These points are not usually in their 

real position but are located in a cloud around it. In case of straight-line extraction 

algorithms, the lower accuracy is achieved during the computation of the direction 

of a line. If the algorithm is not robust, a straight wall may be represented by a 

series of straight broken lines with different direction. A mapping algorithm that 

avoids the feature detection, does not deal with this problem and is easier to 

develop. Instead, the Occupancy Grid Mapping algorithm has the disadvantage of 

a larger storage capacity requirement, but this problem becomes significant only 

when the environment to map is huge or the dimension of the cells is too small. 

The goal of the thesis is the development of a mapping algorithm for indoor 

environments. Consequently, the problem of storage requirement will not be 

faced, as shown later on. 
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After having selected a mapping filter, a feasible type of map must be chosen. 

Working with an Occupancy Grid Mapping method, the map must be discrete and 

finite. The environment is then discretized and truncated. The map state is 

represented by a grid of square cells. The dimension of the grid can be fixed or can 

increase during the robot navigation. In this latter case, the map has a starting 

little dimension and when the robot moves, new cells are added to the grid, i.e. 

rows and columns are added to the map state. Also the dimension of the cells can 

be fixed or dynamically change in time. Indeed, the decomposition of the 

environment can be fixed or adaptive, as mentioned in the previous chapter. A 

mapping algorithm usually works along with other algorithms that perform other 

tasks. A grid with fixed size and fixed resolution is a choice easily feasible with 

these other algorithms. This is the case experienced in the lab at Politecnico di 

Torino, where the developed Occupancy Grid Mapping has to be run with an 

algorithm for the autonomous navigation of the robot. In this case, the navigation 

algorithm expects a map matrix of a given size, where the resolution is known a 

priori. Grid size and cells dimension are then set before running the mapping 

algorithm. 

In summary, the mapping algorithm that will be developed is an Occupancy Grid 

Mapping. The discretized environment is a grid with predefined size. Cells of the 

grid have the same dimension and fixed resolution. Each cell is represented by its 

middle point and is associated to a binary state value. This value is 1 if the cell is 

occupied and 0 if it is free. The belief of the robot about every cell value is a matrix 

of probability values stored in the state belief bel(xt). This belief is computed by 

means of the Discrete Bayes filter algorithm, stated in Table 3.6 of section 3.4.2. 

The algorithm has the two steps characterising every Bayes filter, prediction and 

update. These steps are executed for all the cells, recursively at each considered 

time. 

In the prediction step the control data ut are processed to estimate the prior belief 

bel(xt) of the system. Since the map is not influenced by the movement of the 

robot, only the pose belief is involved in this step. The map belief in the prior is 

still the same of the previous posterior. In the update step, measurements zt are 
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used to correct the belief of pose and update the belief of map. A single system 

state can be considered, formed by the pose vector and the map matrix. 

Alternatively, the robot state, with its pose, and the map state, with the 

environment representation, can be considered separately. Let us denote the 

robot state at time t xt and the map state mt. Their believes are respectively bel(xt) 

and bel(mt). 

Let us consider the recursively estimation of the robot belief bel(xt). The robot 

state consists of its pose related to the constructed map. Thus, the robot state 

space is continuous. In this thesis work the robot state is not represented by a 

probability function, then it is not computed by means of probabilistic filter. 

Instead, the belief about the robot pose is given with a probability of 100%, related 

to a single point of the map. The localization of the robot is carried out recursively 

processing the control data ut. At each time step the information ut provides a 

displacement measure with respect to the previous robot pose. This measure is 

implemented to the previous pose to achieve the new one, by means of a 

recursively addition. The updating process of the robot state uses a motion model 

to compute the belief of the pose. A motion model can be odometry based or 

velocity based. Robots equipped with wheel encoders implement the odometry 

based model. Robots without encoders use the velocity model. TurtleBot3 used in 

this thesis is provided with an encoder for each wheel. So, the control data ut 

processed are the measurements coming from the encoders. These 

measurements are better examined later on. The absence of a probabilistic 

computation for the robot state makes the process cost lighter, keeping the robot 

state and the map state updated even in conjunction with other algorithms. 

Let us consider now the estimation of the map belief bel(mt). Given the discrete 

Bayes filter algorithm in TAB 2.5, a form readapted for the implementation of the 

Occupancy Grid Mapping is presented below: 
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1 Discrete_Bayes_filter_algorithm_for_OGM(bel(mt−1), ut, zt): 
2     for all n do 
3         bel(mn,t) = ∑i p(mn,t=1 | ut, mn,t−1=mi) bel(mn,t−1=mi) 
4         bel(mn,t) = η p(zt | mn,t=1) bel(mn,t=1) 
5     endfor 
6     return bel(mt) 

Table 4.1 

As can be seen, the posterior belief obtained from this filter indicates the 

probability of the N cells of the grid being occupied by an obstacle or not. Then, 

the notation bel(mt) stands for bel(mt=1). Since the state is binary, the bel(mt=0) 

can be calculated by a straightforward subtraction: 

 

bel(mt=0) = 1 – bel(mt=1)                                                                                             (4.1) 

 

Since the map state is a matrix, its belief is also a matrix. So, in equation (4.1), the 

“1” is a full-1 matrix of the same dimension of bel(mt). 

Therefore, considering the cell n, with 1 < n < N, its probability of occupation is 

evaluated, i.e. the probability that the state of the cell n is equal to 1. This 

probability value ranges between 0 and 1. It will be 0 when the cell is occupied 

with a probability of 0%, i.e. free with a 100% probability. Instead, the probability 

value will be 1 if the cell is occupied with a 100% probability. In practice, the 

probability values will never be precisely 0 or 1. This is due to the nature of the 

recursive probabilistic calculation and to the initial state of the map. Indeed, at 

time t0 = 0, when no measurement has yet been received from the sensors, the 

maximum uncertainty value p(mn,t0 = 0.5) is assigned to each cell of the map. 

During the prediction step the control data ut, that is the measurements of the 

encoders, are processed. As mentioned above, they do not directly affect the map 

belief. Indeed, the data ut are used exclusively for the calculation of the robot 

pose. Therefore, it can be said that the current prior belief calculated in line 3 is 

equal to the previous posterior belief:  
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bel(mn,t) = ∑i p(mn,t=1 | ut, mn,t−1=mi) bel(mn,t−1=mi) = 
                = ∑i p(mn,t=1 | mn,t−1=mi) bel(mn,t−1=mi) = 
                = bel(mn,t−1=mi)                                                                                               (4.2) 

 

The notation mi represents one of the two possible values of the binary state: 1 or 

0. So, the sum over the index i computes the probability that mn,t is 1 processing 

the control ut, considering the two possible starting cases mn,t-1 = 0 and mn,t-1 = 1. 

When the control does not influence this probability, the previous belief cannot 

change and the prior is equal to the previous posterior (equation (4.2)). 

The update step is carried out in line 4 of the Table 4.1: 

 

bel(mn,t) = η p(zt | mn,t=1) bel(mn,t=1)                                                                        (4.3) 

 

The standard approach uses this equation to update the map state depending 

from the measurement data zt. The output is a probabilistic value from 0 to 1, 

which must be truncated at a certain number of digits after the decimal point. 

There exists another method to represent the occupancy likelihood of a cell. This 

method arises from the same root of equation (4.3). The equation (4.3) derives 

from the probability that a state takes place at time t, giving the whole set of 

measurements z1:t, gathered from time t = 1 to the current time t. A generic entry 

of the map state matrix, mn,t, and its likelihood to be equal to 1 are taken in 

consideration. This probability can be rewritten like: 

 

bel(mn,t) = p(mn,t=1 | z1:t) 

 

The Bayes rule and the assumption of complete state can be implemented to this 

equation. 



- 57 - 
 

p(mn,t=1 | z1:t) = 
p(zt | mn,t=1,z1:t−1) p(mn,t=1 | z1:t−1) 

p(zt | z1:t−1)
             Bayes rule on mn,t 

                          = 
p(zt | mn,t=1) p(mn,t=1 | z1:t−1) 

p(zt | z1:t−1)
                        complete state 

                          = 
 p(mn,t=1 | zt) p(zt) p(mn,t=1 | z1:t−1) 

p(mn,t=1) p(zt | z1:t−1)
              Bayes rule on zt 

 

The same procedure is accomplished for the opposite event mn,t = 0. 

 

p(mn,t=0 | z1:t) = 
 p(mn,t=0 | zt) p(zt) p(mn,t=0 | z1:t−1) 

p(mn,t=0) p(zt | z1:t−1)
 

 

The ratio of both probabilities is computed: 

 

p(mn,t=1 | z1:t) 
p(mn,t=0 | z1:t)

 = 
 p(mn,t=1 | zt) p(mn,t=1 | z1:t−1) p(mn,t=0)
p(mn,t=0 | zt) p(mn,t=0 | z1:t−1) p(mn,t=1)

 

 

Probabilities p(mn,t=1 | z1:t) and p(mn,t=0 | z1:t) are complementary to 1. Then 
p(mn,t=0 | z1:t) can be written like 1 - p(mn,t=1 | z1:t). The ratio becomes: 

 

p(mn,t=1 | z1:t) 
p(mn,t=0 | z1:t)

 =  p(mn,t=1 | zt) 
p(mn,t=0 | zt) 

  p(mn,t=1 | z1:t−1) 
 p(mn,t=0 | z1:t−1)

  p(mn,t=0)
p(mn,t=1)

                           (4.4) 

 

 

Every term of this equation is divided for its complementary. The logarithm of the 

ratio of probabilities assigned to opposite binary events is named log odds ratio. 

The log odds ratio of a generic state x is the l(x) function: 

 

l(x) = log (
p(x)

1 − p(x)
)  
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The posterior belief of the map state computed for the generic cell n, bel(mn,t), can 

be represented in log odds form: 

 

l�mn,t� = log (
bel(mn,t)

1 − bel(mn,t)
)  

 

The log odds ratio of the posterior map belief can be evaluated from the equation 

(4.4), introducing a logarithm. Therefore, the multiplication of ratios becomes a 

sum of logarithms of those ratios. 

 

l�mn,t = 1 | z1:t� = log�
bel(mn,t = 1 | z1:t)

1− bel(mn,t = 1 | z1:t)
�

=  log�
p(mn,t = 1 | zt)

1 − p(mn,t = 1 | zt)
� + log�

p(mn,t = 1 | z1:t−1)
1− p(mn,t = 1 | z1:t−1)�

+ log�
1 − p�mn,t = 1�

p�mn,t = 1�
�

=  l�mn,t = 1 �zt) + l�mn,t = 1 �z1:t−1)−  l (mn,t = 1) 

 

A shorter form of this equation is introduced substituting l(mn,t | z1:t) with ln,t. As 

in the case of the belief bel(mn,t), the notation l(mn,t) implies mn,t = 1. 

 

ln,t = l(mn,t | zt) + ln,t-1 - l0                                                                                                (4.5) 

 

The first log odds ratio ln,t represents the posterior belief about the occupancy of 

the cell n at time t (mn,t = 1). It is computed by means of the sum of three 

logarithms. l(mn,t | zt) is the inverse measurement model. An inverse 

measurement function p(mt | zt) is preferable to the forward measurement 

function p(zt | mt), since the first is easier to implement. The log odds ratio ln,t-1 

represents the previous posterior belief of the n cell. The log odds ratio l0 
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computes the belief about the occupancy of the cell without any past or present 

knowledge. This is the starting scenario, before any control and measurement. 

When the robot must map a completely unknown environment, each cell belief is 

initialized with 0.5, the maximum uncertainty value. This is the most common 

situation. In this case the log odds ratio l0 is the same for every cell of the grid at 

each time step and is computed as follows. 

 

l0 = log�
p(mn,t=0)

1− p(mn,t=0)�
= log �

0,5
1 − 0,5

� = log(1) = 0 

 

Then, using a log odds form of belief in a starting fully unknown environment, all 

the elements of the map belief matrix are initialized with 0.5. These elements 

represent the log odds believes of distinct cells of the map. At each time step, each 

element is updated by means of the equation (4.5), along with the measurement 

data zt. This corresponds to the update step of a discrete Bayes filter. Being l0 = 0, 

the equation can be rewritten: 

 

ln,t = ln,t-1 + l(mn,t | zt)                                                                                                      (4.6) 

 

In log odds form, the update is accomplished by a simple sum. Moreover, each 

element of the map belief matrix assumes a value from -∞ to +∞. This 

representation introduces an important advantage. It avoids problems of 

truncation, especially for probability values closer to 0 or 1 (values that cannot be 

reached). The higher above 0 the probability value, the higher the belief that the 

cell is occupied. The lower below 0 the probability value, the higher the belief that 

the cell is free. A threshold must be set. If the cell belief is greater than this positive 

threshold, the cell is considered occupied with enough certainty. If the cell belief 

is smaller than the negative threshold, the cell is supposed to be free. When the 

belief of the cell is a value that ranges between the negative threshold and the 
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positive threshold, the cell state is uncertain. Therefore, the belief values of these 

cells cannot assign a state with enough confidence. 

 

4.2 Input/ Output analysis 
 

The Occupancy Grid Mapping needs some inputs and returns other outputs. Inputs 

are given from the TurtleBot3 sensors, over the ROS framework. Let us go into 

detail about this topic. The mapping algorithm needs two measurements to work, 

odometry and laser scan. Odometry specifies position and orientation of the robot 

with respect to a coordinate frame. This latter is positioned at the starting point 

of the robot. Odometry is updated recursively at each measurement step, adding 

the shift in position or the change in orientation detected from the encoders. 

Encoders are incremental sensors that detect the movement by means of the 

wheel rotation. The TurtleBot3 has two encoders, one for each wheel. Raw data 

coming from encoders are elaborated from the robot onboard computer, to 

achieve the odometry measure. Odometry is then posted on a ROS topic. From 

this topic data can be read from the remote PC, where the mapping algorithm 

runs. ROS network is needed to share the measurements from the robot PC and 

the remote PC, through the Wi-Fi. 

Laser scan is a set of 360 measurements taken from the Lidar. Working at a certain 

frequency, the 360° laser sensor mounted on TurtleBot3 gathers a set of range 

measurements around it. The 360° Lidar is a rotating laser. Rotation velocity 

defines the frequency of measurements achievement. During a single round, the 

sensor sends a laser ray at each degree. Based on returning time of each ray, 

distance from an obstacle is computed for that degree. This means that at each 

time step Lidar obtains a set of 360 measurements, each one shifted from the 

previous one by 1°. Even laser scans are published by the TurtleBot3 on a ROS 

topic. Sent data are organized in an order vector of 360 elements. The “0” element 

corresponds to the distance detected at degree 0, the “1” element to the 

detection at degree 1 and so on, until the “359” element. 
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All data shared via ROS by the TurtleBot3 can be acquired from a device connected 

to ROS framework. The list of active topics, where data are published, can be 

carried out running on a terminal window the command: 

 

$ rostopic list 

 

Here all devices connected to ROS can publish on different topics. Relevant topics 

for the thesis purpose are /odom and /scan. To observe the structure of published 

data, the command “rostopic echo /odom” must be launched from the terminal. 

The topic /odom is considered. Odometry data represent the pose of the robot. 

They are divided into position and orientation. Position is a 3-dimensional variable, 

therefore it is divided in its three components x,y and z. Orientation is represented 

in the quaternion form, then it is composed by four components x,y,x and w. In 

the /odom topic, position and orientation are collected in the variable vectors 

pose.pose.position and pose.pose.orientation, respectively. 

Laser scan is a vector with dimension equal to 360. Command “rostopic echo 

/scan” is used to see how the vector of laser measurements is published. Laser 

scan data are published under the variable vector ranges. 

During a mapping process execution, the developed program must enter the 

relevant topics and read published data. To accomplish this, the knowledge of the 

exact data structure of the ROS topics is needed. The submitted method can be 

used for discovering this structure. 

Odometry and laser scan are necessary to update the robot state and the map 

state. Odometry is used to localize the robot. It is published on topic /odom at a 

sampling rate of about 30 Hz. Thus, robot can localize itself into the created map 

with that frequency. Laser scan is used to detect objects around the robot. Laser 

data are collected into a vector and published on topic /scan with a frequency of 

about 5 Hz. This sampling rate is limited by the sensor rotational speed. Laser scans 

alone cannot build a map. They are series of points taken around the robot, but 
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the robot must be localized. Then odometry is used to identify the robot pose in a 

map, previously built and initialized with the maximum uncertainty degree. At 

start up, a system reference frame is created, to which robot pose and map refer. 

When the robot moves, odometry tracks its position in the map and selects which 

cells of the map are involved in the update step of the Occupancy Grid Mapping 

algorithm. Then laser data set is used to update the belief of the selected cells. 

The working frequency of sensors is very important and must be analyzed. 

Odometry is published with a frequency of 30 Hz, laser data with a frequency of 5 

Hz. This means that whenever a laser scan is gathered, robot pose has been 

already updated a few times. The limiting sensor of the system is the laser scanner. 

When programs are developed to run on this system, their working frequency 

must be evaluated in comparison with the Lidar sampling rate. Scanning at 5 Hz 

implies that obstacles are identified every 0.2 seconds. Then, to not waste a set of 

laser data, every external cycle process must terminate in 0.2 seconds. A mapping 

algorithm with an updating cycle frequency lower than 5 Hz loses some sets of 

laser scans. For example, the case in which a mapping algorithm processes a data 

set in 0.3 seconds is examined. At time t = 0 a laser data set is published and the 

mapping algorithm is executed. At time t = 0.2 another laser scan is ready, but the 

mapping algorithm is busy. At time t = 0.3 the algorithm becomes free, but cannot 

process data set published 0.1 seconds earlier, because the current pose of the 

robot does not coincide with the previous one. Updating the map with these data 

translates the occupation of some cells from their real position to a faulty one, 

based on the movement of the robot in the last 0.1 seconds. Then the robot has 

to wait 0.1 seconds for the next laser scan. A slow mapping process inevitably 

implies a loss of some laser data sets. 

The output of the developed Occupancy Grid Mapping is the map belief matrix. 

This matrix has a pre-set dimension, i.e. a fixed number of elements. Each element 

represents the occupancy belief of a cell of the map. The position of the elements 

in the matrix corresponds to the position of the cells in the map. As mentioned 

above, the log odds form is used to state the map belief. Commonly the 

environment to map is unknown, so at start up all the elements of the map belief 
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have a 0 value. During robot recon, cell believes are updated and can assume a 

value from -∞ to +∞. 

When the developed mapping program is asked to show the built map, the map 

matrix is analysed and plotted. The created image looks like an ordered set of 

coloured points, representing each element of the matrix. Each point is located 

based on the position of the element in the matrix and is associated to the centre 

of a cell of the grid map. The color of each point is assigned with respect to the 

associated belief value of that cell. There are three different colours. Black 

describes a cell occupied by an obstacle. White is assigned to a free cell. Finally, 

blue is associated to unknown cells. Two thresholds are used to establish 

probability values over which a cell changes its believed state, and then its colour. 

Whenever the user wants, he can ask the algorithm to process data relative to the 

map and plot it. During the plot process the robot can continue to navigate and 

update its map. The printed map will contain all the updates accomplished before 

the plotting request. 

 

4.3 The developed algorithm 
 

The thesis purpose is the development of an algorithm for the mapping of an 

indoor environment. Localization is intrinsically connected to the mapping goal, 

then it is carried out, but not improved. The Occupancy Grid Mapping is the type 

of algorithm chosen to develop. The log odds ratio is the form of representation 

for the belief of map state. Odometry and laser scan data are the inputs of the 

algorithm. The map belief matrix and its plot are the outputs. Carried out these 

starting decisions and considerations, the mapping algorithm can be developed. 

The first version of the program is analyzed in this section. In the next one, 

performed improvements and observed problems about the algorithm are 

examined. 

Mapping and localization algorithm is developed in a script written in python 

programming language. Let us have a more detailed look at the program. The full 
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python script can be found in the Appendix B, but analyzed parts are reported 

here. 

 

4.3.1 Imports 
At the start-up all the necessary imports are performed. 

 

2 #Imports: 
3 import time 
4 import threading 
5 import math 
6 import numpy 
7 from tf.transformations import euler_from_quaternion 
8 import matplotlib.pyplot as plt 
9 
10 import rospy 
11 from sensor_msgs.msg import LaserScan 
12 from nav_msgs.msg import Odometry 
13 from geometry_msgs.msg import Twist 
14 from std_msgs.msg import String 

Table 4.2 

 

The first block imports all the needed structural and mathematical modules and 

functions. time is a common module in python with useful functions like 

time.sleep(x), that makes the current process wait for x seconds. threading module 

is used to run more processes simultaneously within the same program. It is 

employed when a part of the program must wait for any kind of input, while 

another part must be processed. math module makes available many 

mathematical functions defined by the C standard. Thus, algebraic functions, 

elementary transcendental functions, like exponential, trigonometric, logarithmic 

and hyperbolic ones, function for the conversion between radians and degrees, 

and so on. numpy module introduces useful functions for matrices initialization 

and handling. From the tf.transformations module, the euler_from_quaternion 

function is imported. Since the input orientation measurement is taken from 
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/odom topic in quaternion form, it must be converted into Euler representation. 

Euler angles are straightforward to be processed by the Occupancy Grid Mapping 

program. matplotlib.pyplot is the module that operates on mathematical plots. It 

is imported as plt, then it is invoked typing “plt”. 

Imports in second block are required to introduce python functions related to the 

ROS environment. rospy module is needed to handle operations on ROS topics 

from a python script. Topics have some data posted, by means of published ROS 

messages. When the node created by the program wants to publish or read a 

message from a topic, it must declare the type of the involved message. In lines 

from 11 to 14, four types of message are imported. These messages will be 

examined later on. 

After having imported the needed modules the program can run. Firstly, the 

mapping program must initialize a node. 

 

17 #Start up node of the program: 
18 rospy.init_node('my_slam') 

Table 4.3 

 

The new node my_slam registers on the Master node. A node must be associated 

to the developed program to make it interact with the ROS framework. Master 

node can connect registered nodes to each other and make them communicate 

by means of topics. Then, my_slam node is linked to the required topics, stated in 

the following parts of the program. 

 

4.3.2 Parameters setting 
Another initial step is the set-up of the parameters used by the program. 
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21 #Set up parameters: 
22 global grid_map, my_pose_x,my_pose_y,my_pose_theta, n_plots,plots, 

res, lo1,lo0,pz1m1,pz0m0, semaph 
23 grid_map=numpy.zeros((5000,5000)) 
24 my_pose_x=[] 
25 my_pose_y=[] 
26 my_pose_theta=[] 
27 n_plots=0 
28 plots=[] 
29 res=0.01 
30 pm1z1=991/1000.0 
31 pm0z0=(1000-6)/1000.0 
32 lo1=math.log(pm1z1/(1- pm1z1)) 
33 lo0=math.log(pm0z0/(1- pm0z0)) 
34 semaph=0 

Table 4.4 

 

Some parameters are fixed, others are settable. At line 22 all the parameters are 

declared as global variables. In this way, they can be recalled into functions of the 

script maintaining their set value. A more in-depth analysis is carried out on this 

fundamental step. The first variable is grid_map, i.e. the belief matrix of the grid 

map. This is also the output variable of the mapping algorithm. Two important 

settable variables are stated here: the dimension of the grid map and the a priori 

knowledge of the map. The environment to map is usually completely unknown 

to the robot, so each cell belief has a value equal to 0 (map belief is represented 

by means of log odds ratios). 

The dimension of the matrix is a settable variable, defined by the user depending 

on the granularity of the map and the extension of the environment. The variable 

used to set the resolution of each cell is res. Values assigned to grid_map 

dimension and res must be a trade-off based on the area to map. A smaller 

building allows to implement a lower resolution with a consecutive higher map 

matrix dimension. Lower the res value, higher the map resolution. A limit to the 

res value reduction is the time cost of the mapping process. It is harder to assign 

a laser measurement to the correct cell rather than to the next one, when they 
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are too little. A higher computation effort is needed. Additional computations are 

necessary if many cells result unseen between two laser rays. A laser ray is shifted 

from the previous one by 1° and some cells can be in this cone. If the cell 

dimension is too low, too many cells are not involved in laser scanning. Then, an 

additional algorithm must evaluate if the unseen cells can be considered occupied 

or free, depending from their position with respect to the nearby observed cells. 

A good value of resolution for the map is 1 centimetre. The building mapped in the 

thesis project is the LIM lab of Politecnico di Torino, where this work has been 

performed. A map size suitable for this environment is a square area of 50 x 50 

metres. 

In order to choose an appropriate dimension for the map belief matrix, correlation 

between the matrix and the built map is analyzed in the following. The developed 

map is a top-view 2D grid, thus it can be represented in a Cartesian plane. Entries 

of the matrix can also be depicted in a Cartesian plane, basing on their position 

into the matrix. Let us consider the first quadrant of the plane, with positive axes 

values. Entry m0,0 of the map belief matrix coincides with the origin of the 

Cartesian plane. The first row of the matrix, with entries m0,n (n = 0, 1 ,2 ,3 ,4 ,5 

…), represents the Cartesian horizontal axis x. The first column, with entries mn,0 

(n = 0, 1 ,2 ,3 ,4 ,5 …), represents the Cartesian vertical axis y. The resolution of 

the map indicates the distance between two consecutive entries, of the same row 

or column, in the Cartesian plot. If every matrix entry is plotted on this Cartesian 

plane and straight lines are drawn over the matrix rows and columns, the plot 

shown in Figure 4.1 is obtained. 
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Figure 4.1 

 

Each matrix entry is positioned at the intersection of two lines. An entry represents 

the occupancy belief of a cell of the map. This probability value is associated to the 

centre of that cell. For this reason, lines intersection of Figure 4.1 are related to 

the centres of the cells of the grid map. The central point of each cell is 1 

centimetre far from the middle points of neighbouring cells. All the cells have the 

same extension, so the grid map can be plotted considering a square area around 

each intersection. 
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Figure 4.2 

 

In Figure 4.2 a grid map is depicted, showing its correlation with the matrix of map 

belief. The occupancy of cells is not considered yet. Dashed straight lines are the 

same of the previous graph in Figure 4.1. They represent rows and columns of the 

map matrix. Continuous straight lines define the edge of cell regions. 

Once the size of the map area is established, the matrix dimension is equal to that 

size evaluated considering the resolution as unit of measurement. As already 

mentioned, the needed map size is 50 x 50 meters and the resolution chosen is 1 

centimetre. The dimension of the grid matrix is 5000 x 5000. This matrix is 

initialized at line 23 of the mapping script by means of the numpy module. At the 

start-up, it is a 5000-by-5000 zero matrix. 

The next three initialized parameters are my_pose_x, my_pose_y and 

my_pose_theta. They are three vectors that store the pose values registered 

during mapping execution. When the movement of a wheeled robot is constrained 

on a two-dimensional plane, it has three degrees of freedom. Robot can translate 

along the two axes defining the plane or rotate along an axis perpendicular to the 
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plane. Then only the three mentioned parameters are sufficient to describe the 

robot pose. All the past history of the pose values is used when the map is plotted 

to also print the path performed by the robot. If this path representation is useless, 

the three pose parameters can be associated to three values that are updated 

each time, without storing all the past pose. They are initialized like three empty 

vectors at the start-up. They cannot be set. 

n_plots and plots are not settable parameters needed for the map printing in 

python, when the pyplot module is used. To plot more map plots during a mapping 

session, every map must be built, saved and printed on a new figure, until the stop 

of the program. In the map plotting function of the script, parameter plots is a list 

where different printed maps are saved in different locations. It is initialized like 

an empty list. Parameter n_plots is a counting variable needed for the association 

between a new map plot and the next empty element of the plots list. It is 

incremented by 1 every time a map is printed. n_plots is initialized with 0. 

The next parameter, set at line 29, is res. It represents the resolution of the map 

grid. Its value is chosen by the user depending on a series of factors described 

above. In this thesis it is chosen equal to 1 centimetre. Odometry position and 

laser scan measurements taken from ROS topics are represented in metres. Since 

mapping program works on indexes of the map matrix to update the entries, all 

distance measurements must be transformed in centimetres. Parameter res is 

employed with this goal. Data coming from TurtleBot3 sensors are divided by res 

to represent them in centimetres. Therefore, res is initialized with 0.01. 

From line 30 to 33, there are the parameters used in computation of the inverse 

measurement model. The occupation belief of a generic n cell, in log odds form, is 

stated by the equation (4.6), reported here: 

 

ln,t = ln,t-1 + l(mn,t | zt) 
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The belief is achieved adding to its previous value a probability value given by the 

inverse measurement model. It evaluates the probability of a state, given a 

measurement about it, p(mt | zt). This probability value depends on the accuracy 

of the laser sensor used to obtain the measure. For testing the 360° Lidar accuracy, 

the TurtleBot3 Burger is placed at 0.5 metres from a wall and 1000 sets of laser 

measurements are taken. From each set, only the measure corresponding to the 

laser ray casted at 0° is considered. These data are reported in the Appendix A. 

Three values appear more often: 0.5, 0.500999987125 and 0.501999974251. 

There is not only one right value, due to not perfect precision of the Lidar. Other 

values can be considered wrong and their presence reduces the accuracy of the 

sensor. Some of them are random values around the possible right one. Instead, 

measurement 0.0 represents a failure in the functioning of sensor. 

The probability p(mt | zt) can be evaluated by means of the ratio between the 

number of correct measurements and the total. Number of recurrences of the 

three more frequent values is 991. The total number of measurements is 1000. 

The probability value obtained by the inverse measurement model is stored in 

parameter pm1z1. 

 

pm1z1 = p(mt=1 | zt=1) = 991/1000.0 

 

pm1z1 represents the probability that a cell is occupied when it is seen occupied 

by the laser sensor. It is a degree of correctness of Lidar when facing an obstacle. 

Parameter pm0z0 is its dual. It represents the degree of correctness of the sensor 

when there are not obstacles in front of it. Other 1000 sets of measurements are 

accomplished as before, but this time TurtleBot3 is facing a free hallway. Once 

again only measures relative to the laser ray casted at 0° are considered. Results 

are not shown, since almost all the values are equal to “inf”. There are not 

inaccurate values, but faulty measurements still occur. inf” value means that the 

distance detected in front of the robot is higher than Lidar maximum range, even 
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if some exceptions can arise. From the 1000 laser measurements, there are six 0.0 

values, as before related to the wrong functioning of the sensor. Parameter pm0z0 

is computed like the ratio between correct detections and total ones. 

 

pm0z0 = p(mt=0 | zt=0) = (1000-6)/1000.0 

 

Belief is represented in log odds form, then pm1z1 and pm0z0 must be 

transformed in log odds ratios. pm1z1 is divided by its opposite binary case, i.e. 

the probability that the detected cell has state 0 even if it is measured 1. This last 

probability is pm0z1 and is equal to (1-pm1z1). Log odds ratio of pm1z1 is 

represented by the parameter lo1, computed at line 32. Log odds ratio of pm0z0, 

lo0, is calculated in the same way at line 33. Their values are computed explicitly 

below: 

 

lo1 = log(pm1z1/(1-pm1z1)) ≈ 4.7015 

lo0 = log(pm0z0/(1-pm0z0)) ≈ 5.1100 

 

During the update of the map, belief of the cells involved in the measurement 

process is evaluated. Parameter lo1 is added to the previous belief of cells 

detected occupied. Parameter lo0 is subtracted to the belief of cells detected free. 

The last parameter initialized here is semaph. It is not settable and is equal to 0 at 

the start-up of the program. Its function is to block more updates of the map with 

the same laser scan data. This blocking parameter will be better analyzed later on. 

 

4.3.3 The “main” and the structure of the program 
The rest of the program can be decomposed in some macro groups. From line 37 

to 53 there are three mathematical functions, invoked during the program. From 

line 56 to 74 there are the callback functions, run in response to messages 
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published on a subscribed ROS topic. From line 77 to 173 there is the principal 

function, that updates the map belief matrix depending on odometry and laser 

scan input data. From line 176 to 196 there are the threading classes that handle 

the execution of more processes at the same time. From line 199 to 215 there is 

the function that plots the map belief matrix into a grid map. In the end, from line 

218 to 232 there is the main function of the python program. Each part of the 

script is presented in order of processing and analyzed. When the program starts, 

it imports specified external module and functions, sets up all the parameters and 

then runs the main function. Therefore, the main function is now considered. 

 

218 #Main 
219 if __name__=='__main__': 
220     grid_map_plt=numpy.zeros((5000,5000)) 
221     global pub 
222     pub=rospy.Publisher('/a_topic',String,queue_size=10) 
223     sub=Subscribers() 
224     sub.start() 
225     time.sleep(1) 
226     mpu=MapUp() 
227     mpu.start() 
228     while True: 
229         print_map=raw_input("Do you want to plot the map? y/n ") 
230         if print_map=='y': 
231             grid_map_plt=grid_map 
232             PlotMap(grid_map_plt) 

Table 4.5 

 

Let us look in detail at the various pieces of the main. 

 

220     grid_map_plt=numpy.zeros((5000,5000)) 

 

This line initializes a second map matrix identical to that of the parameters setting. 

Values assigned to the entries are not important. The dimension of grid_map_plt 
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must be the same of grid_map. This new matrix is used at line 231 to decouple the 

map matrix continuously updating from the matrix that must be plotted when 

requested by the user. 

 

221     global pub 
222     pub=rospy.Publisher('/a_topic',String,queue_size=10) 
 

Variable pub is initialized like global, so that it can be used by another function of 

the program. To the variable pub is associated a publisher. From now on, the node 

started by the program, my_slam, can publish messages on a specific topic. The 

first argument, /a_topic, is the name of the topic where the node publishes. If a 

topic with this name is not present yet, it is created. The argument String defines 

the type of posted messages. The message type must be included in the imports 

at the beginning of the script (line 14). String messages allow to share vectors of 

characters. The queue_size states how many messages can be stored in the 

outgoing queue. When the ROS messages that must be published are sent faster 

than the capacity of the system to publish them to selected topic, the outgoing 

queue is filled. When a new message overcomes this limit, the older stored 

message is deleted. 

 

223     sub=Subscribers() 
224     sub.start() 
 

A variable named sub is associated to the class Subscribers. The class is initialized 

and waits. In line 224, when the command start() is sent, the function run(self) of 

the class associated is executed. This class is used to create a threading process, 

i.e. a simultaneous process that works in parallel to the main one. This new process 

subscribes my_slam node to the topics that provide the inputs for the 

MapUpdater function. 
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225     time.sleep(1) 
226     mpu=MapUp() 
227     mpu.start() 
 

The same procedure holds for the class MapUp. At line 226 it is initialized and at 

following line it is started. However a time.sleep() function is introduced. This 

function stops the execution of the program for a time equal to the value indicated 

by its argument, evaluated in seconds. Class MapUp creates another threading 

process that keeps MapUpdater function active, selecting cases in which the map 

belief must not be updated. Since the MapUdater function needs measurements 

published on topics /odom and /scan and these data are received only when the 

class Subscribers has run, a delay of 1 second is introduced between the starting 

of these two classes. In this way, MapUpdater function runs when node my_slam 

has subscribed to the required topics and the first messages have already been 

received. 

 

228     while True: 
229         print_map=raw_input("Do you want to plot the map? y/n ") 
230         if print _map=='y': 
231             grid_map_plt=grid_map 
232             PlotMap(grid_map_plt) 

 

The main function ends with an infinite loop started at line 228. It stops when the 

program is shut down. In the terminal window, the program asks to the user if he 

wants to plot the grid map, then waits for an input by the terminal. When “y” is 

typed and entered, lines 231 and 232 are executed. If other characters are typed, 

program shows again the message of line 229 on terminal and waits for another 

input. If the user wants to plot the map, he sends the “y” command. Program 

enters the if statement. Firstly, matrix grid_map, that contains the map updated 

until that moment, is copied into the matrix grid_map_plt. Then, the function 

PlotMap is executed for printing map matrix like an image. The argument of this 

function is grid_map_plot. Then the plotted map is not grid_map but its copy. 
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Matrix grid_map can be continuously updated, without influencing the printing 

process. Plotted map is the copy of the map saved at the moment of the request. 

As a result, variables grid_map, continuously updated, and grid_map_plt, 

processed to print the grid map, are decoupled. The image of the map is available 

when the user wants without stopping the mapping process. 

 

4.3.4 Subscribers 
The main process is blocked into an infinite loop. Simultaneously, other two 

processes are run by two threading classes. The first executed is reported below 

in Table 4.6. 

 

188 #Set up subscribers to ROS topics: 
189 class Subscribers(threading.Thread): 
190     def __init__(self): 
191         threading.Thread.__init__(self) 
192     def run(self): 
193         subLs=rospy.Subscriber('/scan', LaserScan, callbackLs) 
194         subOd=rospy.Subscriber('/odom', Odometry, callbackOd) 
196         rospy.spin() 

Table 4.6 

 

Line 195 is omitted because it belongs to an improvement developed later. It will 

be introduced in the next chapter. The first lines define the thread class and 

initialize it. Lines from 192 to 196 are the commands executed when the class is 

run. In lines 193 and 194 two subscribers are set. Each one has three arguments. 

The first is the name of the topic to which node my_slam subscribes. The second 

argument indicates the type of message read from that topic. Like it has been said 

for the publisher, the message type must be added to the import statements at 

the beginning of the script (lines 11 and 12). The third argument specifies a 

callback function. This callback is defined in the script and is executed every time 

a new message is posted on the specified topic. At line 196, rospy.spin() is a 

command of the ROS environment that keeps on hold the process. This threading 
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process does not terminate or restart. It does nothing but keeps active the two 

subscribers. Program node must subscribe to two topics: /scan and /odom. Data 

shared by these topics are the input arguments for the MapUpdater function. 

Let us consider the two callback functions executed when a LaserScan message or 

an Odometry message are published respectively on /scan or /odom topics. When 

a laser scan is posted, the callbackLs function is run: 

 

56 #Callback running when new LaserScan message published: 
57 def callbackLs(msg): 
58     global rngs_scan,semaph 
59     rngs_scan=msg.ranges 
60     semaph=1 

Table 4.7 

 

The argument of a callback is the message that invokes it. In this case this 

argument is named “msg” but can be associated to any variable. The name of the 

argument is used to recall the LaserScan message into the callbackLs function. At 

the beginning of the function block, two variables are declared like global. As a 

result, the function can modify their value and share it with the whole program. 

Then in the variable rngs_scan is stored the vector with the 360 measurements 

gathered by the Lidar. This vector is brought by the LaserScan message msg. As 

shown in the previous section, the variable of the message that holds the laser 

values is ranges. So rngs_scan is set equal to msg.ranges. This procedure is 

fundamental to lighten the processing load of the callback. If the callback is still 

busy when the next LaserScan message is published, a failure occurs and laser data 

are no more updated. This holds for every callback function. For this reason, 

coming laser data are stored into another variable that is processed by another 

function. 

In the last line of the callbackLs the semaph value is changed. The variable semaph 

is initialized with 0 in the parameters setting section. As mentioned above, it is a 

blocking parameter for the map update. When it is equal to 0 the MapUpdater 



- 78 - 
 

cannot be executed, otherwise, when its value is 1, the map update is performed. 

The variable semaph is necessary. When the robot navigates, odometry and laser 

scans data are sent to the ROS network and shared with the Occupancy Grid 

Mapping program. The odometry information is published with a frequency of 

around 30 Hz, while laser scans are published with a frequency of around 5 Hz. 

Then, from a laser data and the next one, more odometry messages are posted on 

ROS. When a laser scan is available, MapUpdater is executed along with the most 

recent laser and odometry data. As mentioned before, the map update process 

must be accomplished before a new laser data is posted, to not waste these data. 

Then, in a loop cycle, MapUpdater is restarted once a cycle is completed, but now 

previous laser data with the current odometry are processed. This may lead to a 

wrong association between cells and their values. semaph variable prevents this 

error. At the beginning semaph =0 and the MapUpdater function is blocked, since 

there are not input data to process. When a laser scan is published on /scan topic, 

semaph is set to 1 in the callbackLs function. MapUpdater can be executed, 

updating the map matrix with the current values of laser data and odometry. 

When this process is completed, the semaph value must be set again to 0 to block 

another consecutive execution of MapUpdater. It waits until a new laser scan is 

published on /scan and, therefore, callbackLs sets semaph to 1. 

When a message is posted on /odom topic, the callbackOd is run: 

 

63 #Callback running when new Odometry message published: 
64 def callbackOd(msg): 
65     global my_pose_x,my_pose_y,my_pose_theta 
66     my_pose_x.append((-msg.pose.pose.position.y+10.000)/res) 
67     my_pose_y.append((msg.pose.pose.position.x+10.000)/res) 
68     my_pose_theta.append(math.degrees(get_yaw_from_quaternion( 

msg.pose.pose.orientation))+90) 
Table 4.7 

 



- 79 - 
 

Like in the previous callbackLs, message published on /odom topic is the argument 

of the callbackOd function. Three variables are declared “global” and store the 

useful pose values that must be processed in the MapUpdater function. Thus, 

callbackOd terminates and waits for another Odometry message. Pose variables 

stored from the argument message correspond to the three degrees of freedom 

of the robot. Let us consider a 3-dimensional reference frame xyz and TurtleBot3 

moving on plane xy. Translations of the robot along x and y directions are saved in 

my_pose_x and my_pose_y. Rotation of the robot around z axis is stored in 

my_pose_theta vector. Since the measurements are published in metres unit, they 

must be transformed in centimetres, dividing them for the parameter res. 

Odometry data published on /odom are computed from the TurtleBot3 onboard 

PC, based on the measurements of the wheel encoders and considering the robot 

reference frame. Map has another reference frame different from the robot one. 

Odometry data must be translated to the map reference frame to be processed 

from the MapUpdater function. 

Robot and map reference frames are shown in Figure 4.3: 

 

 

Figure 4.3 

 

At the start-up of the program, robot and map reference frames coincide. Their z 

axis is perpendicular to the ground plane, exiting from it. If the robot is moved 



- 80 - 
 

straight ahead, in the map representation it follows the x axis. Instead, a robot 

that moves forward without turning is usually desired to be represented by a 

translation along the direction of y axis. This provides a better understanding of 

the map and of the path accomplished by the robot, for the user who generally 

knows only the initial pose of the robot. Thus, the desired reference frame 

orientation of the robot is indicated in Figure 4.3. It is obtained by means of a 90° 

rotation of the reference frame around the z axis. The rotation matrix is the 

following: 

 

𝑅𝑅 = �
cos (90°) −sin (90°)
sin (90°) cos (90°) � = �0 −1

1 0 � 

 

Then, the transformed reference frame of the robot is: 

 

x’ = -y 

y’ = x 

z’ = z 

 

Rotations θ of the robot around the z axis, when turning, must be evaluated in the 

new reference. Since the reference frame x’y’z’ is rotated by 90° around the axis 

z’ with respect to the reference frame xyz, rotations θ’ of the robot are computed 

adding 90° to the measured ones, θ. 

 

θ’ = θ + 90° 

 

Odometry message read from /odom topic has the pose orientation represented 

as quaternions. A function must be introduced to transform quaternions in the 

Euler angles: roll, pitch and yaw. Since only rotation around the axis z is needed, a 
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function is introduced in the script, to accomplish the angles transformation and 

the selection of the yaw. 

 

37 #Function computing the yaw angle from quaternion: 
38 def get_yaw_from_quaternion(quaternion): 
39     quaternion_list=[quaternion.x, quaternion.y, quaternion.z, 

quaternion.w] 
40     (roll,pitch,yaw)=euler_from_quaternion(quaternion_list) 
41     return yaw 

Table 4.8 

 

At line 39 a list is created to have a suitable input for the transformation function. 

At line 40 an external function is used to accomplish the transformation from 

quaternions to Euler angles. This function is imported at line 7. Then at line 41 only 

the yaw is returned. 

Returning on callbackOd of Table 4.7, line 68 computes the orientation of the 

robot in the x’y’ plane: 

 

68     my_pose_theta.append(math.degrees(get_yaw_from_quaternion( 
msg.pose.pose.orientation))+90) 

 

Orientation data flow is the following. Orientation of the robot is given as 

quaternions from the variable msg.pose.pose.orientation. This variable is 

processed by the function get_yaw_from_quaternion, stated at line 37. This 

function returns the yaw angles in radians. math.degrees transforms the angle in 

degrees. To the obtained angle are summed 90°, representing the transformation 

from θ, evaluated in the xy plane, to θ’ evaluated in x’y’ plane. This final angle 

represents the orientation of the robot in the x’y’ plane and is added to 

my_pose_theta list 
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At this point, robot reference frame and map reference frame have the same 

origin and the same axis z. For an optimal map update the robot reference frame 

must be translated. Indeed, the Occupancy Grid Mapping can update only the 

matrix entries with rows and columns from 0 to 5000. This matrix corresponds to 

a square area in the first quadrant of the Cartesian plane. If the robot is positioned 

in the origin of the map reference frame, it can update only the cells located into 

the first quadrant. To build a complete map, the robot and the visual area of its 

sensors must be entirely included, at each time step, into the map. 

A roughly idea of the form of the building to map is needed, to predict the 

maximum extension of the place towards each possible direction. This is the case 

when the external dimensions of a building are known but the indoor environment 

must be mapped. For example, the lab, where the developed Occupancy Grid 

Mapping program is tested, extends only in forward and right directions, from the 

starting point. Then, the robot is positioned near the bottom left corner of the 

map. The origin of the robot reference frame is translated at point (1000, 1000) of 

the map. To perform this translation, each odometry position measurement, 

coming from the robot, is summed at 10 metres. It can be seen at lines 66 and 67 

of the callbackOd function. 

 

4.3.5 Map update function 
The other threading class of the program handles the update of the map belief 

matrix. The class is reported in the following table: 

 

176 #Thread class to continuously update map: 
177 class MapUp(threading.Thread): 
178     def __init__(self): 
179         threading.Thread.__init__(self) 
180     def run(self): 
181         while True: 
182             if semaph==1: 
183                 rngs_data=rngs_scan 



- 83 - 
 

184                 act_pose={"x":my_pose_x[-1], "y":my_pose_y[-1], 
"theta":my_pose_theta[-1]} 

185                 MapUpdater(rngs_data,act_pose) 
Table 4.9 

 

In the first lines the class is initialized. When it is run, an infinite loop is performed, 

defined by the while statement. The process waits for semaph = 1. When laser 

data is published and the callbackLs sets the blocking variable semaph to 1, lines 

from 183 to 185 are executed. In these lines, two new variables are introduced. In 

these variables are stored the input data for MapUpdater function. These data are 

the current measurements of odometry, stated with respect to the robot 

reference frame x’y’z’, and the current laser scan. At line 183, rngs_scan updated 

in the callbackLs is stored in rngs_data. At line 184, the last values of the robot 

pose vectors are saved into the dictionary act_pose. In line 185, the MapUpdater 

function is run. 

The MapUpdater function receives as inputs the current data of laser scan and 

odometry. Depending on these data, it can update the occupancy belief value of 

the cells of the map. The occupancy belief of the cells is described in log odds form. 

Then, when a laser ray identifies an object or a free space, the cells involved are 

updated, according to the following formula: 

 

ln,t = ln,t-1 + l(mn,t | zt) 

 

The occupancy cell belief is recursively updated adding to their previous belief 

value a fixed parameter. This fixed parameter is computed from the inverse 

measurement model. Using a TurtleBot3 Burger, this model leads to getting two 

parameters, lo1 and lo0, as demonstrated in the previous section. Cases of their 

use are specified during the function explanation. The MapUpdater function is 

shown in Table 4.10, but while its parts are analyzed, they are reported again, to 

guarantee a better understanding. 
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77 #MAP BELIEF UPDATE ALGORITHM: 
78 def MapUpdater(rngs_data,act_pose): 
79     global grid_map,semaph 
80     for i in xrange(360): 
81         #faulty measure 
82         if rngs_data[i] == 0.0: 
83             continue 
84         if (i+act_pose["theta"]>=-45 and i+act_pose["theta"]<45) or 

(i+act_pose["theta"]>=315 and i+act_pose["theta"]<405): 
85             #free space 
86             if rngs_data[i] > 3.5: 
87                 cnt=1000 
88                 ob_dist=350 
89                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
90                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
91                 grid_map[ind_x,ind_y]-=lo0 
92             #obstacle detected 
93             else: 
94                 ob_dist=round(rngs_data[i],3)/res 
95                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
96                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
97                 grid_map[ind_x,ind_y]+=lo1 
98                 cnt=ind_x-int(round(act_pose["x"])) 
99             for x in xrange(int(round(act_pose["x"])),ind_x): 
100                 y=int(round(yFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,x))) 
101                 if cnt<2: 
102                     grid_map[x,y]-=lo1 
103                 else: 
104                     grid_map[x,y]-=lo0 
105                 cnt-=1 
106         elif (i+act_pose["theta"]>=45 and i+act_pose["theta"]<135) or 

(i+act_pose["theta"]>=405 and i+act_pose["theta"]<495): 
107             #free space 
108             if rngs_data[i] > 3.5: 
109                 cnt=1000 
110                 ob_dist=350 
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111                 ind_x=int(round(ob_dist*math.cos(math.radians( 
i+act_pose["theta"]))+act_pose["x"])) 

112                 ind_y=int(round(ob_dist*math.sin(math.radians( 
i+act_pose["theta"]))+act_pose["y"])) 

113                 grid_map[ind_x,ind_y]-=lo0 
114             #obstacle detected 
115             else: 
116                 ob_dist=round(rngs_data[i],3)/res 
117                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
118                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
119                 grid_map[ind_x,ind_y]+=lo1 
120                 cnt=ind_y-int(round(act_pose["y"])) 
121             for y in xrange(int(round(act_pose["y"])),ind_y): 
122                 x=int(round(xFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,y))) 
123                 if cnt<2: 
124                     grid_map[x,y]-=lo1 
125                 else: 
126                     grid_map[x,y]-=lo0 
127                 cnt-=1 
128         elif (i+act_pose["theta"]>=135 and i+act_pose["theta"]<225) or 

(i+act_pose["theta"]>=495 and i+act_pose["theta"]<585): 
129             #free space 
130             if rngs_data[i] > 3.5: 
131                 cnt=1000 
132                 ob_dist=350 
133                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
134                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
135                 grid_map[ind_x,ind_y]-=lo0 
136             #obstacle detected 
137             else: 
138                 ob_dist=round(rngs_data[i],3)/res 
139                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
140                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
141                 grid_map[ind_x,ind_y]+=lo1 
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142                 cnt=0 
143             for x in xrange(ind_x+1,int(round(act_pose["x"]))+1): 
144                 y=int(round(yFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,x))) 
145                 if cnt<2: 
146                     grid_map[x,y]-=lo1 
147                 else: 
148                     grid_map[x,y]-=lo0 
149                 cnt+=1 
150         elif (i+act_pose["theta"]>=225 and i+act_pose["theta"]<315) or 

(i+act_pose["theta"]>=-90 and i+act_pose["theta"]<-45) or 
(i+act_pose["theta"]>=585 and i+act_pose["theta"]<=630): 

151             #free space 
152             if rngs_data[i] > 3.5: 
153                 cnt=1000 
154                 ob_dist=350 
155                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
156                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
157                 grid_map[ind_x,ind_y]-=lo0 
158             #obstacle detected 
159             else: 
160                 ob_dist=round(rngs_data[i],3)/res 
161                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
162                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
163                 grid_map[ind_x,ind_y]+=lo1 
164                 cnt=0 
165             for y in xrange(ind_y+1,int(round(act_pose["y"]))+1): 
166                 x=int(round(xFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,y))) 
167                 if cnt<2: 
168                     grid_map[x,y]-=lo1 
169                 else: 
170                     grid_map[x,y]-=lo0 
171                 cnt+=1 
172     pub.publish('TOOOPIIIIIC!!!') 
173     semaph=0 

Table 4.10 
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In the first line of the function, two variables are declared as global, i.e. they can 

be modified by MapUpdater and be seen from the rest of the program. 

 

79     global grid_map, semaph 

 

The first variable is grid_map, the output of the function. It is not returned at the 

end of the function, but it is read from the main function, when the user wants to 

plot the map. The second variable is semaph, that must be set to 0 when the 

grid_map has been updated. Moreover, it must be read from the class MapUp. In 

this way another execution of MapUpdater with the same laser data is avoided.  

 

80     for i in xrange(360): 
81         #faulty measure 
82         if rngs_data[i] == 0.0: 
83             continue 
 

The updating function starts. The update of the map belief takes place every time 

a laser ray carries out a measurement on the real environment. Every time a set 

of laser data is available, this set includes 360 measurements, each one gathered 

by a laser ray at each degree around the robot. So, 360 distance measurements 

are considered individually and processed, by means of the for cycle at line 80. 

From now on, the function considers only one laser measurement relative to a 

specific angle. A first distinction is accomplished at the following line. If the 

reported laser measurement is equal to 0.0, a sensor error has occurred and the 

measurement relative to that angle is faulty. Then, the function skips the update 

relative to that measurement and the for cycle starts again considering i+1. 

If the laser measure, relative to angle i, is different from 0.0 the function goes on. 
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84         if (i+act_pose["theta"]>=-45 and i+act_pose["theta"]<45) or 
(i+act_pose["theta"]>=315 and i+act_pose["theta"]<405): 

… … 
… … 
106         elif (i+act_pose["theta"]>=45 and i+act_pose["theta"]<135) or 

(i+act_pose["theta"]>=405 and i+act_pose["theta"]<495): 
… … 
… … 
128         elif (i+act_pose["theta"]>=135 and i+act_pose["theta"]<225) or 

(i+act_pose["theta"]>=495 and i+act_pose["theta"]<585): 
… … 
… … 
150         elif (i+act_pose["theta"]>=225 and i+act_pose["theta"]<315) or 

(i+act_pose["theta"]>=-90 and i+act_pose["theta"]<-45) or 
(i+act_pose["theta"]>=585 and i+act_pose["theta"]<=630): 

… … 
… … 
 

An if statement divides the Cartesian plane around the robot in four regions. 

Depending on the region in which the laser ray ends up, one of the four if-blocks 

is executed. The division, performed on the area around the robot, has the goal to 

optimize the cells selection during the belief update. In this phase the selector 

must decide which cells are hit or traversed by the considered laser ray. These four 

regions are shown in Figure 4.4. At each region corresponds the number of the 

script line that identifies it. 
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Figure 4.4 

 

The region is selected based on the point where the measurement is gathered by 

the laser scanner. Then, this point is found by means of the angle of the considered 

laser ray, with respect to the map reference frame. The angle of the considered 

laser ray, at i-iteration of the for-cycle of line 80, evaluated in the map reference 

frame, is equal to the angle i of the ray with respect to the robot reference frame 

plus the orientation of the robot considered in the map reference frame 

(i+act_pose[“theta”]). This sum may have a value between -90° and 630°. Indeed, 

i ranges between 0° and 360°, while pose[“theta”] ranges from -90° to 270°. All 

possible cases are reported in the shown if statement. 

Let us consider the first block, from line 84 to 105. There are two identified cases, 

based on the maximum range of the Lidar (3.5 metres). The first case is the 

detection of free space, so no obstacles are detected along the direction of the 

laser ray, until 3.5 metre. If an obstacle is detected at a higher distance, it is 
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considered out of range. All the cells involved in the measurement must modify 

their belief values. The second case is the obstacle detection. In this case, the last 

cell hit by the laser ray must arise its occupancy belief, while the previous ones 

traversed by the ray are considered free. They must decrease their occupancy 

belief. 

In the following part, the program processes only the last cell relative to these two 

cases (lines 85 to 98). From line 99 to 105, all the other involved cells are 

considered free space, since traversed by the laser ray. 

 

85             #free space 
86             if rngs_data[i] > 3.5: 
87                 cnt=1000 
88                 ob_dist=350 
89                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
90                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
91                 grid_map[ind_x,ind_y]-=lo0 
 

When an obstacle is detected at a distance higher than 3.5 metres or is not 

detected (rngs_data[i]=inf), the last cell of the visual range is considered free. The 

parameter cnt of line 87 is explained later on. At line 88, the variable ob_dist stores 

the maximum distance reached by the laser ray, considered in centimetres. In this 

case ob_dist is equal to 350. The selection of the cell corresponding to the point 

reached by the laser ray at 3.5 meters is achieved in lines 89 and 90. A cell is 

represented by an entry of the map matrix grid_map. The problem of the cell 

identification in the map is transposed to indices identification relative to the entry 

associated to that cell. The indices of the entries of the map matrix are integer 

positive numbers (0 included). Each integer index corresponds to a distance value 

on the x and y axes of the grid map, evaluated in centimetres from the origin. Thus, 

the indices are evaluated locating the point reached by the laser ray on the grid 
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map. The x and y components of this point are reported on the Cartesian axes. 

Indices are the integer values closest to the found components.  

At line 89 index x is evaluated. The x component of the measured point is obtained 

by a sum of vectors and then the decomposition of the resulting vector. It is better 

explained in the following Figure 4.5. 

 

 

Figure 4.5 

 

The vector of the measured point in the map reference frame is obtained summing 

the vector representing the point in the robot reference frame and the vector 

representing the robot in the map reference frame. Once the resulting vector has 

been decomposed, the x component is rounded and then transformed into an 

integer value. This integer represents the index x of the measured point, stored in 

variable ind_x. The y component is also rounded and transformed into an integer 

value. This value represents the index y and is saved in the variable ind_y. 

At line 91, the value of the grid_map entry, with indices ind_x and ind_y just found, 

is updated. The belief in log odds form is updated subtracting the parameter lo0. 
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Indeed, lo0 represents the probability of correctness when a free space is detected 

by the Lidar. The system increases its belief regarding the vacancy of that cell. 

 

92             #obstacle detected 
93             else: 
94                 ob_dist=round(rngs_data[i],3)/res 
95                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
96                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
97                 grid_map[ind_x,ind_y]+=lo1 
98                 cnt=ind_x-int(round(act_pose["x"])) 
 

When an obstacle is detected by the considered laser ray, the variable ob_dist 

stores the measurement value, rounded and transformed into centimetres. The 

indices computation is the same of the free space case, only the ob_dist differs. 

Once ind_x and ind_y have been evaluated, the corresponding matrix entry is 

updated. In this case occupancy belief is increased, adding the lo1 parameter. lo1 

represents the probability of correctness in the measurement, when an obstacle 

is detected. At line 98 the variable cnt is computed, but it will be analyzed in the 

next part of the MapUpdater function. 

All the cells traversed by the laser ray are now updated. Firstly, an entry must be 

associated to each cell. Given a line in a grid space, this line must be represented 

by a set of cells. The Bresenham’s line algorithm is used to reach this goal. It 

consists in increasing the discrete x or y value from the start point of a line to the 

end point. The choice of increasing the x or the y depends on the inclination of the 

line. Then, for each discrete value x or y the corresponding y or x is evaluated, by 

the line equation. The resulting value is rounded to the closest discrete value. 

When a line must be represented by set of cells, the result is a sequence of cells. 

They have an index always changing and an index computed by the Bresenham 

algorithm. An example of a rasterized line is shown in Figure 4.6. 
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Figure 4.6 

 

The Bresenham algorithm is implemented as two functions into the script. One 

increases the x, the other the y. 

 

44 #Bresenham's line algorithm returning y with x increasing: 
45 def yFromLine(y1,x1,y0,x0,x): 
46     y=(y1-y0)/(x1-x0)*(x-x0)+y0 
47 return y 
48 
49 
50 #Bresenham's line algorithm returning x with y increasing: 
51 def xFromLine(y1,x1,y0,x0,y): 
52     x=(x1-x0)/(y1-y0)*(y-y0)+x0 
53 return x 

Table 4.11 

 

MapUpdater function is considered again. The selection of the cells traversed by 

the laser ray is similar to the representation of a line in a grid space by a sequence 

of cells. The division of the visual area of the robot, shown in Figure 4.4, is needed 

to optimize the rasterization of the laser ray in the grid map. This rasterization is 

acomplished by means of the Bresenham’s line algorithm. The part of the script is 

the following: 

 

99             for x in xrange(int(round(act_pose["x"])),ind_x): 
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100                 y=int(round(yFromLine(act_pose["y"],act_pose["x"], 
ind_y,ind_x,x))) 

101                 if cnt<2: 
102                     grid_map[x,y]-=lo1 
103                 else: 
104                     grid_map[x,y]-=lo0 
105                 cnt-=1 
 

The region considered is the area 84 in Figure 4.4. The laser ray has a slope ranging 

from -45° to 45°. The Bresenham algorithm is hence implemented increasing the 

integer value of the index x (line 99). The starting index represents the actual 

position x of the robot rounded to the closest index x. The closing one is the index 

ind_x, obtained from the last if statement. Considering these two limit values, the 

position x of the robot must be involved in the update step of its occupancy belief 

as a free space. If the robot moves onto that cell, its occupancy belief must be 

considerably lowered. Indeed, considering that the cell, where the robot is 

positioned, is involved in this step for every laser ray i, its occupancy belief 

decreases very much. Instead, the cell corresponding to the ind_x has already 

been evaluated in the previous if statement and must not be included in the for 

cycle. At line 100 the y index corresponding to the increasing x is evaluated, by 

means of the function stated at line 45. Iteratively, cells constituting the rasterized 

line of the laser ray are found. 

For each cell, the occupancy belief must be updated. The for cycle considers only 

the free cells traversed by the laser ray, not the hit ones. Then, in this cycle, all the 

believes are updated subtracting to their previous value the parameter lo0. 

Because of the inaccuracy of the Lidar when facing an obstacle, the object 

detected in a cell can be located in another closer position of the real environment. 

For this reason, the occupancy belief updating of the traversed cells may be 

differentiated, when these cells are close to a detected obstacle. 

The purpose of the cnt parameter is to differentiate the traversed cells. If the laser 

ray has detected an obstacle, cnt variable is set in line 98. Its value provides the 

number of cells located between the obstacle and the robot. A for cycle is started 
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at line 99, where depending on the value of cnt, the position of the considered cell 

is checked. Cells can be located between the robot pose and the final point 

reached from the laser ray. cnt is set equal to the total distance. The traversed cell 

considered is the one containing the TurtleBot3. cnt is greater than 2, in general, 

so lo0 is subtracted at its belief. At the end of the for cycle, the value of cnt is 

decreased by 1 and the next cell is considered. When cnt value is less than 2, the 

corresponding cell is updated using no more lo0, but lo1. lo1 is subtracted to the 

previous occupancy belief of the cell, that is near to a cell detected occupied. If 

the occupancy measurement is faulty, the error is overcome by the next laser scan, 

since when an obstacle is detected to the belief is added +lo1. The subtraction of 

lo0 represents a higher confidence about the state of the cell. When this state is 

less reliable, lo1 is used. 

In the case of free space detected, no distinctions are accomplished in the update 

of traversed cells. At line 87, cnt variable is set to 1000, a high value that cannot 

be decreased below 2 in the for cycle of line 99. 

When the laser ray ends up in another region (depicted in Figure 4.4), the 

procedure is the same with some adjustments. When the Bresenham’s line filter 

is implemented for the regions 106 and 150, y is increased by 1 at each step and x 

is computed. In regions 128 and 150 when the for cycle is executed to update the 

belief of traversed cells, the variable increased at each step ranges from the 

position of the obstacle to the position of the robot, since the for-statement needs 

an increasing parameter. Requirements mentioned above still holds. Moreover, in 

these regions the cnt variable is set to 0 when an obstacle is detected. Therefore, 

at the end of the for cycle updating traversed cells, cnt is increased by 1. 

 

172     pub.publish('TOOOPIIIIIC!!!') 
173     semaph=0 

 

The last two lines of MapUpdater are executed when the update of the map belief 

is completed. The first line publishes a String message on the topic /a_topic. It is 
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used to check the working frequency of the function, by means of the ROS 

framework. The second line sets the blocking variable semaph to 0. Then, 

MapUpdater cannot be run again, until a new laser scan is published by the 

TurtleBot3. 

 

4.3.6 Map plotting function 
While the threading processes work to update the map belief matrix, the main 

function asks the user on the command window if he wants to plot the map. When 

“y” is digited, PlotMap function is run. Its argument is the copy of the map matrix, 

updated until the moment in which the user asks for the print. The code of the 

function is reported in the following Table 4.12: 

 

199 #Map plotting function: 
200 def PlotMap(mpl): 
201     global n_plots,plots 
202     now_pose={"x":my_pose_x, "y":my_pose_y} 
203     axis_x_ob=[] 
204     axis_y_ob=[] 
205     plots.append(plt.figure(n_plots)) 
206     occup_threshold=3 
207     for i in xrange(len(mpl)): 
208         for j in xrange(len(mpl)): 
209             if mpl[i][j] > occup_threshold: 
210                 axis_x_ob.append([i]) 
211                 axis_y_ob.append([j]) 
212     plt.plot(axis_x_ob,axis_y_ob,'k.') 
213     plt.plot(now_pose["x"],now_pose["y"],'r-') 
214     plots[-1].show() 
215     n_plots+=1 

Table 4.12 

 

The matrix shared as argument is named mpl within the function. At line 201, two 

variables are introduced like global ones, n_plots and plots. As mentioned before, 

n_plots is a count variable to keep in memory the number of stored maps and to 
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distinguish different map figures. plots is the list where the plotted maps are 

saved. At line 202, the whole position vectors are stored into a dictionary. All the 

past values of position are registered by the robot and then can be printed into 

the map. At lines 203 and 204 two variables are initialized as empty vectors each 

time this function is executed. They are used to store the points that must be 

plotted in the current map. At line 205 a new figure is created, identified by the 

count variable n_plots. In this new figure the map will be printed. 

At line 206, the parameter occup_threshold is set. This is the value with which the 

belief value of every cell is compared. Cells with a belief greater than 

occup_threshold (bel(mn,t) > 3) are considered occupied. Cells with a belief less 

than -occ_threshold (bel(mn,t) < -3) are considered free. Cells with a belief that 

ranges between the negative and the positive value of threshold (-3 < bel(mn,t) < 

3) are considered unknown. The parameter occup_threshold is chosen by the user. 

It can be set depending on the accuracy of the used sensors. 

At lines 207 and 208, two for-cycles consider all the cells of the grid map by means 

of the entries of the map belief matrix. For each entry, at line 209 an if statement 

selects only the cells with a belief value greater than the positive threshold. The x 

and y components of the position of the selected cells are stored in the axis_x_ob 

and axis_y_ob vectors respectively. The for cycles end. At line 212, points stored 

in the two vectors just seen are plotted on the new figure created at line 205. The 

argument ‘k.’ indicates that these points are plotted as black points. The printed 

map is an occupancy grid map. The real environment is represented by a grid with 

fixed cells. When a cell is considered occupied a black point is plotted in the middle 

of the cell. The map is then represented by a matrix of points, each of which 

represents a region of the environment. The smaller each region is, the more 

accurate the map is. 

In line 213, all the history of the positions of the robot is plotted on the same 

figure. Argument ‘r-‘ plots this history like a red line. The figure appears on the 

screen by means of the command in line 214, that shows the last element of the 

list plots. At the following line, the n_plots counter is increased by 1 and the 
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function is completed. The main function restarts its loop and asks on screen if the 

user wants to print the map again. 
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5 Conclusions 
 

 

In this chapter the results are shown. In the first section the developed mapping 

program is run along with the autonomous navigation algorithm. The realized 

maps are analyzed and improved. The mapping program is then compared to 

Gmapping, another common mapping algorithm working with the same sensor 

data. In the last section, future implementations are presented. 

 

5.1 Autonomous mapping and navigation 
 

The Occupancy Grid Mapping program is developed to map an indoor 

environment and is set for working on the Turtlebot3 Burger. The full script is 

named OccGridMapp. It is reported in the Appendix of the thesis. This program 

accomplishes the SLAM, Simultaneous Localization and Mapping. To build the map 

of building without the human interaction, the Burger must move autonomously. 

For this goal, the Occupancy Grid Mapping is run alongside a program for the robot 

autonomous navigation. This program has been provided by Lorenzo Galtarossa, 

another student of Politecnico di Torino working on autonomous navigation at 

LIM. 

TurtleBot3 Burger is started. The ROS Master node is launched by the laptop with 

the command “roscore”. After this, bringup is executed from both the laptop and 

the Burger. Now all the needed nodes are active and publish messages on ROS 

topics, about the state of the robot and sensor measurements. Developed 

mapping program OccGridMapp.py and autonomous navigation program 

autonomous_nav.py can be started. autonomous_nav is run. On the terminal 

window it asks to the user if he wants the robot goes ahead or stops, typing “g” or 

“s” respectively. If another character is typed, the question is remade. 
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OccGridMapp is also executed and, on its terminal window, the program asks the 

user if he wants to plot the actual map. 

“g” is typed and the Burger starts to move. The LIM hallway is mapped. The 

starting point is the bottom left corner of the lab. While moving, the Burger robot 

avoids obstacles and walking persons. In the meantime, the mapping algorithm 

registers all the detected obstacles and free spaces into its grid map. Walking 

persons and moving objects are detected and the map is updated with their 

detection. However, when they shifted position, the mapping program empties 

the map from their presence. Every second the map is updated around 5 times. If 

a leg of a moving person is detected in 2 consecutive time steps, after other 3 

detections the cell believed occupied becomes free. The moving obstacle is 

eliminated from the map within 1 second. 

The map plotted by the OccGridMapp program, using a TurtleBot3 Burger to 

gather the inputs and moving it with the autonomous_nav algorithm, is shown in 

Figure 5.1. 

 

 

Figure 5.1: LIM hallway map realized by OccGridMapp 
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As mentioned in the previous chapter, the grid map is plotted like a matrix of 

points, centred in the middle of each cell. Each point represents the occupancy 

belief of the corresponding cell. Within this code, only the cells considered 

occupied are plotted, i.e. cells with an occupancy value greater than the positive 

occupancy threshold. These cells are printed as black points. Therefore, the map 

is a grid map filled by black points, representing little regions of the environment 

considered occupied. The unknown or free cells are not shown. If the complete 

map is needed, representing all the 5000 x 5000 cells of the grid with their 

associated believed state (occupied, free or unknown), the PlotMap function must 

be modified. At line 199 of the OccGridMapp program, PlotMap is substituted by 

the function in the following Table 5.1. 

 

#Map plotting function: 
def PlotMap(mpl): 
    global n_plots,plots 
    now_pose={"x":my_pose_x, "y":my_pose_y} 
    axis_x_un=[] 
    axis_y_un=[] 
    axis_x_ob=[] 
    axis_y_ob=[] 
    axis_x_fr=[] 
    axis_y_fr=[] 
    plots.append(plt.figure(n_plots)) 
    occup_threshold=3 
    for i in xrange(len(mpl)): 
        for j in xrange(len(mpl)): 
            if mpl[i][j] > occup_threshold: 
                axis_x_ob.append([i]) 
                axis_y_ob.append([j]) 
            elif mpl[i][j] < -occup_threshold: 
                axis_x_fr.append([i]) 
                axis_y_fr.append([j]) 
            else: 
                axis_x_un.append([i]) 
                axis_y_un.append([j]) 
    plt.plot(axis_x_ob,axis_y_ob,'k.') 
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    plt.plot(axis_x_fr,axis_y_fr,'w.') 
    plt.plot(axis_x_un,axis_y_un,'b.') 
    plt.plot(now_pose["x"],now_pose["y"],'r-') 
    plots[-1].show() 
    n_plots+=1 

Table 5.1 

 

Vectors axis_x_un, axis_y_un, axis_x_fr and axis_y_fr are added to the function. 

In these vectors are stored cells whose belief value considers the corresponding 

cell unknown or free. In terms of code, at these new vectors are appended the 

indices of the entries representing an unknown or a free cell. At the end of the for-

cycles, all the cells of the map are assigned to one of the three couple of vectors. 

These are: two vectors containing the indices of occupied cells, two vectors for the 

indices of free cells and two vectors containing the indices of unknown cells. After 

this, once at a time, each vector is processed and all the cells are plotted into the 

map. The cells are represented through their middle point. This point is black if the 

cell is considered occupied, white if considered free and blue if unknown, i.e. its 

state is too uncertain to be assigned to the other two cases. 

The obtained map, printing all the cells of the grid basing on their associated 

occupancy belief, is shown in Figure 5.2. Executing another test, the Burger is 

moved in the same hallway with the same autonomous navigation algorithm. 
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Figure 5.2: LIM hallway map realized by OccGridMapp, representing all cells 

 

The map is the same, only representing all the stored occupancy believes 

regarding the cells. In the following, only the obstacles are shown, then the black 

points. This OccGridMapp program is run as shown in the Appendix B. In this way, 

it is easier to check the reliability and the precision of the map. Uncertain and free 

cells are still present in the map matrix and are updated by the mapping algorithm, 

but the output image shows only the occupied ones. 

Let us consider the map printed in Figure 5.1. Some points of the walls are not 

been plotted. This occurs when some measurements are faulty and the following 

ones must correct those errors. Alternatively, the Burger, moving too fast and 

taking one measurement for each degree, may lose some points of the map. The 

missed cells can be updated when the robot comes back. When a completed map 

is needed at the first transition, an optimization can be carried out at the plotting 

time. Once the map is plotted but not shown yet, extra lines are added to connect 

closer points. The new PlotMap function is the following: 
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#Map plotting function: 
def PlotMap(mpl): 
    global n_plots,plots 
    now_pose={"x":my_pose_x, "y":my_pose_y} 
    axis_x_ob=[] 
    axis_y_ob=[] 
    plots.append(plt.figure(n_plots)) 
    occup_threshold=3 
    for i in xrange(len(mpl)): 
        for j in xrange(len(mpl)): 
            if mpl[i][j] > occup_threshold: 
                axis_x_ob.append([i]) 
                axis_y_ob.append([j]) 
    plt.plot(axis_x_ob,axis_y_ob,'k.') 
    #Optimization algorithm 
    for i in xrange(len(mpl)): 
        for j in xrange(len(mpl)): 
            if mpl[i][j] > occup_threshold: 
                for n in xrange(1,6): 
                    for m in xrange(1,6): 
                        if mpl[i-n][j-m]>occup_threshold and mpl[i-n+1][j-
m+1]<=occup_threshold: 
                            plt.plot([i,i-n], [j,j-m], 'k-') 
                for n in xrange(1,6): 
                    for m in xrange(1,6): 
                        if mpl[i+n][j+m]>occup_threshold and mpl[i+n-1][j+m-
1]<=occup_threshold: 
                            plt.plot([i,i+n], [j,j+m], 'k-') 
                for n in xrange(1,6): 
                    for m in xrange(1,6): 
                        if mpl[i-n][j+m]>occup_threshold and mpl[i-n+1][j-m-
1]<=occup_threshold: 
                            plt.plot([i,i-n], [j,j+m], 'k-') 
                for n in xrange(1,6): 
                    for m in xrange(1,6): 
                        if mpl[i+n][j-m]>occup_threshold and mpl[i-n-1][j-
m+1]<=occup_threshold: 
                            plt.plot([i,i+n], [j,j-m], 'k-') 
                for n in xrange(1,51): 
                    if mpl[i-n][j]>occup_threshold and mpl[i-1][j]<=occup_threshold: 
                        plt.plot([i,i-n], [j,j], 'k-') 
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                    if mpl[i+n][j]>occup_threshold and mpl[i+1][j]<=occup_threshold: 
                        plt.plot([i,i+n], [j,j], 'k-') 
                    if mpl[i][j-n]>occup_threshold and mpl[i][j-1]<=occup_threshold: 
                        plt.plot([i,i], [j,j-n], 'k-') 
                    if mpl[i][j+n]>occup_threshold and mpl[i][j+1]<=occup_threshold: 
                        plt.plot([i,i], [j,j+n], 'k-') 
    plt.plot(now_pose["x"],now_pose["y"],'r-') 
    plots[-1].show() 
    n_plots+=1 

Table 5.2 

 

The section Optimization algorithm is inserted in the function. At the first lines, 

only the occupied cells are selected, one by one, and checked. In this check, a 10 

x 10 area around the cell is considered. If in this area another occupied cell is 

found, a line is printed between the two, if they are disconnected. The area is 

divided in four regions, likely a Cartesian plane with the origin located in the 

middle point of the checked cell. Four groups of for-cycles look into each region 

for a cell with an occupancy belief greater than 3, the occupancy threshold. When 

another occupied cell is found in a region, the cell immediately close, in the 

direction of the middle cell, is checked. If it is occupied, the optimization is useless. 

If it is free, the two occupied cells are disconnected in a very short space and, then, 

a line is drawn. Cells located in the horizontal and the vertical lines crossing the 

middle cell, are not checked here. Another for cycle is used. The procedure is the 

same. 

Possible robot paths are not wasted, by means of this map optimization. The cell 

dimension is 1 x 1 centimetres, so the considered area is 10 x 10 centimetres. Since 

the Burger is wide 17,8 centimetres, it cannot pass through the lines drawn in this 

region. 

In the tested context, an optimization using a 10 x 10 centimetres checking area 

has not been sufficient for some horizontal and vertical lines. For this reason, in 

this case, along the horizontal and vertical directions cells with a maximum 

distance of 50 centimetres from the middle one are considered. This modification 



- 106 - 
 

can be carried out when from the map it is clear that narrow passages are not 

wasted. 

The optimized map is shown in Figure 5.3. 

 

 

Figure 5.3: LIM hallway map realized by OccGridMapp with Optimization 

 

Many free cells between points of the same wall are filled. Others do not. The 

same test is accomplished in a room of the LIM. The Burger is placed in a fixed 

starting point and the autonomous navigation and mapping of the area are 

executed. The autonomous_nav algorithm moves the robot around the room. At 

the same time the environment is mapped by means of the OccGridMapp 

program. The resulting map is shown in Figure 5.4. 
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Figure 5.4: LIM room map realized by OccGridMapp 

 

A second test is carried out in the same conditions, implementing the optimization 

algorithm within the OccGridMapp. The map is reported in Figure 5.5. 
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Figure 5.5: LIM room map realized by OccGridMapp with Optimization 

 

At the corners the optimization is clear. In the left bottom corner, the trash can is 

visible in Figure 5.4. Because of its closeness to the wall, that does not allow the 

passage of the Burger, in Figure 5.5 the trash can is depicted like an extension of 

the wall. 

 

5.2 Comparison with Gmapping 
 

A very common algorithm used to build a 2D map using a 360° laser scanner is 

Gmapping. It is the method implemented in the e-Manual website of ROBOTIS [4] 

to solve the Simultaneous Localization and Mapping problem. Gmapping is a 

particle filter algorithm. Each particle represents a possible grid map. Depending 

on the most recent odometry and laser scan data, it assigns a probability to the 

particles. It is run with the viewer tool rviz, to show the build of the map in real 

time and save it as an image. This tool and the intrinsic computations of a particle 

filter are obviously a higher computational cost, with respect to an Occupancy Grid 
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Mapping. If the execution of rviz is disabled, the grid map can be found on a 

dedicated topic in matrix form. When the user wants to print the map after a 

certain path or time, without the execution of rviz during mapping, another 

program must be run. The latter plots the map found on the assigned topic. 

In Gmapping the frequency of the map update can be changed. The default value 

is 0.5Hz. Then the update of the map is accomplished within 2 seconds. The 

nominal maximum operating frequency is equal to 2 Hz, an update every 0.5 

seconds. The map of the hallway of the LIM is built by means of Gmapping and the 

autonomous navigation algorithm used until now. Two maps are realized setting 

the update frequency to 0.5 Hz and to 2 Hz. Resulting maps are shown in the figure 

below. 

 

 

Figure 5.6: a) LIM hallway map realized by Gmapping at 0.5 H 

                  b) LIM hallway map realized by Gmapping at 2 Hz 
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As the reader can see, increasing the update frequency the Gmapping algorithm 

starts to lose its odometry reliability and the map rotates at the end of the path. 

As mentioned in the previous chapter, a mapping algorithm should update its map 

with a frequency higher than the frequency of coming laser data. When working 

along with a second program, it may be necessary that the two programs, running 

one after the other, terminates their cycles between two laser data publications. 

Gmapping has an update frequency (maximum 2 Hz) lower than the publication 

frequency of the laser scans (about 5 Hz). The operating frequency is set as high 

as possible, then 2 Hz. The map considered for the comparison with the developed 

mapping algorithm is the Figure 5.6 b). 

While the particle filter assigns a probability to more possible grid maps, the 

Occupancy Grid Mapping assigns a probability to each cell of the map. The 

developed algorithm is executed with a lower computation effort, than the 

running of Gmapping alongside a viewer tool. Moreover, the map is shown when 

requested, without the execution of a secondary application or viewer. 

The comparison between the printed maps obtained with Gmapping plus rviz and 

the mapping algorithm developed in this thesis work are reported in the following 

figures. The comparison is accomplished both in the hallway and the room of the 

LIM, previously seen in this chapter. Each map is realized with a different robot 

run. 
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Figure 5.7: a) LIM hallway map realized by Gmapping at 2 Hz 

b) LIM hallway map realized by OccGridMapp with Optimization 
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Figure 5.8: a) LIM room map realized by Gmapping at 2 Hz 

b) LIM room map realized by OccGridMapp wit Optimization 

 

The comparable parameters that show the better and the worse aspects of a 

method with respect to the other are the weight of the resulting map (in 

kilobytes), the mapping update rate and the reliability of the map. The resulting 

parameters relative to the two maps are compared in the following table: 
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Parameters OccGridMapp Gmapping 

Weight 

[KB] 

Hall 81.8 312 

Room 99.7 144 

Update rate [Hz] 6.600 ÷ 18.188 1.243 ÷ 1.679 

Reliability 

Hall 

 
 

Room 

 
 

Table 5.3 

 

The hallway has size of around 7 x 25 metres. The room around 4.5 x 6.5 metres. 

The weight of the hallway map printed by OccGridMapp is lower than the one 

obtained by Gmapping and rviz. Increasing the dimension of the mapped area, the 

weight of the map plotted by OccGridMapp is not increased. It depends on the 

number of visible plotted points, basing on the zoom chosen by the user. On the 

contrary, the map plotted by Gmapping has a weight greater than double of 

before. The map of the hallway realized with the Occupancy Grid Mapping 

algorithm is about four times lighter than the one built with Gmapping. Thus, the 

weight of a map printed by means of Gmapping and rviz is higher and quickly 

arises, not depending on zoom used. The map is saved by means of a ROS 

command from the terminal. 

The second considered parameter is the update rate, i.e. the frequency at which 

the algorithms update their map belief. This parameter can be obtained using the 

ROS command “rostopic hz /topic_name”. Gmapping publishes its map every time 

this is updated, using the topic /map. OccGridMapp publish a string message on 

topic /a_topic every time the map is updated. To check their update rates, names 

of these topics are to be substituted in ROS command above. This command 
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returns a continuous print, on the terminal window, of the average frequencies at 

which messages are published in the considered topic. These values change in 

time. Then, during a mapping process, it can be possible to extract the minimum 

and the maximum values of the map update rate. 

The frequency at which laser scans are posted on the /scan topic is about 5 Hz. To 

not waste any laser data set, the minimum update rate of the mapping algorithm 

must be at least 5 Hz. OccGridMapp has a minimum value of 6.600 Hz, so it can 

use every laser scan to update its map. Moreover, during the mapping process, 

the map update rate is usually around 8 – 10 Hz, allowing other processes to be 

performed in series to it, before the following laser scan publication. Instead, the 

maximum map update rate of Gmapping is lower than 2 Hz. Results shows that 

Gmapping updates its map every 3, 4 or 5 laser measurents, depending on its 

momentary update rate. Then 2, 3 or 4 laser scan sets are losed. 

The comparison about the reliability is carried out examining the map images of 

Figure 5.7 and Figure 5.8. Maps realized by OccGridMapp are not perfectly 

optimized and some holes are still present. Gmapping is well optimized and 

eliminates these imperfections. Gmapping is sensitive to the increasing of the 

update frequency of the map. Odometry is lost and the map results deformed at 

the end of the robot path. Although the OccGridMapp works with a higher update 

rate, the odometry is not lost in the same way and the map is not deformed like 

the Gmapping one. 

Moreover, from the map created with OccGridMapp the spatial quantities can be 

roughly derived, since at each unit of the plotted Cartesian plane corresponds 1 

centimetre. 

In summary, maps realized by Gmapping plus rviz have a greater reliability if 

working at low frequencies, with respect to maps built by OccGridMapp. If the 

working frequency of Gmapping is increased, the map is more reliable for the 

absence of holes in walls and, at the same time, less reliable because the map is 

deformed after a certain path. This deformation is not seen during the mapping of 

the room. The mapping algorithm developed in this thesis project plots a map with 



- 115 - 
 

a lower memory cost and is computationally faster. This is a fundamental 

characteristic needed for the accomplishment of certain tasks. 

 

5.3 Future works 
 

There are two improvements that can be implemented at the developed mapping 

algorithm. If the map must eliminate all the faulty and not seen holes in the walls 

at the first robot passage, a better optimization algorithm can be studied and 

implemented. The second and more important one is the improvement of the 

odometry data. 

The robot localization task is assigned to the odometry values, given from the 

Burger through the ROS topic /odom. Odometry measurements have a low 

cumulative error that is not deleted and can only grow in time. This error is 

significant during a turn. The mapping algorithm, reported in Appendix B, partially 

overcomes this problem stopping to update the map during bends. Some lines of 

codes are implemented to the program presented in chapter 4. In the threading 

class MapUp another blocking condition is added to handle the map updating 

process. 

 

176 #Thread class to continuously update map: 
177 class MapUp(threading.Thread): 
178     def __init__(self): 
179         threading.Thread.__init__(self) 
180     def run(self): 
181         while True: 
182             if ang_vel<=0.2 and ang_vel>=-0.2 and semaph==1: 
183                 rngs_data=rngs_scan 
184                 act_pose={"x":my_pose_x[-1], "y":my_pose_y[-1], 

"theta":my_pose_theta[-1]} 
185                 MapUpdater(rngs_data,act_pose) 

Table 5.4 
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In the if statement at line 182, a condition is added to start the current update of 

the map. The angular velocity of the robot must be lower than 0.2 rad/s and higher 

than -0.2 rad/s. To check the angular velocity of the robot another subscriber is 

initialized in the class Subscribers. Then, another callback function is created, 

callbackVl. In this function the angular velocity of the robot around the z axis is 

stored in a global variable named ang_vel, that is invoked by the class MapUp as 

shown. These implementations can be checked in the OccGridMapp script, 

reported in the Appendix B. 

Let us consider again the mapping process of the hallway of the LIM. The starting 

part of the map is reported here. The map is realized without using the blocking 

condition about the angular velocity of the robot, stated at line 182. 

 

 

Figure 5.9: detail of map realized by OccGridMapp without blocking condition 

based on angular velocity 

 

Using the blocking condition, the result is the following shown in Figure 5.10. 

 



- 117 - 
 

 

Figure 5.10: detail of map realized by OccGridMapp with blocking condition 

based on angular velocity 

 

The error in the map is eliminated, but the error in the odometry is not. Then, 

moving, the Burger accumulates the error about its localization in the real 

environment. As a consequence, the following cells update, depending on this 

faulty odometry, can lead to a faulty belief of the map. 

This error becomes evident when the robot accomplishes a 360° bend and returns 

in the already seen part of the map. This case is shown in Figure 5.11. The mapping 

test, in which the map of Figure 5.1 has been realized, is continued and the Burger 

turns back in the same hallway. 
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Figure 5.11: LIM hallway map realized by OccGridMapp turning back 

 

The odometry is lost and the robot creates a second path on the map, overlapping 

the first one. This case is not always verified, i.e. the robot can turn back without 

overwriting the previous path. In any case, the odometry is easily lost. 

A future work can be the implementation of a feedback system for the 

improvement of the odometry, like the data fusion of odometry, imu 

measurements and visual odometry. 
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Appendix A: 
 

 

In this Appendix is presented the table of measurements performed to test the 

reliability of the 360° Lidar mounted on TurtleBot3. The robot is manually placed 

at 0.5 metres from a wall, in front of it, and 1000 sets of laser measurements are 

collected from the ROS topic /scan. From each set, only the measure 

corresponding to the laser ray casted at 0° is considered. 

There is not only one right value. Due to the imprecision of the laser, the more 

frequent values, found in a set of data, can be considered “correct”. In this case 

there are three correct values: 0.5, 0.500999987125 and 0.501999974251. Other 

values must be considered wrong measurements or failures of the sensor. The 

wrong measures are random values around the correct measurements. Instead, 

data 0.0 represent a failure in the functioning of sensor. There cannot exist a 0.0 

measurement, because this value represents the point at the centre of the Lidar. 

 

Laser detection of an obstacle located at 0.5 metres from the Burger 
0.5 0.5 0.500999987125 0.5 0.5 
0.500999987125 0.5 0.0 0.5 0.5 
0.5 0.500999987125 0.5 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.5 0.500999987125 
0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.500999987125 0.5 0.5 
0.5 0.500999987125 0.5 0.5 0.5 
0.5 0.5 0.5 0.500999987125 0.500999987125 
0.5 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.5 0.5 
0.500999987125 0.5 0.5 0.500999987125 0.5 
0.5 0.5 0.500999987125 0.5 0.500999987125 
0.5 0.5 0.5 0.500999987125 0.5 
0.5 0.0 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.500999987125 
0.5 0.5 0.5 0.5 0.500999987125 
0.500999987125 0.5 0.500999987125 0.5 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.500999987125 0.5 
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0.500999987125 0.5 0.500999987125 0.500999987125 0.5 
0.5 0.5 0.500999987125 0.500999987125 0.5 
0.5 0.5 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.5 0.5 0.500999987125 0.500999987125 
0.5 0.5 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.5 0.5 
0.5 0.500999987125 0.5 0.5 0.5 
0.5 0.5 0.500999987125 0.5 0.5 
0.5 0.5 0.500999987125 0.5 0.500999987125 
0.5 0.5 0.5 0.500999987125 0.5 
0.5 0.500999987125 0.5 0.5 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.5 0.5 
0.5 0.500999987125 0.500999987125 0.500999987125 0.5 
0.5 0.500999987125 0.5 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.5 0.5 
0.5 0.5 0.500999987125 0.500999987125 0.5 
0.0 0.5 0.5 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.5 0.500999987125 0.5 0.5 0.500999987125 
0.5 0.5 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.501999974251 0.5 0.5 0.500999987125 0.5 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.5 0.5 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.499000012875 0.5 0.5 0.5 0.500999987125 
0.500999987125 0.500999987125 0.5 0.500999987125 0.500999987125 
0.5 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.500999987125 0.5 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.5 0.500999987125 
0.5 0.500999987125 0.5 0.5 0.500999987125 
0.500999987125 0.501999974251 0.5 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.5 0.500999987125 0.0 0.500999987125 
0.5 0.500999987125 0.5 0.500999987125 0.5 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
0.5 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.5 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.5 0.5 0.500999987125 0.500999987125 
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0.5 0.500999987125 0.5 0.500999987125 0.5 
0.5 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.501999974251 0.5 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.0 0.5 0.5 0.500999987125 0.5 
0.5 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.5 0.5 
0.500999987125 0.500999987125 0.500999987125 0.5 0.5 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.5 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
0.5 0.500999987125 0.500999987125 0.500999987125 0.5 
0.5 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.5 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.501999974251 0.5 0.500999987125 
0.500999987125 0.5 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.5 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.5 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.5 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.501999974251 0.500999987125 0.500999987125 0.5 
0.0 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
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0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.501999974251 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.5 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.5 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.0 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.500999987125 0.5 
0.5 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.500999987125 0.5 
0.500999987125 0.500999987125 0.5 0.5 0.500999987125 
0.500999987125 0.500999987125 0.5 0.5 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.501999974251 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.5 0.5 0.500999987125 
0.500999987125 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.5 0.500999987125 0.500999987125 0.5 
0.5 0.500999987125 0.500999987125 0.500999987125 0.5 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.5 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.501999974251 0.500999987125 0.500999987125 0.500999987125 0.501999974251 
0.500999987125 0.500999987125 0.500999987125 0.501999974251 0.500999987125 
0.500999987125 0.500999987125 0.0 0.500999987125 0.500999987125 
0.5 0.5 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.501999974251 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.501999974251 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 



- 123 - 
 

0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.501999974251 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.500999987125 
0.500999987125 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.501999974251 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.501999974251 0.500999987125 0.500999987125 0.500999987125 0.501999974251 
0.5 0.501999974251 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.5 0.501999974251 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.5 0.500999987125 0.5 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.500999987125 
0.500999987125 0.500999987125 0.500999987125 0.500999987125 0.501999974251 
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Appendix B: 
 

 

The code developed during the thesis work is reported here. It is a Python program 

that performs the Simultaneous Localization and Mapping (SLAM). The algorithm 

receives odometry and laser scan data as inputs. It returns a plotted grid map as 

output. The matrix representing the grid map is available is stored in the variable 

grid_map. 

The localization relies on the odometry measurements coming from the wheel 

encoders. The build and the continuously update of the map are accomplished 

using data gathered from the Lidar. A function for the plotting of the map like an 

image has been implemented. 

OccGridMapp.py 

1 #!/usr/bin/env python 
2 #Imports: 
3 import time 
4 import threading 
5 import math 
6 import numpy 
7 from tf.transformations import euler_from_quaternion 
8 import matplotlib.pyplot as plt 
9 
10 import rospy 
11 from sensor_msgs.msg import LaserScan 
12 from nav_msgs.msg import Odometry 
13 from geometry_msgs.msg import Twist 
14 from std_msgs.msg import String 
15 
16 
17 #Start up node of the program: 
18 rospy.init_node('my_slam') 
19 
20 
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21 #Set up parameters: 
22 global grid_map, my_pose_x,my_pose_y,my_pose_theta,  

n_plots,plots, res,lo1,lo0,pz1m1,pz0m0, semaph 
23 grid_map=numpy.zeros((5000,5000)) 
24 my_pose_x=[] 
25 my_pose_y=[] 
26 my_pose_theta=[] 
27 n_plots=0 
28 plots=[] 
29 res=0.01 
30 pm1z1=991/1000.0 
31 pm0z0=(1000-6)/1000.0 
32 lo1=math.log(pm1z1/(1-pm1z1)) 
33 lo0=math.log(pm0z0/(1-pm0z0)) 
34 semaph=0 
35 
36 
37 #Function computing the yaw angle from quaternion: 
38 def get_yaw_from_quaternion(quaternion): 
39     quaternion_list=[quaternion.x, quaternion.y, quaternion.z, 

quaternion.w] 
40     (roll,pitch,yaw)=euler_from_quaternion(quaternion_list) 
41     return yaw 
42 
43 
44 #Bresenham's line algorithm returning y with x increasing: 
45 def yFromLine(y1,x1,y0,x0,x): 
46     y=(y1-y0)/(x1-x0)*(x-x0)+y0 
47     return y 
48 
49 
50 #Bresenham's line algorithm returning x with y increasing: 
51 def xFromLine(y1,x1,y0,x0,y): 
52     x=(x1-x0)/(y1-y0)*(y-y0)+x0 
53     return x 
54 
55 
56 #Callback running when new LaserScan message published: 
57 def callbackLs(msg): 
58     global rngs_scan,semaph 
59     rngs_scan=msg.ranges 
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60     semaph=1 
61 
62 
63 #Callback running when new Odometry message published: 
64 def callbackOd(msg): 
65     global my_pose_x,my_pose_y,my_pose_theta 
66     my_pose_x.append((-msg.pose.pose.position.y+10.000)/res) 
67     my_pose_y.append((msg.pose.pose.position.x+10.000)/res) 
68     my_pose_theta.append(math.degrees(get_yaw_from_quaternion( 

msg.pose.pose.orientation))+90) 
69 
70 
71 #Callback running when new Velocity message published: 
72 def callbackVl(msg): 
73     global ang_vel 
74     ang_vel=msg.angular.z 
75 
76 
77 #MAP BELIEF UPDATE ALGORITHM: 
78 def MapUpdater(rngs_data,act_pose): 
79     global grid_map, semaph 
80     for i in xrange(360): 
81         #faulty measure 
82         if rngs_data[i] == 0.0: 
83             continue 
84         if (i+act_pose["theta"]>=-45 and i+act_pose["theta"]<45) or 

(i+act_pose["theta"]>=315 and i+act_pose["theta"]<405): 
85             #free space 
86             if rngs_data[i] > 3.5: 
87                 cnt=1000 
88                 ob_dist=350 
89                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
90                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
91                 grid_map[ind_x,ind_y]-=lo0 
92             #obstacle detected 
93             else: 
94                 ob_dist=round(rngs_data[i],3)/res 
95                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
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96                 ind_y=int(round(ob_dist*math.sin(math.radians( 
i+act_pose["theta"]))+act_pose["y"])) 

97                 grid_map[ind_x,ind_y]+=lo1 
98                 cnt=ind_x-int(round(act_pose["x"])) 
99             for x in xrange(int(round(act_pose["x"])),ind_x): 
100                 y=int(round(yFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,x))) 
101                 if cnt<2: 
102                     grid_map[x,y]-=lo1 
103                 else: 
104                     grid_map[x,y]-=lo0 
105                 cnt-=1 
106         elif (i+act_pose["theta"]>=45 and i+act_pose["theta"]<135) or 

(i+act_pose["theta"]>=405 and i+act_pose["theta"]<495): 
107             #free space 
108             if rngs_data[i] > 3.5: 
109                 cnt=1000 
110                 ob_dist=350 
111                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
112                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
113                 grid_map[ind_x,ind_y]-=lo0 
114             #obstacle detected 
115             else: 
116                 ob_dist=round(rngs_data[i],3)/res 
117                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
118                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
119                 grid_map[ind_x,ind_y]+=lo1 
120                 cnt=ind_y-int(round(act_pose["y"])) 
121             for y in xrange(int(round(act_pose["y"])),ind_y): 
122                 x=int(round(xFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,y))) 
123                 if cnt<2: 
124                     grid_map[x,y]-=lo1 
125                 else: 
126                     grid_map[x,y]-=lo0 
127                 cnt-=1 
128         elif (i+act_pose["theta"]>=135 and i+act_pose["theta"]<225) or 



- 128 - 
 

(i+act_pose["theta"]>=495 and i+act_pose["theta"]<585): 
129             #free space 
130             if rngs_data[i] > 3.5: 
131                 cnt=1000 
132                 ob_dist=350 
133                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
134                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
135                 grid_map[ind_x,ind_y]-=lo0 
136             #obstacle detected 
137             else: 
138                 ob_dist=round(rngs_data[i],3)/res 
139                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
140                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
141                 grid_map[ind_x,ind_y]+=lo1 
142                 cnt=0 
143             for x in xrange(ind_x+1,int(round(act_pose["x"]))+1): 
144                 y=int(round(yFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,x))) 
145                 if cnt<2: 
146                     grid_map[x,y]-=lo1 
147                 else: 
148                     grid_map[x,y]-=lo0 
149                 cnt+=1 
150         elif (i+act_pose["theta"]>=225 and i+act_pose["theta"]<315) or 

(i+act_pose["theta"]>=-90 and i+act_pose["theta"]<-45) or 
(i+act_pose["theta"]>=585 and i+act_pose["theta"]<=630): 

151             #free space 
152             if rngs_data[i] > 3.5: 
153                 cnt=1000 
154                 ob_dist=350 
155                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
156                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
157                 grid_map[ind_x,ind_y]-=lo0 
158             #obstacle detected 
159             else: 
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160                 ob_dist=round(rngs_data[i],3)/res 
161                 ind_x=int(round(ob_dist*math.cos(math.radians( 

i+act_pose["theta"]))+act_pose["x"])) 
162                 ind_y=int(round(ob_dist*math.sin(math.radians( 

i+act_pose["theta"]))+act_pose["y"])) 
163                 grid_map[ind_x,ind_y]+=lo1 
164                 cnt=0 
165             for y in xrange(ind_y+1,int(round(act_pose["y"]))+1): 
166                 x=int(round(xFromLine(act_pose["y"],act_pose["x"], 

ind_y,ind_x,y))) 
167                 if cnt<2: 
168                     grid_map[x,y]-=lo1 
169                 else: 
170                     grid_map[x,y]-=lo0 
171                 cnt+=1 
172     pub.publish('TOOOPIIIIIC!!!') 
173     semaph=0 
174 
175 
176 #Thread class to continuously update map: 
177 class MapUp(threading.Thread): 
178     def __init__(self): 
179         threading.Thread.__init__(self) 
180     def run(self): 
181         while True: 
182             if ang_vel<=0.2 and ang_vel>=-0.2 and semaph==1: 
183                 rngs_data=rngs_scan 
184                 act_pose={"x":my_pose_x[-1], "y":my_pose_y[-1], 

"theta":my_pose_theta[-1]} 
185                 MapUpdater(rngs_data,act_pose) 
186 
187 
188 #Set up subscribers to ROS topics: 
189 class Subscribers(threading.Thread): 
190     def __init__(self): 
191         threading.Thread.__init__(self) 
192     def run(self): 
193         subLs=rospy.Subscriber('/scan', LaserScan, callbackLs) 
194         subOd=rospy.Subscriber('/odom', Odometry, callbackOd) 
195         subVl=rospy.Subscriber('/cmd_vel', Twist, callbackVl) 
196         rospy.spin() 
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197 
198 
199 #Map plotting function: 
200 def PlotMap(mpl): 
201     global n_plots,plots 
202     now_pose={"x":my_pose_x, "y":my_pose_y} 
203     axis_x_ob=[] 
204     axis_y_ob=[] 
205     plots.append(plt.figure(n_plots)) 
206     occup_threshold=3 
207     for i in xrange(len(mpl)): 
208         for j in xrange(len(mpl)): 
209             if mpl[i][j] > occup_threshold: 
210                 axis_x_ob.append([i]) 
211                 axis_y_ob.append([j]) 
212     plt.plot(axis_x_ob,axis_y_ob,'k.') 
213     plt.plot(now_pose["x"],now_pose["y"],'r-') 
214     plots[-1].show() 
215     n_plots+=1 
216 
217 
218 #Main 
219 if __name__=='__main__': 
220     grid_map_plt=numpy.zeros((5000,5000)) 
221     global pub 
222     pub=rospy.Publisher('/a_topic',String,queue_size=10) 
223     sub=Subscribers() 
224     sub.start() 
225     time.sleep(1) 
226     mpu=MapUp() 
227     mpu.start() 
228     while True: 
229         print_map=raw_input("Do you want to plot the map? y/n ") 
230         if print_map=='y': 
231             grid_map_plt=grid_map 
232             PlotMap(grid_map_plt) 
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